
Lambda-calculus and formal language theory

Sylvain Salvati

To cite this version:

Sylvain Salvati. Lambda-calculus and formal language theory. Computer Science [cs]. Univer-
sité de Bordeaux, 2015. <tel-01253426>

HAL Id: tel-01253426

https://hal.archives-ouvertes.fr/tel-01253426

Submitted on 10 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/tel-01253426

UNIVERSITÉ DE BORDEAUX

ÉCOLE DOCTORALE DE MATHÉMATIQUE ET
INFORMATIQUE DE BORDEAUX

Habilitation à diriger les recherches

Soutenue publiquement le 10 décembre 2015

Sylvain Salvati

Lambda-calculus and formal language
theory

Jury:

Rapporteurs:
Thomas Ehrhard - Directeur de recherche CNRS / PPS
Giorgio Satta - Professeur Università Padua, Italie
Sophie Tison - Professeur Université de Lille / CRIStAL

Examinateurs:
Bruno Courcelle - Professeur émérite Université de Bordeaux / LaBRI
Philippe de Groote - Directeur de recherche INRIA / Loria
Jérôme Leroux - Directeur de recherche CNRS / LaBRI

Contents

Contents iii

1 Introduction 1
1.1 Research context . 1
1.2 Research orientation and main contributions 2
1.3 Organization of the document 5

2 Preliminaries and recognizability 7
2.1 Simply typed λ-calculus . 8
2.2 Special constants . 10
2.3 Some syntactic restrictions on simply typed λ-calculus 12
2.4 Models of λ-calculi . 14
2.5 Recognizability in simply typed λ-calculus 21
2.6 Conclusion and perspective . 26

3 Abstract Categorial Grammars 29
3.1 Abstract Categorial Grammars 30
3.2 Expressiveness . 34
3.3 Parsing Algorithms . 39
3.4 OI grammars . 42
3.5 Conclusion and perspectives . 47

4 Mildly Context Sensitive Languages 51
4.1 On mild-context sensitivity and its limitations 53
4.2 Multiple Context Free Grammars 59
4.3 The language MIX . 62
4.4 Iteration properties for MCFGs 70
4.5 Classifying Mildly Context Sensitive Formalisms 72
4.6 Conclusion and perspectives . 73

5 Logic and Verification 77
5.1 Schematology . 79
5.2 Parity automata . 81
5.3 Wreath product and weak parity automata 87
5.4 λY -calculus and abstract machines 90

iii

5.5 A λY -model for parity automata 96
5.6 Adequacy of the model via parity games 102
5.7 Conclusion and perspectives . 109

6 Conclusion 113
Bibliography . 116
Personal bibliography . 134

iv

Abstract

Formal and symbolic approaches have offered computer science many
application fields. The rich and fruitful connection between logic, au-
tomata and algebra is one such approach. It has been used to model
natural languages as well as in program verification. In the mathemat-
ics of language it is able to model phenomena ranging from syntax to
phonology while in verification it gives model checking algorithms to a
wide family of programs.

This thesis extends this approach to simply typed lambda-calculus
by providing a natural extension of recognizability to programs that are
representable by simply typed terms. This notion is then applied to both
the mathematics of language and program verification. In the case of
the mathematics of language, it is used to generalize parsing algorithms
and to propose high-level methods to describe languages. Concerning
program verification, it is used to describe methods for verifying the
behavioral properties of higher-order programs. In both cases, the link
that is drawn between finite state methods and denotational semantics
provide the means to mix powerful tools coming from the two worlds.

v

Acknowledgments

First of all, I would like to thank the members of the jury for the attention the
have paid to my work.

I am grateful to Burno Courcelle for having accepted to be the president of
the jury. When I was writing this document, I realized how much his work has
influenced mine in many respects.

I thank the reviewers for having read this document in details. Moreover,
as this document reports on work that I did in two different fields, I must
thank them for the patience they had to go through chapters which had little
to do with their daily research. I thank Thomas Ehrhard for having done this
with computational linguistics and also for the discussions I could have with
him during the past years on denotational semantics. Giorgio Satta had the
difficult task to accommodate the peculiarities of the French habilitation and I
am very happy that he accepted to do this. The third reviewer is Sophie Tison
who has a high profile in automata theory. I have remarked that the community
working on automata does not like λ-calculus so much, I am thankful to her
for having accepted to have overcome this reluctance.

I am very pleased that Jérôme Leroux accepted to be part of the jury. First
because, I really like his work and also, because, now, as the head of the team
Méthodes formelles, he represents the stimulating environment in which my
work has grown.

I am glad that Philippe de Groote is in this jury. I started research with
him and, still, in the rare occasions that we find to discuss research topics or
technical problems, I am always impressed by the elegance and clarity of his
ideas.

I want to thank the PoSET team, David Janin and Myriam de Sainte-
Catherine with whom I am trying to find the best tune.

When I arrived at LaBRI, I was immediately welcome by the team Méthodes
formelles. Not only did it provide me with a strong scientific environment, but
also could I have very stimulating discussions with its members. Among these
people, I address special thanks to Géraud Sénizergues whose vivid enthusiasm
and joyful pleasure in research is strongly contagious; to Igor Walukiewicz who
introduced me to the fascinating world of infinite objects; and to Anca Muscholl
for her support and encouragement.

Research is a matter of ideas and inspiration. It seems impossible to do
anything of interest without the insights and the ideas of other researchers.

vii

This is true for me and I must say that I have had the chance to collaborate
with very talented researchers to whom my work owes most. I want to thank
Makoto Kanazawa who has provided me with a postdoc when I needed one,
for the common work and his patient listening to my so often wrong intuitions.
I thank also Greg Kobele for the discussions on linguistics and the formal
work. He is the only person I know who is combining at such a high degree an
expertise in linguistic and in mathematics. Ryo Yoshinaka did his PhD nearly
at the same time as I did and I remember cheerfully the moment when I could
work with him. I want to thank my PhD students Pierre and Jérôme and
my master students for having trusted me as a superviser. We still have not
produced research together, but I hope this will happen before he retires, so
I thank Pierre Casteran for teaching me CoQ and sharing with me his smart
ideas about coding in the calculus of constructions.

Finally I would like to thank my wife for her constant support and for
taking care of everything at home when I am away. A final word for my sons,
Arthur and Timothée, to whom I want to say again how much I care for them.

viii

Chapter 1

Introduction

1.1 Research context

This document is a synthesis of the research that I carried out in the past ten
years and is part of my file to obtain the habilitation à diriger les recherches. I
review the work I have done since I obtained my PhD in 2005. I did this work
from the end of 2005 until the beginning of 2007 as a postdoc at the National
Institute of Informatics in Tokyo under the supervision of Makoto Kanazawa.
I then joined INRIA Bordeaux Sud-Ouest as a researcher in the project Signes.
My work has taken place in LaBRI and I have been strongly influenced by its
scientific environment.

While I have been in the team Signes, I have been working on formalisms for
natural language, aiming at understanding their algorithmic properties, their
limitations and their relations.

In 2011, when the team Signes was ended, I was part of the ANR project
FREC, on Frontiers of RECognizability. This project allowed me to apply
methods I had developed for grammatical formalisms to verification problems
and infinitary systems.

In this period of time I have had the opportunity to supervise two PhD
students:

• Pierre Bourreau who defended his thesis in 2012. He worked on general-
izing parsing methods for abstract categorial grammars based on datalog
programs.

• Jérôme Kirman who is expected to defend his thesis by the end of the
year. He worked on high-level modeling of natural language based on
logics related to finite state automata.

In the context of FREC, I have supervised the postdoctoral studies of Lau-
rent Braud on higher-order schemes.

I also supervised a number of master students on various topics related to
formal language theory.

1

1.2 Research orientation and main contributions

My research activities find applications in two different fields: mathematics
of language and verification. In my work I do not really make a distinction
between those two seemingly different fields. Indeed, ideas or tools I use for
solving a problem in one field may then find some applications in the other.
This is mainly due to the technical apparatus that I use: λ-calculus and formal
language theory. They provide a theoretical framework which is favorable to
the generalization of techniques and ideas. Once technical ideas are made
simple, they naturally find applications in other fields. A good example of
this situation is the extension of the notion of recognizability, or of finite state
machines, to simply typed λ-calculus that I have introduced. This notion is
simple and provides ways of proving the decidability of problems in both fields
with simplicity. It also gives general guidelines for future developments of my
work. I will now present the general approaches I have followed in both domains
and my main contributions.

Mathematics of language

The aim of mathematics of language is to understand natural language from
a mathematical point of view. Not only is the goal to model formally natural
language, but also to question the very nature of language. The properties of
language this field tries to address are, among others, those of its learnability,
its syntactic properties, how utterances are related to meaning representations.
All the general properties of natural language conspire to delineate a particular
class of languages that is limited in its expressive power and that is able to
model every human language. Clearly, setting the border of this class is in the
tradition initiated by Chomsky [76] and the generative approach to linguistics.
Many mathematical models have been proposed in the literature which address
various aspects of natural languages. I have been interested in the grammatical
ones and I addressed questions related to the mathematical models of syntax,
their algorithmic properties with and relation to semantics.

I have worked in the formal setting of Abstract Categorial Grammars (ACGs),
a formalism based on λ-calculus. A first line of work has been to compare
ACGs to other formalisms and I could prove that most of them could be faith-
fully represented in this setting [S13, S18, S10]. Moreover, I could prove [S17]
that a particular class of (second order ones) ACGs have the same kind of
limitations as formalisms that were considered as mildly context sensitive, a
notion proposed by Joshi [161] so as to give a formal description of the limita-
tions grammars modeling natural language should have. This led me to study
this notion from a formal point of view. Surprisingly, I could prove that the
formalisms that were considered as mildly context sensitive were having unex-
pected properties. In particular, I proved [S19] that the language MIX which
presents no structure and is generally considered as a language that should be
out of the scope of grammars for natural languages was captured by classes of
grammars considered so far as mildly context sensitive. Related to this result,

2

I have been able to solve a long standing conjecture by Joshi that MIX was
not in the class of Tree Adjoining Languages [S8]. I could also show, contrary
to what was assumed so far, that, for these grammars, iterations in derivations
did not translate into simple iterations in strings [S6]. All these results point to
the fact that the class of languages that is widely considered as able to capture
natural languages was not very well understood.

A second line of work has consisted in studying the algorithmic properties
of ACGs, mainly the parsing algorithms related to these grammars. This work
is a sequel of my PhD work [S22] in which I proposed a parsing algorithm under
the hypothesis that the grammar is not using copying mechanisms. I general-
ized this approach [S21] to the case of copying. As my initial work proposed a
parsing algorithm for languages of λ-terms, so is that generalization. Follow-
ing Montague’s approach to natural language semantics [219], this result gives
an algorithm so as to generate texts from their meaning representations. The
interest of this work is that it naturally led to the notion of recognizability in
the simply typed λ-calculus [S23] that has proved useful in verification. This
result was further generalized to cope with the parsing problem of higher-order
OI grammars [S12]. The results of my PhD have been revisited by Makoto
Kanazawa who proposed to use datalog programs so as to implement parsers
for ACGs and also for other formalisms [168, 167]. These results together with
those I obtained for the non-linear cases were giving an interesting opportunity
to explore further parsing methods for grammars based on λ-calculus and dat-
alog. This has become the PhD topic of Pierre Bourreau. He proposed parsing
methods for almost affine λ-calculus based on datalog [S3, S2] and also some
datalog methods to cope with grammars with copying mechanisms [S1].

Finally, this work on grammars and on their algorithms has shaped a gen-
eral architecture for linguistic modeling that takes into account the constraints
on expressiveness and algorithmic complexity. The work related to recogniz-
ability pointed towards the use of trees as syntactic structures so as to obtain
efficient and simple parsing algorithms. Moreover, the relationship between
finite state tree automata and Monadic Second Order Logic (MSOL) appeared
as a strong leverage in modeling syntactic constraints concisely. With Lionel
Clément and Bruno Courcelle, I supervised the PhD thesis of Jérôme Kirman
whose work has consisted in the design of a formalism based on logic that
would be able to concisely model natural language. This work resulted in a
proposal [S4] that could handle elegantly several complex linguistic phenomena
in several languages (English, Dutch, German) and also in semantics. Kirman’s
work proposed also some direction to treat free word order phenomena in that
context [175].

Verification

My work on verification started as part of the ANR project FREC where I
started a collaboration with Igor Walukiewicz. This work follows the idea of
seeing executions of programs from an abstract point of view. An example of
this approach is the modelization of first order programs with the transition

3

systems generated by pushdown automata. In this context, verifying some of
the program properties can be reduced to verifying properties of the transition
system. The transition system forms a sort of window on the actual semantics
of the program.

In my work, I take a similar point of view in leaving the low level oper-
ations performed by a program as uninterpreted and model its control flow
with higher-order constructions. Then, programs are abstractly modeled as
λY -terms whose executions result in compositions of low level operations that
form a possibly infinite tree, its Böhm tree. Some properties of the program
can be reduced to syntactic properties of Böhm trees. Among these properties,
we can mention resource usage, liveness and fairness properties. My work uses
Monadic Second Order Logic as the class of syntactic properties of Böhm trees
we want to verify. This logic is standard when it comes to verification prob-
lems. It is at the same time highly expressive and also often yields decision
procedures.

Historically, setting MSOL verification problems in the context of λY -
calculus took a rather long time (several decades). Indeed, this problem is
at the cross-road of several communities. On the one hand, it is based on the
idea of Scott and Elgot [113] that programs interpretation could be performed
via the syntactic intermediate step that I explained above. On the other hand,
it follows a series of results related to MSOL which started with Rabin’s sem-
inal result [247] which was gradually applied to richer and richer classes of
machines. Finally the verification of MSOL specifications against higher-order
programs only started in the beginning of 2000’s with the work of Knapik et
al. [180]. This work was mostly related to formal language theory through
its use of generalizations of pushdown automata: Higher-Order Pushdown Au-
tomata (HOPDA). This work has been generalized by Ong [233] who showed
that the MSOL theory of Böhm trees generated by higher-order schemes, or
said differently of λY -terms, is decidable. This result opened the possibility of
the behavioral verification of higher-order programs.

My starting point in that field has consisted in trying to simplify Ong’s
result and clarify the tools on which it was based. This led me to give a new
proof of Ong’s results based on finite models of the λ-calculus and on Krivine
machines [S29]. The simplicity of the proof allowed to generalize Ong’s result
and restate it in terms of logical transfers [S27]. This result shows in a very
general setting that the MSOL theory of the Böhm tree of a λY -term M can
be reduced to the MSOL theory of M itself. Moreover, the Krivine machine
happened to be a very good tool to understanding abstract machines that had
been proposed by the other approaches [S30].

The result inclined me to believe that all the theory could be recast in term
of recognizability. This line of research was appealing as it is connected to
many interesting problems related to the algebraic understanding of finite state
properties of trees. I started by investigating the class of properties that were
captured by finite Scott models [S16]. I showed in particular that they could
only capture safety and reachability properties but could not take into account
whether a computation was unproductive. I modified Scott models so as to

4

make them sensitive to unproductive computations. I could then generalize
the construction so as to obtain models that capture the properties of the
weak MSOL (a fragment of MSOL that is a bit less expressive) [S15]. Finally,
the construction of a model that captures the entire logic requires intuitions
coming from linear logic so as to summarize some control flow information in
a finite way. These intuitions come from the work of Grellois and Melliès [141,
142]. I could recently give a construction for such models [S26].

1.3 Organization of the document

As this document is a synthesis of already produced research and a presentation
of the perspectives this research opens, all the parts of the work I report are not
given with the same level of detail. First of all no proof is fully detailed. Proofs
can be found in the published papers. I have decided to present the general
lines of certain proofs and constructions because they are representative of a
general method or because they present some interesting originality. As much
as I could, I have tried to present my work from a general perspective, but
sometimes at the cost of only giving a very brief presentation of certain results.
This is the price to pay for making this document relatively concise.

The document is organized in four Chapters. The first chapter introduces
notations and basic notions related to simply type λ-calculus. Though sim-
ple these notions happen not to be well-known outside the community of its
specialists. This chapter also presents the notion of recognizability cast in the
setting of simply typed λ-calculus. It contains also the basic properties related
to that notion. The second chapter presents my work on abstract categorial
grammars. It presents result about its expressiveness and then explains how
recognizability allows to construct parsing algorithms for them. This approach
is then generalize to higher-order OI grammars for which we explain how to
devise a parsing algorithm only using some semantic methods. The third chap-
ter presents my work on mildly context sensitive languages. I present here a
personal point of view on this notion that motivated the PhD subject of Jérôme
Kirman. I then present some technical results: MIX being a 2-MCFL and that
MCFLs are not iterable in general. The fourth chapter presents my contribu-
tion to program verification. It gives the motivations of studying programs
from the syntactic traces they generate. It then present some construction of
models of λ-calculus for certain kinds of specification. Interestingly for prov-
ing the correctness of the model for the most complex class of specifications
I present, the standard denotational methods of λ-calculus could not be used
successfully and I present a method based on the compression of parity games.
The document ends with a conclusion that draws the lines for future work.

5

Chapter 2

Preliminaries and recognizability

This chapter is essentially meant to provide the main definitions and nota-
tions that are used throughout the document. As they are mostly standard,
the knowledgeable reader should feel free to quickly skim trough it. It mostly
presents λ-calculus in its simply typed version. λ-calculus has been introduced
by Church [78] as a way of modeling the notion of functions. Church then de-
signed simply typed λ-calculus as a mean of representing higher-order logic [79]
which serves, as we will see in the next chapter, as a basis of the formal se-
mantics of natural language. Simply typed λ-calculus has subsequently been
used to define the idealized functional programming language PCF proposed
by Scott, Milner [216, 215] and Plotkin [243]. PCF has attracted a lot of at-
tention with the question of giving a mathematical description of sequentiality
through the full abstraction problem (see [246] for a quick presentation of this
problem).

In this chapter we introduce the notion of higher-order signatures, and some
special constants such as the fixpoint operators, the non-deterministic choice
operator and the undefined constants. Whether we authorize the use of those
special constants, or only part of them give rise to various calculi. This explains
why we may use “simply typed λ-calculi” to the plural when we wish to refer
to those calculi without distinction. After we have introduced simply typed
λ-calculi, we introduce their denotational semantics in the guise of Henkin
models, standard models and monotone models. In Chapter 5, we introduce
some other kinds of models, that will be related to monotone models. Finally,
the chapter ends with a presentation of the notion of recognizability in the
simply typed λ-calculi. It extends the ideas related to finite state automata for
strings or trees. In the context of simply typed λ-calculi, this notion relates
syntactic problems to semantic ones and makes the tools of semantics available
to their studies. This document will present some applications of this notion
to decision problems in Chapters 3 and 5.

7

2.1 Simply typed λ-calculus

Simple types are built from finite set of atoms. For such a set A, the set of
types T (A) is inductively constructed as follows: every A in A is in T (A), and
for every A, B in T (A), (A → B) is in T (A). The arrow is associating to
the right and we write A1 → · · · → An → B for (A1 → (. . . (An → B) . . .).
Intuitively, the type A → B is meant to denote the functions from A to B.
The order of types is a measure of their functional complexity, whether the
type is representing some data, some functions over data, some functionals
parametrized by functions and so on. . . It is inductively defined by ord(A) =
1 when A is an atom and ord(A → B) = max(ord(A) + 1, ord(B)). For
this definition, we follow the convention adopted by syntactic traditions of λ-
calculus related to the problems of higher-order unification or of higher-order
matching and that has been initiated by Huet [155]. The semantic community
also uses a notion of order for similar purpose which is equal to ord(A)− 1.

We use typed constants either to model operations of a programming lan-
guage, but we will also see that they can be used to model sets of letters for
building languages of strings or ranked alphabets for building languages of
trees. Typed constants are declared in higher-order signatures. A higher-order
signature Σ is a triple (A, C, τ) where A is a finite set of atomic types, C is
a finite set of higher-order constants and τ is a function that assigns types in
T (A) to constants. So as to simplify the notation, for a higher-order signature
Σ = (A, C, τ), we may write T (Σ) instead of T (A).

Fixing a higher-order signature Σ, we assume that for each type we have an
infinite countable set of λ-variables; we also assume that those sets are pairwise
disjoint. In general, we write xA to emphasize the fact that the variable x is
of type A. Under those assumptions, a higher-order signature defines a family
(ΛA(Σ))A∈T (Σ) where ΛA(Σ) is the set of λ-terms of type A. When Σ is clear
from the context, we may simply write ΛA. These sets are the smallest sets so
that:

• xA is in ΛA,

• if c is a constant of type A (i.e. τ(c) = A), then c is in ΛA,

• if M is in ΛA→B and N is in ΛA, then (MN) is in ΛB ,

• if M is in ΛB , then (λxA.M) is in ΛA→B .

Simply typed λ-calculus maybe seen from two perspectives, a first one is that
of a toy programming language, a second is that of a theory of binding that
sets the ground for higher-order logic [79] which is instrumental in Montague’s
approach to the semantics of natural language [219]. The main use of simply
typed λ-calculus we will have in this document is that of a small programming
language. It can be either a way of defining some syntactic operations on
various objects, or a way of assembling certain operations so as to perform a
computation.

8

We take for granted the notions of free and bound variables, and we write
FV (M) to denote the set of variables that have a free occurrence in M . We
freely use the standard notational conventions that allow us to remove useless
parentheses. As it is usual, we always consider λ-terms up to α-conversion,
that is up to the renaming of bound variables. We also assume the notion of
capture-avoiding substitution, and we write [x1 ← N1, . . . , xn ← Nn] for the
simultaneous capture-avoiding substitution of N1 for x1, . . . , and of Nn for xn.
Even though these conventions are well-understood and fairly intuitive, they
are technically difficult and require careful definitions which are not the focus
of this document. So we shall remain about these problems at an informal
level.

The operational semantics of λ-calculus is β-contraction that is defined as:

(λx.M)N →β M [N/x] (2.1)

The reflexive transitive closure of β-contraction is called β-reduction (∗→β), and
the symmetric closure of β-reduction is called β-conversion =β . An important
result concerning simply typed λ-calculus is that it is strongly normalizing
modulo β-contraction. This means that the relation of β-contraction is well-
founded: no matter how a term is reduced, it always gets closer to a normal
form. This result due to Tait [280], introduces some fundamental ideas which
were subsequently used to prove the consistency of type theories, most notably
that of system F which has been proved by Girard [135].

Another important and older result that concerns λ-calculus and that also
holds in the untyped case is the Church-Rosser property of β-contraction, i.e.
the relation is confluent [80]. In conjunction with the strong normalization
Theorem, this property implies that each simply typed λ-term has a unique
normal form.

We also consider λ-terms up to η-conversion that is defined by:

(λx.Mx =η M) when x /∈ FV (M) (2.2)

As η-conversion is a non-local rule in the sense that before being able to
η-contract a term one needs to verify the side condition that the variable is not
free in the term. It is usual, in the context of simply typed λ-calculus, to work
with terms in η-long form. Indeed, terms in η-long form are closed modulo
β-conversion and moreover two terms are equal modulo βη-conversion iff they
have the same η-long, β-normal form. A term M is in η-long form whenever
for every context C[] and term N if M = C[N] and N has type A → B, then
either N is a λ-abstraction and N = λxA.N ′, or C[] is an applicative context
which provides N with an argument, i.e. for some N ′ and C ′[], C[] = C ′[[]N ′].
In other words a term is in η-long form whenever each of its subterm that has
an functional type is either a λ-abstraction or is provided an argument by its
context. Every term can be put in η-long form: for every term M there is
a term M ′ that is in η-long form so that M ′ is η-reducible to M . When one
mentions the η-long form of a term M , one implictely refers to a term in η-long
form that is also minimal for η-reduction; this defines a unique term (see [155]).

9

String and tree signatures

Higher-order signatures can define standard structures such as strings or trees.
A signature is called a string signature when:

• it has a unique atomic type o,

• every constant is of type o→ o.

Given a string a1 . . . an, it can be represented by the closed λ-term of type
o→ o, λx.a1(. . . (an x) . . .). The function composition, λs1s2x.s1(s2 x) encodes
the concatenation of strings, while the identity function represents the empty
word. The associativity of concatenation and the fact that the empty string is
its neutral element can be verified simply by using β-reduction.

A signature is called a tree signature when:

• it has a unique atomic type o,

• every constant has a type with order at most 2, i.e. is of the form
o→ · · · → o︸ ︷︷ ︸

n×

→ o which we may write on → o.

Closed terms of type o on a tree signature are just the ranked trees that we
are used to. If Θ is a tree signature, we may write Θ(n) to denote the set of
constants of type on → o in Θ.

The interest of using these representations of usual data structures inside
the simply typed λ-calculus, is that they are immediately immersed into a small
programming language in which standard operations can be represented.

2.2 Special constants

Depending on the context, we may add to λ-calculus constants that are not to
be declared in signatures. We may refer to these constants as special constants.
These constants come with a computational meaning and have thus a particular
status. These constants are indexed by types and thus there are infinitely many
of them:

Fixpoint operators for every A, Y A is a constant of type (A→ A)→ A, and the δ-contraction
is defined by:

YM →δ M(YM) (2.3)

Undefined constants for every ΩA is a constant of type A, the ω-contraction is defined by,

ΩA→BN →Ω ΩB (2.4)

Non-deterministic operator for every A, +A is a constant of type A → A → A (it will be written
with an infix notation), their reduction rules are given by:

M1 +M2 →+ M1 M1 +M2 →+ M2 (2.5)

10

When we find it necessary to specify with which constants we wish to work, we
add them to the name of the calculus. With this convention, the λY Ω-calculus
is the λ-calculus where we may use the fixpoint operators and the undefined
constants, other calculi will designated this way.

Remark 1 When we work with the Y combinator, it is sometimes convenient
to use it as a binder. In that case we write Y x.M for Y (λx.M).

When working with a calculus, we may simply write → for the union of
the contraction rules of its special constants and β-contraction. Similarly we
may use ∗→ and = respectively for the reduction and the conversion relations.
We may also restrict our attention to a subset of the contraction rules, and
in that case, we will write the contraction, reduction and conversion relations
with the adequate indices. For example when dealing with λY+-calculus and
only working with β and δ-contraction rules, we will write the relations →βδ,
∗→βδ and =βδ.

Except for the rules concerning the non-deterministic operator, all those re-
duction rules preserve the Church-Rosser property. And except for δ-reduction,
all those rules preserve the strong normalization property of simply typed λ-
calculus. There are terms that do not have a normal form. Böhm trees [47]
provide a way of defining a notion of infinitary normal forms for terms in calculi
that involve the fixpoint operators. The Böhm tree BT (M) of a term M is the
(possibly infinite) tree defined as follows:

• if M ∗→βδ λx1 . . . xn.hM1 . . .Mn, with h being either a constant (not a
special one) or a variable, then BT (M) is the tree whose root node is
labeled λx1 . . . xn.h and which has BT (M1) as first daughter, . . . , and
BT (Mn) as nth daughters,

• otherwise BT (M) is a one node tree whose root is labeled ΩA (A is the
type of M).

The construction of Böhm trees is based on βδ-reduction; this ensures its
uniqueness by the Church-Rosser property of this relation. In case the we
consider a calculus with the undefined constants, adding its contraction rule
does not modify the definition of Böhm trees.

We have given a syntactic definition of Böhm trees that has the merit
of being rather intuitive. Nevertheless, we should mention that they can be
defined using Cauchy series under a suitable metric on terms [283]; probably the
most elegant way of defining Böhm trees is by ideal completion of syntactically
order terms using Ω as the least term (see [246]).

Homomorphism

A homomorphism h from a signature Σ1 to a signature Σ2 maps atomic types
of Σ1 to types of Σ2, for functional types we have h(A→ B) = h(A)→ h(B).
Moreover, it then maps terms in Λ(Σ1)A to terms in Λ(Σ2)h(A) as follows:

11

• h(xA) = xh(A),

• h(MN) = h(M)h(N),

• h(λxA.M) = λxh(A).M ,

• h(c) is a closed term of Σ2 of type h(τ1(c)).

We mainly deal with homomorphisms in contexts where there is no special
constants. Nevertheless, we can extend the definition to those cases simply by
letting h(Y A) = Y h(A), h(ΩA) = Ωh(A) and h(+A) = +h(A).

A homomorphism h is called relabeling when:

• every atomic type is mapped to an atomic type,

• every constant of Σ1 is mapped to a constant of Σ2.

2.3 Some syntactic restrictions on simply typed
λ-calculus

In certain cases, we are going to work with calculi that satify some syntac-
tic restrictions. These restrictions mainly concern the possible number of oc-
currences of bound variables. They are a combination of the two following
conditions:

relevance every bound variable has at least one free occurrence in the term in
which it is bound. More formally, for every term of the form λxA.M , this
condition requires that xA is in FV (M),

non-copying every variable has at most one free occurrence in every term. This condi-
tion can be ensured by restricting the application construction as follows:
if M is in ΛA→B(Σ), and N is in ΛA(Σ), then MN is non-copying when
M and N are non-copying and FV (M) ∩ FV (N) = ∅.

Terms that satisfy both conditions are called linear. Those that satisfy only
the relevance condition are called relevant or λI-terms. Those that satisfy only
the non-copying property are called affine. Finally those which satisfy a variant
of the non-copying property that allows only first order variable to have more
that one free occurrence in a term are called almost affine and almost linear
when they also satisfy the relevance condition. We extend these restrictions
to homomorphisms: a homomorphism is said linear, affine, relevant, almost
linear, or almost affine when it respectively maps constants to linear, affine,
relevant, almost linear or almost affine λ-terms.

Another interesting restriction called safety has been described by Knapik et
al. [180] and fully formalized in the setting of λ-calculus by Blum and Ong [57].
While the other restrictions (except almost affinity/linearity) make sense also
for untyped λ-calculus, the safety restriction is based on properties related
to simple types. This notion is rather technical and we do not wish to give

12

the most general definition that captures it. Instead, we follow a particular
convention about types. We consider that the types involved in the construction
of safe λ-terms are homogeneous types, i.e. types of the form A1 → · · · →
An → o where o is atomic, A1, . . . , An are homogeneous, and for every i
in [1, n − 1], ord(Ai) ≥ ord(Ai+1). This restriction to homogeneous types is
the original restriction adopted by Damm [101] and every safe λ-terms defined
with the more general notion of safety rephrased by Blum and Ong [57] can be
represented (modulo σ-equivalence, i.e. modulo the permutation of arguments)
to a safe λ-term with homogeneous type [218].

Definition 2 Given a homogeneous type A, the set of safe λ-terms of type A
are inductively defined by:

• xA is a safe λ-term of type A,

• if τ(c) = A, c is a safe λ-term of type A,

• if A = A1 → · · · → An → B with ord(Ai) = ord(Aj) > ord(B) for every
i, j in [1, n], and M is a safe λ-term of type B, then M ′ = λxA1

1 . . . xAn
n .M

is a safe λ-term of type A when for every yC in FV (M ′), ord(C) ≥ ordA,

• if M is a safe λ-term of type A1 → · · · → An → A with ord(Ai) =
ord(Aj) > ord(A) for every i, j in [1, n], and N1, . . . , Nn are safe λ-terms
respectively of type A1, . . . , An, then MN1 . . . Nn is a safe λ-term of
type A.

A consequence of this definition is that every safe λ-term M of type A
verifies the property that: if xB is free in M , then ord(B) ≥ ord(A).

An important remark made by Blum and Ong [57] is that for safe λ-terms
the traditional capture-avoiding substitution may be faithfully replaced by the
syntactic substitution. A reason why capture-avoiding substitution is used in λ-
calculus is to prevent the capture of free variables by λ-abstraction: for example
when computing the result of the substitution (λxA.MB)[yC ← N] we wish
that if xA is free in N then it remains free after the substitution. For this we
need to rename the bound occurrences of xA in MB and in the λ-binder. Now if
we consider that the terms are safe, then it means that if yC is free in λxA.MB ,
then ord(C) ≥ ord(A→ B) = max(ord(A)+1, ord(B)) > ord(A). Moreover if
zD is free in N , then we must have ord(D) ≥ ord(C) and so ord(D) > ord(A)
and it cannot be the case that xA is free in N which explains why simple
substitution can be safely used. A nice property of safety, is that it is preserved
by substitution and by some variant of β-reduction that reduces simultaneously
extended redices, i.e. reduces terms of the form (λxA1

1 . . . xAn
n .MA)N1 . . . Nn

where ord(A1) = · · · = ord(An) > ord(A) to M [x1 ← N1, . . . , xn ← Nn].
In the context of λY -calculus, the notion of safety needs to be refined a bit.

So as to coincide with the notions that are captured by machines such as Higher-
Order PushDown Automata (HOPDA), we need to consider Y -combinators as
binders and distinguish two kinds of variables: the recursive variables that

13

can be bound by Y -combinators and the λ-variables that can be bound by
λ-abstraction. While recursive variables can be used with no restrictions, λ-
variables are required to verify the safety restriction. Now, substitutions need
to be capture avoiding at least for recursive variables. As it is the case for safe
λ-terms, the set of safe λY -terms is closed under βδ-reduction.

The work of Werner Damm on the IO and OI hierarchy [101] gives us some
details about the nature of the safe λ-calculus. In universal algebra, there is a
natural construction that extends an algebra A into an algebra that is able to
describe the polynomials over that algebra. The new algebra, cl(A), is called
the clone of the orginal algebra [81]. Other definitions of the same operations
have been described in the literature such as Lawvere Theories [201] or the
magmoid structure [44, 45]. One may then consider polynomials over the clone
of A, i.e. the clone of the clone of A: cl2(A) = cl(cl(A)). Now by iterating
the construction we obtain a higher-order algebra HO(A) =

⋃
i=0 cl

i(A) which
is functionally complete in the sense that every polynomial over that algebra
can be represented as an element of the algebra. As λ-calculus is functionally
complete, this new algebra can be faithfully represented in the simply typed
λ-calculus that is freely generated by A. Werner Damm’s work shows that
the natural embedding of HO(A) into that λ-calculus coincides with the safe
λ-calculus that would be constructed from the operations of A (see also [218]).

It has been showed that safe λ-calculus is less expressive than λ-calculus
in several ways. First of all, Blum and Ong [57] show that the safe λ-calculus
cannot define all the extended polynomials on Church numerals contrary to λ-
calculus [264]. In particular, they prove that only multivariate polynomials are
definable showing that the conditional is not. Another, more difficult, result
has been showed by Parys [239]: the class Böhm trees of closed safe λY -terms
of atomic type over a tree signature is strictly smaller than the class of Böhm
trees of closed λY -terms of atomic types.

2.4 Models of λ-calculi

When working with a programming language, understanding the structures
of the properties that are invariant under computation (i.e. the conversion
relations) is interesting as it gives methodologies to prove programs correct. It
also gives some ways of proving that certain algorithm cannot be represented
by a given programming language. An early example of this kind of result
is given by Plotkin [243] who showed that the Kleene or (also called parallel
or in the programming language community) could not be programmed in
PCF. Kleene or is a program with two arguments that returns true whenever
one of its argument is true, the other can take any value and possibly be
undefined. The research on denotational semantics is focused on the description
of those structures. Simply typed λ-calculus because of its close connection
with computable functions and its rather simple syntax constitutes a privileged
framework in which to study semantics of programming languages.

The kinds of semantics that we will use in this document are rather simple.

14

We nevertheless have a need for a general definition which is an adaptation to
our context of the notion of model developed by Henkin [151]. We will then
introduce standard models and Scott models. In each case, we will do it in a
finitary setting. A reason is that it simplifies the matter; another one, is that,
as we shall see, finite models can be seen as playing the same role for simply
typed λ-calculi as finite monoid in formal language theory.

Rather than taking a category theoretic approach to present the models
of simply typed λ-calculi, we take a set theoretic approach. This approach is
less elegant than the category theoretic one, but it makes it easier to explain
models of λ-calculi to a non-expert audience.

For the whole section, we assume that we have fixed a higher-order signature
Σ on which terms are built.

Definition 3 (Applicative structures) An applicative structure on Σ, an
applicative structure is a pair (F , •) where F = (MA)A∈T (Σ) is a family of
structures1 indexed by the simple types of Σ and • is a binary operation so
that for every type A and B, given f inMA→B and g inMA, f • g is inMB .

An applicative structure is said finite when for every type MA is finite. It
is said effective when the structureMA is can be constructed for every type A
and that the operation • is computable.

All the applicative structures that we are to see in this document will be
finite and effective.

Applicative structures are the building block of models of λ-calculi. Be-
cause, the aim of models is to characterize computational invariants of λ-terms
and that λ-terms may contain free variables, it is a necessity to be able to com-
pute the semantics of open terms. For this we need to parametrize semantics of
terms with a functions that assigns their meaning to free variables: valuations.

Definition 4 (Valuations) Given an applicative structure over a signature
Σ ((MA)A∈T (Σ), •), a valuation ν is a partially defined function with a finite
domain so that when ν(xA) is defined it is in MA.

Given f ∈MA, we write ν[xA ← f] for the valuation that is equal to ν but
that maps xA to f .

We write ∅ for the nowhere defined valuation.

We are now in position of giving the definition of what models are.

Definition 5 (λ-models) A model of Σ is a pair M = (F , [[·, ·]]) where F =
((MA)A∈T (Σ), •) is an applicative structure over Σ and [[·, ·]] is a function that
map a λ-term M of type A and a valuation ν whose domain of definition
contains FV (M) to an element ofMA and that satisfies the following identities:

1We mean here algebraic structures of the same kind. As usual, we confuse the structure
with its carrier. So if we consider a lattice, L, we allow ourselves to write a ∈ L (and the
likes) to mean that a is an element of the carrier of L.

15

1. [[xA, ν]] = ν(xA),

2. [[MN, ν]] = [[M,ν]] • [[N, ν]],

3. [[λxA.M, ν]] • f = [[M,ν[xA ← f]]] for every f in MA,

4. [[Y A, ν]] • f = f • ([[Y A, ν]] • f) for every f in MA→A,

5. [[ΩA→B , ν]] • f = [[ΩB , ν]] for every f in MA,

6. if ν1 and ν2 are valuation that take the same values on FV (M), then
[[M,ν1]] = [[M,ν2]].

A model is finite when its applicative structure is finite. It is effective
when its applicative structure is effective and the semantics of every constants
(including special ones, fixpoints,. . .) is computable.

A model is extensional when for every types A, B and every f1, f2 in
MA→B if for every g in MA, f1 • g = f2 • g, then f1 = f2. Otherwise, it is
called intentional. All the model we are going to see are extensional. It will
even be the case that MA→B will always be a subset of the functions from
MA to MB . Thus when we work with models and applicative structure we
will often omit the operation • when it is simply function application.

For a given calculus, an element f inMA, is said definable when there is a
closed term M in that calculus so that [[M, ∅]] = f .

We have given a definition that covers λY+Ω-terms. When we use models for a
λ-calculus that contains less constants, we will implicitly assume that only the
relevant identities are to be verified. The very definition of Henkin models has
the consequence that the interpretation of terms in Henkin models is inveriant
under conversion.

Theorem 6 If M and N are two terms of the same type and M = N , then for
every Henkin model M = (M, [[·, ·]]), and every valuation ν, [[M,ν]] = [[N, ν]].

Before we turn our attention to particular kinds of models, we are going to
introduce an important construction that allows to build models in a conve-
nient way: logical relations. Though one could understand Tait’s [280] proof
of strong normalization of simply typed λ-calculus as being based on logical
relations, they have been explicitly introduced by Plotkin [242] so as to study
the definable elements of models.

Definition 7 (Logical relations) Given two applicative structures of Σ, F1 =
((MA)A∈T (Σ), •) and F2 = ((NA)A∈T (Σ), �), a family of relationsR = (RA)A∈T (Σ)

is called a logical relation between F1 and F2 when it verifies:

• for every A ∈ T (Σ), RA is included in MA ×NA,

• for every A,B ∈ T (Σ),

RA→B = {(f, g) ∈MA→B ×NA→B | ∀(a, b) ∈ RA, (f • a, g � b) ∈ RB}

16

Two models M1 = (F1, [[·, ·]]1) and M2 = (F2, [[·, ·]]2) whose respective ap-
plicative structures are F1 and F2 are said logically related by R when for
every constant c (including special ones), ([[c, ∅]]1, [[c, ∅]]2) is in R.

When we say that two models are in logical relation, we will implicitly
assume that their applicative structures are in logical relation.

Lemma 8 (Fundamental lemma) Given M1 = (((MA)A∈T (Σ), •), [[·, ·]]1) and
M2 = (((NA)A∈T (Σ), �), [[·, ·]]2) that are in logically related by the relation
R = (RA)A∈T (Σ), the pair R = ((RA)A∈T (Σ), ?), [[·, ·]]) where

• (f, g) ? (a, b) = (f • a, g � b) and

• [[M,ν]] = ([[M,π1 ◦ ν)]]1, [[M,π2 ◦ ν]]2)

is a model2.

We can see logical relations as a way of combining models so as to define
new models. It is also a good tool so as to prove properties about models.

We are now going to see simple examples of models of λ-calculi.

Standard models of λ-calculus

Standard models are a set theoretic presentation of models of λ-calculus (with-
out any special constant). They are constructed on top of standard applicative
structures.

Definition 9 (Standard applicative structures/Standard model) An ap-
plicative structure ((MA)A∈T (Σ), •) is standard when:

• MA→B is the set of functions from MA toMB ,

• and • is function application, i.e. f • g = f(g).

A model of λ-calculus is said standard when its applicative structure is
standard.

Standard models are a direct representation of the intuition that λ-calculus
is a theory of function. Actually Henkin [151] introduced the notion of models
we have given in Definition 5 as an alternative to standard models. Indeed, in
Church simple theory of types [79], if terms are interpreted in standard models,
then Gödel’s incompleteness theorem [137] implies that there are terms that
are valid in any standard models but which cannot be equated to truth using
the axioms of higher-order logic. The situation of higher-order logic is then
different from the one of first order logic where validity in standard models
coincides with provability [136]. Henkin introduced a new notion of models
so as to make the interpretation in those models coincide with deduction in
higher-order logic.

2Above π1 and π2 denote the first and second projections: π1(a, b) = a and π2(a, b) = b.

17

A natural question arises about the properties of λ-calculus that stan-
dard models can capture. In particular, does standard model capture βη-
convertibility? Friedman [129] answered positively to this question.

Theorem 10 (Friedman [129]) For every λ-terms M and N with the same
type, the following properties are equivalent:

• M =βη N ,

• for every standard model M = (F , [[·, ·]]) and every valuation ν whose
domain of definition contains FV (M) ∪ FV (N), [[M,ν]] = [[N, ν]].

Statman [274, 275] showed that this result can be refined and that finite
standard models are enough to characterize βη-convertibility. Actually Stat-
man proves a slightly stronger theorem. He proves that for a given term M
there is a characteristic model, a model in which any term that has the same
interpretation as M is βη-convertible to M .

Theorem 11 (Statman’s finite completeness [274, 275]) For every term
M of type A, there is a finite standard model M = (F , [[·, ·]]) a valuation ν on
M whose domain is FV (M), so that for every term N of type A, the following
are equivalent:

• M =βη N ,

• for every valuation ν′ that is equal to ν on its domain and whose domain
contains FV (N), [[M,ν′]] = [[N, ν′]].

An important property of this Theorem is that the construction of the
characteristic model of a term is effective.

It has been conjectured by Plotkin and Statman [242, 274] that definability
in standard models was decidable. This conjecture has been proved false by
Loader [207].

Theorem 12 (Loader [207]) The problem whether, given a finite standard
model M = (F , [[·, ·]]) and given an element f of M, there is a closed λ-term M
with the same type as f so that [[M, ∅]] = f is undecidable.

Monotone models of λY+Ω-calculus

We are now going to introduce lattice-based semantics of λY+Ω-calculus. As
we will always be working with finite models, the presentation slightly departs
from the standard notion of Scott models one can find in the literature. Indeed,
semantics based on partially ordered set are mainly used to account for full-
fledged programming languages which require the modeling of infinitary objects
such as partial functions from natural numbers to natural numbers. Then
semantics is mainly concerned about relating the finiteness of programs and
of programs stepwise execution to their possibly infinitary semantics. This

18

is in general done by considering directed complete partial order or lattices.
Here as we work with finite models, things are drastically simplified. This is
in particular due to the fact that fixpoint computations always converge in
finitely many steps in such models.

Definition 13 (Monotone Applicative structures and models) An ap-
plicative structure ((MA)A∈T (Σ), •) is called monotone when:

• for every A,MA is a finite lattice,

• MA→B is the set of monotone functions fromMA toMB , i.e. the set of
functions f so that for every a, b ∈MA, if a ≤ b, then f(a) ≤ f(b). This
set is ordered pointwise, i.e. for every f, g ∈ MA→B , f ≤ g iff for every
a ∈MA, f(a) ≤ g(a),

• and • is function application, i.e. f • g = f(g).

A model of λY+Ω-calculus is said monotone when its applicative structure
is monotone and when it satisfies the following properties:

• [[+A, ∅]](f1)(f2) = f1 ∨ f2, and

• either [[ΩA, ∅]] is the greatest element ofMA and [[Y A, ∅]](f) is the greatest
fixpoint of f ,

• or [[ΩA, ∅]] is the least element ofMA and [[Y A, ∅]](f) is the least fixpoint
of f .

In the former case, the model is called a greatest fixpoint model (GFM) and
latter case, it a least fixpoint model (LFM).

If we are concerned with λY Ω-terms, then Statman theorem extends nicely. In
an untyped context this extension has been proved by means of intersection
types by Dezani et al. [105]. To the best of our knowledge, this theorem has
not been stated yet in the literature but some minor adaptation of Statman’s
argument and of Dezani et al. is proving this statement.

Theorem 14 For every two λY -terms of the same type, M and N , the fol-
lowing properties are equivalent:

• BT (M) = BT (N),

• for every LFM, M = (F , [[·, ·]]), and every valuation ν, [[M,ν]] = [[N, ν]].

By duality between LFMs and GFMs, this theorem may also be stated by
replacing LFMs with GFMs.

In monotone models, we will be interested by a particular kind of functions:
step functions.

19

Definition 15 Given a monotone applicative structure, (MA)A∈T (Σ), f ∈
MA and g ∈MB , we define the step function f 7→ g inMA→B as the function
so that:

(f 7→ g)(h) =

{
g if h ≥ f
⊥ otherwise

With monotone models, we cannot go beyond Böhm tree equality as any
term that is non-convergent has Ω as Böhm tree and that there are non-
convergent terms that are not βδ-convertible. It has even been showed by
Statman that βδ-convertibility is an undecidable property [276].

The theorem may be also refined by ordering Böhm trees in the usual way.
A Böhm tree t is smaller from another Böhm tree u, which we write t ≤ u,
when t can be obtained from u by replacing some subtrees of u by Ω.

Theorem 16 (Finite Böhm completeness) For every two λY -terms of the
same type, M and N , the following properties are equivalent:

• BT (M) ≤ BT (N),

• for every LFM, M = (F , [[·, ·]]), and every valuation ν, [[M,ν]] ≤ [[N, ν]].

Moreover, monotone models are strong enough to decide the convergence of
λY Ω-terms, i.e., whether the Böhm tree of a term is Ω. For this it is sufficient
to take an LFP model whose monotone applicative structure is associating the
two elements lattice 2 to atomic types and which interprets every constant c
as the maximal element of the lattice associated to the type τ(c). We write 2
for this model.

Theorem 17 For every term M , the following properties are equivalent:

• BT (M) is the one node tree labeled Ω,

• [[M,ν]] = ⊥ in 2.

Loader has showed [206] that the definability problem in the case of λY -
calculus is not decidable. Actually he proved that the observable equivalence
problem for finitary PCF is undecidable. Finitary PCF is a programming lan-
guage where the only data are booleans and the control structures are the
conditionals and the fixpoint operators. So the only atomic type is bool and a
natural semantics for this language is the LFP model where the lattice associ-
ated to bool is depicted by:

⊥

falsetrue

Two closed terms of type A, M and N are observably equivalent with for
every term P of type A → bool , PM = PN . This result entails the unde-
cidability of the definability problem in monotone models as if the definability

20

problem were decidable, one could solve the observability problem simply by
checking whether there is a definable element f of the model at type A→ bool
which takes different values when applied to the semantics of M and to the
semantics of N .

Theorem 18 The definability problem in the λY -calculus for monotone mod-
els is undecidable.

2.5 Recognizability in simply typed λ-calculus

Finite state automata have a wealth applications in computer science, they have
thus undergone thorough research investigations. One of the outcome of this
activity is the connection of finite state machine with algebra and logic. It has
been showed that the class of languages definable by finite state automata is the
same as the class of languages that are recognized by finite monoids and also
the same as the class of languages definable with Monadic Second Order Logic
(MSOL). The first equivalence is due to Myhill-Nerode Theorem [226, 229], the
second equivalence was independently proved by Büchi [70], Elgot [114] and
Trakhtenbrot [286]. Another equivalent presentation of finite state automata
is by means of regular expressions was proposed by Kleene [178, 177]. Kleene’s
presentation can be rephrased in terms of finite set of regular equations (left
(or right) linear ones) that define languages which are the smallest (for the
inclusion) languages verifying those equations.

When dealing with objects other than strings, one may try to adapt these
definitions. In certain cases, they coincide, while in other they don’t. If
one is interested in languages of finite trees, then, again, finite state tree au-
tomata [108, 284], finite algebras [62, 63, 42, 112], MSOL [108, 107, 285] and
regular expressions all define the same class of languages. In many cases,
these notions define different classes of languages as it is the case for arbitrary
monoids [112]. In other cases then, only certain of those notions make sense. A
typical example is the case of graphs that has been studied at length by Cour-
celle [91]. It is very unclear here how to define a finite state machine that would
recognize a language of graphs in a sense that would arguably be a canonical
generalization of what finite state automata for string or tree languages. It is
also rather difficult to come up with a notion of finite algebraic interpretation of
graphs that would generalize finite monoids and finite algebras. So Courcelle’s
proposal has been to define a notion of recognizability for graphs that is based
on MSOL3. Thus a regular language of graphs is a set of graphs that satisfies
a given MSOL formula. Here this notion of regularity departs from that of
string and trees in that the satisfiability of of MSOL formulae over graphs is
undecidable, or said in a different way, the emptiness problem for this notion of
regular sets of graphs is undecidable. Then Courcelle, based on Robertson and

3Actually it is possible to define two kinds of MSOL theory of graphs, one for which one
may quantify only on vertices and the other where it is also possible to quantify over edges.
We do not enter those details so as to make the discussion simpler.

21

Seymour’s graph minors theorem, showed that if one restricted his attention
to particular classes of graphs, then the emptiness problem becomes decidable.
These classes of graphs are the classes for which a parameter called treewidth
is bounded. A very interesting side-effect of considering graphs with bounded
treewidth is that they can be defined with an algebra with finitely many gener-
ators and that moreover, the MSOL theory of graphs represented by terms of
that algebra can be reduced to the MSOL theory of those terms, i.e. to finite
states automata on trees. Courcelle and Durand [89] are now trying to take
advantage of this connection to algorithmically solve combinatorial problems
about graphs.

In our case, we are interested by extending the notion of recognizability to
λ-calculi. For this, logic is not so convenient as it should be on normal forms of
terms and that it has to deal with the bindings that are present in the terms.
It thus remains the algebraic and the automata theoretic approaches. Finite
models provide a natural extension of the finite algebraic approaches for strings
and trees. For this it suffices to define recognizable languages of λ-terms as
languages of terms whose interpretations are certain elements in a finite model.
Of course, as we work in a typed setting, we only consider languages of terms
that all have the same type.

Definition 19 (Recognizability) A set L of closed terms of types A, is said
recognizable whenever there is a finite model M = ((MA)A∈T (Σ), •), [[·, ·]]), and
R ⊆MA so that:

L = {M | [[M, ∅]] ∈ R}

In the original definition given in [S23] the notion of recognizability was re-
stricted to finite standard models. Afterwards, it has become clear that stan-
dard models were not so convenient to work with. Nevertheless, for the simply
typed λ-calculus (without special constant) using logical relations one easily
establishes that recognizability with standard models is equivalent to recogniz-
ability with any extensional model.

Lemma 20 A set L of closed λ-terms is recognizable by a finite extensional
model iff it is recognizable by a finite standard model.

As a corollary of Loader’s theorems of this definition is that the empti-
ness problem for regular languages of λ-terms is undecidable. The situation is
similar to that of graphs. But then we obtain several closure properties that
are similar to the ones that are known for regular languages of strings or of
trees [S23].

An important fact is that when considering terms of type o → o built on
a string signature, the notion of recognizability on λ-terms coincide with the
usual notion of recognizability on strings. And this is also the case for tree
signatures and recognizable languages of trees. In this sense, recognizability in
simply typed λ-calculus can be seen as a conservative extension of the notions
of recognizability on strings and on trees.

22

Theorem 21 Recognizable languages of λ-terms are closed under the following
operations:

• union, intersection, complement,

• inverse homomorphic image.

As showed in [S23], these simple remarks, Statman finite completeness theorem
and some simple syntactic properties of fourth order λ-terms allows us to give a
very simple proof that 4th order matching is decidable that has been originally
proved by Padovani [236, 235]. Moreover, this method gives a satisfactory ex-
planation as to why the automata based approach of Comon and Jurski [82]
works for fourth order matching and does not generalize at the fifth order. Now
higher-order matching has been showed decidable by Stirling [278, 279] based
on some game theoretical approach. The proof remains highly combinatoric
and technical though. In the light of how recognizability approach simplifies
the understanding of the decidability of fourth order matching, it would be
nice to connect Stirling’s proof with denotational semantics. Such an approach
as been already proposed by Laird in an unpubliched note [196]. Laird’s sub-
sequent paper [195] that the bidomains model proposed by Berry [55] is fully
abstract for unary PCF suggests that one could define a fully abstract model
of simply typed λ-calculus that would be effectively presented and thus imply
the decidability of the problem.

An important difference between the notions of recognizability for strings
and trees and recognizability for simply typed λ-calculus, is that the latter
is not closed under relabeling. This problem is related to bound variables
which introduce an element of unboundedness that finite model cannot tame
(see [S23]).

The motivation for defining a notion of recognizability for the simply typed
λ-calculus came from the description of parsing algorithms for abstract cate-
gorial grammars that will be the subject of the next chapter. In this study,
the goal was to prove the decidability of the membership problem for a partic-
ular kinds of ACGs. The first results were obtained by means of typing rather
by means of models. The idea was to use intersection types so as to capture
syntactic properties of terms in the language [S21]. From this work and the
proof methods that it was relying on, it was clear that intersection types were
playing a similar role with respect to λ-calculus as the one of finite state au-
tomata for strings. It then became important to make this remark formal so
as to integrate finite state methods and higher-order ones.

Intersection types have been introduced in [48] as a syntactic approach of
Scott model D∗

∞ of untyped λ-calculus [265]. These kinds of systems have then
been used as means of proving properties of terms such as strong normalization,
solvability etc. . . In our case, we are interested in the use of intersection types
so as to capture certain properties of simply typed terms. Thus we do not
use any intersection types, but only those intersection types that have a shape
similar to simple types.

23

Definition 22 (Intersection Types) A family (IA)A∈T (Σ), is family of in-
tersection types when:

• IA is finite when A is an atomic type,

• IA→B is the set {(Q, p) | Q ∈ P(IA) ∧ p ∈ IB}.

We shall write Q→ p for the element (Q, p) in IA→B .
An intersection type system is a pair (I, ρ) where I is a family of intersection

types, and ρ is mapping that associates a subset of Iτ(c) to each constant c.
A type-environment is a mapping with finite domain that associates a subset

of IA to variables xA. We may write x1 : P1, . . . xn : Pn to denote the type-
environment that maps x1 to P1, . . . , and xn to Pn

We write Γ `M : p to mean that M has type p in the type-environment Γ
according to the derivation rules given in Figure 2.14.

In Figure 2.1, we have not given rules for special constants as in the sequel,
we prefer to work with models than with intersection types. The reason for
it is mainly that intersection types can be seen as a syntactic representation
of models. Already at the level of untyped λ-calculus, their introduction was
meant to give a syntactic representation of models. In the sequel we favor the
model approach over the typing approach as in the context of λ-calculus it
gives a clearer understanding of the solutions to the problems we work on by
revealing the structure of the invariants we use.

p ∈ P
Ax.

Γ, x : P ` x : p

p ∈ ρ(c)
Const.

Γ ` c : p

Γ, x : P `M : p
Abs.

Γ ` λx.M : P → p

Γ `M : P → p ∀q ∈ P, Γ ` N : q
App.

Γ `MN : p

Γ `M : p p v q
Sub.

Γ `M : q

p v p

q v p ∀q′ ∈ Q.∃p′ ∈ P. p′ v q′

Q→ q v P → p

Figure 2.1: Intersection type derivation rules

Intersection types capture properties that are invariant under βη-conversion.

Lemma 23 For every terms M and N , if M =βη N and Γ ` M : p, then
Γ ` N : p.

4In Figure 2.1, we implicitly assume that the subsumption relation v is only comparing
intersection types that belong to the same set IA.

24

Another thing to notice is that when we work with terms in η-long form,
then the subsumption rule (Sub.) can be derived from the others.

Lemma 24 For every term M , if M is in η-long form and Γ ` M : p then
Γ `M : p is derivable without using the rule (Sub.).

The connection between intersection types and models is made by translating
intersection types to a monotone model. Given an intersection type system
((IA)A∈T (Σ), ρ), we construct a monotone model ((MA)A∈T (Σ), [[·, ·]]) so that,
if A is an atomic type MA = P(IA). We can now translate intersection types
into elements of the monotone model:

• if A is an atomic type and p ∈ IA, then p• = {p},

• given P ⊆ IA, then P • =
∨
{p• | p ∈ P},

• given P → p in IA→B , (P → p)• = P • 7→ p•.

The translation of types into elements of the monotone model allows us to
connect typing properties of terms with semantic ones. But for this we need to
translate type-environment into valuations, so given a type environment Γ, we
write Γ• for the valuation so that Γ•(x) = (Γ(x))• (here when x is not declare
in Γ, we assume that Γ(x) = ∅ so that Γ•(x) = ⊥).

Theorem 25 Given p, q ∈ IA and P,Q ⊆ IA, the following properties hold:

• p v q iff q• ≤ p•,

• for all p ∈ P there is q ∈ Q so that p v q iff Q• ≤ P •.

Moreover for every term M , type environment Γ and intersection type p,

Γ `M : p iff [[M,Γ•]] ≥ p•

From the perspective of recognizability, typing disciplines give some nice
generalizations of finite states automata. We can then see a parallel with the
situation between recognizable string and tree languages: in the context of
λ-calculus, finite state machines are represented with intersection types, and
finite algebras are represented by finite models.

This translation of intersection types into models also emphasized that two
difficult results in the literature about λ-calculus were related [S25]: Loader’s
result that the definability problem was undecidable and Urzyczyn’s result that
the inhabitance problem for intersection types was undecidable [287]. The main
remark is that the types used by Urzyczyn make it so that the λ-terms that
are typable with intersection types are not only strongly normalizable, but also
simply typable; moreover the shape of those intersection types is actually rep-
resenting elements in a finite monotone models. The correspondence between
intersection types and monotone models together with logical relations between
monotone models and standard models can reduce the definability problem to
the inhabitance problem of intersection types and vice-versa.

25

2.6 Conclusion and perspective

The chapter has introduced some of the main tools that we are going to use in
the sequel of this document. We have also presented the notion of recognizable
languages of λ-terms which is a conservative extension of recognizability for
strings and trees. Though simple, this notion will prove to be a powerful tool
so as to obtain decidability results. Moreover, by connecting λ-calculus with
formal language theory, this notion allows us to transfer various methods from
one field to the other. We will see instances of this in the next chapters: as for
example in the case of parsing algorithms, or in the definition of a notion of
wreath product of models of λ-calculus.

The definition of recognizability in simply typed λ-calculus by means of
semantic interpretation in finite models asks for a better understanding of the
problem of definability and of the conditions in which it becomes decidable.
There are two obvious parameters that have some influence here: (i) the class
of terms in which we try to define the function, (ii) the properties of models or
of the functions that are to be defined.

The class of terms that are finitely generated, in the sense that they are
generated by application from a finite set of terms, have a decidable definability
problem. A class of terms that does not satisfy this property is that of safe
λ-terms. Nevertheless, a careful analysis reveals that we may consider that safe
λ-terms are locally finitely generated. Let us be a bit more specific: once we fix
a set of free variables X and a type A, the set of safe λ-terms in normal form
of type A whose set of free variables is included in X is finitely generated (this
is induced by the clone underlying structure and the subformula property).
This remark also works for the definability in finite LFP and GFP models of
λY -calculus as definability can be reduced to definability in λΩ-calculus and
is thus decidable. We do not know yet if for other classes models of λY -
calculus the definability problem is decidable for safe λY -terms. Finding other
classes of λ-terms is somewhat difficult. The question would be whether there
is some classes of λ-terms for which the definability problem is decidable but
which need infinitely –even for fixed types and fixed set of free variables– many
combinators to be defined. The fact that safe λ-calculus does not suffer from
the result of Loader, calls for the definition of a fully abstract model of safe
PCF. A good starting point, may be Kahn and Plotkin sequential functions on
concrete domains [165]. Even though they do not form a model of λ-calculus,
they may give some ideas about the structure of a model of the safe λ-calculus.
A variant of sequential functions has been proposed by Brookes and Geva [67]
which is fully abstract for a subclass of the safe λ-calculus where the arguments
of a function may not contain any free variable.

When we consider classes of models for which definability is decidable, we
may get some new insight on the full abstraction problem. Indeed, once we
get a decidability result for observational equivalence in the λΩ-calculus, the
underlying algorithm gives a procedure to construct a fully abstract model.
This is what happened with Padovani [234] and Schmidt-Schauss [262] results
about the decidability of the minimal model. Then Laird proved that the un-

26

derlying model was Berry’s bi-domain generated by 2; he also proves that this
model is isomarphic to Bucciarelli and Ehrhard’s strongly stable functions [68]
generated by 2. The decidability of higher-order matching also seems to point
at the fact that somehow the syntactic operations that λ-terms can perform
to construct another one can be decided, yet there is no description of the
underlying model. The underlying model is made of the definable functions in
Statman’s syntactic model that characterizes a given λ-term. The decidability
of higher-order matching makes us believe that the observational equivalence
in Statman’s model is decidable. Statman’s models quotiented by the observa-
tional equivalence, let’s call them syntactic models, might thus have a decidable
definability problem. The main issue is that these models are more complicated
than the minimal model. Recall also that the minimal model has been studied
by Padovani [234] as a way of solving higher-order matching equations where
the right member of the equation is a constant of atomic type.

The fact that the bi-domain or the strongly stable functions generated
by 2 only contain definable functions in the λΩ-calculus on the signature
({o}, {>}, τ) where τ(>) = o, is very surprising. Indeed, in that model, pro-
grams can in a certain sense fully explore the control flow of their arguments so
as to compute their results. This means that it is possible for them to perform
multiple tests on their arguments so as to decide which value they can yield.
In syntactic models, in general, each occurrence of a constructor in a term
limits the number of tests that are possible for that term. It seems very hard
to understand how to express axiomatically this limitation. Probably a good
idea is to start working on the linear decompositions of these domains as they
described respectively in [97] and [110]. In these works the construction an
analysis of the exponential modality may help in understanding how to actu-
ally express the cost of a test when some syntactic constants are traversed. A
possible start could be the work we did on higher-order matching in the linear
λ-calculus [S24].

An important feature of the syntactic models is that they model particular
computations. Not only are they sequential, but they are in a sense top-down
deterministic. To make this idea clearer, let us introduce a notion of top-down
deterministic models of λ-calculus. They can be seen as an extension of top-
down deterministic tree automata. They are constructed from a finite set Q,
and they interpret every atomic type by P(Q), then every every type A and
every element q in Q, we define a set of monotone functions [q, A] as follows:

• when A is atomic [q, A] = {{q}, ∅},

• when A = B → C, then [q, A] is the set of monotone functions f so that
there is q′ in Q, f1, . . . , fn ∈ [q′, B] and g1, . . . , gn ∈ [q, C] so that

f = f1 7→ g1 ∨ · · · ∨ fn 7→ gn .

We then define the top-down-deterministic applicative structure (TA)A∈T (Σ)

by taking TA to be joins of functions in
⋃

q∈Q[q, A]. Such functions f are
called top-down deterministic because every state q determines a tuple q1,

27

. . . , qn so that for every g1, . . . , gn, if f(g1) . . . (gn) ≥ q then g1 ∈ [q1, A1], . . . ,
gn ∈ [qn, An]. There are several things to remark about top-down deterministic
functions. First of all, the finite model of PCF considered by Loader so as to
prove the undecidability of its observational equivalence is not a top-down
deterministic model. Second of all, second order functions in the bi-domain
of functions in P(Q)n → P(Q), or second order strongly stable function are
top-down deterministic. This leads us to make the conjecture that definability
is decidable in top-down deterministic models.

In the case of strings and trees recognizability is equivalent to MSOL. This
equivalence is interesting as it allows one to think in terms of properties or
specifications at an abstract level. This is an advantage when dealing with
modelization tasks as it may be hard to implement and compose by means
finite state automata abstract ideas expressed by simple logical formulae. Sim-
ilarly, in the case of the semantics of natural language, it is sometime interesting
to express certain syntactic properties of λ-terms so as to describe properties of
semantic contexts. In turn, this allows a more precise description of semantic
phenomena. We expect that most of those properties are captured by recog-
nizability. Nevertheless, the fact that recognizable languages of λ-terms are
not closed under relabeling makes the problem of defining a logic that would
capture the syntactic properties expressed by models a bit delicate as the inter-
pretation of quantification in algebras uses closure under relabeling. A possible
candidate is modal µ-calculus on normal forms of λ-terms seen as graphs where
there is an edge from binders to the occurrences of variables they bind.

28

Chapter 3

Abstract Categorial Grammars

Abstract Categorial Grammars (ACGs) have been introduced by de Groote [146]
and at the same time Muskens [225] proposed a similar formalism he called λ-
grammars. This grammatical formalism can be characterized by two of its
main traits: it makes central the notion of syntactic structure and it is based
on simply typed lambda-calculus for the description of the operations on ob-
ject. ACGs implement formally ideas that have been proposed by Curry [98]
as early as in 1961.

The first feature is hard to overestimate: it neatly separates the structure
in which the relations between the syntactic constituents are represented and
their actual incarnation in the language. Doing so, it raises the questions about
what the right representations of these objects are and about how to represent
abstractly syntactic notions. A natural way of representing syntactic structures
consists in using trees as they naturally model the hierarchical structure of syn-
tax on which most linguistic theories are based. Nevertheless, ACGs also allow
one to model syntactic structures as linear λ-terms bringing the possibility of
modeling the notion of traces with higher-order constants. This feature can be
particularly useful when modeling certain linguistic theories such as Chomsky’s
minimalism [77]. In some recent work [S4] for which we are going to present
the context in the next chapter, we illustrated how methods based on logic and
automata are adapted for the concise description of syntactic structures based
on trees.

The second feature of ACGs, the use of λ-calculus so as to represent syn-
tactic operations, is strongly backing the first one. Indeed, if the repertoire of
operations is too small, then it becomes tempting to use unnatural syntactic
structure so as to model certain linguistic phenomena. In the context of ACGs,
λ-calculus provides all the natural syntactic operations on various structures:
strings, trees, logical formulae. From a theoretical perspective, using λ-calculus
presents another advantage, it reduces the set of primitives used in the defi-
nition of the formalism which makes it much simpler to study while highly
expressive.

The work we have pursued concerning ACGs has mainly been concerned

29

with:

• their expressiveness,

• their parsing algorithms,

• their possible extensions.

In this chapter, we will mainly illustrate the first two points. The last one
will be exemplified with the extension of ACGs as OI grammars. We have
proposed other extensions that we are going to quickly present in the next
chapter and which aim at modeling non-configurational languages and free-
word order phenomena [S11].

From a technical perspective, we illustrate a general method that connects
grammar transformation/analysis and denotational semantics. The overall idea
is to see grammars as non-deterministic programs. Most algorithms related to
grammars require to use some invariants about the languages that grammars
are defining, these invariants are best expressed by means of finite states meth-
ods and thus, when λ-calculus is involved, by means of denotational semantics.

3.1 Abstract Categorial Grammars

An ACG is a particular way of defining grammars. We here gives a quick
formal presentation of ACGs. An ACG is a tuple G = (Σ1,Σ2,L, S) where:

• Σ1 is a higher order signature, the abstract signature,

• Σ2, is a higher order signature, the object signature,

• L is a homomorphism between Σ1 and Σ2, the lexicon,

• and S is an atomic type of Σ1, the distinguished type.

The abstract signature is meant to model the notion of syntactic structures;
the object signature is meant to model the surface structure of the language.
An ACG defines two languages:

• an abstract language A(G), the set of closed linear λ-terms in ΛS(Σ1),

• an object language O(G) the set of λ-terms that are the normal forms of
terms that are the image of terms in A(G) by L.

The restriction to linear λ-terms in the abstract language comes from linguistic
motivations. The control of traces and bindings at the level of syntax requires
in general the resource-sensitivity of linearity.

The fact that the object signature is a higher-order signature, not only
allows one to represent languages of strings or of trees, but more generally lan-
guages of λ-terms. Usually, languages of λ-terms are used to describe languages
of logical formulae. These logical formulae represent the truth conditions of

30

the statement represented by the syntactic structures. The overall idea un-
derpinning ACGs is to follow, in all the dimensions of language description,
the approach of Montague [219] for the description of the semantics of nat-
ural language. This approach is based on the empirical observation that the
meaning of natural language is compositional: the meaning of a whole struc-
ture is determined by the meaning of its parts and of their relations. If one
is to take this notion in a strict sense, then idiomatic expressions pose some
problems. Nevertheless, one may consider them as part of a language and give
them a compositional treatment. Such a line has be proposed by Kobele [186].
Montague took a radical position concerning compositionality and modeled it
using the notion of homomorphism. This consists in taking its weakest possible
definition. ACGs try to push this stance as far as possible, and also model the
mapping from syntactic structures to surface structures using Montague’s no-
tion of compositionality: homomorphism. This homomorphism is called lexicon
as it provides the relation between syntactic constructs and the vocabulary of
the language.

In the definition of ACGs proposed by de Groote in his original paper [146],
the definition of ACGs allows the distinguished type to be a non-atomic type of
Σ1 and the lexicon is a linear homomorphism. Here we take a more restrictive
definition as it allows us to give a simpler classification of definable languages.
Moreover, following de Groote, we call ACGs grammars with a linear lexicon.
We then call non-linear ACGs, grammars with any kind of lexicons, and affine
ACGs grammars with affine lexicons etc. . . .

We classify grammars with linear lexicons in classes L(k, l) where:

• k is the order of the abstract signature, and

• λ is the complexity of the lexicon, i.e. the maximal order of the types is
associates to atomic types of the abstract signature.

We have showed [S22] that when k > 2, then for every grammar in the class
L(k + 1, l) there is a grammar in L(k, l + 1) that defines the same language.

So as to illustrate what ACGs are, we here give an example of a context-
free grammar that models a small fragment of English that exhibits a self-
embedding phenomenon. We will then turn this fragment into a second order
ACG and give it a Montague-like semantic interpretation.

S→ NP VP C→ that
VP→ V NP N→ dog
NP→ Det N N→ cat
N→ N CP N→ rat
CP→ C VP N→ cheese
CP→ C S/NP V→ saw
S/NP→ NP V V→ chased
Det→ a V→ ate

This grammar can analyse sentences like: a rat that a cat that a dog saw
chased ate a cheese. The derivation tree of that sentence is given Figure 3.1.

31

Representing this grammar as an ACG, simply amounts to see each rule as

S

NP

Det

a

N

N

rat

CP

C

that

S/NP

NP

Det

a

N

N

cat

CP

C

that

S/NP

NP

Det

a

N

dog

V

saw

V

chased

VP

V

ate

NP

Det

a

N

cheese

Figure 3.1: Derivation tree of a rat that a cat that a dog saw chased ate a cheese

an abstract constant: the types in the abstract signature are just the non-
terminals of the grammar, and the abstract constant are rules which are typed
according to the non-terminals they produce and the non-terminals they use
in their right-hand part. We give the following mnemonic names and types to
the abstract constant that represent the rules (each abstract constant is that
the same position in that table as the rule it represents in the above table):

sentence : NP→ VP→ S that : C
verbp : V→ NP→ VP dog :N
nounp : Det→ N→ NP cat : N
nadj : CP→ N→ N rat : N
cpadj : C→ VP→ CP cheese : N
cprel : C→ S/NP→ CP saw : V
rel : NP→ V → S/NP chased : V
a : Det ate : V

The derivation of Figure 3.1 is then represented by an abstract term as shown
in Figure 3.2.

Concerning the surface structure, we just take the string signature that
contains as constants the vocabulary of the grammar. The lexicon that maps
abstract terms to the sentence that they analyze is given by the homomorphism

32

sentence

nounp

a nadj

rat cprel

that rel

nounp

a nadj

cat cprel

that rel

nounp

a dog

saw

chased

verbp

ate nounp

a cheese

Figure 3.2: Abstract structure of the derivation of a rat that a cat that a dog
saw chased ate a cheese

Lsyn that maps each abstract type to the string type and the abstract constant
to the following terms:

• Lsyn(sentence) = Lsyn(verbp) = Lsyn(nounp) = Lsyn(cpadj) =
Lsyn(cprel) = Lsyn(nadj) = Lsyn(rel) = λxyz.x(y z) (this λ-term,
function composition, denotes the string concatenation as we have seen
in the previous chapter)

• Lsyn(that) = that, Lsyn(a) = a, Lsyn(dog) = dog, Lsyn(cat) = cat,
Lsyn(rat) = rat, Lsyn(cheese) = cheese, Lsyn(saw) = saw, Lsyn(ate) =
ate, Lsyn(chased) = chased.

We can now use another homomorphism so as to give the semantic interpre-
tations of the sentences generated by the grammar. For this we take as object
signature a higher-order signature in which we represent first-order logic for-
mulae. Montague semantics is representing by means of formulae the set of
logical models (usually called worlds) in which the sentence may hold true1.
Montague semantics is based on a more complex logic, but for the purpose of
our example, first order logic will be enough. The object signature will be built
over two atomic types e, the type of entities, and t, the type of truth values.
We will use the following logical connectives: ∃ : (e → t) → t, ∧ : t → t → t;
and the predicates (i.e. constants of type e → t): dog, cat, rat, cheese; and
the binary predicates (i.e. constants of type e → e → t) saw, chased, ate.

1Notice that with syntactic ambiguity, a sentence may be assigned different formulae
accounting for the polysemy of certain sentences.

33

The syntax of λ-calculus is good to represent logical formulae; we will however
follow the conventions of logic and use the standard syntax of logic using logical
connectives as infix and quantifiers as binders.

The semantic homomorphism Lsem is mapping the abstract types to object
types as follows: the meaning of sentences (terms of type S) are truth values
and is thus of type t, so Lsem(S) = t; nouns (terms of type N) are interpreted
as predicates, thus Lsem(N) = e→ t; noun phrases (terms of type NP) denote
individuals and should thus be of type e, nevertheless, the proper treatment
of quantification requires the use of a continuation passing style of program-
ming (this amounts to see individuals as the set of their properties), so that
Lsem(NP) = (e → t) → t. Now if we let np denote the type (e → t) → t, the
other abstract types get intuitive interpretations: Lsem(V) = np → np → t,
Lsem(VP) = np→ t, Lsem(Det) = (e→ t)→ np, Lsem(S/NP) = Lsem(VP) =
np→ t, Lsem(CP) = e→ t and Lsem(C) = e→ np.

We can now give the semantic interpretation of the abstract constants. The
definition of Lsem is standard, we use the term F = λP OS.S(λx.O(λy.P x y))
so as to shorten the notation of the interpretation of verbs.

sentence : NP→ VP→ S =λS P.P S that : C =λxP.P x
verbp : V→ NP→ VP =λP OS.P O S dog :N=dog
nounp : Det→ N→ NP =λDP Q.DP Q cat : N= cat
nadj : CP→ N→ N =λP Qx.P x ∧Qx rat : N= rat
cpadj : C→ VP→ CP =λC P x.P (C x) cheese : N= cheese
cprel : C→ S/NP→ CP =λC P x.P (C x) saw : V=F saw
rel : NP→ V → S/NP=λN P S.P S N chased : V=F chased
a : Det =λPQ.∃x.P x ∧Qx ate : V=F ate

Then the sentence a rat that a cat that a dog saw chased ate a cheese is mapped
to the following formula:

∃x.ratx∧(∃y.cat y∧(∃z.dog z∧saw z y))∧chased y x∧(∃u.cheeseu∧atexu)

This example illustrates on a simple grammar how ACGs work and in par-
ticular how they can represent standard constructions that model the interface
between syntax and semantics in a unified framework. We can already notice
that for the syntactic part, only a linear homomorphism is necessary and that
for the semantics part we need a more complex one.

3.2 Expressiveness

When dealing with new kinds of formalisms, it is important to relate them with
existing ones. The first thing to be done is to see whether usual formalisms
can be represented in that new formalism. This is what has been done by
de Groote and Pogodalla [104] who showed how to encode within L(2, k) for-
malisms with context-free derivations such as Context-Free Grammars (CFGs),
Fischer’s non-copying macro grammars and Multiple Context-Free Grammars
(MCFGs). In [S22], we established that every grammar in L(l, k) –when l > 3–

34

could be represented by a grammar in L(3, k + l− 3). We also proved in [S17]
that every grammar in L(2, k) could be represented by a grammar in L(2, 4)
and established that (linear) second order ACGs were not more expressive than
MCFGs. In contrast, we do not know what class of languages is capture by
L(3, 4) and from [S22] we know that this class is very complex as its Parikh
image is more complex that the reachability sets of Petri nets.

In this section we sketch the proof that the hierarchies of (linear) of string
and tree languages ACGs L(2, k) and L(3, k) collapse for k = 4. This shows that
for strings and trees linear homomorphisms have a limited expressive power. It
remains open whether this is also the case when dealing with languages of lin-
ear λ-terms. We then review some results that we established and which show
that other grammatical formalisms can be encoded within ACGs. Those for-
malisms are various kinds of Lambek calculi and Stabler’s formal account [272]
of Chomsky’s minimalist program [77]: minimalist grammars.

The collapse theorem

The proof in [S17] uses ideas that are comparable to a game interpretation
(simple games restricted to the exponential free multiplicative fragment of lin-
ear logic) that was independently discovered by Lamarche [197] and Curien
and detailed by Abramsky [33]. Actually this proof shows that deterministic
tree transducers can normalize the image by a linear homomorphism of an ab-
stract derivation of a second order ACG. The link with simple games becomes
clearer when looking at the way deterministic tree walking transducers actu-
ally compute: they deterministically traverse the tree so as to find out the head
symbol of the result. In other words they perform a sequential evaluation of
the linear λ-term obtained by applying the homomorphism. As game models of
λ-calculus were introduced so as to understand the nature of sequentiality, it is
to be expected that an understanding of the sequentialization of normalization
is based on a similar notion. With this method, we showed that the languages
that were definable by second order ACGs were the output languages of deter-
ministic tree walking transducers. Then using a result by Weir [294], it implies
that every string language of a second order ACG is definable with an MCFG.
Moreover, the construction given by de Groote and Pogodalla that encodes
MCFGs into second order ACGs produces a an ACG in L(2, 4) implying that
the class of string languages defined second order ACGs is captured by only
using lexicons of complexity 4. It follows that every string ACG in L(2, k) can
be converted into an ACG in L(2, 4) defining the same language. The situation
is different for non-linear second order ACGs (or IO higher-order grammars)
for which the growth of the language can be increased exponentially each time
the order of the grammar or the complexity of the lexicon is increased. This
gives rise to an infinite hierarchy of classes of languages.

After this result was obtained, we found a simpler proof which avoids the
detour via simple games and gives a more satisfactory explanation of the result.
We will give here the general lines of this proof. It also generalizes the result
to tree languages which entails that the hierarchy of tree languages defined

35

by second order ACGs collapses also for lexicons of complexity 4. The main
method goes through a proof-theoretic analysis of linear λ-terms. Given a
closed linear λ-term M of type A that is built on a second order signature, one
can decompose it into a linear λ-term M ′ and a substitution σ so that:

1. the free variables of M ′ are at most second order,

2. there is no subterm of M ′ of the form xM1 . . .Mn where x is an occurrence
of a free variable of M ′ and one of the Mi has as head a free variable of
M ′,

3. M ′ does not contain any occurrence of a constant,

4. for every variable xA that is free in M ′, σ(xA) contains an occurrence of
a constant.

For example if we were to take a term

M = λfgxy.a(b(f(λz.c(d x)z))y)(g(λz1z2.dz1z2))

it would be decomposed into (M ′, σ) so that:

• M ′ = λfgxy.h1(f(λz.h2 x z)y)(g(λz1z2.h3 z1 z2)),

• σ = [h1 ← λx1x2.a(b x1)x2;h2 ← λx1x2.c(d x1)x2;h3 ← λx1x2.dx1x2].

This decomposition of M is removing the largest possible parts of M that
are only made with constants. This is the item 2 that expresses this maximality
constraint. Then a simple analysis based on polarity counting shows that, for
a fixed type A, there are finitely many possible terms M ′. This comes from the
fact that the positive atomic types of free variables in M ′ need to be matched
against a negative occurrence of the same atomic type in A, while the negative
occurrences of an atomic type in the type of free variables in M ′ need to be
matched against a positive occurrence of the same atomic type in A. This has
the consequence that the cumulated size of the types of the free variables of M ′

is bounded by the size of A finally showing that there are finitely many possible
M ′. Now, so as to construct an ACG in L(2, 4) generating the same language,
it suffices to use standard methods that make finite information flow in deriva-
tion trees. Here it suffices to build a new abstract signature whose types are
pairs (A,M ′) where A is an atomic type of the original abstract signature and
M ′ is term of type A the conditions given by the items 1, 2 and 3. If M ′ con-
tains z1, . . . , zn as free variables, the image of abstract terms of type (A,M ′)
by the lexicon will be terms of the form λk.kM1 . . .Mn (which is the Church
encoding of an tuple of n terms) so that the pair (M ′, [z1 ←M1, . . . zn ←Mn])
is a decomposition of a term in the language of a term in the language de-
scribed by the abstract type A in the original grammar. The main thing to
remark is that the term λk.kM1 . . .Mn has order 4, showing that the new ACG
is in L(2, 4). Such a construction shows the collapse of the hierarchy L(2, k)
to L(2, 4). Below 4 the hierarchy is strict L(2, 1) corresponds to regular sets

36

of trees, L(2, 2) corresponds to linear context-free sets of trees, L(2, 3) has no
corresponding definition in the literature but it strictly contains L(2, 2), and
L(2, 4) corresponds to tree languages that are definable by hyperedge replace-
ment grammars that were introduced by Courcelle [85].

This result has been extended further by Kanazawa [169] where he has
showed that, seen as graphs, languages of λ-terms generated by second order
ACGs could be represented by languages of hyperedge replacement grammars.
It nevertheless remains open whether for languages of λ-terms, the hierarchy
collapses. Kanazawa’s result suggests that it could be the case. Though the
construction we have outlined cannot be extended to the cases where the object
language uses higher-order constants.

As we mentioned above the method we used in [S17] amounts to sequential-
ize the evaluation of abstract terms using simple games. The information that
was added to the abstract types were plays, here, instead, the use of a linear
λ-term amounts to enrich abstract types with strategies. This yields both a
simple construction and a simple proof of its correctness. Now that we have
made a connection with the denotational semantics of the linear λ-calculus, it
becomes possible to extend the result to the hierarchy L(3, k). Similarly to the
case of L(2, k), it is then possible to reify the values in the model directly in
the types of the abstract signature. Thus the method yields that the hierarchy
of string and tree languages definable with L(3, k) collapses for k = 4.

Theorem 26 For every tree or string ACG G we have:

• if G is in L(2, k), there is an ACG in L(2, 4) that generates the same
language as G,

• if G is in L(l, k) with l > 2, there is an ACG in L(3, 4) that generates the
same language as G.

Minimalist grammars and Lambek grammars

The inspiration that led to ACGs clearly takes its roots in Type Logical Gram-
mars such as the calculi proposed by Lambek in the late 50’s early 60’s and
that are now known as Lambek Grammars [199, 198] or Categorial Grammars.
These grammars have been showed to define languages that are all context-
free by Pentus [240] and Kandulski [172]. Nevertheless, it has always been
assumed that the proof-theoretic nature of Lambek calculi and more precisely
their capability of using hypothetical reasoning was making them able to de-
scribe syntactic structures with more subtleties than context-free grammars
could. This is illustrated by the claim of van Benthem [53]:

the move toward a more flexible [than Context-Free Grammars]
Categorial Grammar has given us additionnal ’strong recognizing
capacity’, in terms of new constituent structures, while leaving
’weak capacity’, concerning sets of flat strings recognized, at the
old level.

37

This claim illustrates a sort of folklore knowledge in the community that Cat-
egorial Grammar has stronger descriptive capabilities than context-free gram-
mars. We first proved that when considering non-associative Categorial Gram-
mars, this was not the case [S13]. Indeed by encoding this formalism within
the ACG framework we could prove that the syntax semantics relations that
could be described with non-associative categorial grammars could also be rep-
resented with context-free grammars. With other techniques, we could prove
a similar result for the original Lambek grammars [S10].

The issue here is that the notion of strong generative capacity is not pre-
cisely defined. Following Chomsky, the weak generative capacity of a formal-
ism is the set of surface structures it generates. Its strong generative capacity
represents the way the formalism ascribes syntactic structures to surface struc-
tures. In general, two grammars are considered strongly equivalent when they
assign identical structures to surface structures. We think that this is much
too strong a requirement and that it completely misses the point of what syn-
tactic structures are. In general, when one proves that a grammar is weakly
equivalent to another, the proof contains a way to map the derivations of one
grammar to derivations of the other and vice versa. This mapping may be
more or less complex, but without such a mapping, it is hard to make any
proof of weak equivalence. We believe that the notion of strong equivalence
should be parametrized by a class of possible mappings between derivations:
rational equivalence, rational transductions, rational substitutions, macro-tree
transductions, MSOL transductions etc. . . In this respect if we take a context-
free grammar (with no unit rules and no ε-rule) and its Chomsky normal form,
then we can consider them strongly equivalent as their derivations are ratio-
nally equivalent. If we take a context-free grammar G whose language does not
contain the empty word, then a simple construction produces a grammar G′

that generates the same language but with no ε-rules. This construction con-
sists in removing ε-rules from G and for each rule add rules that are obtained
by removing in the right-hand side some non-terminals that could derive ε in
G. Should we consider G and G′ strongly equivalent? Every derivation of G
can be uniquely mapped (by a linear tree homomorphism) to an equivalent
derivation (in the sense that it generates the same string) of G′, while a deriva-
tion of G′ may represent a possibly infinite set of derivations of G, but this
set can be obtained by using a rational substitution (some symbol are replaced
by a rational tree language) which inserts the regular tree languages that rep-
resent derivations of ε by adequate non-terminals. The relation between the
derivations of G and G′ is rather simple. It thus makes us believe that these
two grammars share more similarities than differences. The current situation
about strong and weak generative capacity is such that they are, by default,
considered as essentially different.

Another example is that of Greibach normal form. It is generally considered
that when putting a grammar G into Greibach normal form then the grammar
G′ that is produced is essentially different from G. In case G is in Chomsky
normal form, then the derivations of the two grammars can be put in bijection
by means of macro tree transductions. Here again we can question the idea

38

that G and G′ have different structures. Somehow the need to use macro
transductions instead of rational ones shows that the relation is more complex
than in the case of Chomsky normal form.

So in a certain sense, we advocate in favor of a notion of strong generative
capacity that emphasizes the notion of information: do the syntactic structures
contain the same information? If so, how complex is the encoding and decoding
of this information? Answering those questions show that, despite strong su-
perficial differences, in the end weakly equivalent formalisms are rather similar.
It also allows one to quantify how these superficial differences impact repre-
sentations of syntactic structures. In the case of Lambek Grammars, their
derivations can be obtained from those of the encoding context-free grammars
using an MSOL transduction. The converse relation is more complex and it is
not known if it belongs to an interesting class of transductions.

Another formalism that we have been able to represent within the frame-
work of ACGs is the Stabler’s derivational minimalism [272]. This formaliza-
tion assumes a restriction called the shortest move constraint and we modeled
within ACGs the formalization without this restriction. Our goal was two-fold,
first reveal the structure of the derivations and second deduce some properties
of the languages from this structure.

Derivational minimalism uses a feature checking mechanism that is resource
sensitive. Moreover, with this feature mechanism, it formalizes the linguistic
notion of movement that displaces constituants from right to left. The resource
sensitivity and the directionality that movement was inducing made the com-
munity try to give logical representations of these grammars using variants of
Lambek grammars (among others [205], [204], [202], [203], [40]). Contrary to
the general intuition of the community, we proved [S18] that the derivations
are best represented in terms of linear λ-terms, that is that the set of deriva-
tions can be faithfully represented by a set of closed linear λ-terms in a given
signature. This shows that the impression of directionality was misleading.
Moreover, it also shows that the class of languages that can be described by
derivational minimalism without the shortest move constraint is particularly
complicated as its Parikh images contain reachability sets of Petri Nets [S5].

3.3 Parsing Algorithms

Grammatical formalisms have a natural algorithmic problem called parsing.
This problem consists in mapping a sentence to a representation of the set of
its possible derivations. We have given [S22] an algorithmic solution for second
order linear ACGs. As a first generalization, we proved that this algorithm can
be extended to non-linear second-order ACGs [S21] using intersection types.
This generalization shows that it is possible to generate texts from semantic
representations that may be logical formulae. Of course, these formulae are not
taken up to logical equivalence, but they can nevertheless serve as a high-level
representation of meaning and some basic equivalence relations could be added
such as the associativity and the commutativity of the conjunction and of the

39

disjunction.
One of our motivations to introduce the notion of recognizability for simply

typed λ-calculus was to simplify the proof of this result. Indeed our proof
looked quite similar to the usual proof of closure of context-free languages
under intersection with regular sets [296]. Using the closure of recognizable
languages of λ-terms under inverse homomorphism and the fact that singleton
languages are recognizable (by Statman Theorem), we know that the set of
syntactic structures of a given λ-terms in a second order ACG is a recognizable
set of trees. Moreover as all the theorems that are used are effective, we thus
have a parsing algorithm for ACGs.

When we look at the grammar that we used as an example of ACG in Sec-
tion 3.1, this means that we may retrieve algorithmically the set of derivations
whose interpretation is a given logical formula, as the one we have taken as
example:

∃x.ratx∧(∃y.cat y∧(∃z.dog z∧saw z y))∧chased y x∧(∃u.cheeseu∧atexu)

This result is far from being intuitive as the operations that are performed by
λ-calculus are complex. Nevertheless, the conceptual gain of recognizability
makes the proof rather trivial. It also generalizes the remark of Mezei and
Wright [213] about the regularity of the set of derivations of a sentence in a
context-free grammar.

When we look at the algorithm this method gives, it amounts to compute
least fixpoints in the domains of interpretation of atomic types. When instanti-
ated on a context-free grammar, this naive algorithm is a bottom-up algorithm
that does not beneficiate from the binarization procedure that accelerates the
Cocke, Younger [297] and Kasami [173] algorithm. Binarization methods can
be adapted, by transforming the abstract language, but, in general, the parsing
problem of second order non-linear ACGs is non-elementary. If we fix the com-
plexity of the lexicon at k, this problem has a tower of exponential of height
k − 1 [117] as time complexity.

An important feature of this algorithm is that denotational semantics is
providing the representation of the information that is necessary to represent
the set of derivation trees. This is in general the difficult part when dealing with
parsing. This information may be rather complicated, for example in parsing
algorithms for Tree Adjoining Grammars [261, 228] where it is represented
with dotted trees with indices. Then proving that this information is indeed
sufficient to deduce the existence of a syntactic structure requires most of the
effort in proving the algorithm correct. Here this part is already contained
in the fact that we use models of λ-calculus which ensures the correctness of
the algorithm as a corollary. So technically, the use of denotational semantics
seems to be a conceptual improvement.

The complexity of the parsing problem for non-linear ACGs pushed us
to study some restrictions. The algorithm we proposed for linear second or-
der ACGs is running in polynomial time. This algorithm has been recast by
Kanazawa in terms of datalog program [168]. In this article, Kanazawa also

40

remarks that the result can be extended to second order almost linear ACGs.
Such ACGs use lexicons which map constants to almost linear terms which
obey the non-copying constraint for all variable of functional type but not
necessarily for variables of atomic type.

Kanazawa’s datalog method is very interesting, not only does it allow one
to give a nice presentation of parsing algorithms for second order ACGs, but
also it allows one to define parsing algorithms for other formalisms. The view
datalog gives of parsing algorithms is that they are mostly specific strategies
for computing fixpoints. In particular, Kanazawa has showed that many of
the algorithms that were described in the literature in a rather technical way
for particular formalisms could be described and generalized in terms of dat-
alog program transformation [167]. This presentation provides simpler pre-
sentations of algorithms and also simpler proofs of their correctness. Interest-
ingly, the community in datalog has tried to reduce every fixpoint computation
strategy to a unique one called the semi-naive bottom-up algorithm. For this
they have developed a wide range of program transformations which preserve
program semantics. An important transformation is magic supplementary set
rewriting that allows to reduce the top-down resolution algorithm to the semi-
naive one [46]. On a datalog program that represents a context-free grammar,
this transformation gives rise to an improved version of Earley’s parsing al-
gorithm [109]. The algorithm is improved in the sense that the magic pred-
icate make the algorithm have a time complexity that is linear with respect
to the size of the original grammar instead of being quadratic. The datalog
methodology allows us to see parsing algorithms as program transformations
and program optimizations. From a software engineering perspective this view
of parsing allows to factor out the semi-naive bottom-up resolution algorithm
which is responsible of the memoisation which is delicate to implement and
may constitute a serious bottleneck in practice.

We may understand grammars as non-deterministic programs that with
least fixpoints. Using datalog may seem as just another way of computing
those fixpoints. Nevertheless, datalog offers richer computation capabilities, in
other words, datalog is intentionally richer than grammars. And thus it allows
us to define parsing algorithms that could not directly be described in terms
of grammars. The magic predicate in magic supplementary set rewritting is
an instance of this phenomenon. Another good example is Kanazawa’s prefix-
correct algorithm2 for MCFGs which uses a program that cannot be represented
as a grammar [167]

With my PhD student Pierre Bourreau, we have worked on generalizing
Kanazawa’s datalog approach to almost affine ACGs [S3, S2]. This work re-
quired to use game semantics as a way to prove the correctness of the algorithm.
We have also extended this approach to copying formalisms like PCMFG [S1].
In this work we describe various transformation that allows us to obtain algo-

2A parsing algorithm has the prefix-correctness property when it reads the input from
left to right and rejects incorrect sentences as soon as it has processed a prefix that cannot
be completed into an element of the language.

41

rithms with or without the prefix-correctness property, and which may also use
what is known as the left-corner strategy [227]. Here we take advantage of var-
ious program transformations. The way those transformations are combined
results in different algorithms that may or may not have the prefix-correct
property, that may use or may not use a left corner strategy etc. . .

3.4 OI grammars

Before ACGs were introduced, higher-order had been already studied in the
context of formal language theory. The first moves toward higher-order lan-
guages has been done around the same time by Aho and Fischer. Aho in-
troduced indexed grammars [38] and an equivalent abstract machine nested
stack automata [39] (that would be called nowadays second order pushdown
automata). His idea consisted in using context-free grammars where non-
terminals are parametrized with a stack and where rules are allowed to push
or pop symbols in or out of the stack. Fischer introduced the notion of IO and
OI grammars [126]. These grammars can be seen as extensions of context-free
grammars where non-terminals may have string parameters that they can use
in the right-hand side of the production. The order in which the evaluation is
made: the parameters are evaluated first (the Inside-Out –IO– evaluation); or
the encompassing non-terminals are evaluated first (the Outside-In –OI– eval-
uation); is what distinguishes IO from OI. This distinction is nowadays best
coined by call-by-values (IO) and call-by-names (OI). As a matter of fact, Fis-
cher [126] has established that OI languages coincided with indexed languages.

What Aho and Fischer did was starting a move towards higher-order. This
move was completed later on by Maslov [212, 211] for indexed grammars and
higher-order pushdown automata. Concerning Fischer’s macro grammars, their
extensions were proposed slightly later. Their connection with algebras, ex-
posed in [120, 121], opened the way to Damm for a definition of higher-order
macro grammars: the IO and OI hierarchies [101]. Thereafter, Damm gener-
alized Fischer’s result showing that Maslov’s higher-order pushdown automata
were defining the same class of languages as higher-order OI grammars.

While Damm’s definition of higher-order OI grammars was based on simply
typed λ-calculus, he did not study full fledged OI grammars. Indeed, as it is
often the case in such studies, Damm tried to work on grammars in a certain
normal form. In the course of proving that these normal forms were defining
the same class of languages as unrestricted grammars, Damm made a mistake
related to the handling of α-conversion. Afterwards, the connection between
higher-order pushdown automata and higher-order recursive schemes has been
re-explored by [182]. The work of [218] makes it clear that Damm has defined
a class of languages that does not use the full power of simply typed λ-calculus
but rather a restriction that is known as safe λ-calculus (see Section 2.3). It
is not known whether safe OI grammars define the same class of languages
as unsafe ones. When restricting to order 2 grammars however safe and un-
safe languages coincide [37]. There is also some partial result that has been

42

established by Parys [239] that shows the safety constraint higher-order safe de-
terministic grammars are less expressive that higher-order deterministic ones.
Here the notion of determinism comes from the automata theoretic definitions
of those grammars. Nevertheless, the deterministic unsafe language that Parys
proves to be not a deterministic safe one can be defined by a non-deterministic
higher-order pushdown automaton.

This recent view on Damm’s results shows that a study of unsafe higher-
order grammars was yet to be done. We started this study in [S12] and we
report here its main results.

Second order ACGs when using non-linear lexicons correspond to unsafe
higher-order IO grammars when they are used to define languages of strings
or languages of trees. As they may also define languages of λ-terms, they are
slightly more general. This possibility is important as it makes it possible to
represent Montague’s truth-conditional semantics. One of the motivation of OI
grammars when Fischer introduced them was the syntactic modeling of pro-
gramming languages. When designing the syntax of a programming language,
OI grammars allow one to enforce at the level of the syntax that variable
names can be used only when they have been previously declared. At the level
of Montague semantics this feature may be used so as to approximate anaphora
resolution by means of non-deterministic choice. This is in particular relevant
when one considers the dynamic extension of Montague semantics proposed by
de Groote [145, 147]. Moreover the capabilities of simply typed λ-calculus to
manipulate finite models [152] gives the possibility to OI grammars of imple-
menting rather advanced approximated anaphora resolution mechanisms, by
choosing among the discourse referent that satisfy a certain set of properties
expressed as a finite set of features.

It is possible to follow Damm’s original definition of OI grammars, by simply
taking a usual equational definition. But, as the method we use to study those
grammars is semantics, it is simpler to consider λY+Ω-calculus. This is made
possible by means of Bekić’s identity [50]. Given a λY+Ω-term M , it defines
a language as follows:

lang(M) = {N |M ∗→ N and N is a λ-term in normal form}

We now confuse the notion of higher-order OI languages and the languages that
are definable by means of λY+Ω-terms. As an example of the use of Bekić’s
identity so as to transform a rule based description of a grammar into a λY+Ω-
terms based presentation, let us consider the following regular grammar:

A→ a (bAB)A

A→ aA(bB A)

B → b (aAB)A

B → bA(aB A)

43

Abstracting over the A, we may see B as generating the same language as the
λY+-term M = λA.Y (λB.b (aAB)A + bA(aB A)). Now we can see that A
generates the same language as the term Y (λA.a (b (M A)B)A+aA(b (M A)A)).
This procedure amounts to perform a sort of Gaussian elimination of non-
terminals.

We call order of a term M the maximal order a type A such that Y A has
an occurrence in M . A language is said to be an order n language when it is
definable by an order n term.

Working directly with λ-calculus allows us to make several interesting re-
marks. First of all, the remark we made earlier about the way OI grammars
can handle variables allows us to define sets of -terms of a given type by means
of a grammar.

Theorem 27 For every type A, there is a λY+Ω-term M so that lang(M) =
ΛA.

As there are some λ-terms that are not safe this theorem implies that, when
considering languages of λ-terms, unsafe grammars are strictly more expressive.
Of course, this could be showed in a simpler manner by simply considering a
singleton languages made of an unsafe term. But this would be a slightly
artificial way of separating safe and unsafe grammars. This theorem shows
that one can define a language that contains infinitely many unsafe terms and
that cannot directly be represented in the language of a safe grammar. It
also shows that there are OI languages that are not IO languages. Indeed, IO
languages are generated by finitely many -terms while it is not the case of ΛA.

Given a full model M of λ-calculus, Loader’s result [207] that the λ-def-
inability problem is undecidable implies that the set of semantic values in M
taken by the terms in an OI languages is not recursive.

Theorem 28 Given a λY+Ω-term M of type A, a finite model M, the problem
whether an element f of M of type A is in the set {[[N]]M | N ∈ lang(M)} is
undecidable.

This last result shows an important difference between OI grammars and IO
ones for which the set of semantic values in a finite model taken by terms in a
language can be enumerated. Moreover most of the results about IO grammars
follow from the fact that this enumeration is algorithmically possible. This
difference between IO and OI suggests that OI should be more expressive than
IO. This is actually true, and using a standard CPS translation one can turn
an IO grammar into a λY+Ω-term whose language is the same as the original
grammar.

Theorem 29 For every non-linear second order ACG G, there is a λY+Ω-
term M so that lang(M) = O(G).

There are some comments to be made about the translation. First of all,
a CPS translation does not preserve safety so that it remains open how the

44

class of languages definable in the safe IO hierarchy compares with the class of
languages definable in the safe OI hierarchy. Second of all, the CPS translation
make an order n IO grammar into an order n + 2 OI grammar and we do
not know how the two hierarchies compare for a fixed order. Fischer [126] has
proved that IO and OI macro languages are incomparable; showing that order 2
languages form incomparable classes. Accordingly, we may conjecture that this
remains true at every order. There is however no obvious way of generalizing
Fischer’s proof.

We are now going to see how we can decide simple properties of given OI
languages. For this we adopt again a method based on denotational semantics.
The main difficulty we face is to understand how to tame non-determinism
within a finite model. This is achieved by working with monotone models. In
these models, the non-deterministic operator is interpreted as join, so as to be
able to capture certain semantic properties of terms in the language we will
consider particular elements in the models: join-prime elements.

Definition 30 In a lattice L, an element a is said to be join-prime when for
every b and c, if a ≤ b ∨ c then either a ≤ b or a ≤ c.

We now need to make this definition suitable for higher-order languages
and we introduce the notion of hereditary join-prime elements of a monotone
model.

Definition 31 Given a monotone applicative structure M = (MA)A∈T (Σ),
for every type A we define the sets M+

A and M−
A by:

1. M+
0 and M−

0 contain the prime elements of M0 that are different from
⊥0,

2. M+
A→B = {(

∨
F) 7→ g | F ⊆M−

A ∧ g ∈M+
B},

3. M−
A→B = {f 7→ g | f ∈M+

A ∧ g ∈M−
B}.

A valuation ν on M is said hereditary prime when, for every variable xA,
ν(xA) =

∨
F for some F ⊆M−

A . The elements ofM+
A are called the hereditary

prime elements of MA.3
A LFP model is said hereditary prime when each constant c of Σ is inter-

preted as
∨
F for some F included in M−

τ(c).

Hereditary prime models allow us to observe certain semantic properties of
the λ-terms that are in the language of a λY+-term. This is stated by the
Observability Theorem.

Theorem 32 (Observability) Given a λY+Ω-term M of type A, an hered-
itary prime LFP model M = (M, [[·, ·]]), an hereditary prime valuation ν and
an hereditary prime element f of MA, we have the equivalence:

f ≤ [[M,ν]]⇔ ∃N ∈ LOI(M).f ≤ [[N, ν]]

3As is usual, we assume that, when F ⊆ M+
A is such that F = ∅, then

∨
F = ⊥A.

45

This theorem is rather easy to prove using standard finite approximation tech-
niques.

A simple consequence of this theorem is that we may decide the emptiness
of OI languages. For this it suffices to take the hereditary prime LFP model
generated by 2 and so that constants are interpreted as the following elements
of the corresponding types:

• eo = >,

• eA→B = eA 7→ eB .

If we consider a valuation ν that maps a variable xA to the corresponding
element eA, then for every λ-term N , we have [[NB , ν]] ≥ eB . As a consequence,
of this fact and of the Observability Theorem, we have:

Proposition 1 Given a λY+Ω-term M of type A, and a valuation that maps
any variable xB to eB, we have that

LOI(M) 6= ∅ ⇔ eA ≤ [[M,ν]]

This implies that the emptiness problem for OI languages is decidable.
Now we wish to use the same technique so as to prove that the mem-

bership problem is decidable for OI languages. For this we refine Statman’s
construction for finite completeness and show that for every λ-term N , there
is a hereditary prime LFP model that characterizes N .

Lemma 33 For every λ-term N , there is a hereditary prime LFP model
(M, [[·, ·]]), a hereditary prime valuation ν and an hereditary prime element
f of the model that for every λ-term P we have:

[[P, ν]] ≥ f ⇔ P =βη N

As a consequence, using again the Observability Theorem, we obtain that the
membership problem is decidable for OI languages. Moreover we obtain a
generalization of Statman finite completeness result.

Theorem 34 Given two λY+Ω-terms of the same type M1 and M2, we have
the following equivalence:

• LOI(M1) = LOI(M2),

• for every LFP model (M, [[·, ·]]) and every valuation ν, [[M1, ν]] = [[M2, ν]].

46

3.5 Conclusion and perspectives

In this chapter, we have seen how simply typed λ-calculus could serve in the
definition of grammatical formalisms. Using λ-calculus has several advantages:
a conceptual simplicity and the ability to use a rich set of tools. In particular,
we have mentioned at several places how denotational semantics was giving
elegant solutions to seemingly difficult problems. The collapse theorem and
the intuitions provided by simple games are an example of this. But parsing
algorithms form a more striking application of the conceptual efficiency of de-
notational semantics. For higher-order OI grammars, most of the formal work
that needs to be carried out concerns the notion of hereditary primality which
is a semantic notion. This study of a problem in formal language theory with
denotational semantics has in return given us a class of functions, hereditary
prime functions, for which the definability problem is decidable. It would be
nice to understand which kinds of properties of programs they can express and
see also whether we can decide definability for joins of such functions.

We have mentioned the use of datalog programs for describing parsing algo-
rithms for almost affine second order ACGs and also to obtain several parsing
algorithms for PMCFGs and in particular algorithms with the prefix-correct
property. The collapse theorem allows us to transform second order ACGs into
MCFGs and thus to construct prefix-correct parsers for them. Nevertheless,
this requires heavy transformations. Somehow the prefix-correct property is re-
lated to the sequential execution of the grammar. It seems that simple games
can provide a nice way of representing the invariants that need to be satisfied
in order to execute the grammar sequentially. Another benefit is that it would
then become possible to generalize the notion of prefix-correctness to trees
and to linear λ-terms. Lamarche’s exponential [197] that makes simple games
be a model of linear logic which decomposes Berry and Curien’s [54] sequen-
tial algorithms could then allow us to generalize prefix-correct algorithms for
second-order non-linear ACGs. Here again, results in denotational semantics
are paving the way to describe those algorithms. The underpinning ideas are
non-trivial and may find here a natural application. Bucciarelli and Ehrhard’s
notion of strongly stable functions [68] that are an extensional representation
of sequential algorithm [111] may serve to increase the parallelism of parsing
by allowing the parallel resolution of independent subgoals. This approach is
also simplified by Ehrhard’s linear decomposition [110] of strong stability which
may allow us to start with linear or affine second order ACGs and then use
the exponential construction in order to extend the approach to the non-linear
case.

The interest of datalog seems to be limited to almost affine second order
ACGS. But an important feature that we mentioned is that datalog has greater
capacities of describing fixpoint algorithms than grammars. So an important
question consists in extending these capabilities to the non-linear case so as
to be able to describe with the highest simplicity strategies for fixpoint com-
putation. Clearly, the link with linear logic and in particular the exponential
modality can reveal quite helpful in this line of work.

47

One of the motivations for studying OI grammars came from the idea of
representing linguistic theories from the perspective of transduction or rather as
compositions of transductions. The result of the decision for non-linear second
order ACGs gives the decidability for a particular class of transductions and of
their compositions. This class of transducers can be seen as a generalization of
Nivat’s account of rational transductions in terms of bi-morphisms [231]. We
can describe a transduction with a pair of second order ACGs that share the
same abstract signature G1 = (Σ,Σ1,L1, S) and G2 = (Σ,Σ2,L2, S) and so that
Σ1 is a tree signature and L1 is a relabeling homomorphism. The signature
Σ models the runs of a finite state automaton on trees built on Σ1 that are
being translated and L2 represents the operations that are performed during
the translation. Now if Σ2 is a tree signature and L2(S) is an atomic type, then
we can compose this first transduction with another one and this can be done
in several steps. The closure under inverse homomorphic image of recognizable
sets of terms and the closure of recognizable sets of trees under relabeling gives
us the possibility to effectively compute the regular set of trees that are the
inverse images by a cascade of transductions.

Models of natural languages are often described with cascades of trans-
ductions, in particular in automatic translation, specialized transducers are
composed in larger ones. These models rely on the closure under composition
of the class of transducers they use so as to obtain efficient machines. The
kinds of transductions we have just seen are not closed under composition, it
thus seems hard to optimize their composition. The problem here is the ar-
ticulation between non-determinism and copying. In the call-by-value strategy
that is adopted by the kinds of transductions we have considered, the non-
determinism needs to be resolved before copying. In a call-by-name strategy,
the non-determinism is resolved when it is met and thus copied terms may yield
different results. When we compose two transductions, we need to intertwine
the two mechanisms. Indeed, parts of the output terms that are coming from
the copy of a given term may then be treated independently in the subsequent
run of the second transduction. The phenomenon has already been illustrated
by Engelfriet in his proof of the incomparability of top-down and bottom-up
tree transductions [116] and the introduction of IO and OI transductions [123].

So as to do this, a good way is to augment the λY+-calculus with a let
construction that forces the evaluation of some term. Nevertheless so as to
have nice operational semantics it would be better to make this construction
be evaluated lazily. This would change the semantic of each individual trans-
duction, but should not modify the class of definable relations. In this setting,
we may hope that the analysis of transduction may yield to a closure under
composition, but also that program optimization techniques can help in ob-
taining efficient transducers. Of course, with this control over evaluation, it
becomes easy to construct transductions that define undecidable relations by
encoding the definability problem. It would then be important to understand
how the class of transductions that can be proved decidable with the aforemen-
tioned technique can be represented and manipulated in this setting. Another
important restriction could be to work under the safety restriction as relations

48

might be decidable in this setting. A pre-requisite before starting this study
would be to define a denotational semantics for these programs that would en-
compass the syntactic semantics and thus help us in finding interesting classes
of transductions.

But before doing so, there is a more pressing problem which is the study of a
syntactic semantics for OI languages. For IO languages, the syntactic semantic
is rather simple, it is basically the languages themselves. Indeed, if L1 is an
IO language made of terms of type A→ B and L2 is an IO language made of
terms of type A, then the language L1 • L2 = {M1M2 | M1 ∈ L1 ∧M2 ∈ L2}
is an IO language. This is not true for OI languages. Consider the terms
M1 = λfxy.f(x + y) and M2 = λfxy.(f x) + (f y), they define the same
language lang(M1) = lang(M2) = {λfxy.f x;λfxy.f y}. But when we consider
P1 = M1(λx.a x x)e1 e2 and P2 = M2(λx.a x x)e1 e2, then lang(P1) 6= lang(P2)
as:

• lang(P1) = {a e1 e1; a e1 e2; a e2 e1; a e2 e2},

• lang(P2) = {a e1 e1; a e2 e2}.

This shows that, contrary to IO, the language a term defines does not character-
ize its behavior when applied to other terms. The difficulty is that a λY+-term
both denotes a language and an operation on language. It seems thus necessary
to interpret terms in a domain that can both represent languages and language
operations. A natural choice has already been proposed in the literature in
terms of relational semantics [69]. We should see in this setting how safety
can be interpreted. This is important as for OI safe languages, we can prove
that we can enumerate the sets of semantic values taken by the terms in the
language. This would allow us to understand better how the relational models
may connect to decision procedures. Then, we should try to make IO and OI
semantics work together in that domain so as to be able to interpret and study
higher-order transductions.

In this chapter we have also quickly glossed over Montague semantics. In
formal semantics of natural language, we can witness an increasing complex-
ity in the constructions that are proposed. It becomes quite difficult to verify
whether the intended meaning of a sentence is actually computed correctly
by the interpretations proposed in the literature. The system CoQ [281] of-
fers most of the tools and automations so as to develop fragments of formal
semantics. Ranta pioneered the use of type theory in the modelization of nat-
ural language in the 90’s [254]. It is now gaining momentum with the work
of Bekki [51, 52] and of Luo [73]. With Kobele, we could experience during a
course at the summer school NASSLLI in 2014 that the use of CoQ was making
concrete the constructions of Montague semantics and helped the student to
understand them simply as it was giving them the opportunity to manipulate
and experiment with them. In the long run, we would like to develop tools
that are able to encompass syntax and semantics within CoQ so as to help
the developments of formal semantics. This could serve both for teaching and
research.

49

Chapter 4

Mildly Context Sensitive
Languages

In natural language modeling, formal methods have played a central role. This
trend has probably started under the impulse of Chomsky with his book Syn-
tactic Structures [76]. Not only Chomsky’s work has had a strong influence in
linguistics, but also in the design of compilers. His introduction of context-free
grammars has triggered huge developments in formal language theory, com-
piler design, verification of recursive programs etc. . . The interest of a formal
approach to natural language is that it gives objective views about phenomena
and models. It brings clarifications of notions and also points to where the
problems are. As such, the methodology is a clear benefit. A good example of
the outcome of the application of formal methods to a formerly informal field
is described by Barbara Partee [238] in the context of Montague semantics:

Before Montague, semanticists focused on the explication of am-
biguity, anomaly, and “semantic relatedness”; data were often sub-
jective and controversial. The introduction of truth-conditions and
entailment relations as core data profoundly affected the adequacy
criteria for semantics, and led to a great expansion of semantic
research.

Another outcome of formal/mathematical methods is the idealization of the
subject it studies. In the study of syntax, it leads rapidly to posit that nat-
ural language potentially contains infinitely many utterances even though, in
practice, only a finite number of utterances can ever be recorded. In order to
explain this, Chomsky distinguishes competence (the linguistic knowledge of
native speakers) and performance (the produced sentences). This distinction
allows him to advocate in favor of generalizations and thus to the possibil-
ity of sentences of unbounded length. In practice, this justifies the linguistic
adequacy of grammars that describe infinite languages. These grammars gen-
eralize linguistic data so as to get the simplest descriptions. For example, there
is a priori no bound on the number of adjectives that may be used to modify a

51

noun; thus it seems natural to build a grammar which may recognize sentence
where an arbitrary number of adjectives may modify a noun. Not only would
fixing a bound seem arbitrary, but also, it would make the grammar more com-
plex as it would be necessary to incorporate a way of verifying whether this
bound is reached or not. Somehow the distinction between competence and
performance plays the role of the Ockham razor in linguistic descriptions. An-
other example of Chomsky is how he proves that natural languages cannot be
modeled with regular languages using self-embedded (as in the toy grammar of
the previous chapter) sentences which exhibit a pattern of the form anbn which
is not regular. We can make a similar parallel with computers. The study of
computation is made simpler by considering unbounded amount of resources
while each computer has limited resources and is thus best modeled by a finite
state machine. But, not considering potential infinity when we model comput-
ers with programming languages leads to much less elegant programs, more
difficult to write and also specialized to a given architecture.

When considering language knowledge as represented in the brain by a
specialized area, and the fact that babies are able to learn any language they are
exposed to as their mother tongue, it becomes plausible that the class of human
languages is biologically determined. This hypothesis is further strengthened
by the argument of the poverty of stimulus which posits that the utterances
to which children are exposed are too scarce so as to determine a language
in an arbitrary class. Chomsky calls this class of grammar, the Universal
Grammar [74]. This expression somehow means the grammar with which the
grammars of human languages are written. As Kimbal [174] explains, the
universal grammar can formally be understood as determining the class of
formal languages in which human language can be modeled:

The (Chomsky hierarchy) represents the fact that regular languages
are the simplest or least complex, CF [context-free] languages are
next, and CS [context-sensitive] are the most complex of the phrase
structure languages. In a certain sense, the problem faced in the
construction of a theory of universal grammar is to determine ex-
actly how ’complex’ natural language is.

Nevertheless, as Chomsky remarked that context-free grammars do not convey
(at least explicitly) the linguistic knowledge that native speakers have about
language such as the similarity of the structures of passive sentences and ac-
tive ones, he started to work (and was subsequently widely followed by other
linguists) to describe many linguistic phenomena by means of transformation
from canonical sentences [74]. Studying transformational grammars from the
point of view of computational power, Peters and Ritchie [241] showed that
they could model every recursively enumerable language. This result showed
that transformational grammars failed to delimit precisely enough the class of
natural languages. This result also asks questions about the validity of the
claims of linguists working with transformational grammars whether certain
sentences are accepted or not by their grammars. These claims were never

52

formally proved and mostly relied the linguists’ intuitions while Peters and
Ritchie showed that there is no systematic method to verify those claims. Then
the problem of using a linguistic metatheory with a limited generative power
has pushed Gazdar and his co-authors to propose Generalized Phrase Struc-
ture Grammars (GPSG) [131, 130] which can only define the same class of
languages as context-free grammars, but in which most (if not all) of the lin-
guistic phenomena described by means of transformations could be described
with simplicity. This work lead to the natural question of whether the class
of context-free languages is rich enough to contain any natural language. This
was recalled by Pullum and Gazdar [245]: “Whether non-context-free charac-
teristics can be found in the stringset of some natural language remains an open
question, just as it was a quarter century ago.”. Finally, examples of cross-serial
dependencies in Dutch [156] and in Swiss-German [268] showed that there were
linguistic phenomena that were exhibiting the pattern anbpcndp (in principle
for any n and p) and thus were not context-free.

As the phenomenon of cross-serial dependencies is captured by a class of
grammars proposed by Joshi et al. [162], tree adjoining grammars (TAG), this
led Joshi to formalize a notion of mildly context sensitive languages which
should capture the class of natural languages. This formalization allowed the
community to identify a class of languages that is described by many seem-
ingly different formalisms. In particular, the collapse result that we have
proved [S17], shows this is the class of string languages that are definable
with second order ACGs. This has led us to investigate further this class, but
also to think about the general problem of the class of languages that capture
human languages. In this chapter, we use Multiple Context-Free Grammars
(MCFGs) so as to describe this class of languages.

In this chapter, we present our work around the notion of mildly context
sensitive languages. First of all we present the notion itself as it was defined by
Joshi. As the notion is semi-formal and sometimes a bit imprecise, we try to
give a completely formal definition. Secondly, we will explain how, unexpect-
edly, we could prove that a language, called MIX, falls in the class of Multiple
Context-Free Languages (MCFL), the class defined by MCFGs. Thirdly, we
show that contrary to what was claimed in the literature, MCFLs are in gen-
eral not iterable in any reasonable sense. Finally, we present a classification of
the class of languages that have been proposed as representing mildly context-
sensitive languages.

4.1 On mild-context sensitivity and its limitations

The proof of the collapse theorem for second order linear ACGs is a further il-
lustration of an interesting phenomena that has been already remarked by Joshi
and his students: the convergence of mildly context sensitive formalisms [163].
When Joshi started his work on Tree Adjoining Grammars (TAG) [41, 160], he
tried to assess whether they were adequate from a linguistic point of view. For
this he defined the notion of Mildly Context Sensitive Languages [161]. Joshi

53

gives a set of semi-formal properties that classes of languages whose ambition
is to capture human languages should meet. These properties are as follow:

• the class should contain context free languages,

• each language in the class should exhibit limited crossing dependencies,

• each language in the class should have the constant growth property,

• each language in the class should have polynomial parsing problem.

Three of these properties are formally clear, the property of limited crossing
dependencies is a less precise. Regarding these properties, it has been rather
quickly agreed that MCFLs were the class of languages that was the best
fitting those criteria. This agreement is questionable and the results we prove
in the following sections show that another class seems to be more adequately
fit Joshi’s intuition. This class is called well-nested Multiple Context-Free
Languages (MCFLwn). Another problem is to make these properties slightly
more precise. Finally, the literature has pointed at some phenomena which
suggest that those properties may be too restrictive. In this section, we revisit
these properties in the light of some results that were not known at the time
Joshi published his work and we propose our own variation around Joshi’s
notion of mild context sensitivity. We then propose some methods so as to
accommodate in this framework the linguistic phenomena that seem to escape
the present definition of mild context sensitivity. This for us the opportunity
to quickly report on some technical work and some linguistic modelization that
we made in this setting.

First of all, we need to remark that the goal of the notion of mildly context
sensitive languages is not to characterize exactly the class of natural languages
but rather to give an over-approximation of that class. It is clear that the class
of regular languages contains languages which cannot have any relation with
human languages. Lets for example mention one letter languages that represent
sets of numbers satisfying a Presburger formula. Similarly the class of context
free languages also contains languages that are too complex to represent nat-
ural languages. Thus, the requirement that the class should contain all CFLs
is somewhat too strong, but, with the goal of building an over-approximation,
this seems a mild problem. From the point of view of formal language theory, it
seems more natural to work with well defined classes of language that have nice
closure properties such as closure under union, closure under rational transduc-
tions etc. . . and it thus seems unnatural to carve inside CFLs the smallest part
that would be sufficient to model natural language while we are trying to give
an upper bound on the complexity of natural language that requires some extra
expressive power. Here the approximation is mostly concerned with syntactic
constructions, being more precise would require to take into account some more
properties of natural languages as for example its learning properties.

Let us now turn to the property of the constant growth property. Joshi,
in his article mentions that this property is related to the semilinearity prop-
erty. It seems that this is what he had in mind, but that he used the constant

54

growth property because it was easier to understand for the audience of his
article. In his PhD [83], Weir writes “The slightly stronger property of semi-
linearity may come closer [than the constant growth property], but is still only
an approximation of what is really intended”. Up to our knowledge, there is no
linguistic phenomenon that would satisfy the constant growth property and not
the semilinearity property. Nevertheless, as mentionned by Weir, semilinearity
alone is not sufficiently strong yet. It is indeed rather simple to make highly
complex semilinear languages. For example, taking an arbitrary language L
on an alphabet Σ, if we take a letter # that is not in Σ, then, using Dickson’s
lemma [106], we can show that the language sl(L) = {w#w′ | w ∈ Σ∗∧w′ ∈ L}
is semilinear. It thus seems better to take the following definition:

Definition 35 A language L is said strongly semilinear when every language
L′ that is the image of a rational transduction of L is also semilinear.

Notice that the language sl(L) is strongly semilinear iff L is strongly semilin-
ear. This definition thus eliminates some pathological cases. Ginsburg and
Spanier [133] have studied classes of languages that are strongly semilinear.
They have proved that there is a maximal class languages that satisfy this
property, but not much is known about it so that it is hard to know how
complex the class of strongly semilinear languages may be.

We nevertheless believe that the constant growth property should be rephrased
into the stronger property:

The class should contain only strongly semilinear languages.

Concerning the polynomial parsing property, we follow the opinion of Makoto
Kanazawa, that it should be strengthen to Logcfl parsing complexity1. This
class has been introduced as a possible separator of Ptime and Logspaceand
contains the set of problems that can be solved by a Logspacereduction to
the membership problem of a CFL. It is in general considered as highly par-
allelizable. This stronger assumption does not exclude formalisms that have
been proposed to be inside mildly context sensitive languages. Indeed, though
many of them are most often proved to have Ptime parsing complexities, it
turns out that their parsing complexities are Logcfl-complete.

Lastly, it is rather hard to make more precise the criterion about crossing
dependencies. One of the difficulties is that it is always tempting to describe
it in terms of language only, i.e. in terms of what is called the weak generat-
ing capacity of formalisms. On the other hand, when one is speaking about
dependencies, it presupposes a notion of syntactic structures from which these
dependencies should be read off. This is precisely what Joshi does [161]: so as
to illustrate crossing dependencies he uses arcs preserved during TAG deriva-
tions that represent those dependencies. In this context, what we are interested
in is the notion of strong generative capacity. In a sense, this calls for a differ-
ent understanding of grammars that is similar to ACGs, grammars do not only

1Actually, functional Logcfl is a better choice as we expect the description of the set of
derivations to be produced by a function that is computed in Logcfl.

55

define strings/trees/lambda-terms/graphs languages, they define pairs made of
syntactic structures and surface structures. This obviously raises several ques-
tions here: what are syntactic structures? What are surface structures? How
can we define the relation between them?

Before we try to dig into those questions, we first recall certain interpre-
tations or approximations we can find in the literature about what the crite-
rion about crossing dependencies should be. An informal description is given
in [163] where they say that this criterion may at least exclude languages with-
out structure such as MIX = {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c}. A more
formal description is given in Groenink PhD dissertation [144] which consists
in imposing that each language in the class should be finitely iterable2. Finally
Kallmeyer in one of her lecture proposes a restriction in terms copy-language:
there is n so that, if {wk | w ∈ Σ∗} is in the class, then k ≤ n.

Kallmeyer’s proposal is verified as soon as we take a natural restriction
on MCFLs (bound the dimension of the non-terminals). It is rather close
to Joshi’s initial intention to limit the parameter k in patterns of the form
an1
1 an2

2 . . . ank

k bn1
1 bn2

2 . . . bnk

k . The part of Joshi’s intuition that is not captured
with that pattern is that the jth occurrences of ai and of bi are related to each
other. While the parameter k captures the limited part of the criterion, this
last part captures its crossing part. Kallmeyer’s criterion succeeds in making a
rather concise account of Joshi’s initial intuition as it contains both parts. The
limited part is clearly modeled, and the crossing part seems captured by the
fact that, intuitively at least, the ith letter of each occurrence of w are related to
each other in each copy. However, we believe that this criterion should clearly
mention a notion of derivation and a formalization of dependencies.

We will see in the next sections that, surprisingly, apart from Kallmeyer’s
formal interpretation, the other interpretations are not verified by MCFLs.
This is surprising since, as we already mentioned, MCFLs are generally consid-
ered as being the class of languages that fits best Joshi’s notion of mild context
sensitivity.

Weir in his dissertation summarizes the difficulty of making the criterion
about crossing dependencies precise:

The problem of comparing the strong generative capacity of differ-
ent formalisms and making general statements about how the strong
generative capacity should be limited is that such criteria should be
applicable to a range of radically different systems. Such criteria
have been difficult to develop as, for example, the objects compris-
ing the grammars (e.g., productions of trees), and the structural
descriptions (e.g., trees, graphs) could be very different notation-
ally.

If, as we propose above, we see strong generative capacity as a binary rela-
tion between syntactic structures and surface structures, limiting the strong

2This notion is a generalization of a notion we will come back to in Section 4.4

56

generative capacity amounts to limit the possible relations. A nice class of re-
lations that fits with the intuitions developed around mild context sensitivity
is the notion of Monadic Second Order Logic (MSOL) transduction proposed
by Courcelle [86]. This class of transductions is rich enough to capture the
relation between derivation trees of MCFGs and the string they generate and
it is restricted enough so that MSOL transductions map regular tree languages
to MCFLs [90, 119]. Moreover, as this kind of transduction is based on logic, it
naturally describes, trees to graphs, graphs to strings, etc. . .mappings and pro-
poses thus a possible solution to the heterogeneity problem that Weir is raising
about formalizations of natural language. Another advantage of logic, is that
its succinctness gives a strong leverage to organize linguistic concepts. Logic
may thus be a nice way of representing the linguistic knowledge as transforma-
tional grammars or GPSG were trying to do. Moreover, logic overcomes one
of the difficulties that have been systematically met when formalizing natural
language: organizing the flow of contextual information. In most formalisms,
such as GPSG, Lexical Functional Grammars (LFG) [64], Head-Driven Phrase
Structure Grammars (HPSG) [244], the flow of information that describes con-
textual information has been directly implemented in grammatical rules. The
main mechanism that has been used is that of unification which (when the
formalism is not lexicalized) often results in capturing all recursively enumer-
able languages. Logic, on the other hand, allows one to easily represent long
distance relations and logical connectives let one combine these relations so as
to describe context with a high precision and simplicity. Finally, the equiva-
lence of MSOL on trees and finite state automata makes MSOL transductions
be restricted relations which somehow formalize a notion of mapping that uses
only finite memory. As a first approximation, we are now tempted to rephrase
Joshi’s criterion about crossing dependencies as:

The relation between syntactic structures and surface structures is
an MSOL transduction.

This criterion while a bit more precise than Joshi’s original criterion is still a bit
vague as it leaves open what syntactic and surface structures are. It also leaves
open whether we should choose a more restricted class of relations. A natural
choice for syntactic structures is to take regular tree languages and strings for
surface structures. As we already mentionned, in that case, we describe a class
of relations whose surface structures form precisely the class of MCFLs. Thus,
in that case, all the other criteria that we have proposed become consequences
of this very one: as MCFLs is a class of strongly semilinear languages, for which
parsing is in functional Logcfl, and which contain CFLs. This illustrates how
natural the class of MCFLs is.

The community of Model Theoretic Syntax (MTS) already proposed to ex-
ploit the connection between MSOL and finite state automata so as to model
natural languages. The logical description of syntax has first been explored by
Rogers [257, 256, 258]. This allowed him to formalize a large part (actually
the least controversial one) of Chomsky’s theory known as Government and

57

Binding (GB) [75]. This work showed that this part of GB could only model
CFLs. One of the difficulty met by the MTS approach to natural language
description is that it presupposes that the syntactic structures are regular tree
languages and that surface structures are obtained from syntactic structures
only by taking the yield of these trees. This immediately implies that the class
of languages that such an architecture can describe is only the class of CFLs.
Somehow, Moennich, Morawietz and their co-authors [188, 220] tried to over-
come this limitation by advocating a two-step approach that would rely on a
transduction from tree to strings to obtain larger classes of languages. Rogers
also proposed higher-dimensional trees [259] so as to model richer classes of
languages at the cost of having complex syntactic structures. Recently, we pro-
posed a way of describing grammars using logic [S4]. We did not use MSOL,
but an ad hoc logic (a bit less expressive than MSOL) which we found more
adapted to the description of natural languages. We described syntactic struc-
tures with this logic and modeled the relation between syntactic structures
and surface structures by means of a transduction with logical look around
expressed with that logic and whose operations implemented with λ-terms.
With this formal apparatus we proposed concise models of control and island
phenomena. The interest of this logical approach is that it induces a modular
description of natural language that allowed us to model these phenomena in
Dutch, English, German and also Montague semantics. Of course, there is still
some need to refine the methodology and model wider classes of phenomena,
but those preliminary results are encouraging. Moreover, the overall architec-
ture guaranties that the formalism is no more expressive than second-order
ACGs3.

There are some arguments that indicate that MCFLs may be a too re-
strictive class of languages. One such limitation comes from the modelisation
of copying phenomena. Some linguistic phenomena such as Chinese num-
bers [250], genitive suffixes (Suffixaufnahme) in Old Georgian [214], or rela-
tivized predicates in Yoruba [187] seem to require some treatment that violate
the semilinearity constraint. Though it is unclear whether these phenomena
make natural language not semilinear or not strongly semilinear, it seems best
to model them as explicitly using copies. In the context of mild context sensi-
tivity that we have outlined, this can be achieved by making surface structures
be strings with sharing, the unfolding of which would yield the desired utter-
ance. In the proposal we made, we use the copying capability of λ-calculus to
model copying phenomena. Clearly copying phenomena challenge the strong
semilinear property that we stipulate for the class of mildly context sensitive
languages, but it would similarly challenge the constant growth property. Con-
cerning the complexity, explicit copying extend the class of MCFLs into Parallel
Multiple Context-Free Languages (PMCFLs) which still have a Logcfl pars-
ing problem [118]. This problem of copying is further discussed by Stabler [273].

Free word phenomena and non-configurational languages also challenge the
class of MCFLs. Though our result that MIX is a MCFL [S19] makes it unclear

3The ACGs are possibly non-linear if non-linear terms are used.

58

whether free word order languages escape the expressive power of MCFLs,
if we think that this is the relation between syntactic structures and surface
structures that matters in a linguistic model, then it has been showed by Becker
et al. [49] that some free order phenomena were not in the scope of MCFLs.
Here again, it seems interesting to consider that surface structures are no longer
mere strings and make them represent sets of strings that are equal up to some
reordering of words and which have the same syntactic structure. Crucially,
extending the ability of the class of mildly context sensitive languages into a
class that captures free word order phenomena should not result in languages
which are not strongly semilinear nor that have parsing of high complexity.
Several proposals have been made in the literature to cope with this problem.
But as pointed by Schmitz [263], most of them turn out to have a complexity at
least as high as the reachability problem for Petri Net, that of a tree extension
Petri Nets, called Vata [S5] or BVass [288]. We have proposed [S11] yet another
approach that is based on an algebra whose terms represent a set of sentences.
This algebra uses two kinds of concatenations, the usual one and a commutative
one. Thus modulo the equational theory of that algebra, a term represents
a finite set of utterances. We consider second order ACGs which generate
terms on that algebra. An important property of this architecture is that the
languages those grammars define are all strongly semilinear. Other choices
of operations, such as shuffle, or arbitrary counting lead to classes beyond
context-sensitive languages. For the moment, the work we have pursued is
mainly a work of classification and of systematic study of complexity. We
have been able to identify classes with Logcfl parsing complexties. But the
classes that seem natural to model free word order phenomena such as German
scrambling are NP-complete. We need to refine those classes to see whether
certain restrictions can capture natural language phenomena and still have
low parsing complexity. These classes of languages are not in general closed
under rational transductions, but their closure under rational transductions
contain interesting classes of languages such as the rational cone generated by
the permutation closure of regular languages, the class of languages definable
by Unordered Vector Grammars (UVG) [96] which have been used to model
certain free word order phenomena by Rambow and Satta [251].

4.2 Multiple Context Free Grammars

Multiple Context-Free Grammars (MCFG) have been introduced by Seki et
al. [266] is similar to Linear Contex-Free Rewriting Systems (LCFRS) intro-
duced by Joshi’s students, Vijay-Shanker and Weir [289]. We give here a pre-
sentation that is slightly different from the one proposed in the original article
but which is slightly more intuitive.

A Multiple Context Free Grammar (MCFG) G is a tuple (Θ,Σ, R, S) where
Θ is a ranked alphabet, Σ is a finite set of letters, R is a set of rules and S is
an element of Θ(1). The rules in R are of the form

A(α1, . . . , αn)← B1(x
1
1, . . . , x

1
l1), . . . , Bp(x

p
1, . . . , x

p
lp
)

59

where A is in Θ(n), Bj is in Θ(lj), the xk
j are pairwise distinct variables and the

αj are elements of (Σ∪X)∗ with X = {xk
j | k ∈ [p]∧j ∈ [lk]} and the restriction

that each xk
j may have at most one occurrence4 in the string α1 · · ·αn. Note

that p may be equal to 0 in which case the right part of the rule is empty, in
such a case we will write the rule by omitting the symbol ←.

An MCFG such as G defines judgments of the form `G A(s1, . . . , sn) where
A is in Θ(n) and the si belongs to Σ∗. Such a judgment is said to be derivable
when there is a rule A(α1, . . . , αn) ← B1(x

1
1, . . . , x

1
l1
), . . . , Bp(x

p
1, . . . , x

p
lp
) and

there are derivable judgments `G Bk(w
k
1 , . . . , w

k
lk
) for all k in [p] such that sj is

equal to αj where the possible occurrences of the xk
j are replaced by wk

j . The
language defined by G is the set {w ∈ Σ∗ | S(w) is derivable}.

An MCFG is said well-nested when all its rules:

A(α1, . . . , αn)← B1(x
1
1, . . . , x

1
l1), . . . , Bp(x

p
1, . . . , x

p
lp
)

verify the following properties (where X = {xk
j | k ∈ [p] ∧ j ∈ [lk]}):

• for i ∈ [p], if j < li then α1 . . . αn ∈ (Σ ∪X)∗xi
j(Σ ∪X)∗xi

j+1(Σ ∪X)∗,

• if i 6= i′, j < li and j′ < li′ , then α1 . . . αn /∈ (Σ ∪X)xi
j(Σ ∪X)∗xi′

j′(Σ ∪
X)∗xi

j+1(Σ ∪X)∗xi′

j′+1(Σ ∪X)∗.

This means that the variables of introduced in the right-hand side of the rule
appear in the same order in its left hand-side and that furthermore, whenever,
for some i′ different from i, xi′

j′ occurs in between xi
j and xi

j+1 in α1 . . . αn,
then for all j′′ in [li′] the variable xi′

j′′ occurs in between xi
j and xi

j+1. The
rules that satisfy these conditions are called well-nested rules and the class
of languages that can be defined with well-nested MCFG is called well-nested
Multiple Context Free Languages and written MCFLwn.

Even though this restriction may seem intricate, it decreases the expres-
sive power of MCFGs significantly and MCFLwn is a very natural class of
languages that, as we mentioned earlier, coincides with many formalisms, like
non-duplicating IO and OI grammars (so that MCFLwn are included in in-
dexed languages [126]), second order ACGs of complexity 3, coupled context-
free grammars [170]. Furthermore, MCFLwn satisfy a strong form of pumping
lemma [171], but there is a 3-MCFL that does not satisfy such a lemma [S6].

An MCFG G = (Θ,Σ, R, S) is a k-MCFG(r) when the maximal arity of the
elements of Θ is less than k and when the maximal number of non-terminal
in the right hand side of a rule in R is r. A k-MCFG, is an MCFG that
is a k-MCFG(r) for some r and similarly a MCFG(r) is an MCFG that is
a k-MCFG(r) for some k. It is known [266] that for each k, k-MCFLs, the
languages definable by k-MCFGs, form substitution-closed full Abstract Family
of Languages [132]. In particular, this implies that k-MCFLs form a class of

4If we allow more than one occurrence, we obtain Parallel Multiple Context Free Gram-
mars that we mentioned earlier.

60

languages that is closed under rational transduction for every k. Furthermore k-
MCFLs form a strictly increasing hierarchy of languages. The two-dimensional
hierarchy of k-MCFL(r) has been studied in detail by Rambow and Satta [252,
253]. Their results are summarized by the following theorem.

Theorem 36

• 1-MCFL is equal to the class of context-free languages,

• 1-MCFL(r) = 1-MCFL(r + 1) when r > 1,

• 1-MCFL(1) is equal to the class of linear context-free languages,

• 2-MCFL(2) = 2-MCFL(3)

• if k > 2 or r > 2, then k-MCFL(r) (k-MCFL(r + 1).

In particular, this theorem implies that, in general, given a k-MCFG, there
is no k-MCFG(2) defining the same language. Interestingly this is different
when we consider MCFGwn. We proved [S9] the following theorem (a slightly
stronger form of that theorem has been independently obtained in [138]).

Theorem 37 k-MCFLwn = k-MCFLwn(2).

This theorem gives a way of putting k-MCFGwn in a sort of Chomsky normal
form.

A result by Staudacher [277] can be exploited so as to prove the proper
inclusion of MCFLwn into MCFL. This result gives an example of a language
that is an MCFL but that is not an Indexed language and thus not a MCFLwn.
But when separating classes of languages, rather than finding a language that is
in one class and not in the other, it is better to characterize certain phenomena
that are possible within one class and not within the other. In the case of
MCFGs, one such phenomenon is copying: given a language L, the language
L(p), the p-copying of L, is defined by:

L(p) = {wp | w ∈ L} .

It can easily be showed that MCFLs are closed under p-copying for every p, i.e.
if L is an MCFL, then for every p, L(p) is an MCFL. Though k-MCFL is not
closed under 2-copying. An interesting result Engelfriet and Skyum [122] shows
that Indexed languages and thus MCFLwn are not closed under 3-copying.
More precisely, they prove that, for every L, L(3) is indexed iff L is an EDT0L
(a restricted kind of indexed languages). In [S9], we refine slightly that result
and we prove the following:

Theorem 38 L(2) is a MCFLwn iff L is a 1-MCFL.

61

1-MCFLs are languages with a very simple structure: unary trees, and
those languages are always captured by well-nested grammars. Thus, model-
ing linguistic phenomena with MCFGwn implies that copying can be performed
only on very simple structures. Such a hypothesis has to be confronted with
linguistic models and linguistic data. So far, we have not observed complex
structural copies, at least in configurational languages. This makes an inter-
esting argument in favor of the well-nestedness constraint for the modelisation
of natural language. Well-nestedness has also been studied from the point of
view of dependency structures by Kuhlmann and Nivre [194] where they show
that in the Pragues Dependency Treebank [150] and in the Danish Dependency
Treebank [191], almost all the dependencies satisfy the well-nestedness prop-
erty. Moreover and as we will see, it seems to us that MCFLwn are closer to
Joshi’s definition of mildly context sensitive languages proposed than MCFLs.

4.3 The language MIX

In this section, we are going to investigate the criterion about crossing depen-
dencies as illustrated by Joshi et al. in terms of the language MIX. We will
sketch two results, the first one shows that MIX is actually an 2-MCFL, and
the second one that it is not a 2-MCFLwn. This result gives some more weight
to the argument that MCFLwn may well be the class that best captures Joshi’s
notion of mild context sensitivity.

MIX is a 2-MCFL

As we have seen the language MIX has been showed as an example of a
language that, according to Joshi et al., should not be in a class of languages
that pretends to be mildly context sensitive. This language was first introduced
by Emmon Bach in one of his lecture and it is also referred to as Bach language.
The language MIX is rationally equivalent5 to the origin crossing language of
dimension 2 [127] O2 = {w ∈ {a; a; b; b}∗||w|a = |w|a ∧ |w|b = |w|b} which is
also the language of words representing 0 in the group (Z2, 0,+) if we let aa =
aa = bb = bb = ε. As 2-MCFLs are closed under rational transductions [266],
proving that O2 is a 2-MCFL is equivalent to proving that MIX is a 2-MCFL.

In the paper [S19], we prove that MIX is generated by the grammar G
(with starting symbol S) that is defined by:

1. S(x1x2)← Inv(x1, x2),

2. Inv(t1, t2)← Inv(x1, x2) where t1t2 ∈ perm(x1x2aa) ∪ perm(x1x2bb),

3. Inv(t1, t2)← Inv(x1, x2), Inv(y1, y2) where t1t2 ∈ Perm(x1x2y1y2)

4. Inv(ε, ε)

5This means that there is a rational transduction mapping MIX to O2 and another
mapping O2 to MIX

62

where perm(a1 . . . an) denotes the the language

{aσ(1) . . . aσ(n) | σ is a permutation of [n]} .

So as to prove that is generates exactly the words in O2, we prove the following
lemma.

Lemma 39 Given w1 and w2 in {a, a, b, b}∗, w1w2 is in O2 iff Inv(w1, w2) is
derivable in G.

The right to left part of the equivalence is obtained by a simple induction on the
derivations in G. The left to right implication is more involved, and is based on
a geometric representation of strings. Words in {a, a, b, b}∗ can be interpreted
as curves on the plane grid that is induced by Z2: the letter a is interpreted
as going up, while a is interpreted as going down, the letter b is interpreted as
going right and the letter b is interpreted as going left. An example is given

Figure 4.1: Curve representation of aaabaabaabbbbbaabbabbbbaaaabbbbbbbbaaa

Figure 4.1. With this graphical representation, pairs of strings can be seen as
two curves concatenated to each other. A pair of words (w1, w2) is so that
w1w2 is in O2 iff the curve that represents w1w2 is closed.

The proof that if w1w2 ∈ O2, then Inv(w1, w2) is derivable in G is an
induction |w1w2| + max(|w1|, |w2|). The cases where either w1 or w2 is the
empty string is treated simply by induction by splitting the non empty part
of the pair. In case on the borders (their first and last letters) of w1 and w2

contain a pair of compatible letters (either a and a or b and b), then a simple
use of the induction hypothesis gives the conclusion. Another simple case is
when the arcs described by w1 and w2 intersect each other, in that case, we
must have that w1 = v1v2 and w2 = u1u2 so that v1u2 and v2u1 are in O2.
Here again the induction hypothesis immediately gives the conclusion. The last
easy case is when either w1 or w2 has a left or right non-trivial factor that is in
O2: for example if w1 = vw′

1 with v ∈ O2−{ε}, then the induction hypothesis
gives that Inv(v, ε) and Inv(w′

1,w2) are derivable and we are done.
Now when looking at the complement of all those cases, we must have that

the pair (w1, w2) satisfies the following properties:

1. neither w1, nor w2 is equal to ε,

63

2. they have no compatible letters on their borders and, using symmetries,
we may assume that the first and last letters of w1 and w2 are in {a, b},

3. the curves representing w1 and w2 do not intersect each other,

4. neither w1 nor w2 have a left or right factor that is in O2 − {ε}.

So as to complete the proof, we prove that whenever a pair of words (w1, w2)
verifies all these properties, then it has the following decomposition property:
either w1 = u1u2u3 or w2 = u1u2u3 with u1, u2 and u3 all different of ε and
respectively, both u1u3 and u2w2 are in O2, or both u1u3 and w1u2 in are in
O2. The proof of this property is the most technical part of the proof and is
treated mainly geometrical and topological means.

We start by restricting our attention to pairs (w1, w2) so that neither w1 nor
w2 contain a factor in O2−{ε}. Having the decomposition property for this case
implies almost immediately the decomposition property for the general case.
Indeed, if w1 and w2 contain factors in O2 − {ε}, let w′

1 and w′
2 be obtained

by removing those factors until no more remains. Because of the conditions 1
and 4, it cannot be the case that w′

1 nor w′
2 are equal to ε. Moreover, condition 4

also implies that the letters on the borders of w′
1 and w′

2 are the same as the ones
on the borders of w1 and w2. Now if we can obtain the expected composition
of the pair (w′

1, w
′
2), then by putting back the factor of O2 − {ε} that we have

removed in that decomposition, then we obtain a decomposition of (w1, w2).
Considering pairs (w1, w2) for which neither w1 nor w2 contain a factor in

O2−{ε} has as consequence that the curve representing w1w2 is a closed curve
that is not self-intersecting, in other words, it is a Jordan curve. A Jordan
curve divides the plane into two components a bounded one, its interior, and
an unbounded one, its exterior. When orienting the curve, we can distinguish
its left from its right. At every point of the curve, its interior is always on
the same side. Exploiting this fact, we can identify the property that causes
the existence of a decomposition. This property also allows us to forget the
combinatorial aspect of the problem and use purely topological methods so as
to solve it.

So as to define this property, we remark that if we consider a simple (i.e. not
self-intersecting) arc on the square grid, then certain squares that are adjacent
to that arc will be in the interior or in the exterior of any Jordan curve that
contains that arc. Figure 4.2 shows those square for a particular arc, moreover,
we take the convention that we color the squares on the left of the arc in green
and the ones on its right in yellow. Now, because of condition 2, we can
enumerate the possible configurations of the curves near the two points where
the arcs meet each other. We shall call A the point from which the curve
representing w1 starts and D the one where it ends. This means that the
curve representing w2 starts at D and ends at A. Enumerating those possible
configurations, it happens that we can conclude that inside the closed curve
that w1 and w2 draw there are two points A′ and D′ so that the vector

−−−→
A′D′ is

equal to the vector
−−→
AD. It suffices to take either A′ = A+ 1

2 (1,−1) and D′ =

64

Figure 4.2: Adjacent squares on the left (in green) or on the right (in yellow)
of an arc.

D + 1
2 (1,−1) or A′ = A+ 1

2 (−1, 1) and D′ = D + 1
2 (−1, 1). The enumeration

of the configurations is given by Figure 4.3 and Figure 4.4. Figure 4.3 present
the general cases, and the second one 4.4 presents the cases where either w1 or
w2 is one letter long.

For these enumerations, we only present the case where the first letter
of w1 is a, the case where it starts with b is symmetric. On these figures,
following our convention, the adjacent squares on the left and on the right of
the arcs have been colored respectively in green and yellow. Moreover, we have
drawn some green arrows representing A′ and D′ when there are defined by
A′ = A+ 1

2 (−1, 1) and D′ = D+ 1
2 (−1, 1) and we can remark that in any case

the end of both green arrows are always in the green adjacent squares meaning
that whenever the arcs are part of a Jordan curve whose interior is on its left,
then both A′ and D′ are in its interior. Similarly we have drawn some yellow
arrows representing A′ and D′ when they are defined by A′ = A + 1

2 (1,−1)
and D′ = D + 1

2 (1,−1), and similarly we can observe that when the arcs are
part of a Jordan curve whose interior is on its right then both A′ and D′ as
defined by those yellow arrow are in its interior. Figures 4.5 and 4.6 illustrate
how some configurations can be completed into a Jordan curve; they also show
that, as expected, either both the green or both the yellow arrows are inside
the Jordan curve.

So as to complete the proof, it suffices to show that the existence of such
A′ and D′ is enough to ensure the existence of a decomposition. For this we
prove a general theorem about Jordan curves. With some small combinatorial
reasoning, this theorem can be use to ensure the existence of a decomposition
and thus complete the proof of Lemma 39.

Theorem 40 Given a Jordan curve J and two points A and D on J if there
is A′ and D′ in the interior of J so that the vectors

−−−→
A′D′ and

−−→
AD are equal,

then there are B and C both different from A′ and D′ so that:

• either B and C appear in that order on the arc of J going from A to D

and
−−→
BC =

−−→
AD,

• or C and B appear in that order on the arc of J going from D to A and−−→
CB =

−−→
DA.

65

a

a

A
a

a

D b

a

A
a

a

D

w1 = au1a and w2 = au2a w1 = au1a and w2 = au2b

a

a

A
a

b

D b

a

A
a

b

D

w1 = au1a and w2 = bu2a w1 = au1a and w2 = bu2b

a

a

A b

a

D b

a

A b

a

D

w1 = au1b and w2 = au2a w1 = au1b and w2 = au2b

a

a

A

b b

D b

a

A

b b

D

w1 = au1b and w2 = bu2a w1 = au1b and w2 = bu2b

Figure 4.3: All cases where w1 = au1l and w2 = s1u2s2 with l, s1, s2 ∈ {a, b}

The proof of this theorem is mainly based on algebraic topology (see [271]). In
this context, it is possible to strengthen slightly the hypothesis of the theorem:
we first assume that

−−→
AD = (1, 0), that A′ is the point (0, 0), that D′ is the

point (1, 0) and that the curve J lies in the countably punctured plane, i.e. the
plane where the points {(k, 0) | k ∈ Z} have been removed. Now if we confuse
the plane with complex numbers C, the continuous mapping exp(z) = e2iπz

maps the countably punctured plane to the twice punctured plane, i.e. the
plane where the points (0, 0) and (1, 0) have been removed. Moreover, from
algebraic topology we obtain that if J is a curve that contains p elements of
{(k, 0) | k ∈ Z}, then exp(J) is a curve of the twice punctured plan that winds
p (or, depending on the orientation of J , −p) times around (1, 0). So when we

66

a

a

a

A

D

b

a

a

A

D

w1 = a and w2 = au2a w1 = a and w2 = au2b

a

a

b

A

D

b

a

b

A

D

w1 = a and w2 = bu2a w1 = a and w2 = bu2b

a

a

a

D

A

a b

a

D

A

w1 = au1a and w2 = a w1 = au1a and w2 = b

b

a

a

D

A

b b
a

D

A

w1 = au1b and w2 = a w1 = au1b and w2 = b

Figure 4.4: All cases where w1 = a and w2 = s1u2s2 or w1 = au1l and w2 = s
with l, s, s1, s2 ∈ {a, b}.

consider a curve J satisfying the hypotheses of Theorem 40, the curve exp(J)

67

b

a

A
a

b

D

A

D

A

D

Figure 4.5: Illustrations of the case where w1 is of the form au1a and w2 is of
the form bu2b

b b
a

D

A

D

A

Figure 4.6: Illustration of the case where w1 is of the form au1b and w2 = b

must wind at least 2 (or at most −2) times around (1, 0). Then Theorem 40
follows from the following intuitive lemma.

Lemma 41 Given A and D in the countably punctured plane so that
−−→
AD =

(1, 0) (resp. (−1, 0)) and an arc C from A to D, the following properties are
equivalent:

• there is no point B and C (resp. C and B) in that order on C that are
both different from A and D and so that

−−→
BC = (1, 0),

• exp(C) is a Jordan curve of the twice punctured plane.

68

Indeed, suppose that J is a Jordan curve verifying the hypotheses of Theo-
rem 40. If J the conclusion of Theorem 40 is not fulfilled, then Lemma 41
entails that the arc of J going from A to D is mapped to a Jordan curve by
exp and so it may wind either 0 or 1 time around (1, 0), similarly the arc of
J going from D to A is mapped to a Jordan curve by exp that may wind
either 0 or −1 time around (1, 0). Therefore, exp(J) is a curve that may wind
either −1, 0 or 1 time around (1, 0). But we have seen that the hypotheses of
Theorem 40 implied that the winding number of exp(J) around (1, 0) should
be in]−∞,−2] ∪ [2,+∞[, yielding a contradiction.

MIX is not a 2-MCFLwn

In the course of the proof that O2 is a 2-MCFL, the difficult case is the only
one where the induction hypothesis is using on non-well-nested rules of the
grammar. A natural question is then whether those rules are necessary for the
grammar to capture O2. As it happens this is the case, if we were to remove
the non-well-nested rules from the grammar, then the word

aabbababbaaabbbbaaab

whose curve representation is given Figure 4.7, would not be recognized by the
grammar. Using this observation, it is then possible (see [S8]) to show that

Figure 4.7: Curve representation of aabbababbaaabbbbaaab

MIX is not a 2-MCFLwn and thereby, as the class of 2-MCFLwn is the same
as the class of languages definable by tree-adjoining grammars, this closes the
long-standing open conjecture of Joshi that MIX is not definable by a tree-
adjoining grammar.

The proof is in two steps: first we reduce the problem of MIX being a
2-MCFLwn to the problem of MIX being captured by a particular grammar;
second we use a computer program to prove that a word in MIX (which is
a variant of the word of the word of O2 of Figure 4.7) is not in the language
generated by that grammar.

The first step is based on simple ideas. The first one consists in remarking
that if G is a 2-MCFGwn deriving MIX, then, for each of its non-terminal
A, the Parikh image of words w1w2 so that A(w1, w2) is derivable must be
included in sets of the form {(k, k, k) + v|k ∈ N} for a fixed vector v in N3.
Such a grammar G is said p-bounded when each component of the vector
v associated to a non-terminal A of G is smaller than p. Given a word w

69

in {a, b, c}∗, we write w · k for the word obtained from w by replacing each
occurrence of a by ak, each occurrence of b by bk and each occurrence of c by
ck. Using the fact that when w is in MIX, then w · k is also in MIX allows
us to show that whenever MIX is recognized by a p-bounded grammar then it
is recognized by a 2-bounded grammar. With this it is then possible to reduce
the problem of MIX being a 2-MCFLwn to the problem whether it is definable
by a particular 2-bounded 2-MCFGwn.

We conjecture that MIX is not a MCFLwn. It seems hard to generalize
our approach. Our method allows us to reduce that MIX is a k-MCFLwn to
MIX being defined by a particular k-bounded k-MCFLwn. But we cannot get
any intuition of how to generalize the word that fails to be in the grammar and
thus cannot find any induction argument on k. It may have been somewhat
easier if we could have reduced the problem to 0-bounded k-MCFLwn. But
even proving that MIX is not recognized by any 0-bounded 3-MCFLwn seems
hard. The main issue being to find with a computer program an example of a
word that is not recognized by such a grammar.

Recently a new proof based on Ogden style pumping lemma for 2-MCFLwn

has been proposed by Sorokin [270]. Nevertheless this method cannot be ex-
tended to higher dimensions as such pumping properties do no hold in general
for k-MCFLwn when k > 2 (see [166]).

4.4 Iteration properties for MCFGs

We now turn towards the iteration properties of MCFL and show that Groenink’s
interpretation [144] about crossing dependencies is not verified by MCFLs.
Again, it has been showed by Kanazawa [171] that MCFLwn satisfied intuitive
iteration properties.

Iteration properties in languages have been formalized by Greibach [139,
140]. She distinguishes two notions:

Definition 42 (k-iterativity) A language L is k-iterative if there is a con-
stant n so that if w ∈ L and |w| > c then we have:

• w = u0w1 . . . uk−1wkuk so that w1 . . . wk 6= ε and,

• for every i in N, u0w
i
1 . . . uk−1w

i
kuk is in L.

Definition 43 (Weak k-iterativity) A language L is weakly k-iterative if
either it is finite or it contains a language of the form

{u0w
i
1u1 . . . uk−1w

i
kuk | i ∈ N}

where w1 . . . wk 6= ε.

It has been showed by Seki et al. [266] that either every k-MCFL is weakly
2k-iterative.

70

Theorem 44 Every k-MCFL is weakly 2k-iterative.

Strangely Radzinski claimed [250] that k-MCFLs were all 2k-iterative. More
precisely, he claimed that iterations in the derivations trees of MCFLs trans-
lated into iterations in the generated string which is far from obvious. However,
this claim has been taken for granted by Goenink [144] and also by Kracht [189].

Even the fact that k-MCFLswn are 2k-iterative requires a non-trivial proof.
The proof given by Kanazawa [171] actually does not translate iteration in
the derivation tree into iteration in the string language, it actually requires
some transformation of the tree structure of the grammar so as to achieve the
iterativity at the level of strings. Kanazawa shows moreover that 2-MCFLs are
4-iterative:

Theorem 45 Every k-MCFLwn is 2k-iterative and every 2-MCFL is 4-iterative.

In [S6] we prove the following theorem:

Theorem 46 There is a 3-MCFL L that contains an infinite language L′ so
that for every word w in L′ and every n in N, if w = u0w1 . . . un−1wnun with
w1 . . . wn 6= ε, then

|L ∩ {u0w
i
1 . . . un−1w

i
nun | i > 1}| ≤ 1

The language L can be thus seen as strongly anti-iterative. This means that
somehow for k > 2, k-MCFL do not satisfy any sensible strong iteration prop-
erty.

The language L of Theorem 46 is defined by the following grammar G (its
starting symbol is H):

1. H(x2)← J(x1, x2, x3),

2. J(ax1, y1cx2cdy2dx3, y3b)← J(x1, x2, x3) , J(y1, y2, y3)

3. J(a, ε, b)

If we delete the occurrences of a and of b in L, we obtain a language which is
a homomorphic representation of binary trees, where:

1. a node with two children t1 and t2 is mapped to cw1cdw2d if t1 and t2
are respectively represented by w1 and w2, and

2. a leaf is mapped to the empty string ε.

Notice that this gives a bijection between binary trees and their representations
in the language generated by G. In that language, each representation of a
binary tree is decorated with some more information as follows:

1. a node with two children t1 and t2 is mapped to amcw1cdw2db
n if t1 and

t2 are respectively represented by w1 and w2, and m is the length of the
left most branch of t2 and n is the length of the right-most branch of t1,

71

2. a leaf is mapped to the empty string ε.

So as to prove this, it suffices to proceed by induction on the size of derivations
and remark that when J(u1, u2, u3), then we always have that u1 = ak+1,
u3 = bl+1 with k, l ∈ N and u2 is either ε or a word of the form amcvcdwdbn.
In the latter case, the unique derivation tree of J(ak+1, amcvcdwdbn, bl+1) is a

k n
m l

Figure 4.8: Derivation tree for J(ak+1, amcvcdwdbn, bl+1)

binary tree where k + 1 is the length of its leftmost branch, l+ 1 is the length
of its rightmost branch, m is the length of the leftmost branch of its right
daughter, and n is the length of the rightmost branch of its left daughter. The
situation is illustrated Figure 4.8.

Now the language L′ of Theorem 46, is simply the set of words whose
derivation trees are complete binary trees. The language L′ is thus the set
{vn | n ∈ N} where vn is inductively defined as:

• v0 = ε,

• vn+1 = an+1cvncdvndb
n+1.

The proof that whenever one iterate a fixed number of factors in a word vn,
then the iterations are all, except maybe one, outside L is highly technical. The
intuition is that when iterating factors in a word vk, one needs to make a left or
a right branch of a subtree grow. Each time this branch grows, so as to remain
in L, it requires the update of one extra counter made of a’s or of b’s. Due to
the non-well-nestedness of the rules, this extra counter is in a place different
from the the branch that is being grown. Moreover, the combinatoric is so that
it needs to be either strictly inside a factor that is is either being iterated or a
factor that is not. The effect is that so as to remain in L at each iteration there
would be a need to iterate more factor. An immediate consequence is that the
strings obtained by iterations are not in L.

4.5 Classifying Mildly Context Sensitive Formalisms

Somehow in view of those results it seems that the class of languages that is
the closest to Joshi’s definition is that of well-nested Multiple Context Free
Languages (MCFLwn) that have been introduced by Kanazawa [170] based on
ideas of Kuhlman and Möhl [192, 193]. MCFLwn is yet another class of lan-
guages that is defined by a wide variety of formalisms such as non-copying

72

IO/OI languages, coupled context-free grammars [154], string languages defin-
able by ACGs in L(2, 3). Moreover they generalize TAGs in a natural way.
We have conjectured that MIX is not a MCFLwn, and Kanazawa showed
that every k-MCFLwn is 2k-iterable. This coincides with the interpretation of
Groenink concerning crossing dependencies for mild context sensitivity. The
3-MCFL that shows that MCFL are not iterable in general crucially uses non-
well-nested rules so as to construct complex dependencies which clearly go
beyond the kinds of dependency that Joshi describes as being the ones that are
of interest of natural language modeling.

Apart from LCFRS, Weir describes another hierarchy or languages [293]
called control languages. We will not go into the details of the definition of that
hierarchy. This hierarchy inductively defines classes of languages indexed by
natural numbers. The idea consists in controlling the derivations of a context-
free language. The first level of the hierarchy is simply the class of context-free
languages. A language of level k+1 is defined from a context-free grammar for
which each derivation tree is assigned a spine (i.e. a branch) with a rule-based
mechanism, then a derivation is licensed when each spine of its sub-derivation
belongs to a fixed language of level k. It is remarkable that the second level
of this hierarchy coincides with Tree Adjoining Languages. The idea of using
spines captures the linguistic idea that constituents are constructed around a
principal element, its head. It is easy to remark that Staudacher language is
definable in that hierarchy and that this hierarchy is also closed under copy-
ing. Thus, there are languages that are in the hierarchy but which are not
MCFLswn. Palis and Shende [237] proved that each level of that hierarchy
enjoys an Ogden style pumping lemma [232]. A recent note of Kanazawa [166]
shows that MCFLswn do not in general satisfy Ogden style pumping lemma. If
one were to discriminate between Weir’s hierarchy and MCFLwn for modeling
natural languages, there would thus be two kinds of criteria:

• the need for arbitrary finite copying would push in favor of Weir’s hier-
archy,

• simpler crossing dependencies that allow for Ogden style pumping lemma
would also push in favor of Weir’s hierarchy.

We also proved that Weir’s hierarchy was included in MCFLs [S7]. Figure 4.9
presents a quick summary of the classes of languages that have been proposed
to capture the properties of mildly context sensitive languages.

4.6 Conclusion and perspectives

In this chapter, we have given some results that are in contradiction with
formerly assumed conjectures. These results were particularly hard and tech-
nical to obtain and often using tools that are not usual in the context formal
language theory. Nevertheless, they gave us the impetus to question further
Joshi’s central notion of mildly context sensitive languages. In particular, the

73

MCFL

MCFLwnControl Hierarchy

Tree Adjoining Languages

Context-Free Languages

Figure 4.9: Classes of purposed mildly context sensitive languages

various interpretations about the limitation of crossing dependencies makes us
believe that the notion Joshi intended to define is best captured by MCFLwn.
To be more conclusive, we would need to prove that the language MIX is not
a MCFLwn. This problem seems particularly hard, but taking the language
MIX4 that is the language of permutations of the words in (abcd)∗ seems to
be easier and may give some evidence that MCFLwn are sufficiently restricted.
For this, a possible route would be to adapt a result by Rozoy on Dyck lan-
guage [260] to the two-sided Dyck language and then use the copying theorem
we proved in [S9] so as to conclude. This seems technical but feasible. We
have also tried to revisit Joshi’s notion in the light of developments that were
not available to him at the time of his definition. In particular, we argue that
MSOL transductions is the right tool to set an upper bound on the way de-
pendencies between constituent can be read off syntactic structures. MSOL is
indeed a tool of choice that is at the same time expressive and flexible, but
also restricted in the sense that this logic, via its connection with finite state
automata, formalizes the notion of finite memory on logical structures. It is
likely that MSOL transductions are too powerful for natural language, but the
hypothesis may be improved by taking simpler kinds of transductions. Impor-
tantly, this hypothesis may be considered with an extended notion of surface
structure that would allow sharing so as to model copying and also commuta-
tive concatenations so as to model free-word order phenomena.

This has led us to provide some logical model of natural languages which has
the advantage to be adapted to the development of multi-lingual grammars. A
first continuation to this work would be to model more phenomena and try to
compare in a more fine grained way various constructions in various languages.
In particular, we wish to model some free word order phenomena using the al-
gebra we proposed. Up to now, we have studied it from a complexity theoretic
perspective. The outcome of this study points towards fragments that satisfy
the mildly context sensitive constraints (in particular Logcfl complexity for
parsing and strong semilinearity) and we now need to see if we can use them to
account naturally for free word order phenomena observed in natural language.
We also hope that we can propose synchronous grammars that relate config-
urational languages and free-word order ones. Such results would naturally

74

allow for the implementation of automatic translation systems between those
languages. Other complex phenomena such as ellipsis may also benefit from
the fresh look the logical approach brings to modelization. Our idea is to follow
Kobele [208] and assume that ellipses are modeled by syntactic structure where
some parts are deleted/elided. These parts are to be found in the context, for
this the use of logic to relate elided trees to their possible antecedent seems
to be promising. Indeed, if we can model this relation with logic then the se-
mantic interpretation of ellipsis can be modeled in a nice way with Montague
semantics, allowing for parts of the meaning to be used several times.

The use of MSOL and of logically defined transductions as means of de-
scribing language asks for tools that compile actual grammars. For surface
structures (be it semantic interpretation or phonological interpretation), we
would obtain grammars that are second order ACGs or extensions of them
with the algebras we have proposed for free word orders. In the previous chap-
ter, we have proposed to obtain parsers for second order (almost affine) ACGs
by using datalog and datalog program transformations. This overall archi-
tecture constitutes a chain of compilation from a logically defined grammar
to an optimized datalog program. This compilation process may be highly
complicated and ask for a huge amount of computational resources. In partic-
ular, the compilation of MSOL formulae to finite state automata is in general
non-elementary, the height of the exponential being determined by the number
of alternations between existential and universal quantifiers. We can remark
that, in the formulae proposed by Rogers [256] and in the ones we used in our
own models [S4], the alternations of quantifiers is limited to 2 or 3. Still this
may cause some complexity problems and we need to make experiments so
as to assess the feasibility of such a system of description of language. These
experimental studies will of course be concerned in finding some compilation
heuristics. For example, an analysis of the logical formulae reveals that many
constraints can be verified locally. Such constraints can be implemented by
using extra parameters in datalog programs. Being able to identify such con-
straints and compile them using extra parameters would thus make the output
programs more compact and also the compilation time probably much shorter.
We need to make such analyses automatic and find algorithms that choose to
implement automata transitions with extra parameters or directly as datalog
predicates. A difficulty here is whether to use tools that can compile MSOL
formulae to automata such as MONA [176] or build our own tool. On the
one hand, MONA uses a particular representation of trees and may not suit
our needs for modeling. On the other hand, developing a tool is costly and it
will be hard to reach MONA’s efficiency. So probably we will first make some
experiment with MONA so as to compile part of our linguistic specifications
and then, if needed, develop a dedicated tool.

Related to parsing, we need also to adapt the datalog approach to parsing
to free-word orders. When looking at the algorithms we have described in [S11],
we observe that this amounts to incorporate some counting capabilities in the
resolution mechanism. This mechanism is instantiated by the computation of
a representation of semilinear sets that represent the freely ordered parts of

75

sentences. In the compilation process, we will need to compute this semilinear
set and then to allow datalog to make tests against this set. We need to see
whether this requires an extension of datalog or if we may directly use datalog
so as to perform those computations.

Another interesting problem is whether we can generalize the result we
obtained about MIX being a MCFL to languages that mix a larger number of
letters. The difficulty is that our method is essentially using properties of the
plane and that it is very hard to understand the expressive power of MCFLs.
In this situation, we refrain from making any conjecture. Nevertheless, if it
happens that MIX like languages over an arbitrary number of letters happen to
be MCFLs, then from a result by Latteux [200], it implies that every language
which is the inverse image by Parikh mapping of a semilinear set is an MCFL.
Such a result would be of high importance, not only for its modeling capability
in natural language but also in verification as it would allow the modelization
of systems with counting capabilities in a rather simple setting.

76

Chapter 5

Logic and Verification

Program verification consists in designing algorithms that are able to check
that programs satisfy their specifications, in other words it consists in building
programs that certify that other programs work. Rice’s theorem [255] tells us
that the problem is undecidable and thus that such programs do not exist in
general. Reliable programs meet a strong demand in our computerized society.
When programs control industrial installations ranging from refineries to nu-
clear plants, when they pilot cars, planes, trains, when they operate surgical
instruments, bugs may have devastating consequences. Similarly as Gödel’s
theorem did not abolish the search for new theorems in mathematics, its rel-
ative, Rice theorem, is only a conceptual barrier that tells us that there is no
systematic method so as to establish the correctness of programs.

A rather large consensus has emerged in computer science that programs
are too complex objects so as to be amenable to paper and pencil proofs of
correctness. It seems that the only objects that can cope with program com-
plexity are programs themselves. There are several parameters that can be
adjusted so as to make the problem of program verification automatic; a first
obvious parameter is the degree of automation; a second parameter is the pair
class of programs/class of specifications. Type theory is a good example of
an approach to program verification that is able to adjust these parameters.
For example, Damas-Hindley-Milner type inference [153, 217, 100, 99] allows
to automatically ensure memory safety for functional programming languages
such as OCaml, Haskell. In that case, the method is fully automatic and is
used in practice to verify large software. The specification is rather weak, but
it already rules out many common programming errors. The price to pay for
this full automaticity is that there are programs which would be memory safe
that are rejected by the type inference mechanism. Nevertheless, this restric-
tion is worse paying for the gain and, in practice, it is rarely (never?) barring
interesting programs from being accepted. At the other end of the spectrum
Martin-Löf type theory and Higher-Order Logic allow programmers to formally
fully specify and prove their programs. These logics are implemented in proof
assistants such as CoQ, Agda, HOL, Isabelle etc. . . In this setting the effort to

77

prove the program correct relies on programmers. The gain is that the proofs
are checked by machines. This guaranties that no case has been omitted and
that the proofs are correct. These methods are more often called certification
methods than verification methods which are usually relying more on programs
to obtain proofs of correctness of programs.

Between fully automatic and manual ones (such as in CoQ), there is a
wide range of possibilities. Certain methods such as Why3 [60, 59] or the B
method [35, 34] form an interesting balance between automation and manual
proofs. Moreover, in the context of CoQ, the development of programs can
rely on various automation techniques such as the ones offered by the language
LTac or by reflection methods. These techniques have made proof assistants
able to cope with large scale mathematical or software projects. When cer-
tifying/verifying a program with another program, we need to rely on that
other program. An advantage of proof-assistants is that they rely on very
small cores to check programs, these cores are rather easy to implement and
thus they present less risk to be trusted than larger piece of softwares. This is
why recent projects have focused on developing program performing automatic
verification within proof assistants thus constructing another bridge between
manual and automatic methods [164].

Among fully automatic methods, there are also incomplete methods, i.e.
methods that can certify that a program a correct but may not be able to prove
a program incorrect. A general theory of this method is proposed by Cousot
and Cousot under the name of abstract interpretation [94]. These methods
have been able to verify simple properties of industrial softwares. The program
Astrée is the flagship of these methods and has been used in many cases [95].

Finite state methods and their connection with logic offer a rather rich class
of specifications that can can be used effectively for many classes of programs.
The interest of finite state methods is that they provide in general fully auto-
matic and complete verification algorithms. Rabin Theorem [248] opened the
way to the development of a large body of work around these methods. Though
this result is mainly formulated in terms of logic, it implies that it is possible to
automatically verify that the possibly infinite executions of non-deterministic
finite state machines satisfy MSOL specifications.

When considering possibly infinite behaviors, the connection between logic
and finite state machines is not as simple as in the case of finite structures.
Indeed, as the recognition process may never stop, there is a need for conditions
that discriminate among infinite runs those which are accepting. A formulation
of such a condition is parity condition. Nevertheless, regular programs are
sufficiently rich to realize any coherent MSOL specification [249]. So if we
are to check a program against an MSOL specification, as it would have been
possible to generate a program satisfying the MSOL specification, this means
that we may only check part of the program’s functionality.

In this chapter, we are going to present some verification methods that are
based on MSOL specifications. From a technical perspective, these methods
present the interest of integrating wide areas of research that have become
independent but that have the same origin: schematology, λ-calculus, finite-

78

state automata, denotational semantics, linear logic, typing. From an abstract
perspective, this chapter is describing how models of λY -calculus are able to
recognize (in the sense of Section 2.5) programs that satisfy certain logical speci-
fications. From the perspective of verification, this work provides some effective
methods so as to check certain properties of programs. From the perspective of
denotational semantics, it provides new kinds of conceptual problems and asks
for new methods of model construction. From the perspective of automata the-
ory, it allows us to use high level methods coming from denotational semantics
so as to model finite state properties.

5.1 Schematology

Programming languages come with basic operations such as integer addition,
calls to the operating system etc. . . and with some way of organizing those op-
erations which is called the control flow of the program. Scott and Elgot [113]
proposed to see the execution trees of programs as an intermediate step to-
wards the program semantics. This method consists in splitting the semantic
interpretation of programs in two steps:

• interpret the control-flow of the program and obtain a possibly infinite
tree, the execution tree, composed with basic operations of the program-
ming language,

• evaluate the execution tree, in a specific domain so as to obtain a deno-
tational value of the program.

This perspective has been adopted, among others, by Manna [210, 209], Wand [291,
292], Nivat [230], and Courcelle [84]. Schematology has appeared, the study
of evaluation trees generated by programs, or in other words the study of pro-
gram’s semantics in the free interpretation. This perspective on the semantics
of programs opens the possibility of verifying their properties simply by veri-
fying syntactic properties of their execution trees.

Consider an ML code generating a Javascript program to be executed on
a client machine. The code reads a command from an untrusted stream, sur-
rounds it by an alert function, and passes it to the server.

let makecode (x)="<sc r i p t >␣ a l e r t (" + x + ") ; ␣</s c r i p t >"
in

y=f i r s t (untrusted_stream) ;
output (makecode (y)) ;

An attacker can prepare a special string in order to escape the alert()
function and execute arbitrary code which may in particular lure a client into
disclosing secret information such as her password, or a bank account number:

makecode (") ; ␣ form . submit (h t t p : / / . . .) ; ")=
a l e r t () ; form . submit (http : / / . . .) ;

The defense against this attack is to use a validation function that removes
potentially dangerous parts of the input.

79

let makecode (x)="<sc r i p t >␣ a l e r t (" + va l i d a t e (x) + ") ; ␣</s c r i p t >"
in

y=f i r s t (untrusted_stream) ;
output (makecode (y)) ;

This defense strategy is a programming guideline: “all strings sent to the
client should be validated”. Let us see how we can approach the task of verifying
if a given program satisfies this guideline. For this, we will take a slightly more
complicated code exhibiting the same kind of phenomenon:

let makecode (x)= . . in
l e t r e c f (x , s , g)=

let y=f i r s t (s) in
output (g (x)) ;
f (conc (y , x) , next (s)) ;

in
f ("" , untrusted_stream , makecode) ;

In this code we have a recursive function f that reads from an untrusted stream,
and calls a function g, later instantiated to makecode, to prepare a Javascript
command based on all the input read so far. Hence, this function transforms an
input stream into a sequence of Javascript commands. The stream is infinite,
so the function does not terminate.

The first question is what should be the meaning of such a function. The
answer of schematology is that it should be an evaluation tree representing the
execution of the program:

;

out

mkcd

s

;

out

mkcd

conc

fst(s) nil

;

out

mkcd

conc

fst(nxt(s)) fst(s) :: nil

;

...

This is an infinite tree obtained by interpreting the control flow, but letting
all constants non-interpreted. As we can see, the evaluation tree starts with a
semi-colon, followed on the left branch by a call to makecode and out functions.
The rightmost path of the tree is infinite while the left branches get increasingly
bigger. We have left the makecode function unspecified, but we can imagine
that if it were given, the mkcd constant in the above tree would be replaced by
some tree using the validate function.

80

Our programming guideline now translates into the property: on every path,
between an occurrence of out and s there should always be an occurrence of
validate.

The connections between the results of Büchi [70] and Rabin [248] on one
side, and schematology on the other have not been immediate. Rabin’s the-
orem says that the monadic second-order theory of a regular tree is decid-
able. This formulation naturally leads to a question: what happens for other
trees? In particular for evaluation trees studied in schematology? In the mid-
seventies Courcelle [84] has shown that evaluation trees of first-order programs
can be represented by pushdown automata. In mid-eighties, coming from a
completely different perspective, Muller and Schupp [222] have proved that
monadic second-order theory of pushdown graphs is decidable. These two re-
sults have been put together and extended only in this century by Knapik,
Niwiński, and Urzyczyn [179, 182]. They have established the decidability
of the MSOL theory of evaluation trees of so-called safe recursion schemes.
Finally, a decade ago, Ong [233] has shown that the safety restriction can
be removed. Thus evaluation trees of a simple programming language with
higher-order functions and recursion, the λY -calculus, have decidable MSOL
theory.

5.2 Parity automata

Rabin’s original proof of the decidability of the MSOL theory of the infinite
binary tree inductively translates MSOL formulae to particular finite state
automata that are now called Rabin automata. The major difficulty of the
proof resides in the translation of negation and thus of proof that the class
of languages definable by Rabin’s automata is closed under complementation.
The idea to use games so as to simplify Rabin’s proof was already present
in Büchi’s work [71]. It has been successfully applied by Gurevich and Har-
rington [148] who were able to propose a simplified proof of Rabin’s result
following Büchi’s lead. Probably the simplest proof of Rabin’s result has been
proposed by Emerson and Jutla [115]. Their proof is based on the relation be-
tween µ-calculus [43] and tree automata recognizing infinite trees. They prove
that µ-calculus captures the same class of properties as MSOL on the infinite
binary tree1. Importantly, they introduce a new acceptance condition for these
automata called parity condition. It is now standard to use tree automata
with parity conditions as a concrete representations of MSOL formulae. The
interest of this formulation is that the emptiness problem of parity tree au-
tomata can be reduced to determining whether a player has a winning strategy
in so-called parity games. These games have nice properties (see [298] for a
clear and self-contained presentation): they are determined (i.e. one of the
player has a winning strategy), winning strategies are particularly simple as

1On arbitrary structures µ-calculus is less expressive than MSOL. Janin and
Walukiewicz [158] show which fragment of MSOL is equivalent to µ-caculus.

81

they are memoriless (i.e. a winning strategy can be described only by stating
which move is to be performed by the player at each position without having to
take previous moves into account). The inherent symmetry of parity condition
and the determinacy of parity games give a simple proof of the closure under
complementation of tree automata.

Usually tree automata are defined to accept trees constructed on a tree
signature. Here we are going to use them as means of recognizing Böhm trees
of closed λY -terms of atomic type over a tree signature. Not only are those
trees built with a tree signature, but they may also contain leaves labeled
with Ω which mark places where unproductive computations of λY -calculus
occurred. Thus when defining automata that are to run on trees built on a
given tree signature Σ, we also need to define their behavior when they meet
Ω. This subtle distinction is of importance and has been often overlooked in
the literature.

So as to simplify the notations and the exposition we only consider tree
signatures with binary o nullary operators when dealing with the formal pre-
sentations. In examples, we indulge ourselves to use arbitrary arities.

Definition 47 A finite parity tree automaton over the signature Σ = Σ(0) ∪
Σ(2) (here, Σ(0) is the part of the signature with nullary operators and Σ(2) is
the part with binary ones) is

A = 〈Q,Σ, δ0 : Q× (Σ0 ∪ {Ω})→ {ff , tt}, δ2 : Q× Σ2 → P(Q2), rk : Q→ N〉

where Q is a finite set of states. The transition function of parity automata
may be subject to the additional restriction:

Ω-blind: δ0(q,Ω) = tt for all q ∈ Q.

Automata satisfying this restriction are called Ω-blind. For clarity, we use the
term insightful to refer to automata without this restriction.

Another restriction is

Ω-even: δ0(q,Ω) = tt when rk(q) is even.

A parity automaton is said trivial when the image of Q by rk is only made
of even numbers.

A parity automaton is said weak when for every q, a ∈ Σ2 and (q1, q2) ∈
δ2(q, a), rk(q1) ≤ rk(q) and rk(q2) ≤ rk(q).

Weak Parity automata have been introduced by Muller et al. [223, 224] and
capture weak Monadic Second Order Logic (wMSOL). In wMSOL, set variables
can only be interpreted as finite sets over the structure.

We are now in position to define what it means for a parity automaton A
to accept a tree. For this definition we consider that a tree T is defined as
a partial function from a prefix closed subset of {0, 1}∗ to Σ that respect the
arities of the labels, that is:

82

• if u0 or u1 is dom(T) in then both u0 and u1 are in dom(T) and T (u) is
a binary operator of Σ, in that case we call u a binary node,

• if T (u) is in Σ(0) or T (u) = Ω, then neither u0 nor u1 is in dom(T), in
that case we call u a nullary node or a leaf.

Definition 48 A run of A on a tree T from a state q0 is a labelling of the
nodes of T with the states of A such that:

• the root is labelled with q0,

• if a node u is a leaf and the run labels u with a state q, then δ(q, T (u)) =
tt ,

• if u is a binary node, and the run labels u with a state q, then the
run labels u0 and u1 respectively with q0 and q1 such that (q0, q1) ∈
δ(q, T (u)).

A run is accepting when for every infinite path of T , the labelling of the path
given by the run satisfies the parity condition. This means that if we look at
the ranks of states assigned to the nodes of the path then the maximal rank
appearing infinitely often is even. A tree is accepted by A from a state q0 if
there is an accepting run from q0 on the tree.

It is well known that for every MSOL formula there is a parity automaton
recognizing the set of trees that are models of the formula. The converse
also holds. Let us also recall that the automata model can be extended to
alternating parity automata without increasing the expressive power. Here,
for simplicity of the presentation, we will work only with nondeterministic
automata but the constructions we will present later apply also to alternating
automata.

When an automaton is trivial, notice that the parity condition is degener-
ated as every state has an even rank. Thus the acceptance of trivial automata
just amount to the existence of some run. In the context of verification of
higher-order properties, trivial automata with have gathered considerable at-
tention [184]. This kind of verification problems are in direct relation with
some work that was conducted in the early 90’s by Jensen [159] who was using
intersection types as a sort of refinement type in the sense of Freeman and
Pfenning [128]. This work was in direct connection with domain theory, and
intersection types were used as syntactic representations of monotone mod-
els as is explained in section 2.5 using Abramsky’s idea of domain in logical
forms [32].

The literature on higher-order model checking is implicitly assuming the
Ω-blindness condition which has as consequence to unconditionally accepts
divergent computations, while insightful automata or Ω-even automata can
test divergence. For technical reasons related to our constructions, we are only

83

going to consider Ω-even automata2. Using alternation, insightful automata
can easily be transformed into Ω-even automata.

Definition 49 A parity automaton A together with one of its state q0 recog-
nizes a language of closed terms of type o:

L(A, q0) = {M :M is closed term of type o, BT (M) is accepted by A from q0}

While trivial automata are concerned with safety/reachability properties
which describe certain ill configurations that are to be avoided, parity automata
capture properties that are behavioral and that cannot be captured by finite
approximation. In particular, we have proven that monotone models exactly
capture Ω-blind trivial automata [S31].

Theorem 50 L is a set of closed λY Ω-terms of type o recognized by a mono-
tone model iff L is recognized by a boolean combination of Ω-blind trivial au-
tomata.

As least and greatest fixpoints are computed by finite approximations of terms,
the evaluation of whether a term M is in a language recognized by a trivial
automaton can be done by only exploring a finite prefix of the Böhm tree of
M . The model that is used to recognize the same language as a given trivial
automaton A with states Q, is simply a GFP model where the base type is the
complete lattice (P(Q),⊆) and where the constants have straightforward inter-
pretations that simulate the transitions of the automaton. We also remark that
monotone models cannot detect unproductive computation, i.e. Ω. In [S31], we
show how this can be accommodated. Our proposal consists in mixing a mono-
tone model constructed from the automaton and the model 2. Interestingly
the construction requires the interaction of two different fixpoints. We will see
how to generalize this construction so as to capture wMSOL in Section 5.3.

MSOL properties are more challenging than just safety and reachability
properties. From the perspective of automata, we pass from the acceptance by
a final state to infinitary parity acceptance conditions. From the perspective of
semantics, we pass from least fixpoints to some more complicated non-extremal
fixpoints. The reason for this fundamental change is that while reachability
properties can be decided by looking at a prefix of the tree, behavioral prop-
erties are different since they talk about repeated occurrences of events.

The property in the first example was a safety property because its negation
is a reachability property. Indeed, in order to exhibit a violation of the property
it is sufficient to find an occurrence of s with an ancestor labelled out, and no
validate in between.

Many behavioral properties cannot be expressed this way. For example, we
can ask that every call to makecode uses s. If, as it would normally be the case,
the evaluation tree of makecode is infinite, we cannot decide if s is not used
in this tree just by looking at its prefixes. For similar reasons properties like:

2For trivial automata being insightful in equivalent to be Ω-even.

84

every open(file) is eventually followed by close(file) are neither safety,
nor reachability properties.

There are liveness and fairness properties that exhibit even more compli-
cated patterns. For example, we could ask that the input stream is accessed
infinitely often, or in other words that, there are infinitely many first, and
next calls. Going further, we can ask for a kind of productiveness property:
if the input stream is accessed infinitely often then some output is produced
infinitely often. This property says that the program cannot continue to read
from the input stream without producing any output.

The kinds of properties from the last paragraph naturally lead to the parity
acceptance condition in automata. A property “there is a path with infinitely
many calls to some procedure” can be checked by an automaton that enters an
accepting state each time it sees a call; assuming that the acceptance condition
of the automaton is that an accepting state should appear infinitely often. The
property “if infinitely many in then infinitely many out on the path” can be
checked by an automaton whose states have three ranks: 0, 1, 2. The automaton
will normally be in a state of rank 0, but it will enter rank 1 when seeing in, and
rank 2 when seeing out. Now, the acceptance condition is a parity condition:
the biggest rank seen infinitely often is even. With the assignment of ranks we
have described, this parity condition corresponds directly to the property we
consider.

When considering the emptiness problem of parity automata, that is whether
there is a tree which is accepted by the automaton, one naturally reduces the
problem to a finite game, called parity game.

Definition 51 A parity game is a two player game, called Eve and Adam, the
game is played on a graph (V0, V1, E, rk, v, k) where, letting V = V0 ∪ V1:

• V0 and V1 are disjoint,

• E ⊆ V0 ∪ V1, the set of moves,

• k ∈ N and rk : V → [0, k],

• v ∈ V .

The elements of V0 are Eve’s positions and the elements of V1 are Adam’s
positions.

A play starts in position v, the player to which the position belongs chooses
a new position v′ so that (v, v′) is in E. This process is repeated possibly in-
finitely. Thus, a play p = v0 . . . vi . . . is a possibly infinite sequence of elements
of V , so that:

• v0 = v,

• for every i, (vi, vi+1) is in E.

85

In case a play is finite the looser is the one to which the last position belongs.
To each play such as p, rk associates a sequence of numbers n0 . . . ni . . .

where ni = rk(vi). Eve wins the infinite play p when max{l | ∀i∃j ≥ i, nj = l}
is even. Otherwise Adam wins. In other words Eve wins an infinite play iff the
maximal rank that occurs infinitely often in the play is even.

Parity games are determined: either Eve or Adam have a winning strategies.
Moreover, there are memoriless winning strategies, i.e. strategies for which
the player can decide which move to play by only taking into account the
current position. When the parity game is finite the problem of computing a
(memoriless) winning strategy is decidable and is NP ∩ coNP.

The reduction of parity automata to parity games is rather simple, for a
parity automaton A, we define the parity game as follows:

• V0 is Q, the set of states of A,

• V1 is Q×Q]Q× tt ,

• E is the set of pairs:

– (q, (q1, q2)) where there is a binary symbol a so that (q1, q2) ∈
δ2(a, q),

– (q, (q, tt)) when there is nullary symbol a so that δ0(a, q) = tt ,

– ((q1, q2), qi) with i ∈ {1, 2}.

In other words, in position q, Eve tries to construct a tree that A accepts from
state q by choosing a transition, then Adam tries to choose to pursue the play
by inspecting either the left or the right part of the tree so as to contradict the
parity condition.

When Eve has a winning strategy this means that she is able to construct
a tree together with a run that accepts it. While when Adam has a winning
strategy, this means that no matter which tree and run Eve constructs, he is
able to find a branch of the run that does not verify the parity condition.

One of the lines of work we have followed when studying higher-order ver-
ification of behavioral properties was to connect it with traditional domain
theoretic semantics. There are several reasons to do so. From the perspective
of higher-order verification, it reduces model checking to the evaluation of pro-
grams into denotational models. It gives thus simple concepts so as to devise
algorithms in a simple way. From the perspective of the communities it is
interesting to have a cross-fertilization by exchanging tools and methods. For
example, it asks how to construct models that compute non-extremal fixpoints.
This question has been barely looked in the literature [56, 269]. On the other
hand, many of the constructions and the ideas that have been developed in
denotational semantics should find natural applications in higher-order verifi-
cation. As an example we can site the use of sequential algorithms as a mean
of accelerating verification of safety properties [125].

86

5.3 Wreath product and weak parity automata

We are going to see here how to construct models that recognize the same class
of terms as Ω-even weak parity automata. For this, in the course of this section,
we fix an Ω-even weak parity automaton A = 〈Q,Σ, δ0 : Q × (Σ0 ∪ {Ω}) →
{ff , tt}, δ2 : Q × Σ2 → P(Q2), rk : Q → N〉. The construction of the model
is presented in [S15] and is a generalization of the construction of [S31]. Here
we are going to give a slightly more general presentation of the construction
that is at the cross-road of denotational semantics and automata theory. For
this we introduce the notion of wreath product of applicative structures. As
we will use the wreath product so as to construct models of λY Ω-calculus, we
describe a notion wreath product for applicative structures that are made of
lattices and that we thus call lattice applicative structures.

Definition 52 Given a lattice applicative structure M = ((MA)A∈T (Σ), •)
and a monotone applicative structure N = (NA)A∈T (Σ) we construct a lattice
applicative structureM wN = ((FA)A∈T (Σ), ?). So as to defineM wN we use
an intermediate family of lattices (GA)A∈T (Σ), the definition is as follows:

• Go = No

• GA→B =MA →m GA →m GB where S →m T is the lattice of monotone
functions from the lattice S to to the lattice T ordered pointwise,

• FA =MA × GA which is ordered coordinatewise,

• (f, g) ? (a, b) = (f • a, g(a)(b)).

Note that the operation _ w _ is asymmetric not only in the treatment of its
components but also on their requirements. The left argument of the operator
could have been a priori any applicative structure. We have chosen to use lat-
tice applicative structures because it gives a nicer connection with intersection
types (though we don’t give the details here on intersection types for wMSOL,
they can be found in [S15]). For the right argument, we require that it is a
monotone applicative structure. The reason for this is that we wish to use
wreath products of applicative structures so as to construct models of λY Ω-
calculus which requires that we are able to define the semantics of fixpoints and
the lattice structure allows us to prove the existence of such fixpoints. More-
over, the asymmetry in requirements allows us to obtain lattice applicative
structures as results of wreath products and thus to iterate the construction.
Again,we could have chosen weaker requirements but they suit our needs so as
to construct models capturing wMSOL.

The idea of the wreath product is to create a dependence of the evaluation
in the second applicative structure on the evaluation in the first applicative
structure. In the context of finite state automata, when we want to build an
automaton whose runs are built on the runs of another automaton on the input
string, this amounts at the level of syntactic monoids to construct their wreath
product.

87

The definition of weak parity automata implies that in every of their runs
the ranks of states are decreasing along each branch of the tree. The idea
of using wreath products then comes naturally. If we know for each node of
a Böhm tree of a term M in which are the states of rank 0 from which the
automaton has an accepting run, then we can deduce from which state of rank
1 the automaton has an accepting run in each node and so on. The idea is thus
to construct a λ-model by induction on the ranks and then construct a model
for the next rank using wreath product.

We let Qk be the set {q ∈ Q | rk(q) = k} and Q≤k be the set {q ∈ Q |
rk(q) ≤ k}. We write Ak for the automaton obtained from A by restriction to
the states in Q≤k.

Note that A0 is a trivial automaton. Thus from Theorem 50, we know that
there is a GFP model M0 = ((M0,A)A∈T (Σ), [[·, ·]]0) so that M0,o = P(Q≤0)
and so that, for a closed term M of type o, q ∈ [[M]]0 iff A0 has a run on BT (M)
starting with state q. Now supposing that Mk = ((Mk,A)A∈T (Σ), [[·, ·]]k) is a
lattice model so that Mk,o = P(Q0) × . . .P(Qk) and so that, for a closed
term M of type o, [[M]]k = (R0, . . . , Rk) and q ∈ Ri iff Ak has an accepting
run on BT (M) starting with state q. Then we define Mk+1 by taking as
applicative structure(Mk+1,A)A∈T (Σ) = (Mk,A)A∈T (Σ) wRk+1 where Rk+1 is
the monotone applicative structure generated by P(Qk+1). We now need to
define the value of constants, we start by the definition of the fixpoint. For
this, following the definition we have given of the wreath product, we use an
intermediate family of lattices, (Gk+1,A)A∈T (Σ), that is defined as expected.
The value [[Y A, ∅]]k+1 needs to be in

Mk+1,(A→A)→A =Mk,(A→A)→A × Gk+1,(A→A)→A ,

Thus the value of [[Y A, ∅]]k+1 is a pair (f, g) where f is inMk,(A→A)→A. As the
idea of the wreath product is to compute the value of the term in Mk and use
this information to compute its value in Mk+1, we need to take f as [[Y A, ∅]]k.
Let’s see now which value of g we need. We first unfold the definition of the
wreath product and we have that g should be in:

Gk+1,(A→A)→A =Mk,A→A →m (Mk,A →m Gk+1,A →m Gk+1,A)→m Gk+1,A .

So, given x, that represents the semantics of a program in Mk, and y that
represents the semantics of that program in Mk+1, we need to compute a
fixpoint. By applying y to [[Y A, ∅]]k(x), we obtain a value in Gk+1,A →m Gk+1,A,
for which we can compute either a least or a greatest fixpoint finally obtaining
a value in Gk+1,A. Moreover, we may notice that indeed, [[Y A, ∅]]k(x) represents
the value of the fixpoint of the program that is denoted by x in Mk which is
precisely the value on which we want the evaluation of the fixpoint to depend
on. In a nutshell, we obtain that3:

• [[Y A, ∅]]k+1 = ([[Y A, ∅]]k, λλ(x, y).µt.y([[Y A, ∅]]k(x)) t) when k + 1 is odd,

3We write µt.f t and νt.f t respectively for the least and greatest fixpoint of f .

88

• [[Y A, ∅]]k+1 = ([[Y A, ∅]]k, λλ(x, y).νt.y([[Y A, ∅]]k(x)) t) when k + 1 is even.

Computing a least fixpoint in the case of an odd value amounts to only au-
thorize finitely many repetitions of states with odd ranks in an accepting run.
Dually, computing a greatest fixpoint in the case of an even rank amounts to
authorize possibly infinite repetitions of states with even ranks in accepting
runs. Notice that with this definition a non-converging computation, Ω, is
interpreted with every states with even rank and no state of odd rank which
mirrors the Ω-even convention.

The other constants are either binary or nullary, by convention. With the
definition of wreath product, we have that a binary constant is interpreted in

Q0 × · · · ×Qk ×Qk+1 →m Q0 × · · · ×Qk ×Qk+1 →m Q0 × · · · ×Qk ×Qk+1

and a nullary constant in

Q0 × · · · ×Qk ×Qk+1 .

We simply define their intuitive interpretation that mimics the transitions of
the automaton as follows:

• when a is binary, [[a, ∅]]k+1(R0, . . . , Rk+1)(R
′
0, . . . , R

′
k+1) = (P0, . . . , Pk+1)

iff:

– [[a, ∅]]k(R0, . . . , Rk)(R
′
0, . . . , R

′
k) = (P0, . . . , Pk),

– Pk+1 = {q ∈ Qk+1 | ∃q1 ∈ R0 ∪ · · · ∪ Rk+1.∃q2 ∈ R′
0 ∪ · · · ∪

R′
k+1. (q1, q2) ∈ δ2(a, q)},

• when a is nullary, [[a, ∅]]k+1 = (R0, . . . , Rk+1) if [[a, ∅]]k = (R0, . . . , Rk)
and Rk+1 = {q ∈ Qk+1 | δ0(a, q) = tt}.

A simple induction on k shows the property we have announced:

Theorem 53 For every closed term M of type o, if [[M, ∅]]k = (R1, . . . Rk),
then q ∈ Ri iff rk(q) = i and Ak has an accepting run from q on BT (M).

Another interesting fact about the proof of that theorem is that it uses
usual techniques for proving adequacy theorems in simply typed λ-calculus. It
can be therefore considered as a purely semantic theorem.

Moreover the symmetries induced by the construction give a nice syntactic
representation of the model with intersection types that give two dual systems
for reasoning about programs. One of the type system allows one to prove
that the automaton accepts the Böhm tree of a term from a given state, while
the other system allows one to prove that the automaton does not accept the
Böhm tree from a given state (see [S15]).

89

5.4 λY -calculus and abstract machines

The construction of a model for wMSOL we have just seen is mainly based
on purely model theoretic methods. The proof presented in [S15] follow the
usual adequacy proofs that have a similar form as Tait’s proof that proves
the strong normalization of simply typed λ-calculus. A good example of such
a proof can be found in [246] concerning the adequacy of Scott models for
PCF. When we want to turn to the full MSOL, some difficulties arise from
the fact that the hierarchy of ranks is no longer connected to the transition
functions of the automata. And all the methods that have been proposed to
prove the decidability of the MSOL theory of the Böhm tree of a λY -term
M goes through an argument tightly linked to an evaluation mechanism of
the λY -calculus. The first proof proposed by Ong [233] is based on Games
Semantics [157] which is used to combine a parity game with the evaluation
through the notion of traversals. A second proof has been proposed by means
Collapsible Pushdown Automata (CPDA) [149], abstract machines that are
performing the computation of Böhm trees.

This second proof is of importance because it relates Ong’s theorem with
former research on higher-order computation and automata that was carried
out using tools coming from formal language theory. The interest about the
verification of higher-order systems can be traced back to extensions Rabin
theorem for classes of trees of increasing complexities. First Muller et al. [222]
proved that the MSOL theory of the graphs generated by pushdown systems
had a decidable MSOL theory. Then Courcelle and Walukiewicz clarified the
relation between the MSOL theories of objects generated by machines (in par-
ticular pushdown automata) and the MSOL theories of those machines by a
series of so-called transfer theorems [88, 93, 290]. Knapik et al. [179] have
extended the results to hyperalgebraic trees and then to tree generated by
higher-order safe schemes by means of higher-order pushdown automata [182].
These results raised the question of whether the safety property was a gen-
uine restriction for the expressivity of higher-order schemes. They also make
it clear that Damm’s results [102, 103] were implicitly assuming the restric-
tion of safety. This problem has been subsequently solved by Parys [239] who
showed that, indeed, safety is hampering the expressiveness of higher-order
computation. These results also asked how to translate unsafe schemes into
the traditional framework of pushdown automata. A first attempt has been
proposed in the term of panic automata by Knapik et al. [181] which could
capture unsafe higher-order computation up to the third order. CPDA provide
the right generalization of panic automata to all orders. These automata are an
extension of higher-order pushdown automata introduced by [211] and which
are using stacks of stacks of stacks. . . up to a fixed depths. The generalization
consists in linking symbols in the higher-order stack to lower parts of the stack
so as to restore some evaluation environment via an operation called collapse.

A third proof in terms of taylor-made intersection types has been pro-
posed by Kobayashi and Ong [185]. Here again, the most technical part of the
proof is about proving a relationship between typing properties of a term and

90

its Böhm tree which is similar to usual conversion theorems for intersection
types. Nonetheless, it is unclear whether this type system can accommodate
λ-abstraction or fixpoints.

Finally we proposed [S28] a proof based on Krivine machines and models
of λ-calculus. From the very beginning the idea was to generalize transfer
theorems from [88, 93, 290] and, if possible, to formulate it as a property
of preservation of recognizability by inverse homomorphism of some notion
of recognizability that would be similar to Theorem 21. This goal naturally
leads to setting Ong theorem is the framework of recognizability. We have
made precise account of translations between CPDAs, higher-order schemes,
and λY -calculus in [S30]. In the proofs of equivalence we show between λY -
calculus and CPDAs, the Krivine machine plays a nice role as it allows us to
give very simple invariants so as to show that head-reduction and execution of
CPDAs compute the same trees.

All the proofs of Ong’s theorem follow a similar reduction of the infinite
parity game induced by the parity automaton on the Böhm tree of a term
to a finite parity game played on the syntax of the program. The computa-
tional mechanism, be it game semantics traversals, CPDA, schemes unfolding,
or Krivine machine, is meant to prove that the two games are equivalent. The
main advantage of Krivine machine is to make the link between the computa-
tion and the syntax of the program rather direct and thus the proof of equiv-
alence between the games rather transparent. In the case of games semantics,
the details of the theorem concerning traversals are particularly tedious. In the
case of CPDAs, the method consists first in showing that they generate (ex-
actly) the class of trees generated by higher-order schemes and then work on
the syntax of CPDAs providing stack invariants. Here, using Krivine machine
presents another advantage as all its configurations are built with λY -terms,
and invariants may thus naturally be expressed in terms of models. It is then
immediate that they are indeed invariants. The use of Krivine machines makes
a nice bridge between automata theory and λ-calculus allowing us to simplify
and generalize the proof in two directions: first by providing the expected gen-
eralizations of the transfer theorems, second by setting Ong’s theorem in the
context of recognizability.

We now give the definition and basic properties of Krivine machines as we
are going to use them in the next section so as to construct a finite λ-model
that recognizes MSOL properties.

A Krivine machine [190], is an abstract machine that computes the weak
head normal form of a term. For this it uses explicit substitutions, called
environments. Environments are functions assigning closures to variables, and
closures themselves are pairs consisting of a term and an environment. This
mutually recursive definition is schematically represented by the grammar:

C ::= (M,ρ) ρ ::= ∅ | ρ[x 7→ C] .

As in this grammar, we will use ∅ for the empty environment. The notation
ρ[x 7→ C] represents the environment which associates the same closure as

91

ρ to variables except for the variable x that it maps to C. We require that
in a closure (M,ρ), the environment is defined for every free variable of M .
Intuitively such a closure denotes a closed λ-term: it is obtained by substituting
for every free variable x of M the λ-term denoted by the closure ρ(x). When
ρ(x) = C, we say that ρ binds C to x. Given a closure (M,ρ), we say that it
has type A when M has type A.

A configuration of the Krivine machine is a triple (M,ρ, S), where M is a
term, ρ is an environment, and S is a stack. A stack is a sequence of closures.
By convention the topmost element of the stack is on the left. The empty stack
is denoted by ε. The rules of the Krivine machine are as follows:

(λx.M, ρ, (N, ρ′)S)→(M,ρ[x 7→ (N, ρ′)], S)

(MN, ρ, S)→(M,ρ, (N, ρ)S)

(Y x.M, ρ, S)→(M,ρ[x 7→ (Y x.M, ρ)], S)

(x, ρ, S)→(M,ρ′, S) when ρ(x) is defined
and equal to (M,ρ′)

Note that the machine is deterministic. We will write (M,ρ, S)→∗ (M ′, ρ′, S′)
to say that the Krivine machine goes in some finite number of steps from
configuration (M,ρ, S) to (M ′, ρ′, S′).

The intuitions behind the rules are rather straightforward. The first rule
says that in order to evaluate an abstraction λx.M , we should look for the ar-
gument at the top of the stack, then we bind this argument to x, and calculate
the value of M . To evaluate an application MN we create a closure out of
N and the current environment so as to be able to evaluate N correctly when
necessary and put that closure on the stack; then we continue to evaluate M .
The rule for Y x.M simply amounts to bind the variable x in the environment
to the current closure of Y x.M and to calculate M . Finally, the rule for vari-
ables says that we should take the value of the variable from the environment
and evaluate it; the value is not just a term but a closure: a term with an
environment giving the right meanings to the free variables of the term.

We will be only interested in configurations accessible from (M, ∅, ε) for
some closed term M of type o. Every such configuration (N, ρ, S) enjoys very
strong typing invariants summarized in the following definition and lemma.

Definition 54 Given M a term of type o, an environment ρ is M -correct when
for every variable xA, if ρ(xA) is defined, then ρ(xA) is a closure (N, ρ′) of type
A that is M -correct, meaning that:

1. N is a substerm of M ,

2. ρ′ is M -correct, and

3. for every variable y, if y ∈ FV (N), then ρ′(y) is defined.

A configuration of a Krivine machine (N, ρ, S) is M -correct when:

92

*

* *

Figure 5.1: Computation of Krivine machine and the resulting KTree(M,ρ, ε).

1. (N, ρ) is an M -correct closure, and

2. if N has type A1 → · · · → An → o, then S = C1 . . . C1 and the closures
Ci are M -correct and have types Ai.

Lemma 55 If M is a simply typed term of type o, given two configurations
(N1, ρ1, S1) and (N2, ρ2, S2) so that (N1, ρ1, S1) → (N2, ρ2, S2), if (N1, ρ1, S1)
is M -correct, then (N2, ρ2, S2) is also M -correct.

This lemma is easy to prove and is somehow providing a nice link between
computations carried out by Krivine machines and the original term M . Tech-
nically, it plays a key role in reducing a parity game on the computation of
Böhm tree of M and parity games on M itself. It says that the typing is
preserved throughout computation and also that the code being evaluated is
always a combination of code from an initial program.

Let us now explain how to use Krivine machines to calculate the Böhm tree
of a term (cf. Figure 5.1). For this we define an auxiliary notion of a tree
constructed from a configuration (M,ρ, ε) where M is a term of type o over a
tree signature. (Observe that the stack should be empty when M is of type o.)
We let KTree(M,ρ, ε) be the tree consisting only of a root labeled with Ωo if
the computation of the Krivine machine from (M,ρ, ε) does not terminate. If
it terminates then (M,ρ, ε) →∗ (b, ρ′, (N1, ρ1) . . . (Nk, ρk)), for some constant
b. In this situation KTree(M,ρ, ε) has b in the root and for every i = 1, . . . , k
it has a subtree KTree(Ni, ρi, ε). Due to typing invariants and since we are
working with a tree signature, by our convention we have that the constant
b must have type ok → o with k ∈ {0, 2}. In consequence all terms Ni have
type o.

93

Definition 56 For a closed term M of type o we let KTree(M) be KTree(M, ∅, ε)
where ∅ is the empty environment, and ε is the empty stack.

The next lemma says what KTree(M) is. The proof is immediate from the fact
that Krivine machine performs weak head reduction.

Lemma 57 For every closed term M of type o over a tree signature: KTree(M) =
BT (M).

This last lemma is the last element that allows us to relate the two afore-
mentioned parity games.

Example 58 We give a very simple illustration of the computation of a Böhm
tree by the Krivine machine. We compute the Böhm tree of the term M defined
as follows:

M =
(
λy. (λgx. Y f. gx)ay

)
e

For readability we adopt the following shorthands:

M = (λy.N)e, N = Pay, P = λgx.Y f.gx

We take this example because it illustrates all the reduction rules of the Krivine
machine. It also gives us the opportunity to introduce a graphical represen-
tation of configurations of the Krivine machine. The reduction sequence is
presented in Figure 5.2 (as expected, the order of execution is represented
from left to right and top to bottom).

In the pictures of Figure 5.2, a closure (Q, ρ) is represented by a node
labeled by Q followed to the right by boxes containing the variables bound
in ρ. Each variable-box is linked to the closure it is bound to. This closure
is drawn lower in the graph. When there are no such box on the right, it
means that the environment is empty. Finally a configuration (Q, ρ,Cn . . . C1)
is represented similarly to a closure, it is represented by a node labeled Q
followed by variable-boxes but also by numbered boxes, the box numbered i is
linked to the representation of the closure Ci. So as to make the representation
sufficiently compact to fit in the paper, we allowed ourselves to make different
variables point to the same closure. This graphical sharing is just an artifact
of the presentation and even though implementations of the Krivine machines
perform some sharing, it is not in general maximal as in our representation.

To make it clear how to interpret those graphical representations as configu-
rations, we have written the six first configurations below their representations.

The ten first configurations correspond to the computation of the label
of the root of the Böhm tree. Indeed the tenth configuration is of the form
(a, ρ, (x, ρ′)). This tells us that the root of KTree(M, ∅, ε) is labeled by a. The
eleventh configuration, (x, ρ′, ε), starts the computation of the daughter of the
root that is simply given by the thirteenth configuration and is e. The Böhm

tree of M is therefore
a

e .

94

(M, ∅, ε) (λy.N, ∅, (e, ∅)) (N, ρ, ε)

(Pa, ρ, (y, ρ)) (P, ρ, (a, ρ)(y, ρ)) (λx.Y f.gx, ρ[g 7→ (a, ρ)], (y, ρ))

M = (λy.N)e, N = Pay, P = λgx.Y f.gx and
ρ is the environment such that ρ(y) = (e, ∅).

Figure 5.2: Computation of the Krivine machine from the configuration
(M, ∅, ε)

95

5.5 A λY -model for parity automata

Before we have been able to construct a model, we reproved Ong’s theorem
using Krivine machines [S14, S29]. This has put us in a position to construct
a model. Nevertheless, the task revealed more difficult than we expected.
Intuitions coming from the exponential construction in linear logic have played
an essential role. Linear logic constructions have been at the heart of the
work of Grellois and Melliès [141, 143, 142]. In the course of the construction
of the model, we will see where these ideas are used. A particularity of our
construction is that it works for Ω-even automata, while the one of Grellois
and Melliès works for Ω-blind automata. This problem could be overcome by
combining their construction the model 2 by means of wreath product. For
the moment, it is unclear how to refine our construction into a model of linear
logic. Not only the construction of a finite model gives Ong’s theorem as a
corollary, but it also sets higher-order model checking within the framework of
recognizability.

Let us fix an Ω-even parity automatonA for which assume that the maximal
rank it assigns to a state is m. We wish to construct a λ-model so that for
every closed term M of type o, the semantics of M is precisely the set of
states from which A accepts BT (M). The model cannot be solely built with
the states of A, we need a mechanism that allows us to keep track of ranks
that appear in runs of A so as to check the parity condition. The evaluation
in models typically works bottom-up: one computes the values of subterms
and composes those values so as to obtain the value of larger subterms. A
problem is that parity automata traverse trees in a top-down manner. The
solution we have adopted is to have an asymmetric treatment of arguments
and of results. Arguments are meant to represent occurrences of variables.
They need to convey two kinds of information: the states involved in runs
(the bottom-up information) and some contextual information (the top-down
information) about ranks met on the path from the root of the tree to where
they are used. For results, we only wish to know from which states there is
an accepting run. Such an asymmetry raises a difficulty when dealing with
application. Indeed, in that case, what used to be the root of the argument
term may not be the root of the whole resulting term. So we need to update the
contextual information related to free variables when we perform application.
For this we will use some operators in the model that are inspired from the
exponential in linear logic. In the case of the relational model of linear logic a
similar problem arises. Indeed, in an application, the number of times a free
variable is used in the computation of the value of an argument term needs to
be multiplied by the number of times this argument is used in the functional
part of the application. This phenomenon exhibits a similar tension between
bottom-up and top-down information.

We thus define two families of lattices indexed by types (SA)A∈T (Σ) (for
accepting States) and (RA)A∈T (Σ) (for Residuals) where for A = o, we let

So = P(Q) and Rms
o = P({(q, r) : q ∈ Q, rk(q) ≤ r ≤ m})

96

and these sets are ordered by inclusion. We also define the following operation:
for h ∈ Ro, and r ∈ [m] we let

h�r = {(q, i) ∈ h : r ≤ i} ∪ {(q, j) : (q, r) ∈ h, rk(q) ≤ j ≤ r}

This operation updates the ranks associated to arguments when a term is used
as the argument of another term.

For f ∈ So and g ∈ Rms
o we define another operation (·)⇓q for every q ∈ Q:

g⇓q = {r : (q, r) ∈ g}, f⇓q = f ∩ {q}

With this we are ready to define objects for higher types. The set SA→B is
the set of all monotone functions in Rms

A →m SB satisfying the stratification
condition:

∀g ∈ Rms
A . ∀q ∈ Q. (f(g))⇓q = (f(g�rk(q)))⇓q (strat)

The set Rms
A→B is the set of all monotone functions in Rms

A →m Rms
B satisfying

the same (strat) condition. The orders in SA→B and Rms
A→B are the pointwise

order.
For f in SA→B and g ∈ Rms

A→B we extend the operators we have defined
above as follows:

f⇓q(h) = (f(h))⇓q and g⇓q(h) = (g(h))⇓q and g�r(h) = (g(h))�r .

Remark: The above definitions are covariant and they become more intuitive
when we consider types written as A1 → · · · → Al → o, or in an abbreviated
form as ~A→ o. In this case we have:

S ~A→o = Rms
A1
→ · · · → Rms

Al
→ So R ~A→o = Rms

A1
→ · · · → Rms

Al
→Rms

o

g⇓q(~h) = (g(~h))⇓q g�r(~h) = (g(~h))�r

where ~h is vector of elements from Rms
A1
× · · · × Rms

Ai
, and operations ⇓q, �r

are applied only to elements from So or Rms
o , depending on whether g is from

S ~A→o or Rms
~A→o

.
Before we define the interpretation of terms, we observe several properties

of the domains and of the operations we have introduced.

Lemma 59 For every type B = A1 → · · · → Al → o, g ∈ Rms
B , ~h in Rms

A1
×

· · · × Rms
Al

and r, r1, r2 ∈ [m]:

• (g�r1)�r2 = g�max(r1,r2);

• (q, rk(q)) ∈ g�r(~h) iff (q,max(rk(q), r)) ∈ g(~h).

Here we remark that indeed the operation (·)�r can compute maximal values
of ranks on path of runs and it thus plays a central role in the definition of the
application in the model.

97

Lemma 60 For every type A, both SA and Rms
A are finite complete lattices.

Lemma 61 For every A, if g1, g2 are in Rms
A , then (g1 ∨ g2)�k = g1�k ∨ g2�k

and (g1 ∧ g2)�k = g1�k ∧ g2�k.

We now define other operations (·)∂ and (·)·r that follow the same covariant
pattern as (·)⇓q and (·)�r.

g∂ ={q : (q, rk(q)) ∈ g} f · r ={(q, r) : q ∈ f, rk(q) ≤ r} if A = o

g∂(h) =(g(h))∂ (f · r)(h) =(f(h)) · r if A = B → C

Thus (·)∂ converts an element of RA to an element of DA, and (·) · r does the
opposite.

Notation: we abbreviate g�rk(q) by g�q.
These operations are well-behaved in the sense of the following lemma.

Lemma 62 For every type A, every f ∈ DA, g ∈ Rms
A , and r ∈ [m], we have

f · r ∈ Rms
A g�r ∈ Rms

A g∂ ∈ DA

A valuation υ is a function assigning values to variables, such that a variable
of a type A is assigned an element of Rms

A . We write υ�r for the valuation so
that υ�r(x) = υ(x)�r

The semantics of a term M of a type A, under a given valuation υ is denoted
[[M, v]]. It is an element of SA provided υ is defined for all free variables of M .
The semantics is defined by induction on the structure of M :

[[x, υ]] =(v(x))∂

[[a, υ]]h0h1 ={q : ∃(q0,q1)∈δ(q,a). qi ∈ (hi�rk(q))
∂ for i=0,1}

[[λx.M, υ]]h =[[M,υ[h← x]]]

[[MN,υ]] =[[M,υ]]〈〈N, υ〉〉 where 〈〈N, υ〉〉 =
m∨
r=0

(
[[N, υ�r]] · r

)
[[Y A, υ]]h =fixA(h, 0) where for l = 0, . . . ,m we define

fixA(h, l) =σfl. . . . µf1.νf0. (h�l)
∂
(l∨
i=0

fi · i ∨
m∨

i=l+1

fixA(h, i) · i
)

In this definition σ denotes the least fixpoint when l is odd and the greatest
fixpoint when l is even.

Let us explain the intuitions behind this interpretations of terms. The main
specificity of the model is the treatment it does of variables. An element of f of
Rms

A can always be decomposed f0, . . . , fm of DA so that f = f0 ·0∨· · ·∨fm ·m.

98

Here, the function fi represents how f is to be used in a context of a run where
i is the maximal rank used from the root of the run to that use of f . This
explains why the semantics of variables is defined by [[x, υ]] = υ(x)∂ as the
maximal rank met in a run starting with the state q on a one node path is
rk(q).

A question is why do we actually need to take this information into account.
An example may give some insight. If we consider the automaton running on
trees built with two binary operations a, whose states are {q1, q2,>}, the rank
of q1 is 1, the rank of q2 and > is 2 and whose transition function δ is defined by:

• δ(a, qi) = {(q2,>), (>, q2)},

• δ(b, qi) = {(q1,>), (>, q1)},

• δ(a,>) = δ(b,>) = {(>,>)}.

This automaton recognizes from the state q1 the trees that have a path with
infinitely many occurrences of a. If we do not take the parity information
into account for the arguments, this would amount to interpret terms in the
monotone applicative structure generated by P({q1, q2,>}) and where a and b
are interpreted as the monotone functions defined by:

• q1, q2 ∈ [[a]](Q1, Q2) iff q2 ∈ Q1 and > ∈ Q2, or > ∈ Q1 and q2 ∈ Q2,

• > ∈ [[a]](Q1, Q2) iff > is in Q1 and in Q2

• q1, q2 ∈ [[b]](Q1, Q2) iff q1 ∈ Q1 and > ∈ Q2, or > ∈ Q1 iff q2 ∈ Q2,

• > ∈ [[b]](Q1, Q2) iff > is in Q1 and in Q2.

Then the terms:

• M1 = λx.b x x and,

• M2 = λx.b x(a(b x x)(b x x)),

have the same denotation, the functions f defined by

f = (> 7→ > 7→ >) ∨ {q1,>} 7→ {q1,>} 7→ {q1, q2}

Thus, no matter how we interpret the fixpoint in that structure, the meaning
of YM1 must be the same as the meaning of YM2. Now if we interpret M1

and M2 in the model that we have proposed, we obtain that the meaning of
M1 is:

f1 = (>, 2) 7→ (>, 2) 7→ >∨
{(q1, 1), (>, 2)} 7→ {(q1, 1), (>, 2)} 7→ q1∨
{(q1, 2), (>, 2)} 7→ {(q1, 2), (>, 2)} 7→ >

and the meaning of M2 is:

f2 = (>, 2) 7→ (>, 2) 7→ >∨
{(q1, 2), (>, 2)} 7→ {(q1, 2), (>, 2)} 7→ q1∨
{(q1, 2), (>, 2)} 7→ {(q1, 2), (>, 2)} 7→ >

99

The fact that f2 ≥ {(q1, 2), (>, 2)} 7→ {(q1, 2), (>, 2)} 7→ q1, marks that fact
that in a run starting from the state q1 at the root of M2 reaches:

• an occurrence of the argument x in the state q1 having met a the maximal
rank 2 on the way, and

• an occurrence of the argument x in the state > having met a maximal
rank 2 on the way.

This is in sharp contrast with the semantic of M1 where we have

f1 ≥ {(q1, 1), (>, 2)} 7→ {(q1, 1), (>, 2)} 7→ q1 .

This difference is due to the occurrence of a in M2 and its absence in M1. Now,
when computing the meaning of YM2, we will obtain q ∈ [[YM2, ∅]] while we
will have q1 /∈ [[YM1, ∅]], as the fixpoint will take advantage of the knowledge
that in M2 the iteration is building a run in which in all path the maximal
rank repeated infinitely often is 2 while it is not the case in M1.

The main technicalities of the model come from the necessity to maintain
compositionally these marks of ranks in the model. In particular, so as to define
this we need to treat free variables in a different way from bound variables.
Indeed, when we take the term MN , the semantics of N accounts for the
maximal ranks seen on runs from the root4 of N to the occurrences of the free
variables, this information need to be updated as now the semantics of MN
needs to account for the maximal ranks seen on runs from the root of MN
to the occurrences of the free variables. This means that in the semantics of
MN the treatment of the free variables that are in N need to be updated.
The semantics of M assigns some ranks to describe the context in which its
argument is to be used. For a variable free in N , so as to update its contextual
information, it suffices to take the max of the ranks that describe its uses in N
and of the ranks in M that describe the uses of its arguments.

Technically, this is achieved by the action on valuations with the operation
(·)�r in the application. The value of [[N, υ�r]] is to be understood as the
semantic of N in when used after having seen r as maximal rank. Notice that
when N is closed, we have [[N, υ�r]] = [[N, υ]] and that this update only concerns
free variable. The construction of 〈〈N, υ〉〉 reflects this idea simply because it is
defined as [[N, υ�0]] · 0 ∨ · · · ∨ [[N, υ�m]] ·m. The action of the operation (·)�r is
to make the rank information flow top-down. The valuation υ�r is an update
of υ when it has met the rank r. What is happening is that the part of the
valuation that is concerned with ranks strictly smaller than r is erased; the part
that is concerned with ranks strictly greater than r is left unchanged. And for
the part that is concerned with the rank r, as this rank has been met, it is

4Strictly speaking, as N may be of arbitrary type and may contain free variable of ar-
bitrary type, its Böhm tree may not be a suitable structure for a run of the automaton.
Actually, for higher order variables, the model describes part how accepting runs are be-
ing constructed. This is the reason why, the metaphor rather adequate. We thus indulge
ourselves in following this intuition.

100

allowed to see any lower ranks, provided that they agree with the rank of the
concluding state.

The work of Grellois and Melliès [141] emphasize that such a treatment of
ranks in the model is reminiscent of constructions in linear logic. In particular
the identity 〈〈M,υ〉〉∂ = [[M,υ]] makes us understand the operation that maps
λλυ.[[M,υ]] to λλυ.〈〈M,υ〉〉 as similar to promotion in linear logic while the op-
eration (·)∂ can be seen as dereliction. Again, as the model we treat performs
some convergence test, we do not know yet whether it has decomposition into
a model of linear logic, in particular, we do not know how to interpret the
(strat) condition in linear logic. The model we propose depends in its very
shape on the way the automaton associates ranks to states. This dependence
can be seen in two places, the definition of Rms

o and in the (strat) condition.
On the contrary, the construction of Grellois and Melliès is independent from
the rank that the automaton associates to the states. In a certain sense, their
construction is more generic, but this is at the cost of Ω-blindness.

The value fix(h, l) is the fixpoint of h in contexts where the maximal rank
met is l. The computation is started with fix(h,m) which follows the alternation
of least and greatest fixpoint used to solve parity games with formulae of the µ-
calculus (see [43]). By definition fix(h,m) = σfm . . . µf1.νf0.(h�m)∂(

∨m
i=0 fi ·i),

recall that fix(h,m) is in DA while h is in Rms
A→A, so as to build a value in DA,

we take (h�m)∂ which is representing the meaning conveyed by h in a context
where the maximal rank met is m. Then, each fi represent the value of the
fixpoint of h�m when, locally to the computation of the fixpoint, the maximal
rank met is i. Then once fix(h,m) is computed, fix(h,m − 1) is computed
similarly except that when locally the rank m is met we can now use fix(h,m).
This way, in following the decreasing order of ranks, we can compute every
fix(h, l).

It is not obvious from the above clauses that all the elements have the
required properties, it is even not clear that the right hand sides define elements
of the model. Nevertheless, this can be proven (c.f. [S26]) and moreover that
indeed, the meaning of terms is invariant under βδ-conversion.

Theorem 63 For every M , N and υ, if M =βδ N , then [[M,υ]] = [[N, υ]] and
〈〈M,υ〉〉 = 〈〈N, υ〉〉.

Another interesting property of the model that we can prove is that:

Lemma 64 For every f in DB→A→A, and every l ∈ [0,m], we have:

λλy.fixA(f(y), l) = fixB→A(λλzy.f(y)(z y), l) .

This identity is called the abstraction identity by Bloom and Esik. It is a rather
natural identity for fixpoints to satisfy and they propose it as an axiom of what
they call a Conway CCC [56] whose aim is to be a minimal axiomatization of
models of the λY -calculus.

Now that we have a model, it can be established that this model has the
same recognizing power as the automaton A.

101

Theorem 65 For every closed term M of type 0, q ∈ [[M]] iff A accepts
BT (M) from state q.

5.6 Adequacy of the model via parity games

We are going to briefly explain the main lines of the proof of Theorem 65.
As we already explained the proof consists mainly in transforming an infinite
game into a finite one. In the context of infinitary λY -calculus, i.e. an exten-
sion of λY -calculus where the terms are allowed to be infinite, under certain
hypothesis, the smaller game (which is that case may not be finite) may be
defined using an MSOL transduction inside the original λY -term leading to
a transfer theorem that generalizes (on tree structures) already known logical
transfer theorems such as unfolding [93], Müchnik iteration [221, 290] and a
result by Courcelle and Knapik showing that first order substitution is MSOL
compatible [92].

The main idea of the proof is following the general guideline we outlined in
the beginning of this section. More precisely the idea consists in constructing an
infinite game that ties the execution of the Krivine machine when it computes
KTree(M) and the possible executions of the automaton A on that very tree.
The invariants of the Krivine machine and in particular Lemma 57 ensure that
Eve has a winning strategy in that game iff A accepts BT (M).

So as to make the presentation of the game simpler, it is convenient to make
a distinction between variables that are bound by λ and those that are bound
by Y combinators. Later, this distinction will be important so as to present
the transfer theorem. Typographically, this distinction will be represented
by writing variables bound by fixpoint combinators using boldface fonts as
in Y x.M , while we will keep normal fonts for λ-variables as in λx.M . We
shall call variables bound by Y combinators recursive variables. In a term
M , we assume that the naming of recursive variables is so that their names
are pairwise distinct allowing us to have a function termM that maps those
variables to the term where they are bound in a term M . For example, if
M = C[Y x.N], termM (x) should be Y x.N . In the sequel, as M is always clear
from the context, we write term(x) in the place of termM (x).

To this convention about recursive variables we add another one which
requires that subterms which are built with Y combinators should be closed.
It is always possible to transform a term M into a term M ′ that satisfy this
convention and so that BT (M) = BT (M ′). For this, it suffices to replace each
subterm of the form Y x.N whose free variables are x1, . . . , xn by Px1 . . . xn

where P = Y z.λx1 . . . xn.N [x← zx1 . . . xn]. Using Lemma 64, we easily prove
that for every valuation υ, [[Px1 . . . xn, υ]] = [[Y x.N, υ]] so that we can prove
the correctness of the model under this restriction without loss of generality.

The game is defined on top of the structure RT (A,M), the runs of the
automaton A on the graph of configurations of the Krivine Machine computing
BT (M). The actual runs of A on BT (M) can easily be read off RT (A,M).

102

The labels of the tree RT (A,M) will be of the form (N, ρ)≥C where N is
a term, ρ is an environment, and C is a closure expression. The latter is either
just a state q or has the form (u,K, ρ′) where u is a node of RT (A,M), and
(K, ρ′) is a closure. We will also have labels with indices (N, ρ)≥indC, where
ind is a pair of states or a node of RT (A,M).

Definition 66 For a given closed term M of type o, and a parity automaton
A we define the tree of runs RT (A,M) of A on the graph of configurations of
the execution of the Krivine machine on M :

1. The root of the tree is labelled with (M, ∅)≥q0.

2. A node labelled (a, ρ)≥C0 7→ C1 7→ q has a successor (a, ρ)≥q0,q1 C0 7→
C1 7→ q for every (q0, q1) ∈ δ(q, a).

3. A node labelled (a, ρ)≥q0,q1 C0 7→ C1 7→ q, where Ci = (ui, Ni, ρi), has
successors (Ni, ρi) ≥ui

qi for i = 0, 1.

4. A node labelled (λx.N, ρ) ≥ C 7→ D has a unique successor labelled
(N, ρ[x 7→ C]) ≥ D

5. A node u labelled with (Y x.N, ρ) ≥ C has a unique successor (N, ρ)≥C.

6. A node labelled (x, ρ)≥C, for x a recursive variable, has a unique suc-
cessor (term(x), ∅)≥C.

7. A node u labelled (NK, ρ)≥C has a unique successor labelled (N, ρ)≥
(u,K, ρ) 7→ C. We say that here a u-closure is created.

8. A node labelled (x, ρ)≥C, for x a λ-variable and ρ(x) = (u′, N, ρ′), has
a unique successor labelled (N, ρ′) ≥u′ C.

9. A node labelled (N, ρ) ≥u C has a unique successor labelled (N, ρ)≥C.

We will say that in the nodes of the form (N, ρ) ≥u C the closure (u,N, ρ) is
used.

The definition is as expected but for the fact that in the rule for the application
we store the current node in the closure. When we use the closure in the variable
rule or constant rule (rules 8 and 3), the stored node does not influence the
result. This technical detail plays an important in the proof: it allows us to give
a precise account of the contexts in which closures are used. Notice also that
the convention that we have taken to use Y -combinators only on closed terms
has the consequence that, when a recursive variable is to be evaluated, we do
not need to retrieve the environment in which that term was to be evaluated.
Actually, the transformation of terms into terms that satisfy our convention
that we have outlined amounts to store the environment on the stack of the
machine.

103

Notice also that the rules 2,3,4 rely on the typing properties of the Krivine
machine ensured by the definition of its configurations. Indeed, when the ma-
chine reaches a configuration of the form (a, ρ)≥C then, since we are working
with a tree signature, a is either of type o or of type o→ o→ o. In consequence,
C is of the form D0 7→ D1 7→ q where D0, D1 are two closures of type o. The
environment ρ plays no role in such a configuration as a is a constant. Also
from the typing invariant we get that, when the machine is in a configuration
like (λx.N, ρ)≥C then C is of the form C ′ 7→ D.

Definition 67 We use the tree RT (A,M) to define a parity game between
two players5: Eve chooses a successor in nodes of the form (a, ρ) ≥ C, and
Adam in nodes (a, ρ)≥q0,q1 C. The rank of a node (N, ρ)≥ ~D 7→ q is rk(q) (and
similarly nodes with indices). The max parity condition decides who wins an
infinite play. Let us call the resulting game K(A,M).

In the game K(A,M), when the Krivine machine enters a diverging com-
putation, there is a state q so that every position of the play has a label of the
form (N, ρ)≥ ~D 7→ q. So, in that situation, Eve wins only in the case where
the rank of q is even. This is consistent with the fact that the automaton A
is Ω-even, and that it accepts nodes labeled Ω only with states of even rank.
Together with this remark and Lemma 57, the following is a direct consequence
of the definitions.

Proposition 2 For every parity automaton A and concrete canonical term M .
Eve has a strategy from the root position in K(A,M) iff A accepts BT (M).

The above proposition reduce the problem whether BT (M) is accepted by
A to deciding who has a winning strategy from the root of K(A,M). We now
introduce a finite game G(A,M), and show that the winner in the two games
is the same.

The positions of the game are of the form (N, υ)≥S where N is a subterm
of M , υ is a valuation in Rms, and S is join irreducible element of D, we will
write S using the step function notation. The fact that S is join-irreducible
implies that S must be of the form R1 7→ · · · 7→ Rn 7→ q for some R1, . . . , Rn

in Rms and a state q. We will also have positions with indices (N, υ)≥ind S,
where ind is a pair of states, a rank, or a residual.

Definition 68 The game G(A,M) is as follows:

1. The initial position is (M, ∅)≥q0

2. A node (a, υ)≥R0 7→ R1 7→ q has a successor (a, υ) ≥q0,q1 R0 7→ R1 7→ q
for every (q0, q1) ∈ δ(q, a).

5We only specify to whom positions with several successors belong. For positions from
which there is a unique possible move, they can belong to any of the players without changing
anything to the outcomes of the game.

104

3. A node (Y x.N, υ)≥S has a successor (N, υ)≥S.

4. A node (x, υ)≥S, for x a recursive variable, has a successor (term(x), υ)≥
S.

5. A node (NK, υ)≥S has a successor (NK, υ) ≥R S for every R residual
of the type of K.

6. A node (NK, υ) ≥R
~S 7→ q has two types of successors

• one successor (N, υ)≥R�q 7→ ~S 7→ q, and

• for every ~P and every (q′, r′) ∈ R(~P) with r′ ≥ max(rk(q′), rk(q))

a successor (K, υ) ≥r′
~P 7→ q′. Actually the restriction r′ ≥ rk(q′)

is not needed since we work only with pairs (q′, r′) with r′ ≥ rk(q′).
The restriction r′ ≥ rk(q) is not needed too since Eve has no incen-
tive to play R with (q′, i) ∈ R(~P) for some i < rk(q). Anyway this
pair will be removed in R�q so it does not help in the left branch.
It is just in the proof that we should note that indeed the residual
of a closure has this property.

7. A node (K, υ) ≥r′
~P 7→ q′ has a unique successor (K, υ�r′)≥ ~P 7→ q′.

The rank of a node labelled (N, υ)≥ ~S 7→ q is the rank of q. The rank of a node
labelled (N, υ)≥r

~S 7→ q is r, while the rank of a node labelled (N, υ)≥R
~S 7→ q

is 0 when R is a residual.

A position (a, υ) ≥q0,q1 R0 7→ R1 7→ q is winning for Eve iff (qi, rk(qi)) ∈
Ri�max(rk(q),rk(qi)) for i = 0, 1.

A position (x, υ)≥ ~S 7→ q is winning for Eve iff (q, rk(q)) ∈ υ(x)(~S).
The main property of G(A,M) is that it is equivalent to K(A,M) in the

following sense:

Theorem 69 Eve has a winning strategy in K(A,M) iff she has a winning
strategy in G(A,M).

After that, it suffices to remark that for any term N , a given valuation
υ and a join-irreducible element S of D, we may define a game similarly to
G(A,M) whose initial node is (N, υ) ≥ S. Then, we can prove that Eve has
a winning strategy in that game iff [[N, υ]] ≥ S. This final remark entails the
correctness theorem of the model. The main technical part of the proof of that
theorem is contained in Proposition 69. We will here give a presentation the
proof of that theorem.

Residuals in K(A,M)

The key notion of the proof of equivalence of the games K(A,M) and G(A,M),
the notion of residuals of nodes. Given a subtree T of K(A,M), i.e. a tree

105

obtained from K(A,M) by pruning some of its branches, we calculate the
residuals RT (u) and resT (u, u

′) for some nodes u and pair of nodes (u, u′) of
T , where u′ is a descendant of u. In particular, T may be taken as being a
strategy of Eve or a strategy of Adam. When T is clear from the context we
will simply write R(u) and res(u, u′). The value of R(u) is simply recording
the contexts in which the closure created at u is used in T . The value res(u, u′)
is simply an update of u with respect to the maximal rank that has been seen
on the path from u to u′.

Recall that a node v in K(A,M) is an application node when its label is
of the form (NK, ρ)≥C. In such node a closure (u,K, ρ) is created. We will
define a residual R(u) for such a closure. This is done by induction on types.
We also define a variation of this notion: a residual R(u) seen from a node u′,
denoted res(u, u′). The two notions are the main technical tools used in the
proof of the theorem.

In the sequel, when u is an ancestor of u′ in T then we write max(u, u′)
for the maximal rank appearing on the path between u and u′, including both
ends, and we let res(u, u′) be defined by R(u)�max(u,u′).

Consider an application node u in T . It means that u has a label of the
form (NK, ρ)≥C, and its unique successor has the label (N, ρ)≥(u,K, ρ) 7→ C.
That is the closure (u,K, ρ) is created in u. We will look at all the places where
this closure is used and summarize the information about them in R(u). We
write U(u) to denote the set of nodes where u is used, i.e. the set of nodes u′

of the form (K, ρ) ≥u C1 7→ · · · 7→ Ck 7→ q. In that case, supposing that for
i ∈ [k] Ci = (ui, Ni, ρi), we let

F [u, u′] = res(u1, u
′) 7→ · · · 7→ res(uk, u

′) 7→ (q,max(u, u′)) .

Notice, that the closure (K, ρ) has a type of the form A1 → · · · → Ak → o and
thus, the closures C1, . . . , Ck respectively have type A1, . . . , Ak. Therefore,
the definition of F [u, u′] depends only on the definition of residuals of nodes
with smaller types. We now define R(u) as:

R(u) =
∨
{F [u, u′] | u′ ∈ U(u)} .

Using the definitions of R(u), we are now in position to prove that if Eve has
a winning strategy in K(A,M), then she has a winning strategy in G(A,M)
and if Adam has a winning strategy in K(A,M), then he has one in G(A,M).
As G(A,M) is a parity game, it is determined and either Eve or Adam has
a winning strategy. Therefore, this proves that Eve has a winning strategy in
K(A,M) iff she has one in G(A,M).

The idea behind the construction of G(A,M) is based on an essential tech-
nical idea of Walukiewicz [290]. Here, this idea consists in representing finite
part of plays with residuals. At the level of application, Eve has to choose a
residual that is supposed to represent at least all the contexts in which the ar-
guement is to be used in the sequel of the game. Then Adam may test whether
this choice of a residual exhausitvely represents all the situations in which the

106

argument is actually used by continuing the game in the applicand. He may
also choose one of the possible situations described in Eve’s residual and con-
tinue the game from this position. The best interest of Eve is to play at each
application node a residual of a node that is in her strategy in K(A,M). In
that case, when Adam chooses one of the situations described by the residual,
at the level of K(A,M), this amount for him to jump from a node u to a node
u′ where F [u, u′] is the description of that situation. When Eve has a winning
strategy, she must win whatever the choice of Adam is, so her choice of a resid-
ual needs to lead to a winning position no matter what Adam chooses to do:
either checking the exhaustivity of the residuals in the applicand, or jumping
to a particular situation it describes. The proof of this result can be found
in [S26].

The advantage of this methods that uses two kinds of games, a large game
built on executions of Krivine machines which has a transparent relationship
with runs of automata on the Böhm trees; and a small game that summarizes
Krivine machines configurations by means of valuations can be generalized to
the infinitary λY -calculus6. Indeed Krivine machines are able to compute the
Böhm trees associated to infinitary λ-terms, and then under certain conditions
the small game can be defined within the big one by MSOL transduction. As
in the small game, determining the winner can be done within MSOL, this
allows us to reduce the MSOL theory of Böhm trees to the MSOL theory of
the infinitary terms that generate them. In other words, we obtain a logical
transfer theorem.

The theorem relates logical theories of (infinitary) λY .terms and Böhm
trees. We will consider monadic-second order logic (MSOL) on such objects.
For this, it will be essential to restrict to some finite set of λ-variables: both
free and bound. On the other hand, we will be able to handle infinitely many
recursive variables. Once we make it clear how to represent terms and Böhm
trees as logical structures, we will also state our main theorem.

Let us fix a tree signature Σ with finitely many constants other than Ω. We
would like to consider terms as models of formulas of monadic second-order
logic. We will work with terms over some arbitrary but finite vocabulary. We
take a finite set of typed λ-variables X = {xα1

1 , . . . , xαk

k }, and a finite set of
types T . We denote by Terms(Σ, T ,X) the set of infinite closed concrete terms
M over the signature Σ such that M uses only λ-variables from X , and every
subterm of M has a type in T . We call concrete terms, terms that are not
considered up to α-conversion, so it makes sense to say that bound λ-variables
in M should come from X . Observe that we do not put restrictions on the
number of recursive variables used in terms.

A term from Terms(Σ, T ,X) is a labeled tree where the labels come from
a finite alphabet, but for the recursive variables. We will now eliminate the
possible source of infiniteness of labels related to recursive variables. Take a

6In the context of infinitary λ-calculus, one may forget about the fixpoint operators as
they can be defined by means of infinite λ-terms of the form λf.f(f(f(. . .))). But here we
will use certain restrictions that will make a distinction between variables introduced with
fixpoints and variables introduced by λ’s.

107

closed term M considered as a tree. For every node of this tree labeled by a
recursive variable xA we put an edge from the node to the node labeled Y AxA

where it is bound. Since M is closed, such a node is an ancestor of the node
labeled by x. In the next step we use a fresh symbol �A as a replacement of

Figure 5.3: Y binding

the labels of recursive variables of type A (see Figure 5.3). Finally, we replace
all labels of the form Y AxA by just Y A. This way we have eliminated all
occurrences of recursive variables from labels, but now a term is represented not
as a labeled tree but as a labeled graph. Let us denote it by Graph(M). Observe
that the nodes of this graph have labels from a finite set, call it Talph(Σ, T ,X).

Since Graph(M) is a labeled graph over a finite alphabet, it makes sense to
talk about satisfiability of an MSOL formula in this graph. We will just write
M � ϕ instead of Graph(M) � ϕ. The first, easy but important, observation is
that for fixed Σ, T , X , there is an MSOL formula determining if a graph is of
the form Graph(M) for some M ∈ Terms(Σ, T ,X). For this it suffices to use a
formula that expresses the local constraints imposed by typing and which are
expressible in MSOL.

For a closed term M ∈ Terms(Σ, T ,X) of type o, its Böhm tree is a tree
with nodes labeled by symbols from Σ. Hence one can talk about satisfiability
of MSOL formulas in BT (M). The Transfer Theorem says that evaluation,
that is the function assigning to a term its Böhm tree, is MSOL compatible.

Theorem 70 (Transfer Theorem) Let Σ be a finite tree signature, X a fi-
nite set of typed variables, and T a finite set of types. For every MSOL formula
ϕ one can effectively construct an MSOL formula ϕ̂ such that for every λY -
term M ∈ Terms(Σ, T , X) of type 0:

BT (M) � ϕ iff M � ϕ̂.

Notice that the formula ϕ̂ is independent from M ; if it were dependent on M
then we would simply obtain Ong’s theorem since we could take ϕ̂ to be either
tt or ff .Notice also that the formula ϕ̂ is constructed for an infinite family of
terms provided they use only the lambda-variables from X .

In [S27] we show that, a variant of global model-checking [66, 65] which
was so far considered as a genuine extension of Ong’s Theorem follows directly
from the Transfer Theorem.

108

5.7 Conclusion and perspectives

In this chapter we have exposed a model approach to the verification of be-
havioral properties of higher-order programs. In the setting of verification, it
extends the verification of MSOL properties on the behavior of programs to a
much wider class. Trying to stick to a denotational approach may seem a bit
too demanding for this kind of problems, nonetheless we have seen some of its
virtues. For example, the relationship between trivial automata and monotone
models not only gives a nice framework to design algorithms for verifying safety
and reachability properties, but it also makes explicit the Ω-blindness property
of these automata and the relation is proved by means of very standard meth-
ods. This considerably simplifies existing proofs such as the one of Aehlig [36]
or of Kobayashi [184]. Moreover, it nicely relates this method to older re-
search on strictness analysis [72], and the verification of safety properties for
higher-order programs [159] and then to many of the algorithmic proposals
that have been made in that context. In the case of weak MSOL, the model
approach has led us to propose an extension of the operation of wreath product
to applicative structures. Moreover, the duality underlying this construction
can also be exploited algorithmically as it gives two dual procedures on that
proves and the other that disproves facts about programs. This construction
may have other applications outside the area of model checking, for example,
in the semantics of natural language, where it can be used to combine several
analyses which depend on each other. Finally the model for MSOL shows that
finite models can capture complex infinitary properties. The connection with
ideas from linear logic shows how this approach can serve as a bridge between
automata theory and denotational semantics. Moreover, the central role in our
approach that the Krivine machine is having is yet another example of how
methods coming from the study of λ-calculus can successfully be used to cope
with formal language problems.

Our line of work puts forward the problem of the evaluation of λY -terms
in models. As the constructions we have exhibited show, evaluation methods
can be applied to many verification problems. In particular, this connects the
verification of behavioral properties with abstract interpretation which has de-
veloped a wide range of methods for the efficient evaluation of programs in
particular domains. The abstraction/refinement methods and fixpoint acceler-
ation techniques seem promising for this particular problem.

Another advantage of the explicit construction of models is that we can use
them in combination with other models. An example would be the verification
of a program that is to be executed in a complex environment. The internal
state of the program may be modeled by means of usual denotational semantics.
Then the messages it exchanges with its environment may be modeled by means
of a possibly infinite tree which is required to verify an MSOL specification. As
the internal state and the external behavior of the program are connected, we
may combine the two semantic models so as to verify whether the specification
is met. Here abstract interpretation methods can be used so as to compute
approximations of the internal state and also executions of a parity automaton

109

on the behavior of the program.
In turn, this work raises the question of the expressiveness of finite models

of λY -calculus about syntactic properties of Böhm trees. This means models of
λY -calculus which give the same interpretation, in other words, equate, terms
that have the same Böhm trees. From now on, we will call these models Böhm
models. What kind of properties about infinitary terms can they capture?
Or more precisely, do they capture a wider class of properties than MSOL
properties? These questions about the frontiers of recognizability are related
to fundamental questions that have remained open for a long time now. For
example, a natural class of algebras that have been proposed by Esik [124]
under the name of iteration algebras axiomatize precisely those algebras that
equate regular trees. The question whether finite iteration algebras capture
a wider class than MSOL properties has remained open since their definition
at the beginning of the 80s. It may be the case that answering this question
is easier in the context of λY -calculus as higher-order brings a wider class of
operations.

An interesting aspect of the semantics of λY -calculus, is that the full ab-
straction problem of PCF has produced a wide variety of constructions from
which we can get inspiration. In particular intentional models have been pro-
posed rather early. In general these models are better understood from the
point of view of linear logic which also brings a large set of tools. These
kinds of models come naturally with a rich information about the flow of pro-
grams. The question then amounts to seeing whether this information can be
rich enough so that the interpretation of fixpoints can exploit it to go beyond
MSOL properties. A good example of a property that is not MSOL definable
is boundedness. The simplest instance of this kind of properties is on trees
built with only a unary operation a and a binary one b is the following: there
is a bound on the number of a in each branch of the tree. The set of trees that
have this property cannot be recognized with a parity tree automaton. The
set of terms whose Böhm trees have this property can be recognized using a
least fixpoint interpretation of terms where the atomic type is interpreted as
the infinite domain 0 < 1 < 2 · · · k < k + 1 · · · < ω and where b x y is inter-
preted as max(x, y) and a x is interpreted as x+1. For that particular case, is
it possible to construct a finite model which recognizes the set of trees whose
semantics in that models is different from ω? The idea here would be to use an
intentional semantics which gives a precise account about the occurrences of a
so as to make fixpoints able to see when their number increases unboundedly
in branches; rather quickly we remark that we also need to treat the variables
and relations between them in a similar way. Interestingly answering positively
to that problem leaves open the problem we mentioned above about iteration
algebras. Indeed, even though a syntactic model of λY -calculus naturally in-
duces an iteration algebras by only considering second order functions, the fact
that this algebra would recognize regular trees with a bounded number of a’s
in any branch does not entail that iteration algebras capture properties that
are not MSOL definable. This comes from the fact that on regular trees, this
boundedness property can be observed by the absence of branch with infinitely

110

many a’s; which is a property that is MSOL definable. The equivalence of
these properties becomes false as soon as we consider algebraic trees. Ulti-
mately, if we are able to construct a finite model for this particular property,
our long term goal would be to construct a finite model for the logic weak
MSOL plus the Unbounding quantifier that has been proposed and studied
by Bojańczyk [61]. This would extend verification procedure to more qualita-
tive properties in particular concerning bounded usage of resources, reactivity
etc. . .

Another interest that we have in constructing a finite model of λY -calculus
that captures boundedness properties is that it may shed some light on algebras
of infinite trees. So to understand why, it is best to take a look at the situation
on infinite words. Courcelle [87] is pointing the fact that, at that moment, sets
of infinite words recognized by MSOL formulae “[are] not algebraic since the
corresponding sets of infinite [. . .] words are not recognized with respect to any
(known) algebraic structure”. Wilke [295] proposed a class of finitary algebras,
nowadays called Wilke algebras, that recognizes exactly regular infinite words
that satisfy MSOL properties. The main interest of Wilke algebras, is that they
naturally induce a unique interpretation of any infinite words. This means that
if we are to extend Wilke algebras into a model of λY -calculus, then it may be
the case that there is a unique way of defining higher-order fixpoints. While
iteration algebras have been defined a decade before Wilke algebras, and while,
when they are restricted to unary trees, they coincide with Wilke algebras, it
is unknown whether they induce a unique interpretation of any infinite trees.
The construction of a model for the boundedness property we discussed above
would shed some light about this problem. Indeed, as we explained, such
a model would induce, by restricting it to regular terms, an iteration algebra
that would recognize an MSOL property while the model itself would recognize
a property that is not MSOL. This would suggest that this particular iteration
algebra may well induce two different interpretations of arbitrary infinite trees
that coincide on the class of regular trees (it may also be the case that as
the order of type increases the model gets refined and that we just obtain a
refinement of this MSOL property). As a consequence, we may underline this
way a deep difference between infinite trees and infinite words. On the other
hand, this would leave open the question of the expressivity of iteration algebras
about the classes of regular trees they recognize. Nonetheless, this would give
arguments in favor of the more restrictive approach of Blumensath [58] who
proposed made the first variety of algebras for infinite trees that capture exactly
MSOL properties and induce a unique interpretation of infinite trees.

More abstractly, as we are interested in describing a class of Böhm models
of λY -calculus, we would like to have axioms describing such a class. This
problem is nevertheless quite challenging or even hopeless. Indeed, such axioms
or axioms schemes would give a semi-decision procedure to check when two λY -
terms have the same Böhm tree. Showing the problem of deciding that two
terms have the same Böhm tree is recursively enumerable. But this problem
is naturally co-recursively enumerable as the computation of Böhm tree and
Theorem 17 (for non-convergence) give a semi-algorithm for deciding whether

111

two terms have different Böhm trees. Thus, such a definition would entail the
decidability of Böhm tree equivalence. Using a result of Courcelle [84] and the
result of Sénizergues [267], it is known that the equivalence of algebraic trees,
i.e. trees defined by λY -terms so that fixpoints are applied only to second order
functions, is decidable. This result is very difficult to prove and its conjecture
has remained open very long. Nonetheless, to the best of our knowledge, there
has not been any extensions of iteration algebras to algebraic trees and there
is no axiomatic system that describes algebras that equate algebraic trees.

A way to avoid this hard question is to focus on particular well understood
classes of models and then try to understand the fixpoints that are definable
in those classes. The most obvious choice is that of models constructed on top
of monotone applicative structures. In these models, there are many possible
definitions of fixpoints. We should try to classify those fixpoints and then
try to understand when they give rise to Böhm models. Another class of
interest is that of stable models. Here a problem arises that the applicative
structures they use are not based on lattices but on semi-lattices and thus,
there is no obvious notion of greatest fixpoints. Berry has proposed a notion
of bi-domain which combines the extensional order of monotone functions and
the stable order. In that case, starting with lattices, as in the case of monotone
functions, the extensional order preserves the lattice structure which allows one
to describe complex fixpoints based on the interleaving of least and greatest
fixpoints with other bi-domain operations. One interest of stable models and
then of bi-domains is that they admit interesting decompositions as models of
linear logic respectively as Girard’s coherence spaces [134] and Curien et al’s
bi-structures [97]. Linear logic then gives a good understanding of how parts of
a program are used during a computation. In particular, at the level of stable
models, this property translates into the possibility of computing the minimal
semantic parts of a term that contributes to producing a result. For example,
a stable model that interpret atomic type in the two elements lattice makes
it easy to remove syntactically useless parts of λY -terms using least fixpoint
computations [S20]. This construction does not extend to the infinitary λ-
calculus and thus to greatest fixpoints. Technically the problem is a bit difficult
to describe. Conceptually, the difficulty comes from the definition of a notion
similar to Girard’s notion of coherence but in an impredicative setting. A
possible solution could be to distinguish two kinds of resources, the ones that
justify the convergence and the actual usage in infinitary computation. This
problem is related to the boundedness problem we mentioned above and seems
to be a preliminary step towards understanding boundedness from a finitary
perspective.

112

Chapter 6

Conclusion

This document has presented the main facets of my work over the past years.
I have insisted on the unifying theme that recognizability has played in my
research in that period of time. Recognizability allowed me to point at a generic
problem that is faced both in natural language analysis and in verification: the
evaluation of higher-order programs in a finite domain. This problem has a non-
elementary complexity. Nevertheless, in the case of natural language, we may
restrict our attention to fragments for which the computation can be performed
in polynomial time. Concerning program verification, experiments [183, 282]
show that there is some hope to verify non-trivial programs.

This general problem is also at the center of several research directions I
would like to follow in the next future and that I mentioned in the document.
I will now review these directions.

The structure of finite domains

When we evaluate a higher-order program in a finite domain, we need to un-
derstand the structure of the domain and how it may influence the evaluation.

Concerning parsing algorithms, the transformations of datalog programs
that yield prefix correct algorithms are related to the sequential evaluation of
the original grammar. It thus seems that sequential algorithms or strongly sta-
ble functions may be the tools of choice so as to describe prefix-correct parsing
algorithms for grammars based on λ-calculus. Moreover, the decompositions
of these models of λ-calculus as models of linear logic give us a gradual way
of approaching this problem. We may indeed start with grammars that do
not use copying and then try to generalize the approach to the copying case.
This work can then be used in the problem of evaluating programs in certain
domains and verify properties of programs. Here sequential algorithms and
strongly stable functions may offer ways of accelerating the computation of
programs in particular when we cope with safety or reachability properties.
We mentioned the relationship between these kinds of models and top-down
deterministic automata. This kinds of approach thus seem to be limited to

113

top-down deterministic specifications, but also to safety and reachability prop-
erties. It is unclear whether it can be used in a more general setting.

Related to the parsing problem, Statman syntactic model suggested us that
a certain class of models we call top-down deterministic may have a decidable
definability problem. If this happens, this may help us to define a new class of
models that would be fully abstract for the λ-calculus. We hope that the studies
of those models may give a simpler and semantic proof of the decidability of
higher-order matching.

Finally, the complex fixpoints that we have defined so as to capture complex
logical properties present some regularities in their definitions. Moreover, the
structure of the models is closely related to the definitions of these fixpoints. A
natural question then is whether the structure of the model and the definitions
of fixpoints of low order fully determine the definition of higher-order fixpoints
or whether there is some flexibility that can be exploited while making the
definitions higher-order. Here the study of particular kinds of properties that
are related to boundedness may help to understand this problem.

Efficient fixpoint computation

The work that we did on parsing algorithms based on datalog pushes to first
look at generalizations of datalog to cope with non-linearity. The goal is to have
a generic way of describing least fixpoint computations like the semi-naive bot-
tom up algorithm, but then take benefit from the richness of the formalism so
as to implement other strategies by means of program transformations. An-
other issue is to see whether it is possible to adapt datalog to the computations
of fixpoints that are not the least one.

Another line of research related to the evaluation of fixpoint is to exploit
the structure of domains so as to take benefit from approximation techniques.
In particular, using abstraction/refinement methods and fixpoint acceleration
techniques, we may make computation converge quicker. Nevertheless, this
adaptation may reveal technical as these methods have been designed in rela-
tion to least fixpoint computation and may be hard to adapt to more general
contexts.

The expressiveness of recognizability

Finite models of λY -calculus can capture all MSOL properties. It seems reason-
able that they can also capture some qualitative properties related to bound-
edness. We have given a simple property we may try to model as a starting
point. If we succeed in describing this property by means of a finite model,
then it may help us to answer to some fundamental questions about algebras
of trees. I will then open the way to model the class of properties that are
captured by the logic weak MSOL plus the unbounding quantifier.

114

Experiments for logical approaches to linguistic models

The logical descriptions of language that we have proposed are concise and
offer some modularity. They enter in a general architecture that consists in
compiling linguistic descriptions to datalog programs. So as to make this ar-
chitecture practical, we need to develop some heuristic of compilation and to
tame the intrinsic complexity of the construction of automata that recognize
logic descriptions. We also need enlarge the set of descriptions of linguistic
phenomena and to test this approach on non-configurational languages.

115

Bibliography

[32] S. Abramsky. “Domain Theory in Logical Form”. In: Ann. Pure Appl.
Logic 51.1-2 (1991), pp. 1–77.

[33] S. Abramsky and R. Jagadeesan. “Games and Full Completeness for
Multiplicative Linear Logic”. In: J. Symb. Log. 59.2 (1994), pp. 543–
574.

[34] J. Abrial. Modeling in Event-B - System and Software Engineering.
Cambridge University Press, 2010.

[35] J. Abrial. The B-book - assigning programs to meanings. Cambridge
University Press, 1996.

[36] K. Aehlig. “A Finite Semantics of Simply-Typed Lambda Terms for
Infinite Runs of Automata”. In: Logical Methods in Computer Science
3.1 (2007), pp. 1–23.

[37] K. Aehlig, J. de Miranda, and C.-H. Ong. “Safety Is not a Restriction at
Level 2 for String Languages”. In: Foundations of Software Science and
Computational Structures. Ed. by V. Sassone. Vol. 3441. Lecture Notes
in Computer Science. Springer Berlin / Heidelberg, 2005, pp. 490–504.

[38] A. V. Aho. “Indexed Grammars - An Extension of Context-Free Gram-
mars”. In: J. ACM 15.4 (1968), pp. 647–671.

[39] A. V. Aho. “Nested Stack Automata”. In: J. ACM 16.3 (1969), pp. 383–
406.

[40] M. Amblard. “Calculs de représentations s’emantique et syntaxe généra-
tive : les grammaires minimalistes catégorielles”. PhD thesis. Université
de Bordeaux 1, 2007.

[41] M. T. Aravind K. Joshi Leon S. Levy. “Tree Adjunct Grammars”. In:
Journal of Computer and System Sciences 10.1 (1975), pp. 136–163.

[42] M. A. Arbib and Y. Give’on. “Algebra automata I: Parallel program-
ming as a prolegomena to the categorical approach”. In: Information
and Control 12.4 (1968), pp. 331–345.

[43] A. Arnold and D. Niwiski. Rudiments of µ-calculus. Vol. 146. Studies
in Logic and the Foundations of Mathematics. Noth-Holland, 2001.

[44] A. Arnold and M. Dauchet. “Théorie des magmodes”. In: ITA 12.3
(1978).

[45] A. Arnold and M. Dauchet. “Théorie des Magmodes (II)”. In: ITA 13.2
(1979).

[46] F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman. “Magic sets and
other strange ways to implement logic programs”. In: PODS-5. ACM.
1985, pp. 1–15.

[47] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics.
Vol. 103. revised edition. Studies in Logic and the Foundations of Math-
ematics, North-Holland Amsterdam, 1984.

116

[48] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. “A Filter Lambda
Model and the Completeness of Type Assignment”. In: J. Symb. Log.
48.4 (1983), pp. 931–940.

[49] T. Becker, O. Rambow, and M. Niv. The Derivational Generative Power
of Formal Systems or Scrambling is beyond LCFRS. Tech. rep. IRCS 92-
38. University of Pennsylvania, 1992.

[50] H. Beki. Definable operations in general algebras. Tech. rep. IBM Lab-
oratories, Vienna, 1969.

[51] D. Bekki. “Representing Anaphora with Dependent Types”. In: Logical
Aspects of Computational Linguistics - 8th International Conference,
LACL 2014, Toulouse, France, June 18-20, 2014. Proceedings. Ed. by
N. Asher and S. Soloviev. Vol. 8535. Lecture Notes in Computer Science.
Springer, 2014, pp. 14–29.

[52] D. Bekki and E. McCready. “CI via DTS”. In: New Frontiers in Artifi-
cial Intelligence - JSAI-isAI 2014 Workshops, LENLS, JURISIN, and
GABA, Kanagawa, Japan, October 27-28, 2014, Revised Selected Pa-
pers. Ed. by T. Murata, K. Mineshima, and D. Bekki. Vol. 9067. Lecture
Notes in Computer Science. Springer, 2014, pp. 23–36.

[53] J. van Benthem. Language in Action. MIT Press, Elsevier Science Pub-
lishers B.V., 1995.

[54] G. Berry and P.-L. Curien. “Sequential algorithms on concrete data
structures”. In: Theoretical Computer Science 20 (1982), pp. 265–321.

[55] G. Berry. “Stable Models of Typed lambda-Calculi”. In: Proceedings of
the Fifth Colloquium on Automata, Languages and Programming. Lon-
don, UK, UK: Springer-Verlag, 1978, pp. 72–89.

[56] S. L. Bloom and Z. Ésik. “Fixed-Point Operations on ccc’s. Part I”. In:
Theor. Comput. Sci. 155.1 (1996), pp. 1–38.

[57] W. Blum and C.-H. L. Ong. “The safe lambda calculus”. In: Logical
Methods in Computer Science 5.1:3 (2009), pp. 1–38.

[58] A. Blumensath. “Recognisability for algebras of infinite trees”. In: Theor.
Comput. Sci. 412.29 (2011), pp. 3463–3486.

[59] F. Bobot, J.-C. Filliâtre, C. Marché, G. Melquiond, and A. Paskevich.
The Why3 platform, version 0.86.1. version 0.86.1. http://why3.lri.
fr/download/manual-0.86.1.pdf. LRI, CNRS & Univ. Paris-Sud &
INRIA Saclay. 2015.

[60] F. Bobot, J.-C. Filliâtre, C. Marché, and A. Paskevich. “Why3: Shepherd
Your Herd of Provers”. In: Boogie 2011: First International Workshop
on Intermediate Verification Languages. Wrocaw, Poland, 2011, pp. 53–
64.

[61] M. Bojaczyk. “Weak MSO with the Unbounding Quantifier”. In: Theory
Comput. Syst. 48.3 (2011), pp. 554–576.

117

http://why3.lri.fr/download/manual-0.86.1.pdf
http://why3.lri.fr/download/manual-0.86.1.pdf

[62] W. S. Brainerd. “The minimalization of tree automata”. In: Information
and Control 13.5 (1968), pp. 484–491.

[63] W. S. Brainerd. “Tree generating regular systems”. In: Information and
Control 14.2 (1969), pp. 217–231.

[64] J. Bresnan. Lexical-Functional Syntax. Blackwell Textbooks in Linguis-
tics. Blackwell Publishers, 2001.

[65] C. H. Broadbent, A. Carayol, C.-H. L. Ong, and O. Serre. “Recursion
Schemes and Logical Reflection”. In: Proceedings of the 2010 25th An-
nual IEEE Symposium on Logic in Computer Science. LICS ’10. Wash-
ington, DC, USA: IEEE Computer Society, 2010, pp. 120–129.

[66] C. H. Broadbent and C.-H. L. Ong. “On Global Model Checking Trees
Generated by Higher-Order Recursion Schemes”. In: FOSSACS. LNCS
5504. 2009, pp. 107–121.

[67] S. D. Brookes and S. Geva. “Sequential Functions on Indexed Domains
and Full Abstraction for a Sub-Language of PCF”. In: Mathematical
Foundations of Programming Semantics, 9th International Conference,
New Orleans, LA, USA, April 7-10, 1993, Proceedings. Ed. by S. D.
Brookes, M. G. Main, A. Melton, M. W. Mislove, and D. A. Schmidt.
Vol. 802. Lecture Notes in Computer Science. Springer, 1993, pp. 320–
332.

[68] A. Bucciarelli and T. Ehrhard. “Sequentiality in an Extensional Frame-
work”. In: Inf. Comput. 110.2 (1994), pp. 265–296.

[69] A. Bucciarelli, T. Ehrhard, and G. Manzonetto. “A relational semantics
for parallelism and non-determinism in a functional setting”. In: Ann.
Pure Appl. Logic 163.7 (2012), pp. 918–934.

[70] J. R. Büchi. “Weak Second-Order Arithmetic and Finite Automata”. In:
Mathematical Logic Quarterly 6.1-6 (1960), pp. 66–92.

[71] J. Buchi. “Using Determinancy of Games to Eliminate Quantifiers”. In:
Fundamentals of Computation Theory. Ed. by M. Karpiski. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 1977, pp. 367–
378.

[72] G. L. Burn, C. Hankin, and S. Abramsky. “Strictness Analysis for Higher-
Order Functions”. In: Sci. Comput. Program. 7.3 (1986), pp. 249–278.

[73] S. Chatzikyriakidis and Z. Luo. “Natural Language Inference in Coq”.
In: Journal of Logic, Language and Information 23.4 (2014), pp. 441–
480.

[74] N. Chomsky. “Aspects of the theory of syntax Cambridge”. In: Multilin-
gual Matters (1965).

[75] N. Chomsky. Lectures on government and binding: The Pisa lectures. 9.
Walter de Gruyter, 1993.

[76] N. Chomsky. Syntactic Structures. Mouton, de Gruyter, 1957.

118

[77] N. Chomsky. The minimalist program. Vol. 28. MIT Press, 1995.

[78] A. Church. The calculi of Lambda Conversion. Princeton University
Press, 1941.

[79] A. Church. “A Formulation of the Simple Theory of Types”. In: The
Journal of Symbolic Logic 5.2 (1940), pp. 56–68.

[80] A. Church and J. B. Rosser. “Some Properties of Conversion”. In: Trans-
actions of the American Mathematical Society 39.3 (1936), pp. 472–482.

[81] P.-M. Cohn. Universal Algebra. Dordrecht, Netherlands: D.Reidel Pub-
lishing, 1981.

[82] H. Comon and Y. Jurski. “Higher-Order Matching and Tree Automata.”
In: CSL. 1997, pp. 157–176.

[83] D. J. Weir. “Characterizing mildly context-sensitive grammar formalisms”.
Supervisor-Aravind K. Joshi. PhD thesis. Philadephia, PA: University
of Pennsylvania, 1988.

[84] B. Courcelle. “A Representation of Trees by Languages I”. In: Theor.
Comput. Sci. 6 (1978), pp. 255–279.

[85] B. Courcelle. “An axiomatic definition of context-free rewriting and its
application to NLC graph grammars”. In: Theoretical Computer Science
55.2-3 (1987), pp. 141–181.

[86] B. Courcelle. “Monadic Second-Order Definable Graph Transductions:
A Survey”. In: Theoritical Computer Science 126.1 (1994), pp. 53–75.

[87] B. Courcelle. “On recognizable sets and tree automata”. In: Resolution
of equations in algebraic structures 1 (1989), pp. 93–126.

[88] B. Courcelle. “The monadic second-order logic of graphs IX: Machines
and their behaviours”. In: Theoretical Computer Science 151.1 (1995).
Selected Papers of the Workshop on Topology and Completion in Se-
mantics, pp. 125–162.

[89] B. Courcelle and I. Durand. “Automata for the verification of monadic
second-order graph properties”. In: J. Applied Logic 10.4 (2012), pp. 368–
409.

[90] B. Courcelle and J. Engelfriet. “A Logical Characterization of the Sets of
Hypergraphs Defined by Hyperedge Replacement Grammars”. In: Math-
ematical Systems Theory 28.6 (1995), pp. 515–552.

[91] B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-
Order Logic - A Language-Theoretic Approach. Vol. 138. Encyclopedia
of mathematics and its applications. Cambridge University Press, 2012.

[92] B. Courcelle and T. Knapik. “The evaluation of first-order substitution
is monadic second-order compatible”. In: TCS 281 (2002), pp. 177–206.

[93] B. Courcelle and I. Walukiewicz. “Monadic Second-Order Logic, Graphs
and Unfoldings of Transition Systems”. In: Ann. of Pure and Appl. Log.
92 (1998), pp. 35–62.

119

[94] P. Cousot and R. Cousot. “Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approxima-
tion of Fixpoints”. In: POPL 1977. ACM, 1977, pp. 238–252.

[95] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. “The ASTRÉE analyzer”. In: Programming Languages and
Systems. Springer, 2005, pp. 21–30.

[96] A. B. Cremers and O. Mayer. “On vector languages”. In: Journal of
Computer and System Sciences 8.2 (1974), pp. 158–166.

[97] P. Curien, G. D. Plotkin, and G. Winskel. “Bistructures, bidomains, and
linear logic”. In: Proof, Language, and Interaction, Essays in Honour of
Robin Milner. Ed. by G. D. Plotkin, C. Stirling, and M. Tofte. The MIT
Press, 2000, pp. 21–54.

[98] H. B. Curry. “Some Logical Aspects of Grammatical Structure”. In:
Structure of Language and Its Mathematical Aspects. Ed. by R. Jakob-
son. AMS Bookstore, 1961, pp. 56–68.

[99] L. Damas. “Type Assignment in Programming Languages”. PhD thesis.
University of Edinburgh, 1985.

[100] L. Damas and R. Milner. “Principal Type-Schemes for Functional Pro-
grams”. In: Conference Record of the Ninth Annual ACM Symposium on
Principles of Programming Languages, Albuquerque, New Mexico, USA,
January 1982. Ed. by R. A. DeMillo. ACM Press, 1982, pp. 207–212.

[101] W. Damm. “The IO- and OI-Hierarchies.” In: Theoretical Computer Sci-
ence 20 (1982), pp. 95–207.

[102] W. Damm and E. Fehr. “A schematalogical approach to the alalysis of
the procedure concept in algol-languages”. In: Proc. 5eme Colleque de
Lille sur les Arbres en Algebre et en Programmation, Lilli, France, 21,
22 et 23 févier 1980. Université de Lille 1, 1980, pp. 130–134.

[103] W. Damm and A. Goerdt. “An Automata-Theoretical Characterization
of the OI-Hierarchy”. In: Information and Control 71.1-2 (1986), pp. 1–
32.

[104] P. de Groote and S. Pogodalla. “On the expressive power of Abstract
Categorial Grammars: Representing context-free formalisms”. In: Jour-
nal of Logic, Language and Information 13.4 (2005), pp. 421–438.

[105] M. Dezani-Ciancaglini, E. Giovannetti, and U. de’Liguoro. “Intersection
Types, Lambda-models and Böhm Trees”. In: MSJ-Memoir Vol. 2 “The-
ories of Types and Proofs”. Vol. 2. Mathematical Society of Japan, 1998,
pp. 45–97.

[106] L. E. Dickson. “Finiteness of the Odd Perfect and Primitive Abundant
Numbers with n Distinct Prime Factors”. English. In: American Journal
of Mathematics 35.4 (1913), pp. 413–422.

[107] J. Doner. “Tree acceptors and some of their applications”. In: Journal
of Computer and System Sciences 4.5 (1970), pp. 406–451.

120

[108] J. E. Doner. “Decidability of the weak second-order theory of two suc-
cessors”. In: Notices Amer. Math. Soc. 12 (1965), pp. 365–468.

[109] J. Earley. “An Efficient Context-Free Parsing Algorithm”. In: Commu-
nications of the ACM 13.2 (Feb. 1970), pp. 94–102.

[110] T. Ehrhard. “Hypercoherences: A Strongly Stable Model of Linear Logic”.
In: Mathematical Structures in Computer Science 3.4 (1993), pp. 365–
385.

[111] T. Ehrhard. “Projecting Sequential Algorithms on Strongly Stable Func-
tions”. In: Ann. Pure Appl. Logic 77.3 (1996), pp. 201–244.

[112] S. Eilenberg and J. B. Wright. “Automata in general algebras”. In: In-
formation and Control 11.4 (1967), pp. 452–470.

[113] C. C. Elgot. “Algebraic theories and program schemes”. In: Symposium
on Semantics of Algorithmic Languages. Vol. 188. Lecture Notes in
Mathematics. Springer Berlin Heidelberg, 1971, pp. 71–88.

[114] C. C. Elgot. “Decision problems of finite automata design and related
arithmetics”. In: Transactions of the American Mathematical Society
(1961), pp. 21–51.

[115] E. A. Emerson and C. S. Jutla. “Tree automata, mu-calculus and de-
terminacy”. In: Foundations of Computer Science, 1991. Proceedings.,
32nd Annual Symposium on. IEEE. 1991, pp. 368–377.

[116] J. Engelfriet. “Bottom-up and Top-down Tree Transformations - A Com-
parison”. In: Mathematical Systems Theory 9.3 (1975), pp. 198–231.

[117] J. Engelfriet. “Iterated Stack Automata and Complexity Classes”. In:
Inf. Comput. 95.1 (1991), pp. 21–75.

[118] J. Engelfriet. “The complexity of Languages Generated by Attribute
Grammars”. In: SIAM J. Comput. 15.1 (1986), pp. 70–86.

[119] J. Engelfriet and L. Heyker. “The String generating Power of Context-
free Hypergraph Grammars”. In: Journal of Computer and System Sci-
ences 43 (1991), pp. 328–360.

[120] J. Engelfriet and E. M. Schmidt. “IO and OI. I”. In: Journal of computer
and system sciences 15 (1977), pp. 328–353.

[121] J. Engelfriet and E. M. Schnidt. “IO and OI. II”. In: Journal of computer
and system sciences 16 (1978), pp. 67–99.

[122] J. Engelfriet and S. Skyum. “Copying Theorems”. In: Inf. Process. Lett.
4.6 (1976), pp. 157–161.

[123] J. Engelfriet and H. Vogler. “Macro Tree Transducers”. In: J. Comput.
Syst. Sci. 31.1 (1985), pp. 71–146.

[124] Z. Ésik. “Algebras of Iteration Theories”. In: J. Comput. Syst. Sci. 27.2
(1983), pp. 291–303.

121

[125] A. Ferguson and J. Hughes. “Fast Abstract Interpretation Using Se-
quential Algorithms”. In: Static Analysis, Third International Work-
shop, WSA’93, Padova, Italy, September 22-24, 1993, Proceedings. Ed.
by P. Cousot, M. Falaschi, G. Filé, and A. Rauzy. Vol. 724. Lecture
Notes in Computer Science. Springer, 1993, pp. 45–59.

[126] M. J. Fischer. “Grammars with macro-like productions”. PhD thesis.
Harvard University, 1968.

[127] M. J. Fischer and A. L. Rosenberg. “Real-Time Solutions of the Origin-
Crossing Problem”. In: Mathematical Systems Theory 2.3 (1968), pp. 257–
263.

[128] T. Freeman and F. Pfenning. “Refinement Types for ML”. In: SIGPLAN
Not. 26.6 (May 1991), pp. 268–277.

[129] H. Friedman. “Equality between functionals”. English. In: Logic Col-
loquium. Ed. by R. Parikh. Vol. 453. Lecture Notes in Mathematics.
Springer Berlin Heidelberg, 1975, pp. 22–37.

[130] G. Gazdar, J. Klein, G. Pullum, and I. Sag. Generalized Phrase Struc-
ture Grammar. Oxford: Blackwell, 1985.

[131] G. Gazdar. “Phrase structure grammar”. In: The nature of syntactic
representation. Springer, 1982, pp. 131–186.

[132] S. Ginsburg, S. Greibach, and J. Hopcroft. Studies in abstract families
of languages. Memoirs 87. American Mathematical Society, 1969.

[133] S. Ginsburg and E. H. Spanier. “AFL with the Semilinear Property”. In:
J. Comput. Syst. Sci. 5.4 (1971), pp. 365–396.

[134] J. Girard. “The System F of Variable Types, Fifteen Years Later”. In:
Theor. Comput. Sci. 45.2 (1986), pp. 159–192.

[135] J.-Y. Girard. “Interprétation fonctionnelle et élimination des coupures
dans l’arithmétique d’ordre supérieur”. Thèse de doctorat d’état. Uni-
versité Paris VII, 1972.

[136] K. Gödel. “Die vollständigkeit der axiome des logischen funktionenkalküls”.
In: Monatshefte für Mathematik 37.1 (1930), pp. 349–360.

[137] K. Gödel. “Über formal unentscheidbare Sätze der Principia Mathemat-
ica und verwandter Systeme I”. In: Monatshefte für mathematik und
physik 38.1 (1931), pp. 173–198.

[138] C. Gómez-Rodrguez, M. Kuhlmann, and G. Satta. “Efficient Parsing of
Well-Nested Linear Context-Free Rewriting Systems”. In: Human Lan-
guage Technologies: Conference of the North American Chapter of the
Association of Computational Linguistics, Proceedings, June 2-4, 2010,
Los Angeles, California, USA. The Association for Computational Lin-
guistics, 2010, pp. 276–284.

[139] S. A. Greibach. “Hierarchy Theorems for Two-Way Finite State Trans-
ducers”. In: Acta Inf. 11 (1978), pp. 80–101.

122

[140] S. A. Greibach. “One Way Finite Visit Automata”. In: Theor. Comput.
Sci. 6 (1978), pp. 175–221.

[141] C. Grellois and P. Melliès. “An Infinitary Model of Linear Logic”. In:
FoSSaCS 2015. Vol. 9034. Lecture Notes in Computer Science. Springer,
2015, pp. 41–55.

[142] C. Grellois and P. Melliès. “Finitary semantics of linear logic and higher-
order model-checking”. In: CoRR abs/1502.05147 (2015).

[143] C. Grellois and P. Melliès. “Indexed linear logic and higher-order model
checking”. In: Proceedings Seventh Workshop on Intersection Types and
Related Systems, ITRS 2014, Vienna, Austria, 18 July 2014. 2015,
pp. 43–52.

[144] A. V. Groenink. “Surface without Structure”. PhD thesis. University of
Utrecht, 1997.

[145] P. de Groote. “Towards a Montagovian Account of Dynamics”. In: Pro-
ceedings of Semantics in Linguistic Theory XVI. CLC Publications,
2007.

[146] P. de Groote. “Towards Abstract Categorial Grammars”. In: Proceedings
39th Annual Meeting and 10th Conference of the European Chapter.
Ed. by A. for Computational Linguistic. Morgan Kaufmann Publishers,
2001, pp. 148–155.

[147] P. de Groote and E. Lebedeva. On the Dynamics of Proper Names.
Tech. rep. INRIA, 2010.

[148] Y. Gurevich and L. Harrington. “Trees, Automata, and Games”. In:
Proceedings of the Fourteenth Annual ACM Symposium on Theory of
Computing. STOC ’82. San Francisco, California, USA: ACM, 1982,
pp. 60–65.

[149] M. Hague, A. S. Murawski, C.-H. L. Ong, and O. Serre. “Collapsible
Pushdown Automata and Recursion Schemes”. In: LICS. IEEE Com-
puter Society, 2008, pp. 452–461.

[150] J. Hajic, E. Hajicova, P. Pajas, J. Panevova, and P. Sgall. Prague Depen-
dency Treebank 1.0. https://catalog.ldc.upenn.edu/LDC2001T10. 2001.

[151] L. Henkin. “Completeness in the Theory of Types”. In: Journal of Sym-
bolic Logic 15.2 (1950), pp. 81–91.

[152] G. G. Hillebrand. “Finite Model Theory in the Simply Typed Lambda
Calculus”. PhD thesis. Providence, Rhode Island 02912: Department of
Computer Science, Brown University, 1994.

[153] R. Hindley. “The Principal Type-Scheme of an Object in Combina-
tory Logic”. In: Transactions of the American Mathematical Society 146
(1969), pp. 29–60.

[154] G. Hotz and G. Pitsch. “On parsing coupled-context-free languages”. In:
Theoretical Computer Science 161 (1996), pp. 205–253.

123

[155] G. Huet. “Résolution d’équations dans des langages d’ordre 1,2,...,ω”.
Thèse de Doctorat es Sciences Mathématiques. Université Paris VII,
1976.

[156] R. Huybregts. “The weak inadequacy of context-free phrase structure
grammars”. In: Van periferie naar kern (1984), pp. 81–99.

[157] J. M. E. Hyland and C. L. Ong. “On Full Abstraction for PCF: I, II,
and III”. In: Inf. Comput. 163.2 (2000), pp. 285–408.

[158] D. Janin and I. Walukiewicz. “On the expressive completeness of the
propositional mu-calculus with respect to monadic second order logic”.
In: CONCUR ’96: Concurrency Theory. Ed. by U. Montanari and V.
Sassone. Vol. 1119. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 1996, pp. 263–277.

[159] T. Jensen. “Abstract Interpretation in Logical Form”. PhD thesis. Im-
perial College, University of London, 1992.

[160] A. Joshi and Y. Schabes. Tree-Adjoining Grammars. 1997.

[161] A. K. Joshi. “Tree-adjoining grammars: How much context sensitivity
is required to provide reasonable structural descriptions?” In: Natural
Language Parsing. Ed. by D. Dowty, L. Karttunen, and A. M. Zwicky.
Cambridge University Press, 1985, pp. 206–250.

[162] A. K. Joshi, L. S. Levy, and M. Takahashi. “Tree Adjunct Grammars”.
In: J. Comput. Syst. Sci. 10.1 (1975), pp. 136–163.

[163] A. K. Joshi, V. K. Shanker, and D. J. Weir. “The converence of Mildly
Context-Sensitive Grammar Formalisms”. In: Foundational Issues in
Natural Language Processing. Ed. by P. Sells, S. M. Shieber, and T.
Wasow. The MIT Press, 1991, pp. 31–81.

[164] J. Jourdan, V. Laporte, S. Blazy, X. Leroy, and D. Pichardie. “A Formally-
Verified C Static Analyzer”. In: Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2015, Mumbai, India, January 15-17, 2015. Ed. by S. K.
Rajamani and D. Walker. ACM, 2015, pp. 247–259.

[165] G. Kahn and G. D. Plotkin. “Concrete Domains”. In: Theor. Comput.
Sci. 121.1&2 (1993), pp. 187–277.

[166] M. Kanazawa. “The failure of Ogden’s lemma for well-nested multi-
ple context-free languages”. http://research.nii.ac.jp/ kanazawa/publi-
cations/ogden.pdf. 2014.

[167] M. Kanazawa. “A prefix-correct Earley recognizer for multiple context-
free grammars”. In: Proceedings of the Ninth International Workshop
on Tree Adjoining Grammars and Related Formalisms. Tübingen, Ger-
many, 2008, pp. 49–56.

124

[168] M. Kanazawa. “Parsing and generation as Datalog queries”. In: Proceed-
ings of the 45th Annual Meeting of the Association for Computational
Linguistics. Association for Computational Linguistics. 2007, pp. 176–
183.

[169] M. Kanazawa. “Second-Order ACGs as Hyperedge Replacement Gram-
mars”. In: Workshop on New Directions in Type-theoretic Grammars
(NDTTG). 2007.

[170] M. Kanazawa. “The convergence of well-nested mildly context-sensitive
grammar formalisms”. Invited Talk at The 14th conference on Formal
Grammar, FG 2009. Bordeaux, France, 2009.

[171] M. Kanazawa. “The Pumping Lemma for Well-Nested Multiple Context-
Free Languages”. In: proceedings of DLT 2009. Ed. by V. Diekert and
D. Nowotka. Vol. 5583. LNCS. Springer, 2009, pp. 312–325.

[172] M. Kandulski. “The equivalence of Nonassociative Lambek Categorial
Grammars and Context-Free Grammars”. In: Mathematical Logic Quar-
terly 34.1 (1988), pp. 41–52.

[173] T. Kasami. An efficient recognition and syntax-analysis algorithm for
context-free languages. Tech. rep. Science Report AFCRL-65-758. Air
Force Cambridge Research Laboratory, 1965.

[174] J. P. Kimbal. “Formal Theory of Grammar”. In: Foundations of modern
linguistics. Prentice-Hall, 1973. Chap. 6.

[175] J. Kirman and S. Salvati. “On the Complexity of Free Word Orders”.
In: Formal Grammar - 17th and 18th International Conferences, FG
2012, Opole, Poland, August 2012, Revised Selected Papers, FG 2013,
Düsseldorf, Germany, August 2013. Proceedings. 2013, pp. 209–224.

[176] N. Klarlund and A. Møller. MONA Version 1.4 User Manual. Notes
Series NS-01-1. Available from http://www.brics.dk/mona/. Revision of
BRICS NS-98-3. BRICS, Department of Computer Science, Aarhus Uni-
versity. 2001.

[177] S. C. Kleene. “Representation of Events in Nerve Nets and Finite Au-
tomata”. In: Automata Studies. Ed. by C. E. Shannon and J. McCarthy.
Vol. 34. Annals of Mathematics Studies. Princeton University Press,
1956, pp. 3–42.

[178] S. C. Kleene. Representation of events in nerve nets and finite automata.
Tech. rep. DTIC Document, 1951.

[179] T. Knapik, D. Niwinski, and P. Urzyczyn. “Deciding Monadic Theories
of Hyperalgebraic Trees”. In: TLCA. 2001, pp. 253–267.

[180] T. Knapik, D. Niwinski, and P. Urzyczyn. “Higher-Order Pushdown
Trees Are Easy”. In: FOSSCA 2002. Springer, 2002, pp. 205–222.

[181] T. Knapik, D. Niwinski, P. Urzycyzn, and I. Walukiewicz. “Unsafe Gram-
mars and Panic Automata”. In: ICALP 05. Ed. by Springer. LNCS 3580.
2005, pp. 1450–1461.

125

[182] T. Knapik, D. Niwinski, and P. Urzyczyn. “Higher-order pushdown trees
are easy”. In: Proc. FoSSaCS’02. Ed. by Springer. Vol. 2303. 2002,
pp. 205–222.

[183] N. Kobayashi. “Model Checking Higher-Order Programs”. In: J. ACM
60.3 (2013), p. 20.

[184] N. Kobayashi. “Types and Recursion Schemes for Higher-Order Program
Verification”. In: APLAS. Vol. 5904. LNCS. 2009, pp. 2–3.

[185] N. Kobayashi and L. Ong. “A Type System Equivalent to Modal Mu-
Calculus Model Checking of Recursion Schemes”. In: Proceedings of 24th
Annual IEEE Symposium on Logic in Computer Science (LICS 2009),
Los Angeles. 2009, pp. 179–188.

[186] G. M. Kobele. “Idioms and extended transducers”. In: Proceedings of the
11th International Workshop on Tree Adjoining Grammars and Related
Formalisms (TAG+11). 2012, pp. 153–161.

[187] G. M. Kobele. “Generating Copies: An Investigation into Structural
Identity in Language and Grammar”. PhD thesis. University of Cali-
fornia Los Angeles, 2006.

[188] H.-P. Kolb, J. Michaelis, U. Mönnich, and F. Morawietz. “An opera-
tional and denotational approach to non-context-freeness”. In: Theoret-
ical Computer Science 293.2 (2003), pp. 261–289.

[189] M. Kracht. The Mathematics of Language. Vol. 63. Studies in Generative
Grammar. Mouton De Gruyter, 2003.

[190] J.-L. Krivine. “A call-by-name lambda-calculus machine”. In: Higher-
Order and Symbolic Computation 20.3 (2007), pp. 199–207.

[191] M. T. Kromann. “The Danish Dependency Treebank and the DTAG
treebank tool”. In: In Proceedings of the Second Workshop on Treebanks
and Linguistic Theories (TLT 2003. 2003, pp. 14–15.

[192] M. Kuhlmann and M. Möhl. “Mildly Context-Sensitive Dependency
Languages”. In: ACL 2007, Proceedings of the 45th Annual Meeting
of the Association for Computational Linguistics, June 23-30, 2007,
Prague, Czech Republic. 2007.

[193] M. Kuhlmann and M. Möhl. “The string-generative capacity of regular
dependency languages”. In: FG 2007. 2007.

[194] M. Kuhlmann and J. Nivre. “Mildly Non-Projective Dependency Struc-
tures”. In: ACL 2006, 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Association for Compu-
tational Linguistics, Proceedings of the Conference, Sydney, Australia,
17-21 July 2006. Ed. by N. Calzolari, C. Cardie, and P. Isabelle. The
Association for Computer Linguistics, 2006.

[195] J. Laird. “A Fully Abstract Bidomain Model of Unary FPC”. In: Typed
Lambda Calculi and Applications. Ed. by M. Hofmann. Vol. 2701. Lec-
ture Notes in Computer Science. Springer, 2003, pp. 211–225.

126

[196] J. Laird. Games and Sequential Algorithms. Unpublished note. 2001.

[197] F. Lamarche. “Sequentiality, games and linear logic”. Manuscript. 1992.

[198] J. Lambek. “On the calculus of syntactic types”. In: Studies of Language
and its Mathematical Aspects, Proceedings of the 12th Symposium of
Applied Mathematics. Ed. by R. Jakobson. 1961, pp. 166–178.

[199] J. Lambek. “The mathematics of sentence structure”. In: American Math-
ematical Monthly 65 (1958), pp. 154–170.

[200] M. Latteux. “Cônes Rationnels Commutativement Clos”. In: ITA 11.1
(1977), pp. 29–51.

[201] F. W. Lawvere. “Functorial Semantics of Algebraic Theories”. PhD the-
sis. Columbia University, 1963.

[202] A. Lecomte. “A Computational Approach to Minimalism”. In: Proceed-
ings of ICON-2003, International Conference on Natural Language. Cen-
tral Institute of Indian Languages, 2003, pp. 20–31.

[203] A. Lecomte. “Derivations as Proofs : a Logical Approach to Minimalism”.
In: Proceedings of CG 2004. 2004.

[204] A. Lecomte and C. Retoré. “Extending Lambek grammars: a logical
account of minimalist grammars”. In: Proceedings of the 39th meeting of
the Association for Computational Linguistics,ACL 2001. 2001, pp. 354–
361.

[205] A. Lecomte and C. Retoré. “Towards a Minimal Logic for Minimal-
ist Grammars: a tranformational use of Lambek calculus”. In: Formal
Grammar 99. 1999.

[206] R. Loader. “Finitary PCF is not decidable”. In: Theor. Comput. Sci.
266.1-2 (2001), pp. 341–364.

[207] R. Loader. “The Undecidability of λ-definability”. In: Logic, Meaning
and Computation: Essays in memory of Alonzo Church. Ed. by C. A.
Anderson and M. Zeleny. Kluwer, 2001, pp. 331–342.

[208] G. M. M. Kobele. “Parsing Ellipsis”. manuscript. 2007.

[209] Z. Manna. Mathematical Theory of Computation. McGraw-Hill, 1974.

[210] Z. Manna. “The correctness of programs”. In: Journal of Computer and
System Sciences 3.2 (1969), pp. 119–127.

[211] A. N. Maslov. “Multilevel Stack Automata”. In: Probl. Peredachi Inf.
12.1 (1976), pp. 55–62.

[212] A. Maslov. “The hierarchy of indexed languages of an arbitrary level”.
In: Soviet Math. Dokl. Vol. 15. 4. 1974, pp. 1170–1174.

[213] J. Mezei and J. Wright. “Algebraic Automata and Context-Free Sets”.
In: Informcation and Control 11 (1967), pp. 3–29.

127

[214] J. Michaelis and M. Kracht. “Semilinearity as a syntactic invariant”.
English. In: Logical Aspects of Computational Linguistics. Ed. by C.
Retoré. Vol. 1328. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 1997, pp. 329–345.

[215] R. Milner. “LCF: A way of doing proofs with a machine”. English. In:
Mathematical Foundations of Computer Science 1979. Ed. by J. Bevá.
Vol. 74. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
1979, pp. 146–159.

[216] R. Milner. Models of LCF. Tech. rep. Memo AIM-186. Stanford Artificial
Intelligence Laboratory, 1973.

[217] R. Milner. “A Theory of Type Polymorphism in Programming”. In: J.
Comput. Syst. Sci. 17.3 (1978), pp. 348–375.

[218] J. G. de Miranda. “Structures Generated by Higher-Order Grammars
and the Safety Constraint”. PhD thesis. Oxford University, 2006.

[219] R. Montague. Formal Philosophy: Selected Papers of Richard Montague.
Yale University Press, New Haven, CT, 1974.

[220] F. Morawietz. Two-Step Approaches ot Natural Language Formalisms.
Studies in Generative Grammar. Berlin · New York: Mouton de Gruyter,
2003.

[221] A. A. Muchnik. “Games on Infinite Trees and Automata with Dead
Ends”. In: Semiotics and Information 24 (1984). in Russian, pp. 17–44.

[222] D. E. Muller and P. E. Schupp. “The Theory of Ends, Pushdown Au-
tomata, and Second-Order Logic”. In: Theor. Comput. Sci. 37 (1985),
pp. 51–75.

[223] D. E. Muller, A. Saoudi, and P. E. Schupp. “Alternating automata, the
weak monadic theory of the tree, and its complexity”. In: Automata,
Languages and Programming. Springer, 1986, pp. 275–283.

[224] D. E. Muller, A. Saoudi, and P. E. Schupp. “Alternating automata,
the weak monadic theory of trees and its complexity”. In: Theoretical
Computer Science 97.2 (1992), pp. 233–244.

[225] R. Muskens. “Lambda Grammars and the Syntax-Semantics Interface”.
In: Proceedings of the Thirteenth Amsterdam Colloquium. Ed. by R. van
Rooy and M. Stokhof. Amsterdam, 2001, pp. 150–155.

[226] J. Myhill. Finite automata and the representation of events. Tech. rep.
WADC TR-57-624. Wright Patterson Air Force Base, Ohio, USA, 1957.

[227] M.-J. Nederhof. “Generalized left-corner parsing”. In: Proceedings of the
sixth conference on European chapter of the Association for Computa-
tional Linguistics. Utrecht, The Netherlands: Association for Computa-
tional Linguistics, 1993, pp. 305–314.

[228] M.-J. Nederhof. “The computational complexity of the correct-prefix
property for TAGs”. In: Comput. Linguist. 25.3 (1999), pp. 345–360.

128

[229] A. Nerode. “Linear Automaton Transformations”. In: Proceedings of the
American Mathematical Society. Vol. 9. American Mathematical Soci-
ety, 1958, pp. 541–544.

[230] M. Nivat. “On the interpretation of recursive polyadic program schemes”.
In: Symp. Mathematica. 15. 1975, pp. 255–281.

[231] M. Nivat. “Transductions des langages de Chomsky”. Thèse d’état. An-
nales de l’institut Fourier, 1968.

[232] W. Ogden. “A helpful result for proving inherent ambiguity”. In: Theory
of Computing Systems 2.3 (1968), pp. 191–194.

[233] C. L. Ong. “On Model-Checking Trees Generated by Higher-Order Re-
cursion Schemes”. In: 21th IEEE Symposium on Logic in Computer Sci-
ence (LICS 2006), 12-15 August 2006, Seattle, WA, USA, Proceedings.
IEEE Computer Society, 2006, pp. 81–90.

[234] V. Padovani. “Decidability of All Minimal Models”. In: Types for Proofs
and Programs, International Workshop TYPES’95, Torino, Italy, June
5-8, 1995, Selected Papers. Ed. by S. Berardi and M. Coppo. Vol. 1158.
Lecture Notes in Computer Science. Springer, 1995, pp. 201–215.

[235] V. Padovani. “Decidability of fourth-order matching”. In: Mathematical
Structures in Computer Science 10.3 (2000), pp. 361–372.

[236] V. Padovani. “Filtrage d’odre supérieur”. Thèse de doctorat. Université
de Paris 7, 1994.

[237] M. A. Palis and S. M. Shende. “Pumping Lemmas for the Control Lan-
guage Hierarchy”. In: Mathematical System Theory 28.3 (1995), pp. 199–
213.

[238] B. H. Partee. “Richard Montague (1930 - 1971)”. In: Encyclopedia of
Language and Linguistics. Ed. by K. Brown. Vol. 8. 2nd edition. Else-
vier, 2006, pp. 255–257.

[239] P. Parys. “Collapse Operation Increases Expressive Power of Determin-
istic Higher Order Pushdown Automata”. In: 28th International Sympo-
sium on Theoretical Aspects of Computer Science, STACS 2011. 2011,
pp. 603–614.

[240] M. Pentus. “Lambek Grammars Are Context Free”. In: Proceedings of
the 8th Annual IEEE Symposium on Logic in Computer Science. 1993,
pp. 429–433.

[241] P. S. Peters and R. W. Ritchie. “On the generative power of transfor-
mational grammars”. In: Information Sciences 6 (1973), pp. 49–83.

[242] G. Plotkin. “Lambda-definability and logical relations”. In: To H.B.Curry
: essays on combinatory logic, lambda calculus, and formalism. Ed. by
J. Seldin and J. Hindley. Academic Press, 1980, pp. 363–373.

[243] G. D. Plotkin. “LCF Considered as a Programming Language”. In:
Theor. Comput. Sci. 5.3 (1977), pp. 223–255.

129

[244] C. Pollard and I. A. Sag. Head-driven phrase structure grammar. Uni-
versity of Chicago Press, 1994.

[245] G. K. Pullum and G. G. “Natural languages and Context-Free Lan-
guages”. In: Linguistics and Philosophy 4 (1982), pp. 471–504.

[246] P. C. R. Amadio. Domains and lambda-calculi. Cambridge Tracts in
Theoretical Computer Science 46. Cambridge University Press, 1996.

[247] M. O. Rabin. “Decidability of Second-Order Theories and Automata on
Infinite Trees”. In: Transactions of the AMS 141 (1969), pp. 1–23.

[248] M. O. Rabin. “Decidaiblity of Second-Order Theories and Automata on
Infinite Trees”. In: Transaction of the American Mathematical Society
141 (1969), pp. 1–35.

[249] M. O. Rabin. Automata on infinite objects and Church’s problem. Vol. 13.
American Mathematical Soc., 1972.

[250] D. Radzinski. “Chinese number-names, tree adjoining languages, and
mild context-sensitivity”. In: Comput. Linguist. 17 (3 1991), pp. 277–
299.

[251] O. Rambow and G. Satta. “A rewritting system for free word order
syntax that is non-local and mildly context sensitive”. In: Current Issues
in Mathematical Linguistics. Ed. by C. Martín-Vide. Vol. 56. North-
Holland Linguistics Series. Elsevier-North Holland, Amsterdam, 1994.

[252] O. Rambow and G. Satta. A Two-Dimensional Hierarchy for Parallel
Rewriting Systems. Tech. rep. IRCS-94-02. University of Pennsylvania
Institute for Research in Cognitive Science, 1994.

[253] O. Rambow and G. Satta. “Independent Parallelism in Finite Copying
Parallel Rewriting Systems”. In: Theoretical Computer Science 223.1-2
(1999), pp. 87–120.

[254] A. Ranta. Type-theoretical Grammar. Vol. 1. Indices. Oxford Science
Publisher, 1994.

[255] H. G. Rice. “Classes of Recursively Enumerable Sets and Their Decision
Problems”. In: Transactions of the American Mathematical Society 74.2
(1953), pp. 358–366.

[256] J. Rogers. A Descriptive Approach to Language-Theoretic Complexity.
Studies in Logic, Language & Information. distributed by the University
of Chicago Press. CSLI publications, 1998.

[257] J. Rogers. “A Model-Theoretic Framework for Theories of Syntax”. In:
34th Annual Meeting of the Association for Computational Linguis-
tics, 24-27 June 1996, University of California, Santa Cruz, Califor-
nia, USA, Proceedings. Ed. by A. K. Joshi and M. Palmer. Morgan
Kaufmann Publishers / ACL, 1996, pp. 10–16.

[258] J. Rogers. “wMSO theories as grammar formalisms”. In: Theor. Comput.
Sci. 293.2 (2003), pp. 291–320.

130

[259] J. Rogers. “Wrapping of Trees”. In: Proceedings of the 42nd Annual Meet-
ing of the Association for Computational Linguistics, 21-26 July, 2004,
Barcelona, Spain. Ed. by D. Scott, W. Daelemans, and M. A. Walker.
ACL, 2004, pp. 558–565.

[260] B. Rozoy. “The Dyck language D′∗
1 is not generated by any matrix

grammar of finite index”. In: Information and Computation 74.1 (1987),
pp. 64–89.

[261] Y. Schabes and A. K. Joshi. “An Earley-type parsing algorithm for Tree
Adjoining Grammars”. In: Proceedings of the 26th annual meeting on
Association for Computational Linguistics. Buffalo, New York: Associ-
ation for Computational Linguistics, 1988, pp. 258–269.

[262] M. Schmidt-Schauß. “Decidability of Behavioural Equivalence in Unary
PCF”. In: Theor. Comput. Sci. 216.1-2 (1999), pp. 363–373.

[263] S. Schmitz. “On the Computational Complexity of Dominance Links
in Grammatical Formalisms”. In: ACL 2010, Proceedings of the 48th
Annual Meeting of the Association for Computational Linguistics, July
11-16, 2010, Uppsala, Sweden. Ed. by J. Hajic, S. Carberry, and S.
Clark. The Association for Computer Linguistics, 2010, pp. 514–524.

[264] H. Schwichtenberg. “Definierbare funktionen im lambda-kalkul mit typen”.
In: Archiv Logik Grundlagenforsch 17 (1976), pp. 113–114.

[265] D. Scott. “Continuous lattices”. In: Toposes, Algebraic Geometry and
Logic. Ed. by F. Lawvere. Vol. 274. Lecture Notes in Mathematics.
Springer Berlin Heidelberg, 1972, pp. 97–136.

[266] H. Seki, T. Matsumura, M. Fujii, and T. Kasami. “On multiple context
free grammars”. In: Theoretical Computer Science 88.2 (1991), pp. 191–
229.

[267] G. Sénizergues. “L(A)=L(B)? decidability results from complete formal
systems”. In: Theor. Comput. Sci. 251.1-2 (2001), pp. 1–166.

[268] S. M. Shieber. “Evidence Against the Context-Freeness of Natural Lan-
guage”. In: Linguistics and Philosophy 8 (1985). Reprinted in Wal-
ter J. Savitch, Emmon Bach, William Marsh, and Gila Safran-Navah,
eds., The Formal Complexity of Natural Language, pages 320–334, Dor-
drecht, Holland: D. Reidel Publishing Company, 1987. Reprinted in
Jack Kulas, James H. Fetzer, and Terry L. Rankin, eds., Philosophy,
Language, and Artificial Intelligence, pages 79–92, Dordrecht, Holland:
Kluwer Academic Publishers, 1988, pp. 333–343.

[269] A. K. Simpson and G. D. Plotkin. “Complete Axioms for Categorical
Fixed-Point Operators”. In: 15th Annual IEEE Symposium on Logic in
Computer Science, Santa Barbara, California, USA, June 26-29, 2000.
IEEE Computer Society, 2000, pp. 30–41.

131

[270] A. Sorokin. “Pumping Lemma and Ogden Lemma for Displacement
Context-Free Grammars”. In: Developments in Language Theory - 18th
International Conference, DLT 2014, Ekaterinburg, Russia, August 26-
29, 2014. Proceedings. Ed. by A. M. Shur and M. V. Volkov. Vol. 8633.
Lecture Notes in Computer Science. Springer, 2014, pp. 154–165.

[271] E. H. Spanier. Algebraic Topology. Corrected reprint. Springer-Verlag,
1981.

[272] E. P. Stabler. “Derivational Minimalism”. In: Logical Aspects of Compu-
tational Linguistics, First International Conference, LACL ’96, Nancy,
France, September 23-25, 1996, Selected Papers. Ed. by C. Retoré. Vol. 1328.
Lecture Notes in Computer Science. Springer, 1996, pp. 68–95.

[273] E. P. Stabler. “Varieties of crossing dependencies: structure dependence
and mild context sensitivity”. In: Cognitive Sience 28 (2004), pp. 699–
720.

[274] R. Statman. “Completeness, Invariance and λ-definability”. In: Journal
of Symbolic Logic 47.1 (1982), pp. 17–26.

[275] R. Statman and G. Dowek. On Statman’s finite completeness theorem.
Tech. rep. CMU-CS-92-152. University of Carnegie Mellon, 1992.

[276] R. Statman. “On the [lambda]Y calculus”. In: Annals of Pure and Ap-
plied Logic 130.1-3 (2004). Papers presented at the 2002 IEEE Sympo-
sium on Logic in Computer Science (LICS), pp. 325–337.

[277] P. Staudacher. “New Frontiers Beyond Context-Freeness: DI-Grammars
And DI-Automata”. In: Sixth Conference of the European Chapter of the
Association for Computational Linguistics, Proceedings of the Confer-
ence, 21-23 April 1993, Utrecht, The Netherlands. Ed. by S. Krauwer,
M. Moortgat, and L. des Tombe. The Association for Computer Lin-
guistics, 1993, pp. 358–367.

[278] C. Stirling. “A Game-Theoretic Approach to Deciding Higher-Order
Matching”. In: ICALP (2). Ed. by M. Bugliesi, B. Preneel, V. Sassone,
and I. Wegener. Vol. 4052. Lecture Notes in Computer Science. Springer,
2006, pp. 348–359.

[279] C. Stirling. “Decidability of higher order matching”. In: Logical Methods
in Computer Science 5.3 (2009).

[280] W. W. Tait. “Intensional Interpretations of Functionals of Finite Type
I”. In: The Journal of Symbolic Logic 32.2 (1967), pp. 198–212.

[281] T. C. development team. The Coq proof assistant reference manual.
Version 8.4. INRIA. 2012.

[282] T. Terao and N. Kobayashi. “A ZDD-Based Efficient Higher-Order Model
Checking Algorithm”. In: APLAS 2014. Vol. 8858. Lecture Notes in
Computer Science. Springer, 2014, pp. 354–371.

[283] Terese. Term Rewriting Systems. Vol. 55. Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, 2003.

132

[284] J. W. Thatcher and J. B. Wright. “Generalized finite automata”. In:
Notices Amer. Math. Soc. (1965). Abstract No 65T-649.

[285] J. Thatcher and J. Wright. “Generalized finite automata theory with
an application to a decision problem of second-order logic”. English. In:
Mathematical systems theory 34.1 (1968), pp. 57–81.

[286] B. A. Trakhtenbrot. “Finite automata and monadic second order logic”.
In: Siberian Math. J 3 (1962), pp. 101–131.

[287] P. Urzyczyn. “The Emptiness Problem for Intersection Types.” In: J.
Symb. Log. 64.3 (1999), pp. 1195–1215.

[288] K. N. Verma and J. Goubault-Larrecq. “Karp-Miller Trees for a Branch-
ing Extension of VASS”. In: Discrete Mathematics & Theoretical Com-
puter Science 7.1 (2005), pp. 217–230.

[289] K. Vijay-Shanker, D. J. Weir, and A. K. Joshi. “Characterizing Struc-
tural Descriptions produced by Various Grammatical Formalisms”. In:
25th Annual Meeting of the Association for Computational Linguistics,
Stanford University, Stanford, California, USA, July 6-9, 1987. 1987,
pp. 104–111.

[290] I. Walukiewicz. “Monadic second-order logic on tree-like structures”. In:
Theor. Comput. Sci. 275.1-2 (2002), pp. 311–346.

[291] M. Wand. “A Concrete Approach to Abstract Recursion Definitions”.
In: ICALP. 1972, pp. 331–341.

[292] M. Wand. “Final Algebra Semantics and Data Type Extensions”. In: J.
Comput. Syst. Sci. 19.1 (1979), pp. 27–44.

[293] D. J. Weir. “A geometric hierarchy beyond context-free languages”. In:
Theoretical Computer Science 104.2 (1992), pp. 235–261.

[294] D. J. Weir. “Linear Context-Free Rewriting Systems and Deterministic
Tree-Walking Transducers.” In: ACL. 1992, pp. 136–143.

[295] T. Wilke. “An Eilenberg Theorem for Infinity-Languages”. In: ICALP91.
1991, pp. 588–599.

[296] E. S. Y. Bar-Hillel M. Perles. “On formal properties of simple phrase
structure grammars”. In: Zeitschrift für Phonetik Sprachwissenschaft,
und Kommunikationsforschung 14 (1961).

[297] D. Younger. “Recognition and parsing of context-free languages in time
n3”. In: Information and Control 10 (1967), pp. 572–597.

[298] W. Zielonka. “Infinite games on finitely coloured graphs with applica-
tions to automata on infinite trees”. In: Theoretical Computer Science
200.12 (1998), pp. 135–183.

133

Personal bibliography

[S1] A. Ball, P. Bourreau, É. Kien, and S. Salvati. “Building PMCFG Parsers
as Datalog Program Transformations”. In: the 8th International Con-
ference on Logical Aspects of Computational Linguistics (LACL 2014).
Vol. 7351. FOLLI-LNCS. Springer, 2014.

[S2] P. Bourreau and S. Salvati. “A Datalog Recognizer for Almost Affine
λ-CFGs”. In: The Mathematics of Language 12. Ed. by M. Kanazawa,
M. Kracht, and H. Seki. Vol. 6878. Lecture Notes in Computer Science.
Springer, 2011, pp. 21–38.

[S3] P. Bourreau and S. Salvati. “Game Semantics and Uniqueness of Type
Inhabitance in the Simply-Typed lambda-Calculus”. In: 10th Interna-
tional Conference on Typed Lambda Calculi and Applications (TLCA
2011). Vol. 6690. LNCS. Springer, 2011, pp. 61–75.

[S4] L. Clément, J. Kirman, and S. Salvati. “A logical approach to grammar
description”. In: Journal of Language Modelling 3.1 (2015).

[S5] P. de Groote, B. Guillaume, and S. Salvati. “Vector Addition Tree
Automata”. In: 19-th IEEE symposium on Logic in Computer Science
(2004), pp. 63–74.

[S6] M. Kanazawa, G. M. Kobele, J. Michaelis, S. Salvati, and R. Yoshinaka.
“The Failure of the Strong Pumping Lemma for Multiple Context-Free
Languages”. In: Theory Comput. Syst. 55.1 (2014), pp. 250–278.

[S7] M. Kanazawa and S. Salvati. “Generating control languages with Ab-
stract Categorial Grammars”. In: Proceedings of the 12th conference on
Formal Grammar (FG 2007), Dublin, Ireland. Ed. by L. Kallmeyer, P.
Monachesi, G. Penn, and G. Satta. To appear, ISSN 1935-1569. CSLI
Publications, 2007.

[S8] M. Kanazawa and S. Salvati. “MIX is not a tree-adjoining language”.
In: Proceedings of the 50th Annual Meeting of the Association for Com-
putational Linguistics. Association for Computational Linguistics. 2012,
pp. 666–674.

[S9] M. Kanazawa and S. Salvati. “The Copying Power of Well-Nested Multi-
ple Context-Free Grammars”. In: 4th International Conference on Lan-
guage and Automata Theory and Applications (LATA 2010). Ed. by
A.-H. Dediu, H. Fernau, and C. Martn-Vide. Vol. 6031. Lecture Notes
in Computer Science, 2010, pp. 344–355.

[S10] M. Kanazawa and S. Salvati. “The String-Meaning Relations Definable
by Lambek Grammars and Context-Free Grammars”. In: 18th confer-
ence on Formal Grammar (FG 2013). Vol. 8036. LNCS. Springer, 2013,
pp. 191–208.

[S11] J. Kirman and S. Salvati. “On the Complexity of Free Word Orders”.
In: 18th conference on Formal Grammar (FG 2013). Vol. 8036. LNCS.
Springer, 2013, pp. 209–224.

134

[S12] G. M. Kobele and S. Salvati. “The IO and OI hierarchies revisited”. In:
Information and Computation 243 (2015), pp. 205–221.

[S13] C. Retoré and S. Salvati. “A Faithful Representation of Non-Associative
Lambek Grammars in Abstract Categorial Grammars”. In: Journal of
Logic Language and Information 19.2 (2010), pp. 185–200.

[S14] S. Salvati and I. Walukiewicz. “Krivine Machines and Higher-Order
Schemes”. In: ICALP (2). Vol. 6756. LNCS. 2011, pp. 162–173.

[S15] S. Salvati and I. Walukiewicz. “Typing Weak MSOL Properties”. In:
FoSSaCS 2015. Vol. 9034. Lecture Notes in Computer Science. Springer,
2015, pp. 343–357.

[S16] S. Salvati and I. Walukiewicz. “Using models to model-check recursive
schemes”. In: Logical Methods In Computer Science (2015).

[S17] S. Salvati. “Encoding second order string ACG with Deterministic Tree
Walking Transducers.” In: Proceedings FG 2006: the 11th conference on
Formal Grammars. Ed. by S. Wintner. FG Online Proceedings. CSLI
Publications, 2007, pp. 143–156.

[S18] S. Salvati. “Minimalist Grammars in the Light of Logic”. In: Logic and
grammar - Essays Dedicated to Alain Lecomte on the Occasion of His
60th Birthday. Ed. by C. R. Sylvain Pogodalla Myriam Quatrini. Vol. 6700.
LNCS/LNAI. Springer Berlin/Heidelberg, 2011, pp. 81–117.

[S19] S. Salvati. “MIX is a 2-MCFL and the word problem in is captured by
the IO and the OI hierarchies”. In: Journal of Computer and System
Sciences 81.7 (2015), pp. 1252–1277.

[S20] S. Salvati. “Non-linear Second Order Abstract Categorial Grammars
and Deletion”. In: NLCS’15. Third Workshop on Natural Language and
Computer Science. Ed. by M. Kanazawa, L. S. Moss, and V. de Paiva.
Vol. 32. EasyChair Proceedings in Computing. EasyChair, 2015, pp. 64–
72.

[S21] S. Salvati. “On the membership problem for non-linear ACGs”. In: Jour-
nal of Logic Language and Information 19.2 (2010), pp. 163–183.

[S22] S. Salvati. “Problèmes de filtrage et problèmes d’analyse pour les gram-
maires catégorielles abstraites”. PhD thesis. Institut National Polytech-
nique de Lorraine, 2005.

[S23] S. Salvati. “Recognizability in the Simply Typed Lambda-Calculus”.
In: 16th Workshop on Logic, Language, Information and Computation.
Vol. 5514. Lecture Notes in Computer Science. Tokyo Japan: Springer,
2009, pp. 48–60.

[S24] S. Salvati. “Syntactic Descriptions: a Type System for Solving Matching
Equations in the Linear λ-Calculus”. In: proceedings of the 17th Inter-
national Conference on Rewriting Techniques and Applications. 2006,
pp. 151–165.

135

[S25] S. Salvati, G. Manzonetto, M. Gehrke, and H. Barendregt. “Loader and
Urzyczyn are Logically Related”. In: 39th International Colloquium on
Automata, Languages and Programming (ICALP (2) 2012). Lecture
Notes in Computer Science. Springer, 2012, pp. 364–376.

[S26] S. Salvati and I. Walukiewicz. “A Model for Behavioural Properties of
Higher-order Programs”. In: 24th EACSL Annual Conference on Com-
puter Science Logic (CSL 2015). Ed. by S. Kreutzer. Vol. 41. Leibniz
International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015, pp. 229–243.

[S27] S. Salvati and I. Walukiewicz. “Evaluation is MSOL-compatible”. In:
33rd International Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS 2013). Vol. 24. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013.

[S28] S. Salvati and I. Walukiewicz. “Krivine Machines and Higher-Order
Schemes”. In: 38th International Colloquium on Automata, Languages
and Programming (ICALP (2) 2011). Ed. by L. Aceto, M. Henzinger,
and J. Sgall. Vol. 6756. Lecture Notes in Computer Science. Springer,
2011, pp. 162–173.

[S29] S. Salvati and I. Walukiewicz. “Krivine machines and higher-order schemes”.
In: Inf. Comput. 239 (2014), pp. 340–355.

[S30] S. Salvati and I. Walukiewicz. “Simply typed fixpoint calculus and col-
lapsible pushdown automata”. In: Mathematical Structures in Computer
Science FirstView (2015), pp. 1–47.

[S31] S. Salvati and I. Walukiewicz. “Using Models to Model-Check Recur-
sive Schemes”. In: 11th International Conference on Typed Lambda Cal-
culi and Applications (TLCA 2013). Vol. 7941. LNCS. Springer, 2013,
pp. 189–204.

136

	Contents
	Introduction
	Research context
	Research orientation and main contributions
	Organization of the document

	Preliminaries and recognizability
	Simply typed -calculus
	Special constants
	Some syntactic restrictions on simply typed -calculus
	Models of -calculi
	Recognizability in simply typed -calculus
	Conclusion and perspective

	Abstract Categorial Grammars
	Abstract Categorial Grammars
	Expressiveness
	Parsing Algorithms
	OI grammars
	Conclusion and perspectives

	Mildly Context Sensitive Languages
	On mild-context sensitivity and its limitations
	Multiple Context Free Grammars
	The language MIX
	Iteration properties for MCFGs
	Classifying Mildly Context Sensitive Formalisms
	Conclusion and perspectives

	Logic and Verification
	Schematology
	Parity automata
	Wreath product and weak parity automata
	Y-calculus and abstract machines
	A Y-model for parity automata
	Adequacy of the model via parity games
	Conclusion and perspectives

	Conclusion
	Bibliography
	Personal bibliography

