490 research outputs found

    Power-Balanced Hybrid Optics Boosted Design for Achromatic Extended-Depth-of-Field Imaging via Optimized Mixed OTF

    Get PDF
    The power-balanced hybrid optical imaging system is a special design of a diffractive computational camera, introduced in this paper, with image formation by a refractive lens and Multilevel Phase Mask (MPM). This system provides a long focal depth with low chromatic aberrations thanks to MPM and a high energy light concentration due to the refractive lens. We introduce the concept of optical power balance between the lens and MPM which controls the contribution of each element to modulate the incoming light. Additional unique features of our MPM design are the inclusion of quantization of the MPM's shape on the number of levels and the Fresnel order (thickness) using a smoothing function. To optimize optical power-balance as well as the MPM, we build a fully-differentiable image formation model for joint optimization of optical and imaging parameters for the proposed camera using Neural Network techniques. Additionally, we optimize a single Wiener-like optical transfer function (OTF) invariant to depth to reconstruct a sharp image. We numerically and experimentally compare the designed system with its counterparts, lensless and just-lens optical systems, for the visible wavelength interval (400-700)nm and the depth-of-field range (0.5-∞\inftym for numerical and 0.5-2m for experimental). The attained results demonstrate that the proposed system equipped with the optimal OTF overcomes its counterparts (even when they are used with optimized OTF) in terms of reconstruction quality for off-focus distances. The simulation results also reveal that optimizing the optical power-balance, Fresnel order, and the number of levels parameters are essential for system performance attaining an improvement of up to 5dB of PSNR using the optimized OTF compared with its counterpart lensless setup.Comment: 18 pages, 14 figure

    Doctor of Philosophy

    Get PDF
    dissertationDiffractive optics, an important part of modern optics, involves the control of optical fields by thin microstructured elements via diffraction and interference. Although the basic theoretical understanding of diffractive optics has been known for a long time, many of its applications have not yet been explored. As a result, the field of diffractive optics is old and young at the same time. The interest in diffractive optics originates from the fact that diffractive optical elements are flat and lightweight. This makes their applications into compact optical systems more feasible compared to bulky refractive optics. Although these elements demonstrate excellent diffraction efficiency for monochromatic light, they fail to generate complex intensity profiles under broadband illumination. This is due to the fact that the degrees-of-freedom in these elements are insufficient to overcome their strong chromatic aberration. As a result, despite their so many advantages over refractive optics, their applications are somewhat limited in broadband systems. In this dissertation, a recently developed diffractive optical element, called a polychromat, is demonstrated for several broadband applications. The polychromat is comprised of linear "grooves" or square "pixels" with feature size in the micrometer scale. The grooves or pixels can have multiple height levels. Such grooved or pixelated structures with multilevel topography provide enormous degrees-of-freedom which in turn facilitates generation of complex intensity distributions with high diffraction efficiency under broadband illumination. Furthermore, the super-wavelength feature size and low aspect ratio of this micro-optic make its fabrication process simpler. Also, this diffractive element is not polarization sensitive. As a result, the polychromat holds the potential to be used in numerous technological applications. Throughout this dissertation, the broadband operation of the polychromat is demonstrated in four different areas, namely, photovoltaics, displays, lenses and holograms. Specifically, we have developed a polychromat-photovoltaic system which facilitates better photon-to-electron conversion via spectrum splitting and concentration, a modified liquid crystal display (LCD) that offers higher luminance compared to a standard LCD, a cylindrical lens that demonstrates super-achromatic focusing over the entire visible band, a planar diffractive lens that images over the visible and near-IR spectrum and broadband transmission holograms that project complex full-color images with high efficiency. In each of these applications, a unique figure of merit was defined and the height topography of the polychromat was optimized to maximize the figure of merit. The optimization was achieved with the aid of scalar diffraction theory and a modified version of direct binary search algorithm. Single step grayscale lithography was developed and optimized to fabricate these devices with the smallest possible fabrication errors. Rigorous characterization of these systems demonstrated broadband performance of the polychromat in all of the applications

    Doctor of Philosophy

    Get PDF
    dissertationOptics is an old topic in physical science and engineering. Historically, bulky materials and components were dominantly used to manipulate light. A new hope arrived when Maxwell unveiled the essence of electromagnetic waves in a micro perspective. On the other side, our world recently embraced a revolutionary technology, metasurface, which modifies the properties of matter-interfaces in subwavelength scale. To complete this story, diffractive optic fills right in the gap. It enables ultrathin flat devices without invoking the concept of nanostructured metasurfaces when only scalar diffraction comes into play. This dissertation contributes to developing a new type of digital diffractive optic, called a polychromat. It consists of uniform pixels and multilevel profile in micrometer scale. Essentially, it modulates the phase of a wavefront to generate certain spatial and spectral responses. Firstly, a complete numerical model based on scalar diffraction theory was developed. In order to functionalize the optic, a nonlinear algorithm was then successfully implemented to optimize its topography. The optic can be patterned in transparent dielectric thin film by single-step grayscale lithography and it is replicable for mass production. The microstructures are 3?m wide and no more than 3?m thick, thus do not require slow and expensive nanopatterning techniques, as opposed to metasurfaces. Polychromat is also less demanding in terms of fabrication and scalability. The next theme is focused on demonstrating unprecedented performances of the diffractive optic when applied to address critical issues in modern society. Photovoltaic efficiency can be significantly enhanced using this optic to split and concentrate the solar spectrum. Focusing through a lens is no news, but we transformed our optic into a flat lens that corrects broadband chromatic aberrations. It can also serve as a phase mask for microlithography on oblique and multiplane surfaces. By introducing the powerful tool of computation, we devised two imaging prototypes, replacing the conventional Bayer filter with the diffractive optic. One system increases light sensitivity by 3 times compared to commercial color sensors. The other one renders the monochrome sensor a new function of high-resolution multispectral video-imaging

    Conference on Binary Optics: An Opportunity for Technical Exchange

    Get PDF
    The papers herein were presented at the Conference on Binary Optics held in Huntsville, AL, February 23-25, 1993. The papers were presented according to subject as follows: modeling and design, fabrication, and applications. Invited papers and tutorial viewgraphs presented on these subjects are included

    On design of hybrid diffractive optics for achromatic extended depth-of-field (EDoF) RGB imaging

    Get PDF
    A hybrid imaging system is a simultaneous physical arrangement of a refractive lens and a multilevel phase mask (MPM) as a diffractive optical element (DOE). The favorable properties of the hybrid setup are improved extended-depth-of-field (EDoF) imaging and low chromatic aberrations. We built a fully differentiable image formation model in order to use neural network techniques to optimize imaging. At the first stage, the design framework relies on the model-based approach with numerical simulation and end-to-end joint optimization of both MPM and imaging algorithms. In the second stage, MPM is fixed as found at the first stage, and the image processing is optimized experimentally using the CNN learning-based approach with MPM implemented by a spatial light modulator. The paper is concentrated on a comparative analysis of imaging accuracy and quality for design with various basic optical parameters: aperture size, lens focal length, and distance between MPM and sensor. We point out that the varying aperture size, lens focal length, and distance between MPM and sensor are for the first time considered for end-to-end optimization of EDoF. We numerically and experimentally compare the designs for visible wavelength interval [400-700]nm and the following EDoF ranges: [0.5-100]m for simulations and [0.5-1.9]m for experimental tests. This study concerns an application of hybrid optics for compact cameras with aperture [5-9] mm and distance between MPM and sensor [3-10]mm.Comment: 16 pages, 11 figures, 1 tabl

    On design of hybrid diffractive optics for achromatic extended depth-of-field (EDoF) RGB imaging

    Get PDF
    A hybrid imaging system is a simultaneous physical arrangement of a refractive lens and a multilevel phase mask (MPM) as a diffractive optical element (DOE). The favorable properties of the hybrid setup are improved extended-depth-of-field (EDoF) imaging and low chromatic aberrations. We built a fully differentiable image formation model in order to use neural network techniques to optimize imaging. At the first stage, the design framework relies on the model-based approach with numerical simulation and end-to-end joint optimization of both MPM and imaging algorithms. In the second stage, MPM is fixed as found at the first stage, and the image processing is optimized experimentally using the CNN learning-based approach with MPM implemented by a spatial light modulator. The paper is concentrated on a comparative analysis of imaging accuracy and quality for design with various basic optical parameters: aperture size, lens focal length, and distance between MPM and sensor. We point out that the varying aperture size, lens focal length, and distance between MPM and sensor are for the first time considered for end-to-end optimization of EDoF. We numerically and experimentally compare the designs for visible wavelength interval [400-700] nm and the following EDoF ranges: [0.5-100] m for simulations and [0.5-1.9] m for experimental tests. This study concerns an application of hybrid optics for compact cameras with aperture [5-9] mm and distance between MPM and sensor [3-10] mm.publishedVersionPeer reviewe

    Hybrid diffractive optics (DOE & refractive lens) for broadband EDoF imaging

    Get PDF
    In the considered hybrid diffractive imaging system, a refractive lens is arranged simultaneously with a multilevel phase mask (MPM) as a diffractive optical element (DOE) for Achromatic Extended-depth-of-field (EDoF) imaging. This paper proposes a fully differentiable image formation model that uses neural network techniques to maximize the imaging quality by optimizing MPM, digital image reconstruction algorithm, refractive lens parameters (aperture size, focal length), and distance between the MPM and sensor. Firstly, model-based numerical simulations and end-to-end joint optimization of imaging are used. A spatial light modulator (SLM) is employed in the second stage of the design to implement MPM optimized at the first stage, and the image processing is optimized experimentally using a learning-based approach. The third stage of optimization is targeted at joint optimization of the SLM phase pattern and image reconstruction algorithm in the hardware-in-the-loop (HIL) setup, which allows compensation for a mismatch between numerical modeling and the physical reality of optic and sensor. A comparative analysis of the imaging accuracy and quality using the optical parameters is presented. It is proved experimentally, first time to the best of our knowledge, that wavefront phase modulation can provide imaging of advanced quality as compared with some commercial multi-lens cameras.publishedVersionPeer reviewe

    Resolution enhancement in mask aligner photolithography

    Get PDF
    Photolithographie ist eine unentbehrliche Technologie in der heutigen Mikrofabrikation integrierter elektronischer Schaltungen und optischer Komponenten auf verschiedenen GrĂ¶ĂŸenskalen. Die zugrundeliegende Aufgabe ist die Replikation der gewĂŒnschten Struktur, die kodiert ist in einer Photomaske, auf einem photolackbedeckten Wafer. In vergangenen Jahrzehnten gab es eine beeindruckende Weiterentwicklung photolithographischer Anlagen, was Auflösungen weit unterhalb eines Mikrometers ermöglicht. Das einfachste photolithographische Instrument ist der Maskenjustierbelichter, bei dem die Photomaske und der Wafer entweder in Kontakt oder in unmittelbare NĂ€he gebracht werden (Proximity-Modus), ohne zusĂ€tzliche optische Komponenten dazwischen. Vor ĂŒber 50~Jahren eingefĂŒhrt bleibt der Maskenjustierbelichter aufgrund seines wirtschaftlichen Betriebs das Instrument der Wahl fĂŒr die Herstellung unkritischer Schichten, mit einer Auflösung von einigen Mikrometern im bevorzugten Proximity-Modus. Maskenjustierbelichter werden beispielsweise fĂŒr die Herstellung von Mikrolinsen, lichtemittierende Dioden und mikromechanischen Systemen verwendet. Die erreichbare laterale rĂ€umliche Auflösung ist letztlich begrenzt durch die Beugung des Lichts an den Strukturen der Photomaske, was zu VerfĂ€lschungen der Abbildung auf dem Photolack fĂŒhrt. In dieser Arbeit entwickeln, prĂ€sentieren und diskutieren wir mehrere Technologien zur Auflösungsverbesserung fĂŒr Maskenjustierbelichter im Proximity-Modus. Dies umfasst Photolithographie mit einer neuartigen Lichtquelle, die im tiefen Ultraviolett-Bereich emittiert, eine rigoros optimierte Phasenschiebermaske fĂŒr periodische Strukturen, optische Proximity-Korrektur (Nahbereichskorrektur) angewandt auf nichtorthogonale Geometrien, und die Anwendung optischer MetaoberflĂ€chen als Photomasken. Eine Reduzierung der WellenlĂ€nge verringert die Auswirkungen der Lichtbrechung und verbessert daher direkt die Auflösung, benötigt aber auch die Entwicklung geeigneter Konzepte fĂŒr die Strahlformung und Homogenisierung der Beleuchtung. Wir diskutieren die Integration einer neuartigen Lichtquelle, ein frequenzvervierfachter Dauerstrichlaser mit einer EmissionswellenlĂ€nge von 193 \,nm, in einem Maskenjustierbelichter. Damit zeigen wir erfolgreiche Prints von Teststrukturen mit einer Auflösung von bis zu 1,75 \,”m bei einem Proximity-Abstand von 20 \,”m. Bei Verwendung des selbstabbildenden Talboteffekts wird sogar eine Auflösung weit unterhalb eines Mikrometers fĂŒr periodische Strukturen erzielt. Außerdem diskutieren wir die rigorose Simulation und Optimierung der Lichtausbreitung in und hinter Phasenschiebermasken, die unter schrĂ€gem Einfall belichtet werden. Mit einem optimierten Photomaskendesign kann dabei die Periode bei Belichtung unter drei diskreten Winkeln verkleinert abgebildet werden. Dies erlaubt es, Strukturen deutlich kleiner als ein Mikrometer abzubilden, wobei die Strukturen auf der Photomaske deutlich grĂ¶ĂŸer und damit einfacher herzustellen sind. Zudem betrachten wir eine Simulations- und Optimierungsmethode fĂŒr die optische Proximity-Korrektur nicht-orthogonaler Strukturen, was deren Formtreue verbessert. die Wirksamkeit beider Konzepte bestĂ€tigen wir erfolgreich in experimentellen Prints. Die Verwendung optischer MetaoberflĂ€chen erweitert die FĂ€higkeiten zur Wellenfrontformung von Photomasken gegenĂŒber etablierten IntensitĂ€ts- oder Phasenschiebermasken. Wir diskutieren zwei Designs fĂŒr optische MetaoberflĂ€chen, die beide den vollen 2 π2\,\pi-Phasenbereich abdecken. Ein Design beinhaltet dabei noch einen plasmonischen Absorber, was zusĂ€tzliche Möglichkeiten bietet, den Transmissionskoeffizient anzupassen. Desweiteren beschreiben wir einen Algorithmus zur Berechnung des Maskenlayouts fĂŒr beliebige Strukturen. Eine kontinuierliche Weiterentwicklung von Maskenjustierbelichtern ist unerlĂ€sslich, um Schritt zu halten mit der fortschreitenden Miniaturisierung in allen Bereich der Optik, der Mechanik und der Elektronik. Unsere Forschungsergebnisse ermöglichen es, die Auflösung der optischen Lithographie im Proximity-Modus zu verbessern und sich damit den zukĂŒnftigen Herausforderungen der optischen Industrie stellen zu können
    • 

    corecore