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Abstract
In the considered hybrid diffractive imaging system, a re-

fractive lens is arranged simultaneously with a multilevel phase
mask (MPM) as a diffractive optical element (DOE). Extended
depth-of-field (EDoF) imaging and low chromatic aberrations are
the two potential advantages of the proposed hybrid setup. To
make use of these advantages, this paper proposes a fully differ-
entiable image formation model that uses neural network tech-
niques to maximize the imaging quality by optimizing MPM, dig-
ital image reconstruction algorithm, refractive lens parameters
(aperture size, focal length) and distance between the MPM and
sensor. In the first stage of the design framework, model-based
numerical simulations and end-to-end joint optimization of imag-
ing are used. A spatial light modulator (SLM) is employed at the
second stage of the design to implement MPM optimized at the
first stage, and the image processing is optimized experimentally
using a learning-based approach. The third stage of optimiza-
tion is targeted at joint optimization of the SLM phase pattern
and image reconstruction algorithm in the hardware-in-the-loop
(HIL) setup, which allows compensating a mismatch between nu-
merical modeling and physical reality of optics and sensor. A
comparative analysis of the imaging accuracy and quality using
the aforementioned optical parameters is presented. For the first
time, varying aperture sizes, lens focal lengths, and distances be-
tween MPMs and sensors for end-to-end optimization of EDoF
is considered. The numerical and experimental comparisons are
performed between the designs for the visible wavelength inter-
val [400-700] nm and the following EDoF ranges for simulations
and experiments [0.5-100] m and [0.5-2.0] m, respectively. Us-
ing SLM as a programmable DOE allows to study the potential
of imaging with wavefront phase modulation. It is proved exper-
imentally, first time to the best of our knowledge, that wavefront
phase modulation is able to provide imaging of advanced quality
as compared with some commercial multi-lens cameras.

Introduction
End-to-end optimization of diffractive optical element

(DOE) profile (e.g., binary/multi-level phase elements [1–3];
meta-optical elements included [4–8]) has gained increasing at-
tention in emerging applications such as photography [9, 10],
augmented reality [11], spectral imaging [12], microscopy [13],
among others that are leading the need for highly miniaturized op-
tical systems [14,15], etc. As part of the design methodology, nu-
merical differentiable model is built for propagation of light fields
through the physical setup in order to be used for modeling and
optimization methods employing neural networks. Particularly,
[16] proposes and studies the power-balanced diffractive hybrid
optics (lens and MPM), which is the methodology that will be

used in this study, as it entails the use of spatial light modulators
to encode light fields using MPM.

In this work, the elements of interest to be jointly designed
are MPM and image processing algorithms. The techniques and
algorithms used for this design take advantage of those devel-
oped in [16, 17]. As in [16], the targeted imaging problem is
Extended Depth-of-Field (EDoF) with reduced chromatic aber-
rations. We exploit a fully differentiable image formation model
for joint optimization of optical and imaging parameters for the
designed computational camera using neural networks. In partic-
ular, for the number of levels and Fresnel order features, we intro-
duce a smoothing function because both parameters are modeled
as piecewise continuous operations. As an alternative approach,
to bridging the gap between the numerical solution and real-world
physical implementation, we implemented end-to-end design of
the SLM pattern as DOE in optical setup through a ”hardware-in-
the-loop (HIL)” imaging setup, for achromatic EDoF RGB imag-
ing. In this case, we followed the mainstream of the design pro-
posed in [17]. Improvements in imaging is demonstrated as in it-
eration of optimization as well as in comparison of different DOE
designs: model-based and HIL-based.

This paper is an extension and further development of our
conference paper [18]. It proves experimentally (section ), first
time to the best of our knowledge, that wavefront phase modula-
tion is able to provide imaging of competitive quality as compared
with some commercial compound multi-lens cameras.

In this paper, we focus on practical aspects of design, espe-
cially on the imaging quality and accuracy as a function of basic
optical parameters: aperture size, lens focal length, MPM thick-
ness, the distance between MPM and sensor, and the F-number.
The designed systems are compared numerically and experimen-
tally for the wavelength range of (400− 700) nm and depth-of-
field range of (0.5 − 100) m and (0.5-2) m, respectively. The
study concerns the application of hybrid optics for compact cam-
eras with aperture (5−9) mm and lens focal length (3−10) mm.
We point out that the variables aperture size, lens focal length,
and distance between MPM and sensor are for the first time con-
sidered for end-to-end optimization of EDoF.

The contribution of this work can be summarized as follows.

• End-to-end optimization methodology for the joint design of
DOE, parameters of refractive lens and imaging algorithms,
showing high efficiency in terms of image accuracy and vi-
sual quality;

• Optimal hybrid setup in terms of the optimal balance be-
tween aperture size and lens focal length concluded from
multiple simulated experiments;

• Algorithms for using SLM as MPM in the hybrid optics with
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Figure 1. A light wave with a given wavelength and a curvature for a point

source at a distance d1 propagates to the aperture plane containing MPM

(refractive index n) to be designed. The MPM modulates the phase of the

incident wavefront. Using Fresnel propagation, the resulting wavefront prop-

agates through the lens to the aperture sensor, distance d2. The intensities

of the sensor-incident wavefront define PSFs of the diffractive hybrid optical

system.

learning-based CNN optimization of inverse imaging ;
• Showing the advance performance of HIL methodology

for co-design of SLM phase-pattern and inverse imaging
for achromatic EDoF compared with the model-based ap-
proach;

• The advanced achromatic EDoF imaging of the designed
system as compared with conventional compound multi-
lens cameras such as in smartphones.

Model-based End-to-End Optimization of
Imaging with Hybrid optics

The optical setup is depicted in Figure 1, where object, aper-
ture, and sensor are 2D flat, d1 is a distance between the object
and the aperture, d2 is a distance from the aperture to the sensor
(d2 ≪ d1), fλ0

is a lens focal length. In what follows, we use
coordinates (x,y), and (u,v) for aperture, and sensor planes, re-
spectively. In this section, we mainly follow the image formation
modeling and design optimization presented in [16]. These re-
sults are included for the completeness of the presentation and in
order to give a clear picture of our approach, methodology, and
algorithms.

Image Formation Model
PSF-based RGB imaging

Based on the Fresnel diffraction wavefront propagation, the
response of an optical system to an input wavefront is modeled as
a convolution of the system’s PSF and a true object-image. Let us
assume that there are both a lens and MPM in the aperture, then
a generalized pupil function of the system for intensity imaging
shown in Figure 1 is of the form (see Eqs. (5-23)-(5-28) in [19])

Pλ (x,y) = PA(x,y)e
jπ
λ

(
1

d1
+ 1

d2
− 1

f
λ

)
(x2+y2)+ jϕλ0 ,λ (x,y). (1)

In (1), fλ is a lens focal length for the wavelength λ , PA(x,y)
represents the aperture of the optics and ϕλ0,λ (x,y) models the
phase delay enabled by MPM for the wavelength λ provided that
λ0 is the wavelength design-parameter for MPM. In this formula,
the phase jπ

λ

(
1
d1
+ 1

d2

)(
x2 + y2) appears due to propagation of

the coherent wavefront from the object to the aperture (distance
d1) and from the aperture to the sensor plane (distance d2), and

− jπ
λ fλ

(
x2 + y2) is a quadratic phase delay due to the lens. For the

lensless system

Pλ (x,y) = PA(x,y)e
jπ
λ

(
1

d1
+ 1

d2

)
(x2+y2)+ jϕλ0 ,λ (x,y), (2)

and for the lens system without MPM, ϕλ0,λ (x,y)≡ 0 in (1).
In the hybrid system, which is the topic of this paper, the

generalized aperture takes the form

Pλ (x,y) = PA(x,y)e
jπ
λ

(
1

d1
+ 1

d2
− 1

f
λ

)
(x2+y2)+ jϕλ0 ,λ ,α (x,y), (3)

where the optical power of the hybrid is shared between the lens
with the optical power 1/ fλ and the MPM due to the quadratic
phase component included in the phase delay of MPM. The mag-
nitude of the latter phase is controlled by a real-valued parameter
α .

The PSF of the coherent monochromatic optical system for
the wavelength λ is calculated by the formula [19]

PSFcoh
λ

(u,v) = FPλ

(
u

d2λ
,

v
d2λ

)
, (4)

where FPλ
is the Fourier transform of Pλ (x,y). Then, PSF for

the corresponding incoherent imaging, which is a topic of this
paper, is a squared absolute value of PSFcoh

λ
(u,v). After normal-

ization, this PSF function takes the form

PSFλ (u,v) =

∣∣PSFcoh
λ

(u,v)
∣∣2∫∫

∞

−∞

∣∣PSFcoh
λ

(u,v)
∣∣2 dudv

. (5)

We calculate PSF for RGB color imaging assuming that
the incoherent radiation is broadband and the intensity registered
by an RGB sensor per c-band channel is an integration of the
monochromatic intensity over the wavelength range Λ with the
weights Tc(λ ) defined by the sensor color filter array (CFA) and
spectral response of the sensor. Normalizing these sensitivities on
λ , i.e.

∫
Λ

Tc(λ )dλ = 1, we obtain RGB channels PSFs

PSFc(u,v) =
∫

Λ
PSFλ (u,v)Tc(λ )dλ∫∫

∞

−∞

∫
Λ

PSFλ (u,v)Tc(λ )dλdudv
, c ∈ {r,g,b},

(6)

where the monochromatic PSFλ is averaged over λ with the
weights Tc(λ ).

Thus, for PSF-based RGB imaging, we take into consider-
ation the spectral properties of the sensor and in this way obtain
accurate modeling of image formation [20]. The OTF for (6) is
calculated as the Fourier transform of PSFc(u,v) :

OT Fc( fx, fy) =
∫∫

∞

−∞

PSFc(u,v)e− j2π( fxu+ fyv)dudv, (7)

where ( fx, fy) are the Fourier frequency variables.

From PSFs to Imaging
Let us introduce PSFs for defocus scenarios with the nota-

tion PSFc,δ (x,y), where δ is a defocus distance in d1, such that
d1 = d0

1 +δ with d0
1 equal to the focal distance between the aper-

ture and the object. Introduce a set D of defocus values δ ∈ D
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defining the area of the desirable EDoF. It is worth noting that the
corresponding optical transfer functions are used with the nota-
tion OT Fc,δ ( fx, fy). The definition of OT Fc,δ ( fx, fy) corresponds
to (7), where PSFc is replaced by PSFc,δ . Thus, let Is

c,δ (u,v)
and Io

c (u,v) be wavefront intensities at the sensor (registered fo-
cused/misfocused images) and the intensity of the object (true im-
age), respectively. Then, Is

c,δ (u,v) are obtained by convolving
the true object-image Io

c (u,v) with PSFc,δ (u,v) forming the set of
misfocused (blurred) color images

Is
c,δ (x,y) = PSFc,δ (x,y)⊛ Io

c (x,y), (8)

where ⊛ stays for convolution. In the Fourier domain, we have

Is
c,δ ( fx, fy) = OT Fc,δ ( fx, fy) · Io

c ( fx, fy). (9)

The indexes (o,s) stay for object and sensor, respectively.

EDoF Image Reconstruction
For image reconstruction from the blurred data

{Is,k
c,δ ( fx, fy)}, we use a linear filter with the transfer func-

tion Hc which is the same for any defocus δ ∈ D . We formulate
the design of the inverse imaging transfer function Hc as an
optimization problem

Ĥc ∈ argmin
Hc

1
σ2 ∑

δ ,k,c
ωδ ||Io,k

c −Hc · Is,k
c,δ ||

2
2 +

1
γ

∑
c
||Hc||22︸ ︷︷ ︸

J

, (10)

where k ∈ K stays for different images, Io,k
c and Is,k

c,δ are sets of
the true and observed blurred images (Fourier transformed), c for
color, σ2 stands for the variance of the noise, and γ is a Tikhonov
regularization parameter. The parameters ωδ > 0 are the residual
weights in (10). We calculate these weights as the exponential
function ωδ = exp(−µ · |δ |) with the parameter µ > 0. The norm
|| · ||22 is Euclidean defined in the Fourier domain for complex-
valued variables.

Thus, we aimed to find Hc such that the estimates Hc · Is,k
c,δ

would be close to FT of the corresponding true images Io,k
c . The

second summand stays as a regularizer for Hc. Due to (9), mini-
mization on Hc is straightforward leading to

Ĥc( fx, fy) =
∑

δ∈D

ωδ OT F∗
c,δ ( fx, fy)

∑
δ∈D

ωδ |OT Fc,δ ( fx, fy)|2 +
reg

∑k |I
o,k
c ( fx, fy)|2

, (11)

where the regularization parameter reg stays for the ratio σ2/γ .
Therefore, the reconstructed images are calculated as

Îo,k
c (x,y) = F−1{Ĥc · Is,k

c,δ }, (12)

where F−1 models the inverse Fourier transform. For the expo-
nential weight ωδ = exp(−µ · |δ |), µ > 0 is a parameter that is
optimized. The derived OTFs (11) are optimal to make the esti-
mates (12) efficient for all δ ∈ D , in this way, we are targeted on
EDoF imaging.

MPM Modeling and Design Parameters
In our design of MPM, we follow the methodology proposed

in [20]. The following parameters characterize the free-shape
piece-wise invariant MPM: h is the thickness of the varying part
of the mask, and N is the number of levels, which may be of dif-
ferent heights.

Absolute Phase Model
The proposed absolute phase ϕλ0,α for our MPM takes the

form

ϕλ0,α (x,y) =
−πα

λ0 fλ0

(x2 + y2)+β (x3 + y3)+
R

∑
r=1,r ̸=4

ρrPr(x,y).

(13)

The factor with λ0 in this equation is introduced for the proper
scaling of the MPM’s quadratic phase with the phase delay of the
refractive lens. The parameter α in this factor controls the opti-
cal power sharing between the lens and MPM. The cubic phase
of a magnitude β is a typical component for EDoF, and the third
group of the items is for parametric approximation of the free-
shape MPM using the Zernike polynomials Pr(x,y) with coeffi-
cients ρr to be estimated. We exclude from this approximation
the fourth Zernike polynomial defining the quadratic defocus term
because it is considered as the first item in ϕλ0,α (x,y).

Fresnel Order (thickness of MPM)
In radians, the mask thickness is defined as Q = 2πmQ,

where mQ is called ’Fresnel order’ of the mask which in general
is not necessarily integer. The phase mask profile of the thickness
Q is calculated as

ϕ̂λ0,α (x,y) = mod(ϕλ0,α (x,y)+Q/2,Q)−Q/2. (14)

The operation in (14) returns ϕ̂λ0,α (x,y) taking the values in the
interval [−Q/2, Q/2). The parameter mQ is known as ’Fresnel
order’ of the mask. For mQ = 1, this restriction to the interval
[−π , π) corresponds to the standard phase wrapping operation.

Number of Levels
The mask is defined on 2D grid (X ,Y ) with the computa-

tional sampling period (computational pixel) ∆comp. We obtain a
piece-wise invariant surface for MPM after the non-linear trans-
formation of the absolute phase. The uniform grid discretization
of the wrapped phase profile ϕ̂λ0,α (x,y) to the N levels is per-
formed as

θλ0,α (x,y) = ⌊ϕ̂λ0,α (x,y)/N⌋ ·N, (15)

where ⌊w⌋ stays for the integer part of w. The values of θλ0,α (x,y)
are restricted to the interval [−Q/2, Q/2). Q is an upper bound
for thickness phase of θλ0,α (x,y).

The introduced discretization and modulo functions are not
differentiable, therefore we use a smoothing approximation to be
able of optimizing the thickness and the number of levels of MPM
by gradient descent algorithms. The details of this approximated
function can be found in [16].

The mask is designed for the wavelength λ0. Thus, the piece-
wise phase profile of MPM for the wavelength λ is calculated as
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ϕMPMλ0 ,λ ,α
(x,y) =

λ0(n(λ )−1)
λ (n(λo)−1)

θλ0,α (x,y), (16)

where θλ0,α is the phase shift of the designed MPM and n(λ )
is the refractive index of the MPM material, x ∈ X ,y ∈ Y . The
MPM thickness h in length units is of the form

hλ0
(x,y) =

λ0

(n(λo)−1)
θλ0,α

2π
. (17)

Optimization Framework
Figure 2 illustrates the framework for optimizing the pro-

posed optical system using iterative NN algorithms and stochas-
tic gradient ADAM optimization. It can be downloaded from Py-
Torch with an optimized tensor library for Neural Network (NN)
learning using GPUs 1. Some details concerning this framework
are given in what follows in this section.

Loss Function
Let Θ be a full set of the optimization parameters defined as

Θ = (α,β ,ρr,reg). (18)

Then, we use the following multi-objective formulation of our op-
timization goals

Θ̂ = argmax
Θ

(PSNR(Θ,δ ),δ ∈ D). (19)

In this formulation, we maximize all PSNR(Θ,δ ), δ ∈ D , simul-
taneously, i.e. to achieve the best accuracy for all focus and defo-
cus situations. Here, PSNR(Θ,δ ) is calculated as the mean value
of PSNRk(Θ,δ ) over the set of the test-images, k ∈ K:

PSNR(Θ,δ ) = meank∈K(PSNRk(Θ,δ )). (20)

There are various formalized scalarization techniques reduc-
ing the multi-objective (vector) criterion to a scalar one. Usu-
ally, it is achieved by aggregation of multiple criteria in a sin-
gle one (e.g. [21]). In this paper, we follow pragmatical heuris-
tics comparing PSNR(Θ̂,δ ) as the 1D functions of δ in order to
maximize PSNR(Θ,δ ) for each δ ∈ D . Here, Θ̂ are estimates
of the optimization parameter. In this heuristic, we follow the
aim of the multi-objective optimization (19). In developing the
proposed optimization framework, the main challenges included
satisfying manufacturing constraints, finding stable optimization
algorithms, and fitting models within memory constraints.

Parameters for MPM design and simulation tests
The sensor’s parameters used in simulation correspond to the

physical sensor used in our experiments: pixel size 3.45 µm and
resolution 512×512 pixels. The Fourier transform for PSFs cal-
culations are produced on the grid 3000× 3000 of the computa-
tional pixel size ∆comp=2 µm, defining discretization of lens and
MPM. We fixed the number of MPM levels to N = 52 and Fresnel
order to mQ = 1, the latter restricts the MPM phase wrapping to

1The Pytorch library https://pytorch.org/

the interval [−π , π). The optimization stage includes finding the
optimal α,β ,ρr for the MPM design and reg for the image inverse
reconstruction using the Adam stochastic gradient descent solver
with the step-size 5×10−3.

We analyze and compare the hybrid optics of different lens
diameters (aperture size of hybrid) taking values (5,6,7,9) mm
and lens focal length taking values f = (3,5,7,10) mm. The focus
imaging distance for the hybrid is fixed to d0

1 = 1 m. For each lens
focal length f , d2 is calculated according to the focusing equation
1
d0

1
+ 1

d2
= 1

f . These values of d2 are very close to f . It was con-
cluded from our tests that R = 14 (Zernike coefficients excluding
the fourth polynomial in (13)) is enough and larger values of R do
not improve image quality significantly. The design wavelength
is λ0 = 510 nm. An additive white Gaussian noise is included
in observations with variance equal to 1 × 10−4. We choose
31 wavelengths, with step 10 nm, covering the visual interval
(400− 700) nm to model RGB imaging. To enable EDoF imag-
ing, we use Wiener filtering with d1 = 0.5,0.6,0.7,1.0,1.9,10,
and 100.0 m. These d1 define the defocus parameter δ in (11)
as δ = d1 − d0

1 . The optimization stage employs 200 epochs,
which takes approximately 6 hours on NVIDIA GeForce RTX
3090 GPU with a memory of 24GB.

Data sets for optimization and tests
For optimization and training, we chose 3550 high-

resolution RGB images from databases 2. For testing the de-
signed systems, we used 200 high-resolution RGB images from
the same databases which are not included in the training set. In
what follows, all illustrative materials (tables, curves, and images)
are given for these test images.

Simulation Tests and First Stage of Optimiza-
tion

In this section, we design the phase profiles for MPM in the
hybrid optical setup with different aperture sizes (5, 6, 7, and 9)
mm and lens focal lengths (3. 5, 7, and 10) mm. Our intention
is to find combinations of these physical parameters for the best
achromatic EDoF imaging. The corresponding numerical results
obtained by simulation using the end-to-end joint optimization
of optics and inverse imaging algorithms are presented in Table
1. The reported PSNRs are averaged over 7 depth (defocus) dis-
tances d1 from the interval (0.5 - 100.0) m and over 200 RGB test
images.

The imaging accuracy is evaluated and reported in two ver-
sions: PSNRRGB calculated for each of the color channels sep-
arately (column 4), and PSNRtotal calculated for all three color
channels jointly (column 3). The best result (highest values
of PSNR) is achieved by the setup with 6 mm aperture size
and 5 mm lens focal length. These physical parameters result
in F-number=0.83 and a 70.5-degree field of view (FOV). The
PSNRtotal value for this case is equal to 44.23 dB, but it degrades
dramatically for larger and smaller focal lengths within the fixed
diameter. If we compare the PSNR for the color channels sep-
arately, the values for 6mm diameter designed hybrid optics are
highest (all above 41 dB) and more or less the same for all color
channels.

2https://data.vision.ee.ethz.ch/cvl/DIV2K/, and http:
//cv.snu.ac.kr/research/EDSR/Flickr2K.tar.
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Figure 2. The optimal design framework of phase-encoded optics and image reconstruction algorithms for achromatic EDoF. The spectral PSFs are convolved

with batches of RGB ground-truth images. Inverse imaging provides estimates of these images. Finally, a quality/accuracy loss L , such as mean squared error

with respect to the ground-truth images (or PSNR criterion), is defined on reconstructed images.

Comparative performance of the hybrid optics: different lens diameter (aperture size) and lens focal length.
Diameter

(mm)
Focal length

(mm) PSNRtotal(dB) PSNR per channel F -number FOV
(degree)R G B

5

3 31.48 28.43 34.61 31.64 0.6 99.3
5 41.58 43.20 44.65 39.82 1 70.5
7 38.75 39.44 42.71 35.98 1.4 53.6

10 36.29 36.98 40.11 31.84 2 38.9

6

3 25.64 23.12 27.21 22.89 0.5 99.3
5 44.23 44.92 46.81 41.74 0.83 70.5
7 36.61 39.41 40.87 30.29 1.17 53.6

10 33.66 32.22 34.07 29.46 1.66 38.9

7

3 25.8 25.29 29.77 21.58 0.43 99.3
5 33.28 29.09 37.09 29.47 0.71 70.5
7 36.14 34.61 39.26 29.93 1 53.6

10 31.65 28.41 33.20 29.86 1.43 38.9

9

3 24.21 24.74 27.46 19.59 0.33 99.3
5 26.43 22.45 28.40 26.05 0.54 70.5
7 34.79 29.08 39.10 30.19 0.76 53.6

10 30.97 31.00 36.25 26.09 1.08 38.9

Note also, that for each lens diameter there is an optimal lens
focal length and this optimal value is close to the diameter size.
The optimal focal lengths for the diameters (5, 6, 7, and 9) mm
are (5, 5, 7, and 7) mm, respectively. We may conclude that the
lens focal length plays a crucial role in hybrid optics and there is a
trade-off between imaging quality and FOV. Smaller focal length
(in Table 1, 3 mm) gives wider FOV at expense of less imaging
accuracy. This conclusion is valid for all lens diameters in Table
1.

Further information on the comparative performance of the
imaging system with the optimized hybrid optics can be seen in
Figure 3. Here we present PSNR curves as functions of d1 (dis-
tance between the object and optics) averaged over 200 test im-
ages. The four curves are given for the four values of lens diam-
eter with the corresponding optimal lens focal length as shown in
Table 1.

The uniformly best performance is achieved by the 6 mm
aperture hybrid optics with f0 = 5mm. For this case, the PSNR
value is about 37dB for the defocus point d1 = 0.5m. The peak of
this curve is at d1 = 1.0m with PSNR=50dB. Remind, that this is
a focus point of the system. For larger defocus distances, d1 > 1,
PSNR takes lower values which are nevertheless close to 45 dB,
which guarantees high-quality imaging. The hybrid with the 5
mm aperture and f0 = 5mm also demonstrates a very good per-

formance with slightly lower PSNR values. For the two other
cases: D = 7, f0 = 7 mm and D = 9, f0 = 7 mm, we can see a
much worse performance with PSNR values lower from 5 to 10
dB as compared with the best ones.

The spectral performance of the best-optimized hybrid sys-
tem (D= 6mm and f0 = 5mm) characterized by PSNRs calculated
for the RGB channels as functions of d1 is presented in Figure 4.
These curves with PSNRs averaged over 200 test-images show
the accuracy of imaging for each color channel and depth d1. The
PSNRtotal , black curve in Figure 4, shows the accuracy as a func-
tion of d1 calculated for all spectral channels simultaneously as
averaged over 200 test-images. The color channel curves mainly
follow the behavior of PSNRtotal . All these spectral curves are
well above the 35 dB line confirming high-accuracy imaging for
all d1 and all spectral channels.

Figure 5 illustrates a visual performance of the designed hy-
brid systems of different diameters (D = 5,6,7,9) mm with the
optimal lens focal length as defined in Table 1. The reconstructed
images and their small fragments are shown for the distances
d1 = (0.5,1.0,100.0) m. The color channel’s PSNR values are
shown in these images. Thus, the comparison can be produced
visually and numerically. The optimized phase profiles of MPMs
are shown in this first row of Figure 5.

Comparing these results, we may conclude, that the best re-
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Figure 3. PSNR curves of the optimized hybrid setups with 4 different

aperture size D= (5, 6, 7, and 9) mm as a function of distance from the scene

to the optics (d1). The optimized hybrid setups with 5 and 6 mm diameters

perform in the best way with more or less uniform PSNR values which are

well above the good imaging quality line, PSNR = 35 dB, for all depths. The

advantage of hybrid optics with D = 6 mm versus D = 5 mm is obvious of

about 1 to 2 dB of PSNR values for each distance. The imaging with D = (7

and 9) mm shows good results in the vicinity of the system focal point (d1 =

1m), but the performance is dropped for far and even quite close distances.

Figure 4. The spectral performance of the best-optimized hybrid system

(D = 6mm and f0 = 5mm) is characterized by PSNRs calculated for the RGB

channels as functions of d1. All curves are above the good imaging quality

line of 35 dB. The curves for color components mainly follow the behavior of

the total PSNR curve (black).

sults are achieved by the 5 mm and 6 mm diameter aperture sizes
(columns 2 and 3) with an advantage of the latter one. For in-
stance, for d1 = 0.5m, the improvement in PSNR is about 2 to 4
dB for color channels in favor of the hybrid optics with a 6 mm
lens diameter. Moreover, details and colors are better preserved in
this case. This best setup provides uniformly better imaging qual-
ity for various depths and colors. The zoomed fragments of the
reconstructed images visually reveal clearly that the hybrid optics
with 7 and 9 mm diameters (columns 4 and 5) are suffering from
strong chromatic aberrations and are quite blurry.

The advantage of the best hybrid optics with D = 6 mm and
f0 = 5 mm is well seen as compared with its counterparts, which
is in direct agreement with the results shown in Table 1. Ad-
ditionally in Figure 6, for this best hybrid system, we show the
cross-sections of PSFs for the three RGB channels and for the
distances d1 used in Figure 5. These cross-section curves are well
consolidated, which explains a source of the good performance of
the imaging system for different distances d1 and different color
channels. The forthcoming optimization results and experimental

tests in the following sections are produced for the hybrid optics
with the found optimal D = 6 mm, f0 = 5 mm.

Physical Experiments and Second/Third
Stages of Optimization
Optical Setup and Equipment

In this work, to implement our hybrid optics and in order
to avoid building several MPM to physically analyze the perfor-
mance of our camera, we build an optical setup based on a pro-
grammable phase SLM to exploit its phase capabilities to inves-
tigate the performance of the designed hybrid setup. The optical
setup is depicted in Figure 7(a), where ’Scene’ denotes objects
under investigation; the polarizer, ’P’, keeps the light polarization
needed for a proper wavefront modulation by SLM; the beam-
splitter, ’BS’, governs SLM illumination and further light passing;
the lenses ’L1’ and ’L2’ form a 4f-telescopic system transferring
the light wavefront modified by SLM to the lenses ’L3’ and ’L4’
plane; the lenses ’L3’ and ’L4’ forms an image of the ’scene’ on
the imaging detector, ’CMOS’. We use two lenses ’L3’ and ’L4’
tightly fixed to each other in order to get the hybrid’s lens, as in
Figure 1, of a smaller focal length: f0 = f1/2, where f1 is the
focal length of ’L3’ and ’L4’.

For physical modeling of MPM phase delay, we use SLM:
the Holoeye phase-only GAEA-2-vis SLM panel, resolution
4160× 2464, pixel size 3.74 µm. ’L1’ and ’L2’ are achromatic
doublet lenses with diameter 12.7 mm and focal length 50 mm;
Two BK7 glass lenses ’L3’ and ’L4’are of diameter 6 mm and
focal length 10.0 mm which results in f0 = 5.0 mm; ’CMOS’
Blackfly S board Level camera with the color pixel matrix Sony
IMX264, 3.45 µm pixel size and 2448×2048 pixels. This SLM
allows us to experimentally study optical hybrid imaging with
an arbitrary phase-delay distribution for the designed MPM. The
MPM phase was created as an 8-bit *.bmp file and imaged on
SLM. We calibrated the SLM phase-delay response to the maxi-
mum value of 2.0π for wavelength equal to 510 nm. This 2.0π

corresponds to the value 255 of *.bmp file for the phase-delay
image of MPM.

Figure 7(a) illustrates the architecture of the developed op-
tical setup with SLM and the photo of the corresponding hard-
ware. Figure 7(b) shows the photo of this hardware with three
monitors displaying the scenes (images) with three fixed distances
d1 = (0.5,1.0,1.8) m. The imaging monitors have a resolution of
1920× 1080 and 570ppi. The distance d1 = 1.0 m is the focal
point of the optical system.

Optimization of image reconstruction provided
a fixed MPM: learning-based approach (Second
stage of optimization)

This optimization is used in our physical experimental works
provided that the optimized phase-delay profile of MPM with
D= 6 mm, obtained in the model-based approach, is implemented
by SLM. The outputs of the sensor are blurred images registered
for a sequence of the train dataset images displayed on three moni-
tors at three different depths, d1 =(0.5,1.0,1.8 m). Convolutional
Neural Network (CNN) is used to fit these blurred images to the
known true target images. In this way, CNN designs the inverse
imaging algorithm defined by the CNN parameters. For optimiza-
tion, we exploit the stochastic gradient ADAM optimizer. The
training process is running for 3550 high-quality images on three
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Figure 5. Visual performance of the designed hybrid systems is illustrated for different diameters (D = 5,6,7,9) mm with the optimal lens focal length as defined

in Table 1. The reconstructed images and their small fragments are shown for the distances d1 = (0.5,1.0,100.0) m. The color channel’s PSNR values are shown

in these images. Thus, the comparison can be produced visually and numerically. High-quality imaging for different colors and depths is achieved by the optical

hybrid setups with 6 and 5 mm diameter and 5 mm focal lengths (columns 2 and 3). In contrast, the results for 7 and 9 mm diameters (columns 4 and 5) are

suffering from strong chromatic aberration and the performance is degrading especially for off-focus distances d1 = 0.5 and d1 = 100.0 m. The optimized phase

profiles of MPMs are shown in the first row of the image.

monitors which gives in a total of 10650 registered images. The
network has been trained for 320 epochs which takes two weeks
on NVIDIA GeForce RTX 3090 GPU.

Figure 8 illustrates an architecture of CNN used in our ex-
periments (DRUNet CNN [22]). We remark that this network has
the ability to handle various noise levels for an RGB image, per
channel, via a single model. The backbone of DRUNet is U-Net
which consists of four scales. Each scale has an identity skip con-
nection between 2× 2 strided convolution (SConv) downscaling
and 2× 2 transposed convolution (TConv) upscaling operations.

The number of channels in each layer from the first scale to the
fourth scale are 64, 128, 256, and 512, respectively. Four succes-
sive residual blocks are adopted in the downscaling and upscaling
of each scale. Each residual block only contains one ReLU acti-
vation function. The proposed DRUNet is bias-free, which means
no bias is used in all the Conv, SConv and TConv layers [22].

An appropriate loss function is required to optimize the in-
verse imaging to provide the desired output. Thus, we use a
weighted combination of PSNR between estimated and ground
truth images ( LPSNR), perceptual loss, and adversarial loss which
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Figure 6. For the best hybrid system (D = 6 mm, f0 = 5 mm), we show

the cross-sections of the spectral PSFs for the three RGB channels and for

the distances d1 used in Figure 5. These cross-section curves are well con-

solidated, which explains the good performance of the imaging system for

different distances d1 and different color channels.

Figure 7. Experimental optical setup. Figure (a) illustrates the architecture

of the optical setup with SLM and the photo of the corresponding hardware.

P is a polarizer, BS is a beamsplitter, SLM is a spatial light modulator. The

lenses L1 and L2 form the 4 f -telescopic system projecting wavefront from the

SLM plane to the imaging lenses L3 and L4, CMOS is a registering camera.

d1 is the distance between the scene and the plane of the hybrid optics (L3

and L4) and d2 is the distance between this hybrid optics and the sensor.

Figure (b) shows the photo of this hardware with three monitors displaying

the scenes (images) of three fixed distances d1 = (0.5,1.0.1.8) m.

are given below.
Perceptual loss: To measure the semantic difference be-

tween the estimated output and the ground truth, we use a pre-
trained VGG-16 [23] model for our perceptual loss [24]. We
extract feature maps between the second convolution (after ac-
tivation) and second max pool layers ϕ22, and between the third
convolution (after activation) and the fourth max pool layers ϕ43.
Then, the loss LPercep is the averaged PSNR between the outputs
of these two activation functions for both estimated and ground
truth images.

Adversarial loss: Adversarial loss [25] was added to fur-
ther bring the distribution of the reconstructed output close to
those of the real images. Given the swish activation function [26]
as our discriminator D, this loss is given as LAdv =− log(D(Iest))
where Iest models the estimated image.

Our total loss for the proposed CNN inverse imaging while
training is a weighted combination of these three losses and
is given as, LCNN = σ1LPSNR + σ2LPercep + σ3LAdv, where,
σ1,σ2 and σ3 are empirical weights assigned to each loss. In this
work, these constant are fixed as σ1 = 1.0,σ2 = 0.6, and σ3 = 0.1.

Lastly, the parameters of this networks are to be optimized.
In Figure 9 we report an evaluation of PSNR versus a number

of epochs. From these results, we can see that the quality achieved
by CNN for the designed hybrid system is quite high for the train-
ing data set. Illustrating reconstructed images chosen among the
testing dataset are presented for epochs 0, 100, and 320. It could
be seen that the trained network performs well and the output im-
age for epoch 320 is sharp enough. The practical value of this
approach to image processing design follows from using physical
modeling of image formation including in particular wavefront
propagation and mosaicing/demosaicing operations.

Experimental Results: model-based SLM
In this section, we present the results of two types of experi-

ments. In the first one, the test-images are displayed on the three
monitors as in Figure 7(b), the observations are blurred and the
images are reconstructed by the trained CNN. These results are
shown in Figure 10. In this scenario, we presented and evaluated
the quality of reconstructions visually as well as numerically by
PSNR values for each of the RGB color channels.

In the second type of experiments, we image a scene com-
posed of different objects arbitrarily located within the range (0.4-
1.9) m from the hybrid optics. This optical setup is used to eval-
uate the performance of the designed system in a real-world sce-
nario for the EDoF imaging task. The performance of the de-
signed system is compared with the compound multi-lens com-
mercial smartphone camera. These results can be seen in Figure
11.

The results in Figure 10 are presented in 7 columns for three
depth distances: d1 = 0.5 m (columns 2 and 3), d1 = 1.0 m
(columns 4 and 5), and d1 = 1.8 m (columns 6 and 7). The
Groundtruth column shows the true images. Two images from
the test dataset are presented in this figure for comparison (rows
1 and 3) with one zoomed region (rows 2 and 4). We can see
the zoomed fragments of the blurred noisy images on the sensor
used for CNN image reconstruction as well as the corresponding
reconstructed images. The zoomed sections for blurry and recon-
structed images visually reveal that the images are sharp and clear
enough and the quality of imaging is high and more or less the
same for different depths. Besides, the colors are well preserved
properly along with distances. If we compare the results numeri-
cally by PSNR, we could conclude that the PSNR values for dif-
ferent colors and depths are more or less the same at about 23 dB.
It confirms that the designed hybrid imaging indeed demonstrates
achromatic EDoF imaging.

The imaging results for the real-scene scenario are presented
in Figure 11. The scene consists of 5 objects located at different
distances from 0.4 m to 1.9 m, approximately: d1 = 0.4 m (Train
Wagon), 0.65 m (Locomotive), 1.15 m (ThorLab snack box),
1.2 m (Dwarf Christmas Santa Claus Doll), and 1.9 m (Panda toy).
It is worth mentioning, that for smartphone (compound optics),
we adjusted the focusing distance to d1 = 1.0 m as it is for the
hybrid system. The hybrid diffractive imaging is compared with
imaging by the smartphone camera (column 1).

For the designed hybrid, two image reconstruction tech-
niques are demonstrated: model-based (column 2) and learning-
based (column 3). In the model-based algorithm, the scene is
reconstructed using the calculated color channel PSFs and the in-
verse imaging according to Eq. (12). After this step, a denoising
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Figure 8. Inverse imaging UNet-based neural network architecture. The generator model is a U-net architecture that has seven scales with six consecutive

downsampling and upsampling operations [22]. We adopt a weighted combination of PSNR between estimated and ground truth images, LPSNR, and perceptual

losses LAdv and LPercep, with weights σ1,σ2, and σ3.

Figure 9. Performance of CNN for design of inverse imaging algorithm.

The quality achieved by CNN starts from 20.5 dB and reaches 23.8 dB of

PSNR for the training image set. The reconstructed images over the testing

dataset are presented for three epochs 0, 100, and 320 for visualization of

the training process. It could be seen that the trained network performs well

for this task and the output image for epoch 320 is sharp enough.

process equipped with a sharpening procedure [27] is performed
over the estimated scene to improve the quality of imaging. This
final denoised image is returned as the estimated scene from ex-
perimental data. Contrary to it, the learning-based inverse imag-
ing uses the trained UNet. For a detailed comparison, the four
zoomed fragments of the images are shown in rows 4, 5, 6, and 7
which correspond to the scene’s objects of different out-of-focus
distances. Comparing columns 2 and 3, we may note an obvious
advantage of learning-based inverse imaging. The model-based
approach is not able to recover all details, the output image is still
blurry, and chromatic aberrations are strong. There are a number
of reasons for this huge gap. First of all, it concerns a mismatch
between reality and the analytical modeling of image formation
by PSFs. Second, the mosaicing/demosaicing are not included in
our modeling. The leaning-based approach allows successfully
compensate these drawbacks of the analytical modeling.

Comparison of the learning-based hybrid imaging (column
3) versus the smartphone camera imaging (column 1) results in
an exciting conclusion about a quite clear advantage of hybrid
diffractive imaging. This advantage is obvious in the sharpness
of images for all distances. Thus, hybrid imaging demonstrates
high-quality all-in-focus imaging. Concerning color aberrations:
red and green perhaps not be properly presented by the hybrid but
the white color is definitely perfect. Thus overall, hybrid diffrac-
tive imaging can be tread at least as quite competitive and even

advanced with respect to the commercial smartphone with multi-
lens optics. Here we need to note that the white balance and γ

correction procedure have been produced for the images recon-
structed by the hybrid system in order to have a fair comparison
with the smartphone camera.

Experimental Results: optimized HIL-SLM (Third
stage of optimization)

In this section, we use the HIL methodology for the joint
design of optimal phase pattern for SLM and image reconstruc-
tion algorithm. Both DOE design and NN techniques for imag-
ing are already used jointly in the frame of HIL methodology in
our recent work [17] for imaging systems with an aperture of 9.2
mm and the lens focal distance 10 mm. The experimental results
shown in [17] demonstrated a serious advantage in imaging nu-
merically and visually versus the model-based design as well as
compared with the compound commercial multi-lens optics in all-
in-focus imaging for the depth range of 0.4-1.9 m.

In this section, we produce the third stage optimization of
SLM profile and image reconstruction algorithm for 6 mm aper-
ture and 5 mm focal length. Following the mainstream of the
approach proposed in [17], we use the phase profile designed by
the model-based end-to-end optimization approach (optimization
stage 1) as the starting point of this third stage optimization. The
initialization for the image processing is done using the algorithm
also obtained at the first stage of optimization.

Optimization of SLM requires specific instruments as in the
HIL setup SLM is considered as a part of the black box of an
unknown mathematical model. Thus, the derivatives usually re-
quired in NN optimization cannot be calculated. For optimization
of SLM, as in [17], we use the derivative-free 0th-order stochas-
tic evolutionary search method CMA-ES [28] which updates the
shape of the phase-profile implemented on SLM (tuning α , β , and
ρr in (13)).

It is important to emphasize that the use of a programmable
phase SLM as DOE and its end-to-end optimization in the HIL-
SLM setup will ensure phase modulation is properly physically
modeled without any discrepancy between mathematical models
and the physical reality typical for conventional model-based ap-
proaches. Overall, the design algorithm proposed in our recent
work [17] follows an alternating iteration methodology: fixing
the hyperparameter of SLM we produce optimization of the in-
verse imaging algorithm, what follows by optimization of SLM
assuming that SLM parameters and so forth. The third stage of
optimization in this paper assumes only two steps of this gen-
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Figure 10. Results for three monitor setup over the testing dataset. The reconstructed images with the zoomed region at three different distances (imaging

monitor-SLM): d1 = 0.5,1.0,1.8 m, for the optimized hybrid system. The PSNR values are reported for each depth and each color channel separately. High-quality

imaging with PSNR values of about 23 dB for different imaging depths and colors is achieved by the designed hybrid.

eral procedure. First, we produce optimization of SLM provided
the fixed image processing as found at the second stage optimiza-
tion and after that, we optimize the inverse imaging assuming that
SLM is fixed.

The results of this design and their comparison with those
obtained provided SLM phase obtained by the model-based
methodology (second stage of optimization) are shown in Fig-
ure 12 for the three monitor scenario. We wish to note that this
figure is an analog to Figure 10 with results of the first and sec-
ond stage optimization. The images displayed on three monitors
and captured by two different phase profiles SLM (model-based
and HIL-based) are chosen among the set of the test-images dif-
ferent from those in Figure 10. Column 1 shows the true images
as displayed by the three monitors for different depths. We also
presented blurred images on the sensor (columns 2 and 4) and im-
ages after reconstruction (columns 3 and 5) for each optimized
system. Columns 2 and 3 correspond to model-based SLM (sec-
ond stage optimization) and columns 4 and 5 correspond to the
SLM optimized in the HIL methodology following optimization
of image processing (third stage optimization). The rows in Fig-
ure 12 show images and their enlarged fragments obtained for
different distances d1. As can be seen, the HIL optimized phase
profile of SLM is quite different from that obtained due to the
model-based technique (row 1). The numerical advantage of the
HIL optimized SLM follows from a comparison of PSNR values
calculated for each of the RGB channels separately. The visual
comparison is also in favor of the HIL optimized SLM which is
in particular clear from the visualization of the image fragments.

For the real-scene experiments scenario, we arranged a scene
composed of toys (different from those in Figure 11) located

within the range (0.3-2.0) m from the optics. The imaging perfor-
mance of the two designed diffractive imaging systems are com-
pared also with imaging by the compound multi-lens commercial
camera of smartphone. These results are depicted in Figure 13.
The scene consists of 7 toys in different distances from the optics,
approximately: d1 = 0.3 m (Pine Tree), d1 = 0.6 m (Locomotive),
d1 = 0.8 m (Mouse), d1 = 1.0 m (Stacking Cups), d1 = 1.2 m
(Snake), d1 = 1.9 m (Bear), and d1 = 2.0 m (Dwarf Christmas
Santa Claus Doll).

For the two hybrid designs, registered blurry images on the
sensor are presented (columns 2 and 4) along with the correspond-
ing reconstructed images (columns 3 and 5). The images obtained
by the smartphone camera are shown in column 1. For more de-
tails, the four zoomed fragments of the images are shown in rows
3, 4, 5, and 6 corresponding to the scene’s objects of different
out-of-focus distances. Comparing the output images after recon-
struction for the hybrid designs, columns 3 and 5, we may note
an obvious advantage of the HIL-based design as compared with
the model-based one. The color is better preserved and the im-
ages are sharper for the HIL-based design for both registered and
recovered images. In comparison with smartphone camera impor-
tant to note that the diffractive imaging is at least not worse. Even
more, comparing the performance of the HIL-based hybrid design
(column 5) versus the smartphone (column 1) we may conclude
that performance of the HIL-SLM system is more or less the same
for all distances d1, while it is not true for the smartphone cam-
era, which, in particular, shows the worse result for very close and
far distances (d1 = 0.3 m, d1 = 1.9 m, and d1 = 2.0 m). On the
other hand, imaging of the objects at close to the focal distance
d1 = 1.0 m (Stacking Cups, Mouse, and Snake) are sharper in the
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Figure 11. Comparison of the designed hybrid diffractive imaging versus

the compound lens camera of smartphone. For the designed hybrid, two im-

age reconstruction approaches are employed (columns 2 and 3) to recover

the blurred image on the sensor: Model-based and learning-based. The ob-

tained images are presented in row 3 with their enlarged fragments in rows 4,

5, 6, and 7 corresponding to four off-focus distances d1 = 0.4,0.65,1.2,1.9 m,

respectively. By comparing the results over the recovering approaches in the

designed hybrid (columns 2 and 3), the advantage of using a deep UNet-

style CNN is clear. For the smartphone camera, the imaging quality is not

good for close and far distances. The visual advantage in sharpness and

color preservation is clearly in favor of the designed hybrid imaging.

smartphone image.

Conclusion
For the first time, aperture size, lens focal length, and dis-

tance between MPM and sensor are considered as optimization
variables for diffractive achromatic EDoF imaging. This paper
demonstrated the success of the design and end-to-end optimiza-
tion proposed for computational imaging with optics composed
of a single refractive lens and a diffractive phase-encoded MPM.
Specifically, the designed imaging system is clearly superior to
the multi-lens smartphone camera in terms of comparisons with
imaging powered by the phone. An important novelty proposed
in this paper is a physical modeling of MPM by SLM that allows
for the online design of free-shape phase encoding for diffractive

Figure 12. Comparison of the performance of the designed DOE in 3 mon-

itor setup hybrid imaging over testing dataset for two different end-to-end op-

timization approaches: model-based and HIL methodology. For each of the

designed systems, a deep UNet-style CNN image reconstruction approach

is employed (columns 3 and 5) to recover the blurred image on the sensor.

The obtained images are presented in rows 1, 3, and 5 with their enlarged

fragments in rows 2, 4, and 6 corresponding to the monitor distances from

the camera d1 = 0.5,1.0, and 1.8 m, respectively. The PSNR values over RGB

channels are reported for each depth separately after image reconstruction.

The uniform and high-quality imaging is achieved over depths and colors

with PSNR values of about 25 dB for the hybrid setup optimized by the HIL

methodology. As a counterpart, this value is about 24 dB for the hybrid setup

with a phase pattern achieved by an analytical end-to-end optimization.

optics, thereby eliminating the mismatch between theoretical im-
age formation models and physical reality. Experimental works
confirm a strong advantage of DOE design using SLM for the
programmable phase tuning in the proposed HIL methodology.
Comparing with the commercial phone camera, the proposed hy-
brid system demonstrates quite competitive high-quality imaging.
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[1] Lévêque, Olivier, et al. ”Co-designed annular binary phase masks for

depth-of-field extension in single-molecule localization microscopy.”
Optics Express 28.22 (2020): 32426-32446.

[2] Baek, Seung-Hwan, et al. ”End-to-end hyperspectral-depth imaging
with learned diffractive optics.” (2020).

IS&T International Symposium on Electronic Imaging 2023
Image Processing: Algorithms and Systems XXI 287-11



Figure 13. Comparison of the designed DOE in real-scene scenario hybrid imaging for two different end-to-end optimization approaches: model-based and

HIL methodology versus the compound lens camera of smartphone. For each of the designed systems, a deep UNet-style CNN image reconstruction approach

is employed and trained separately (columns 3 and 5) to recover the blurred image on the sensor (columns 2 and 4). The obtained images are presented in row

2 with their enlarged fragments in rows 3, 4, 5, and 6 corresponding to four off-focus distances from the camera d1 = 0.3,1.2,1.9, and 2.0 m, respectively. By

comparing the imaging results after reconstruction over the end-to-end optimization approaches for the hybrid design (columns 3 and 5), the advantage of the

HIL-based method is clear. Overall, uniform and high-quality imaging is achieved over depths and colors. For the smartphone camera, the imaging quality is not

good for close and far distances. The visual advantage in uniform sharpness and color preservation is clearly in favor of the designed hybrid imaging.

287-12
IS&T International Symposium on Electronic Imaging 2023

Image Processing: Algorithms and Systems XXI



[3] MiriRostami, SeyyedReza, Vladimir Y. Katkovnik, and Karen O.
Eguiazarian. ”Extended DoF and achromatic inverse imaging for lens
and lensless MPM camera based on Wiener filtering of defocused
OTFs.” Optical Engineering 60.5 (2021): 051204.

[4] Chen, Wei Ting, Alexander Y. Zhu, and Federico Capasso. ”Flat op-
tics with dispersion-engineered metasurfaces.” Nature Reviews Mate-
rials 5.8 (2020): 604-620.

[5] Tseng, E., Colburn, S., Whitehead, J., Huang, L., Baek, S. H., Ma-
jumdar, A., Heide, F. (2021). Neural nano-optics for high-quality thin
lens imaging. Nature communications, 12(1), 1-7.

[6] Bayati, Elyas, et al. ”Inverse designed extended depth of focus meta-
optics for broadband imaging in the visible.” Nanophotonics 11.11
(2022): 2531-2540.

[7] Colburn, Shane, Alan Zhan, and Arka Majumdar. ”Metasurface optics
for full-color computational imaging.” Science advances 4.2 (2018):
eaar2114.

[8] Whitehead, James EM, et al. ”Fast extended depth of focus meta-
optics for varifocal functionality.” Photonics Research 10.3 (2022):
828-833.

[9] Sitzmann, Vincent, et al. ”End-to-end optimization of optics and im-
age processing for achromatic extended depth of field and super-
resolution imaging.” ACM Transactions on Graphics (TOG) 37.4
(2018): 1-13.

[10] Dun, Xiong, et al. ”Learned rotationally symmetric diffractive achro-
mat for full-spectrum computational imaging.” Optica 7.8 (2020):
913-922.

[11] Krajancich, Brooke, Nitish Padmanaban, and Gordon Wetzstein.
”Factored occlusion: Single spatial light modulator occlusion-capable
optical see-through augmented reality display.” IEEE transactions on
visualization and computer graphics 26.5 (2020): 1871-1879.

[12] Jeon, Daniel S., Seung-Hwan Baek, Shinyoung Yi, Qiang Fu, Xiong
Dun, Wolfgang Heidrich, and Min H. Kim. ”Compact snapshot hy-
perspectral imaging with diffracted rotation.” (2019).

[13] Adams, Jesse K., et al. ”Single-frame 3D fluorescence microscopy
with ultraminiature lensless FlatScope.” Science advances 3.12
(2017): e1701548.

[14] Antipa, N., Kuo, G., Heckel, R., Mildenhall, B., Bostan, E., Ng, R.,
& Waller, L. (2018). DiffuserCam: lensless single-exposure 3D imag-
ing. Optica, 5(1), 1-9.

[15] Yanny, Kyrollos, et al. ”Miniature 3D fluorescence microscope using
random microlenses.” Optics and the Brain. Optica Publishing Group,
2019.

[16] Rostami, Seyyed Reza Miri, et al. ”Power-balanced hybrid optics
boosted design for achromatic extended depth-of-field imaging via
optimized mixed OTF.” Applied Optics 60.30 (2021): 9365-9378.

[17] Pinilla, S., Rostami, S. R. M., Shevkunov, I., Katkovnik, V.,
& Egiazarian, K. (2022). Hybrid diffractive optics design via
hardware-in-the-loop methodology for achromatic extended-depth-
of-field imaging. Optics Express, 30(18), 32633-32649.

[18] Seyyed Reza Miri Rostami, Samuel Pinilla, Igor Shevkunov,
Vladimir Katkovnik, and Karen Eguiazarian, On design of hybrid
diffractive optics for achromatic extended depth-of-field (EDoF) RGB
imaging, Unconventional optical imaging III, 2022, pp. 160–175.

[19] Joseph W Goodman, Introduction to fourier optics, Roberts and
Company Publishers, 2005.

[20] Katkovnik, Vladimir, Mykola Ponomarenko, and Karen Egiazarian.
”Lensless broadband diffractive imaging with improved depth of fo-
cus: wavefront modulation by multilevel phase masks.” Journal of
Modern Optics 66.3 (2019): 335-352.
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