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ABSTRACT 

Optics is an old topic in physical science and engineering. Historically, bulky 

materials and components were dominantly used to manipulate light. A new hope arrived 

when Maxwell unveiled the essence of electromagnetic waves in a micro perspective. On 

the other side, our world recently embraced a revolutionary technology, metasurface, 

which modifies the properties of matter-interfaces in subwavelength scale. To complete 

this story, diffractive optic fills right in the gap. It enables ultrathin flat devices without 

invoking the concept of nanostructured metasurfaces when only scalar diffraction comes 

into play.  

This dissertation contributes to developing a new type of digital diffractive optic, 

called a polychromat. It consists of uniform pixels and multilevel profile in micrometer 

scale. Essentially, it modulates the phase of a wavefront to generate certain spatial and 

spectral responses. Firstly, a complete numerical model based on scalar diffraction theory 

was developed. In order to functionalize the optic, a nonlinear algorithm was then 

successfully implemented to optimize its topography. The optic can be patterned in 

transparent dielectric thin film by single-step grayscale lithography and it is replicable for 

mass production. The microstructures are 3μm wide and no more than 3μm thick, thus do 

not require slow and expensive nanopatterning techniques, as opposed to metasurfaces. 

Polychromat is also less demanding in terms of fabrication and scalability.  

The next theme is focused on demonstrating unprecedented performances of the 
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diffractive optic when applied to address critical issues in modern society. Photovoltaic 

efficiency can be significantly enhanced using this optic to split and concentrate the solar 

spectrum. Focusing through a lens is no news, but we transformed our optic into a flat 

lens that corrects broadband chromatic aberrations. It can also serve as a phase mask for 

microlithography on oblique and multiplane surfaces. By introducing the powerful tool of 

computation, we devised two imaging prototypes, replacing the conventional Bayer filter 

with the diffractive optic. One system increases light sensitivity by 3 times compared to 

commercial color sensors. The other one renders the monochrome sensor a new function 

of high-resolution multispectral video-imaging.  
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CHAPTER 1 

INTRODUCTION 

1.1 Diffractive Optics 

Optics, in general, studies the propagation of electromagnetic wave and its 

interactions with matter [1]. Electromagnetic radiation covers a wide range of 

frequencies, from microwave, radio-frequency (RF), terahertz (THz), infrared (IR), 

visible (Vis), ultraviolet (UV), to X-ray and Gamma-ray. This dissertation focuses on 

studies in the visible band, which is historically called, light. In quantum physics, the 

electromagnetic radiation has wave-particle-duality [1], but in this work only its wave 

characteristics are considered. The electromagnetic wave is essentially a coupling of 

electric and magnetic fields that oscillate. Its wave behavior, including propagation and 

interactions with matter, can be fully described by Maxwell’s equations [1]: 

 

             (1.1) 

 

and the constitutive equations of material properties: 
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 .             (1.2) 

 

Here, E and H represent the vectors of electric and magnetic fields, respectively. J is 

current density. ε, μ, and σ are permittivity, permeability, and conductivity of the 

material, respectively. According to the properties of mathematical operators, we can 

derive the vector wave equation of propagation in a linear, isotropic, homogeneous and 

nondispersive medium [2]:  

 

      .        (1.3) 

 

n is the refractive index of propagation material and c is the speed of light in a vacuum. 

In such an ideal medium, all the components of the vectors of both electric and magnetic 

fields behave in the same way. Thus, the vector form of the wave equation can be 

simplified to the scalar form [2]:  

 

     .        (1.4) 

 

In Equation (1.4), u can stand for any component of the electric and magnetic fields.  

It is not much use to only consider light propagation in an ideal medium. It is more 

interesting to study the behaviors of light when the medium is perturbed, as by 

introducing some degrees of inhomogeneity. This is where the theory of scalar diffraction 

comes into play. Note that scalar diffraction does not hold when the spatial extension of 
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inhomogeneity is on par or smaller than the wavelength of light [1,2].  

To start with, it is helpful to borrow some commonly used concepts from the field of 

electrical signal processing [3]. In a classic model, there is input, output, and system. The 

system takes the data from input, processes the data, and then outputs results, similar to a 

mathematical operation. For a linear time-invariant system, it follows a number of useful 

properties in both time and frequency domains [3]. Diffraction and any optical systems 

can also be considered to be analogous with this model. The optical component, either 

bulk lens, mirror, aperture, diffraction structure, or nanophotonic device, just like a signal 

processing system, manipulates the incoming light as the input to the system. The light 

comes out of systems, either refracted, reflected, or diffracted, are the output of the 

system. This is schematically depicted in Figure 1.1.  

Calculating output with input and system known is a forward problem. An example is 

to plot the point-spread-function (PSF) and all kinds of aberrations for an imaging device. 

Nonetheless, usually it is the input or the systems that is unknown. To search for a system 

that accurately relates both input and output and satisfies the laws of physics is a design 

process. Lens system optimization is a typical example. Actually, this general concept 

also summarizes our work in Chapters 3, 4, 5, 8, and 9 in this dissertation. In other 

scenarios, we attempt to solve for the input after carefully calibrating the system and 

measuring the output signals. Spectrometer is an application that follows this rule. This 

last concept is basically a summary of our work in Chapters 6 and 7.  

Now, let us come back to the topic of diffraction itself. Diffraction studies the 

interactions of light with inhomogeneous matters. Without loss of generality, a typical 

physical model consisting of incident light impinging an aperture is often utilized. Light  
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Figure 1.1. A typical signal processing model, including input, output, and system. 

Optical systems, including diffraction, can be analogous with this traditional model.  

 

propagates from left to right (see Figure 1.2). Based on the Huygens principle, the 

wavefront on the aperture can be decomposed into a group of secondary point sources 

[2]. Each of them emits a spherical wave. The wavefront at the next time spot can be 

equivalently represented by a coherent sum of the spherical waves from these secondary 

light sources [2]. Light propagates by repeating this process. By applying Green’s 

theorem and assuming that the observation screen is much farther than the wavelength of 

light, we can derive the following Huygens-Fresnel principle [2]:   

 

 .      (1.5) 

 

In Equation (1.5), U(x’,y’) is the electrical field received by an observation screen at 

distance d from the aperture (along Z axis), as illustrated in Figure 1.2(b). U(x,y) is the 

function describing the aperture. And r01 is the distance between any point in the aperture 

(x,y) and any point in the observation screen (x’,y’). λ is the wavelength of light and 

k=2π/λ is wave-number. The integral is over the aperture, Σ.  
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Figure 1.2. Explanation of diffraction theory. (a) Schematic illustration of the Huygens-

Fresnel principle for diffraction calculation. (b)  Schematic of a diffraction system. The 

red block represents the observation screen and the blue block represents the aperture. 

They are separated by d. U(x,y) is the aperture function and U(x’,y’) describes the electric 

field of the diffraction pattern.  

 

Next, it is useful to derive an analytical formulation that is convenient and fast to 

compute. This is realized by making further approximations to the system. By removing 

all high-order terms in binominal expansion, the distance r01 may be expressed by  

 

 .       (1.6) 

 

Taking Equation (1.6) into Equation (1.5), we end up with the Fresnel transform of 

calculating diffraction pattern [2]:  

 

 .     (1.7) 

 

Note that the Fresnel approximation offers accurate results as long as the following 
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geometric condition is satisfied:  

 

       .         (1.8) 

 

This implies that the distance between the observation plane (or an image plane) is much 

larger than the dimension of the aperture. Equation (1.7) is the formula used for modeling 

the polychromat in this dissertation since Equation (1.8) is always satisfied for all the 

applications.  

It eventually comes to the geometric optics regime when the system has feature sizes 

much larger than the wavelength. Diffraction effects may be negligible and ray-tracing is 

usually applied to describe the behaviors of light.  

 

1.2 Computational Optics 

In recent years, computational optics has become one of the hot topics in research and 

innovation. The word ‘computational’ can be assigned two different meanings. On one 

hand, it represents a whole family of computer models that simulate the behaviors of light 

at different length scales. On the other hand, it is also a token of the marriage between 

traditional optical systems and advanced numerical algorithms. This gives birth to new 

technologies that either enhance performances of optical systems or change the ways 

optical systems work. Both aspects are explored in this dissertation.  

 

1.2.1 The first meaning 

Besides the scalar diffraction model of polychromat, we also exploited full-wave 

solutions of the Maxwell’s equation in studying nanophotonics. To be specific, the finite-

difference time-domain (FDTD) [4,5] and the rigorous-couple-wave-analysis (RCWA) 
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[6] are used. These numerical techniques are useful when the physical size of the 

photonic structures reaches subwavelength regime, and thus the condition of scalar 

diffraction breaks. Figure 1.3 gives an example of FDTD simulation of light propagation 

in silicon-on-insulator (SOI) waveguide. The poly-Si waveguide has a 400nm×360nm 

cross-section. Both fundamental TE and TM modes are shown.  

 

1.2.2 The second meaning 

Although we emphasize that computational optics is an emerging field of study, in 

reality the applications of numerical algorithms in optical systems have already become 

ubiquitous. Two examples are given in Figure 1.4. One is demosaicing [7], 

computationally reconstructing the RGB image from the raw Bayer image. The other 

technique is deblurring [8], which is able to sharpen an originally blurred image.  

Recently, the most important application of algorithms is in computational imaging 

(or microscopy) such as high-dynamic-range (imaging HDR) [9] and light-field imaging 

[10]. One successful example is Fourier ptychographic microscopy (FPM) [11]. In FPM, 

the sample is illuminated by wavefronts of different spatial frequencies, created by an 

array of LED’s incidence at different angles. A set of micrographs, representing different  

 

 

Figure 1.3. FDTD simulation of an SOI waveguide (cross-section view). Both TM (a) 

and TE (b) fundamental modes are simulated. White lines sketch its shape.  
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Figure 1.4. Examples of using numerical algorithms in imaging systems. Before (a) and 

after (b) applying demosaicing algorithm. Before (c) and after (d) applying deblurring 

algorithm.  

 

regions in the spatial frequency domain, are captured and stored. Then these images are 

numerically stitched. The final image is computationally recovered from the frequency 

domain. Since it significantly augments the NA-limited frequency extent of the single 

raw image, it allows for high-resolution giga-pixel microscopy [11].  

 

1.3 Optical Systems 

1.3.1 Reflection and refraction 

In traditional optical engineering, light is often treated as bundles of rays. These bulk 

optical components are composed of planar or curved interfaces [1] (see Figure 1.5). 

Depending on the properties of the matter interface, light ray is refracted or reflected.  
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Figure 1.5. Illustration of reflection (a) and refraction (b) at the air-metal and air-

dielectric interface. The dashed lines represent the surface normal.  

 

Its behavior is fundamentally dictated by Snell’s law of refraction and reflection [1]. 

Figure 1.5 illustrates the phenomena of reflection and refraction. The relationship 

between the angles of incidence and reflection is [1]  

 

                 (1.9) 

and the relationship between the angles of incidence and refraction is [1]  

 

    .      (1.10) 

 

Traditional optical designs are made and analyzed based on the laws of reflection and 

refraction, described by Equations (1.9) and (1.10).  

 

1.3.2 Imaging optical system 

To facilitate understanding of how polychromat is applied in a variety of optical 

systems, this and the following subsections offer a brief introduction to conventional 

imaging and nonimaging optical systems.  

Optics was used in imaging for centuries. The basic principle remained the same. An 

object, whether emitting light by itself or reflecting illumination, can be treated as a 
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cluster of points. Each point is equivalent to a light source, emitting light in a divergence 

cone of angle. In order to image such a cluster of points, optical components are required 

to collect and reshape the light from each point source. Usually, curved interfaces, such 

as a lens or nonplanar mirror, are used to bend light rays. There is always a one-to-one 

mapping, meaning that one object point is projected to one unique image point [1]. This 

image may be recorded by light-sensitive pigments in human retinal cells, photographic 

films or semiconductor sensors.  

Figure 1.6(a) is an example of using a refractive lens for imaging. A photograph of a 

commercial compact camera is shown as an inset. Note that in an aberration-free system, 

an infinitely small object point is imaged to a point mathematically described as an Airy 

disk (Figure 1.6(b)), which is calculated by diffraction formulation.  

The scheme of imaging optics does not convey any color or spectrum information. 

This is because in an ideal system light rays of different colors follow the same path. In 

order to distinguish colors, a Bayer filter array is widely used together with a CCD or 

CMOS sensor [12]. It is periodic in 2D, and each single period corresponds to one single 

image point. Within one period, there are four color filters, two transmit green, one 

transmits blue, and one transmits red. A schematic and a micrograph of this famous filter 

are given in Figures 1.7(a) and (b). Since they are absorptive, two thirds of light are 

wasted, thus the light sensitivity of the sensor is dramatically reduced. In addition, these 

square-shape filters need to exactly cover the sensor pixels, thus high-precision alignment 

is necessary.  

However, for some applications, seeing three colors is not enough. This is where 

multi- and hyper-spectral cameras come to the stage [13]. The market of these cameras  
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Figure 1.6. Optical imaging system. (a) Illustration of a conventional imaging system 

using a lens. One object point is projected to one image point. Red dashed line is the 

optical axis. Inset: photograph of a compact camera. (b) An ideal image point of Airy 

pattern in a diffraction-limited system.  

 

 

 

Figure 1.7. Color sensor. (a) Schematic of a Bayer filter array. Each unit consists of four 

absorption filters to transmit blue, green, and red. (b) A micrograph of the Bayer filter on 

top of a semiconductor sensor array. (c) Illustration explaining the working principle of 

the Bayer color filter. Only one third of incident photons are allowed to pass through.  

 

has been dominated by complicated, expensive, and slow produces. In our imaging 

projects, we attempt to tackle these issues by introducing the polychromat into the 

semiconductor sensor, as a replacement of the Bayer filter. It not only improves photon 

throughput, but also enables compact, fast, and inexpensive hyperspectral imaging.  

 

1.3.3 Nonimaging optical system 

Besides imaging, optics also enables a huge number of nonimaging applications. In 

nonimaging systems, the one-to-one relationship underlying the imaging system is 
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broken [1]. Again, it can be generalized as a signal processing system, drawn in Figure 

1.2. Any arbitrary input wavefront of any arbitrary spectral component may be reshaped 

or reconfigured to any arbitrary spatial-spectral output.  

Figure 1.8 summarizes some of the important nonimaging optical systems. One 

application is focusing light, such as that from the sun or a lamp. A parabolic mirror is 

able to reflect and divert collimated rays of large area to a tiny spot (see Figure 1.8(a)) 

[1]. It can be a key component in a solar thermal system to collect solar energy to heat up 

anything at the focus, such as a cooker [14].  

A collimator lens works in the reverse manner. It expands and collimates the light 

from a point source located at its focus (Figure 1.8(b)). It provides uniform illumination 

and finds applications in microscopy. Usually, a combination of two convex lenses with 

their curved surfaces facing each other replaces a single lens for aberration correction. In 

conjunction with a spherical mirror on the back side of the source, a condenser is 

constructed [15]. It is critical in a microscope to uniformly illuminate the sample.  

Often, lights of different wavelengths are mixed together, like in an imaging system. 

However, they can be evidently separated by passing through either a prism or a grating 

(see Figure 1.8(c)) [1]. A prism disperses light by accumulating differential optical paths 

between wavelengths, while grating diffracts light since the diffraction angle is 

proportional to wavelength. Most of the commercial spectrum analyzers utilize either of 

these two schemes.  

Besides diffraction, interference is another phenomenon that can only be explained by 

the wave nature of light. Interference occurs only when two or more coherent beams of 

the same frequency and the same polarization state coincide at the same spatial location.  



13 

 

 

 

Figure 1.8. Illustrations of some nonimaging optical systems. (a) A parabolic mirror 

concentrates the collimated beam to a focus. (b) Lens collimates divergence beam from a 

point source located at its focus. (c) Prism and grating separate white incoming light to 

beams of different colors (or wavelengths) using material dispersion and diffraction. (d) 

Mach-Zehnder interferometer. A coherent laser beam is split by a beam splitter and the 

two arms interfere on a recording media.  

 

Figure 1.8(d) is an example of a Mach-Zehnder interferometer, where a laser beam is 

split into two arms by a beam splitter, and the two arms then interfere. It has applications 

in integrated optical communication [16] and interference nanolithography [17].  

The polychromat may be designed to outperform the conventional optic in these 

nonimaging systems. On one hand, the polychromat is much more compact since it is 

micropatterned in ultrathin film on a flat surface. On the other hand, the polychromat can 

integrate multiple functionalities thanks to its enormous degree of design freedom. For a 

polychromat with N pixels and P height levels, it occupies P
N
 design freedom.  
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1.4 Outlines 

The first chapter briefly introduces the principles of diffractive optics and the concept 

of computational optics. The basic theory of diffraction laid foundations for the 

numerical model, which describes the studied digital diffractive optic element. In 

addition, a background introduction to some simple optical systems is given in this 

chapter. This is very helpful in understanding the applications of the optic discussed in 

the following chapters.  

Chapter 2 contains explicit descriptions on the device model based upon the formula 

of far-field scalar diffraction, or Fresnel transform. This chapter also talks in detail about 

how the diffractive optic is fabricated by the commercially available grayscale 

lithography approach. We emphasize that grayscale calibration and scanscale calibration 

are keys to successful patterning. A standard procedure is given as well. Next, a 

preliminary device replication method based on hot embossing is also included. The 

polychromat topography is optimized by a direct-binary-search (DBS) algorithm to equip 

it with multiple functionalities. A detailed description of regularization algorithm forms 

another section. Regularization is extensively explored to solve inverse problems in our 

imaging applications. For experimental characterization, we built several optical setups. 

They are described in the final section of Chapter 3.  

With all this knowledge in mind, we showcase the potentials of the diffractive optic 

in changing numerous optics-enabled applications. In Chapter 3, the polychromat works 

as a spectrum splitter/concentrator in planar multibandgap photovoltaics. Sorting out 

different bands of solar spectrum can theoretically push photovoltaic efficiency towards 

the thermodynamic limit. Our experiments demonstrate a 20% efficiency enhancement. 
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Excitingly, numerical studies predict that an overall efficiency of 50% is possible, given 

more bandgaps and larger concentration factors.  

In Chapter 4, the polychromat is designed to perform far-field focusing. Due to its 

enormous degree of design freedom, it can be optimized to correct chromatic aberration 

over the entire visible spectrum. The measured optical efficiency of the apochromat is 

about 25%, and that of the super-achromat is ~10%. Such a flat lens is polarization-

independent and has much lower aspect ratios and better scalability in comparison with 

metalenses. Ultrahigh efficiency and correction for other aberrations are also possible.  

Next, we turn to maneuver the 3D spatial response of polychromat under single-line 

coherent illumination. It is used as a phase mask for 3D rapid patterning, described in the 

fifth chapter. For proof of concept, we simply demonstrated optical microlithography on 

oblique and multiplane surfaces. Spatial resolution, depth-of-focus, and fabrication error 

tolerance are discussed in detail.  

Chapters 6 and 7 talk about applications of polychromat in imaging systems. In 

Chapter 6, the diffractive filter array made in optically transparent material replaces the 

Bayer filter. This allows for improved photon throughput. Computational algorithms are 

exploited to extract color with high accuracy. A maximum sensitivity enhancement of 

3.12 is achieved. It also enables multispectral imaging.  

Chapter 7 explores the application of polychromat in computational single-shot 

hyperspectral imaging. Placing the diffractive optic in proximity to a monochrome sensor 

creates both spatially-variant and spectrally-variant point-spread functions. Hyper-

spectral data cubes can be efficiently and accurately reconstructed from the highly 

multiplexed and scrambled image by numerical algorithm. Interestingly, due to the 
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structured PSFs by diffraction, this allows for remarkably enhanced spatial resolution. 

Imaging the 3D space is a side benefit as well.  

Chapters 8 and 9 include some other important works on nanophotonics that went 

along with this polychromat project. We modeled and optimized the generalized periodic 

multilayer nanostructures to boost light absorption in ultra-thin-film solar cells. 

Enhancement beyond the ergodic limit of light trapping may be obtained via increasing 

mode occupancy and local density of optical states. The same DBS algorithm was 

adapted to design all-dielectric digital metamaterials for ultracompact integrated 

photonics devices, such as wavelength splitter, polarization splitter, polarization rotator, 

and free-space-to-waveguide coupler. These nanophotonic devices control the vector 

properties of light.  

This dissertation concludes in Chapter 10. Prospective directions for ongoing research 

are pointed out and discussed. We want to extend the photovoltaic project to a larger 

number of bandgaps and greater concentrations. 3D patterning may take a longer path to 

achieve. We are devoted to promoting the development of a hyperspectral imager 

prototype that can compute full-frame images in real time. Light-field imaging could be 

another bonus out of the polychromat project.  
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CHAPTER 2 

NUMERICAL AND EXPERIMENTAL TECHNIQUES 

2.1 Device Modeling 

2.1.1 Model and formulation 

The generalized model of the diffractive optic element (or polychromat) is described 

in Figure 2.1. There are two major parts in the model: the device plane and the image 

plane [1]. Since our polychromat is a planar optic, it is abstracted as a flat surface. The 

diffraction pattern is also imaged and analyzed on a flat surface parallel to the 

polychromat plane. The diffractive optic can be categorized into a 1D form and a 2D 

form. In its 2D form, the diffractive optic (blue grid in Figure 2.1(b)) is discretized into 

square pixels with uniform sizes (Δ) in two orthogonal directions (X and Y). The 1D 

form only has height variation along the X direction, while remaining uniform along the 

Y direction, as shown in Figure 2.1(a). The discretization in the X direction is also 

defined with a grid width of Δ. For clarity of definition, the single square grid in 2D form 

is called a “pixel”, while a single linear grid in 1D form can be called either “pixel” or 

“groove”. Generally, the image space (red grids in Figures 2.1(a) and (b)) is defined in 

the same grid size. Different from a traditional diffractive optic element with a 

continuously varying height profile [2], the polychromat is a type of digital diffractive 

optic, composed of an array of discrete pixels [3]. Such a digital diffractive optic allows 

for direct-writing in fabrication, as opposed to interference patterning.  
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Figure 2.1. Schematic illustration of the generalized simulation model of the studied 

diffractive optic element in (a) 1D form and (b) 2D form. The blue grids represent the 

coordinate plane of the polychromat, and the red grids represent the coordinate plane (or 

image plane) of far-field diffraction.  

 

The topographies of the polychromat in 1D and 2D forms are expressed by [1,3]:  

 

   .       (2.1) 

         ,      (2.2) 

 

in which Δh = H / (Nlevels + 1) is the unit height, H is the maximum height, and Nlevels is 

the total number of quantization levels, p(m) and p(m,n) stand for height profile and are 

positive integers within the limit [0, Nlevels], and rect( ) is the rectangle function. Here, the 

integer m in Equation (2.1) represents the index of groove in the 1D form. And the 

integers m and n in Equation (2.2) represent the index of pixels in the X and Y directions 

in the 2D form. In practice, the polychromat topography p(m) and p(m,n) are either given by 

a random generator function in MATLAB (‘rand’) or by the optimization algorithm that 

will be described later.  
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The diffractive optic element works by modulating the wavefront of the incoming 

light, which is abstracted as a signal processing system (see Figure 1.1). As mentioned 

earlier, the diffractive optic studied in this work only modulates the phase of the 

wavefront while leaving the amplitude intact since the optic is made of a transparent 

dielectric material. The material absorption within the spectrum of interest (visible band 

400nm to 700nm in general) is negligible. To be more specific, the phase imparted by 

one pixel in the diffractive optic is essentially determined by its local height (or 

thickness). This phase at a certain wavelength λ is expressed by [1]:  

 

.       (2.3) 

        .       (2.4) 

 

Equations (2.3) and (2.4) are for 1D and 2D forms of polychromat, respectively. They are 

basically relative phase change between with and without the presence of a pixel in the 

diffractive optic. Here, n(λ) is the real part of the refractive index of the polychromat 

material and 1 is the refractive index of vacuum. Note that the phase φ(x;λ) and φ(x,y;λ) is 

linearly proportional to individual pixel height: h(m)=Δh×p(m) and h(m,n)=Δh×p(m,n), as 

indicated in Figure 2.2. Therefore, thicker structure accumulates more phase change. Yet, 

the phase is always modulo of 2π.  

Note that the pixel width, Δ, is dictated by the resolution available to our lithography 

machine. In this work, we are limited to Δ=3μm. Alternative tools with advanced optical 

projection systems may enable resolution as high as Δ=1μm. The maximum height of the 

pixels H can in theory be any arbitrary value. However, on one hand, it has to be larger  
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Figure 2.2. Schematic of the digital diffractive optic element (polychromat). Only a 

cross-section view of its 1D form is shown for simplicity. It is discretized into uniform 

pixels of width Δ.  

 

than the one that gives 2π phase change; otherwise, the thinner the whole structures, the 

poorer optical efficiency it gets. On the other hand, thicker structures with larger aspect-

ratios become difficult to pattern, though they potentially offer higher efficiency. In our 

current work, the aspect ratio is no more than 1:1, indicating maximum height H≤3μm. In 

addition, the unit height Δh is determined by how well our lithography process can define 

the depth. A minimum Δh of 13.9nm was used in our microlithography project (see 

Chapter 5); besides, we also used Δh=28.6nm and Δh=50nm in other works.  

Based on Equation (1.7), the complex diffraction pattern of wavelength λ at distance 

d from the diffractive optic is calculated by the Fourier transform [1,2]:  

 

   .      (2.5) 

     .     (2.6) 

 

Again, these two equations are for 1D and 2D forms, respectively. The wave-number is 

k=2π/λ; gillum(x,λ) and gillum(x,y,λ) are the incoming wavefronts of the illumination beam. 
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In our current design model, we assume that the source is a uniform plane wave at normal 

incidence gillum(x,λ)=1 or gillum(x,y,λ)=1. T(x,λ) and T(x,y,λ) are the transmission functions 

of the diffractive optic, defined by T(x,λ)=exp(iφ(x,λ)) and T(x,y,λ)=exp(iφ(x,y,λ)). In the 

signal process point of view, gillum(x,λ) and gillum(x,y,λ) are the inputs, U(x’,λ,d) and 

U(x’,y’,λ,d) are the outputs, and the exponential terms in the integrals of Equations (2.5) 

and (2.6) represent the impulse response of the diffraction system. Since Fresnel 

transform is fundamentally a convolution between the transmission function and the 

impulse response function, the diffraction pattern U can be simply calculated by Fourier 

transforming the product of these two functions and then doing an inverse Fourier 

transform of that. The intensity distribution of the diffraction field is I=|U|
2
. In modeling 

and optimizing the polychromat design, to avoid aliasing, a periodic boundary condition 

is usually implied in either one or two directions for its 1D and 2D forms, respectively. In 

Figures 2.1 and 2.2, the diffractive optic is discretized into a grid width of Δ, although 

numerical computations of diffraction patterns may take finer grids by oversampling the 

structures, leading to more accurate approximation to the integrals in Equation (2.5). 

Usually, a simulation grid size of 1μm is considered in calculation. Note that all the 

computational efforts are executed in the MATLAB programming environment.  

 

2.1.2 Dispersion measurement 

According to Equations (2.3) and (2.4), the phase is directly related to material 

dispersion, therefore it is crucial to know the refractive index data as accurately as 

possible. Here, the material dispersion curve was measured by a Woollam Variable Angle 

Spectroscopic Ellipsometer (VASE), which basically measures the reflectivity of a thin 

film coated on a substrate illuminated by polarized light at different wavelengths and a 
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set of angles of incidence. The real and imaginary parts of the refractive index can be 

extracted by fitting the measurement data. Our spectrum of interest is from 400nm to 

800nm, and the incidence angle is from 70
o
 to 75

o
.  

There are two materials considered to pattern polychromat: Shipley 1813 and 

SC1827. They are both commercially available positive photoresist, widely used in the 

laboratory environment for integrated circuits (IC) and micro-electro-mechanical system 

(MEMS) applications. They can both be deposited uniformly on either silicon or glass 

substrate by spin coating. Since the upper bound of the measurable film thickness (<1μm) 

is much lower than the normal thickness of these two spin-coated materials, we need to 

spin the thinned ones for the purpose of dispersion measurement only. For both materials, 

we mixed the original photoresist with propylene glycol methyl ether acetate (PGMEA, a 

developer for SU-8) with ratio of 2:1. Then, using a spin rate of 3000rpm (on silicon 

wafer) and 1min soft bake at 110
o
C on a hotplate, we were able to achieve thin films with 

200nm ~ 300nm thickness. Figure 2.3(a) is a photograph of a typical sample for 

dispersion measurement.  

Figures 2.3(b) and (c) are the measured and extracted dispersion curves of Shipley 

1813 and SC1827 photoresists, respectively. The real part of the refractive index is 

around 1.6 to 1.7, and the imaginary part is negligible in the visible band, although a 

small amount of absorption can be observed in the blue spectrum (350nm to 500nm). 

That is also why these materials look yellowish under ambient lighting. The curves show 

that both materials exhibit stronger dispersion in the short wavelength (blue and green) 

than in the long wavelength (red and near-infrared), which strictly follows the commonly 

used Lorentz model of material dispersion.  
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Figure 2.3. Refractive index measurement. (a) Photograph of a thin film sample spin 

coated on silicon substrate for dispersion measurement. Dispersion curves for Shipley 

1813 (b) and SC1827 (c) measured and extracted by Woollam Ellipsometer.   

 

2.2 Device Fabrication 

2.2.1 Grayscale lithography 

The pixelated multilevel microstructures of the diffractive optic can be patterned by 

grayscale lithography technique [4]. Lithography is a process ubiquitous in micro- and 

nano-fabrication facilities [5,6]. In traditional lithography, UV light illuminates the mask, 

which is de-magnified and projected onto the photoresist. The photoresist records the 

image of the mask. Depending on whether it is a positive or negative photoresist, the 

exposure region is removed or remained after development in designated developers. In 

this way, the patterns of the mask can be transferred to photoresist and then to other 

material layers or substrate. Usually binary masks are used, which have transparent and 
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opaque regions. Thus, in conventional lithography, the doses at exposed locations, 

determined by either positive or negative masks, are uniform in idea situations. In 

contrast, grayscale lithography exposes different locations of the photoresist by different 

doses in grayscale. Since most photoresists are nonlinear materials in terms of recording 

latency images, different exposure doses lead to different depths after development. For 

example, a lower dose applied in positive photoresist results in a shallower structure. The 

relationship between exposure dose and the final development depth is usually 

characterized in a photoresist datasheet as a contrast curve. Different doses cause 

different degrees of chemical reactions, and thus different percentages of reactants. This 

gives different dissolution rates (or solubility) in the developer. For a development time, 

structures of different depths (or heights) are ultimately formed (see Figure 2.4(a)). In 

this work, we utilized a commercial patterning tool – Heidelberg microPG101, which is 

functionalized with grayscale lithography (see Figure 2.4(b)). 

 

 

Figure 2.4. Grayscale lithography. (a) Schematic illustration of the grayscale lithography 

technique. The write head exposes the photoresist by different doses when scanning 

across the sample, resulting in structures of different depths after development. A positive 

photoresist is assumed here. (b) A photograph of the grayscale lithography tool – 

Heidelberg microPG101.  
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The machine works in a direct-laser-writing (DWL) mode. This means that the write 

head focuses a UV laser beam (405nm), scans across the sample surface point by point, 

and simultaneously exposes the sample. The mechanical positioning accuracy in 

addressing each exposure point is less than 100nm. The spatial spread of each exposure, 

or width of the PSF of the write head, is measured around 2.5μm, which, based on the 

official specs, provides spatial resolution as high as 3μm. This is why the minimum 

feature size in all current projects is Δ=3μm. The modulation of exposure dose is 

achieved by neutral density filters installed in the system.  

As clearly shown in Equations (2.3) and (2.4), it is critical to know the exact 

relationship between exposure dose and the resultant structure depth so that the fabricated 

device has the correct height (or phase) distribution. The closer the fabricated one is to 

the designed one, the better efficiency it can potentially offer. Therefore, before 

patterning the polychromat, we need to calibrate this photoresist contrast curve. A 

straightforward test design is give in Figure 2.5(a), which includes grayscales from 0 to 

99 arranged in sequence. Note that the microPG101 machine can only expose a 

maximum of 100 grayscale levels. The sample is prepared such that the film thickness is 

greater than the designed maximum height H, and a laser power has to be chosen 

judiciously so that it matches the maximum height H. Figures 2.5(b) – (e) summarize the 

curves of four calibration examples. The materials and laser powers used are given as 

well. Often, a number of calibration measurements are averaged to give a smooth and 

accurate curve. Although the calibration is consistent over time, due to the drift of the 

tool, the cleanroom environment and other contributing parameters over time, new 

calibrations are required almost every two to three months.  
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Figure 2.5. Calibration of the lithography tool. (a) A design example for grayscale 

lithography calibration. It varies from 0 to 99 in two directions. (b) – (e) Four calibration 

curves for different polychromat materials and laser powers. The designed maximum 

heights are (b) 430nm for microlithography project (see Chapter 5); (b) 1800nm for 

photovoltaics project (see Chapter 3); (c) 3000nm for super-achromatic lens project (see 

Chapter 4); (d) 1200nm for imaging projects (see Chapters 6 and 7).  

 



28 

 

 

2.2.2 Fabrication procedure 

A standard procedure is developed for patterning the polychromat by grayscale 

lithography. The following is a typical example:  

1) RCA clean a 2-inch diameter fused silica wafer.  

a. Put the glassware in DI water and heat the beaker up to 70
o
C on a hotplate.  

b. Mix NH4OH and H2O2 with ratio NH4OH:H2O2:DI water = 1:1:5. 

c. Await chemical reactions in the beaker for 10min to 15min, meanwhile 

keeping the temperature between 70
o
C to 80

o
C.  

d. Dispose waste liquids in the beaker and rinse the glassware by running DI 

water, then dry them by N2.  

2) Spin coat HMDS on the fused silica wafer (200μm thickness), 45sec @ 6000rpm. 

Leave it in the fume hood for 10min for sufficient evaporation. 

3) Spin coat Shipley 1813 photoresist, 45sec @ 4000rpm with ramp rate 1000rpm/s 

for the first 5sec.  

4) Soft bake on a hotplate for 90sec @ 115
o
C.  

5) Dehydration in fume hood for at least 1hr. 

6) Gray-scale exposure by the Heidelberg microPG101 with 3μm mode. Power: 

12mW; duration factor: 40%; mode: unidirectional; scan-scale: 2.74MHz.  

7) Development in AZ MIF 300 developer for 1min.  

8) Rinse in DI water for 1min. Dry the sample by carefully blowing N2. 

Parameters, tools, and materials included in the above procedure can be modified 

according to different requirements. For instance, the substrate can be either silicon wafer 

(any orientation and type) or soda-lime glass substrate. For silicon and fused silica wafer, 
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a hotplate is good for soft bake, while an oven is needed for glass substrate (1mm thick) 

due to the low thermal conductance of glass. Usually, soft bake in an oven takes 40min to 

60min. Three different types of developers can be used. They are 352, AZ 1:1 and AZ 

MIF 300. Based on experimental results, they are basically interchangeable because they 

provide a similar development rate. Additionally, the same development rate can be 

achieved by diluting 351 developer with DI water (1:5 ratio). Note the final polychromat 

and the calibration sample have to be prepared under exactly the same conditions.  

Undesired scattering from surface roughness may deteriorate the device performance. 

Therefore, it is important to characterize and control the surface roughness within a 

reasonable limit. Figure 2.6 plots the surface measured by atomic-force-microscopy 

(AFM, Bruker Dimension Icon). It works in VeecoScanAsyst mode. The surfaces of both 

polychromat materials (Shipley 1813 and SC1827) are quite smooth, with roughness 

root-mean-square (RMS) less than 10nm. This roughness RMS is below 2.5% of the  

 

 

Figure 2.6. Surface roughness measurement by AFM. The thin film materials are (a) 

Shipley 1813 (300nm by 300nm area) and (b) SC1827 (200nm by 200nm area).  
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shortest wavelength considered (λ=400nm), thus bringing trivial impacts on the 

diffractive optic’s efficiency. Keeping the fabrication condition and procedure 

unchanged, this measured surface roughness is constant over all the samples and also 

over time.  

 

2.2.3 Polychromat 

Some exemplary micrographs and AFM measurements of the fabricated 

polychromats are given in Figures 2.7 and 2.8. The micrographs are taken by both the 

Olympus MX51 and the Keyence VHX-5000 microscopes with various magnifications 

factors. Oblique illumination is utilized in the latter microscope so as to manifest the 3D 

structures via increasing image contrast. The AFM measurement is conducted using 

VeecoScanAsyst mode with -2.0 Volt vertical alignment so that it can manage deep 

structures of high aspect-ratios accurately without damaging the AFM tip. For a scan 

field of 512×512 pixels, this typically takes 8min to complete and the maximum 

measurable depth is around 2μm.  

Figures 2.7 and 2.8 are for 1D and 2D polychromats, respectively. The micrographs 

in Figures 2.7(a) and (b) are taken by back illumination, while those in Figures 2.7(c) and 

(d) are taken by front illumination. The polychromat grooves exhibit different colors due 

to thin film interference with various thicknesses [7]. The AFM result confirms the 

height-varying topography of the designed diffractive optic. In its 1D form, it is pixelated 

along the X direction and the height of each pixel is assigned such that altogether they 

offer the desired optical performances. The topography is uniform along the Y direction. 

The discretization grid is 3μm wide. The edges between two pixels (or grooves) are 

slightly rounded due to the optical proximity effect present in any lithography system [8].  
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Figure 2.7. Optical micrographs of the fabricated 1D polychromats with (a) 5X, (b) 10X, 

(c) 20X and (d) 50X magnifications. 3D view of an AFM measurement of a segment 

(70μm by 30μm area) of the fabricated 1D polychromat. The maximum height is 1.2μm 

and the groove width is 3μm.  
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Figure 2.8. Optical micrographs of the fabricated 2D polychromats with (a) 10X, (b) 

60X, (c) 500X and (d) 1000X magnifications. The first polychromat has a pixel size of 

3μm (a) and (b); the second one has a pixel size of 6μm (c) and (d). AFM measurements 

of (e) 75μm by 75μm area and (f) 90μm by 90μm area of the fabricated 2D polychromats. 

The maximum height is about 1.2μm. The pixel sizes of 3μm (e) and 6μm (f) are marked.  
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This effect can be computationally corrected by well-developed algorithms [8]. 

Nevertheless, according to the experimental tests carried out later, this does not have 

much influence on our results.  

The similar results on 2D polychromats are shown in Figure 2.8. The first sample has 

a random height profile with pixel size of Δ=3μm (Figures 2.8(a), (b) and (e)); the second 

one has a periodic height profile with pixel size of 6μm (Figures 2.8(c), (d) and (f)). The 

periodicity is 18μm×18μm. The micrographs of the first polychromat were taken using 

the Olympus MX51 under normal incidence and front illumination. Those of the second 

one were taken using the Keyence VHX-5000 under oblique incidence and front 

illumination to enhance image contrast. The shadows created by the 3D structures are 

clearly seen (Figures 2.8(c) and (d)). The 2D AFM measurements demonstrate uniform 

square pixels with correct dimensions. Multiple height levels can be observed and the 

height within one pixel seems very consistent. Later profilometer measurements confirm 

average height error well below 100nm, sufficient to exhibit acceptable performances.  

 

2.2.4 Scanscale calibration 

Note that the trivial horizontal lines present in Figure 2.7(a) – (d) are due to imperfect 

scanscale calibration. Scanscale is a parameter preset in the Heidelberg microPG101 

machine, which determines the speed of acoustically actuated write head scan. These 

periodic lines may induce undesired scattering in the direction orthogonal to the 

diffraction structures. To eliminate these artifacts, we need to calibrate the scanscale 

parameters and pick the best one. Figure 2.9 plots the heights of these lines at various 

scanscale values. The micrographs of the exposed samples and the screen shots of the 

profilometer measurements are summarized as the insets. Here, we use a design of 
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Figure 2.9. Scanscale parameter calibration curve. The height of artificial line drops to a 

minimum at 2.205MHz frequency. Insets: micrographs of the exposed samples at various 

scanscale frequencies.  

 

uniform exposure as our test sample. Scanscale frequency of 2.205MHz seems to give the 

smallest height of artificial line. This is also proved by the corresponding micrograph, 

which has the smoothest surface.  

 

2.3 Device Replication 

Although it takes only one lithography step to pattern the diffractive optic, it is 

potentially time-consuming and costly to manufacture many of these products using this 

technique. Since the polychromat studied is essentially an ultrathin piece of flat optic, it 

may be easily replicated by nanoimprint lithography (NIL) for mass production [9]. Roll-

to-roll imprint is capable of rapidly reproducing nano- and micro-structures in large scale 
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with excellent accuracy, and is considered a promising technology to revolutionize future 

nanofabrication. As a first step of proof of concept, we adopted a simple method, hot 

embossing, to show that it can be replicated onto rigid, highly transparent materials 

[10,11]. The patterns on photoresist are first transferred to a PDMS mold and then 

transferred to polystyrene. The first part of the replication process follows these steps:  

1) Place a disposable plastic container on a scale. Silicone elastomer base (Sylgard 

184) and curing agent are poured in a 10:1 wt (base : curing agent), then mixed 

vigorously by hand using a plastic fork for ~5 mins. 

2) The mixture is poured onto the substrate and wrapped with aluminum foil. 

3) Place the substrate with PDMS mixture on top in a vacuum desiccator for about 

30 mins.  

4) The substrate is then placed in an oven at 60
o
C for 5 hours to cure PDMS.  

5) A razor blade is used to peel the cured PDMS off the substrate.  

In the second part of the replication process, a bonding tool (EVG 520 IS), is used:  

1) A PDMS mold is placed on the polystyrene sample, sandwiched between two 4” 

silicon wafers (one on the top of PDMS mold and another at the bottom of 

polystyrene). This whole stack was placed on the chuck of the bonding tool.  

2) Use the following recipe: equalizer temperature 2
o
C; heating temperature 110

o
C 

with ramp of 20
o
C/min; timer set to 5min; wait pressure 5e-3mbar; start and stop 

piston pressures are 700N and 1700N; another timer set to 5min; then final wait 

temperature 45
o
C.  

The photographs and micrographs of the samples at stages of the replication process 

are summarized in Figures 2.10(a) – (c) and Figures 2.10(d) – (f), respectively. The 
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photoresist master is patterned on a glass substrate (Figures 2.10(a) and (d)) by grayscale 

lithography. The unexposed region looks yellowish since the photoresist has some 

absorption in the blue and UV wavelengths. The mold is in PDMS (Figures 2.10(b) and 

(e)), which is very flexible. The final replica is in polystyrene (Figures 2.10(c) and (f)), 

which is rigid and highly transparent.  

Figures 2.11(a) and (b) are the AFM-measured profiles of the PDMS mold and the 

polystyrene replica. For simplicity we used a Δ=10μm pixel width. Based on the 

comparison of structure heights, the discrepancies between the photoresist and the 

polystyrene are 50nm – 100nm, within 10% of the maximum height H. This proves that 

we can easily replicate the polychromat with reasonable accuracy. Our later numerical 

analysis shows that this discrepancy is sufficient to provide acceptable optical 

performances.  

 

 

Figure 2.10. Photographs (a)-(c) and micrographs (d)-(f) of the samples at three 

replication stages. (a) and (d) photoresist by grayscale lithography; (b) and (e) PDMS 

mold; (c) and (f) polystyrene replica. (Credit: Nabil Mohammad, University of Utah) 
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Figure 2.11. AFM measurements of the (a) PDMS mold and (b) polystyrene replica. The 

structures have 10μm groove width and maximum height of 1.2μm. (c) Comparison of 

heights in photoresist, PDMS mold, and polystyrene replica.  
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2.4 Direct Binary Search 

2.4.1 Algorithm 

To solve for the nonlinear optimization problem in this work, we implemented a 

modified version of the well-known direct-binary-search algorithm (DBS) [1,12]. This 

algorithm is applied in two problems: one is to search for optimal height (or phase) 

distribution of the diffractive optic for the nonimaging applications; the other is to solve 

the inverse problem in multispectral imaging. Now, we take the first task as an example.  

Of course, like all other kinds of optimization algorithms, we need to find the figure-

of-merit (FOM) to be maximized. The definitions for different applications are elaborated 

in each corresponding chapter. The optimization algorithm begins with the generation of 

an initial solution. Usually, a random height distribution (generated by the ‘rand’ function 

in MATLAB) is used. Since this is a local search method, the algorithm is sensitive to the 

choice of initial condition. If a poor initial solution is chosen, it might suffer from 

premature convergence or it will take longer to arrive to a satisfactory optimum state. 

Therefore, we ran a number of optimizations with different random initial solutions, and 

the best outcome was selected.  

The DBS algorithm proceeds in an iterative manner. In one iteration, all pixels in the 

height distribution are perturbed in a predesigned manner (such as a random sequence). 

After picking up a pixel, a positive unit perturbation (+Δh) is first tried. If the updated 

FOM is increased, then this perturbation is kept, otherwise a negative unit perturbation (-

Δh) is applied to this pixel. If the new FOM is increased, then this negative perturbation 

is kept, otherwise it goes on to the next pixel. The guessed height distribution is renewed 

accordingly. One iteration stops when all pixels are traversed. Termination conditions 
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guarantee convergence, such as a maximum number of total iterations or a minimum 

threshold of FOM improvement between two neighbor iterations. An algorithm flow 

chart for 1D polychromat is shown in Figure 2.12.  

Figure 2.13(a) plots an example of DBS optimization algorithm. It optimizes the 

polychromat for photovoltaics project. The FOM versus times of iteration rises rapidly in 

the first 10 iterations from almost 0 to more than 25 and then converges to a plateau. The 

number of changed pixels decreases gradually from almost 3000 down to 0. This 

phenomenon indicates that the algorithm is insensitive to fabrication errors since 

reasonable amounts of variations have only trivial influence. In theory, this is owing to 

the fact that it is a perturbation-based iterative approach.  

 

 

Figure 2.12. Flow chart of the DBS algorithm to optimize the height distribution of the 

diffractive optic. The ‘groove’ can be replaced by ‘pixel’.    
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Figure 2.13. Results of the DBS algorithm. (a) The evolution of FOM and the number of 

changed pixels during DBS optimization. (b) Computation speed improvements using the 

perturbation method.  

 

The same algorithm is adopted for spectrum and image reconstruction in the 

computational spectroscopy and computational multispectral imaging projects. The 

problems in these two projects are both reduced and generalized by the equation x=A
-1

b. 

Here, the pixels to be perturbed are the elements in matrix x, and the FOM to be 

minimized during optimization is defined as the residual norm ||b-Ax||2. Note that matrix 

A describes the imaging system, also known as the spatial-spectral point-spread-function 

(SS-PSF), and b is the multiplexed image captured by a camera.  

 

2.4.2 Perturbation method 

Calculating diffraction using Fresnel transformation can be time-consuming, 

especially when this process is repeated a number of times. In order to facilitate the 

computation of diffraction fields in the DBS algorithm, a perturbation method was 

implemented based on the linearity of the system in the Fresnel diffraction regime. The 

field in the image plane (both 1D and 2D) updated after perturbation can be expressed by  

 

  .        (2.7) 
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    .      (2.8) 

 

U(x’,λ,d) and U(x’,y’,λ,d) are the original field distributions before perturbation. The term 

induced by single perturbation at the m or (m,n) pixel with height p(m) or p(m,n) are  

 

     .      (2.9) 

        .   (2.10) 

.   (2.11) 

   .   (2.12) 

 

Using the perturbation method, Figure 2.13(b) gives the improvement curve of 

computation speed with different numbers of pixels, tested on three high-performance 

computing servers on the university campus, compared to the Fresnel transformations in 

Equations (2.5) and (2.6). Clearly it demonstrates that speed enhancement becomes more 

profound when solving for problems with larger dimensions. In a particular design with 

3000 pixels, an average speed enhancement of 2.5X is observed.  

 

2.5 Regularization Algorithm 

In the imaging applications of the polychromat, it is essential to extract unknown 

information, such as spectrum flux or hyperspectral data cubes, from the captured 

monochrome images. Although DBS-based optimization algorithm may be taken as a 
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candidate solver, it suffers from slow speed and a tendency to converge to a local 

extremum. Thus it is critical to implement an efficient noniterative approach that outputs 

solutions in real-time. We turn to regularization since, mathematically speaking, the 

issues that we face are inverse problems.  

As mentioned earlier, the imaging system, or the forward problem in another word, 

can be expressed as b=Ax, where x is unknown information, A is the system matrix, and 

b is the measured data or image. In theory, we can always do the direct inversion x=A
-1

b. 

However, in practice, this is problematic since the matrix A is extremely ill-conditioned, 

with an enormously large condition number. In order to obtain reasonable solutions for 

these types of problems that do not satisfy the Hadamard requirements, regularization 

methods are developed [13], and they have been particularly applied in biomedical 

imaging, geophysics, and image deblurring [13].  

To begin with, we need to analyze the system matrix A by singlular-value-

decomposition (SVD), which decomposes the matrix A into a representation of a 

sequence of singular values and a set of left and right singular vectors:  

 

       .             (2.13) 

 

In Equation (2.13), Σ is a diagonal matrix with the singular values as its diagonal 

elements, arranged in a descending manner (σ1≥σ2≥σ3≥…≥σk). The columns of U and V 

matrices (u1, u2, u3…uk, and v1, v2, v3…vk) contain the k×1 left and right singular vectors, 

respectively. SVD is equivalent to a Fourier expansion of the system matrix. The vectors 

ui and vi are the frequency components and σi are the coefficients of the components 

(i=1,2,3…k).  
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From the SVD point-of-view, any forward problem diminishes the high-frequency 

components in ui and vi. However, the inverse process attempts to magnify those high-

frequency parts. The regularization technique stabilizes the problem by minimizing both 

the residual norm ||Ax-b||2 and the solution norm ||x||2. Usually, a regularization parameter 

ω is selected to balance these two terms. Here, we focus on a widely used method called 

Tikhonov regularization. Mathematically, its goal is stated as  

 

      .      (2.14) 

 

It can be equally formulated as applying filter factors to solution vectors, from the 

computational perspective:  

 

           .      (2.15) 

 

              .      (2.16) 

 

Equation (2.16) is the expression of the filter factor. In Equation (2.15), we call xω the 

Tikhonov regularization solution with parameter ω. The parameter ω is selected based on 

the widely known L-curve technique. Much too small ω leads to results overwhelmed by 

noises, while much too large ω leads to oversmoothed distorted results. Note that the 

system matrix A has to be a square matrix.  

Next, we will use an example to explain how regularization approach works. A 

simple system is constructed with the system matrix A (2000×2000 elements) 
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representing the spatial-spectral point-spread-function of a diffractive optic with random 

topography. The unknown is vector x (2000×1 elements) and the measured data is b 

(2000×1 elements). Figure 2.14(a) plots the singular values σi in logarithm scale and 

Figure 2.15 summarizes some of the left singular vectors ui. The singular vectors oscillate 

faster with increasing i. This is further validated by the Fourier transform of the singular 

vectors ui. Based on the dashed line, the low frequency and high-frequency regimes can  

 

 

Figure 2.14. Singular values and filter factors in the regularization method. (a) Singular 

values σi of an exemplary system matrix A plotted in logarithm scale. (b) Filter factors ψi 

for different regularization parameter (ω) values.  
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Figure 2.15. Examples of left singular vectors ui in the U matrix after SVD.  

 

be apparently separated (Figure 2.16(a)). As can be seen in Figure 2.14(a), the singular 

values drop slowly in the low-frequency regime (i<750) but then falls drastically in the 

high-frequency regime (i>750). In essence, regularization computes the solution x by 

combining the singular vectors of all the frequencies with the coefficient of each 

frequency determined by its filter factor as defined by Equation (2.16). Filter factors of 

different parameter ω values are given in Figure 2.14(b). Larger ω tends to smooth the 

solution with a slope-shape filter and vice versa. To explain this, the L-curve of solution 

norm ||x||2 versus residual norm ||Ax-b||2 is plotted in Figure 2.16(b), and the insets 

compare the ground truth and the solutions obtained by different ω values. An optimal 

ω=1.857, roughly around the corner of the L-curve, offers the best solution.  
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Figure 2.16. Results of the regularization method. (a) Each column i represents the 

Fourier transform of the singular vector ui of an exemplary system matrix A. The low- 

and high-frequency regimes are labelled. (b) L-curve for selecting the regularization 

parameter ω in Tikhonov regularization method. Reconstruction results by using 

ω=0.001 (top left inset), ω=0.1 (top right inset), ω=1.857 (middle right inset), ω=10 

(bottom left inset), and ω=1000 (bottom right inset). The best result is obtained by 

ω=1.857. The solution data are in the red line and the ground truth data are in the black 

line. They are normalized.  
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2.6 Optical Characterization Setup 

2.6.1 Scanning-spectrometer setup 

An optical characterization setup is built to measure the spatial-spectral point-spread-

function (SS-PSF) of the polychromat designed and fabricated for nonimaging 

applications. The schematic and some photographs of the setup are shown in Figure 2.17. 

It works by measuring the spectrum at each spatial point in the image plane of the 

polychromat.  

Firstly, a broadband (white) laser beam generated by a supercontinuum source 

(SuperK EXTREME, NKT Photonics) is expanded by an achromatic biconcave lens 

(ACN254-075-A, f=-75mm, Thorlabs). Two concave mirrors (CM127-010-P01, 

f=9.5mm and CM750-500-P01, f=500m, Thorlabs) are cascaded to collimate and further 

expand the beam diameter to about 3 inches. Excellent degree of collimation is the key to 

get accurate characterization data. Then two silver mirrors guide the beam to the 

measurement side of the setup, enclosed in the black box in Figure 2.17(a).  

The collimated broadband laser beam illuminates the backside (or right side) of the 

diffractive optic. Usually, the polychromat is patterned on the left side of the substrate. A 

single-mode-fiber (SMF) tip (QP8-2-SMA, Ocean Optics) connected to a portable 

spectrometer (Ocean Optics Jaz) is mounted onto a motor-actuated multiaxis stage with 

1-inch maximum range of movement and 0.1μm movement precision (Z825B, Thorlabs). 

In the photovoltaics project (Chapter 3), only one axis (X) is used; in the super-

achromatic lens project (Chapter 4), two axes (X and Z) are used; and in the high-

sensitivity color imaging project (Chapter 6), all three axes (X, Y and Z) are used. The 

SMF has a core diameter of ~8μm and is placed precisely at the image plane (gap is d).  
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Figure 2.17. Scanning-spectrometer setup. (a) Schematic of the setup characterizing the 

spatial-spectral point-spread-function of the diffractive optic by scanning-spectrometer 

approach. (b) Photograph of the measurement side of the setup (black box in (a)). (c) 

Close-up photograph of the diffractive optic illuminated by broadband light. (d) Close-up 

photograph of the SMF tip mounted on the multiaxis stage.  

 

Delicate control over this gap is another key towards successful measurements. Note 

that the polychromat needs to be aligned perpendicular to the optical path while the fiber 

has to be in line with the optical path. The spectrometer and the actuators are controlled 

via a custom-built LabVIEW routine.  

The fiber tip is scanned across the entire image space of the polychromat. The finite 

diameter of the fiber tip and the stage accuracy undoubtedly limit the resolution of the 

measured spectral-spatial map. A numerical deconvolution in postprocessing may recover 

high-resolution sharp measurements. The SS-PSF of 1D and 2D polychromats are  
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           .                (2.17) 

     .               (2.18) 

 

In Equation (2.17) and (2.18), I(x’,λ) and I(x’,y’,λ) are the intensities measured by 

spectrometer at position x’ or (x’,y’) and wavelength λ. And Iref(λ) is the reference 

spectrum when the beam passes through a bare glass substrate coated with uniform 

unpatterned polychromat material (either Shipley 1813 or SC1827 photoresist). It is 

prepared under the same condition with the same film thickness. Idark(λ) is the dark 

measurement without light. This SS-PSF data are equivalent to the simulation results 

from Equations (2.5) and (2.6). Other specs of the polychromat, such as optical 

efficiencies, can be directly calculated from this SS-PSF data.  

 

2.6.2 Scanning-pinhole setup 

In the single-shot hyperspectral imaging project, we devised a scanning-pinhole setup 

to calibrate the spatial-spectral point-spread-function of the diffractive optic. Here this 

SS-PSF data are referred to as the system matrix (A), as discussed in Section 2.4. Our 

purpose is to record the multiwavelength PSFs of the imaging system when a single 

object point is located at all possible coordinates in the object plane.  

The preconditioning optics are the same with the previous scanning-spectrometer 

setup (see Figure 2.17), except that a tunable bandpass filter (SuperK VARIA, NKT 

Photonics) is connected to the supercontinuum source to select different wavelengths. Its 

minimum bandwidth is 10nm. The layout and some photographs of the setup are shown 
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in Figure 2.18. More details on its working principles can be found in Chapter 7. The 

measurement side of the setup, enclosed in the black box in Figure 2.18(a), includes two 

parts: the object part and the imaging part. In this work, we introduce a circular pinhole 

(diameter φ=150μm, Thorlabs) as our object. It is mounted upon a two-axis (X and Y 

directions) motor stage (Z825B, Thorlabs) so that it can traverse all possible points in the 

designated object space. In our experiment, the field-of-view to be calibrated has an area 

of 3.6mm×3.6mm. However, diffraction through the pinhole does not have enough 

divergence to fill in the aperture of the following imaging lens. Therefore, an achromatic 

bi-convex lens (AC254-100-A, f=100mm, Thorlabs) is introduced before the pinhole and 

mounted on the same 2-axis stage using a cage mount (KT310, Thorlabs). The pinhole is 

carefully aligned at the lens focus. A small piece of diffuser is glued onto the backside of 

the pinhole to expand divergence as well. A close-up photograph of this part is given in 

Figure 2.18(d).  

In the imaging part (Figure 2.18(c)), the imaging lens (MVL12WA, f=12mm, 

Thorlabs), the diffractive optic (polychromat), and the bare monochrome CMOS sensor 

(DMM22BUC03-ML, The Imaging Source) are fit in a cage mount for the purpose of 

easy alignment. As illustrated in Figure 2.18(a), the sensor is aligned to be exactly in the 

image plane of the imaging lens. Then the polychromat is placed at gap d from the sensor. 

Both the sensor and the polychromat are orthogonal to the optical path. Additionally, the 

imaging lens is adjusted to focus on the pinhole. Another LabVIEW routine is developed 

to configure and automate the tunable filter, the 2-axis stage, and the sensor.  
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Figure 2.18. Scanning-pinhole setup. (a) Schematic of the setup characterizing the 

spatial-spectral point-spread-function of the diffractive optic by scanning-pinhole 

approach. (b) Photograph of the measurement side of the setup (black box in (a)). (c) 

Close-up photograph of the imaging part of the setup (left black box in (b)). (d) Close-up 

photograph of the object part of the setup (right black box in (b)).  
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CHAPTER 3 

HIGH-EFFICIENCY MULTIBANDGAP PHOTOVOLTAICS 

This chapter is adapted from the author’s previous publication: Peng Wang, Jose A. 

Dominguez-Cabellero, Daniel J. Friedman and Rajesh Menon, “A new class of multi-

bandgap high efficiency photovoltaics based upon broadband diffractive optics,” Prog. 

Photovolt. Res. Appl. 23, 1073-1079 (2015).  
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3.1 Abstract 

A semiconductor absorber with a single bandgap is unable to convert broadband 

sunlight into electricity efficiently. Photons with energy lower than the bandgap are not 

absorbed, while those with energy far higher than the bandgap lose energy via 

thermalization. In this chapter, we demonstrate an approach to mitigate these losses via a 

thin, efficient, broadband diffractive microstructured optic that not only spectrally 

separates incident light but also concentrates it onto multiple laterally separated single-

junction semiconductor absorbers. A fully integrated opto-electronic device model was 

applied in conjunction with a nonlinear optimization algorithm to design the optic. An 

experimental demonstration is presented for a dual-bandgap design using GaInP and 

GaAs solar cells, where a 20% increase compared to bare reference without the 

diffractive optic in total electric power is measured. Finally, we demonstrate that this 

framework of broadband diffractive optics allows us to independently design for the 

number of spectral bands and geometric concentration, thereby enabling a new class of 

multibandgap photovoltaic devices with ultrahigh energy-conversion efficiencies. 

 

3.2 Introduction 

Solar energy holds potential to become a significant source of energy in the near 

future [1]. The efficiency with which photons can be converted into charge carriers in a 

photovoltaic device is limited fundamentally by the Shockley-Queisser limit [2]. This 

upper bound arises from the fact that the solar spectrum stretches from ~350 nm to 

almost 2000 nm. Unfortunately, a single bandgap absorber is unable to convert all 

incident photons into charge carriers efficiently. Photons with energy below the bandgap 

are not absorbed at all, while photons with energy much higher than the bandgap tend to 
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lose the excess energy (beyond the bandgap) rapidly as heat within the semiconductor 

lattice, a process commonly referred to as thermalization. Recent work in the 

optimization of photonic properties has allowed a thin-film GaAs photovoltaic device to 

reach ~85% [3,4] of its Shockley-Queisser limit of 33.5% [5]. It is widely acknowledged 

that achieving efficiencies beyond this limit could have a tremendous technological 

impact. As has been noted earlier, the primary loss mechanisms that need to be overcome 

are nonabsorption and thermalization [6]. An effective approach is to separate the solar 

spectrum into smaller constituent bands and absorb these bands with band-matched 

absorbers. However, preconditioning of the incident sunlight to enable spectrum-splitting 

with conventional optical devices has proven to be impractical or inefficient. Spectrum-

splitting using dichroic mirrors [7], beamsplitters [8], or prismatic elements [9] has been 

demonstrated. The main disadvantages of these approaches are their high cost, inability to 

scale to large areas, and bulky configuration, making them unsuitable for practical solar 

applications. For dichroic mirror-based designs, other factors such as Fresnel reflection 

losses from multiple interfaces also limit their scalability to a large number of spectral 

bands. Holographic spectrum splitting is highly inefficient over the broad solar spectrum. 

Furthermore, they suffer from degradation under long exposure to sunlight. 

Nevertheless, the benefits of spectrum-splitting in photovoltaic devices have been 

demonstrated by vertically grown multijunction solar cells [10-12]. Although an 

impressive efficiency of 43.5% at a geometric concentration of 418X has been achieved 

[3], their widespread adoption is stifled by the high cost of epitaxial growth and the 

complexity of metamorphic growth [12]. Furthermore, in such devices the individual 

absorbers are connected in series and hence constrained to output the same current. This 
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is problematic since the photon density in the corresponding bands of sunlight may not be 

the same for the different absorbers. Such a rigid constraint will reduce net energy yield 

due to the temporal variations in the solar spectrum [13]. 

In this chapter, we present a new class of multibandgap high-efficiency photovoltaics 

based on a numerically optimized thin broadband diffractive optical element that we refer 

to as the “polychromat” [14]. The working principle of a polychromat-based photovoltaic 

device is demonstrated experimentally for the case of a dual-bandgap design using GaAs 

and GaInP absorbers. The numerical opto-electronic model is compared to measured data 

showing excellent agreement. Numerical simulations of ultrahigh energy conversion 

efficiency designs with multiple bandgaps at various concentrations are presented, 

demonstrating the flexibility of polychromat-based designs. Most notably, it is shown 

that an efficiency of over 50% may be achieved with an 8-bandgap design at a low 

concentration factor of 8X. The framework of the polychromat allows for independent 

control of the number of spectral bands and geometric concentration with high optical 

efficiencies, enabling a new class of multibandgap photovoltaic devices. 

 

3.3 Methods 

In its simplest dual-bandgap configuration, incident sunlight is diffracted by the 

polychromat such that the high-energy spectral band is localized on the left half of the 

image plane, while the low-energy spectral band is localized on the right half. By placing 

a high-bandgap cell on the left and a low-bandgap cell on the right, it is possible to 

extract more electrical energy compared to the case of normal illumination (without the 

polychromat). Furthermore, the polychromat also performs geometric concentration of 

2X for each spectral band, since the input aperture area is twice that of each of the cells in 
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this specific configuration.  

In this chapter, only 1D designs are considered, with varying heights in the X 

direction and uniform grooves in the Y direction. The smallest width of a groove or a 

polychromat pixel was constrained to 3μm to be compatible with the grayscale patterning 

process used for its fabrication. It is the smallest lateral feature size available by our 

lithography tool. The overall size of the optic was LX × LY = 10mm × 5mm, with each 

of the single-junction solar cells of size 5mm × 5mm. This makes totally 3334 grooves in 

one polychromat design. As indicated in Figure 3.1(a), the solar cells were placed side-

by-side on the image plane (d=120mm away from the polychromat). The height of each 

pixel is allowed to vary between 0 and 1.8μm.  

The single-junction solar cells were selected based upon the optimal bandgaps as well 

as the practical availability of the materials. These were a GaInP cell with a bandgap of 

1.8eV and a GaAs cell with a bandgap of 1.4eV. Both cells were grown on GaAs 

substrate by atmospheric-pressure organometallic vapor phase epitaxy. They have stacks 

of Se-doped n-type emitters (0.1μm thick for both) and Zn-doped p-type bases (2.8μm 

thick for GaInP and 3.5μm thick for GaAs). Electroplating and photolithography defined 

the gold grid fingers, and heavily n-doped GaAs worked a contact layer between emitters 

and metal fingers. A ZnO/MgF2 double-layer was deposited on top for antireflection. The 

measured external quantum efficiencies (EQEs) of these cells are shown in Figure 3.1(b), 

confirming that the GaInP cell has strong absorption in the visible spectrum, while the 

GaAs cell has absorption that extends into the near-infrared portion of the spectrum.  

The polychromat was designed numerically based upon an integrated optoelectronic 

model [15] and by applying a novel expanded version of the direct-binary-search (DBS)  
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Figure 3.1. (a) Schematic showing the polychromat spectrally separating incident 

sunlight and concentrating the two bands onto a GaInP cell and a GaAs cell. (b) 

Measured external quantum efficiencies of the GaInP and GaAs cells, and normalized 

power spectra of the AM1.5G and the Xenon lamp used in our experiments (total power 

= 300W). (c) Height profile of the designed polychromat with 3μm pixel size and 1.8μm 

maximum height (Inset: magnified view of the first 200μm of the design).  

 

algorithm [16-18]. The objective of the design was to maximize the total output electric 

power. The algorithm proceeds in such a progressive manner that each polychromat 

groove experiences perturbation during each iteration. Whether a negative or a positive 

perturbation is valid is determined by the updated optimization objective (or figure-of-

merit, FOM). A unit perturbation of Δh=28.6nm is applied. A dual-bandgap polychromat 

design example is shown in Figure 3.1(c) as pixel-height distributions. Note the 

multilevel structure as shown in the inset figure.  

The polychromat was fabricated using grayscale lithography on a thin film of 

commonly used Shipley 1813 photoresist. An optical micrograph of the fabricated optic 
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is shown in Figure 3.2(a). The inset in the figure shows an atomic-force micrograph of a 

small portion of the optic delineated by the white square. This image confirms the height 

distribution and the width of the pixels. Pixel width of 3μm is clearly seen and marked. 

We measured the standard deviation of the errors in pixel-heights due to fabrication 

errors as about 100nm. Further numerical analysis and experimental measurements show 

that this error is sufficient to provide acceptable performances.  

 

 

Figure 3.2. Polychromat design and optical characterization results. (a) Microscopic 

image of the designed and fabricated polychromat with back illumination (Inset: atomic-

force micrograph of a small portion of the polychromat delineated by the white block). 

Spatial-spectral intensity distribution at the image plane measured (b) and simulated (c). 

(d) Spectral efficiency of the polychromat for the two bands. Blue lines are for the GaInP 

cell and red lines are for the GaAs cell. Solid lines are from simulations of the designed 

polychromat, dashed lines are from real measurements, and dotted-dashed lines represent 

estimations by considering the corrected dispersion data of Shipley 1813 photoresist and 

fabrication error with standard deviation of 100nm.   
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3.4 Experimental Results 

The polychromat was optically characterized by measuring the spectral characteristics 

of its diffraction pattern at the image plane that is d=120mm away from the polychromat. 

The resulting spectral transmission efficiency is shown in Figure 3.2(d). The transmission 

efficiency is calculated as the ratio of the total power at the image plane integrated over 

the left or right absorber area, respectively, and divided by the total input power 

integrated over the entire polychromat area. The numerical simulation (solid lines) shows 

that the average optical efficiency is 85%. The measured efficiency is also shown (dashed 

lines) and has an average efficiency of 75%. They are both mean values of the optical 

efficiencies of two spectrum bands: high-energy band (averaged from 400nm to 630nm) 

and low-energy band (averaged from 630nm to 900nm). The reduction in efficiency for 

the measured polychromat was the result of a combination of errors introduced during 

fabrication in the pixel heights (~100nm) and errors in the dispersion data of the 

photoresist. A second numerical simulation was run including these height and dispersion 

errors (dotted-dashed lines), resulting in a much better match between our numerical 

model and the measured data. In addition, a spatial-spectral image map was created for 

the original simulation by the Fresnel transform [16] and the measured data (see Figure 

2.17 and Equation (2.17)) and is shown in Figure 3.2(c) and Figure 3.2(b), respectively, 

which also demonstrate excellent agreement. The spectrally integrated intensity 

distribution is calculated to offer reasonable uniformity across the entire solar cell 

surfaces. However, in order to benefit the concentrated photovoltaics (CPV) to a greater 

extent, the DBS-based algorithm can also be readily implemented to improve spatial 

uniformity of intensity. The illumination was spatially collimated white light from a 



61 

 

 

Xenon lamp, whose power spectrum is plotted in Figure 3.1(b). As expected, the high-

energy photons are localized to the left half of the image plane, while the low-energy 

photons are redirected to the right half.  

The solar cells were characterized independently by measuring their current-voltage 

curves under conventional illumination (reference, without polychromat) and spectrum-

split illumination (with polychromat), both using the same source. As shown in Figure 

3.3(a), spectrum-splitting with the polychromat increases the short-circuit current-density 

of the GaInP cell by 58% (simulation) and by 26% (measurements). This can be 

understood by the increase in the high-energy photons that are redirected towards the 

GaInP cell by the polychromat. In the reference case, such photons that land on the right-

hand side of the image plane completely miss the GaInP cell (which is placed on the left-

hand side of the image plane). The open-circuit voltage of the GaInP cell shows an 

increase of 7% (simulation) and of 4% (measurements), likely due to the increased 

photon flux [19]. On the other hand, the GaAs cell (which is placed on the right-hand side 

of the image plane) loses the redirected high-energy photons compared to the reference. 

Although some of the low-energy photons are redirected towards the GaAs cell by the 

polychromat from the left-hand side of the incident beam, the overall effect is such that 

the short-circuit current-density of the GaAs cell increases by 5% (simulation) and by 

13% (measurements), as shown in Figure 3.3(b). Its open-circuit voltage also increases 

slightly by 2.3% (simulation) and by 2.9% (measurements). The fill-factors of both the 

cells are maintained during spectrum-splitting. As a result, the power-density of both 

cells show increase as illustrated in Figures 3.3(c) and 3.3(d). The simulations predict the 

peak-power-density of the GaInP cell to increase by 69% and that of the GaAs cell to  
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Figure 3.3. Electrical measurement results. (a) J-V curve of the GaInP cell. (b) J-V curve 

of the GaAs cell. (c) P-V curve of the GaInP cell. (d) P-V curve of the GaAs cell. Solid 

lines are derived from measurements with spectrum-splitting by polychromat. Dashed 

lines stand for reference measurements without polychromat. Dotted lines are simulation 

results estimated by considering the measured spectral efficiencies. The simulated ideal 

cases with the designed polychromat are represented by dotted-dashed lines. The method 

for calculating the solar cell electronic response curves are detailed in the Supplementary 

Materials of this chapter.  
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increase by 7.7% under spectrum-split illumination compared to the reference. The 

measured peak power density increase for the GaInP and the GaAs cells are 29% and 

16%, respectively. The combined power density from both cells under spectrum-split 

conditions is predicted to increase by 26%, and the corresponding measured increase is 

20%.  

The discrepancies between simulation and measurement in device power output are 

primarily due to fabrication errors that degrade the polychromat transmission 

performance as discussed earlier. Specifically, as can be seen in Figure 3.2(b), the optical 

efficiency of the polychromat is reduced in the spectral range from 460 nm to 620 nm, 

which includes a significant portion of the input light spectrum (see Figure 3.1(b)). This 

means that some of the high-energy photons, which should have been redirected to the 

GaInP cell, are now incident on the GaAs cell. Thereby, the GaInP cell exhibits a 

smaller-than-expected increase and the GaAs cell shows a larger-than-expected increase 

in their respective short-circuit-current densities. By using the measured optical 

efficiency spectrum of the polychromat, we can estimate the electrical characteristics of 

the two cells, as illustrated by dotted lines in Figure 3.3. This estimation agrees well with 

the measured characteristics, thereby validating our optoelectronic model.   

 

3.5 Numerical Analysis 

The numerical optimization of the polychromat allows us to control the geometric 

concentration independently from the number of spectral bands. To illustrate this design 

flexibility, we redesigned the dual-band polychromat presented earlier, but with an 

increased concentration factor of 10X, as given in Figure 3.4(a). The optimized design of 

this polychromat is shown in Figure 3.4(b), while the corresponding spatial-spectral  



64 

 

 

 

Figure 3.4. (a) Schematic showing a dual-band polychromat with a geometric 

concentration factor of 10X. (b) Optimized height profile of the polychromat in (a) (Inset: 

magnified view of the first 150μm). (c) Simulated spatial-spectral intensity distribution 

and (d) spectral efficiency distribution. Simulated electrical characteristics of (e) the 

GaInP cell and (f) the GaAs cell using this polychromat.    

 

image map is shown in Figure 3.4(c), where two spectral bands and the geometric 

concentration are obvious. The optical efficiency spectrum in Figure 3.4(d) indicates that 

the two bands are separated with an average efficiency of ~80%. Simulated electrical 

performance described in Figure 3.4(e) for the GaInP cell and Figure 3.4(f) for the GaAs 

cell confirms that a net efficiency of ~27.7% could be achieved.  

The ability to control concentration independently of the number of spectral bands is 

a powerful technique to enable ultrahigh efficiencies. We illustrate this in Figure 3.5(a), 

where four real absorbers were simulated under increasing geometric concentration  
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Figure 3.5. Independent control of the number of spectral bands and concentration using 

the polychromat. (a) Calculated net efficiency as a function of concentration factor for 

four real solar cells (GaInP, GaAs, Si and Ge) and assuming ideal polychromats with 

100% optical efficiency (Left inset: the same plot in log scale with higher concentration 

factors, Right inset: illustration of the device incorporating the polychromat and four 

solar cells). A device with a designed polychromat at a concentration of 4X is shown by 

the gray cross. Concentration factor is augmented by increasing the polychromat 

aperture. (b) Calculated net efficiency as a function of the number of spectral bands 

assuming ideal absorbers of ideal bandgaps and 100% EQEs. Real polychromat designs 

were used for the red curve, while ideal polychromats with 100% optical efficiencies 

were assumed for the blue curve (Inset: schematic of the device with an arbitrary number 

of absorbers). In this case, the concentration factor equals the number of bands.     

 

assuming an ideal polychromat (optical transmission efficiency of 100%). As expected, 

the increase in concentration not only increases the short-circuit current density but also 

the open-circuit voltage. An actual polychromat design with 4 bands at a concentration 

factor of 4X yields a net efficiency of ~32%. Higher optical efficiencies are achievable by 

judiciously choosing optimal geometric parameters, including propagation distance, pixel 

size, and number of pixels [16]. In practice, enhanced grayscale lithography technique 

with better precision and accurate calibration oppresses unwanted scattering and thus 
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gives rise to increased optical efficiencies. Refer to Chapter 2 for technical information 

on the calibration of grayscale lithography and scanscale parameter.  

Finally, in Figure 3.5(b), we show four polychromats, each designed to spectrally 

separate and concentrate sunlight onto ideal photovoltaic absorbers of optimal 

combinations of bandgaps. The number of bands is increased from 2 to 8. In this case, the 

concentration factor is set to be equal to the number of bands. The upper bound of the 

photovoltaic efficiency assumes ideal polychromats are plotted on the blue curve, while 

the red curve assumes actual polychromat designs. It is noteworthy that a net efficiency 

>50% may be achieved with a polychromat that separates sunlight into 8 spectral bands 

and concentrates these bands by 8X. These simulations confirm that the polychromat 

allows one to flexibly design for an arbitrary number of spectral bands (and absorbers) 

and also for separately controlling the geometric concentrations. The polychromat-based 

photovoltaic architecture could also be easily adapted to various material systems with 

engineered bandgaps and quantum efficiencies, such as organic solar cells [20] and 

quantum dot solar cells [21]. Thus, it provides a new design framework enabling ultra-

high-efficiency photovoltaic devices. 

Since the polychromat is microfabricated, it is possible to integrate the polychromat 

into the cover glass of a photovoltaic device, which allows for ready scaling to large 

areas. An example design, whose form factor corresponds to a conventional photovoltaic 

panel, offers a 30% improvement in overall power conversion efficiency. Note that since 

the polychromat may be fabricated directly into glass, it can be extremely durable over 

prolonged exposure to sunlight. Moreover, the fabrication of the polychromat can be 

readily replicated over large areas using roll-to-roll processes [22,23].  
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3.6 Conclusions 

Photovoltaic energy conversion is fundamentally an optoelectronic phenomenon. 

Therefore, it is critical to incorporate photonic principles into the design of such devices. 

In this chapter, we showcase a novel example of such an integrated device. A 

microstructured broadband optic that can spectrally separate sunlight into an arbitrary 

number of spectral bands and also concentrate these bands onto matched absorbers is 

utilized to enhance the net efficiency of the photovoltaic effect. By optimizing the 

number of spectral bands, the absorber materials, and the concentration factors in 

conjunction with conventional device properties, we can expect ultra-high-efficiency 

photovoltaics.    

 

3.7 Supplementary Information 

3.7.1 Figure-of-merit 

We choose the total power conversion efficiency boost as our FOM defined as   

 

          .        (3.1) 

          .        (3.2) 

           .        (3.3) 

 

Equations (3.2) and (3.3) represent the total power conversion efficiency for the case with 

and without polychromat. Here, we assume that all the subcells have the same areas, 

which holds for all the cases studied here. Therefore, Ppoly is the sum of power density of 

all subcells when a polychromat design is present, and Pref is the reference counterpart 



68 

 

 

with absence of polychromat. Acell is the surface area of each single cell, C is the 

concentration factor, and N is the number of subcells of different bandgaps. Particularly 

in this case, the total power density outputs included in Equations (3.2) and (3.3) are 

expressed as  

 

          .     (3.4) 

             .     (3.5) 

 

In Equations (3.4) and (3.5), Jsc stands for the short-circuit current density. For 

optimization, Voc and FF are the measured open-circuit voltage and fill factor under 

Xenon lamp without the polychromat. For simplicity, we ignored the slight changes of 

Voc and FF between different radiation conditions in the optimization procedure. 

However, a more rigorous model might be introduced to predict the power output with 

higher accuracy [15]. Moreover, we experimentally show that both Jsc and Voc are 

increased as a result of the spectrum-splitting.  

The short-circuit current density Jsc for each case is defined as  

 

.     (3.6) 

.     (3.7) 

  .     (3.8) 

  .     (3.9) 
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Ipoly(x,λ) is the light intensity distribution along X direction for wavelength λ in the case 

with the polychromat, and Iref(x,λ) is the reference when the incident light directly 

illuminates the array of solar cells. The spectrum is from λmin=350nm to λmax=900nm, and 

the integral can be approximated by the sum of multiple wavelength samples.  

 

3.7.2 Experimental setup 

Figure 3.6(a) is a photograph of the experiment setup for measuring the electrical 

responses of the solar cells. The cells were connected to a Keithley 2602A Source Meter 

by probes and measured independently. To estimate the power conversion efficiencies, 

we measured the total optical power passing through the polychromat using a Coherent 

PM10 broadband power meter, which gives a power intensity of 1.77 mW/cm
2
.   

 

3.7.3 Electrical characterization details 

Relevant electrical parameters from the measurements are listed in the Table 3.1. Pmax 

is the maximal power under voltage bias of Vmax and current density of Jmax. The fill 

factor is defined as FF=(Jmax×Vmax) / (Jsc∙Voc ).  

 

 

Figure 3.6. Photographs of electrical measurement. (a) Experiment setup for I-V curve 

measurements to evaluate power conversion efficiency. (b) Photograph at the imaging 

plane, demonstrating the effect of spectrum-splitting.   
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Table 3.1 

Electrical measurement results of the solar cells 

 
Jsc 

(mA/

cm
2
) 

Voc 

(V) 

Jmax 

(mA/

cm
2
) 

Vmax 
(V) 

FF 

Pmax 

(mW/c

m
2
) 

Power 

Boost 
Efficiency 

GaInP         

Reference 0.296 0.96 0.282 0.67 0.67 0.190 NA 5.37% 

Polychromat 0.373 1.00 0.343 0.71 0.66 0.245 29% 6.92% 

Estimation 0.403 1.00 0.369 0.72 0.67 0.266 40% 7.51% 

Ideal 0.467 1.03 0.438 0.73 0.67 0.322 69% 9.10% 

GaAs         

Reference 0.860 0.86 0.698 0.63 0.60 0.440 NA 12.43% 

Polychromat 0.973 0.88 0.796 0.65 0.60 0.509 16% 14.48% 

Estimation 1.001 0.89 0.803 0.66 0.59 0.524 19% 14.80% 

Ideal 0.905 0.88 0.746 0.63 0.60 0.474 7.7% 13.39% 

Total         

Reference NA NA NA NA NA 0.630 NA 17.80% 

Polychromat NA NA NA NA NA 0.754 20% 21.30% 

Estimation NA NA NA NA NA 0.790 25% 22.32% 

Ideal NA NA NA NA NA 0.796 26% 22.49% 
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CHAPTER 4 

BROADBAND CHROMATIC-ABERRATION-CORRECTED 

LENS 

This chapter is adapted from the author’s previous publication: Peng Wang, Nabil 

Mohammad and Rajesh Menon, “Chromatic-aberration-corrected diffractive lenses for 

ultra-broadband focusing,” Sci. Rep. 6, 21545 (2016).  
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4.1 Abstract 

We exploit the inherent dispersion in diffractive optics to demonstrate planar 

chromatic-aberration-corrected lenses. Specifically, we designed, fabricated, and 

characterized cylindrical diffractive lenses that efficiently focus the entire visible band 

(450nm to 700nm) onto a single line. These devices are essentially pixelated, multilevel 

microstructures. Experiments confirm an average optical efficiency of 25% for a three-

wavelength apochromatic lens whose chromatic focus shift is only 1.3μm and 25μm in 

the lateral and axial directions. Superachromatic performance over the continuous visible 

band is also demonstrated, with averaged lateral and axial focus shifts of only 1.65μm 

and 73.6μm, respectively. These lenses are easy to fabricate using single-step grayscale 

lithography and can be inexpensively replicated. Furthermore, these devices are thin (< 

3μm), error tolerant, have low aspect ratio (< 1:1), and offer polarization-insensitive 

focusing, all significant advantages compared to alternatives that rely on metasurfaces. 

Our design methodology offers high design flexibility in numerical aperture and focal 

length, and is readily extended to 2D.  

 

4.2 Introduction 

Recent work has suggested the use of metalenses for broadband achromatic focusing 

[1]. Here, we show that it is not necessary to invoke concepts of metasurfaces or 

metalenses to enable such focusing. Scalar diffractive optics, when designed 

appropriately, can readily enable ultrabroadband achromatic focusing. Such diffractive 

optics can be far simpler to manufacture and can allow for polarization-independent 

focusing. An ideal lens focuses one point in the object space to one point in the image 

space [2]. Almost all imaging systems suffer from chromatic aberrations, which means 
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that light of different wavelengths generates focal spots at different spatial locations [2]. 

This phenomenon deteriorates the performance of both imaging [3,4] and nonimaging [5] 

systems under broadband illumination. For instance, a color camera without chromatic-

aberration correction will form spatially displaced and defocused images of the blue, 

green, and red channels.  

Chromatic aberration is due to either the dispersion properties of the material or the 

structure of the optic. For refractive lenses, longer wavelengths focus at a farther 

distance, since in most dielectric materials, the refractive index decreases at longer 

wavelengths. Figure 4.1(a) illustrates the simple example of a bi-convex glass lens and 

the corresponding shift of its focus, calculated by the Lensmaker’s equation [2]. The 

conventional diffractive lens (zone-plate), on the other hand, exhibits opposite chromatic 

aberration (Figure 4.1(b)) [6-8]. Diffraction angle is proportional to wavelength [2], and 

thus longer wavelengths are focused closer than shorter ones.  

Chromatic aberration can be corrected approximately by using materials that exhibit 

complementary dispersion, as in an achromatic doublet and triplet [9-11]. However, this 

technique is cumbersome, since the number of materials equals the number of 

wavelengths where the chromatic aberrations are minimized [10,11]. The extra alignment 

makes these lenses expensive and bulky. Hybrid refractive-diffractive lenses perform 

slightly better, but their complexity is even higher [12-14]. Such designs that work for 

more than three wavelengths are seldom studied. An alternative approach is to use a 

phase-coded aperture [15], but this requires precise polishing of the glass surface. In all 

these cases, it is challenging to make such corrected lenses with microscale thickness. 

Ultrathin optic enables ultracompact imaging devices for wearable applications.  
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Figure 4.1. Focusing optics with nominal focal length f=120mm at λ=540nm (top row) 

and their calculated axial chromatic aberration Δf (bottom row). Normally incident 

uniform illumination is assumed. (a) Bi-convex refractive lens (BK7 glass). (b) 

Amplitude (binary) zone-plate. (c) Schematic explanation of the superachromatic 

diffractive lens. Ideally, focus shift over the entire spectrum remains zero.     

 

Metasurfaces exploit surface plasmonic or nanophotonic phenomena to locally impart 

abrupt phase shift so as to purposely manipulate the diffraction pattern [16,17]. Previous 

studies showed its potential in anomalous reflection, anomalous refraction, and complex 

beam generation [16,18,19]. Here, we emphasize that metasurfaces are excellent when 

the vector properties of light must be manipulated, as in the case of a high-efficiency 

polarizer [20], but they are not required to manipulate the scalar properties of light. 

Diffractive optics is a better alternative. The fabrication requirements for metasurfaces 

are far more stringent in terms of both resolution and precision compared to diffractive 

optics. Furthermore, metasurfaces are by nature polarization sensitive [1,16-20]. Here, we 

reiterate that diffractive optics can readily enable broadband focusing, while still 

maintaining the planar architecture.  

Here, we extend the concept of broadband diffractive optics [21-24] to super-

achromatic focusing. Specifically, we designed, fabricated, and characterized 4 different 

planar cylindrical chromatic-aberration-corrected lenses. Each lens has a maximum 
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thickness of 3μm and a minimum feature size of 3μm. All the devices can be readily 

patterned using grayscale lithography and inexpensively replicated for mass production 

using imprint lithography [25,26]. The aberration-correction capabilities of our lenses are 

on par with or better than commercial doublets. Two types of lenses were constructed. 

One was designed for three discrete wavelengths, and the other for continuous broadband 

illumination.  

 

4.3 Working Principles 

The cross-sectional schematic of our chromatic-aberration-corrected diffractive lens 

(CACDL) is illustrated in Figure 4.2(a). The CACDL is composed of pixels that can be 

square (2D) or linear grooves (1D). In the devices described here, the grooves are of 

width Δ=3μm, and height, hi, is assigned to the i
th

 groove. Each groove imparts a relative 

phase shift given by Equation (2.3). For simplicity, we utilize a positive-tone photoresist, 

SC1827, deposited on a soda-lime glass substrate as the device material. Again the 

grayscale lithography tool was employed to rapidly pattern the device in a single step, 

which is considered a big advantage.  

In order to achieve superachromatic performance, we applied a modified direct-

binary-search (DBS) algorithm to optimize the distribution of groove heights, hi [27]. The 

target point-spread function (PSF) is defined as a diffraction-limited Gaussian with full-

width-at-half-maximum (FWHM) determined by 
2

w
NA


 . The numerical aperture 

(NA) is given by 
1 2

sin tan ( )
f

L

 
 
 

, in which L=NΔ is the total length of the lens, N is the 

total number of grooves, and f is the design focal length. Compared to other optimization  
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Figure 4.2. (a) Schematic of the chromatic-aberration-corrected diffractive lens 

(CACDL) with focal length, f. Our first set of CACDLs were designed to focus λ=460nm, 

540nm and 620nm. The desired light-intensity distributions in the focal plane (or the 

point-spread functions or PSFs) are dictated by diffraction. This 1D CACDL is composed 

of linear grooves with a designed height, hi. SC1827 is the photoresist used for 

fabricating the CACDL. (b) Illustration of transformation from a CACDL point, x to the 

focus, x’. (c) Intensity (top) and phase (bottom) distributions of light (λ=540nm) 

diffracted by a single groove (width = 3μm, height = 1.2μm, scale bars: 1μm) simulated 

using FDTD. Linear polarization along X was assumed.  

 

algorithms for multiwavelength diffractive optics [28,29], our technique is applicable 

generally [20-24] and our approach is the first experimental demonstration of super-

achromatic and continuous broadband focusing using diffractive optics.  

The diffraction pattern in the focal plane is determined by the phase acquired by light 

transmitting the diffractive lens (Figure 4.2(c)) and that acquired via the optical path 

length in air (Figure 4.2(b)). For chromatic-aberration-corrected focusing at x’, three or 

more wavelengths must diffract from location x such that they interfere constructively at 
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the focus, x’. Our method for designing the diffractive lens realizes an optimal height 

distribution that can approximate such constructive interference. In our lens, there are N 

grooves, and each groove can occupy P discrete height levels. Therefore, the total 

degrees-of-freedom can be enormous, P
N
. This allows extreme design flexibility, as 

illustrated later. We designed and fabricated four CACDLs (see Figure 4.3(a)). For each 

device, we assumed periodic boundaries during design and fabricated 7 periods, each of 

length L=8.4mm. The optical micrographs, profilometer measurements, and the scanning-

electron micrographs of exemplary devices are shown in Figures 4.3(b), (c), and (d), 

respectively. The cross-sectional micrographs of a cleaved sample (Figure 4.3(d)) 

indicate that the grooves are rounded due to the resolution limitations of our lithography 

tool. Nevertheless, the average height within each groove was within 100nm of the 

 

 

Figure 4.3. (a) Photograph of four CACDLs patterned on a glass substrate. (b) Optical 

micrograph of a corner of one CACDL. Inset: magnified view. (c) Profilometer image of 

the region in the green box in (b). The maximum height is ~3μm. (d) Scanning-electron-

microscopy images of the cross-sections of two CACDLs (scale bars: 5μm).  
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design value. It is noteworthy that the maximum aspect ratio is 1:1, which is much 

smaller than that of the metalenses [1,30]. Furthermore, the lithographic resolution 

required for our CACDLs is only 3μm (5λ for λ=600nm), compared to ~100nm (0.065λ 

for λ=1550nm) for the metalenses [1]. To achieve broadband focusing in the visible 

region with the metalenses, one would require features of size 39nm and aspect ratios of 

over 3:1. 

  

4.4 Experiments and Results 

To experimentally demonstrate chromatic-aberration-corrected focusing, we 

illuminated each CACDL using a spatially collimated beam from a supercontinuum 

source (SuperK EXTREME EXW-6) that was first conditioned using a reconfigurable 

band-pass filter (SuperK VARIA). The filter allowed us to illuminate the CACDL with 

one discrete wavelength at a time (minimum bandwidth 10nm). Then, a single-mode fiber 

(SMF, core diameter ~8μm) connected to a spectrometer (Ocean Optics Jaz) was placed 

in the vicinity of the designed focus. The fiber was scanned using a motorized 2-axis 

stage with 3μm and 10μm steps along the X’ and Z axes, respectively. The transmitted 

spectra were collected at each location. The final results were derived after subtracting 

the dark spectrum from the raw data and dividing by the reference spectrum (that 

transmitted through the unpatterned photoresist). See Figure 2.17 and Equation (2.17) for 

more details.  

First, we consider the CACDLs designed for three discrete wavelengths (460nm, 

540nm and 620nm). To demonstrate the flexibility of our approach, we designed 3 

different lenses with the following parameters: number of grooves, N=2800, 2800, 280; 

focal length, f=120mm, 25mm and 10mm, which correspond to numerical aperture, 
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NA=0.035, 0.166 and 0.042, respectively. Figures 4.4(a)-(i) summarize the simulated and 

measured light-intensity distributions in the focal plane at the 3 design wavelengths. As 

expected, all 3 lenses exhibit clear apochromatic focusing. Scalar-diffraction simulations 

predict average optical efficiencies of 30.0%, 30.4% and 39.0% for the 3 designs. The 

corresponding measured average optical efficiencies are 24.9%, 23.0% and 21.5%, much 

higher than those of previously reported achromatic lenses [13]. Even higher efficiency 

(>50%) is possible with thicker microstructures. In theory, nonideal efficiency (<100%) 

is primarily due to lack of perfect interference (constructive at focus and destructive in 

the background). Generally speaking, this efficiency dictates the contrast or resolution in 

an optical system. Here, we define the optical efficiency as the ratio of power within the 

region defined by the first zero to the total incident power. We can also quantify the 

achromaticity of the CACDLs by measuring the lateral and axial focus shifts as a 

function of wavelength. These can be calculated by comparing the 2D PSF (X’Z plane) at 

each wavelength to that at the center wavelength, 540nm. The lateral and axial focus 

shifts for the first design were 0.32μm, 6.7μm (simulation), and 1.3μm, 25μm 

(experiment), respectively. These are better than what can be achieved using 

conventional refractive lens combinations [9]. 

Due to the finite diameter of the SMF core, the measured PSFs are wider than the 

actual distributions. This is especially obvious in the CACDL with the highest NA 

(Figures 4.4(d)-(f)). Fabrication errors as well as the limited acceptance angle of the SMF 

contribute to the reduction of optical efficiencies. The 2D PSFs (X’Z) of the first design 

at five wavelengths (460nm, 500nm, 540nm, 580nm and 620nm) are plotted in Figures 

4.4(j)-(n) (simulation) and Figures 4.4(o)-(s) (measurement).  
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Figure 4.4. CACDLs for 3 discrete wavelengths (apochromats). The simulated and 

measured point-spread functions (PSFs) at λ=460nm ((a), (d) and (g)), λ=540nm ((b), (e) 

and (h)) and λ=620nm ((c), (f) and (i)). Each column represents one CACDL. Simulated 

((j)-(n)) and measured ((o)-(s)) 2D PSFs of the first design for λ=460nm ((j) and (o)), 

500nm ((k) and (p)), 540nm ((l) and (q)), 580nm ((m) and (r)) and 620nm ((n) and (s)) 

(scale bars: 20μm). Dashed white lines denote the focal plane. Insets: grayscale images of 

the focal plane captured by a monochrome CMOS camera when illuminated by the 

discrete wavelengths from the VARIA filter (scale bars: 1mm, exposure time =3ms).   

 

The scalar-diffraction simulation has resolution of 0.2μm and 2.5μm in X’ and Z 

directions. The measured plots are numerically interpolated into the same grid for visual 

comparison. At the vicinity of the nominal focal plane (white-dashed lines), focusing is 

clearly observed for only the design wavelengths (460nm, 540nm and 620nm). No 

focusing is found at the other wavelengths (Figures 4.4(k), (p), (m) and (r)). Another 

simple proof of apochromatic focusing is seen via the images captured at the focal plane 
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using a monochrome sensor (DMM22BUC03-ML, The Imaging Source) with 

illumination wavelength selected by the VARIA filter, shown as insets in Figures 4.4(o)-

(s). Note that the SMF-spectrometer scheme was used to accurately measure PSFs 

(Figures 4.4(a)-(i) and (o)-(s)), since the spectrometer has higher spectral resolution 

(0.4nm) than the VARIA filter and larger dynamic range (16-bit) than the sensor (8-bit). 

Next, we extended our CACDL to focus continuous broadband illumination across 

the visible spectrum (450nm – 690nm, super-achromatic). This is achieved by increasing 

the wavelength sampling to 5nm during design. It was designed with N=2500, focal 

length, f=280mm, and NA=0.013. The simulated and measured 1D PSFs in the design 

focal plane as a function of wavelength are plotted in Figures 4.5(a) and (b), respectively. 

Note that the plots are normalized to the peak at each wavelength to account for the 

spectrum of the source. The white dots (left) and crosses (right) indicate the lateral (Δx) 

and axial (Δf) focal-spot shifts in each figure. These shifts were obtained from the 2D 

(X’Z) PSFs. The simulated and measured 2D PSFs at 3 wavelengths are illustrated in 

Figures 4.5(d)-(f) and Figures 4.5(g)-(i), respectively. Again, the measurements were 

interpolated into the same resolution as the simulations. The lateral shift averaged over all 

wavelengths, x , is 0.47μm (simulation) and 1.65μm (experiment). The axial shift 

averaged over all wavelengths, f , is 23.5μm (simulation) and 73.6μm (experiment). 

Both shifts are significantly smaller than that of a diffractive lens optimized for single 

wavelength. The maximum axial-focus shift, Δf, is comparable to that of commercial 

achromatic doublets [9]. However, our CACDL is thin (planar), inexpensive , and 

composed of only a single material. The optical-efficiency spectrum is plotted in Figure 

4.5(c). The discrepancies between the simulated and measured curves are primarily due  
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Figure 4.5. CACDL for broadband (450nm to 690nm) focusing (super-achromat). (a) 

Simulated and (b) measured 1D PSFs as a function of wavelength. Left insets: lateral-

focus shift, Δx, versus wavelength (white dots). Right insets: axial-focus shift, Δf, versus 

wavelength (white crosses). (c) Simulated (black) and measured (red) optical efficiency 

as a function of wavelength. Insets: photographs of the focus on a white observation 

screen at various wavelengths. Simulated ((d)-(f)) and measured ((g)-(i)) 2D PSFs for 

λ=450nm ((d) and (g)), λ=540nm ((e) and (h)) and λ=630nm ((f) and (i)) (scale bars: 

30μm). Dashed white lines delineate the focus. Insets: images of the focus captured by a 

monochrome sensor (scale bars: 1mm). Exposure time t=4ms.  

 

to fabrication errors in the CACDL height profile. The efficiency drops at longer 

wavelengths. This can be prospectively compensated by appropriately weighting the 

efficiencies of different wavelengths during design [21] and by optimizing the patterning 

process. As before, monochrome images illuminated by the 3 wavelengths (selected by 

the VARIA) are shown as insets in Figures 4.5(g)-(i).  

 

4.5 Discussions 

The CACDLs are insensitive to the polarization state of the incident light. This is a 

strong advantage over metalenses, since most imaging systems require polarization-
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independent focusing. To prove this, we illuminated the first CACDL design (from 

Figure 4.4(a)) with linearly polarized light and observed the focus while the polarization 

was rotated by 90 degrees. In our nomenclature, the transverse magnetic (TM) refers to 

electric field polarized along the degenerate direction Y of the CACDL, while the 

transverse electric (TE) refers to that polarized along the X direction (see inset of Figure 

4.6(a)). The measured PSFs for the 3 design wavelengths (Figures 4.6(a)-(c)) are 

identical for the orthogonal polarizations. Furthermore, finite-difference-time-domain 

(FDTD) simulations of diffraction by a single groove (Figure 4.6(d)) confirm that both 

amplitude and phase of the diffracted light are identical for both polarizations. This is 

expected since the smallest period of the CACDL is 6μm, much larger than the 

wavelengths of interest. 

In all micro-optics, fabrication errors have an important impact on the optical 

efficiencies. We numerically analyzed this impact by adding random errors with various 

standard deviations to the design-height distribution. The results plotted in Figure 4.7(a) 

indicate that the CACDLs are robust to height errors of up to ~100nm, which, in turn, 

corresponds to two height levels (Δh=H/(P-1)=50nm). Therefore, our device is relatively 

tolerant of fabrication errors, which is consistent with previous devices designed using 

related techniques [20-24]. As expected, the efficiency decreases with increasing errors 

(left Y axis in Figure 4.7(a)) and the device with fewer grooves (CACDL#3) is more 

susceptible to fabrication errors [21,22]. This is because constructive interference 

gradually breaks down when the phase distribution deviates from the optimal design. 

Moreover, the wavelength-averaged axial-focus shift, f , increases with errors (right Y 

axis in Figure 4.7(a)). For CACDL#1, f  is maintained small when the error is less  
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Figure 4.6. Impact of polarization. Measured PSFs of the CACDL#1 at the orthogonal 

polarizations for (a) λ=460nm, (b) λ=540nm and (c) λ=620nm. Inset: definitions of the 

incident polarization states. (d) Simulated electric-field distribution of light diffracted 

from one 3μm-wide and 1.5μm-high photoresist groove for TM (left) and TE (right) 

polarizations using FDTD.  
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Figure 4.7. Impact of fabrication errors and oblique incidence. (a) Simulated wavelength-

averaged optical efficiency (left Y-axis) and wavelength-averaged axial-focus shift (right 

Y-axis) as a function of fabrication errors. Inset: schematic showing how fabrication 

errors are applied. (b) Simulated wavelength-averaged optical efficiency (top) and 

wavelength-averaged lateral-focus shift (middle) and axial-focus shift (bottom) of two 

CACDLs as a function of the angle of incidence, θ. Middle and bottom panels share the 

same X coordinates. Inset: definition of θ.  
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than 100nm, while that of the CACDL#4 deteriorates rapidly. This is likely a 

consequence of the fact that broadband superachromatic focusing requires a more 

stringent phase matching compared to focusing only 3 wavelengths. 

We also simulated the impact of oblique incidence (Figure 4.7(b)). The wavelength-

averaged focus shifts both laterally and axially with change in incident angle, θ. Hence, 

the wavelength-averaged optical efficiency drops with off-normal incidence (top panel). 

Nevertheless, both studied CACDLs maintain their efficiencies over θ~±4
o
. The 

wavelength-averaged lateral-focus shift, x  (middle panel), and axial-focus shift, f  

(bottom panel), increase nonlinearly with θ. However, both designs preserve reasonable 

chromatic aberrations over θ~±4
o
. Note that even though we assumed periodic 

boundaries during design, experiments suggest that this is not strictly necessary, as 

elaborated in the Supplementary Materials. Finally, although our devices were 1D, they 

can be readily extended to 2D [20,22,23] and also to any electromagnetic spectrum.  

 

4.6 Supplementary Information 

4.6.1 Figure-of-merit 

The FOM considered in optimization is defined by  

 

         .       (4.1) 

 

The first term represents weighted efficiency averaged over totally N wavelengths. The 

second term is the weighted normalized absolute difference (between the simulated and 

the target functions) over N wavelengths. A factor 10 is introduced to balance these two 
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terms. The weighting coefficients ωi balance contributions from different wavelengths. 

Proper selection of this group of parameters is critical to achieve the optimal solution. 

The efficiency μi and the normalized absolute difference εi in Equation (4.1) are 

 

           .       (4.2) 

         .      (4.3) 

 

Here, Ii(x’)=|U(x’,λ)|
2
 is simulated light intensity along X’ direction at the image plane for 

the i
th

 wavelength. Ti(x’) is the target function for the i
th

 wavelength. x’min and x’max 

delimit the integration range from the leftmost to the rightmost of the CACDL design.  

As the first-order approximation of a focusing PSF, the target function is defined as a 

Gaussian function centered at (x’min + x’max)/2 with full-width-at-half-maximum (FWHM) 

Wi determined by the far-field diffraction limit:  

 

   .      (4.4) 

  .         (4.5) 

     .       (4.6) 
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In Equations (4.4) – (4.6), λi is the i
th

 wavelength. LX is the total length of the CACDL 

design in X direction, and f is the designed focal length (gap between the CACDL and the 

image plane). Three Ti(x’) examples for λ1=460nm, λ2=540nm and λ3=620nm are plotted 

in Figure 4.2(a).  

 

4.6.2 Optimized CACDL designs 

The height profiles of the optimized CACDL designs are plotted in Figure 4.8. 

CACDL#1 has 2800 3μm-wide grooves for focusing at 120mm. CACDL#2 has 2800 

3μm-wide grooves for focusing at 25mm. CACDL#3 has 280 3μm-wide grooves for 

focusing at 10mm. CACDL#4 has 2500 3μm-wide grooves for focusing at 280mm. 

CACDL#1-#3 are designed for three discrete wavelengths, 460nm, 540nm, and 620nm, 

while CACDL#4 is designed for broadband spectrum from 450nm to 690nm.  

 

 

Figure 4.8. Optimized height profiles of the CACDL designs: (a) CACDL#1; (b) 

CACDL#2; (c) CACDL#3; (d) CACDL#4.  
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4.6.3 Effect of the number of CACDL periods 

The multiwavelength PSFs of the CACDL#1 design are measured when the 

fabricated device is illuminated by different beam dimensions, adjusted by an iris. The 

effect of the number of CACDL periods is tested with 0.5, 1, 2, 3, 4, and 5 periods along 

the X direction. The optical efficiencies start to drop when the number of periods is fewer 

than 2 (Figure 4.9(a)). However, the efficiencies still remain reasonably high when the 

beam size only covers one CACDL period. In addition, the PSFs at three designed 

 

 

Figure 4.9. (a) Measured optical efficiencies when CACDL#1 is illuminated by a beam 

covering different numbers of CACDL periods. Inset: schematic of different beam sizes 

covering different number of CACDL periods. Measured PSFs at f=120mm when the 

CACDL is illuminated by different beam dimensions for wavelengths of (b) 460nm, (c) 

540nm and (d) 620nm. Only the X’=-300μm to X’=300μm segment is displayed here.  
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wavelengths do not experience any obvious lateral shifts for the 0.5-5 range of the 

number of the CACDL periods (Figures 4.9(b)-(d)). This indicates that periodic padding 

is good but not necessary for our CACDL designs to work properly. This, on the other 

hand, gives us confidence to design a single diffractive lens without assuming periodicity.   

 

4.6.4 Effect of refractive index measurement error 

A Woollam Spectroscopic Ellipsometer is used to measure the refractive index of the 

CACDL material (SC1827) at different wavelengths. However, this measurement may 

experience some errors, leading to compromised CACDL performances since the phase 

shift imparted by the microstructure at wavelength λ is a function of refractive index n(λ). 

Figure 4.10 numerically studies this effect, demonstrating that the devices are relatively 

tolerant of this measurement error. Within the ±0.1 error (equivalent to 1.6~1.8 range for 

a true value n=1.7), the average optical efficiencies remain acceptably high and the 

averaged absolute lateral focal spot shifts are still strongly suppressed. 

 

 

Figure 4.10. Numerical studies on the effect of the refractive index measurement errors 

(CACDL#4): (a) plot of the average optical efficiencies versus different refractive index 

errors (from -0.5 to +0.5); (b) plot of the averaged absolute lateral focal spot shifts versus 

different refractive index errors (from -0.5 to +0.5).  
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4.6.5 Ultrahigh-efficiency CACDL design 

Figure 4.11 summarizes the simulation results of a CACDL with much higher optical 

efficiency by increasing the aspect ratio of the microstructure from 1:1 to 3.3:1 and 

increasing the number of grooves from 2800 to 4000. The device still has groove width of 

Δ=3μm, but the maximum height is increased to H=10μm and totally 201 quantization 

levels with unit height of 50nm. Note that such an aspect ratio is currently not practical, 

but it is used simply for proof-of-principle demonstration.  

 

 

Figure 4.11. (a) Height profile of the ultrahigh-efficiency design. Inset: the magnified 

view of the first 0.3mm-long section. Simulated intensity distributions along propagation 

from X’=-100μm to X’=+100μm for λ=460nm (b), 540nm (c), and 620nm (d). Linear-

scale plots of the focal spots at the focal plane from X’=-50μm to X’=+50μm for 

λ=460nm (e), 540nm (f), and 620nm (g). Logarithm-scale plots of the focal spots at the 

focal plane for λ=460nm (h), 540nm (i), and 620nm (j).  
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For simplicity, the CACDL was optimized for three discrete wavelengths (λ=460nm, 

540nm, and 620nm). The designated focal length is f=80mm (NA=0.075). One period of 

CACDL is 12mm long in the X direction. The light intensity distributions along 

propagation (Z direction) are shown in Figures 4.11(b) – (d). Note that z=0 is the nominal 

focal plane and only the central part from X’=-100μm to X’=+100μm is shown for 

clarity. The optical efficiencies are 52.9%, 54.7%, and 47.8% at each of three 

wavelengths, respectively. The average efficiency is 51.8%. The FWHMs of the focal 

spots are 3.1μm, 3.6μm, and 4.2μm, respectively.  
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CHAPTER 5 

MICROLITHOGRAPHY ON OBLIQUE AND MULTIPLANE 

SURFACES 

This chapter is adapted from the author’s previous publication: Peng Wang and Rajesh 

Menon, “Optical microlithography on oblique and multiplane surfaces using diffractive 

phase masks,” J. Micro/Nanolith. MEMS MOEMS 14, 023507 (2015). 
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5.1 Abstract 

Micropatterning on oblique and multiplane surfaces remains a challenge in 

microelectronics, microelectromechanics, and photonics industries. In this chapter, we 

describe the use of numerically optimized diffractive phase masks to project microscale 

patterns onto photoresist-coated oblique and multiplane surfaces. Intriguingly, we were 

able to pattern a surface at 90 degrees to the phase mask, which suggests the potential of 

our technique to pattern onto surfaces of extreme curvature. Further studies show that 

mask fabrication error of below 40nm suffices to conserve pattern fidelity. A resolution 

of 3μm and a depth of focus of 55μm are essentially dictated by the design parameters, 

the mask generation tool and the exposure system. The presented method can be readily 

extended for simple and inexpensive 3D micropatterning.  

 

5.2 Introduction 

Microstructures on oblique and nonplanar surfaces enable unique functionalities in 

photonics [1,2], electronics [3], and microelectromechanics [4,5], and provide a broad 

array of interesting applications in high-gain antennas [6], radio-frequency identification 

(RFID) devices [7], metamaterials [8], and transformation optics [9]. For instance, 

combining diffractive microstructures atop a curved refractive surface can minimize 

aberrations in lenses in a more compact way than the conventional methods by adaptive 

optics [10]. In addition, micropatterning on the sidewalls of implantable neural probes 

could potentially lead to an effective approach for recording 3D neural signals [11,12]. 

Meanwhile, shape modification in the vertical direction of microfluidic channels and 3D 

integration of multiple microfluidic channels may significantly enhance their 

performances [5,13].  
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Optical projection lithography (OPL) on planar silicon substrates is the workhorse of 

the semiconductor industry due to its high throughput, resolution, and accuracy [14]. In 

OPL, a photomask pattern is imaged with demagnification onto a planar photoresist layer 

that coats the silicon substrate. In general, it is difficult to utilize OPL to pattern 

nonplanar or oblique surfaces due to the limitations of the imaging optics. These 

limitations can be avoided by lens-less lithography that utilizes computer-generated 

holograms to project patterns directly onto the photoresist surface [15]. Thus far, these 

approaches only project the pattern onto a single plane surface. In this chapter, we extend 

this technique by designing diffractive optics that can manipulate the intensity of light in 

3-dimensional space and thereby allow for patterning onto nonplanar and oblique 

surfaces. An alternative approach for lithography on nonplanar and oblique surfaces is to 

utilize a flexible template that contains a master pattern and apply this template 

conformally over the substrate. The pattern may be transferred via an imprint process 

[16-18] or simply by exposure to ultra-violet (UV) light through the template [19]. These 

approaches require contact with the substrate surface, which increases the potential for 

damage, increases defects, and reduces yield. Furthermore, these approaches perform 

well only for surfaces of small curvature since conformal contact is necessary. In 

contrast, our approach can be applied to surfaces of extreme curvature, as illustrated by 

the patterning of a substrate that is placed orthogonal to the diffractive mask.  

 

5.3 Lithography Principles 

Our approach was schematically explained in Figure 2.2. A spatially collimated, 

temporally coherent uniform UV beam illuminates the mask. The sample to be exposed is 

placed at a specified distance behind the mask, where the light intensity distribution in 3 
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dimensions is controlled. The mask is designed using an enhanced direct-binary-search 

(DBS) algorithm [20-28] where the optimization objective is to maximize intensity 

within prescribed patterns in multiple planes or within a 3D volume. In addition, the 

intensity uniformity within the target image has to be taken into account. Note that in 

optical lithography, the (positive-tone) photoresist serves as a nonlinear recording 

medium, where regions receiving energy higher than a threshold are selectively dissolved 

away in a developer. Hence, the mask only needs to ensure that the desired regions 

receive energy (which corresponds to light intensity multiplied by the exposure time) 

above a certain threshold (defined by the sensitivity of the photoresist at the exposure 

wavelength). The resulting mask is composed of an array of discrete pixels, either in one 

dimension (along X direction) or two dimensions (on XY plane), where each pixel in the 

array applies a phase shift to incident light. This resembles a traditional computer-

generated-hologram (CGH), which is usually exploited to generate a complex beam or 

image [29]. The phase shift of each pixel is controlled during optimization. The array of 

optimal phase shifts is implemented as an array of pixels with varying heights, which are 

uniformly quantized by a unit height Δh. In its 1D form, Δx denotes its uniform pixel 

size. The diffractive mask was fabricated into a polymer layer (Shipley 1813) using 

grayscale lithography [21,22,26,30]. The pixels are again of size 3μm, constrained by the 

resolution of the tool. The maximum thickness of the polymer layer H (and hence, of 

each pixel in the array) was chosen so as to achieve the maximum phase shift of 2π: H = 

λ / (n – 1), in which 1 is the refractive index of vacuum, in absence of the polychromat 

pixel. For a polymer refractive index of 1.76 and illumination wavelength of 325nm, this 

corresponded to 430nm.  
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Two mask designs in 1D (Figures 5.1(a) and (b)) and 2D (Figures 5.1(c) and (d)) 

were optimized. The light intensity patterns at multiple planes (or in 3D volume) 

U’(x’,y’,d) can be derived based on the transmission function of the mask T(x,y), which 

describes phase modulation (see Section 2.1). In the 1D case, the desired patterns are 

three groups of periodic lines. Linewidths of 30μm, 90μm, and 60μm and spacings of 

60μm, 180μm, and 120μm are designated at z=d1=d0=80mm, z=d2=d0+Δd=81mm, and 

z=d2=d0+2Δd=82mm, respectively (see Figure 5.1(b)). The mask is LX=3mm long (1000 

pixels). Each pixel is quantized into 32 levels so that Δh=13.9nm. The 2D target patterns 

are ‘U’, ‘T’, ‘A’ and ‘H’ letters separated by a gap of Δd=0.3mm with an initial distance 

of d0=5mm (see Figure 5.1(d)). 18μm-wide lines are used to draw the patterns. Since they 

are periodic, each unit cell has dimension of LX×LY=180μm×180μm (60×60 pixels). 

The 2D phase mask has square pixel with Δx=Δy=3μm and unit height of Δh=6.8nm (64 

levels). Ridges in Figure 5.1(b) and red parts in Figure 5.1(d) stand for places to be 

exposed in positive-tone photoresist.  

 

5.4 Exposure Results 

In Figure 5.2, the 1D diffractive phase mask was designed to project three groups of 

lines of varying widths and spacings onto three planes positioned at z=80mm, 81mm, and 

82mm, respectively. Since this set of patterns has no variations in the Y direction, they 

could be exposed onto a plane tilted at 45
o
, instead of three exposures at three planes. In 

this way, it is also possible to record all the intensity patterns along the Z direction. The 

optimized phase mask topography is plotted in Figure 5.2(b). Figure 5.2(c) shows an 

optical micrograph of the fabricated mask along with an atomic-force micrograph of the 

region delimited by the black rectangle. The simulated light intensity in the X’Z plane  
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Figure 5.1. Schematic of microlithography on multiple planes by a 1D mask (a) and a 2D 

mask (c). Intensity distributions U’ are generated at distances separated by Δd. (b) Target 

exposure images at three planes. (d) Target exposure images with 180μm×180μm period 

at four planes. Linewidth is 18μm.   
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Figure 5.2. Lithography on a 45
o
 tilted surface. (a) Schematic of the exposure setup. (b) 

Height profile of the optimized 1D phase mask. (c) Optical microscope image of one 

edge of the fabricated phase mask (inset: AFM measurement of a 50μm×50μm region, 

and Δx=3μm pixel size is labeled). (d) Simulated intensity distribution in the X’Z plane, 

where Z is the direction of light propagation. Optical efficiencies at three planes are 

given. (e)-(g) Optical micrographs of the exposed and developed results at three regions 

enclosed by yellow blocks in (d). Measured linewidths at (e) z=80mm, (f) z=81mm and 

(g) z=82mm are 34μm, 100μm, and 65μm, respectively. Blue lines are simulated intensity 

distributions at three planes and black lines represent the estimated exposure outcomes by 

applying a proper threshold to the simulated patterns. (h) and (i) Magnified views of 

small areas delimited by the green boxes in (d) and (e), respectively. The labeled 3μm 

line in (h) is experimentally measured 5μm.   
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from z=78.5mm to z=83.5mm is shown in Figure 5.2(d). At the design planes 

corresponding to z=80mm, 81mm, and 82mm, the patterns corresponding to 9 lines 

(period=60μm), 3 lines (period=180μm), and 5 lines (period=120μm), respectively, are 

clearly visible. The optical efficiency, η, in one plane is defined as the ratio of the energy 

within the desired pattern to the total energy incident on the mask. The calculated optical 

efficiencies are denoted in the figure. The samples for lithography were silicon wafers 

coated with a 1.3μm-thick photoresist (Shipley 1813) and mounted on a holder that was 

placed at 45
o
 to the optical axis. The illumination power density at the mask plane was 

0.635mW/cm
2
, and the exposure time was 90s. The sample was developed in 352 

developer for 60s. Optical micrographs of the patterns corresponding to the regions close 

to the planes at z=80mm, 81mm, and 82mm (rectangular blocks of yellow-broken lines in 

Figure 5.2(d)) are shown in Figures 5.2(e), (f), and (g), respectively. Excellent agreement 

with the simulation results is seen. The linewidths at three z positions (80mm, 81mm and 

82mm) are 34μm, 100μm, and 65μm, respectively, which indicates deviation of +4μm, 

+10μm, and +5μm. These errors, together with the undesired exposures outside the 

designated line regions, are partially ascribed to overexposure. The simulated light 

intensity at three positions are plotted as blue lines beside the micrographs in Figures 

5.2(e)-(g). By applying a proper threshold, it is possible to achieve clean lines with 

accurate widths and suppressed noises (black lines). Later numerical analysis will show 

how fabrication errors affect the exposure results. Additionally, a simulated 3μm line 

(Figure 5.2(h) representing the green box in Figure 5.2(d)) was measured roughly 5μm 

wide by exposure (Figure 5.2(i) representing the green box in Figure 5.2(e)). The slight 

difference is due to overexposure of the photoresist and the resolution of microscopy.  
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In the next experiment, another mask was designed to project 4 letters ‘U’, ‘T’, ‘A’ 

and ‘H’, onto X’Y’ planes corresponding to z=5mm, 5.3mm, 5.6mm, and 5.9mm, 

respectively, as illustrated in Figure 5.3(a). Figure 5.3(b) gives the topography of the 

designed mask. An optical micrograph of the fabricated mask along with an atomic-force 

micrograph of a small region is shown in Figure 5.3(c). Simulated light intensity 

distributions in the X’Y’ planes at the four planes are plotted in Figures 5.3(d)-(g). The 

corresponding optical efficiencies are also denoted in the figures. The measured optical 

intensity at the mask plane was 0.734mW/cm
2
, and the sample was exposed for 52s. 

Optical micrographs of the corresponding exposed and developed patterns are shown in 

Figures 5.3(h)-(k). The experimental results agree very well with the simulation 

predictions. 21μm, 20μm, and 19μm widths are obtained for the 18μm lines by 

measurements. Arrays of the patterned letters are given by microscope images in Figures 

5.3(l)-(o). The noise present in the exposure results in Figures 5.3(d)-(g) is likely due to 

both overexposure and mask fabrication errors. Figures 5.3(p) and (q) show the exposure 

patterns predicted by implementing high (critical exposure) and low (overexposure) 

thresholds to the simulated light intensity distributions in Figures 5.3(d)-(g). Compared to 

Figure 5.3(p), Figure 5.3(q) clearly includes more noise and approaches the experimental 

results in Figures 5.3(h)-(k) with better accuracy.  

In a third experiment, the sample substrate was placed orthogonal to the diffractive 

mask as illustrated in Figure 5.4(a). For simplicity, the same phase mask as in Figure 5.3 

was used. The simulated light intensity distribution in the X’Z plane is shown in Figure 

5.4(c) and the optical micrograph of the exposed and developed pattern is shown in 

Figures 5.4(d) and (e). The pattern corresponds to the lower part of the four characters,  
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Figure 5.3. Lithography on multiple planes parallel to the mask. (a) Schematic of the 

exposure setup. (b) Height profile of the optimized 2D phase mask. (c) Optical 

microscope image of one corner of the fabricated periodic phase mask (inset: AFM 

measurement of a 50μm×50μm region, and 3μm pixel size is labeled). (d)-(g) Simulated 

intensity distributions of one period on the X’Y’ plane. Optical efficiencies are given. 

(h)-(k) Optical micrographs of the exposed and developed results of one period. Designed 

18μm lines have measured linewidths of 21μm, 20μm, and 19μm, respectively. (l)-(o) 

Optical micrographs of the exposed and developed results of the periodic arrays. (d), (h) 

and (l) are letter ‘U’ at z=5.0mm. (e), (i), and (m) are letter ‘T’ at z=5.3mm. (f), (j) and 

(n) are letter ‘A’ at z=5.6mm. (g), (k), and (o) are letter ‘H’ at z=5.9mm. Estimated 

exposure results by applying high (p) and low (q) thresholds.  
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Figure 5.4. Lithography on a surface orthogonal to the mask. (a) Schematic of the 

exposure setup. (b) Schematic illustrating that the exposure plane (pink) is the X’Z cross-

section of the intensity pattern of the phase mask that generates ‘U’ ‘T’ ‘A’ ‘H’ letters. 

(c) Simulated intensity distribution on the X’Z plane (pink surface in (b)). Optical 

micrographs of the exposed and developed results of two (d) and four (e) periods. 

Simulated 81μm and 30μm lines in (c) have measured linewidths of 87μm and 35μm in 

(e), respectively.  

 

i.e., the fat line at bottom of 'U' (z=5mm), the center line of 'T' (z=5.3mm), the legs at the 

bottoms of 'A' and 'H' (z=5.6mm and z=5.9mm). A cross-section schematic is depicted in 

Figure 5.4(b). Note that several periods (spacing of 180μm) of the design in Figure 5.4(b) 

were fabricated on the mask. This resulted in repeated patterns, as indicated in Figures 

5.4(d) and (e). The agreement between the two patterns indicates that the diffractive mask 

is capable of patterning onto surfaces of extreme obliqueness. In this case, the surface is 

perpendicular to the diffractive mask. The measured laser intensity at the diffractive mask 
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was 0.748mW/cm
2
 and the exposure time was 30min. The exposure time is significantly 

increased compared to Figure 5.3 due to the large angle between the light propagation 

direction and the surface of the photoresist. Nevertheless, patterns with micron-scale 

fidelity can be achieved. Simulated features of 81μm and 30μm (Figure 5.4(c)) are 87μm 

and 35μm wide (Figure 5.4(e)) because of overexposure and mask fabrication error.  

 

5.5 Analysis 

5.5.1 Fabrication error 

Since the designed mask generates a three-dimensional light field by introducing 

spatial phase modulation, it is necessary to pattern microstructures as approximate to the 

optimized height distribution as possible. Therefore, it is important to understand how 

fabrication error of the diffractive phase mask affects its performance. Figure 5.5 plots 

the calculated optical efficiencies where Gaussian noise with zero mean (μ) and various 

standard deviations (δ) are added to the original design. The efficiencies are reduced with 

increased standard deviations. Both Figures 5.5(a) and (b) indicate that errors with 

standard deviation greater than 100nm (~23% of the maximum height 430nm) lead to 

meaningless results where noise overwhelms the signal. With δ=40nm (~9% of 430nm), 

the 1D and the 2D masks have average optical efficiencies decreased from 70% and 60% 

to 54% and 45%. Insets of Figure 5.5(b) include the intensity distribution simulations of 

the 2D phase mask with applied errors (δ=5nm, 40nm and 100nm). 5nm error has trivial 

effect on the signal-to-noise ratio (SNR), but with 40nm error the patterns start to lose 

their accuracy. This also explains the undesired exposures observed in Figures 5.2(e)-(g) 

and Figures 5.3(h)-(k), which occurred outside the designated regions (defined in Figures 

5.1(b) and (d)). Based upon measurements, the height error in our grayscale  
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Figure 5.5. Optical efficiencies after adding Gaussian noises with zero mean and 

standard deviations from 0 to 200nm to the height distributions of the 1D (a) and 2D (b) 

phase masks. They are calculated at the designated exposure planes and take the average 

(black lines). Insets of (b): Simulated light intensity distributions at four planes separated 

by 0.3mm with low noise of δ=5nm (left), medium noise of δ=40nm (middle), and high 

noise of δ=100nm (right).  

 

lithography is about 30nm. Hence, it is critical to suppress fabrication errors, especially 

δ<40nm, by accurate calibration, process parameter optimization, and better condition 

control.  

 

5.5.2 Resolution 

The spatial resolution by the proposed lithography technique is primarily defined by 

the fabrication resolution of the phase mask. We exploited the Heidelberg microPG101 

machine with 3μm-write-head for grayscale patterning (Δx=Δy=3μm). Theoretically, the 

attainable resolution by OPL is defined by 1. .C D k
NA




, in which λ is the illumination 

wavelength, NA is the numerical aperture of the projection lens and k1 is a system-related 

scale coefficient [31-33]. For a pixelated phase mask 2
NA

x




 . Usually, k1 takes a 

value of 0.5, which results in a resolution . .C D x  . In Figures 5.2(h) and (i), a simulated 
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3μm line was measured 5μm wide due to overexposure and limited resolution of optical 

microscope. Similarly, the other measured linewidths are within +15% of the nominal 

values. Therefore, by optimizing exposure condition and minimizing mask fabrication 

error, it is possible to approach the predicted resolution. Additionally, smaller features 

can be achieved once an advanced mask generation tool is utilized (down to <1μm 

resolution).  

 

5.5.3 Defocus 

Depth of focus (DOF) is another issue considered in OPL systems. Generally, a 

projection lens has a DOF determined by 

2

2 22
4

x
DOF k k

NA






 

, in which k2 is 

another system-related factor [32-34]. Assuming k2=0.5, DOF=55μm for a λ=325nm laser 

with Δx=3μm. Contrary to conventional 2D lithography, shorter DOF is desired in 

micropatterning on oblique and multiplane surfaces since more pattern changes are 

expected within a certain distance. This can be realized by reducing the pixel size of the 

phase mask and using a long-wavelength light source. The optical efficiencies at various 

defocus planes are plotted in Figure 5.6. The efficiencies drop to 60% at ±500μm and 

±100μm defocus for both 1D (Figure 5.6(a)) and 2D (Figure 5.6(b)) masks. At -100μm 

plane (top inset of Figure 5.6(a)), letters ‘U’ and ‘T’ have well-preserved patterns while 

the other two experience obvious distortions. On the other hand, ‘A’ and ‘H’ look decent 

while the first two have worsened shapes at +100μm plane (bottom inset of Figure 

5.6(b)). Thus, in exposure experiments, it is crucial to control the gap between the mask 

and the sample as close to the designed value as possible. In the current setup, the gap is 

adjusted on a track manually. A micrometer stage may be used in the future.  
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Figure 5.6. Optical efficiencies at various defocus locations of the 1D (a) and 2D (b) 

phase masks. They are calculated at different exposure planes and take the average (black 

lines). Insets of (b): Simulated light intensity distributions at four planes separated by 

0.3mm at -100μm defocus (left) and +100μm defocus (right).  

 

5.6 Conclusions 

Managing light intensities in 3D space using broadband diffractive optics allows for a 

new and efficient technique to pattern microstructures on oblique and multiplane 

surfaces. Clearly, this technique can be extended to conventional 3D lithography. 

Compared to scanning two-photon lithographic techniques, the reported method is based 

on a single optical exposure and effectively avoids high-power pulsed lasers and slow 

scanning schemes [34,35]. Our technique can be readily adapted for high-throughput 

manufacturing. The diffractive phase mask allows for a large number of degrees of 

freedom, which permits generation of complex geometries in 3D space. The technique 

currently suffers from cross-talk between the patterns, as is evident in Figures 5.3(d)-(g). 

This effect can be reduced by the use of smaller fabrication pixels, which will provide 

many more pixels, and hence, more degrees of freedom for the optimization algorithm. 

Shrinking pixel size also helps in improving patterning resolution. Furthermore, our 

previous work in broadband diffractive optics [20] indicates that with a larger number of 
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pixels, the sensitivity of the projected pattern to pixel errors is also minimized. One 

challenge in the reported method is that resolution in the Z-axis is limited by the DOF of 

the diffractive-optical mask. Distances between exposure planes that are several multiples 

of this DOF are necessary to effectively separate different patterns. The DOF can be 

decreased by using smaller pixels and longer wavelengths. In addition, the computer-

generated micro-optic device can be faithfully replicated and thus mass produced via roll-

to-roll nanoimprint [18]. The next step is to explore its vast capabilities in 3D 

micropatterning.  

 

5.7 Supplementary Information 

5.7.1 Figure-of-merit 

The figure-of-merit is defined as: 

 

.           (5.1) 

 

Here, i is the order of plane. The propagation distance is di=d0+(i-1)Δd, where d0 is the 

initial distance and Δd is the gap between adjacent planes. ηi and εi represent optical 

efficiency and root-mean-square (RMS, uniformity) at each propagation plane, which are 

explicitly described as  

 

.                (5.2) 

.           (5.3) 
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Here, Ui and Ii
T
 are the light intensity distribution and the binary target image at plane i, 

respectively. The summation is over the entire image plane (X’Y’). Pin is the total 

incident power. In Equation (5.3), 

2

' '

T

i i

x y

i T

i

U I

E
N






 is the mean value of the light 

intensity of all the pixels inside the target region at plane i, and 
' '

T T

i i

x y

N I  is the total 

number of pixels in the target image with a value of 1 at plane i. In Equation (5.1), Ai, Bi, 

and Wi represent the weighting factors for optical efficiency, RMS, and the overall metric 

Mi at plane i, respectively. During optimization, these values are judiciously adjusted 

until the diffraction patterns with both high efficiency and good uniformity are achieved. 
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CHAPTER 6 

ULTRA-HIGH-SENSITIVITY COLOR IMAGING 

This chapter is adapted from the author’s previous publication: Peng Wang and Rajesh 

Menon, “Ultra-high-sensitivity color imaging via a transparent diffractive-filter array and 

computational optics,” Optica 2, 933-939 (2015).  
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6.1 Abstract 

Conventional color imaging requires absorptive color-filter arrays, which exhibit low 

light transmission. Here, we replace the absorptive color-filter array with a transparent 

diffractive-filter array (DFA) and apply computational-optics techniques to enable color 

imaging with a sensitivity that is enhanced by a factor as high as 3.12. The DFA diffracts 

incident light onto a conventional monochrome sensor array to create intensity 

distributions that are wavelength dependent. By first calibrating these wavelength-

dependent intensity distributions, and then applying computational techniques, we 

demonstrate single-shot hyperspectral imaging and absorption-free color imaging. 

 

6.2 Introduction 

Color imaging provides information in the spectral domain with very important 

applications in our daily life, scientific research, industrial processes, etc. Color can 

represent critical information such as body temperature, material composition, and 

aesthetics. Conventional cameras employ an absorptive color-filter array (also referred to 

as the Bayer filter) to determine the color of spatial pixels [1]. It is usually composed of 

an array of square color subpixels placed over a sensor array such that one color sub-

pixel is aligned to one sensor pixel. Each color subpixel transmits one primary color (red, 

green, or blue) while absorbing the rest. Therefore, its overall light transmission is low. 

Lower transmission leads to compromised light sensitivity. Furthermore, such color-filter 

arrays require multiple aligned lithography steps for their manufacture, which can be 

cumbersome. Here, we demonstrate a transparent diffractive-filter array that can be easily 

and inexpensively fabricated to achieve color imaging with little absorption loss. The 

filter can also be readily replicated for mass production.  
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Recently, new filter designs have been proposed to overcome certain limitations of 

conventional Bayer filters [2,3]. Most of these designs aim to enhance color accuracy by 

tuning the transmitted spectral bands via nano or microstructures. Plasmonics-based color 

filters suffer from decreased light transmission due to parasitic absorption of the required 

metal layers [4-10]. In addition, these require very precise nanofabrication of 

subwavelength structures, which can be challenging and experience difficulties in 

extending to mass production. Alternative filters that utilize a variety of optical resonance 

effects have also been proposed. However, these exhibit very limited bandwidths [11-13]. 

Some of the devices also require multiple lithography steps [14]. A recent approach 

introduced complex nanophotonic deflectors above the sensor array, which demonstrated 

a two-fold improvement in light sensitivity [15]. However, the required nanostructures 

have large aspect ratios and are therefore difficult and expensive to manufacture.  

The concept of a coded aperture was previously explored to construct a spectral 

imager [16]. Although it shows reasonable spectral resolution and image quality, this 

technique requires a coded (absorptive) aperture and a dispersion element (prism) to 

generate multispectral images. Extra relay lenses are also needed. An absorptive aperture 

clearly limits photon throughput and hence reduces sensitivity. Recently, commercial 

hyperspectral sensors have also been introduced [17]. In these, spectral selectivity is 

achieved via complex Fabry-Perot resonators integrated on top of the CMOS sensor. Not 

only does this technology require precise alignment between the filter array and the 

sensor array, but the filters themselves require expensive multilayer deposition 

techniques. Most importantly, the overall light transmission is greatly reduced due to the 

spectral selectivity of each filter in the array, and consequently sensitivity is degraded.  
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In this chapter, we overcome the limitations of all previous approaches by utilizing a 

fully transparent diffractive-filter array (DFA) that not only enhances light sensitivity by 

as much as 3.12 times, but is also significantly simpler to mass manufacture. Specifically, 

we replace the conventional Bayer filter by a multilevel DFA atop the conventional 

sensor array as shown in Figure 6.1(a). Light incident on the DFA diffracts and creates an 

intensity pattern on the underlying sensor array. We design the DFA such that the 

diffracted intensity pattern of each wavelength is unique. Then, we calibrate the response 

of the DFA to each wavelength, which we refer to as the spatial-spectral point-spread 

function. Finally, we apply computational techniques to recover the color information of 

any unknown incident illumination. The key advantages of our approach are (1) the DFA 

can be completely transparent, which allows all the light to be utilized for imaging and 

thus improves sensitivity; (2) the DFA can be easily fabricated using single-step 

grayscale lithography and mass manufactured using imprinting techniques [18,19]; (3) 

large tolerance to fabrication inaccuracy, since calibration comes after the filter is 

patterned and fixed; (4) minimal alignment is necessary between the DFA and the sensor 

array; (5) only one optical element (the DFA) is introduced to replace the Bayer filter; (6) 

the technique can be applied to any conventional sensor array (CMOS or CCD); and (7) 

the technique is easily extended to multi- and hyper-spectral imaging.  

 

6.3 Principle of Operation 

The basic schematic of our approach is shown in Figure 6.1(a). The DFA is composed 

of a periodic unit cell. In our implementation, this unit cell is composed of an array of 

6×6 squares, each of size Δ=3μm. For our initial demonstration, the depth of each such 

square is randomly assigned. The DFA is placed at a distance d from the sensor array.  
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Figure 6.1. (a) Schematic of one spatial pixel of the color sensor composed of a unit cell 

of the DFA (6×6 squares) and 3×3 sensor pixels. One DFA unit cell offers color for one 

image pixel. (b) Photograph of the DFA-sensor assembly. (c) Optical micrograph of a 

portion of the fabricated DFA (scale bar: 50μm). (d) Atomic-force micrograph of a small 

region of the DFA. The dotted white rectangle delineates one DFA unit cell.  

 

In our current implementation, one spatial pixel of the image is composed of an array of 

3×3 sensor pixels, which in turn corresponds to one DFA unit cell. We utilized a 

commercial monochrome sensor with a pixel size Δ’=6μm (Model #: DMM22BUC03-

ML, The Imaging Source). A photograph of the final assembly is shown in Figure 6.1(b). 

Grayscale lithography was used to pattern these multilevel diffractive optics in a single 

step [20,21]. It was made in positive photoresist (Shipley 1813) spin-coated on fused 

silica substrate. The depth of each square in the DFA was controlled between 0 and 
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1.2μm. An optical micrograph and an atomic force micrograph of different portions of the 

fabricated DFA are shown in Figures 6.1(c) and 1(d). Periodicity of 18μm×18μm and 

multilevel height distribution within one unit cell are clearly shown.  

We first characterized the device by measuring the diffracted light intensity 

distribution on the sensor array as a function of wavelength. We call these data the 

spatial-spectral point-spread function (SS-PSF) of the DFA. This is analogous to our 

previous work in computational spectroscopy [21]. We built the same scanning 

spectrometer by placing the single-mode fiber input to a conventional spectrometer 

(Ocean Optics Jaz) on an automated 2-axis stage (Thorlabs). The DFA-sensor assembly 

was illuminated by collimated white light from a supercontinuum source (SuperK 

Compact, NKT Photonics). The scan axes of the stage were carefully aligned to the axes 

of the DFA-sensor assembly. The distance d between the DFA and the sensor was also 

carefully set using a manual micrometer stage with a precision of 10μm, which was 

shown to be sufficient from an analysis of the depth of focus of the DFA. Then, we 

captured a spectrum for each position of the stage, which resulted in a 3D SS-PSF (1 

wavelength dimension and 2 spatial dimensions) matrix. This data were captured for 3 

different values of d. Exemplary images (X’Y’) at 5 wavelengths and the 3 values of d 

are shown in Figure 6.2(a). Note that as the wavelength changes, the diffracted image 

also changes. The spectral resolution of our technique relies on the decorrelation of the 

diffracted images at closely spaced wavelengths. We can quantify this effect via a 

correlation function that is calculated as a function of the wavelength spacing, δλ [21-23].  

 

         .     (6.1) 
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Figure 6.2. (a) Measured light intensity distributions of 5 wavelength samples at 3 

different values of d. (b) Measured correlation of the diffracted light intensity as a 

function of spectral resolution for d=0.3mm (green line), 0.5mm (magenta line), and 

1.5mm (cyan line). Inset: Measured spectral resolution as a function of d.  

 

Here, PSF(x’,y’,λ) is the measured SS-PSF of the DFA. The correlation function, 

C(δλ), plotted in Figure 6.2(b), is averaged over the entire space (x’,y’). It is well known 

that this correlation function is also dependent on d. The spectral resolution is then 

defined as the wavelength spacing at which the image correlation, C(δλ), is 0.5. Thereby 

we can plot the spectral resolution as a function of d as shown in the inset of Figure 

6.2(b). As expected, the spectral resolution increases with increasing d. However, as 

discussed later, the cross-talk between spatial pixels also increases with increasing d. 
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Therefore, an optimal choice of d is necessary. The spectral resolutions of the 2D DFA 

studied here are lower compared to previous 1D computational spectrometer designs [21] 

due to (1) smaller gap d and (2) fewer digitalized squares in each unit cell of the DFA. 

But it is sufficient for accurate color reconstruction, which will be shown later.  

The diffracted intensity distribution of one image pixel (3×3 sensor pixels, S(x’,y’)) 

can be modeled as ,S = PSF Ψ  where Ψ(λ) is the compound photon flux spectrum, 

which is an element-wise multiplication of the unknown photon flux spectrum Φ(λ) and 

the sensor’s quantum efficiency QE(λ) [21,24]. Solving for Ψ(λ) from S(x’,y’) is an 

inverse problem. This problem can be solved by minimizing the residual norm ||PSF∙Ψ – 

S||
2
. Here, we present 2 methods to solve this inverse problem. One is via a modified 

version of the iterative direct-binary-search (DBS) algorithm [21,25-30]. The second 

approach is based on singular-value-decomposition (SVD) of the system matrix, PSF, 

and regularization of the inverse problem [24]. This is a faster algorithm and is also less 

sensitive to noise. In this case, the optimal solution is mathematically represented as the 

weighted linear combination of the singular vectors of matrix PSF in the spectral domain. 

See Section 2.5 for more details on these algorithms.  

 

6.4 Experiments 

To demonstrate preliminary color reconstruction, we placed various color filters 

(Nikon) one at a time in the path of the collimated white light illuminating the DFA-

sensor assembly. The results are summarized in Figure 6.3 for five colors: blue, green, 

red, yellow, and purple. The calculated spectral resolutions were 53nm, 45nm, and 29nm 

for d=0.3mm, 0.5mm, and 1.5mm, respectively (see inset in Figure 6.2(b)). Both the DBS 

method and regularization were used for spectrum reconstruction. The reconstructed 
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Figure 6.3. Reconstructed color ((a)-(e)) and photon-flux spectrum ((f)-(j)) of blue (a,f), 

green (b,g), red (c,h), yellow (d,i), and purple (e,j) colors. The experiments were 

conducted for three gaps, d=0.3mm (orange), 0.5mm (cyan), and 1.5mm (light green). 

The reference spectrum and color values are plotted in black. The spectra Φ are 

normalized. The delta E (ΔE) values based on CIE94 are also given.   
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spectra were compared to the spectra measured using a conventional spectrometer 

(shown in black). Noise present in the reconstructed spectra does not affect the color 

values significantly. RGB color values were calculated from the reconstructed spectra by 

integrating over the corresponding bands: 450nm to 500nm for blue (B), 500nm to 

580nm for green (G), and 580nm to 700nm for red (R). They are then quantized into 8-bit 

(256 levels). The minimum wavelength was limited to 450nm by the supercontinuum 

source. The reconstructed color values agree very well with the actual color values 

(estimated from the measured spectra) and exhibit average errors of 5.62%, 7.50%, and 

7.11% in terms of the 256 levels for d=0.3mm, 0.5mm, and 1.5mm, respectively. These 

are all well within the 10% color-error threshold and are acceptable for visual perception. 

A more rigorous standard for color accuracy test, delta E (or ΔE) values, based on CIE94 

definition, are also summarized in Figure 6.3. The ΔE averaged over the five exemplary 

colors for d=0.3mm gap is 2.42, which is close to the previously proposed Just 

Noticeable Difference (JND) value of ~2.30 [31].  

In order to demonstrate color imaging, we used the image of a rainbow printed on a 

transparency by a high-resolution printer. First, a conventional color sensor (Model #: 

DFM22BUC03-ML, The Imaging Source) was used to capture a reference image as 

shown in Figure 6.4(a). For fair comparison, the monochrome and the color sensor chips 

were identical, the only difference being the presence of the Bayer filter on the color 

sensor. The illumination system as well as the exposure times (14ms) were kept the same 

for both the conventional color sensor and our DFA-sensor. In our preliminary 

experiments, no lens was incorporated in the system (no magnification), and the sample 

was placed as close as possible to either the front surface of the conventional color sensor  
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Figure 6.4. Experimental results of color imaging of a printed rainbow object. The 

exposure time is 14ms. (a) Reference image captured by a sensor with a Bayer filter. (b) 

Gray-scale image captured by our DFA-sensor assembly. It is undersampled to avoid 

cross-talk. Color image reconstructed from (b) using the DBS algorithm (c) and using the 

regularization algorithm (d). Both (b) and (c) are de-noised using the same filter. (e) 

Image interpolated to 744×480 image pixels from (d). (f) Reconstructed hyperspectral 

image at λ=480nm, 530nm, 580nm, 630nm, and 680nm. They are de-noised by filtering 

and then interpolated. The sensor chip used for reference in (a) is the same chip used for 

the image in (b). All other experimental conditions were also identical.  
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or to the DFA substrate. In practice, there was a small gap of ~50μm. For this 

experiment, we chose d=0.3mm.  

The raw monochrome image corresponding to S(x’,y’) is shown in Figure 6.4(b). The 

corresponding color image reconstructed using DBS algorithm and regularization are 

shown in Figures 6.4(c) and (d), respectively. The latter image shows somewhat less 

numerical noise than expected [24]. By applying a simple filter in the Fourier domain, 

these images are de-noised. Both the reconstructed images are significantly brighter than 

the reference image. One of the constraints of DFA-based color reconstruction is the 

cross-talk that occurs between neighboring spatial pixels due to the diffraction of light. A 

simple approach to reduce the impact of cross-talk is to undersample the raw 

monochrome data and use the undersampled images for reconstruction. In order to 

undersample the image, we need to first estimate the spatial extent of the cross-talk using 

our diffraction model [29,32]. We calculated that cross-talk affects an area of 

90μm×90μm (5×5 DFA unit cells), 150μm×150μm (8×8 DFA unit cells), and 

450μm×450μm (25×25 DFA unit cells) at d=0.3mm, 0.5mm, and 1.5mm, respectively. 

Since here we used d=0.3mm, we undersampled the monochrome image at every 5th unit 

cell of the DFA, which is a sufficient spatial resolution for the rainbow image used here. 

The undersampling was applied to the raw image used for both the DBS method as well 

as regularization. It was undersampled from 744×480 sensor pixels to 147×96 sensor 

pixels (Figure 6.4(b)). Since each DFA unit cell corresponds to 3×3 sensor pixels (see 

Figure 6.1(a)), this leads to reconstruction of 49×32 image pixels. After de-noising, we 

further applied a simple interpolation algorithm to extend the reconstructed image using 

regularization (Figure 6.4(d)) to the same size as that of the reference image (744×480 
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sensor pixels). The resulting image is shown in Figure 6.4(e). This reconstructed color 

image is of the same quality as the reference image, but is considerably brighter as no 

absorptive color-filter array is used.  

Interestingly, our imaging architecture can also be used as a single-shot hyperspectral 

imager. To illustrate this, the intensity distribution maps at 5 wavelengths are plotted in 

Figure 6.4(f). These are normalized as indicated by the colorbar. For clear illustration, we 

identify five color ribbons of the rainbow, labelled in Figures 6.4(a), (c), (d), and (f). The 

far end of the spectrum is close to infrared, therefore the λ=680nm map looks uniform 

and is thus excluded from our analysis. The blue ribbon (#2) and the green ribbon (#3) 

have signals only from λ=480nm channel and λ=530nm channel, respectively. The purple 

ribbon (#1) is composed of both blue (λ=480nm) and red (λ=630nm). The yellow region 

(#4) receives contributions from λ=530nm, 580nm, and 630nm channels. And the red part 

(#5) is consist of mostly λ=630nm signals and some λ=580nm signals. Here, the 

bandwidth to spectral resolution ratio is 250nm/53nm=4.72.  

 

6.5 Discussion 

The conventional Bayer filter is absorptive and therefore has low light transmission. 

In the RGB three-color scheme, each subpixel filter only lets one color pass through, 

while absorbing the other two colors. As a result, the final photon throughput cannot 

surpass 1/3. On the other hand, our DFA is transparent and all the photons could be 

utilized for imaging. Therefore, a 3-fold improvement in photon utilization rate as well as 

sensitivity is theoretically expected. To experimentally quantify the light-sensitivity 

enhancement of the DFA-based color sensor over the Bayer-filter-based color sensor, we 

averaged the signal intensity over the measured image as a function of exposure time for 
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both devices. As mentioned earlier, the sensor chip and the experimental conditions were 

identical for both devices. For the 8-bit sensors used in our experiments, the intensity 

values range from 0 to 255. At an exposure time of 20ms, the DFA-sensor assembly was 

saturated with average image intensity of 255. The measured values are plotted in Figure 

6.5(a). The peak enhancement in light sensitivity of 3.12 was measured at an exposure 

time of ~7ms. An enhancement factor averaged over exposure times of 1ms to 20ms is 

2.67. This is higher than what was previously reported with a more complex device [15].  

As discussed previously, the spatial resolution of our DFA-sensor assembly is 

constrained primarily by the impact of cross-talk, which in turn is determined by the 

distance, d, between the DFA and the sensor. For higher spectral resolution, one prefers 

larger d. However, increasing d increases the area of cross-talk, which reduces the spatial 

resolution. We experimentally measured the modulation transfer function (MTF) to 

quantify this effect by imaging an object composed of periodic opaque (black) lines at 

various periods printed on a transparency. The object was again placed in close proximity 

to the DFA substrate as before. The MTF is calculated as a function of the spatial 

frequency, ν (the number of lines per unit length in cycles/mm) [32], via the relative 

contrast, 0( ) ( ) ( )MTF C C   , where C(ν) and C0(ν) are the visibility (contrast) of the 

image and object, respectively. The visibility or contrast is defined as  

 

                (6.2) 

 

where Imax(ν) and Imin(ν) are the maximum and the minimum image-intensity values. We 

measured the MTF for d=0.3mm, 0.5mm, and 1.5mm, and the results are plotted in  
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Figure 6.5. (a) The measured average image intensity from the Bayer-filter-based color 

sensor (blue line) and our DFA-sensor assembly (red line). The enhancement in 

sensitivity is plotted using a black line. (b) Measured MTF versus spatial frequency, ν at 

d=0.3mm (blue line), 0.5mm (green line) and 1.5mm (red line). Left, center, and right 

bottom insets: captured gray-scale images of two spatial frequencies at two gaps. Right 

top inset: spatial resolution versus gap d estimated by numerical simulations of the far-

field diffraction patterns.  
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Figure 6.5(b). The maximum spatial frequency, ν (~11.8 cycles/mm), that was 

experimentally measured was limited by the resolution of the printer used to print the 

object pattern onto the transparency. The spatial resolution of our DFA-sensor assembly 

is then given by the cut-off spatial frequencies, which correspond to a resolution of 

95μm, 143μm, and 380μm for d=0.3mm, 0.5mm, and 1.5mm, respectively.  

These measured values agree well with the numerical predictions based on the cross-

talk effect. Simulations of the far-field diffraction patterns also suggest an almost linear 

relationship between the spatial resolution and the gap d (see the inset of Figure 6.5(b)). 

This is because the diffraction angle is fixed for a fixed structure and wavelength. Here, 

the spatial resolution is determined by the minimum distance between two DFA unit cells 

when they are illuminated independently and the interactions of their diffracted fields 

become trivial. Note that higher spatial resolution may be achieved either by designing a 

better DFA or by applying computational techniques to compensate for cross-talk. See 

the Supplementary Information of this chapter for more details.  

All our experiments were conducted by assuming on-axis illumination, and the DFA-

sensor works best for on-axis illumination, as expected. Nevertheless, it is possible to 

calibrate the impact of off-axis illumination and reconstruct color images. Noise can be a 

limiting factor in all imaging systems. The color deviations observed in the reconstructed 

images (Figures 6.4(c) and (d)) are primarily ascribed to alignment errors, electronic 

noise, computational errors, and fabrication errors. Fortunately, they are not strong 

enough to obscure the image quality. Numerical studies on color accuracy as a function 

of noise level predict that a signal-to-noise ratio better than 20dB results in a color error 

of <10%.  
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6.6 Smaller Sensor Pixel 

All the experiments and discussions so far are based on the 6μm sensor pixel. 

However, there is an emerging trend in both research and industry to reduce the size of 

the sensor pixels. Sensors with 1.67μm or even smaller pixels are commercially available 

and widely used. Such pixels suffer even more from poor light sensitivity. Here we show, 

using careful numerical studies, that our technology can drastically improve the 

sensitivity of such sensors as well.  

First, we designed a new DFA, which has Δ=1μm and 5×5 squares in each unit cell. 

Each unit cell corresponds to one spatial pixel of the image and covers 3×3 sensor pixels 

with pixel size of Δ’=1.67um. This DFA also has a quasirandom topography, as depicted 

in Figure 6.6(a). The correlation function plotted in Figure 6.6(b) derived from the 

simulated SS-PSF at a gap of d=0.01mm indicates a spectral resolution of 44nm, which 

leads to a bandwidth-to-spectral-resolution ratio of 240nm/44nm=5.45. A test pattern is 

numerically synthesized and successfully reconstructed by regularization without any 

undersampling (Figures 6.6(c) and (d)). The spectrum of each point in the original object 

is numerically reconstructed by the pseudospectra of the R, G, and B channels. As 

anticipated, the DFA, together with the regularization algorithm, works well for the 

1.67μm sensor pixel, except at the boundaries of abrupt color change, where cross-talk 

smears color accuracy. Scalar diffraction calculation estimates the lateral spread of the 

cross-talk (or spatial resolution) to be ~13μm. This is approximately 3 image pixels in our 

configuration, since one DFA unit cell is 5μm×5μm. Examples at five small areas (7×7 

image pixels, or equivalently 35μm×35μm area) are summarized in Figure 6.6(e). At the 

boundaries of color change (areas #1, 2 and 3), severe color distortions are observed.  
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Figure 6.6. (a) Height profile of one unit cell of the DFA (5×5 1μm-squares) that covers 

3×3 1.67μm-sensor pixels and represents one image pixel. Sensor pixels are delineated by 

dashed white lines. (b) Calculated spectral correlation function (insets: simulated SS-PSF 

received by one 3×3 sensor array at three representative wavelengths). Original test 

pattern (c) and the reconstructed image by regularization without undersampling (d). (e) 

The original objects, their numerically synthesized raw monochrome images and the 

reconstruction results at five small representative locations (7×7 image pixels) in the 

image.  
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The distortions are due to cross-talk effect. These ‘transition regions’ span around 3 

image pixels, which is the same as that predicted by scalar diffraction computation. 

However, in the areas of uniform color (areas #4 and 5), our reconstructions demonstrate 

negligible distortion and noise. The absolute error between reconstruction and true 

images averaged over the entire image space is well below 5%. For this object of 

404×404 image pixels, it takes roughly 30sec to complete reconstruction by 

regularization without implementing any parallel computation techniques on a Lenovo 

W540 laptop (Intel i7-4700MQ CPU @ 2.40GHz and 16.0GB RAM) for simplicity. 

Since each image pixel is independent without considerations of the cross-talk effect, the 

reconstruction algorithm can be highly parallelized and thus significantly accelerated 

using either multicore CPU or GPU chips and by storing calibration data in shared 

memory in advance.  With the rapid evolution of microprocessor architecture and the 

development of semiconductor manufacturing, it will be prevalent and affordable to 

incorporate powerful computation units in imaging equipment.  

Another critical benefit of using smaller sensor pixel is that the gap, d, can be 

significantly decreased, which is important for a compact sensor. In practice, this gap is 

limited by the thickness of the protective cover glass on the sensor chip. In principle, the 

DFA can be fabricated on the sensor chip directly [4,15].  

In our approach, the spatial and spectral resolutions are traded off against one another 

via the gap d. Since both high spatial and spectral resolutions are desired in reality, we 

define a new parameter – resolution product (RP), which is the product of spatial and 

spectral resolutions.  Figure 6.7(a) shows the simulated spatial and spectral resolutions as 

a function of d for the 1μm-square DFA (Figure 6.6(a)). Again, we assume uniform  
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Figure 6.7. (a) Simulated spectral and spatial resolutions as a function of gap d for the 

1μm-DFA in Figure 6.6(a). (b) Calculated resolution product at different gaps. The 

minimum occurs at d=0.01mm.   

 

plane-wave illumination and a sample in proximity to the DFA substrate. Figure 6.7(b) 

plots the relationship between RP and d. Because the spectral resolution is a nonlinear 

function of d (increases rapidly at smaller d but decreases slowly at larger d), while the 

spatial resolution is approximately a linear function of d, there exists an optimum value, 

where the RP is minimized. In this case, the optimal point is at d~0.01mm. For this 

configuration, this gives the best choice of d at which both spatial and spectral resolutions 

are optimal.  

 

6.7 Conclusion 

We demonstrated a new color sensor that utilizes a transparent diffractive-filter array 

and computational methods. Our color sensor transmits significantly more light than 

conventional Bayer-sensors and we measured an increase in light sensitivity as high as 

3.12. We applied two different computational techniques for color reconstruction. 

Diffractive-filters incur cross-talk, which limits the trade-off between spectral and spatial 

resolutions. We experimentally demonstrated a spatial resolution of 90μm and a spectral 

resolution of 53nm. Improvements in computational techniques by compensating for 
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cross-talk as well as oblique illumination can improve these trade-offs in the future. 

Simulations show its potential in sensors with pixel sizes of ~1.67μm. Our technique can 

also be used for single-shot hyperspectral imaging.  

 

6.8 Supplementary Information 

6.8.1 DFA-sensor assembly 

The schematic of the DFA-sensor assembly is illustrated in Figure 6.8. Every critical 

dimension is labelled in detail. We are able to determine the gaps g=2.67mm, 2.87mm, 

and 3.87mm, between the front surfaces of optical mounts from the desired image 

distances d=0.3mm, 0.5mm, and 1.5mm, respectively. Note the custom-designed camera 

holder is machined out of a 2”-diameter Teflon rod. The assembly is fixed by M2 screws. 

The transparent cover film on top of the sensor is measured about 0.10mm thick.  

 

6.8.2 Contact-imaging setup 

In the color imaging experiment, we utilized the contact imaging mode (see Figure 

6.9). The sample is color-printed on a piece of transparency. Then it is tightly glued upon 

a cleaned glass substrate. This is fixed on a cage mount and placed in proximity (~50μm) 

to the back side of the DFA substrate. The mount is controlled by a micrometer stage.  

 

6.8.3 Color error tolerance 

It is fundamental to understand how much color error is tolerable. Figure 6.10 shows 

a simple color error tolerance test. Different computer-generated random color errors in 

percentage of 256 levels (8-bit) are applied to three basic colors (blue, green, and red). 

Based on visual inspection, it seems that generally color errors below 10% are acceptable 

while errors beyond 10% give evident discrepancies.  
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Figure 6.8. Configuration of the DFA-sensor assembly with labelled dimensions.  

 

 

 

Figure 6.9. Photographs of the imaging setup. The expanded and collimated beam from a 

supercontinuum source illuminates from the left side. (a) Top view. (b) Side view.  

 

 

 

Figure 6.10. Color error tolerance test by adding random errors to three basic colors.  
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6.8.4 Cross-talk effect 

Periodic boundary condition is assumed in the DFA device. Each repeating unit 

consists of 6×6 3μm pixels. Due to higher diffraction orders, light transmitted through 

one unit (or period) can affect its neighboring units. Basically, light spreads out. 

Therefore, an image from one unit represents actually the combined contributions from 

some of its neighboring units. Unless the color remains unchanged over a large number 

of units, the reconstructed color is compromised in accuracy. This is a cross-talk effect. It 

also dictates the ultimate spatial resolution. To evaluate this effect, we simulate 

diffraction patterns of one DFA unit at different propagation distances (Figure 6.11). 

Light with the longest wavelength possesses the greatest diffraction angle, therefore 

λ=700nm is considered. For d=0.3mm, the diffraction pattern is predominantly 

constrained within a region of about 90μm×90μm. For d=0.5mm and 1.5mm, the light 

energy is confined around the 150μm×150μm and 450μm×450μm regions.  

To estimate spatial resolution, we conducted a test similar to Abbe’s resolution 

criterion (Figure 6.12). Two diffraction patterns are placed next to each other at different 

displacements. To be consistent with our experiments, we assume the light source to be 

coherent. Take d=0.3mm, for example. When displacement is below 90μm, the two 

patterns interact with each other and it is difficult to distinguish them. The interference 

fringes at the boundary are very clear. When displacement goes beyond 90μm, there are 

negligible interactions. This critical displacement is taken as the spatial resolution.  

 

6.8.5 Depth-of-focus 

As previously mentioned, it is critical to make the gap d as close to the nominal value 

(used in SS-PSF calibration as well) as possible. Therefore, it is instructive to understand 
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the depth-of-focus of the DFA-sensor camera. We simulated color error (in % of the 256 

levels) of the imaging system at various defocus locations, plotted in Figure 6.13. 

Applying a color error of 10% as the criterion, we can obtain depth-of-focus ±12μm, 

±30μm, and ±60μm for three nominal gaps d=0.3mm, 0.5mm, and 1.5mm, respectively. 

These are well within the movement resolution of a commonly used micrometer stage 

(step size 10μm). Therefore, it is possible to control the gap between the DFA and the 

sensor with reasonable accuracy and thus achieve acceptable color reconstruction fidelity. 

The depth-of-focus is concluded to be linearly proportional to the gap d.  

 

 

Figure 6.11. (a) Original design height distribution (18μm×18μm). (b)-(e) Simulated 

diffraction patterns of one single DFA unit at various distances d at λ=700nm.  

 

 

Figure 6.12. (a) Original diffraction pattern at d=0.3mm and λ=700nm. (b)-(f) 

Numerically synthesized diffraction patterns of two identical patterns separated by 

different displacements. 90μm is the critical displacement.  
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Figure 6.13. Plots of color errors in percentage versus defocus locations for three 

nominal gaps d=0.3mm (blue line), 0.5mm (green line), and 1.5mm (red line). The 10% 

color error tolerance threshold (black dashed line) is used.  

 

6.8.6 Acceptance angle 

Acceptance angle is important for diffraction devices since off-axis incidence imparts 

a phase shift to the wave-front that leads to a lateral shift of the diffraction pattern. Our 

calibration experiments assumed strictly normal incidence. An optical setup is devised to 

measure angular response. Here, lens 2, mounts 1 and 2 are fixed on a two-axis 

micrometer stage. Lens 1 first focuses the collimated beam, then off-axis illumination is 

created by moving lens 2, together with the DFA-sensor assembly, on the XY plane. 

Incident angles in two orthogonal coordinates are computed by 
1tan ( )x x d    and 

1tan ( )y y d   , in which Δx and Δy are the movements relative to the central 

reference point (0,0).  

An angular response function is defined by  
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.     (6.3) 

 

Here, I(θx,θy,x,y) and I(0,0,x,y) are the images at angle (θx,θy) and normal incidence. 

Note that no sample is used. The second term in Equation (6.3) is the normalization over 

a set of angles (θx,θy). The setup is in Figure 6.14. As shown in Figures 6.15(a)-(c), 

R(θx,θy) drops with larger angles. This makes sense because as incoming light is more 

and more off normal, the image turns less and less similar to the one at normal incidence. 

By considering the angles at R(θx,θy)=0.5 as the acceptance angle θa, Figures 6.15(a)-(c) 

indicate that θa=0.19
o
, 0.13

o
, and 0.05

o
 for d=0.3mm, 0.5mm, and 1.5mm, respectively. 

They are all roughly equivalent to relative lateral shift of Δx~1μm. To guarantee the 

camera’s performance, the angle of incidence has to be controlled within this limit. 

 

6.8.7 Noise analysis 

Alignment errors, electronic noises and computational errors all contribute to the 

discrepancies between the reconstructed color (or spectrum) and the true color (or 

spectrum) values. By numerically adding Gaussian noises with various standard 

deviations to the gray-scale raw images, Figure 6.16 summarizes the color errors (in 

percentage) versus the calculated signal-to-noise ratio (SNR) for different spectra. The 

spectra are randomly generated and the raw images are numerically synthesized with the 

knowledge of the calibrated SS-PSF. According to the 10% color error tolerance, they 

estimate a SNR threshold of 20dB ± 3dB.  
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Figure 6.14. Schematic illustration (a) and photograph (b) of the angular response 

measurement setup.  

 

 

 

Figure 6.15. Measured angular response R(θx,θy) at d=0.3mm (a), 0.5mm (b), and 

1.5mm (c). 

 

 

 

Figure 6.16. Color reconstruction error (in percentage) averaged over R, G, and B 

channels versus SNR levels for different random spectra (insets: the color of spectra).  
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CHAPTER 7 

COMPUTATIONAL SINGLE-SHOT MULTISPECTRAL 

IMAGING 

 

7.1 Abstract 

Multispectral imagers reveal information imperceptible to humans and conventional 

cameras. Here, we demonstrate a compact single-shot multispectral video-imaging 

camera by placing a microstructured diffractive filter close to the image sensor. The 

diffractive filter converts spectral information to a spatial code on the sensor pixels. 

Following a calibration step, this code can be inverted via regularization-based linear 

algebra to compute the multispectral image. We experimentally demonstrated spectral 

resolution of 9.6nm within the visible band (430nm to 718nm). We further show that the 

spatial resolution is enhanced by over 30% compared to the case without the diffractive 

filter. Since no absorptive color filters are utilized, sensitivity is preserved as well. 

Finally, the diffractive filters can be manufactured using lithography and replication.  

 

7.2 Introduction 

Traditional imaging systems map one point in the object space to one point in the 

image space [1]. The point-spread function (PSF) is essentially determined by far-field 

diffraction and aberrations present in the system. Historically, advanced lens design and 

manufacturing techniques were developed to minimize all kinds of aberrations to achieve 
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the diffraction-limited PSF [1]. Over the past decades, several methods have been 

extensively explored to resolve subdiffraction features in super-resolution microscopy [2] 

by either shrinking the physical dimension of the PSF [3,4] or by using statistical 

estimation with preknowledge on the shape of the PSF [5,6]. However, these methods are 

not applicable to traditional imaging systems.  

Electronic sensors can only detect light intensity. In order to distinguish colors, an 

absorbing color-filter array (generally called the Bayer filter) is placed on top of the 

sensor [7]. Typically, only three colors (blue, green and red) are measured. However, 

natural scenes contain multispectral information, which can be valuable for numerous 

applications. Conventional multispectral imagers (MSI) are expensive and cumbersome. 

A common MSI operates in a push-broom manner and utilizes a prism or grating to 

disperse light [8]. Its applications are limited to scenarios in which the MSI is scanned 

relative to the object such as on a satellite or on a conveyor belt. The optical design for 

such an MSI can be quite complex. A second category of MSI employs either liquid 

crystal tunable filters or acousto-optic tunable filters to modulate the input spectrum over 

time. The former filter suffers from reduced throughput and slow speed, while the latter is 

expensive and consumes a great deal of power [9,10]. All these techniques scan multiple 

2D projections ((x,λ) or (x,y)) to acquire 3D multispectral data (x,y,λ), and hence, are 

slow. There is a need to acquire the 3D multispectral data in only one shot [11,12].  

Single-shot multispectral imagers based on coded apertures have demonstrated 

reasonable image quality and spectral resolution [11,13]. However, the introduction of a 

patterned absorbing aperture, a dispersive element (prism), and relay optics increases the 

system size and complexity. Recently, multispectral sensors based on a tiled bandpass-
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filter array have become commercially available. Fabry-Perot (FP) resonators are 

integrated on CMOS sensors to achieve spectral selectivity [14-16]. Unfortunately, these 

not only require expensive fabrication steps but also need precise alignment between the 

filter and the sensor and suffer from low sensitivity. These resonator-based filters may be 

replaced by plasmonics-based alternatives, but these incorporate subwavelength 

structures that are difficult to manufacture [17,18] and also suffer from low sensitivity 

due to parasitic absorption losses. Most importantly, tiled-filter-based imagers trade off 

spatial resolution with spectral resolution. Another popular method utilizes Fourier 

transform spectroscopy [19,20]. This technique is computationally intensive, since the 

interferogram is Fourier transformed to yield the spectrum. Furthermore, this method 

enforces a fundamental trade-off between spectral resolution and imaging speed, since 

higher resolution requires more interferogram images to be acquired.  

In this chapter, we convert a conventional camera into a single-shot multispectral 

imager by inserting a thin diffractive filter in the near vicinity of the image sensor. By 

applying appropriate computational algorithms, we are able to achieve multispectral 

video imaging with improved spatial resolution. Our imager is schematically described in 

Figure 7.1. In a conventional imaging system under geometrical optics, the lens images 

single points (A & B) in the object plane (XY) onto single points (A’ & B’) in the image 

plane (X’Y’). In our system, we insert a thin diffractive filter in front of the image plane. 

Therefore, before converging to points A’ and B’, light is diffracted by the diffractive 

filter. The diffraction patterns received by the sensor, represented by the blue and red 

circles in Figure 7.1, are wavelength-dependent. The diffraction patterns also vary 

according to different spatial locations of their original points in the object plane (A & 
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Figure 7.1. Schematic of the compact single-shot multispectral imager. A diffractive 

filter is placed in close proximity to the sensor. Due to diffraction through the filter, 

object points A and B are imaged to diffraction patterns (blue and red circles) 

surrounding points A’ and B’ on the sensor. The diffraction patterns depend on the 

wavelength and the spatial location of the object point.  

 

B). The centers of the diffraction patterns, blue and red circles, still coincide with the 

points A’ and B’. Therefore, one wavelength at one object point can uniquely 

corresponds to one diffraction pattern in the sensor plane.  

 

7.3 Methods 

According to the description above, the intensity distribution of the recorded image is 

basically a linear combination of the diffraction patterns of all the wavelengths at all the 

spatial points that contribute to the image. This can be expressed as a matrix 

multiplication: I=AS, where S(x,y,λ) is the unknown 3D multispectral data cube, I(x’,y’) 

is the intensity distribution of the 2D image on the sensor, and A(x’,y’;x,y,λ) is the 5D 

matrix representing the response due to the diffractive filter. In our preliminary 

implementation, the object plane is discretized to 30×30 points, spaced by 
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ΔX=ΔY=120μm (purple grid in Figure 7.1). At each point, we compute 25 wavelengths 

between 430nm and 718nm in steps of 12nm. To experimentally calibrate the matrix, A, 

we mounted a pinhole on a 2D motorized stage to scan across the object grid and 

illuminated the pinhole by a supercontinuum source equipped with a tunable bandpass 

filter that selects the wavelengths (see Figure 2.18). Retrieving S from A and I is a typical 

inverse problem (S=A
-1

I) that can be readily solved via Tikhonov regularization [21]. 

Iterative algorithms are slow to converge and thus are not used here for video imaging 

[22,23]. Note that each frame is sufficient to obtain the multispectral data for that frame 

[11], and by piecing together multiple frames, multispectral video can be readily 

generated. The idea of extracting high-dimensional information from multiplexed data is 

adopted from previous work in computational spectroscopy [24-26].  

The schematic of the diffractive filter is depicted in Figure 7.2(a). It is a 2D 

multilevel structure composed of a superlattice of period P=18μm and constituent square 

pixel of size, Δ=3μm [27]. Each pixel is quantized into height levels and the maximum 

height is set to 1.2μm for ease of fabrication. Note that periodicity is not necessary in this 

application. For this preliminary demonstration, we simply chose the pixel heights from a 

pseudo-random set. The gap, d, between the diffractive filter (DF) and the sensor is 

approximately 0.5mm. We used a monochrome CMOS sensor (DMM22BUC03-ML, The 

Imaging Source) with sensor-pixel size Δ’ = 6μm. The DF is patterned in a transparent 

dielectric material (Shipley 1813 photoresist) coated on fused silica substrate via gray-

scale lithography [28-30]. Figure 7.2(b) provides optical micrographs of the DF at two 

magnifications (VHX-5000, Keyence). The shadows in the images are created by oblique 

illumination to emphasize its 3D profile.  
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Figure 7.2. Diffractive filter. (a) Schematic of the assembly composed of the diffractive-

filter (DF) and the sensor array. (b) Micrographs of the fabricated DF. Oblique 

illumination is applied to enhance contrast (left inset: images with larger magnifications; 

right inset: an atomic-force micrograph of the DF delimited by the black box in (b)).  

 

An atomic force microscopy (AFM) image is shown as inset, where the white dashed 

square encloses one period and the 3μm features are clearly marked. A commercial lens 

(MVL12WA, Thorlabs) is placed in front of the DF.  

Our first step is to measure the matrix A. This is achieved via a calibration setup (see 

Figure 2.18). A supercontinuum source (EXW6, NKT Photonics) is collimated and 

expanded, then illuminates the pinhole (diameter, φ=150μm). In order to ensure that the 

illumination overfills the aperture of the lens, the pinhole is mounted at the focus of an 

achromatic lens and a diffuser is glued to its back. The pinhole is stepped along the object 

grid (Figure 7.1) using a 2D stage (Z825B, Thorlabs). A tunable bandpass filter (VARIA, 

NKT Photonics) is used to select the wavelength for illumination. We utilized a 

bandwidth of 12nm for our experiments. Exemplary measured values of A(x’,y’;x,y,λ) are 

plotted in Figure 7.3(a). They are at five different object point locations (x,y) and four 

different wavelengths (λ).  Note that this calibration only needs to be carried out once and  
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Figure 7.3. Calibration results. (a) Exemplary measured data for A(x’,y’; x,y,λ) at five 

spatial locations and four wavelengths. Each frame has 150×150 pixels. (b) Spectral 

correlation functions versus wavelength spacing. (c) Spatial correlation functions versus 

position spacing (top panel: X direction; bottom panel: Y direction). The wavelength scan 

step is 1nm and the spatial scan step is 10μm.   

 

the data can be used for all frame reconstructions. As mentioned earlier, the data cube S 

has a dimension of 30×30×25=22500. In order to solve the inverse easily, A is defined as 

a square matrix and thus the raw image I needs to have a dimension of 150×150 pixels. 

They are cropped from the original camera images. From Figure 7.3(a), it is clear that the 

diffraction patterns changes with both wavelength and location. In other words, the point-

spread function is both spatially and spectrally variant.  

As in computational spectroscopy [24-26], we can compute the spatial and spectral 

resolutions via the cross-correlation between the diffraction patterns at the object 

coordinates, (x,y,λ). Figures 7.3(b) and (c) plot the spectral and spatial cross-correlation 

functions versus the sampling in the wavelength and spatial domains. The calculated 

spectral resolution, defined as the wavelength spacing when cross-correlation equals 0.5, 

is ~9.6nm. Note that this spectral resolution is slightly smaller than the spectral sampling 
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size, 12nm during calibration. The spatial resolution is defined in the same way. It is 

about 120μm, determined by the sampling (step) size of 120μm during calibration. Since 

the imaging lens provides a demagnification factor of 25×, the system should in theory 

have spatial resolution of 6μm×25=150μm for the 6μm sensor. The spectral and spatial 

resolutions are somewhat smaller than conventional values. This is due to the fact that 

our image reconstruction is analogous to fitting to a structured PSF, which can be 

theoretically shown to have a lower Cramer-Rao lower bound and thereby attain higher 

resolution. An example of such a technique that achieved higher spatial resolution in 

localization microscopy has been demonstrated before [31]. Here, we note that the similar 

principle operates in both the spectral and spatial domains. The employment of structured 

PSFs induced by diffraction also paves a new way for super-resolution microscopy.  

 

7.4 Experimental Results 

Various color images were displayed on the LCD screen of an iPhone 6 placed in the 

object plane. The raw monochrome data, S(x’,y’) are captured at exposure times to ensure 

that the sensor pixels are not saturated. A second optical path captured reference RGB 

images using the same lens and the same sensor chip but with the conventional Bayer 

filter array (DFM22BUC03-ML, The Imaging Source). Multispectral images were 

reconstructed as described earlier. Color (RGB) images were computed from the 

multispectral data for comparison to the reference images, using standard transmission 

functions for the Bayer-filter array. The results of six different objects are summarized in 

Figure 7.4. The multispectral data have 25 wavelengths, from 430nm to 718nm separated 

by 12nm and arranged into four rows (Figures 7.4(a) – (f)), roughly corresponding to 

blue, green, red, and near-infrared channels from top to bottom. The first example is a 
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Figure 7.4. Experimental results of the multispectral frames and color images. The 

designed object patterns to be displayed, the reference RGB images, the raw 

monochrome images, and the reconstructed RGB images of the test patterns are shown as 

the top row. The normalized multispectral frames are plotted in the bottom four rows. 

The field-of-view is 3.6mm by 3.6mm. Six object patterns are tested: (a) 2-color letter 

‘T’; (b) 3-color letter ‘H’; (c) 4-color letters ‘UTAH’; (d) 1-color letter ‘A’; (e) 7-color 

dot-array; (f) Rainbow.  

 



156 

 

 

2-color letter ‘T’. According to the multispectral images in Figure 7.4(a), the vertical 

green bar contains signals from λ=514nm to 598nm, while the top red bar contains 

signals from λ=586nm to 682nm. In the multispectral plots of Figure 7.4(b), the first, the 

second and the third rows contain blue, green, and red spectra of the left, the center and 

the right parts of the letter ‘H’, respectively. The plots of near-infrared in the fourth row 

are blurred and noisy due to low signal at those wavelengths. Figure 7.4(c) is an object of 

four letters, ‘U’ ‘T’ ‘A’ and ‘H’ of four different colors. The letter ‘A’ in the blue channel 

is not reconstructed properly, compared to the letters of other colors, primarily due to the 

brightness difference between the 4 color channels in the source (iPhone screen). Figure 

7.4(d) illustrates excellent reconstruction of a single letter ‘A’ that consists of only one 

blue color. This indicates that applying high-dynamic-range algorithms and hardware will 

significantly improve the image quality. The nine-dot array in Figure 7.4(e) has more 

colors. The center white dot has signals contributed from all the wavelengths except the 

near-infrared row. The left middle yellow dot contains green and red spectra. The bottom 

purple dot has blue and red channels but leaves the green channel blank. Blue and green 

spectra contribute to the cyan dot at the right middle. The reconstructed spectra at the 

centers of the dots (normalized to its maximum) are plotted in Figure 7.5. The 

multispectral image of a rainbow is shown in Figure 7.4(f). The peak wavelength is red-

shifted from left to right as expected. Our reconstructed images also suggest that we can 

attain better spatial resolution than the reference color camera. The shapes of the 

reconstructed color patterns are clearer and narrower than those of the reference. Extra 

noise in the reconstructed images is ascribed to mechanical alignment errors, sensor noise 

in both calibration and raw images, and inherent numerical errors of regularization 
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Figure 7.5. Normalized spectra of the dots of different colors in Figure 7.4(e).  

 

algorithm. Currently, it takes ~1.3 sec to complete one frame reconstruction using 

regularization in MATLAB, running on a laptop workstation (Quad Intel i7 Core, 16GB 

RAM). Note that an optimal regularization parameter of ω=3.0 is used in all 

reconstructions. Further optimization of the reconstruction algorithm and hardware 

implementation will speed this up significantly.  

We also made a short video combining different object patterns. Both the 

multispectral images and the color images can be reconstructed in almost real time using 

the proposed regularization-based algorithm. The reconstructed RGB color video matches 

with the original color video displayed on the iPhone screen quite well. Thereby, our DF-

based imager prototype enables multispectral video-imaging, which is a strong advantage 

over previous technologies.  
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7.5 Analysis 

7.5.1 Spatial resolution 

To quantify the spatial resolution of our system, we measured its modulation transfer 

function (MTF). The object was composed of periodic lines of the same color. Since the 

iPhone 6 screen has a resolution of 326ppi (78μm pixel pitch), the minimum period of the 

test pattern was 2×78μm=156μm (or the maximum ν=6.4cycles/mm in the spatial 

frequency domain). The measured MTFs along the X and Y axes, and three colors (blue, 

green, and red) are plotted in Figure 7.6(a). From the measured data, we observe that the 

spatial resolution (defined as the line-spacing where MTF = 0.1) is increased by 43% and 

20% along the X and Y axes, respectively, averaged over the 3 colors, when compared to 

that obtained using the conventional Bayer filter in our reference camera. This is in stark 

contrast to conventional multispectral imagers, where spatial and spectral resolution are 

traded off against one another. Figure 7.6(b) shows the MTF test patterns and images at 

five different spatial frequencies and various colors. The reconstructed images have 

higher contrast when compared to the reference images. Although our default data type is 

the multispectral image, in Figure 7.6, only the reconstructed RGB color images are 

shown for simplicity.  

As mentioned earlier, the increase in spatial resolution can be attributed to the use of 

a structured PSF. Our reconstruction of the multispectral image is analogous to the fitting 

of a point image to a PSF in localization microscopy [31]. In the same manner in which 

the localization precision is improved due to the structured PSF, here we attain increased 

spatial and spectral resolution when compared to the reference. This can be analyzed 

theoretically via the Cramer-Rao Lower Bound (CRLB).  
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Figure 7.6. Results of spatial resolution tests. (a) Measured Modulation Transfer 

Functions (MTFs) in X and Y axes and three primary color channels. (b) Exemplary test 

object patterns at five spatial frequencies: their reference images by color and 

monochrome cameras and the reconstruction results.  
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7.5.2 Noise 

Since our camera is based upon computational reconstruction, noise introduced by the 

operations during the reconstruction process has to be clarified. We studied the impact of 

noise by performing careful simulations, the results of which are summarized in Figure 

7.7. Specifically, we manually added random noise (from a Gaussian distribution) of 

different standard deviations to a numerically synthesized sensor image, I(x’,y’), which is 

generated using the calibrated PSFs, A, and the multispectral object, S(x,y,λ), via I=AS. 

The system is then inverted to compute the multispectral image using regularization as 

before. The multispectral image is then converted to the RGB color image. Finally, the 

error between the reconstructed color image and the object in three color channels, 

averaged over the entire image, is computed. Based on the curve of error versus signal-to-

noise ratio (SNR), an SNR tolerance threshold of ~13dB (or equivalently 12 grayscale 

values for an 8-bit sensor) is estimated.  

 

 

Figure 7.7. Averaged image reconstruction error versus signal-to-noise ratio (SNR) in 

three basic color channels. Gaussian noise is added to the numerically synthesized sensor 

image to change the SNR.  
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7.5.3 Depth-of-field and 3D imaging 

Depth-of-field is another critical specification of any camera. To experimentally 

measure the depth-of-field, the multispectral PSFs were first captured at various planes of 

the object (the pinhole) corresponding to various values of defocus. Then, the root-mean-

squares (RMS) of the differences between the PSF images at a given defocus and those at 

zero defocus were computed (see Figure 7.8(a)). As expected, the RMS increases with 

larger defocus and a depth-of-field (DOF) of ±15mm is predicted according to the 13dB 

threshold (or 12 grayscale, see Figure 7.7).  

An important feature of our camera is the possibility of computational refocusing and 

extension to 3D multispectral imaging [32]. A simple experimental demonstration of this 

feature is illustrated in Figure 7.8(b). We first measured the multispectral PSFs at various 

planes that were displaced from the in-focus object plane, similar to the experiment 

performed for measuring the depth-of-field above. Then, a multispectral object was 

imaged at a plane that was shifted by 20mm from the in-focus object plane. As expected, 

the multispectral image computed using in-focus PSF data is distorted with significant 

color errors and noise. However, the correct multispectral image can be computationally 

obtained by simply using the PSF data from the defocus plane (+20mm). This points to 

the possibility of generating 3D multispectral images by calibrating the 3D space with the 

multispectral PSF data. However, the caveat is that this requires a lot more data as well as 

more computation.  

 

7.5.4 Polarization-independence 

For a general imaging system, it is important that the diffractive filter is polarization-

insensitive. Many alternative color filters, such as those using plasmonics, suffer from 
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this major disadvantage of being polarization-sensitive [17,18]. To illustrate this, we 

experimentally captured the PSF at two orthogonal polarizations and verified that they 

are indeed identical. The magnified views of two diffraction patterns of the same 

multispectral object point (x=0, y=0, λ=550nm) illuminated by two orthogonal 

polarization states (TE and TM) are shown in Figure 7.9. Note that in all our calibration 

experiments above, we utilized randomly polarized light. However, an iPhone screen of 

almost linear polarization is used in imaging.  

 

 

Figure 7.8. Depth-of-field analysis. (a) Root mean squares (RMSs) of differences 

between the PSF images with and without defocus. A depth-of-field is estimated (light 

green region). (b) Two experimental examples for 3D imaging: the 2-color letter ‘T’ and 

the 1-color letter ‘U’.  

 

 

Figure 7.9. Magnified views of the experimentally calibrated PSFs illuminated by two 

polarization states. TE and TM polarizations are defined on the left side. They are of the 

same object point and the same wavelength. They are both 70×70 sensor pixels.  
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7.5.5 Dynamic range 

Finally, we characterized the dynamic range of our camera. The reconstructed color 

images across a wide range of exposure times are summarized in Figure 7.10. The 

corresponding maximum pixel values in the raw monochrome images are listed as well. 

17.86ms is the critical exposure time. The reconstructed images remain acceptable down 

to 5ms exposure time and becomes much too noisy beyond 2ms, where SNR is reduced 

drastically. Overexposure (>25ms) also deteriorates the reconstruction because more and 

more pixels are saturated and therefore the assumption of linearity breaks down. A high-

dynamic-range (HDR) algorithm [32] may help to improve its performance remarkably.  

 

7.6 Larger Field of view 

In our preliminary demonstration here, the image size is restricted to 3.6mm×3.6mm, 

since the PSF is only calibrated over 30×30 object points with step size of 120μm. This is 

not a fundamental limitation of the technology, but was chosen for simplicity and to 

ensure fast reconstruction times. A simple approach to increase the image size can be 

demonstrated by using a sparse image composed of small blocks of color data as 

illustrated in Figure 7.11(a). The blocks are spaced such that we can treat them 

independently. This constraint can be removed in the future by accounting for the space 

overall in the reconstruction algorithms as was discussed previously [27]. Then each 

block (3.6mm×3.6mm) was calibrated and solved individually. The results are 

summarized in Figure 7.11(b). The reconstructed RGB color images of the other blocks 

are also shown. In any case, by further optimizing the calibration process and the 

reconstruction algorithms, it will be possible to perform fast multispectral full-frame 

video imaging in the future.  
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Figure 7.10. Reconstruction results of the 3-color letter ‘H’ object pattern at various 

exposure times. The maximum pixel values in their raw images are given.  

 

 

 

Figure 7.11. Experimental results on test patterns over a larger frame. Five small test 

patterns are included. (a) Reference color image of the whole pattern. The FOV of small 

patterns and the distance between them are labeled. (b) Reference color images of the 

individual small patterns and their reconstructed RGB color images.  
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7.7 Conclusion 

In conclusion, we demonstrated computational single-shot multispectral imaging that 

preserves both spectral and spatial resolution by simply placing a diffractive filter atop 

the conventional sensor array and applying linear reconstruction algorithms. The system 

exhibits a spatially and spectrally variant PSF, where each multispectral object point 

(x,y,λ) is mapped to a set of sensor pixels (x’,y’). This one-to-many mapping can be 

inverted via regularization, since it is a linear transfer function. The inversion process 

allows us to compute the multispectral image. We experimentally demonstrated spectral 

resolution of 9.6nm and spatial resolution of 4.2cycles/mm, which is higher than what 

can be achieved with the conventional camera. Since our diffractive filter does not absorb 

any light, the sensor utilizes all incoming photons. This is in contrast to the conventional 

color camera, where on average, 2/3rds of the light is unused due to absorption in the 

Bayer filter. By removing the Bayer filter, we further make the CMOS sensor fully 

compatible with the silicon fabrication process that is widespread in electronics. We also 

raise the intriguing possibility of computational 3D multispectral imaging with the 

extension to the computational acquisition of the multispectral light-field. Finally, we 

reiterate that our technology is equally applicable to any portion of the electromagnetic 

regime as long as the sensor demonstrates sufficient sensitivity.  
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CHAPTER 8 

OTHER WORKS ON NANOPHOTONICS PART 1: 

LIGHT TRAPPING 

This chapter is adapted from the author’s previous publication: Peng Wang and Rajesh 

Menon, “Optimization of generalized dielectric nanostructures for enhanced light 

trapping in thin-film photovoltaics via boosting the local density of optical states,” Opt. 

Express 22 A99-A110 (2014).  
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8.1 Abstract 

Recent work has shown that using a high-index cladding atop a lower-index 

photovoltaic absorber enables absorption of light beyond the ergodic (4n
2
) limit. In this 

chapter, we propose a generalized optimization method for deriving optimal geometries 

that allow for such enhancement. Specifically, we adapted the direct-binary-search 

algorithm to optimize a complex 2D multilayer structure with the explicit goal of 

increasing photocurrent. We show that such an optimization results in enhancing the local 

density of optical states in an ultrathin absorber, which forms a slot-waveguide geometry 

in the presence of a higher-index overcladding. Numerical simulations confirmed optical 

absorption approaching 100% and absorption-enhancement beyond the ergodic (4n
2
) 

limit for specific spectral bands of interest. Our method provides a direct, intuitive and 

computationally scalable approach for designing light-trapping nanostructures.  

 

8.2 Introduction 

Photovoltaic devices with ultrathin absorbers allow for high charge-transport and 

carrier-collection efficiencies [1,2]. Furthermore, such devices could be manufactured 

with inexpensive scalable technologies [3]. Recent improvements in material quality have 

resulted in world-record device efficiencies of 20.4%, 18.7%, and 12% for CIGS, CdTe, 

and organic absorbers, respectively [4,5]. However, ultrathin layers are intrinsically poor 

absorbers of incident sunlight. Previously, random or simple geometries of micro- and 

nano-structures were utilized to scatter normally incident light at large angles into the 

absorber layer [6-9]. The resulting increased optical path lengths lead to higher 

absorption. It was pointed out that for thick absorbers, light absorption may be enhanced 

compared to an unpatterned absorber by a factor of up to 4n
2
, where n is the refractive 
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index of the absorber, called the ergodic limit [10-12].  

Recent theoretical work suggested that light absorption might be enhanced beyond 

this limit in the case of absorbers with deep subwavelength thicknesses [13-16]. 

Specifically, this may be achieved in the case of an ultrathin absorber that is sandwiched 

between two cladding layers with a higher refractive index. This slot-waveguide 

configuration results in an increased local density of optical states (LDOS) into which 

incident light may couple [15,16]. In this chapter, we prescribe a specific methodology 

for designing nanophotonic structures to efficiently couple incident light into guided 

modes within such a slot-waveguide absorber. As a result, light absorption may be 

increased beyond the 4n
2
 limit and, thereby, the efficiency of ultrathin photovoltaic 

devices can be increased significantly.  

 

8.3 Methodology 

The schematic of the nanostructured photovoltaic device in 2 dimensions is illustrated 

in Figure 8.1(a). Variation exists in the designed dielectric nanostructure along the X 

axis, while it is uniform along the Z axis. We generalize the geometries based upon four 

nanostructured interfaces, namely those between air and the top cladding, top cladding 

and the absorber, absorber and the bottom cladding, and finally, bottom cladding and the 

back reflector. Two adjacent rectangular scatterers are placed at each interface. We have 

full freedom in controlling their heights, widths, and positions. As a result, we identify 22 

variables that define the device geometry. Specifically, these structures scatter light-

waves such that incident sunlight can be efficiently coupled into waveguide modes inside 

the low-index absorbing layer. The device is assumed to be periodic in X direction with 

period of Λ. The average thicknesses of the top cladding, absorber, and bottom cladding 
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Figure 8.1. Schematic of the simulation model for optimization. (a) The photovoltaic 

device with light trapping nanostructures defined by 22 geometric parameters. (b) 

Reference device with the same volume of absorbing material as that of the structured 

design in (a). The angle of incidence is defined by θ. The TE and TM polarizations are 

defined as shown.  

 

layers are Hc1, Ha, and Hc2, respectively. The average thickness of the absorber, Ha, is 

kept constant, while the remaining 22 geometric parameters are optimization variables.  

We assume that the absorber is P3HT:PCBM [17,18] and that the cladding material is 

GaP, which has a higher refractive index [15,16]. Perfect metal is assumed for the back 

reflector for simplicity. The simulation was implemented via the finite-difference time-

domain (FDTD) method [19]. The illumination is assumed to be spatially collimated, 

temporally continuous light propagating in the +Y direction from the top of the 
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computational domain. AM1.5G standard solar spectrum is assumed [20]. Bloch periodic 

boundary condition is imposed in the X direction since guided mode resonances (GMRs) 

are sustained by periodic structures. And perfectly matched layers (PMLs) are utilized at 

both the top and bottom terminals along the Y axis in the simulation unit cell. The angle 

of incidence, θ, and two orthogonal polarization states are defined in Figure 8.1(b).  

The enhancement of short-circuit current density Jsc compared to a reference device 

with bare flat absorber (P3HT:PCBM) is considered as the figure of merit (FOM) during 

optimization. The effective thickness of the reference device, Ha
ref

, is chosen such that 

the volume of the absorber is the same as that in the optimized device. The absorbance 

spectrum is expressed as [21]  

 

             (8.1) 

 

Here, λ is the wavelength, ω is the optical frequency, ε''(λ) stands for the dispersion of the 

imaginary part of the permittivity of P3HT:PCBM, and Pinc(λ) is the incident solar power. 

The integral is over the active region. The Jsc from the designed solar cell is [22]  

 

    (8.2) 

 

In Equation (8.2), IQE(λ) represents internal quantum efficiency of P3HT:PCBM [17], q 

is the elementary charge, h is the Plank’s constant, and c is the velocity of light. The 

integral over the entire spectrum of interest from λmin=350nm to λmax=850nm is 

numerically approximated by sum of a finite set of discrete wavelengths. The 
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enhancement spectrum is  

 

         (8.3) 

 

The fraction defined in Equation (8.3) is also equivalent to the ratio of the total 

electromagnetic energy in the optimized versus the reference devices.  

The local electromagnetic energy density is a product of the LDOS and the modal 

occupation number [15]. By assuming maximum modal occupation number, i.e., 100% 

coupling efficiency, the enhancement spectrum can be simplified as the ratio of LDOS in 

the optimized and reference devices. Applying an outer environment with a higher index 

of refraction is able to greatly enhance the LDOS. As a result, it is possible to achieve 

light trapping beyond the conventional ergodic limit, especially in the vicinity of the 

semiconductor band edge [15]. The optimization technique described in this study aims at 

realizing nanophotonic structures with maximized modal occupation numbers to take best 

advantage of the enhanced LDOS in the slot-waveguide. The DBS algorithm is again 

exploited for optimization, in which the 22 parameters are variable to be perturbed.  

 

8.4 Results 

The results of two optimized designs are summarized in this section. The reference 

absorber thicknesses (Ha
ref

) for these designs are 42nm and 68nm for Ha=10nm and 

Ha=50nm, respectively. The optimized values of period, Λ, are 500nm, close to the 

wavelength of peak power density in AM1.5G solar spectrum [20]. The calculated Jsc at 

normal incidence are 10.1mA/cm
2
 and 11.0mA/cm

2
, respectively. These numbers 
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correspond to enhancement factors of 2.88 and 2.49 under the condition of normal 

incidence. Although these structures are challenging to pattern, recent breakthroughs in a 

variety of nanolithography techniques [26], especially roll-to-roll nanoimprint 

lithography, could pave a path towards low-cost mass production of such nanophotonic 

structures with reasonably high fidelity and repeatability [27,28].  

Absorbance spectra of the optimized (in blue) and of the reference (in red) devices, at 

normal (solid lines) and oblique (θ=40
o
, dashed lines) incidence, are shown in Figures 

8.2(a) and (d). More than 60% of the incident photons between 450nm and 650nm are 

absorbed for carrier generation. Interestingly, this absorbance approaches 100% at 

~600nm in Figure 8.2(a) and at ~550nm in Figure 8.2(d). Unfortunately, the parasitic 

absorption of light by GaP at shorter wavelengths constrains the achievable Jsc.  

Figures 8.2(b) and (e) give the enhancement spectra, demonstrating significant 

enhancement at wavelengths close to the bandgap of the organic absorber (~750nm). This 

is achieved by the excitation of multiple guided-mode resonances inside the dielectric slot 

waveguide formed by the GaP-organic-GaP structure [13]. The optimized multilayer 

nanostructures at the interfaces allow incident light to couple energy efficiently into these 

GMRs. As expected for a lossy slot waveguide, the resonances with TE polarization are 

weaker than those with TM polarization [29]. The intensity distributions at the 

wavelengths of maximum enhancement are plotted in Figures 8.2(c) and (f).  

In order to avoid tracking the sun, it is important that the light trapping mechanism 

operates even when the angles of incidence are oblique [30]. We analyze the designs 

under oblique illumination with θ as large as 60
o
. As expected for GMRs, the resonances 

are red-shifted and the resonance peaks are reduced. The enhancement of Jsc is decreased.  
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Figure 8.2. Two device geometries are again shown in (c) and (f), respectively. The 

corresponding absorbance spectra are plotted in (a) and (c), respectively. The 

corresponding current-density-enhancement spectra are plotted in (b) and (e), 

respectively. The insets in these figures showcase current-density and current-density 

enhancement as a function of incident angle, θ. The corresponding normalized intensity 

distributions at wavelengths of maximum current-density enhancement are shown in (c) 

and (f), respectively.   
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Nevertheless, the Jsc enhancement factors when averaged over all angles from 0 to 60
o
 

are only slightly reduced to 2.22 and 2.12 for the two designs. 

 

8.5 Beyond the Ergodic Limit 

We compared the design in Figure 8.2(a) (design 1) to a previously optimized design 

that uses a lower-index cladding (indium-tin oxide or ITO) [31]. This latter design has an 

absorber thickness of 50nm and a slightly simpler geometry. Nevertheless, the 

comparison is instructive. For comparison, the absorbance spectra are shown in Figure 

8.3(a) and (b). Despite a large fraction (~26.7%) of the incident solar spectrum being 

absorbed by the GaP layer, the benefit of utilizing GaP nanostructures instead of ITO is 

exemplified by the prominent absorption in P3HT:PCBM near its bandgap 

(600nm<λ<750nm). The traditional light-trapping limit suitable for a bulk absorber, also 

referred to as the ergodic limit, is expressed by [10-12]:  

 

                (8.4) 

 

in which nL is the real part of the refractive index of the active layer of P3HT:PCBM 

[32]. An upper bound by using enhanced LDOS is defined by [16]:  

 

                (8.5) 

 

where nH is the real part of the refractive index of the cladding material GaP [33].  

Enhancement spectra plotted in logarithmic scale clearly illustrate that a 

nanostructured high-index cladding provides significantly higher enhancement factors 

compared to those with a low-index cladding [13-16]. The solid blue line in Figure 8.3(c)  
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Figure 8.3. Impact of the refractive index of the cladding layer. The absorbance spectra 

for the optimized design with high-index-cladding (a) and (b) the low-index-cladding 

design (taken from Ref. [31]). (c) Current-density-enhancement spectra of the optimized 

designs and those corresponding to the ergodic limit and the LDOS limit.   

 

indicates the ergodic (4n
2
) limit [10]. The optimized device with a high-index cladding 

(black solid line) can provide enhancement beyond this limit for wavelengths close to the 

bandgap of the absorber. In fact, the TM resonant mode at 672nm (dark-green dashed 

line) allows for an enhancement factor that reaches the LDOS limit (red solid line). We 

can therefore conclude that the increased LDOS enabled by the high-index cladding is 

essential to couple incident light efficiently into GMRs and hence enable high light 

absorption in the ultrathin absorber layer.  
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 CHAPTER 9  

OTHER WORKS ON NANOPHOTONICS PART 2: 

INTEGRATED PHOTONICS 

This chapter is adapted from the author’s previous publication: Bing Shen, Peng Wang, 

Randy Polson and Rajesh Menon, “An integrated-nanophotonics polarization 

beamsplitter with 2.4 × 2.4 μm
2
 footprint,” Nature Photonics 9, 378-382 (2015).  
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9.1 Abstract 

We designed, fabricated, and characterized an integrated-nanophotonic polarization 

beamsplitter (PBS) with a footprint of 2.4μm × 2.4μm, which is the smallest PBS ever 

demonstrated. A nonlinear optimization algorithm was used to design the device for λ0 = 

1550nm. The PBS and the input/output waveguides can be fabricated in a single 

lithography step. We experimentally showed that the average transmission efficiency is 

greater than 70% (peak transmission efficiency ~80%) and extinction ratio is greater than 

10 dB within a bandwidth of 32nm. Simulation results indicate that our device is tolerant 

to fabrication errors in device thickness of up to ±20 nm. We further designed, fabricated 

and characterized a mode-converting PBS, which not only separates the 2 polarization 

states, but also connects one multimode input waveguide to 2 single-mode output 

waveguides.  

 

9.2 Background Introduction 

Silicon-on-insulator (SOI) is the main materials-system used in integrated photonics 

due to the difference in refractive index between silicon and silicon dioxide. But this 

property results in strong birefringence, which leads to polarization-sensitive 

performance [1]. One solution to the problem is to compensate for polarization-mode 

dispersion, which requires a very challenging fabrication accuracy of 1nm [2]. A better 

solution is to employ devices that process different polarization states separately. 

However, this requires an efficient and compact polarization beam-splitter (PBS). The 

working principle of conventional PBS devices is based on either modal evolution [3,4] 

or interferometry. The latter typically includes multimode interference couplers (MMI) 

[5,6], directional couplers (DC) [7-14] and Mach-Zehnder interferometers (MZI) [15,16]. 



184 

 

 

 

Among them, PBS based on DC is preferred, since they generally provide the smallest 

footprint. Directional couplers, in general, are composed of silicon waveguides [10,11], 

photonic crystals [12,14], slot waveguides [9] or the combination of silicon channel and 

slot waveguide [7]. For DC composed of silicon channels, H. Fukuda et al. have 

demonstrated a PBS of size 7μm × 16μm, exhibiting an extinction ratio of 15dB [11]. 

However, the fabrication precision required for the waveguides and the gap between the 

waveguides is very stringent due to its underlying phase-matching principle. In addition, 

the fundamentally small evanescent coupling prevents it from achieving large extinction 

ratios. Photonic-crystal-based DC is a plausible alternative for compact PBS devices 

[12,14]. But the light coupling between commonly used silicon waveguides and 

photonic-crystal waveguides is challenging. DC based on slot waveguides [9] or the 

combination of slot waveguides and silicon channels [7] could potentially enable a 

smaller device due to its tighter mode confinement within the slot. Combining slot 

waveguide and silicon channels, D. Dai et al. designed a PBS with a length of 6.9μm and 

an extinction ratio larger than 10dB [7]. Again, strict requirement on fabrication precision 

is inevitable due to its underlying phase-matching principle. Recently, X. Guan et al. 

proposed a DC-based PBS that is composed of a hybrid-plasmonic waveguide and a 

silicon nanowire [13]. This device is 1.9μm × 3.7μm. The incorporation of metal creates 

significant parasitic absorption losses and renders the process CMOS incompatible.  

 

9.3 Methodology 

In contrast to previous devices, we employ the concept of free-form metamaterials in 

our PBS device. Allowing the geometry of the metamaterials to be freely optimized 

enables devices that can be highly functional, yet also occupy a small footprint [17-19]. 
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Nanopatterning enables one to engineer the refractive index in space at a deep sub-

wavelength scale. Thereby, devices that achieve high-efficiency mode conversion in an 

extremely small area become feasible. Furthermore, these devices tend to rely on the 

coupling between a number of resonant nanophotonic modes, which promotes robustness 

to fabrication errors. Here, we designed, fabricated, and characterized an ultra-compact 

PBS with a footprint of only 2.4μm × 2.4μm for a design wavelength of 1.55μm and an 

extinction ratio larger than 12dB. We refer to this device as a nanophotonic PBS, and 

Figure 9.1(a) shows its geometry. It is patterned on a SOI substrate, where the 

thicknesses of the silicon and the oxide layers are 0.3μm and 3μm, respectively. Note that 

the device is also CMOS-compatible.  

The device is composed of 20 × 20 pixels. One pixel is the shape of a square, whose 

side is 120nm. Unpolarized light, excited at the far end of the left input waveguide, 

illuminates the PBS. Then, TM and TE components of the input light are coupled into the 

top and bottom output waveguides with a calculated efficiency of 89% and 81%, 

respectively. From the simulations, we can clearly see that the incident light generates 

resonant modes within the nanophotonic device that are polarization dependent. These 

guided-resonant modes interact in such a manner as to satisfy the phase-matching 

conditions for the respective polarizations at the corresponding output waveguides. As a 

result, polarization splitting is achieved. In the device geometry in Figure 9.1(a), silicon 

is shown in black, while the absence of silicon (air) is shown as white. The device is 

designed such that thickness of the silicon layer in the nanophotonic region is the same as 

that in the waveguides, i.e., 300nm. This implies that our design can be fabricated in a 

single lithography step along with the waveguides.  
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Figure 9.1. (a) Geometry of the nanophotonic polarization beamsplitter. Simulated 

steady-state intensity distributions for (b) TE and (c) TM polarized light at the design 

wavelength 1550nm. TE is polarized in the plane and vertical to the propagation direction 

as illustrated by the green arrows in (a), and TM is polarized out of plane as illustrated by 

red circles in (a).  

 

The nanophotonic PBS was designed using a nonlinear search algorithm that we refer 

to as direct-binary search (DBS) [20-24]. The device is discretized into 120nm × 120nm 

silicon/air pillars, which we call “pixels”. Each such pixel can occupy 2 states: silicon or 

air, which is flipped during optimization. The FOM is defined as the average 

transmission efficiency for TE and TM polarization states. Specifically, the fabrication 

process determines the size of the smallest feature, which is the pixel in our device. In 

general, it took about 140 hours to design one device. The electromagnetic fields within 

the device were simulated using finite-difference time-domain (FDTD) [25]. As 

mentioned earlier, our device was patterned in the top silicon layer (thickness = 300nm) 

of an SOI substrate. In principle, only one patterning step is required since the etch 

depths are the same. However, since we do not have access to high-resolution optical 

projection lithography, we opted for a 2-step process. First, optical patterning was used to 
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define all features down to a size of 3μm. Second, focused-ion-beam (FIB) lithography 

was used to define all the smaller features. Alignment marks were used. Reference 

devices that included the same tapers for normalization and an on-chip polarizer for 

polarization state alignment were also fabricated on the same substrate.  

 

9.4 Results 

A scanning-electron micrograph of the fabricated device is shown in Figure 9.2(a). 

Light was input and output via butt-coupling using lensed fibers to multimode 

waveguides, In order to increase the coupling efficiency, we incorporated tapers (4-μm 

length) between all single-mode waveguides and the multimode waveguides (3-μm 

width). The measurement system is sketched in Figure 9.2(b) [26]. Fibers used in the 

experiment are standard single-mode lensed fibers. The polarization controllers (PC1 and 

PC2) were first calibrated using the on-chip polarizer. The whole output path within the 

dotted frame in Figure 9.2(b) was first bypassed by connecting the output lensed fiber to 

the detector, and the on-chip polarizer was aligned. Adjusting PC1 and monitoring the 

output power set the input polarization state. Then the input lensed fiber was moved to 

illuminate a straight waveguide, and the output path within the dotted frame was inserted. 

The alignment between the output polarization plane and the polarizer was achieved by 

adjusting PC2. The polarization components of the output light could be selected by 

rotating the polarizer accordingly. 

The experimental and simulated transmission efficiency and extinction ratio as a 

function of the input wavelength are shown in Figures 9.3(a) and (b), respectively. The 

experimental data are normalized to those of a straight waveguide with the same tapers. 

The measured values consistently follow the simulated curves. The decrease in measured  
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Figure 9.2. (a) Scanning-electron micrograph of fabricated device. (b) Measurement 

system setup.  

 

 

 

Figure 9.3. Measured and simulated (a) transmission efficiencies and (b) extinction ratio 

of the PBS for both polarizations. Measured and simulated data are shown using solid 

and dashed lines, respectively. Simulated (c) transmission efficiencies and (d) extinction 

ratio as a function of the device (silicon) thickness. For all figures, TE and TM 

polarizations are shown in blue and red, respectively.   
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efficiencies can be primarily attributed to small errors introduced during fabrication, 

which include device-thickness errors as well as line-edge roughness. The latter can 

cause out-of-plane scattering, which will reduce overall efficiencies. Improved 

fabrication processes can significantly reduce these effects. We believe that coherent 

interactions between light reflected from the lensed fiber and that from the waveguides 

cause the ripples in the measured spectra. We measured coupling efficiency of 71% and 

80% for TE and TM at the design wavelength (1.55μm), respectively. The measured 

extinction ratios for TE and TM at the design wavelengths are 11.8 dB and 11.1 dB.  

The operational bandwidth of our device, where the transmission efficiency is within 

1dB of the peak value, is 83nm (1510nm to 1593nm). Such a large operating bandwidth 

is possible because the polarization-selection effect is the cumulative effect of a number 

of guided-mode resonances (rather than a single resonance).  

In order to elucidate the tolerance of our device to small changes in device geometry, 

we simulated the impact of varying the top-silicon thickness on the device performance. 

The results for transmission efficiency and extinction ratio are illustrated in Figures 

9.3(c) and (d), respectively. If the extinction ratio is allowed to fall to 3dB from the peak 

value, the devices can tolerate a variation in top-silicon thickness of up to ±20nm.  

We also simulated the instantaneous field distributions within the PBS as a function 

of time. The nanophotonic device is composed of geometries that are much smaller than 

the wavelength. Therefore, the excited modes are evanescent. However, power is coupled 

between evanescent modes due to the close spacing. This results in multiple resonant 

modes that transfer power in a highly polarization-sensitive manner. Our design 

methodology encourages the power transfer of one polarization into one waveguide, 
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while the power in the orthogonal polarization is transferred to the second waveguide.  

A closer look at the mode evolution with time shows that different mechanisms are 

responsible for guiding light in the 2 polarization states. For TE light (light polarized in-

plane and vertical to the direction of light propagation), power is confined in the air gap 

between adjacent nanopillars and the slot-waveguide effect dominates due to boundary 

conditions. Thus, the silicon pillars actually act as the cladding layer while the air gaps 

act as the core layer to guide TE light. The opposite holds true for TM light (light 

polarized out of plane). That is, the air gaps act as the cladding layer and the silicon 

pillars act as the core layer to guide TM light.  

 

9.5 More Functionalities 

Complex nanophotonic structures allow one to design a single device that can 

implement multiple functions. To illustrate this concept, we designed, fabricated, and 

characterized a device that not only coverts light from a multimode waveguide to a 

single-mode waveguide but also splits the 2 polarizations. Mode conversion is typically 

achieved with a very long (100s of microns long) adiabatic taper [17]. For our device, 

however, polarization splitting and mode conversion are achieved simultaneously. The 

simulated transmission efficiencies at the design wavelength (1.55μm) for TE and TM are 

calculated as 80% and 83%, respectively. The corresponding simulated extinction ratios 

are 15.2dB and 14.4dB for TE and TM, respectively. The measured transmission-

efficiency and extinction-ratio spectra are lower than the simulated spectra, but 

substantially agree. The measured peak transmission efficiencies for TE and TM are 58% 

and 71%, respectively. The measured extinction ratios for TE and TM are 13.88 dB and 

13.77 dB, respectively. The measured efficiencies were lower than expected primarily 
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due to errors in alignment between the PBS and the waveguides. With a single-step 

lithography process, such alignment will be unnecessary and these errors should not 

manifest. Note that both polarization state separation and mode conversion are achieved 

within the 4μm × 3μm device area. Furthermore, we simulated the impact of device-

geometry errors to evaluate the tolerance of our design. Specifically, we varied the device 

(silicon layer) thickness. The simulations indicate that if the extinction ratio is allowed to 

fall to 3dB of the peak, then the silicon-layer thickness can vary as much as ±17nm.  
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CHAPTER 10 

SUMMARY AND FUTURE WORK  

10.1 Summary 

This dissertation extensively studied a new type of digital diffractive optic element, 

called polychromat. It is an ultrathin piece of flat optic for multiple imaging and 

nonimaging applications. It is essentially a pixelated microstructure with a quantized 

height profile. We developed an accurate numerical model based on scalar diffraction in 

Fresnel approximation and devised a direct-binary-search algorithm to optimize its 

optical performances. The optic is easily fabricated by single-step grayscale lithography 

and may be replicated by nanoimprint lithography. A standard recipe for device 

fabrication is developed. It can be readily replicated by the highly-developed nanoimprint 

lithography (NIL) technique in a cost-effective way for mass production.  

In the first chapter, a background introduction was given, especially in diffractive 

optics and computational optics. The fundamental theory of scalar diffraction was 

elaborated as the basis of device physics. Chapter 2 included the numerical model of the 

polychromat device, the nonlinear DBS algorithm for design optimization, the standard 

fabrication protocol, the preliminary replication recipe, the computational algorithm for 

image reconstruction based upon regularization, and the brief descriptions of various 

optical characterization setups.  

The following chapters described the imaging and nonimaging applications of the 
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polychromat device. Each chapter treated one application, including (1) solar spectrum 

splitter/concentrator to boost power-conversion-efficiency in planar multibandgap 

photovoltaics; (2) ultrathin flat diffractive lens that corrects chromatic aberrations 

continuously over the entire visible band; (3) diffractive phase mask to manipulate 3D 

light distribution for microlithography on oblique and multiplane surfaces; (4) 

computational color and multispectral imager that enhances photon throughput and thus 

light sensitivity by 3 times; (5) ultracompact computational snap-shot hyperspectral 

video-imaging with enhanced spatial resolution and potential of 3D imaging. Some other 

applications not included in this dissertation are (6) spectral splitter to enable multicolor 

and hyper-spectral laser-scanning confocal fluorescence microscopy [1]; (7) compact 

computational spectroscopy with large bandwidth-to-resolution ratio [2,3]; (8) 

computational hyper-spectral light-field imaging.  

Before the conclusions and future works in Chapter 10, Chapters 8 and 9 briefly 

summarized other projects conducted alongside this dissertation work, mostly on the 

nanophotonics. The target was to optimize and analyze diverse subwavelength structures 

for two primary applications: (1) nanophotonic light trapping to enhance light absorption 

within the ultra-thin-film solar cells based on either conventional inorganic 

semiconductor (Silicon) or organic semiconductors [4-7]; (2) basic functional modules in 

integrated photonic circuits such as spectral-splitter, polarization-splitter, polarization 

rotator and free-space-waveguide coupler [8,9]. All these devices are simulated by the 

FDTD technique and optimized by the DBS algorithm. The nanostructures can be 

patterned by focused ion beam (FIB) milling.  

 



196 

 

 

 

10.2 Future Work 

10.2.1 Ultra-high-efficiency photovoltaics 

As discussed in Figures 3.4 and 3.5, our proposed diffractive optic element (or 

polychromat), as a spectrum splitter/concentrator, provides great flexibility in extending 

to large numbers of bandgaps (or sub-cells) and large concentration factors, as 

schematically depicted in Figure 10.1. Also, as pointed out in previous studies, more 

bandgaps and greater concentrations lead to higher power-conversion efficiency, even 

approaching the thermodynamic limit of photovoltaic efficiency [10,11]. In a recent 

publication, we experimentally characterized the photovoltaic system configured for three 

bandgaps (GaInP, GaAs and Si) and 3X concentration. It was demonstrated to boost 

power-conversion efficiency by 30%, compared to a bare reference device without the 

polychromat [12]. In our next steps, we will work on different combinations of the 

number of bandgaps and concentration factors, for example, 2-bandgaps with 3X 

concentration, and 3-bandgaps with 6X concentration. Better performances are 

anticipated in theory. Additionally, instead of using an artificial bright light source, such 

as a Xenon lamp or a supercontinuum source, we will incorporate the AM1.5G spectrum 

into our design model and device characterization experiment. A setup that is easy to 

operate and a standard procedure for outdoor measurement will be developed. Thereby, 

we can report on device evaluation specs in a more rigorous and more applicable manner.  

 

10.2.2 Projection 3D patterning 

Although microlithography on oblique and multiplane surfaces is already impressing 

in the realm of fabrication engineering, it is also intriguing to adapt our lithography 

technique based on diffractive phase mask to projection stereo-lithography.  
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Figure 10.1. Schematic illustration of the ultra-high-efficiency photovoltaic system using 

the optimized diffractive optic element as spectrum splitter/concentrator. The array of 

solar cells of various bandgaps are placed at distance d from the polychromat.  

 

3D structures, either microscale or nanoscale, find applications in various fields, 

including MEMS, biomedical devices, microfluidics, photonic crystals, etc. Conventional 

stereo-lithography utilizes two-photon polymerization and exposes the entire 3D space by 

scanning point-by-point. The benefits of our approach lie in: (1) it is a much faster 

process since only one exposure is enough to pattern complex 3D structures; (2) any 

arbitrary geometries can be available by proper optimization, given the spatial resolution 

in three dimensions determined by the feature size of the phase mask and the exposure 

wavelength. To be specific, we propose to exploit a mixture of HDDA monomer and 

PTBPO photo-initiator (wt. ratio 45.5:1), sensitive to 405nm laser, as the photoresist. 

This mixture was previously demonstrated to record complex 3D structures using 

multilayer exposure [13]. In the potential experiment, a collimated 405nm-laser beam 

shines upon the designed phase mask and generates 3D light distribution, which exposes 

the volume of photoresist mixture (see Figure 10.2).  
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Figure 10.2. Schematic illustration of projection 3D patterning setup.  

 

 

10.2.3 Multispectral imaging 

In the computational single-shot multispectral imaging project, we will explore 

further modifications or alternative techniques that can be applied to offer real-time larger 

field-of-view imaging. There are two basic requirements. First, the new approach should 

be able to conduct image reconstruction over a large area using a small set of calibration 

data. In this way, full-frame multispectral imaging is made possible without a time-

consuming calibration process. Secondly, the reconstruction algorithm needs to be fast 

since we are aiming at real-time imaging. To meet these criteria, one way is to engineer 

the diffractive filter purposely, instead of using one with computer-generated random 

topography. Our following step is to find a way to design the diffractive optic such that 

its spatial-spectral response can simplify and accelerate the calibration and image 

reconstruction process.  

In addition, the spatial and spectral performances of the imaging system are also 

decided by the gap between the sensor and the polychromat. However, in our current 

experiment, this gap is primarily limited by the protection cover glass integrated on the 

sensor. A simple way to shrink this gap is by placing the polychromat directly on top of 
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the glass with optical adhesive. However, the margin areas on the sensor where we can 

apply adhesive is limited, hence we need to control the adhesive drop volume and 

diameter. We borrowed the idea from dip-pen lithography [14,15]. A simple test on a 

glass slide (Figure 10.3(a)) shows that when we pick some adhesive using a tip (such as a 

sharp tweezer) and make multiple drops in sequence, the drop diameter decreases 

gradually. The plot of drop diameter indicates that after 10 drops, we can achieve drop 

diameter as small as 400μm (Figure 10.3(b)). Figures 10.3(c) and (d) are the micrographs 

of the sensor before and after gluing the polychromat on the cover glass, respectively. 

Clearly, the adhesive has such small diameters that it does not block the sensor and the 

sensor is intact. Another direction of prospective works is to integrate the polychromat 

directly on the sensor surface, so as to on one hand enhance its imaging performance 

(especially light sensitivity) and on the other make the assembly more compact.  

 

10.2.4 Light-field imaging 

The computational single-shot multispectral imaging technique studied in Chapter 7 

only deals with objects on the 2D plane, though 3D imaging can be made possible. In 

addition, the calibration measures the spatial domain. However, on the other side, the 

same diffractive filter may be implemented in imaging the 3D volume by calibrating the 

spatial frequency domain. In another word, it may open up a new application in light-

field multispectral imaging [16]. More information could be extracted. Figure 10.4 gives 

a schematic of the calibration setup for light-field imaging. Here, lens 1 focuses the 

collimated broadband light, which is then collected and collimated again by lens 2 

(similar with a 4F system). The first lens scans the 2D space so that the light coming out 

of the second lens is tilted at an angle θ, which is a function of the relative movement of 
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Figure 10.3. Optical adhesive drop test. (a) Micrograph of optical adhesive drops on 

glass slide. The order of drops are labelled. (b) Plot of drop diameter versus the order of 

drops. Micrographs of the CMOS sensor chip before (c) and after (d) applying the 

polychromat on its cover glass.  

 

 

 

 

Figure 10.4. Schematic illustration of the calibration setup for light-field multispectral 

imaging.  
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lens 1. A scanning-spectrometer setup is utilized again to record the spatial-spectral 

responses of the diffractive filter illuminated by the collimated light of oblique incidence. 

In consequence, we are able to calibrate the spatial frequency domain. Light-field 

multispectral reconstruction can be realized by similar algorithms (iterative or 

noniterative, such as DBS or regularization). Note that only one snapshot is sufficient to 

recover the high-dimensional information.  
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