1,287 research outputs found

    Soft computing for tool life prediction a manufacturing application of neural - fuzzy systems

    Get PDF
    Tooling technology is recognised as an element of vital importance within the manufacturing industry. Critical tooling decisions related to tool selection, tool life management, optimal determination of cutting conditions and on-line machining process monitoring and control are based on the existence of reliable detailed process models. Among the decisive factors of process planning and control activities, tool wear and tool life considerations hold a dominant role. Yet, both off-line tool life prediction, as well as real tune tool wear identification and prediction are still issues open to research. The main reason lies with the large number of factors, influencing tool wear, some of them being of stochastic nature. The inherent variability of workpiece materials, cutting tools and machine characteristics, further increases the uncertainty about the machining optimisation problem. In machining practice, tool life prediction is based on the availability of data provided from tool manufacturers, machining data handbooks or from the shop floor. This thesis recognises the need for a data-driven, flexible and yet simple approach in predicting tool life. Model building from sample data depends on the availability of a sufficiently rich cutting data set. Flexibility requires a tool-life model with high adaptation capacity. Simplicity calls for a solution with low complexity and easily interpretable by the user. A neural-fuzzy systems approach is adopted, which meets these targets and predicts tool life for a wide range of turning operations. A literature review has been carried out, covering areas such as tool wear and tool life, neural networks, frizzy sets theory and neural-fuzzy systems integration. Various sources of tool life data have been examined. It is concluded that a combined use of simulated data from existing tool life models and real life data is the best policy to follow. The neurofuzzy tool life model developed is constructed by employing neural network-like learning algorithms. The trained model stores the learned knowledge in the form of frizzy IF-THEN rules on its structure, thus featuring desired transparency. Low model complexity is ensured by employing an algorithm which constructs a rule base of reduced size from the available data. In addition, the flexibility of the developed model is demonstrated by the ease, speed and efficiency of its adaptation on the basis of new tool life data. The development of the neurofuzzy tool life model is based on the Fuzzy Logic Toolbox (vl.0) of MATLAB (v4.2cl), a dedicated tool which facilitates design and evaluation of fuzzy logic systems. Extensive results are presented, which demonstrate the neurofuzzy model predictive performance. The model can be directly employed within a process planning system, facilitating the optimisation of turning operations. Recommendations aremade for further enhancements towards this direction

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Enhancing cutting tool sustainability based on remaining useful life prediction

    Get PDF
    As a critical part of machining, cutting tools are of great importance to sustainability enhancement. Normally, they are underused, resulting in huge waste. However, the lack of reliable support leads to a high risk on improving the cutting tool utilization. Aiming at this problem, this paper proposes an approach to enhance the cutting tool sustainability. A non-linear cutting tool remaining useful life prediction model is developed based on tool wear historical data. Probability distribution function and cumulative distribution function are used to quantize the uncertainty of the prediction. Under a constant machining condition, a cutting tool life is extended according to its specific remaining useful life prediction, rather than a unified one. Under various machining conditions, machining parameters are optimized to improve efficiency or capability. Cutting tool sustainability is assessed in economic, environmental and social dimensions. Experimental study verifies that both material removal rate and material removal volume are improved. Carbon emission and cutting tool cost are also reduced. The balance between benefit and risk is achieved by assigning a reasonable confidence level. Cutting tool sustainability can be enhanced by improving cutting tool utilization at controllable risk.©2020 Elsevier. This manuscript version is made available under the Creative Commons Attribution–NonCommercial–NoDerivatives 4.0 International (CC BY–NC–ND 4.0) license, https://creativecommons.org/licenses/by-nc-nd/4.0/fi=vertaisarvioitu|en=peerReviewed

    A decision support tool for resource allocation in batch manufacturing

    Full text link
    A decision support tool for production planning is discussed in this paper to perform the job of machine grouping and labour allocation within a machining line. The production plans within the industrial partner have been historically inefficient because the relationship between the cycle times, the machine group size, and the operator\u27s utilisation hasn\u27t been properly understood. Starting with a simulation model, a rule-base has been generated to predict the operator\u27s utilisation for a range of production settings. The resource allocation problem is then solved by breaking the problem into a series of smaller sized tasks. The objective is to minimise the number of operators and the difference between the maximum and minimum cycle times of machines within each group. The results from this decision support tool is presented for the particular case study. <br /

    A comparison of processing techniques for producing prototype injection moulding inserts.

    Get PDF
    This project involves the investigation of processing techniques for producing low-cost moulding inserts used in the particulate injection moulding (PIM) process. Prototype moulds were made from both additive and subtractive processes as well as a combination of the two. The general motivation for this was to reduce the entry cost of users when considering PIM. PIM cavity inserts were first made by conventional machining from a polymer block using the pocket NC desktop mill. PIM cavity inserts were also made by fused filament deposition modelling using the Tiertime UP plus 3D printer. The injection moulding trials manifested in surface finish and part removal defects. The feedstock was a titanium metal blend which is brittle in comparison to commodity polymers. That in combination with the mesoscale features, small cross-sections and complex geometries were considered the main problems. For both processing methods, fixes were identified and made to test the theory. These consisted of a blended approach that saw a combination of both the additive and subtractive processes being used. The parts produced from the three processing methods are investigated and their respective merits and issues are discussed

    Smart Sensor Monitoring in Machining of Difficult-to-cut Materials

    Get PDF
    The research activities presented in this thesis are focused on the development of smart sensor monitoring procedures applied to diverse machining processes with particular reference to the machining of difficult-to-cut materials. This work will describe the whole smart sensor monitoring procedure starting from the configuration of the multiple sensor monitoring system for each specific application and proceeding with the methodologies for sensor signal detection and analysis aimed at the extraction of signal features to feed to intelligent decision-making systems based on artificial neural networks. The final aim is to perform tool condition monitoring in advanced machining processes in terms of tool wear diagnosis and forecast, in the perspective of zero defect manufacturing and green technologies. The work has been addressed within the framework of the national MIUR PON research project CAPRI, acronym for “Carrello per atterraggio con attuazione intelligente” (Landing Gear with Intelligent Actuation), and the research project STEP FAR, acronym for “Sviluppo di materiali e Tecnologie Ecocompatibili, di Processi di Foratura, taglio e di Assemblaggio Robotizzato” (Development of eco-compatible materials and technologies for robotised drilling and assembly processes). Both projects are sponsored by DAC, the Campania Technological Aerospace District, and involve two aerospace industries, Magnaghi Aeronautica S.p.A. and Leonardo S.p.A., respectively. Due to the industrial framework in which the projects were developed and taking advantage of the support from the industrial partners, the project activities have been carried out with the aim to contribute to the scientific research in the field of machining process monitoring as well as to promote the industrial applicability of the results. The thesis was structured in order to illustrate all the methodologies, the experimental tests and the results obtained from the research activities. It begins with an introduction to “Sensor monitoring of machining processes” (Chapter 2) with particular attention to the main sensor monitoring applications and the types of sensors which are employed in machining. The key methods for advanced sensor signal processing, including the implementation of sensor fusion technology, are discussed in details as they represent the basic input for cognitive decision-making systems construction. The chapter finally presents a brief discussion on cloud-based manufacturing which will represent one of the future developments of this research work. Chapters 3 and 4 illustrate the case studies of machining process sensor monitoring investigated in the research work. Within the CAPRI project, the feasibility of the dry turning process of Ti6Al4V alloy (Chapter 3) was studied with particular attention to the optimization of the machining parameters avoiding the use of coolant fluids. Since very rapid tool wear is experienced during dry machining of Titanium alloys, the multiple sensor monitoring system was used in order to develop a methodology based on a smart system for on line tool wear detection in terms of maximum flank wear land. Within the STEP FAR project, the drilling process of carbon fibre reinforced (CFRP) composite materials was studied using diverse experimental set-ups. Regarding the tools, three different types of drill bit were employed, including traditional as well as innovative geometry ones. Concerning the investigated materials, two different types of stack configurations were employed, namely CFRP/CFRP stacks and hybrid Al/CFRP stacks. Consequently, the machining parameters for each experimental campaign were varied, and also the methods for signal analysis were changed to verify the performance of the different methodologies. Finally, for each case different neural network configurations were investigated for cognitive-based decision making. First of all, the applicability of the system was tested in order to perform tool wear diagnosis and forecast. Then, the discussion proceeds with a further aim of the research work, which is the reduction of the number of selected sensor signal features, in order to improve the performance of the cognitive decision-making system, simplify modelling and facilitate the implementation of these methodologies in a cloud manufacturing approach to tool condition monitoring. Sensor fusion methodologies were applied to the extracted and selected sensor signal features in the perspective of feature reduction with the purpose to implement these procedures for big data analytics within the Industry 4.0 framework. In conclusion, the positive impact of the proposed tool condition monitoring methodologies based on multiple sensor signal acquisition and processing is illustrated, with particular reference to the reliable assessment of tool state in order to avoid too early or too late cutting tool substitution that negatively affect machining time and cost

    Integrated production quality and condition-based maintenance optimisation for a stochastically deteriorating manufacturing system

    Get PDF
    This paper investigates the problem of optimally integrating production quality and condition-based maintenance in a stochastically deteriorating single- product, single-machine production system. Inspections are periodically performed on the system to assess its actual degradation status. The system is considered to be in ‘fail mode’ whenever its degradation level exceeds a predetermined threshold. The proportion of non-conforming items, those that are produced during the time interval where the degradation is beyond the specification threshold, are replaced either via overtime production or spot market purchases. To optimise preventive maintenance costs and at the same time reduce production of non-conforming items, the degradation of the system must be optimally monitored so that preventive maintenance is carried out at appropriate time intervals. In this paper, an integrated optimisation model is developed to determine the optimal inspection cycle and the degradation threshold level, beyond which preventive maintenance should be carried out, while minimising the sum of inspection and maintenance costs, in addition to the production of non-conforming items and inventory costs. An expression for the total expected cost rate over an infinite time horizon is developed and solution method for the resulting model is discussed. Numerical experiments are provided to illustrate the proposed approach

    Reducing risk in pre-production investigations through undergraduate engineering projects.

    Get PDF
    This poster is the culmination of final year Bachelor of Engineering Technology (B.Eng.Tech) student projects in 2017 and 2018. The B.Eng.Tech is a level seven qualification that aligns with the Sydney accord for a three-year engineering degree and hence is internationally benchmarked. The enabling mechanism of these projects is the industry connectivity that creates real-world projects and highlights the benefits of the investigation of process at the technologist level. The methodologies we use are basic and transparent, with enough depth of technical knowledge to ensure the industry partners gain from the collaboration process. The process we use minimizes the disconnect between the student and the industry supervisor while maintaining the academic freedom of the student and the commercial sensitivities of the supervisor. The general motivation for this approach is the reduction of the entry cost of the industry to enable consideration of new technologies and thereby reducing risk to core business and shareholder profits. The poster presents several images and interpretive dialogue to explain the positive and negative aspects of the student process

    Condition-based maintenance—an extensive literature review

    Get PDF
    This paper presents an extensive literature review on the field of condition-based maintenance (CBM). The paper encompasses over 4000 contributions, analysed through bibliometric indicators and meta-analysis techniques. The review adopts Factor Analysis as a dimensionality reduction, concerning the metric of the co-citations of the papers. Four main research areas have been identified, able to delineate the research field synthetically, from theoretical foundations of CBM; (i) towards more specific implementation strategies (ii) and then specifically focusing on operational aspects related to (iii) inspection and replacement and (iv) prognosis. The data-driven bibliometric results have been combined with an interpretative research to extract both core and detailed concepts related to CBM. This combined analysis allows a critical reflection on the field and the extraction of potential future research directions

    Adaptive Control Optimization of Cutting Parameters for High Quality Machining Operations Based on Neural Networks and Search Algorithms

    Get PDF
    This book chapter presents an Adaptive Control with Optimization (ACO) system for optimising a multi-objective function based on material removal rate, quality loss function related to surface roughness, and cutting-tool life subjected to surface roughness specifications constraint
    • 

    corecore