1,129 research outputs found

    Reduce energy consumption in the wireless sensor network by using EEL-MAC protocol

    Get PDF
    Wireless Sensor Network (WSN) nodes are broadly used in various sectors. Over the years, WSN has emerged as an enabler to collect and process data from remote locations or disaster areas. WSNs rely on hardware simplicity to make sensor field deployments both affordable and long-lasting without maintenance support. However, the WSN nodes experience a lot of problems such as, overhearing, collision, hidden terminal, idle listening and high latency, which resulted in high energy consumption, thus limiting the lifetime of the node. Moreover, WSN nodes are strongly dependent on their limited battery power, and replenishing them again is difficult. Therefore, this research investigates the energy-efficient Medium Access Control (MAC) protocols designed to extend both the lifetime by effective energy management through a reduction in idle time and increased sleep time for nodes to save energy. This study also aims to reduce the latency between nodes and sink node. The EEL-MAC hybrid MAC protocol starts by a synchronization phase using TDMA to synchronize all nodes in the sensor field. In the second phase the scheme uses the CSMA mechanism for communication between nodes and the sink node. In this study makes two significant contributions to wireless sensor networks. First, the EEL-MAC protocol offers significant energy savings and prolongs network lifetime. The second contribution is the introduction of high response, by designing a one-hop communication to reduce both end-to-end delay and latency

    Stochastic Parameter Estimation of Poroelastic Processes Using Geomechanical Measurements

    Get PDF
    Understanding the structure and material properties of hydrologic systems is important for a number of applications, including carbon dioxide injection for geological carbon storage or enhanced oil recovery, monitoring of hydraulic fracturing projects, mine dewatering, environmental remediation and managing geothermal reservoirs. These applications require a detailed knowledge of the geologic systems being impacted, in order to optimize their operation and safety. In order to evaluate, monitor and manage such hydrologic systems, a stochastic estimation framework was developed which is capable of characterizing the structure and physical parameters of the subsurface. This software framework uses a set of stochastic optimization algorithms to calibrate a heterogeneous subsurface flow model to available field data, and to construct an ensemble of models which represent the range of system states that would explain this data. Many of these systems, such as oil reservoirs, are deep and hydraulically isolted from the shallow subsurface making near-surface fluid pressure measurements uninformative. Near-surface strainmeter, tiltmeter and extensometer signals were therefore evaluated in terms of their potential information content for calibrating poroelastic flow models. Such geomechanical signals are caused by mechanical deformation, and therefore travel through hydraulically impermeable rock much more quickly. A numerical geomechanics model was therefore developed using Geocentric, which couples subsurface flow and elastic deformation equations to simulate geomechanical signals (e.g. pressure, strain, tilt and displacement) given a set of model parameters. A high-performance cluster computer performs this computationally expensive simulation for each set of parameters, and compares the simulation results to measured data in order to evaluate the likelihood of each model. The set of data-model comparisons are then used to estimate each unknown parameter, as well as the uncertainty of each parameter estimate. This uncertainty can be inuenced by limitations in the measured dataset such as random noise, instrument drift, and the number and location of sensors, as well as by conceptual model errors and false underlying assumptions. In this study we find that strain measurements taken from the shallow subsurface can be used to estimate the structure and material parameters of geologic layers much deeper in the subsurface. This can signicantly mitigate drilling and installation costs of monitoring wells, as well as reduce the risk of puncturing or fracturing a target reservoir. These parameter estimates were also used to develop an ensemble of calibrated hydromechanical models which can predict the range of system behavior and inform decision-making on the management of an aquifer or reservoir

    Sensor resource management with evolutionary algorithms applied to indoor positioning

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en el año académico 2016-2017Esta tesis pretende contribuir a la mejora de la gestión de recursos en sistemas de sensores aplicados a localización en interiores. Mediante esta gestión pueden abordarse dos temas, la colocación de estos sensores y su uso óptimo una vez colocados, centrándose la tesis en el primero de ellos. Durante la tesis se considera el uso de un sistema de posicionamiento en interiores basado en señales infrarrojas con medida de diferencia de fase. Estas medidas de fase son posteriormente transformadas en distancias, con lo cual nuestro problema es el de trilateración hiperbólica utilizando medidas de diferencia de distancia. Aunque se describe un modelo para el error en diferencia de distancias del enlace infrarrojo, podemos abstraernos de este y simplemente considerar que utilizamos medidas de diferencia de distancia que están normalmente distribuidas con una varianza dada por el modelo usado. De hecho, el trabajo expuesto en esta tesis podría ser usado con cualquier otro sistema del cual obtengamos un modelo de los errores de medida, ya sea empleando además trilateración esférica o angulación. La gran mayoría de trabajos que mejoran la precisión de un sistema de posicionamiento colocando sensores optimizan funciones de coste basadas en el límite inferior de Cramér-Rao, enfoque que adoptamos también en este trabajo. En el capítulo de la tesis dedicado al estado del arte hacemos un repaso de las diferentes propuestas existentes, que concluye explicando qué pretendemos aportar sobre las contribuciones existentes en la literatura científica. En resumen, podemos clasificar las propuestas actuales en tres clases. La primera de ellas trata de determinar una configuración óptima para localizar un objetivo, normalmente utilizando el determinante de la matriz de información de Fisher o la dilución de la precisión. Estos métodos pueden obtener expresiones analíticas que proporcionan una explicación sobre como intervienen las características de los sensores y su colocación en la precisión obtenida. Sin embargo, carecen de aplicabilidad en situaciones reales. El segundo tipo de propuestas emplea métodos numéricos para optimizar la colocación de sensores considerando varios objetivos o un área entera. Los métodos propuestos en esta tesis encajan dentro de esta categoría. Por último, existen métodos que utilizan técnicas de selección de sensores para obtener configuraciones óptimas. Entre las distintas propuestas encontramos varias deficiencias, como la simplificación del modelo de error de la medida para obtener expresiones fácilmente tratables, la consideración de un solo criterio de precisión de la localización, colocación de un número determinado y fijo de sensores, o su despliegue en áreas simples que no presenten problemas de oclusiones. Nuestra primera aportación trata de solucionar la consideración de un único criterio de precisión, que normalmente es el determinante o la traza de la matriz de covarianza o información de la estimación. Cada métrica obtenida de estas matrices tiene un significado práctico distinto, y la consideración de solo una de ellas puede dar lugar a soluciones que presenten deficiencias en las otras, como la obtención de elipses de error muy alargadas. Nuestra propuesta implica el uso de algoritmos evolutivos multifunción que optimicen varias de estas métricas, como el error cuadrático medio en todo el área, la isotropía de la solución, y la máxima desviación que puede aparecer. Esto nos permite tener un conjunto de soluciones dadas en un frente de Pareto, que permitirán al gestor de la red de sensores visualizar las posibles soluciones y elegir entre ellas según las necesidades. También permite obtener colocaciones que mejoren la convergencia de algunos estimadores. La segunda contribución de la tesis se ocupa de la colocación de sensores en zonas más complejas, donde existan obstáculos que provoquen oclusiones a algunos sensores. De esta manera, podemos introducir el problema de intentar cubrir la mayor cantidad de puntos del espacio con el número mínimo de sensores necesario para calcular la posición de un objetivo. Dicho número influirá en el porcentaje de área cubierto y en la precisión obtenida, además de aumentar el coste del sistema. Debido a esto, también será un objetivo a optimizar junto a la cobertura y la incertidumbre de la posición estimada. Para llevar a cabo esta optimización se propone una mejora sobre el algoritmo utilizado en la aportación anterior basada en el uso de subpoblaciones y añadiendo operadores genéticos que modifiquen el número de sensores según la cobertura y condensación en los distintos puntos de la zona a cubrir. Cada uno de los capítulos dedicado a las aportaciones descritas contiene resultados y conclusiones que confirman el buen funcionamiento de los métodos propuestos. Finalmente, la tesis concluye con una lista de propuestas que serán estudiadas en un futuro

    Physical limits to sensing material properties

    Full text link
    Constitutive relations describe how materials respond to external stimuli such as forces. All materials respond heterogeneously at small scales, which limits what a localized sensor can discern about the global constitution of a material. In this paper, we quantify the limits of such constitutional sensing by determining the optimal measurement protocols for sensors embedded in disordered media. For an elastic medium, we find that the least fractional uncertainty with which a sensor can determine a material constant λ0\lambda_0 is approximately \begin{equation*} \frac{\delta \lambda_0}{\lambda_0 } \sim \left( \frac{\Delta_{\lambda} }{ \lambda_0^2} \right)^{1/2} \left( \frac{ d }{ a } \right)^{D/2} \left( \frac{ \xi }{ a } \right)^{D/2} \end{equation*} for adξa \gg d \gg \xi, λ0Δλ1/2\lambda_0 \gg \Delta_{\lambda}^{1/2}, and D>1D>1, where aa is the size of the sensor, dd is its spatial resolution, ξ\xi is the correlation length of fluctuations in the material constant, Δλ\Delta_{\lambda} is the local variability of the material constant, and DD is the dimension of the medium. Our results reveal how one can construct microscopic devices capable of sensing near these physical limits, e.g. for medical diagnostics. We show how our theoretical framework can be applied to an experimental system by estimating a bound on the precision of cellular mechanosensing in a biopolymer network.Comment: 33 pages, 3 figure

    Routing, Localization And Positioning Protocols For Wireless Sensor And Actor Networks

    Get PDF
    Wireless sensor and actor networks (WSANs) are distributed systems of sensor nodes and actors that are interconnected over the wireless medium. Sensor nodes collect information about the physical world and transmit the data to actors by using one-hop or multi-hop communications. Actors collect information from the sensor nodes, process the information, take decisions and react to the events. This dissertation presents contributions to the methods of routing, localization and positioning in WSANs for practical applications. We first propose a routing protocol with service differentiation for WSANs with stationary nodes. In this setting, we also adapt a sports ranking algorithm to dynamically prioritize the events in the environment depending on the collected data. We extend this routing protocol for an application, in which sensor nodes float in a river to gather observations and actors are deployed at accessible points on the coastline. We develop a method with locally acting adaptive overlay network formation to organize the network with actor areas and to collect data by using locality-preserving communication. We also present a multi-hop localization approach for enriching the information collected from the river with the estimated locations of mobile sensor nodes without using positioning adapters. As an extension to this application, we model the movements of sensor nodes by a subsurface meandering current mobility model with random surface motion. Then we adapt the introduced routing and network organization methods to model a complete primate monitoring system. A novel spatial cut-off preferential attachment model and iii center of mass concept are developed according to the characteristics of the primate groups. We also present a role determination algorithm for primates, which uses the collection of spatial-temporal relationships. We apply a similar approach to human social networks to tackle the problem of automatic generation and organization of social networks by analyzing and assessing interaction data. The introduced routing and localization protocols in this dissertation are also extended with a novel three dimensional actor positioning strategy inspired by the molecular geometry. Extensive simulations are conducted in OPNET simulation tool for the performance evaluation of the proposed protocol

    Low-complexity three-dimensional AOA-cross geometric center localization methods via multi-UAV network

    Get PDF
    The angle of arrival (AOA) is widely used to locate a wireless signal emitter in unmanned aerial vehicle (UAV) localization. Compared with received signal strength (RSS) and time of arrival (TOA), AOA has higher accuracy and is not sensitive to the time synchronization of the distributed sensors. However, there are few works focusing on three-dimensional (3-D) scenarios. Furthermore, although the maximum likelihood estimator (MLE) has a relatively high performance, its computational complexity is ultra-high. Therefore, it is hard to employ it in practical applications. This paper proposed two center of inscribed sphere-based methods for 3-D AOA positioning via multiple UAVs. The first method could estimate the source position and angle measurement noise at the same time by seeking the center of an inscribed sphere, called the CIS. Firstly, every sensor measures two angles, the azimuth angle and the elevation angle. Based on that, two planes are constructed. Then, the estimated values of the source position and the angle noise are achieved by seeking the center and radius of the corresponding inscribed sphere. Deleting the estimation of the radius, the second algorithm, called MSD-LS, is born. It is not able to estimate angle noise but has lower computational complexity. Theoretical analysis and simulation results show that proposed methods could approach the Cramér–Rao lower bound (CRLB) and have lower complexity than the MLE
    corecore