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Resumen

Esta tesis pretende contribuir a la mejora de la gestión de recursos en sistemas de sensores. Me-

diante esta gestión pueden abordarse dos temas, la colocación de estos sensores y su uso óptimo

una vez colocados, centrándose la tesis en el primero de ellos. Durante la tesis se considera el

uso de un sistema de posicionamiento en interiores basado en señales infrarrojas con medida

de diferencia de fase. Estas medidas de fase son posteriormente transformadas en distancias,

con lo cual nuestro problema es el de trilateración hiperbólica utilizando medidas de diferencia

de distancia. Aunque se describe un modelo para el error en diferencia de distancias del en-

lace infrarrojo, podemos abstraernos de este y simplemente considerar que utilizamos medidas

de diferencia de distancia que están normalmente distribuidas con una varianza dada por el

modelo usado. De hecho, el trabajo expuesto en esta tesis podrı́a ser usado con cualquier otro

sistema del cual obtengamos un modelo de los errores de medida, ya sea empleando además

trilateración esférica o angulación.

La gran mayorı́a de trabajos que mejoran la precisión de un sistema de posicionamiento

colocando sensores optimizan funciones de coste basadas en el lı́mite inferior de Cramér-Rao,

enfoque que adoptamos también en este trabajo. En el capı́tulo de la tesis dedicado al estado

del arte hacemos un repaso de las diferentes propuestas existentes, que concluye explicando

qué pretendemos aportar sobre las contribuciones existentes en la literatura cientı́fica. En re-

sumen, podemos clasificar las propuestas actuales en tres clases. La primera de ellas trata

de determinar una configuración óptima para localizar un objetivo, normalmente utilizando

el determinante de la matriz de información de Fisher o la dilución de la precisión. Estos

métodos pueden obtener expresiones analı́ticas que proporcionan una explicación sobre como

intervienen las caracterı́sticas de los sensores y su colocación en la precisión obtenida. Sin em-

bargo, carecen de aplicabilidad en situaciones reales. El segundo tipo de propuestas emplea

métodos numéricos para optimizar la colocación de sensores considerando varios objetivos o

un área entera. Los métodos propuestos en esta tesis encajan dentro de esta categorı́a. Por

último, existen métodos que utilizan técnicas de selección de sensores para obtener config-

uraciones óptimas. Entre las distintas propuestas encontramos varias deficiencias, como la
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simplificación del modelo de error de la medida para obtener expresiones fácilmente tratables,

la consideración de un solo criterio de precisión de la localización, colocación de un número

determinado y fijo de sensores, o su despliegue en áreas simples que no presenten problemas

de oclusiones.

Nuestra primera aportación trata de solucionar la consideración de un único criterio de pre-

cisión, que normalmente es el determinante o la traza de la matriz de covarianza o información

de la estimación. Cada métrica obtenida de estas matrices tiene un significado práctico distinto,

y la consideración de solo una de ellas puede dar lugar a soluciones que presenten deficiencias

en las otras, como la obtención de elipses de error muy alargadas. Nuestra propuesta implica

el uso de algoritmos evolutivos multifunción que optimicen varias de estas métricas, como el

error cuadrático medio en todo el área, la isotropı́a de la solución, y la máxima desviación que

puede aparecer. Esto nos permite tener un conjunto de soluciones dadas en un frente de Pareto,

que permitirán al gestor de la red de sensores visualizar las posibles soluciones y elegir entre el-

las según las necesidades. También permite obtener colocaciones que mejoren la convergencia

de algunos estimadores.

La segunda contribución de la tesis se ocupa de la colocación de sensores en zonas más

complejas, donde existan obstáculos que provoquen oclusiones a algunos sensores. De esta

manera, podemos introducir el problema de intentar cubrir la mayor cantidad de puntos del

espacio con el número mı́nimo de sensores necesario para calcular la posición de un objetivo.

Dicho número influirá en el porcentaje de área cubierto y en la precisión obtenida, además de

aumentar el coste del sistema. Debido a esto, también será un objetivo a optimizar junto a la

cobertura y la incertidumbre de la posición estimada. Para llevar a cabo esta optimización se

propone una mejora sobre el algoritmo utilizado en la aportación anterior basada en el uso

de subpoblaciones y añadiendo operadores genéticos que modifiquen el número de sensores

según la cobertura y condensación en los distintos puntos de la zona a cubrir.

Cada uno de los capı́tulos dedicado a las aportaciones descritas contiene resultados y con-

clusiones que confirman el buen funcionamiento de los métodos propuestos. Finalmente, la

tesis concluye con una lista de propuestas que serán estudiadas en un futuro.



Abstract

This thesis contributes to the current research in the field of sensor resource management of

indoor positioning systems. Sensor resource management deals with sensor placement and

sensor scheduling, although this thesis focuses only on the former. We use an indoor posi-

tioning system based on infrared signals with phase-difference of arrival measurements. These

phase measurements are subsequently converted to distance-differences; hence, our problem

becomes hyperbolic trilateration with range-difference of arrival measurements. We include

a model of the error of range-difference measurements with an infrared system, though we

can omit the fact that we work with an infrared system and think only on range-difference

measurements which have a Gaussian distribution with a variance calculated by the model.

As a matter of fact, the work described in this thesis can be applied to other positioning sys-

tems using a model of the measurement errors, even when performing spherical trilateration

or angulation.

Most of the proposals that place sensors to improve the estimation accuracy optimize met-

rics of the Cramér-Rao lower bound, as we do in this work. The thesis contains a chapter

that reviews the existing contributions on sensor placement for target localization, which con-

cludes stating our own contributions to the current literature. To summarize, we can classify

the different approaches in three categories. The first group deals with the determination of

an optimal configuration of sensors to locate a target, they usually optimize the determinant of

Fisher information matrix or the dilution of precision. These methods obtain analytical expres-

sions that provide explanations of the effect of different elements of the positioning system on

the final accuracy. However, they cannot be applied to real situations. To the second group be-

long the approaches that focus on sensor deployment to cover a whole area or multiple targets.

This thesis belongs to this category. Finally, there are methods that use techniques of sensor

selection to obtain optimal configurations. Among these three kinds of proposals we can find

the following drawbacks: the simplification of the measurement model to obtain mathemati-

cally tractable expressions, consideration of a single accuracy performance measure, placement

of a fixed amount of sensors, or sensor deployment in simple areas without non-line-of-sight
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problems.

Our first contribution aims to overcome the consideration of a single accuracy criterion,

which is usually the determinant or trace of the covariance or information matrix of the esti-

mation. Each metric of these matrices has its own practical meaning; hence, considering only

one of them provides solutions which are not optimal regarding other metrics. For instance,

we can get a solution with a low mean squared error but a high elongation of the error ellip-

soids. Our proposal involves the use of multi-objective evolutionary algorithms that optimize

several metrics of the covariance of the estimation, such as average mean squared error in the

area, isotropy of the solution, or the maximum deviation of a point of the region of interest.

This optimization provides a Pareto front with a set of solutions reflecting the trade-off among

different metrics. The resource manager can use this set to choose a desired solution according

to current needs. This approach also allows us to improve the performance of some estimators.

The second contribution of the thesis involves sensor placement in complex zones, where

there are obstacles that cause occlusions to some sensors. Thus, we can introduce the problem

of trying to cover as many points of the area as possible with the minimum amount of sensors

needed to estimate the position of a target. Not only increases such amount the percentage of

covered area and the obtained accuracy, but it also increases the cost of the system. As a con-

sequence, the number of deployed sensors must also be optimized together with the coverage

of the area and the uncertainty of the estimated position. In order to achieve this goal, we pro-

pose a modification of the previous algorithm based on the use of subpopulations and genetic

operators that allow us to place and remove sensors from an existing set according to current

coverage and saturation of the region of interest.

Each one of the chapters that describes those contributions provides results and conclu-

sions that confirm the suitability of the proposed methods. Finally, the thesis ends with some

proposals about future improvements to the work.
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Chapter 1

Preface

1.1 Introduction

An indoor positioning system (IPS) tries to get the position of a target in an indoor environ-

ment, where GPS-based solutions provide poor performance. There are a good deal of ap-

plications that require information about the location of people or objects. These applications

cover diverse fields such as surveillance systems, ambient assisted living, autonomous vehi-

cle guidance, manufacturing processes, etc. Not only are the methods discussed in this thesis

applicable to indoor environments, but they are also useful in other areas where GPS is use-

less, such as underwater or urban areas where the GPS signal is blocked by buildings or inside

tunnels.

As for localization technologies, there is not any clearly dominant technology and its se-

lection is highly dependable on the desired performance and cost of the application. There is

currently a wide variety of solutions based on different technologies such as inertial sensors,

radiofrequency signals both from established communication networks like wireless local area

networks and GSM, or specifically deployed infrastructures like RFID, pseudolites, or ultra-

wide band systems. There are also proposals considering systems based on cameras, ultra-

sound, and optical signals. As we can see, some of these technologies are already deployed in

most buildings, hence their low implementation cost.

We address the problem of locating a target using several anchor nodes, which are nodes

whose position is fixed and known. The target is located after obtaining information related

to the distance or the angle of arrival (AOA) between the target and the anchors. After a pro-

cess of information fusion of these data we can perform trilateration or angulation to calculate

the target position. Thus, the process takes two steps, namely, getting the measurements and

estimating the position. Note that the target can be an emitter — source — and the anchors

1



2 Preface

can be sensors, but the formulation of the problem does not change in the opposite case. How-

ever, the specific problem we use to get our results consists of an infrared emitter — the target

— and several sensors. From now on we will use sensors and anchors interchangeably, the

same goes for emitter and target. Our work focuses on the design stage of an IPS; i.e., where

should we deploy sensors so that the performance of the system is optimal. This is an offline

process, therefore there are not constraints on the time spent until we have our solution. The

performance of an IPS depends on several factors, such as the quality of the measurements,

the position of the sensors, and the estimator used to calculate the target position. Sensor re-

source management comprises the placement of the sensors to optimize the localization and

the scheduling of the sensors to use them efficiently once deployed. In this work, we address

only the first problem. This thesis contributes to the development of new sensor resource man-

agement methods addressing problems never considered before and providing new insights to

the field.

1.2 Motivation and objectives

As we will see in Chapter 2, existing sensor placement methods still have some drawbacks that

we aim to overcome. The limitations of existing deployment methods are usually the use of

a single accuracy criterion, the simplification of the measurement model — such as neglect-

ing the heteroscedasticity and correlations —, or the predefinition of a desired accuracy and

positions where the sensors can be deployed. We apply metaheuristics — genetic algorithms

— to perform a multi-objective optimization (MOO) of several objectives and obtain sets of

Pareto optimal solutions. Our results are not a single solution, but a set of optimal solutions

which should be analyzed by the resource manager, which is the human expert that designs the

system. This approach is also called decision support system, since we assist the manager by

providing the optimal solutions so that he could apply higher level criteria to select a desired

solution.

We can summarize our different goals with the following points:

• Obtain a method that automatically finds optimal deployments according to different

performance measures.

• Provide a more complete description of the accuracy achievable with our system.

• Check the trade-off among different accuracy performance measures.

• Obtain an algorithm that considers a variable number of anchors and the presence of
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obstacles that can cause occlusions to sensors.

1.3 Background

This thesis describes original work developed in the GEINTRA Research Group of the Elec-

tronics Department of the University of Alcalá.

GEINTRA is an official group of the University of Alcalá formed by 24 professors and as-

sistant professors, and many grad and undergrad students. The main goal of the group is the

development of fundamental and applied research activities in the fields of intelligent spaces

and intelligent transport and infrastructure systems. This goal includes research lines related

to: mobile robotics, localization systems, human-machine interfaces, embedded digital sys-

tems, sensors, sensor networks, sensor fusion, intelligent transport, distributed control and

automation, e-health, and independent living.

Within this framework, this thesis is contextualized in the two application fields of the

group: intelligent spaces and intelligent transport and infrastructures, being specifically related

to the research lines of localization and sensors. This work has been mainly supported by the

following research projects:

• ESPIRA (ref. DPI2009-10143) [Spanish Ministry of Science and Innovation]: Contribu-

tion to intelligent spaces by developing and integrating positioning sensors (in Spanish).

PI: Dr. José Luis Lázaro Galilea. The goal of this project was to develop sensor systems

based on discrete infrared sensors and distributed/centralized processing architectures

based on reconfigurable systems to increase the sensing and processing capacities of in-

telligent spaces. The general objective was to locate mobiles such as robots, wheelchairs,

or industrial vehicles for future smart spaces built in environments like hospitals, offices,

or warehouses. This thesis deals with the management of those developed sensors.

• ALCOR (ref. DPI2013-47347-C2-1-R) [Spanish Ministry of Economy and Competitive-

ness]: Optimization of wireless sensor network and network control system for the coop-

eration of mobile units in intelligent spaces (in Spanish). PI: Dr. Felipe Espinosa Zapata,

Dr. José Luis Lázaro Galilea. This project is devoted to contributing toward the flexi-

ble and cooperative tasking between robot units in extensive indoor industrial scenarios.

This goal is addressed with three complementary research lines: remote event-based con-

trol techniques for the mobile units to minimize the communication requirements and

the complexity of the on-board systems, optical localization sensors and means for their

interconnection to provide accurate localization with versatile detection areas, and opti-
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mization of the communication network to provide service to the former considering the

mobility of some of the nodes (mobile units) and the reconfigurable network topology

of others (localization sensors). Within this project, the present thesis addresses part of

the tasks of the research line related to localization sensors, specifically the placement of

sensors to optimize the performance of the localization.

This thesis has also been supported by the Spanish Ministry of Education, Culture, and

Sport through the FPU program (ref. BOE-A-2012-6238) and the UAH mobility program. The

latter made possible the attendance to the conferences and research stays for collaboration in

the Institute of Geodesy and Photogrammetry of the ETH Zürich (Switzerland) and the Sensor

Data Fusion department of the Fraunhofer Institute for Communication, Information Process-

ing and Ergonomics (FKIE) in Wachtberg, Germany.

1.4 Outline of the document

The dissertation is organized as follows:

• Chapter 2: State of the art. This chapter starts summarizing and unifying the treatment

of different ranging methods for localization. We show the performance bounds of the

attainable covariance matrix of time of arrival (TOA), time-difference of arrival (TDOA),

AOA, and received signal strength (RSS) before reviewing relevant contributions in the

field of sensor placement for target localization. We propose a classification of the exist-

ing methods and acknowledge their strengths and weaknesses. Finally, we draw some

conclusions where we explain what we could do to overcome the limitations of existing

methods.

• Chapter 3: Problem statement. We specify the problem for our infrared system in this

section. We show a simple model of the ranging error which will be used to get the

measurements during simulations. The problem of localization with range-difference

measurements is explained in this chapter and the Cramér-Rao lower bound (CRLB) as

an indicator of the performance limit is also shown. We show some preliminary results

of accuracy studies with two different estimators. These results will help us to introduce

some motivations for our contribution, which is detailed in the following chapter.

• Chapter 4: Sensor placement determination for target positioning using different performance

measures of covariance matrix and multi-objective optimization. The main contribution of this

thesis. We optimize several metrics and analyze the trade-offs among them in the Pareto
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fronts that we obtain as a result of a MOO. This chapter also includes a proposal to obtain

a metric that can be used in a dynamic case where prior information of the target state is

available.

• Chapter 5: Optimization of the coverage and accuracy of an indoor positioning system with a

variable number of sensors. This chapter extends the previous method to situations where

the number of sensors is not fixed and the region of interest (ROI) has obstacles that cause

occlusions. The occlusions cause that we do not know a priori if we can perform local-

ization in the whole ROI, since we are not sure if all points are covered by the minimum

number of sensors. Hence, we add the percentage of covered area as an objective to be

maximized.

• Chapter 6: Conclusions and future work. The conclusions of each part of the thesis are

drawn in their corresponding chapters. This chapter summarizes these conclusions and

states our contributions to the state of the art explicitly. Most of the results presented in

this work have been published in two journals whose impact factor falls in the top 25

percentile ranking of Journal Citation Reports and international conferences. This chapter

provides a list of these contributions. Finally, we address some limitations of the current

state of the work and comment some possible solutions.
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Chapter 2

State of the art

As set out in the introduction, the core of this thesis is the development and use of algorithms

to find optimal sensor placements that improve localization performance. The methods can be

applied to any system from which we have a model of the error of the estimation, though our

results are mainly focused on an infrared IPS [Martin-Gorostiza et al., 2014]. Range-based local-

ization usually involves two steps, namely, obtaining the range measurements and estimating

the target position. This work considers the latter step exclusively; thus, this section will not

include a comprehensive description of different positioning technologies. The reader can go

deeper into that topic in [Mautz, 2012], which analyzes 13 different technologies and provides

some comparisons according to user requirements, such as coverage and accuracy. The highly

cited paper from [Liu et al., 2007] is also a good starting point to know about positioning tech-

niques and systems. Finally, the book of [Zekavat and Buehrer, 2012] provides an in-depth

coverage of position location, from the fundamentals of localization to novel applications.

This section should cover the classic and emerging techniques of sensor placement for tar-

get localization. We must find a cost function related to the accuracy and precision of the target

position estimation, and it is our idea to develop a framework that can be applied regardless of

the localization method. Hence, this section will start reviewing different localization methods

that can be used with the proposed framework. Section 2.1 covers the usual localization tech-

niques based on trilateration, multilateration, angulation, etc. It discusses their strengths and

weaknesses, as well as the derivation of a function related to the accuracy of the estimation.

Sensor placement techniques will be thoroughly analyzed in Section 2.2. Finally, we will draw

conclusions on the current deployment techniques in Section 2.3.

Before starting reviewing the localization methods, we would like to make a few comments

on mathematical methods for source position estimation. The accuracy metric we use provides

a bound on the efficiency of the estimation that can be achieved with an unbiased estimator.

7
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Since we do not restrict ourselves to a specific estimator, they will not be covered in this section.

The reader can be referred to [So, 2012] to know the basic iterative and closed-form methods,

the book also includes some MATLAB code. [Seco et al., 2009] propose a classification of math-

ematical methods in four groups and comment the applicability of different methods in non-

line-of-sight (NLOS) situations, which may cause a biased solution due to multipath effects. A

more comprehensive review of range-based positioning algorithms can be found in [Yan et al.,

2013], which compares different estimators in terms of accuracy and complexity.

2.1 Source localization methods

The methods described in the following chapters can be used with any localization method

from which we can obtain a model of the accuracy and precision of the estimation. This sec-

tion describes different positioning methods according to the nature of the observations. When

absolute ranges or times are measured, we usually talk about trilateration or spherical trilat-

eration. In case of lack of synchronism between target and anchors we speak of hyperbolic

trilateration or just multilateration. Triangulation methods use AOA or direction of arrival

(DOA). Finally, some systems based on radio frequency can only use RSS for localization.

Anchor 1 

Anchor 2 

Anchor 3 

Target

Figure 2.1: Spherical trilateration

Before describing these different kind of measurements we will see a few generalities about

their mathematical formulation. The notation for all the measurements will be the same as

far as possible. The reader can go deeper into this topic in [So, 2012]. The Fisher information

matrix (FIM) and its inverse form, the CRLB, are the usual metrics of uncertainty. [Bishop et al.,

2010] find optimal sensor-target geometries and show the FIM of TOA, range-only, and AOA.

The work of [Zhao et al., 2013] unifies the problem of sensor placement for AOA, range-only,

and RSS. The content of this subsection is mostly based on those studies.
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Anchor 1

Reference anchor

Anchor 2

Target

Figure 2.2: Hyperbolic trilateration

Anchor 1

Anchor 2

Target

Figure 2.3: Angulation

Assuming additive white Gaussian noise, any set of measurements z from N sensors can

be expressed with the following equation:

z = h (x) + ε, (2.1)

where x is the unknown target localization; i.e., a column vector of coordinates with dimension

D, where D is usually 2 or 3. The elements hi of the vector h are (usually highly nonlinear)

functions of the sensor-target distance and i takes integer values from 1 to N, that is to say

each hi maps the coordinates of x to a scalar value, hi : RD → R and h : RD → RN . Finally,

ε = [ε1, ε2, . . . , εN ]
T, where εi ∼

(
0, σ2

i
)

is the deviation of the measurement of sensor i and T is

the transpose operator. Expressing it in its vector form: ε ∼ (0, Σ). The standard deviation of

the measurement of the ith sensor is denoted by σi, whereas Σ represents the N×N covariance

matrix of the set of N observations.

There are many algorithms to solve Eq. (2.1) finding x and we have already provided some

references to know about them. Assuming we use an efficient and unbiased estimator, there is

a performance limit on the uncertainty of the estimation known as CRLB. The CRLB is a lower

bound of the covariance that can be achieved with an unbiased estimator and it is calculated

with the inverse of the FIM. The next chapter will discuss some aspects of the derivation of

CRLB, a further insight into it can be found in [Kay, 1993]. Considering additive Gaussian

noise, the FIM I is computed with the Jacobian matrix of h(x) and the covariance Σ of the
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observations as in Eq. (2.2).

I(x) =
(

∂h
∂xT

)T

Σ−1 ∂h
∂xT (2.2)

When the deviations of different sensors are uncorrelated, the form of the FIM in Eq. (2.3)

is very interesting; since each measurement contributes to the FIM as an element of a sum.

I(x) =
N

∑
i=1

1
σ2

i

∂hi

∂x

(
∂hi

∂x

)T

(2.3)

Equation (2.3) and the additive property of FIM can be used to deploy an optimum subset

of sensors when the noise of different measurements is uncorrelated. This situation happens

when absolute ranges or times are measured; however, in case of differences of times and

ranges the equation does not apply.

In the following, we will see how we can obtain Eqs. (2.2) and (2.3) from different localiza-

tion methods. For the sake of a better understanding of the influence of the relative geometry

between target and anchors, the reader can compare Fig. 2.4 with the following equations.

Anchor j
Anchor i

Target
(x,y)

(xi,yi)

x-xi

y
-y

i

d i

Figure 2.4: 2D geometry of target and two anchors

2.1.1 TOA

TOA is the time that a signal takes to travel from an emitter to a receiver. Multiplying this time

t by the known propagation speed c of the signal results in the distance between emitter and

receiver, i.e., d = ct. Usual values are c = 340 m/s or c = 3× 108m/s, which are the speed

of sound and light, respectively. In the absence of noise, this distance provides the radius of a

circle whose center is the anchor node and that contains the target. As we know from elemental

geometry, a 2D point is given by the intersection of three circles, hence we need at least three

anchors in order to be able to determine the position of the target. TOAs are usually converted

to a set of equations and an optimization algorithm computes the target position. Assuming

that a signal emitted by the target at time to reaches the ith anchor at time ti, the distance
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between them is given by:

di = c (ti − to) . (2.4)

The target and the anchors must be precisely synchronized to obtain the TOA information.

The distance between the ith anchor and the target di is calculated with the `2 norm (||·||):

di = ||x− xi|| =
√
(x− xi)

2 + (y− yi)
2. (2.5)

Considering additive Gaussian noise, we can adapt Eq. (2.1) to the TOA measurement zTOA:

zTOA = hTOA (x) + εTOA. (2.6)

Where

zTOA = [zTOA,1, zTOA,2, . . . , zTOA,N ]
T , (2.7)

εTOA = [εTOA,1, εTOA,2, . . . , εTOA,N ]
T , (2.8)

and

hTOA (x) = d =


||x− x1||

||x− x2||
...

||x− xN ||

 . (2.9)

It is assumed that εTOA,i are zero-mean — under line-of-sight (LOS) transmission — uncor-

related Gaussian noises with variances σTOA,i. As a consequence, the TOA covariance matrix

corresponds to

ΣTOA = E
[
(zTOA − d) (zTOA − d)T

]
= E

[
εεT

]
= diag

(
σ2

TOA,1, σ2
TOA,2, . . . , σ2

TOA,N
)

,

(2.10)

where E[·] is the expectation operator.

To summarize, zTOA ∼ N
(

d, diag
(

σ2
TOA,1, σ2

TOA,2, . . . , σ2
TOA,N

))
.

Finally, to obtain the FIM we just need to compute ∂hTOA(x)
∂Tx . Taking into account the fact that

the derivative of the norm of a vector with respect to the same vector is its normalized vector,

i.e., ∂||x||
∂x = x

||x|| :

∂hTOA (x)
∂Tx

=



x−x1
||x−x1||

y−y1
||x−x1||

x−x2
||x−x2||

y−y2
||x−x2||

...
...

x−xN
||x−xN ||

y−yN
||x−xN ||

 =


sin (φ1) cos (φ1)

sin (φ2) cos (φ2)
...

...

sin (φN) cos (φN)

 . (2.11)
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We can replace Eq. (2.11) in (2.2) and, since TOA noises are independent and identi-

cally distributed (i.i.d.), we can get the expression of (2.3). Moreover, we can consider that

σTOA,1 = σTOA,2 = · · · = σTOA,N = σTOA to simplify the problem even more.

ITOA(x) =
1

σ2
TOA

N

∑
i=1

∂hi

∂x

(
∂hi

∂x

)T

=
1

σ2
TOA

N

∑
i=1

sin2 (φi)
sin(2φi)

2
sin(2φi)

2 cos2 (φi)

 (2.12)

Inverting Eq. (2.12), we get an expression of CRLB for the TOA problem. Assuming a

constant σTOA we can see that the equation depends only on the relative angles between the

target and the sensors; however, we neglect the effect of the distance between sensors and

target. Notwithstanding such a naive assumption, some researchers use Eq. (2.12) to compute

a theoretical optimum, as we will see in the following section.

2.1.2 TDOA

Calculating TDOA simplifies the TOA method, inasmuch as we do not need that receivers and

the emitter source are synchronized, though the synchronization among receivers is a require-

ment. TDOA is the difference of the time that the signal takes to travel from the source to two

different receivers. Again, multiplying this time-difference by the propagation speed of the sig-

nal results in the range-difference between the target and two anchors. If the source transmits

a signal at time to, its reaches the ith sensor at time ti and the jth sensor at time tj. Differencing

these values: ti,j = (ti − to)− (tj − to) = ti − tj. If we obtain the TDOAs for all receivers, we

get a full TDOA set that contains some redundant information, since tk,j = tk,i − tj,i. Because

of this reason, we usually pick one anchor as a reference and compute the time-differences re-

garding the other anchors, obtaining a non-redundant set of N − 1 TDOAs. This approach is

also known as centralized, there are also authors that look for an optimal pairing instead of

selecting a reference, e.g., [Meng et al., 2016]. The differences of distances are obtained with

the speed of the signal di,j = cti,j. If we consider the two anchors as focal points, the target is

located in the set of points whose difference of distance to these foci is constant and equal to

di,j. This set of points is an hyperbola, knowing the sign of the range-difference allows us to

discard one of the branches. Even though two hyperbolae (three anchors) usually intersect in

a single point, sometimes they can intersect in two points. We provide again set of equations

from which we estimate the position of the target, the 1st anchor is picked as the reference

without loss of generality.

zTDOA = hTDOA (x) + εTDOA. (2.13)
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Where

zTDOA = [zTDOA,2, zTDOA,3, . . . , zTDOA,N ]
T , (2.14)

εTDOA = [εTDOA,2, εTDOA,3, . . . , εTDOA,N ]
T , (2.15)

and

hTDOA (x) = d1 =


||x− x2|| − ||x− x1||

||x− x3|| − ||x− x1||
...

||x− xN || − ||x− x1||

 . (2.16)

The noise of the range-difference measurements is εTDOA,i = εi − ε1. The variance of the

difference of two random variables is the sum of the variance of these two variables; thus,

εTDOA,i ∼ N
(

0, σ2
TDOA,i = σ2

i + σ2
1

)
. The fact that every TDOA measurement use the same ref-

erence implies that the error of the reference anchor propagates through all of them. Because

of this reason, the covariance matrix of zTDOA is non-diagonal. The element of the i, i entry is

σ2
i+1 + σ2

1 , whereas the non-diagonal elements are σ2
1 . Finally, the Jacobian matrix of the TDOA

function is

∂hTDOA (x)
∂Tx

=



x−x2
||x−x2|| −

x−x1
||x−x1||

y−y2
||x−x1|| −

y−y1
||x−x1||

x−x3
||x−x3|| −

x−x1
||x−x1||

y−y3
||x−x2|| −

y−y1
||x−x1||

...
...

x−xN
||x−xN || −

x−x1
||x−x1||

y−yN
||x−xN || −

y−y1
||x−x1||



=


sin (φ2)− sin (φ1) cos (φ2)− cos (φ1)

sin (φ3)− sin (φ1) cos (φ3)− cos (φ1)
...

...

sin (φN)− sin (φ1) cos (φN)− cos (φ1)

 .

(2.17)

Because of the full population of the covariance matrix, we cannot use Eq. (2.3) as we did

with TOA. We can calculate the FIM with Eq. (2.2), which has a more complex form than (2.12).

2.1.3 POA/PDOA

Both phase of arrival (POA) [Povalac and Sebesta, 2010] and phase-difference of arrival (PDOA)

[Povalac and Sebesta, 2011] estimate the distances between source and receivers by measuring

the phase added to the signal during its propagation. Multiplying the phase ϕ by the speed of

the signal and dividing by its frequency provides the distance d = c
2π f ϕ. Once the distance is

calculated, the position is estimated the same way as TOA or TDOA.
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2.1.4 RSS

The average power that reaches a receiver when it is emitted by a source is the RSS. The

received power at sensor i Pr,i is usually a function of the originally transmitted power Pt,

path loss constant α, and the distance between source and receiver, among other factors Ki:

Pr,i = KiPt ||x− xi||−α. Taking logarithms and simplifying, we model the RSS signal as

zRSS,i = −αln (||x− xi||) + εRSS,i. (2.18)

Putting Eq. (2.18) in vector form:

zRSS = hRSS (x) + εRSS. (2.19)

Where

zRSS = [zRSS,1, zRSS,2, . . . , zRSS,N ]
T , (2.20)

εRSS = [εRSS,1, εRSS,2, . . . , εRSS,N ]
T , (2.21)

and

hRSS (x) = p = −α


ln (||x− x1||)

ln (||x− x2||)
...

ln (||x− xN ||)

 . (2.22)

As we did with TOA, we can assume that εRSS is a zero-mean Gaussian distributed random

variable; hence, zRSS ∼ N
(

p, diag
(

σ2
RSS,1, σ2

RSS,2, . . . , σ2
RSS,N

))
.

Finally, after obtaining the Jacobian matrix of hRSS (x) in Eq. (2.23), we can calculate the

FIM in Eq. (2.24). We make again the simplification of considering that all variances are equal:

σRSS,1 = σRSS,2 = · · · = σRSS,N = σRSS.

∂hRSS (x)
∂Tx

= −α



x−x1

||x−x1||2
y−y1

||x−x1||2

x−x2

||x−x2||2
y−y2

||x−x2||2
...

...
x−xN

||x−xN ||2
y−yN

||x−xN ||2


= −α



sin(φ1)
d1

cos(φ1)
d1

sin(φ2)
d2

cos(φ2)
d2

...
...

sin(φN)
dN

cos(φN)
dN

 . (2.23)

IRSS(x) =
1

σ2
RSS

N

∑
i=1

∂hi

∂x

(
∂hi

∂x

)T

=
α2

σ2
RSS

N

∑
i=1

1
d2

i

sin2 (φi)
sin(2φi)

2
sin(2φi)

2 cos2 (φi)

 (2.24)

As can be seen in Eq. (2.24), each measurement contributes again as an element of a sum.
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2.1.5 AOA

AOA also appears in literature as DOA [Elkachouchi and Mofeed, 2005] and bearing [Eren

et al., 2006]. The angle of the emitted source signal observed at a receiver is the AOA. We

can draw a line of bearing from this angle for every receiver, the intersection of these lines of

bearing provides the position of the target. As can be seen in Fig. 2.4, the arrival angle at the

ith sensor can be expressed as tan (φi) =
x−xi
y−yi

. When measurement errors are present, we can

model the AOA measurements as

zAOA = hAOA (x) + εAOA. (2.25)

Where

zAOA = [zAOA,1, zAOA,2, . . . , zAOA,N ]
T , (2.26)

εAOA = [εAOA,1, εAOA,2, . . . , εAOA,N ]
T , (2.27)

and

hAOA (x) = φ =



tan−1
(

x−x1
y−y1

)
tan−1

(
x−x2
y−y2

)
...

tan−1
(

x−xN
y−yN

)


. (2.28)

We assume once again that the deviations are independent zero-mean Gaussian distributed

random variables, so we have zAOA ∼ N
(
φ, diag

(
σ2

AOA,1, σ2
AOA,2, . . . , σ2

AOA,N

))
.

Finally, we calculate the Jacobian matrix and the FIM as usual:

∂hAOA (x)
∂Tx

=



y−y1

||x−x1||2
− x−x1

||x−x1||2

y−y2

||x−x2||2
− x−x2

||x−x2||2
...

...
y−yN

||x−xN ||2
− x−xN

||x−xN ||2


=



cos(φ1)
d1

− sin(φ1)
d1

cos(φ2)
d2

− sin(φ2)
d2

...
...

cos(φN)
dN

− sin(φN)
dN

 . (2.29)

IAOA(x) =
1

σ2
AOA

N

∑
i=1

∂hi

∂x

(
∂hi

∂x

)T

=
1

σ2
AOA

N

∑
i=1

1
d2

i

cos2 (φi) − sin(2φi)
2

− sin(2φi)
2 sin2 (φi)

 (2.30)

We have again assumed that the variances of different measurements are equal.

RSS usually provides the lowest accuracy, but it implementation is simple and cheaper,

since LOS and synchronization are not a requirement. AOA requires smart antennas, but it

does not require synchronization and only two receivers are needed to locate a source. Both

TDOA and TOA require LOS conditions, but the accuracy is high. However, a full synchro-

nization is required with TOA, whereas TDOA does not need that the source is synchronized

with the receivers.
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To summarize, we can unify the expressions of the FIM of TOA, RSS, and AOA as it was

done in [Zhao et al., 2013]. Even without the assumption that the variances of the measure-

ments are not equal, the FIM can be written as a sum of the products of a coefficient and a

matrix for each sensor: I = ∑N
i=1 γiGi, where

GTOA,i = GRSS,i =

sin2 (φi)
sin(2φi)

2
sin(2φi)

2 cos2 (φi)

 , (2.31)

GAOA,i =

cos2 (φi) − sin(2φi)
2

− sin(2φi)
2 sin2 (φi)

 , (2.32)

γTOA,i =
1

σ2
TOA,i

, (2.33)

γRSS,i =
α2

σ2
RSS,id

2
i

, (2.34)

and

γAOA,i =
1

σ2
AOA,id

2
i

. (2.35)

Some contributions reviewed in the next section leverage this expression of the FIM. How-

ever, we cannot apply it to range-difference methods and we just calculate the FIM with Eq.

(2.2).

2.2 Sensor placement techniques

Sensor placement is an important task in the design of indoor positioning systems, since the

amount of sensors and their location affect the accuracy and the cost of the whole system. The

major contributions to the accuracy of a range-based positioning system are the quality of the

measurements, the target-anchor geometry, and the estimation algorithm. We assume that we

will use an efficient estimator — i.e., the estimator attains the CRLB — for computing the esti-

mated position; hence, we can optimize the performance limit of the system without restricting

ourselves to a single algorithm. We can easily see the effect of the uncertainty of the measure-

ments and the geometry when we look at the intersection of the circles, hyperbolae, or lines

of bearing. A good geometry provides an orthogonal intersection that minimizes the propa-

gation of the measurement uncertainties to the position estimation error [Kaune, 2012]. This

propagation of the uncertainty is known as dilution of precision (DOP) [Langley, 1999]. DOP

is usually split in other metrics like horizontal dilution of precision (HDOP), vertical dilution

of precision (VDOP), position dilution of precision (PDOP), time dilution of precision (TDOP),
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and geometric dilution of precision (GDOP). They share the following relations:

PDOP =

√
HDOP2 + VDOP2, (2.36)

GDOP =

√
PDOP2 + TDOP2. (2.37)

When we are performing 2D positioning, VDOP does not exist. Hence, HDOP and PDOP

have the same value. Even though GDOP also contains time information, it is frequently used

in literature as PDOP in both 2D and 3D positioning systems. Informally speaking, DOP is

a dimensionless number defined as the ratio between the uncertainty of the position and the

uncertainty of the measurements:

DOP =
∆ (Target position)
∆ (Measurement)

. (2.38)

The following figures make it simple to appreciate the effect of DOP in hyperbolic trilater-

ation. The red solid lines intersect in the true position of the target, whereas the grey dashed

lines represent the effect of the noise in the range-difference measurements. The green area is

the zone where the system can detect the target position due to the presence of noise. In the

absence of noise, both configurations of Figs. 2.5 and 2.6 provide the true solution. We can see

Anchor 1

Anchor 2

Reference anchor

Area of uncertainty

Figure 2.5: Target uncertainty area with good geometry between target and anchors
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Figure 2.6: High dilution of precision due to bad geometry

that the area of uncertainty when the noise is present in a good sensor deployment is still very

small. However, in the bad configuration of Fig. 2.6 even the slight deviation produces a big

area where the position of the target can be estimated.

[Bronk and Stefanski, 2007] show the influence of geometric configuration in TDOA sys-

tems. They also propose two ways of overcoming such a situation. Placing another measure-

ment unit in a good position reduces the GDOP considerably. In case we cannot afford to

deploy a new sensor, their proposal involves the use of a hybrid positioning system with the

current sensors such as the combination of TDOA and AOA. Even though the CRLB is usually

used to find good configurations of sensors for localization, we will see in the next paragraphs

that there are researchers who consider the GDOP as well.

2.2.1 Single target localization

The CRLB, which is computed with the inverse of the FIM, is the minimum variance attainable

with an unbiased estimator — in this case the estimator is said to be efficient. Much has been

written on the subject of finding geometries that optimize a metric of the CRLB or FIM. [Abel,

1990] uses a geometric interpretation of the CRLB to place sensors along a linear array. This

work was able to replicate the results achieved in [Carter, 1977] without extensive algebraic ma-

nipulation, computer-aided maximization, or the consideration of a particular estimator. [Lev-

anon, 2000] finds the lowest GDOP considering absolute ranges, pseudo-ranges, and bearing.

He simplifies the problem assuming constant variances in the error of the measurements. In

this case the GDOP is proportional to the CRLB obtained with Gaussian measurements [Chaf-

fee and Abel, 1994]. Assuming a constant variance σ2 of the measurements, Σ = σ2I, where I
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is the identity matrix. The CRLB is given by the inverse of Eq. (2.2):

(I(x))−1 =

((
∂h
∂xT

)T

Σ−1 ∂h
∂xT

)−1

= σ2

((
∂h
∂xT

)T ∂h
∂xT

)−1

. (2.39)

If we use this expression as the uncertainty of the target position estimation, we can calculate

the DOP from Eq. (2.38) using σ2 as the uncertainty of the measurements:

DOP =

σ2
((

∂h
∂xT

)T
∂h
∂xT

)−1

σ2 =

((
∂h
∂xT

)T ∂h
∂xT

)−1

. (2.40)

We can also write it as DOP = 1
σ2 CRLB. The assumption of the constant variances implies that

the CRLB depends only on the anchors-target geometry. Then, he determines the lowest GDOP

using N anchors and shows that it is found in the center of the corresponding regular polygon

whose vertices are the anchors. [Zhang, 1995] minimizes the joint covariance matrix, which is

the same than minimizing the CRLB. Each measurement provides an uncertainty ellipse, and

the combination of N ellipses results in another ellipse, which should be as small as possible.

He proposes an iterative method that solves the problem in N − 3 iterations. Even though he

considers that the covariance of different sensors can be different, the ellipses are only sensi-

tives to the orientation of the sensors with respect to the object been observed. Another work

[Yang and Scheuing, 2005] deals with optimum sensor arrays for TDOA localization and de-

rives sufficient conditions to achieve a minimum CRLB. Again, the system is oversimplified

with constant and even uncorrelated noise variances. [Lui and So, 2009] reach to the same

conclusions considering correlated variances; i.e., uniform angular arrays provide the best ge-

ometry. [Martı́nez and Bullo, 2006] provide closed-form expressions for the determinant of the

FIM in 2D and 3D scenarios and analyze the set of points that yields global optima in the 2D

case. They use the Extended Kalman Filter to track a moving target and consider moving sen-

sors as well. The equation for updating the covariance matrix in Kalman Filter can be written

as

P−1
k+1,k+1 = P−1

k+1,k +

(
∂h (xk+1)

∂xT
k+1

)T

Σ−1 ∂h (xk+1)

∂xT
k+1

. (2.41)

The prior and posterior covariances are denoted by Pk+1,k and Pk+1,k+1, respectively. The term

of the right is the usual FIM. They show that, as expected, maximizing the FIM improves the

performance of the filter. They optimize only the non-random static parameter, instead of

considering the previous states as well. The same metric is considered in [Bishop et al., 2010]

to minimize the volume of the uncertainty ellipsoid for range, TOA [Bishop et al., 2007b], and

bearing [Bishop et al., 2007a] localization under the assumption of a constant noise variance

which is equal for all the sensors. An interesting result of this work and the previous one is the
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upper bound of the determinant of FIM for 2D range-only positioning with N anchors whose

variances are equal and constant σ:

max |I | = N2

4σ4 . (2.42)

A similar approach is discussed in [Dogancay and Hmam, 2009] for TDOA considering both

equal and unequal variances, though constant. They conclude that considering unequal vari-

ances requires numerical methods for solving the problem. They also prove that, considering

constant and equal variances, the upper bound of the determinant of the FIM is the same that

appears in Eq. (2.42). [Meng et al., 2013] study the same problem when using combinations of

different types of sensors. Recently, the same authors study in [Meng et al., 2016] optimal sen-

sor geometries for TDOA positioning considering both a single reference and individual pairs

of sensors. They also deal with the prior uncertainty of the location of the target. The metrics

they use are the traces of CRLB and posterior covariance matrix. Most of these approaches

consider sensor placement to improve the localization of a known source. On the other hand,

[Isaacs et al., 2009] consider an uncertain target location in a TDOA problem. They conclude

that the sensor-target range affects the localization performance and they find that arrays of

sensors with the same angular separation provide the best geometries. [Ho and Vicente, 2008]

study the problem when the target is distant and find good geometries with the shape of rings

and sensors in the center. [Zhao et al., 2013] apply frame theory to sensor placement in 2D

and 3D spaces and get necessary and sufficient conditions for optimal sensor placement. The

results they get for 2D sensor placement are similar to those obtained by previous authors.

Additionally, they unify the treatment of range-only, RSS, and AOA methods. Frame theory

should be applied in systems where redundancy is a must. In sensor placement we talk about

redundancy when we are using more sensors than those that are needed for localization, i.e.,

a higher number of sensors than the dimension of the problem. To know more about Frame

theory the reader is referred to [Kovacevic and Chebira, 2007a] and [Kovacevic and Chebira,

2007b]. To deal with measurements whose noises are distance-dependent such as in under-

water positioning, [Fang et al., 2016] introduce a parameter in the measurement model. They

maximize the determinant of the full FIM and they also consider the case where the distances

between sensors and target are fixed. Finally, [Liang and Jia, 2016] place a heterogeneous sen-

sor network — at least two sensors of a different type — in a constrained space and consider

that the noises of RSS, range-only, and AOA measurements are distance-dependent. They max-

imize the determinant of the FIM.
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2.2.2 Multiple targets localization, area coverage

The studies described above focus on the localization of a single source, whereas in a more

realistic situation we are interested in placing the sensors to cover an area. [Moreno-Salinas

et al., 2013] extend the work of [Martı́nez and Bullo, 2006; Bishop et al., 2010; Isaacs et al.,

2009] to multiple targets. They use numerical methods to maximize the sum of the logarithms

of the FIMs of each target and obtain values very close to the theoretical optimum. [Chen

et al., 2006] derive an upper bound of the localization error of the linear least squares algorithm

and propose an iterative search algorithm to determine the optimum sensor placement. They

apply their proposal to simple, regular areas and find that simple geometries like triangles and

squares which enclosed other simple geometries are the optimum deployments. They focus

on RSS and TOA. [Neering et al., 2007] compute the CRLB of several grid points of the ROI

as candidates for the target position and minimize a weighted sum using a gradient descent

method. The weights allow us to give priorities to some positions of the area. [Jourdan and

Roy, 2008] present an iterative coordinate descent method that places sensors to minimize the

position error bound, which is a metric introduced in [Jourdan et al., 2008] computing the

square root of the trace of the CRLB. They consider very realistic scenarios but the amount of

sensors is fixed and their positions are constrained to lie on boundaries. In addition, they only

optimize one criterion. [Perez-Ramirez et al., 2013] find the optimization of an averaged metric

over a grid to have the problem of hiding spots with poor localization performance. Their

proposal involves the minimization of the minimum Fisher information matrix — the worst

case — with an iterative method. The error model under consideration is distance-dependent

and they deal with a 3D scenario. Additionally, they consider the use of heterogeneous sensors

and the placement of sensors in an area where there are other fixed sensors. However, they

minimize a single objective such as the volume of the error ellipsoid, which does not provide

information about the shape of the error ellipsoids. Their approach deals only with a fixed

number of sensors.

Some researchers have also applied a genetic algorithm (GA) to the sensor placement prob-

lem. [Ray and Mahajan, 2002] use a GA to get deployment patterns of a TDOA system that

avoid singularities. They formulate the problem and linearize it, their goal is to avoid situa-

tions where a matrix that must be inverted is singular. This situation happens when there are

two observations that provide the same information. [Roa et al., 2005] also use a GA, which

was latter improved in [Roa et al., 2006], to solve the sensor placement problem. They build an

utility function that evaluates DOP, cost, and areas of poor precision or with singularities. The

DOP and the unavailable areas can be weighted to change priorities in the function, whereas
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the cost of the system is determined by the number of anchors. This algorithm is then outper-

formed by some of the same authors using a diversified local search [Laguna et al., 2009]. This

work considers a variation of the weights of the cost function in order to generate a Pareto front

(PF). In addition, they start optimizing the deployment of a given number of sensors until they

find an optimum solution. From this solution, they remove the sensor whose contribution is the

lowest and perform the optimization process again so that the optimum placement for differ-

ent number of sensors is obtained. Another work [Roa et al., 2007] shows the improvement of

the solutions attainable by this algorithm over the placement of regular lattices with the shapes

of squares and triangles. The study is carried out considering spherical and hyperbolic trilat-

eration. Other authors [Leune et al., 2013] place sensors in complex environments considering

obstacles with a GA that optimizes the DOP. He includes mutation operations that can add

or remove a sensor from a set. The trace of the covariance of the estimation is used in [Burke

and Bos, 2011] for range-only sensor deployment with a simplex method [Nelder and Mead,

1965]. This work considers obstacles that can cause NLOS conditions. They also propose to

use the uncertainty map that results from the evaluation of the objective over the ROI for path

planning, defining low uncertainty routes. Penalties for uncovered and overcovered zones are

introduced to a cost function that evaluates the DOP of an RSS system in [Kammoun et al.,

2014]. They use simulated annealing [Kirkpatrick et al., 1983] to find the optimal placement.

2.2.3 Sensor selection techniques

Recent approaches solve the sensor placement problem with sensor selection and convex op-

timization. [Joshi and Boyd, 2009] propose an heuristic for selecting a subset of sensors out

of a higher number of candidates for linear measurement models. [Chepuri and Leus, 2015]

deal with the same problem considering non-linear measurement models with independent

observations. They use the additive property of FIM for independent measurements and place

sensors so that a predefined accuracy is achieved with a given probability. Their approach in-

volves sparse sensing, introducing a boolean vector w of size N whose elements wi = {0, 1}

multiply the contribution of each sensor to the FIM. Using the expression we provided at the

end of section 2.1 with this new selection vector:

I =
N

∑
i=1

wiγiGi =
N

∑
i=1

wiI i, (2.43)

where only the sensors whose corresponding weight in the selection vector w is 1 will be active.

The goal is to keep the number of one elements of w, which is the `0 norm, as low as possible

while keeping the amount of information of the resulting FIM above a predefined threshold.

This problem is not convex and the `0 norm is relaxed to the `1 norm, which is a sum of the
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absolute values of the elements of the vector. The constraint wi = {0, 1} is also relaxed to

wi = [0, 1].

Another approach involves leveraging the submodular property of some performance met-

rics [Krause et al., 2008]. The concept of submodularity means that when adding an element

e to a subset S of a given set U , we obtain a higher increment over a function Φ when this

function is evaluated for the smaller set S than for the bigger U . This function Φ is said to be

submodular.

∀S ,U ;S ⊆ U ; ∀e /∈ U ; (Φ (S ∪ e)−Φ (S)) ≥ (Φ (U ∪ e)−Φ (U )) (2.44)

The advantage of optimizing a submodular function is the availability of simple algorithms

which are near-optimal. On the other hand, we must find metrics related to the accuracy of the

position estimation that are submodular, some of them are presented in [Ranieri et al., 2014],

whereas [Jawaid and Smith, 2015] show that usual metrics such as the trace, determinant, or

maximum eigenvalue of the covariance matrix are not generally submodular. They also pro-

vide sufficient conditions so that the estimation error is a submodular function. [Shamaiah

et al., 2010] use a greedy algorithm for solving the sensor placement problem in a linear dy-

namical system. Their work shows that the greedy algorithm outperforms convex relaxation

in both accuracy and computation time. As for non-linear models, [Rao et al., 2015] linearize

the range-only problem and use a greedy algorithm to optimize two submodular functions.

2.3 Conclusions

According to the number of reviewed contributions, especially since the beginning of the last

decade, sensor placement for localization is currently a trending topic. It has been studied in

different fields like signal processing, control theory, communication theory, expert systems,

etc. Even in the past year, there are articles in top journals that just compare random deploy-

ment with regular patterns to highlight the importance of sensor placement [Han et al., 2015].

Hence, we consider that the timeliness of this thesis is quite good.

First, we have reviewed some algebraic methods that have a strong importance, both theo-

retical and practical. They allow us to determine which aspects and how they can influence in

the accuracy of the estimation regarding sensor deployment. However, such a study requires

many simplifications that make it useless in practical applications. Additionally, if we read

those papers in a chronological order we can see that they reach the same conclusion over and

over again, repeating the classic solution of a regular polygon enclosing the target throughout

different approaches with minor contributions.
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The latest proposals that can be found in literature still have some shortcomings that we

aim to solve in this thesis. For example, to the best of our knowledge, there is not any author

that exploits different metrics from the estimation error. All of them optimize a single metric

of the error ellipsoids that does not provide any hint about the actual confidence ellipsoids and

their shape or orientation. Moreover, these metrics can hide some undesired characteristics like

an elongation along the major axis. Another aspect barely addressed is the use of placements

with a given number of anchors to determine other deployment schemes with more or less an-

chors. This approach was taken by [Laguna et al., 2009]; however, they only deal with it when

decreasing the number of sensors of an optimum solution. [Leune et al., 2013] use mutations

in a GA that can add or remove a sensor to a given set randomly. This random addition or

deletion means that we will obtain a solution far from the optimum most of the time. On the

contrary, we propose to place or remove a sensor after analyzing the coverage and saturation

of the ROI. These two issues will be discussed in the following chapters.

Finally, we would like to conclude this chapter highlighting that none of the contributions

on sensor placement for localization in a ROI address the same problem. Most of them consider

range-only measurements and use numerical methods. Since we must use numerical methods

and we want to perform MOO, we have chosen to use the (arguably) most used algorithm,

which is non-dominated sorting genetic algorithm (NSGA-II) [Deb et al., 2002]. We will use

it during Chapter 4 without modifications and we will just include our evaluation functions.

However, we will propose some modifications in Chapter 5.
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Problem statement

After having acknowledged the strengths and weaknesses of different sensor placement tech-

niques existing in literature, this section focuses on an exposition of our particular problem of

hyperbolic trilateration with infrared measurements. This thesis started from previous work of

the research group whose major concerns for the present work are recalled here. As the reader

can probably guess from the previous chapter, we need a model of the error of the range-

difference distances to compute the final error of the position estimation. We show a simple

calculation of the distance measurement error based on the computation of the signal-to-noise

ratio (SNR) at the output of the sensors in Section 3.1. Two estimators based on nonlinear least

squares (NLS) are shown on Section 3.2 for solving the range-difference of arrival (RDOA)

problem. The most important part of this chapter involves obtaining an expression of the ac-

curacy of the estimation, which is the content of Section 3.3. Finally, Section 3.4 provides a

summary of the problems we aim to overcome and gives a short description of our proposal,

which is detailed in the following chapters.

3.1 A simple model of the infrared measurement

The final distance measurement is mostly affected by the parameters of the emitter, receiver,

and subsequent conditioning stages. Modeling the infrared signal is out of the scope of this

work; hence, this section provides a simple calculation of the SNR at the output of the condi-

tioning stage. A description of the system can be found in a PhD thesis from our research group

[Martin-Gorostiza, 2011]. [Gorostiza et al., 2011] describe the hardware, whereas an overview

of the whole system is also given in [Martin-Gorostiza et al., 2014].

The system achieves the RDOA principle by measuring phase differences of a modulated

infrared signal emitted by a mobile target and recorded continuously by receivers (anchors) at

25
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fixed and known positions. The infrared emitter uses a wide angle IR-LED at 940 nm, inten-

sity modulated at 8 MHz, in order to generate the measurement signal. The receivers, placed

at the ceiling of the coverage area, are formed by a low level conditioning stage adapting the

photocurrent generated by a wide angle silicon PIN photodiode. The outputs of the receivers

are simultaneously digitized and RDOA measurements are estimated from the resulting se-

quences.

Figure 3.1: Infrared emitter-sensor link

The optical power Po reaching an arbitrary receiver is given by the emitted power and the

solid angle of the emission covered by the receiver photodiode sensitive area as expressed in

Eq. (3.1):

Po =
Ie

d2 π

(
D
2

)2

cos2 (φ) , (3.1)

where Ie is the emitted optical power per solid angle in the direction normal to the emitter sur-

face, D is the receiver photodiode sensitive area diameter, d is the Euclidean distance between

emitter and receiver and φ is the line-of-sight angle to the vertical direction representing the

decay on both emitter and receiver effective areas due to disorientation (see Fig. 3.1). The re-

ceived optical power generates a proportional photocurrent which is converted into a voltage

and conditioned in the receivers. The output voltage Vo of an arbitrary receiver is defined as:

Vo = PoRGV/IGVV, (3.2)

where R is the responsivity of the photodiode, GV/I is the transimpedance amplifier gain at

the modulation frequency and GVV is the total voltage gain of subsequent conditioning stages.

The output SNR of a receiver, shown in Eq. (3.3), is defined by the output signal power

and the total noise contributions of the infrared link, dominated by the noise added in the

transimpedance amplifier, hence uncorrelated between different receivers.

SNR =
V2

o
2

N0Bn
. (3.3)
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N0 is the total noise spectral density around the modulation frequency, considered to be flat

given the narrow band where the final estimation is carried out, and Bn is the noise equivalent

bandwidth defined by the final filtering stage around the band of interest.

The variance of each receiver single-phase estimation is inversely proportional to its output

SNR, yielding a typical standard deviation σϕ of the single-phase measurement:

σϕ '
γ√

SNR
, (3.4)

where γ is a scale factor and during simulations γ = 1. σϕ can easily be converted into a dis-

tance standard deviation (σd) considering the emitted signal modulation wavelength which can

be expressed with sufficient accuracy for the current purpose using the modulation frequency

fm and the approximate propagation speed c = 3 · 108 m/s.

σd = σϕ
c

2π fm
. (3.5)

Table 3.1 shows the numerical values of our real IR-based positioning system, as needed for

Eqs. (3.1) to (3.5).

Table 3.1: System parameters

Parameter Symbol Value Units

Emitter Intensity Ie 50 W
sr

Frequency fm 8 MHz

Receiver Diameter D 5.08 mm

Responsivity R 0.64 A
W

I to V gain GV/I
33√

2
kΩ

Total voltage gain GVV 100 –

Noise equivalent bandwidth Bn 30 · π
2 Hz

Noise spectral density N0 1.34 · 10−11 W
Hz

Finally, we can calculate σd for each sensor with Eq. (3.5) to determine the covariance matrix

of the RDOA observations.

3.2 Target localization with RDOA

In this section, we formulate again the hyperbolic trilateration problem as an RDOA problem.

This time, we specify our infrared system in 3D in a more rigorously way.
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Let x ∈ R3 be the unknown position of the target and xi ∈ R3 the coordinates of the ith

sensor, where i takes values from 1 to N. Without loss of generality, we assume that the first

sensor is the reference. Pairing the first sensor with the other N − 1 sensors and differencing

their measurements provide us with N − 1 RDOA observations z. The function hi,1 : R3 → R

takes as input the coordinates of the target and produces as output the difference of distances

of target-sensor and target-reference. Assuming additive Gaussian noise, we model the RDOA

measurement of the ith, where i cannot be 1, and reference sensors as

zi,1 = hi,1 (x) + εi,1 = ||x− xi|| − ||x− x1||+ εi,1, (3.6)

where εi,1 ∼ N
(
0, σ2

i + σ2
1

)
. Equation (3.5) is used to calculate the two variances. After ac-

quiring the non-redundant set of N − 1 measurements we can put the equation in its vector

form:

h1 = [h2,1 (x) , h3,1 (x) , · · · , hN,1 (x)]
T , (3.7)

ε1 = [ε2,1, ε3,1, · · · , εN,1]
T , (3.8)

and

z1 = [z2,1, z3,1, · · · , zN,1]
T . (3.9)

The problem can be solved with NLS as in chapter five of [Martin-Gorostiza, 2011]. We have

a data fitting problem where we try to minimize the difference between the observed values z1

and the computed values h1 to get an estimate x̂ of x.

arg min
x

(
1
2
(z1 − h1(x))

T (z1 − h1(x))
)

. (3.10)

As we can see in Eq. (3.10), we optimize an euclidean distance. We can solve it using non-

linear least squares algorithms or we can also linearize the problem. We will apply one of the

former methods, which is the Gauss-Newton iterative algorithm. It does not require the com-

putation of second derivatives, but we must provide a first estimated solution before iterating,

which can lead to local minima. Equation (3.11) is the iterative Gauss-Newton algorithm for

solving (3.10).

x̂k+1 = x̂k +
(

JT
1 J1

)−1
JT

1

(
z1 − h1(x̂k)

)
. (3.11)

The iteration instant is denoted by k, J1 is the Jacobian matrix ∂h1(x)
∂xT , and x̂ is the estimated

solution. The algorithm takes usually two or three iterations to converge. We simplify the

problem assuming that the height of the target is constant; hence the third element of x is Z.

This assumption implies that the dimension of J1 is (N − 1)× 2:
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J1 =



x−x2
||x−x2|| −

x−x1
||x−x1||

y−y2
||x−x1|| −

y−y1
||x−x1||

x−x3
||x−x3|| −

x−x1
||x−x1||

y−y3
||x−x2|| −

y−y1
||x−x1||

...
...

x−xN
||x−xN || −

x−x1
||x−x1||

y−yN
||x−xN || −

y−y1
||x−x1||

 . (3.12)

As was expressed in Eq. (2.17), this function depends only on anchor-target geometry. Solv-

ing the problem with Eq. (3.11) provides a solution without considering the noise of the mea-

surements. We can multiply the cost function of Eq. (3.10) by a weight matrix W to take the

reliability of each measurement into account, formulating the problem with weighted nonlin-

ear least squares (WNLS):

arg min
x

(
1
2
(z1 − h1(x))

T W (z1 − h1(x))
)

. (3.13)

When W = Σ−1
1 , the cost function of Eq. (3.13) is called a Mahalanobis distance. The

covariance matrix Σ of RDOA is fully populated and takes the form:

Σ1 =


σ2

2 + σ2
1 σ2

1 · · · σ2
1

σ2
1 σ2

3 + σ2
1

. . .
...

...
. . . . . .

...

σ2
1 · · · · · · σ2

N + σ2
1

 . (3.14)

Finally, solving (3.13) with Gauss-Newton:

x̂k+1 = x̂k +
(

JT
1 Σ−1

1 J1

)−1
JT

1 Σ−1
1

(
z1 − h1(x̂k)

)
. (3.15)

This method clearly relies on good observations, since measurement with a high error will

not contribute to the estimation.

Estimating the target position with Eq. (3.15) is equivalent to the maximum likelihood

estimator (MLE). As we have already assumed, z1 ∼ N (h1, Σ1). Thus, the probability density

function (PDF) of z1 given the unknown target position x is [Torrieri, 1984]

p (z1|x) =
1

(2π)N−1√|Σ1|
e−

1
2 (z1−h1(x))

T
Σ−1

1 (z1−h1(x)). (3.16)

The expression of the log-likelihood is

ln (p (z1|x)) = ln

(
1

(2π)N−1√|Σ1|

)
− 1

2
(z1 − h1(x))

T
Σ−1

1 (z1 − h1(x)) . (3.17)

As can be seen, the first term is constant, whereas the second term is a function of

x. MLE maximizes Eq. (3.17), which is the same as minimizing the term of the right
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1
2 (z1 − h1(x))

T
Σ−1

1 (z1 − h1(x)). This expression is the same as Eq. (3.13). Thus, when the

weight matrix of WNLS is the covariance, WNLS is equivalent to MLE.

A few remarks on these iterative estimation methods before specifying how we can evaluate

the performance of target localization. The selection of the sensor which acts as the reference

does not change the MLE solution. The proof can be found in Section 4.4.1 of [Wieser, 2001]. As

we have already mentioned, these methods require an initial guess x0. This initial solution can

lead to local minima. This situation can be avoided if we use a close-form method that provides

an initial solution whose accuracy is lower but it is near the actual value enough, such as the

well known closed-form estimator given in [Chan and Ho, 1994].

3.3 Accuracy of the target localization

3.3.1 Position accuracy measures

We can evaluate the performance of target localization with a given configuration by running

Monte Carlo iterations and analyzing the resulting set of solutions. In Chapter 5 of [Martin-

Gorostiza, 2011], two metrics were used, namely, the root mean square error (RMSE) and the

elliptical errors. The former is a circle that contains between the 63 and 68 % of the estimated

solutions, whereas the latter are the standard deviations of the major and minor axes of the er-

ror ellipsoid. After getting the Monte Carlo solutions, a covariance matrix can be determined —

not to be confused with the covariance matrix of the noise of the measurements Σ. This covari-

ance matrix represents an ellipse that encloses the estimated solutions [Smith and Cheeseman,

1986]. Applying singular value decomposition to the covariance matrix provides the singular

values, which are proportional to the deviations of each axis of the ellipse. Such a study carried

out in [Martin-Gorostiza, 2011] is not necessary; since the covariance matrix is symmetric and

positive definite, its singular values and eigenvalues will be exactly the same.

There are many metrics related to the RMSE that can be used to show the accuracy of a

positioning system. The reader can find a description and the relation between these measures

in [Van Diggelen, 1998]. Some of the most common include the circular error probability (CEP),

RMSE, and twice the distance root mean square (2DRMS). The RMSE is computed with the

square root of the mean squared error (MSE). After having obtained M estimations x̂i, where

i = 1, 2, . . . , M, of a target position x, we can compute the RMSE as

RMSE =

√√√√ 1
M

M

∑
i=1

(
(x̂i − x)T (x̂i − x)

)
. (3.18)

The CEP is a circle that encloses 50% of the estimates, whereas the 2DRMS contains between
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95 and 98%. The latter is given by multiplying Eq. (3.18) by two:

2DRMS = 2

√√√√ 1
M

M

∑
i=1

(
(x̂i − x)T (x̂i − x)

)
. (3.19)

The elliptical form of the scatter graph of the M estimates determines the 95− 98% variability

of the 2DRMS.

3.3.2 A performance limit on the accuracy of a positioning system: the Cramér-Rao

lower bound

The metrics we have shown in Section 3.3.1 are not useful to evaluate the performance of a

given distribution of sensors. They depend on the estimator in use and we must evaluate

a candidate target position several times — usually between 100 and 1000 times — to get a

significant value of the accuracy. If we represent Eq. (3.16) as a function of the unknown

parameter x instead of z1 we have the likelihood function. Since this likelihood function is

exponential we take the natural logarithm to remove the exponential function. The graphical

representation of this likelihood function is the well known bell curve of a Gaussian distribution

centered in the true value of x. The sharper the curve is, the more accurate we can estimate

the unknown parameter. To study the sharpness of the log-likelihood function, we use second

derivatives. The minimum variance that any unbiased estimator can attain is given by the

CRLB [Kay, 1993], which has already been mentioned, but not formally introduced:

var (x̂) ≥ 1

−E
[

∂2lnp(z1;x)
∂x2

] (3.20)

If an estimator attains the CRLB, then it is of course a minimum variance unbiased esti-

mator (MVUE). It is known that if the CRLB is attained, the MLE generally attains it. The

denominator of Eq. (3.20) is the FIM I (x). Information has two important properties; namely,

it is nonnegative and it is additive for independent observations. The latter means that addi-

tional observations may carry no information, so the CRLB will not decrease by adding more

measurements.

The CRLB for the hyperbolic trilateration problem is given in [Chan and Ho, 1994]:

I−1 (x) =
(

JT
1 Σ−1

1 J1

)−1
. (3.21)

As mentioned during the state of the art description, the CRLB depends only on the covari-

ance of the noise of the measurements and the target-sensors geometry. It is expected that a set

of sensors that yields a low CRLB will generally get a low MSE [Chepuri and Leus, 2015].

In the following chapters, we will obtain several metrics from Eq. (3.21) that will be used as

objective functions to determine optimal sensor placements.
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3.3.3 Preliminary accuracy studies

[Martin-Gorostiza, 2011] analyzes the performance of the infrared PDOA based IPS considering

a 9 m2 square room. Five sensors are deployed in the area, four of then in the corners and

another one in the center. He tried NLS with Eq. (3.11) considering three kinds of subsets;

namely, the full set, four sensors, and three sensors. As it was pointed out in [Burke and Bos,

2011], the addition of sensors reduce the performance of the unweighted least squares solution.

The author of this thesis published some results of the study of this subset selection comparing

NLS, MLE, and the CRLB in [Domingo-Perez et al., 2013]. Having deployed five sensors in

the aforementioned configuration, we divide the ROI and choose a grid of points which are

separated by 3 cm. We consider a small subset of points due to the symmetry of both room and

deployment. Obviously, MLE provides the best results and almost attains CRLB. However, the

statistic of the noise may not be available. Additionally, the computation cost of MLE is higher

than that of NLS. Using an estimator that does not need to use the covariance of the noise could

be desirable sometimes. Figure 3.2 shows some subset selection for NLS estimation without a

great loss of performance.
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Figure 3.2: Five sensors deployed in the corners of a square and center. When using only four

sensors — green dots —, sensor III is removed. The points estimated with three sensors do not

consider sensor II neither. Sensor V is always the reference.

The following figures show the RMSE obtained with MLE and NLS computed with Eq.

(3.18) after 5000 Monte Carlo runs. They are also compared with the square root of the trace of

the CRLB, computed with Eq. (3.21). To have an indicator of the best accuracy any time, we

always show the CRLB of the full set.

The test points in the x-axis must be checked with the corresponding point of Fig. 3.2.

Figure 3.3 shows the location performance with five sensors. As can be seen, MLE almost



Accuracy of the target localization 33

0 2 4 6 8 10 12 14 16 18 20 22
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Test point

R
M

S
E
 (

m
)

MLE

NLS

CRLB

Figure 3.3: MLE vs NLS with five sensors.
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Figure 3.4: MLE vs NLS with four sensors. Sensor III unused.
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Figure 3.5: MLE vs NLS with three sensors. Sensors II and III unused.

attains CRLB, whereas the performance of NLS is significantly lower and it only attains CRLB

in the central points.
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Figure 3.4 shows the RMSE of both estimators after removing the furthest sensor (III). We

can see that MLE stays almost the same as before. However, its performance has decreased in

the central points. As for NLS, its RMSE values equal those of MLE in some points. The points

that are still far from MLE results are those that are further from sensor II.

The last figure, Fig. 3.5, shows the accuracy of both estimators after removing sensors II and

III. We can see that MLE matches NLS. This is obvious, since there are only two observations

and both of them are taken equally into account regardless their weights. The estimation of the

points which are further from sensors II and III still attains CRLB.

The point we want to make clear here is that we could place sensors so that the accuracy

with NLS is improved. NLS considers that each observation has the same importance; i.e.,

it neglects the heteroscedasticity and the correlations. The covariance matrix of the measure-

ments turns to be the identity matrix. If we represent the error ellipsoid we can see that in

those positions whose CRLB is attained by NLS they are almost a circle — see chapter V of

[Martin-Gorostiza, 2011]. We can try to deploy sensors so that the observations have the same

variance and the correlations should be as small as possible, while keeping a high accuracy.

3.4 Summary and proposed solutions

We have introduced the positioning problem with an infrared PDOA IPS. After presenting

two methods which differ in the consideration of the noise statistic, we have provided some

preliminary results of accuracy with a given configuration. NLS has a lower computational cost

than MLE, since the covariance matrix is not needed we do not compute, invert, and multiply it.

Even though time can be critical in some positioning applications such as surveillance systems,

this is not the only reason to avoid using the covariance matrix of the measurements. The

statistic of the noise may not be available at all, and at the time of acquiring the measurements

and performing localization we do not have information about the actual position of the target.

Hence, we cannot remove any sensor before estimating.

Apart from the aforementioned problem, we have seen that current state-of-the-art place-

ment methods consider only a single metric of the covariance matrix of the estimate. They

usually maximize the determinant of the FIM or minimize the trace of the CRLB. These metrics

do not provide any information about the error ellipsoids, and they can hide huge deviations

in case of an elongation of the ellipsoids.

The first contribution of this thesis is a proposal of sensor placement with MOO consider-

ing several metrics related to the error ellipsoids simultaneously. It is presented in chapter 4.

Some metrics are discussed and we use the well known multi-objective evolutionary algorithm
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(MOEA) NSGA-II to determine the optimal sensor placement, which is a set of Pareto optimal

solutions instead of a single solution. We show an application of these Pareto solutions to the

problem discussed in the previous section. Additionally, we also provide a metric for the dy-

namic case that leverages the prior information of the position of the target. In this chapter we

only consider the room that we have already exposed with a fixed number of sensors. Chapter

5 extends those results to a variable number of sensors. Instead of using NSGA-II directly as

we do in Chapter 4, we propose some modifications to overcome some limitations of the al-

gorithm. This chapter also considers room shapes with obstacles that cause occlusions due to

NLOS situations. Hence, not only do we optimize the accuracy, but we also include the cov-

erage as objective. Our results are shown along these two chapters, they are satisfactory and

confirm the suitability of our methods for sensor placement.
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Chapter 4

Sensor placement determination for

target positioning using different

performance measures of covariance

matrix and multi-objective optimization

This chapter describes the first and main contribution of this thesis, which is the consideration

of several metrics of the covariance of the estimation as objectives for sensor placement. Most

important results were published in [Domingo-Perez et al., 2016b]. The chapter is organized

as follows. Section 4.1 introduces the topic and details the contributions and differences with

previous approaches. The performance measures of the covariance matrix we use are described

in Section 4.2. Fundamentals of MOO and the MOEA we use to obtain our results are provided

in Section 4.3. Some results are shown in Section 4.4. Section 4.5 obtains a metric for the

dynamic case, where prior information of the state of the target is taken into account. Part

of this study was published in [Domingo-Perez et al., 2015]. Finally, we draw conclusions in

Section 4.6.

4.1 Introduction

Multi-objective optimization to provide the sensor resource manager with a decision support

system has been used before in localization applications. This method obtains Pareto efficient

solutions of the sensor placement problem for target localization. This proposal was also sug-

gested by [Grasso et al., 2013], but they focus on area and tracking coverage instead of accuracy.

[Laguna et al., 2009] apply Pareto optimality as well; however, they only use a very simple ac-

37
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curacy metric — the DOP — that does not provide much information of the final accuracy.

When we know more details — such as the noise statistics — about the positioning system, we

can do better taking them into account.

We present an optimization of the positions of the sensors that involves dealing with several

conflicting objectives, which are performance measures obtained from the covariance matrix of

the estimate. Our approach includes the possibility of specifying different localization prior-

ities for different zones. Another application presented in [Chiu and Lin, 2011] proposed the

division of the ROI in zones with different priorities. However, their approach involves binary

localization and the solutions they obtain are restricted to a grid. The solutions that we obtain

are not restricted and they can be placed in any position of the ROI.

Our work presents a framework for sensor placement that avoid assuming the simplifica-

tions discussed in this section. Such simplifications involve:

• restricting the positions of the sensors to grid points,

• using simplified and easy to derive models of noise,

• focusing on a single target instead of optimizing the performance metrics for a whole

area,

• applying a single optimization criterion.

The benefits of properly using a genetic algorithm allow us to overcome those issues. The

chromosomes are the positions of the sensors represented as real numbers; therefore, we obtain

a sensor placement in a continuous domain. We do not need to deal with derivatives of the

objective functions, thus the objectives are only evaluated and they can be complex functions.

By using such intractable functions we can consider fairly complex models, obtaining solutions

that relate better to a real situation. We also propose two scalar metrics to consider a ROI

instead of focusing on a single target. These scalar values are the average error in the ROI and

the maximum error, i.e., the worst case. We apply them to the performance measures that are

obtained from CRLB to compute different metrics that provide different interpretations of the

accuracy that we will obtain in the localization process after having deployed the sensors.

The optimization of different performance metrics is the main contribution of our approach.

To the best of our knowledge, there is not any work in literature focusing on this topic. The

importance of considering several metrics relies on the fact that each one of them has a different

practical interpretation. The optimization of the determinant of the FIM minimizes the volume

of the error ellipsoid. However, an elongated ellipse may have a low volume that masks a high

error in the major axis direction. In the same way, focusing only on the worst case may lead
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to solutions that deteriorate the performance on a great part of the ROI but achieve good per-

formance in small or less important zones. We propose to assist the expert human that serves

as the sensor resource manager with a decision support system based on multi-objective evo-

lutionary optimization. After performing the optimization, the resource manager receives the

Pareto efficient solutions that optimize several performance metrics, as we show in Section 4.4.

The task of the manager consists in analyzing the Pareto front and selecting an appropriate

solution according to his own criteria. Obtaining a complete overview of the Pareto efficient

solutions is the advantage of this method, since the resource manager does not need to decide

a priori parameters that affect the obtained solution. The next section shows and discusses the

performance measures that we consider in this work.

4.2 Performance measures of covariance matrix

We propose five scalar performance measures derived from the covariance matrix of the esti-

mated position Σx̂x̂. Each measure is originally defined and evaluated for a single point — i.e.,

an assumed, stationary target position. We can derive a related scalar performance measure

for the whole ROI by repeating the evaluation of the measure for all points of a sufficiently

dense grid covering the entire ROI and condensing those evaluations into a single scalar value.

We will focus on the transition from individual points to a whole ROI later in this section. Ta-

ble 4.1 shows the proposed scalar performance measures, where x̂ is the estimated position of

the target, Σx̂x̂ represents its covariance matrix, and λ is the vector of eigenvalues of Σx̂x̂.

Table 4.1: Scalar performance measures referring to individual location

Performance measure Expression Practical meaning related to

Trace tr (Σx̂x̂) = ∑ λ MSE

Determinant det (Σx̂x̂) = ∏ λ Volume of the error ellipsoid

Maximum eigenvalue max (λ) Largest axis of the ellipsoid

Ratio of maximum to minimum

eigenvalue
max(λ)
min(λ) Isometry of uncertainty

Uncertainty in spatial direction a aTΣx̂x̂a
Uncertainty in the direction

given by the unit vector a

Assuming normally distributed measurements and a correct functional and stochastic

model, the covariance matrix represents an ellipsoid about the estimated position, contain-

ing the true position with a certain probability. The covariance matrix is symmetric, hence its
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eigenvectors are orthogonal and represent the direction of the major and minor axes. The eigen-

values of the covariance matrix are the variances of the data in the direction of the eigenvectors

[Chan et al., 2015].

The trace, determinant, and maximum eigenvalue have been widely used as optimization

criteria in the theory of design of experiments, and the designs minimizing these criteria are

known as A-, D-, and E-optimal, respectively. Most researchers use D-optimality because of its

advantages, in particular its invariance under scale changes in the parameters [Ucinski, 2004].

It is also noteworthy the fact that the minimization of the determinant of the covariance matrix

is dual to the maximization of the determinant of the information. The eigenvalues of the

covariance matrix are the inverse of the eigenvalues of the information matrix, and the inverse

of the product is the product of the inverse. This result is not true in the case of the trace, since

the inverse of a sum of values is not the sum of the inverted values. E-optimality can lead to

more than a single optimum solution when the number of dimensions of the problem is greater

than 2 [Yang et al., 2012]. We also propose the ratio of the maximum and minimum eigenvalues

as a criterion because it indicates the elongation of the error ellipsoid. It is to be observed that

the ratio of eigenvalues of a symmetric matrix is the condition number of that matrix. When

optimizing for this criterion, the resulting error ellipsoid is as spherical as possible indicating

that the uncertainty is almost independent of the direction. Finally, including a measure of

the uncertainty in a predefined spatial direction is useful for problems where the uncertainty

is more critical in a certain direction — e.g., when targets are to be kept at a safe distance

from walls along a narrow hallway. These last two metrics are usually used in optimal design

[Banks et al., 2010], but they have rarely been considered in sensor placement for localization.

The condition number of a matrix was used by [Neering et al., 2008] for two estimators of the

least squares solution of TDOA.

For a given sensor configuration, any scalar from Table 4.1 can be interpreted as a function

O(x, y, z) of the target position coordinates, i.e., an individual evaluation at a specific point of

an ROI. We can get the scalar measure referring to a whole ROI as mean value over the whole

ROI by dividing the respective volume integral by the volume VROI of the ROI:

O(ROI) =
1

VROI

∫∫∫
V

O(x, y, z) dx dy dz. (4.1)

We can solve Eq. (4.1) numerically by evaluating the function O at P grid points, i.e. by calcu-

lating O(pj), j = 1, 2, . . . , P, where pj is the j point of the grid. This also enables us to derive

other representative values for the entire ROI by choosing suitable functions of O(pj). Some

examples of useful functions are the mean (Eq. (4.2)) or the maximum (i.e., the worst case, Eq.

(4.3)). Additionally, the evaluated function can be weighted by location dependent weights
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wj = [0, 1]. This location dependent weighting is useful to define areas within the ROI where

we are predominantly and exclusively interested in a specific measure, e.g., minimum lateral

error in an elongated narrow path and minimum MSE elsewhere. Generally, we propose the

following functions for the transition from the individual points pj to the whole ROI, repre-

sented by {p1, p2, . . . , pP}:

Omean (ROI) =
∑P

j=1
(
wjO

(
pj
))

∑P
j=1 wj

, (4.2)

Omax(ROI) = max

 P⋃
j=1

(
wjO

(
pj
)) . (4.3)

According to the conclusion provided by [Yang et al., 2012], for stationary target localization

applications (individual point), the trace, determinant, and maximum eigenvalue measures

lead to the same goal of placing the sensors as close to the target as possible to achieve the

best positioning quality and to surround the target for most isometric uncertainty. Since each

measure corresponds to a different aspect of the uncertainty, there could be multiple objectives

to satisfy instead of focusing on a single measure. [Yang et al., 2012] left the multi-objective

case open for future work. The present work focuses on getting the Pareto front as the result of

a multi-objective optimization problem.

4.3 Multi-objective optimization

Multi-objective optimization involves minimizing or maximizing multiple objective functions

subject to a set of constraints. The M objectives are functions of N decision variables. We

need to distinguish between the space of the decision variables
(
D ⊆ RN) and that one of

the objectives
(
O ⊆ RM). It is usual that these objectives are in conflict with each other and

the final solution requires a trade-off between the objectives. In this case, there is no single

optimum solution but a set of solutions representing the respective optimum of one objective

constrained on fixed values of the other objectives. This set, expressed in the objective domain,

is the Pareto front. For each point on this Pareto front it is impossible to find a vector in the

space of the decision variables improving on any of the objectives without deteriorating at least

one of the others. A qualitative example (for two objectives) is shown in Fig. 4.1. The solutions

inside the feasible region F are dominated by those of the Pareto front P . A solution is said to

dominate another one if each of its objective values is better - or at least none is worse - than

those of the other solution. The end points of the Pareto front correspond to decision variables

which globally optimize the respective objective. A solution whose objective values are both
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optimum is shown byO
(
xI
)

in the figure, but it lies in the infeasible region I , i.e., there is no

set of decision variables which produces these values of the objectives.

1

2

Dominated solution

Pareto front (  )

Ideal optimum solution (impossible)

Infeasible region (  )

Figure 4.1: Symbolic representation of solutions in the space of the objectives of a two-objective

optimization problem

More formally, the general multi-objective optimization problem has the following form:

Minimize Om(x), m = 1, 2, . . . , M;

subject to gj(x) ≤ 0, j = 1, 2, . . . , J;

hk(x) = 0, k = 1, 2, . . . , K,

(4.4)

where M is the number of objective functions Om, x is a vector of N decision variables, gj and

hk are constraints. If the original criterion requires maximization it is multiplied by −1 and

minimized.

The values of the objective functions can be represented as points O j = O
(
xj
)

=[
O1
(
xj
)

,O2
(
xj
)

, . . . ,OM
(
xj
)]

in the space O ⊆ RM of the objectives. Different combinations

of the decision variables, i.e. different points xj of the decision space D ⊆ RN , result in differ-

ent vectors O j. We can sort these vectors using the product order ≤p where O(xa) ≤p O(xb)

if and only if Om(xa) ≤ Om(xb), ∀m ∈ {1, 2, . . . , M}. If we denote with F the set of feasible

objective vectors, i.e. those elements Ok ∈ O for which ∃xk ∈ D : O (xk) = Ok, and with P

those elements of F which form the Pareto front, it is certain that P ⊂ F and P can be defined

as
{
O
(
xP
)
∈ P | @O

(
xF
)
∈ F : O

(
xF
)
≤p O

(
xP
)}

. The values xP of the decision variables

whose evaluation of the objective functions belongs to the Pareto front P are the solutions of

the multi-objective optimization problem.

Selecting a single decision variable xPi as preferred solution from the Pareto front requires
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additional knowledge or criteria. Common techniques of preferred solution selection include

the computation of a single scalar objective function from the M different objectives (utility

function approach) so that a single solution is obtained using a single-objective optimization.

Another approach consists of assigning weights to the objectives along the Pareto front and

selecting the proper solution according to the situation. The weights range from 0 to 1 for each

objective, it is up to the designer to select appropriate weights. Finally, we could also select

the point on the Pareto front which is next to the ideal optimum, i.e., has the shortest distance

fromO
(
xI
)

as of Fig. 4.1 [Deb, 2001]. The main disadvantage of the utility function approach

is that the design of the utility function may be arbitrary - and therefore the finally selected

optimum. Basing the decision on an analysis of the Pareto front allows to better understand

the trade-offs involved. The shortest distance from the ideal optimum allows to automatically

and objectively select a solution, whereas the weights approach can be useful for having a

representation of the solutions with their percentage of objective fulfillment and selecting a

value according to current priorities.

4.3.1 Evolutionary multi-objective optimization

Evolutionary algorithms are among the most popular metaheuristic algorithms for solving

multi-objective optimization problems. One of the main reasons is that they can evaluate a

whole population (a population is made of individuals, each representing a decision variable

vector x ∈ D) in a single run of the algorithm, so that it is possible to find several members

of the Pareto optimal set in a single run. Additionally, they are less sensitive to the shape and

continuity of the Pareto front [Coello Coello, 2006]. In the sensor placement problem, a single

individual consists of three coordinates (3D case) per anchor, i.e., 3n variables with n anchors.

Given a population size of 100 individuals and five sensors a single run of the algorithm eval-

uates the fitness of 100 candidates, each consisting of 15 variables.

We have chosen to use the modified version of the NSGA-II algorithm [Deb et al., 2002]

as implemented in the Global Optimization ToolboxTM of Matlab R©. The algorithm is briefly

explained in this section for convenience. The algorithm is based on the computation of how

many individuals dominate each other and identifying the set of individuals which each one

dominates, assigning a nondomination rank to each individual. The nondomination rank and

a measure of the density of individuals surrounding a particular one (crowding distance) are

used to compare individuals with respect to fitness.

The initial population (of size sp) is randomly generated in the decision variable space and

the objective functions are evaluated for each individual x(0)i , where the superscript (0) denotes
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the initial generation and i takes integer values from 1 to sp. Then the nondomination rank

is assigned to each individual. Any individual whose vector of evaluated objectives is not

greater than any other objective vector (in the sense of the above product order) has rank =

1. The ranked individuals are then removed and the product order comparison is performed

again to assign rank = 2. The assignation continues until the whole population is ranked.

Each rank number corresponds to a front and a front of individuals with a given rank will

dominate all fronts associated with a greater rank. The individuals belonging to the same front

are assigned a crowding distance. For each one of the objectives Oj, j = 1, 2, . . . , M, the values

of all individuals i within the front are normalized according to O′j,i =
Oj,i

1+ max
i=1,...,s f

|Oj,i| , where s f is

the number of individuals of the front and j and i are as above. The objectives are then sorted

such that O′j,1 ≤ O
′
j,2 ≤ · · · ≤ O

′
j,s f

. The best and the worst individuals are given an infinite

distance value. The distance of remaining individuals is dcj,i = O′j,i+1 − O
′
j,i−1, where dcj,i is

the crowding distance of the i individual of a front for the objective j. This process is done for

each objective and the dcj,i values for each individuals are added to compute the final crowding

distance dci = ∑M
j=1 dcj,i of individual i.

At the end of the above step we have the ranks and the crowding distances of the initial

population. The first genetic algorithm step where a new population of size sp is created with

crossover and mutated children now takes place. The number of crossover children is nx =

rxsp, where rx is a predefined ratio. The number of mutated children is nm = sp − nx. We need

two parents for each crossover child and only one parent for each mutated child, making the

number of parents np = 2nx + nm. A tournament selection process chooses np parents making

np tournaments among four randomly picked individuals chosen from the current population.

In case that two chosen individuals have equal rank the one with greater crowding distance

is preferred to keep diversity. Crossover children are generated as weighted average of their

respective parents, evaluated in the decision variable domain: x(l)∗i = x(l)i1
+ ρ ◦

(
x(l)i2
− x(l)i1

)
,

where ρ is a vector whose elements are random numbers between 0 and 1, acting as weights in

the crossover process, x(l)∗i is the ith child emerging from the lth generation, x(l)ik
is the kth parent

of the ith child, and ◦ denotes the entry-wise product. Expressed in the decision variables

domain, each crossover child will be inside the hypercube defined by its two parents.

The adaptive feasible mutation method is used for generating nm further children. This

method uses a set of randomly generated directions together with directions parallel to the

boundaries in case the decision variable is near any boundary constraint. This set is randomly

permuted and the variables are moved in the first direction an initial step size, i.e., the step

size is the module of the displacement vector. The feasibility of the movement is checked



Numerical example 45

with the constraints. In case of feasibility the new variable is the mutated child, otherwise the

individual keeps its previous value and the next direction is checked. Subsequent calls to the

mutation function will test the improvement of the current generation in order to decrease the

step size in case there is no improvement. A more detailed explanation of adaptive feasible

mutation can be found in [Kumar, 2010].

At this point we have the old population (lth generation) extended by the newly created

crossover and mutated children. The algorithm will now create the (l + 1)th generation by

selecting sp individuals from this extended population of the lth generation. Therefore, the

fitness of the children is calculated, the old population and the children are merged and the

ranks and crowding distances are computed within this extended population. From the first

front we extract rP sp individuals, where rP indicates the fraction of individuals from the Pareto

front and takes values between 0 and 1. The number of individuals to keep from remaining

fronts (when existing) is chosen with a geometric progression of ratio 0.8, decreasing as long as

the rank increases. The number of individuals to be retained from each front is adjusted in case

there are less individuals than individuals to be retained. The individuals from each front are

sorted by crowding distance and those with the smaller values are removed from being part of

the next population. Since both parents and children are merged before computing rank and

distance and creating the next generation, elitism is present in the sense that parents can also

be part of the population of the following generation.

The steps of evaluation of objectives, ranking, and derivation of a new generation are now

carried out iteratively for several generations. The loop is aborted when the generation number

reaches a predefined threshold G. Finally, the algorithm returns the individuals of the best front

of the last generation. They are the estimate of the Pareto front.

4.4 Numerical example

This section shows simulation results of the sensor placement problem solved with the afore-

mentioned MOEA. First, a single-objective optimization is shown using each of the five scalar

measures introduced in Section 4.2. We show the error ellipses to check the practical meaning

mentioned at Table 4.1. Then, the MOO simulation shows the point cloud of the sensor place-

ment corresponding to a Pareto front for different combinations of two of the five objectives.

We have chosen to show combinations of two objectives so that the Pareto front could be clearly

represented. However, an example with three objectives has been included as well.

We have run simulations for placing five sensors over a squared area of side 3 m. We have

considered an empty area without LOS obstructions so that any sensor can cover almost the
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whole area. Thus, we do not need to take into account neither the number of sensors to de-

ploy nor the necessity of each point in the area to be 3-covered, we will deal with both issues

in the next chapter. We have evaluated a total of uniformly spaced 121 points which have

been equally considered
(
wj = 1

)
, we have also included an example with location dependent

weights in the multi-objective optimization. The GA has been run for 1000 generations, the

values of the different parameters that were mentioned in Section 4.3.1 appear in Table 4.2. The

population size is 15 times the number of decision variables (five sensors with three coordi-

nates, i.e. 15 variables). We have created an initial population placing the five sensors all over

the area dividing the square in five squares of side 1.5 m. One of the squares is centered inside

the original square and the remaining squares are those left by dividing the first area horizon-

tally and vertically, the former square overlaps the other. The first individuals are generated by

randomly placing each of the five sensors in a square of side 1.5 m. This constraint on the initial

population has been made so that we can initially have a deployment layout approaching the

optimum.

Table 4.2: Chosen GA parameters

Parameter Symbol Value

Maximum number of generations G 1000

Population size sp 225

Pareto fraction rP 0.35

Crossover fraction rx 0.8

Restricting the height of the sensors to 2.80 m — since the height of the emitter was fixed to

0.65 m, the difference of the height of the sensors and the emitter is 2.15 m —, the optimization

problem takes the form:

Minimize O (xs) ;

subject to 0 ≤ xi ≤ 3, i = 1, 2, . . . , 5;

0 ≤ yi ≤ 3, i = 1, 2, . . . , 5;

zi = 2.80, i = 1, 2, . . . , 5,

(4.5)

where the decision variable xs is a vector of the sensor positions

xs =
[

x1 y1 z1 . . . x5 y5 z5

]
and the objective vector O will change according to

the objective(s) to be minimized, see Table 4.1 and Eqs. (4.2) and (4.3).

We will not formulate again the RDOA position estimation in this chapter, it has already

been detailed in Chapter 3. The simulations we show are based on the infrared system de-
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scribed in that chapter as well. We use the same parameters for the emitter and receivers that

appear in Table 3.1. In this chapter we will just show how the distance in the xy-plane affects

the deviation of the measurements.

Emitter

Sensor

(a) Infrared emitter-sensor link

(m)

(m
)

(b) Distance measurement deviation vs distance in the xy-plane

Figure 4.2: Noise variance vs distance between sensor and emitter

Figure 4.2a shows a simplified infrared emitter-sensor link. As seen in Eq. (3.1), the power

that reaches the sensor is a function of the distance d and the angle φ. Fixing the height of both

emitter and sensors makes d and φ to be a function of the distance in the xy-plane dxy, since

d =
√

2.152 + d2
xy and tan(φ) =

dxy
2.15 . The parameters of emitter and receivers are constant;
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hence we can express the deviation of the distance measurement σd as a function of dxy in Fig.

4.2b.

In Section 4.2 we talked about the covariance matrix of the estimation Σx̂x̂, which should

not be confused with the covariance matrix of the measurements Σ. The latter is built with

the deviations calculated with the infrared model presented in the corresponding section of

the problem statement chapter 3.1. These deviations are the same that are shown in Fig. 4.2b

as σd. As for the covariance matrix of the estimation which is used to compute the objectives,

we already know that it is bounded by the CRLB when an unbiased estimator is used. We use

the CRLB as the covariance matrix of the estimation to optimize the performance limit of our

system in terms of accuracy. It is computed with the inverse of the FIM using the Jacobian

matrix of the RDOA equations and the covariance matrix of the measurements, as shown in

Eq. (3.21). As stated in Section 3.2, the sensor selected as the reference has not any influence on

the MLE solution, nor does it have on the CRLB. Thus, we still consider that the first sensor x1

is the reference.

4.4.1 Single-objective optimization

The following figures show optimum sensor placement according to different single optimality

criteria. The average trace and determinant solutions are almost the same keeping in mind the

symmetry of the considered area as can be seen in Figs. 4.3 and 4.4.
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Figure 4.3: Optimum sensor placement that optimizes the average trace of the CRLB.

Red squares represent the sensors, whereas blue ellipses are the shape of the error ellipsoid

defined by the CRLB. They are centered in the true values — red cross — of the evaluated
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Figure 4.4: Optimum sensor placement that optimizes the average determinant of the CRLB.

position. For the sake of clarity, we only represent a subset of the evaluated points.

Figure 4.5 shows the solution that optimizes the maximum direction of error that can be

found in the whole ROI; i.e., we do not optimize an averaged value, but an absolute maximum

as in Eq. (4.3). This solution may have a more practical interest when we do not want to focus
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Figure 4.5: Optimum sensor placement that optimizes the absolute maximum eigenvalues of

the CRLB.

on an average accuracy, but we just want to assure that we will not have a deviation above a

given value.
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Figure 4.6 shows the solution that minimizes the maximum-minimum eigenvalue ratio, also

known as the condition number of the CRLB. The figure clearly shows that we should not use
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Figure 4.6: Optimum sensor placement that optimizes the average isotropy.

this metric by itself, since the solution is more isotropic, yet the uncertainty areas are higher

than those of previous solutions. In the next section we will see that the metric is useful when

combined with another in a MOO.

Finally, we show the last of the performance measures in Fig. 4.7. The two parameters we

estimate in the localization problem are the x and y coordinates of the target position. Hence,

when we consider that the vector a of Table 4.1 is any of the vector of the standard basis, we

are optimizing the variance of one of the parameters. We have set a = [1, 0]T in Fig. 4.7a

and a = [0, 1]T in Fig. 4.7b. With this metric we can optimize the error in a given direction,

which is useful in case we know something about the trajectory of the target. Figure 4.8 shows

the optimum sensor placement when the target follows a straight vertical line (x = 1.5). This

example considers different weights for the points that are the candidates of the position of the

target. The points whose x coordinate is 1.5 use a weight of 1 (wj = 1), whereas (wj = 0) for all

the other points. With this placement we could estimate the position of the target and discard

the estimate of the x coordinate, since we already know its value. In case the trajectory is not

a straight line but known, we can use a tangent vector to the trajectory, which will not be the

same for each point of the grid.

It can be seen that the sensor distribution follows a square distribution plus center of mass

(as showed in [Chen et al., 2006]) for the five cases but the distance from the center is different

in each case. It is a good sign the fact that we are getting solutions that resemble those on
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(a) Deviation in the x-axis.
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(b) Deviation in the y-axis.

Figure 4.7: Optimum sensor placement that optimizes the deviation in a given direction.
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Figure 4.8: Optimum sensor placement that optimizes the variance of the y coordinate when

x = 1.5 m.

the state-of-the-art. Increasing the proximity to the center of the area improves the average

circularity throughout the whole area, but it decreases the MSE and the volume of the error

ellipsoid. The maximum eigenvalue has been evaluated for the worst case of the whole area

(Eq. (4.3)), whereas the other objectives were evaluated as an average (Eq. (4.2)) over the ROI.
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4.4.2 Multi-objective optimization

The results of various MOO processes on pairs of criteria are shown and discussed below. Each

of the figures shows potential optimum locations of the sensors on the left and the correspond-

ing points of the Pareto front in the objective domain on the right. Figs. 4.9 to 4.13 should be

read following the color in the Pareto front and locating the five points of the same color in the

point cloud. We have not shown simulation results for the determinant criterion because they

are similar to the ones using the trace.
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(a) Point cloud of sensor deployment
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Figure 4.9: Sensor placement and Pareto front of trace and eigenvalues ratio optimality
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(a) Point cloud of sensor deployment
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Figure 4.10: Sensor placement and Pareto front of trace and maximum eigenvalue optimality

The example of Fig. 4.12 has been obtained using location dependent weights. The lateral

deviation objective is evaluated in a small corridor in the center, where the weights wlat take
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(a) Point cloud of sensor deployment
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Figure 4.11: Sensor placement and Pareto front of maximum eigenvalue and eigenvalues ratio

optimality

the value 1 for 1.2 ≤ x ≤ 1.8 and 0 otherwise. The trace is evaluated with the opposite weights,

i.e. wtr = 1− wlat.
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(a) Point cloud of sensor deployment
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Figure 4.12: Sensor placement and Pareto front using trace (x < 1.2 ∪ x > 1.8) and lateral

deviation (1.2 ≤ x ≤ 1.8) criteria

Studying the Pareto front allows the selection of a configuration that provides the differ-

ent performance measures throughout the covered area. The selection of the desired solution

should be made by considering the specific case under study, e.g. if we are trying to locate a

mobile in a tunnel or corridor we might not be interested in getting a circular error bound but

the minimum uncertainty in a specific direction. Fig. 4.9 shows that when minimizing the MSE

over the entire area we would obtain a sensor distribution that provides highly anisotropic un-
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certainties (variance is three times larger in direction of maximum uncertainty than in direction

of minimum uncertainty, see point 1 in Fig. 4.9b). However, descending along the Pareto front

from the position of minimum MSE or determinant we reach with only a small deterioration

of MSE a sensor distribution yielding a ratio of maximum and minimum eigenvalues of 2.4,

(point 2 in Fig. 4.9b), i.e. we find a solution which is only very slightly less optimum with

respect to MSE but much better in terms of isotropy. Figs. 4.10 and 4.11 use the maximum

eigenvalue for optimization, trying to reduce the maximum uncertainty in any point of the cell

(the worst case). This measure avoids the potential problem of low errors in some parts of the

ROI masking greater errors in other parts of the region. Fig. 4.11 shows that the spread of the

eigenvalues can be reduced from 2.4 to 2.25 while keeping the maximum eigenvalue almost

constant.

The last simulation shows a case with three objectives in Fig. 4.13.
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(a) Point cloud of sensor deployment
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Figure 4.13: Sensor placement and Pareto front of trace, eigenvalues ratio, and maximum eigen-

value

Finally, after obtaining the Pareto front and its corresponding sensor distributions we have

to make the final decision and pick a single solution. This decision requires a high level knowl-

edge of the final application and is left to the localization infrastructure designer.

Before concluding this section, we would like to comment a possible application of this

approach apart from providing more information about the error ellipsoids. As we concluded

in Section 3.3.3 of Chapter 3, we can deploy sensors so that the solution provided by NLS

without using the noise of the measurements is improved. As we said, NLS considers that each

observation has the same importance. We can reach this situation if we deploy the sensors so

that each observation has the same standard deviation and the noise of the reference is low.
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Intuitively, we can get this situation using the results of Fig. 4.9, where we optimized the MSE

and the ratio of eigenvalues of the CRLB. The observations of RDOA are hyperbolae, and they

contribute almost equally to the estimated position when the error ellipsoid is almost circular.

The results of Fig. 4.9 allow us to select sets of sensors that improve the circularity of the error

ellipsoid while keeping the MSE to a minimum. Testing these results with NLS using Eq. (3.11)

and 1000 Monte Carlo runs, considering the placement proposed in [Martin-Gorostiza, 2011]

and [Chen et al., 2006] as well, we find the results of Fig. 4.14.
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Figure 4.14: Optimum placement that optimizes the RMSE with NLS.

Table 4.3 shows the 2DRMS values of each configuration. The improvement of the best

solution over the usual configuration of four sensors in the corners and one in the center is

significant. We can improve the localization performance by almost 16 %. The improvement

over the solution that optimizes the trace of the CRLB is about 6 %.

Table 4.3: Comparison of the 2DRMS attainable by each configuration

Configuration Averaged 2DRMS (m)

Corners and center 0.0081

Optimum trace of CRLB 0.0072

Best solution 0.0068

The low values — though within the expected range — of Table 4.3 are caused by the values

of the infrared system parameters of Table 3.1, which provide the standard deviation of the

distance measurement presented in Fig. 4.2b. We have run the same test lowering the intensity

of the emitter to 10 mW
Sr and the modulation frequency to 4 MHz. The results obtained are 10

times higher than those that are given in Table 4.3; hence, we have an improvement of more

than a centimeter.
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4.5 Obtaining a metric with prior information

We consider the case of a target moving in a 2D Cartesian coordinate system with a dynamic

white noise acceleration model, where the velocity is constant except for a noise term [Zuo

et al., 2007]. The next state at time tk+1 is evolved from the state at tk according to

xk+1 = Fxk + vk, (4.6)

where xk =
[

xk ẋk yk ẏk

]T
and vk ∼ N (0, Q), which denotes a normal distribution with

zero mean and covariance matrix Q. xk and yk are the target positions and ẋk and ẏk denote its

velocities at instant tk. Using a sampling time T, F and Q take the form:

F =


1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

 , (4.7)

Q = q0


T3

3
T2

2 0 0
T2

2 T 0 0

0 0 T3

3
T2

2

0 0 T2

2 T

 , (4.8)

where q0 is the power spectral density of the process noise.

The measurement model of range-difference of arrival (RDOA) estimation for a pair of sen-

sors i and j is

ri,j
k = h (xk) + wi,j

k =
∥∥∥xP

k − si
∥∥∥− ∥∥∥xP

k − sj
∥∥∥+ wi,j

k . (4.9)

xP
k is the position vector of the target. Only the x and y components are part of the target state

xk, whereas the z coordinate is assumed to be constant, i.e. zk = Z, ∀k: xP
k =

[
xk yk Z

]T
. s

is the position vector of a sensor, wi,j
k ∼ N

(
0,
(
σi

k

)2
+
(

σ
j
k

)2
)

, and σ is the standard deviation

of the measurement of a sensor. Having N sensors we can use one of them as a reference

(sensor r). Pairing it with the remaining N − 1 sensors we obtain the RDOA measurement

vector rk =
[
r1,r

k , r2,r
k , · · · , rN−1,r

k

]T
.

The posterior Cramér-Rao lower bound (PCRLB) [Tichavský et al., 1998] is recursively

computed for the following state with the inverse of the posterior Fisher information matrix

Mk+1,k+1 [Trees et al., 2006] as in Eq. (4.10). The latter consists of a data matrix, which is the

standard Fisher information matrix evaluated at tk+1, and a prior matrix Mk+1,k (4.11).

Mk+1,k+1 = Mk+1,k + JT
k+1Σ−1

k+1Jk+1 (4.10)
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Mk+1,k =
(

FM−1
k,k FT + Q

)−1
(4.11)

P0,0 = M−1
0,0 must be known based on prior target information. Eqs. (4.12) and (4.13) show,

respectively, the Jacobian matrix Jk of rk and the covariance of the RDOA measurements Σk.

Jk ,
∂rk

∂xT
k
=



xk−x1

d1
k
− xk−xr

dr
k

0 yk−y1

d1
k
− yk−yr

dr
k

0

xk−x2

d2
k
− xk−xr

dr
k

0 yk−y2

d2
k
− yk−yr

dr
k

0
...

...
...

...
xk−xN−1

dN−1
k

− xk−xr

dr
k

0 yk−yN−1

dN−1
k

− yk−yr

dr
k

0


(4.12)

di
k is the 3D euclidean distance between the target at tk and sensor i, i.e. di

k =
∥∥xP

k − si
∥∥.

Σk =



(
σ1

k
)2

+
(
σr

k
)2 (

σr
k
)2 · · ·

(
σr

k
)2(

σr
k
)2 (

σ2
k
)2

+
(
σr

k
)2 · · ·

...
...

. . . . . .
...(

σr
k
)2 · · · · · ·

(
σN−1

k

)2
+
(
σr

k
)2


(4.13)

The objective of our study is to minimize a scalar value related to the inaccuracy of the

estimate of the position of the moving target. We can get the MSE of the estimate using Pk,k =

M−1
k,k and adding the components for the x and y coordinates. Finally, we obtain an accuracy

metric for the state estimation of a single trajectory averaging for the whole set of instants TMSE

TMSE =
∑K

k=1

(
(Pk,k)1,1 + (Pk,k)3,3

)
K

, (4.14)

where K is the last instant.

4.6 Conclusions

We have presented an optimization of the placement of sensors for target localization consider-

ing several performance measures of the CRLB. We have seen that there is a trade-off between

most of these metrics for our particular case. The performance of the unweighted least squares

solution has also been improved by optimizing the obtainable RMSE and the isotropy of the

solution of the localization problem as well. Our results are sets of Pareto optimal solutions

that can be checked by the resource manager to select a desire performance according to the

current needs. We can also use the deployment patterns that we obtained — the point clouds

— for different values of the objective functions to generate trajectories for the sensors — in

case they can be in motion. This approach results in a mobile positioning system whose sen-

sors can be rearranged according to the desired criteria and the estimated position of the target.
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The optimization of these metrics was suggested as future work by [Yang et al., 2012], but the

effect that a solution that optimizes only one criterion can have on the other was never shown.

Analyzing the Pareto front in both spaces (decision variables and objectives) we have a total

overview of the solutions together with the values of the objectives, as we can see in the fig-

ures of Section 4.4. The other approaches that obtain a single solution would have needed to

apply some weights to compute a single objective function, losing all the information that we

have with the Pareto front. Regarding the application field of this proposal, it can be applied

to any localization system based on range-difference measurements. Adapting the method to

other kind of measurements should be easy. The strengths of the proposed methods can be

summarized as follows: We have proposed a sensor placement method that is based on a well

known multi-objective optimization algorithm, hence it can be easily implemented since it is

included in most open and commercial software for numerical analysis. We have already stated

how optimizing a single accuracy criterion may lead to sub-optimal solutions, e.g. minimizing

the volume of the error ellipsoids may lead to elongated ellipsoids with an unacceptable error

in the major axis direction. On the other hand, focusing only on finding solutions whose er-

ror ellipsoids axes are equal may lead to a higher MSE than optimizing the length of the axis.

Combining the two objectives and obtaining the Pareto front we can get a full set of Pareto effi-

cient solutions. The human expert can check these solutions and select one of them according

to the current needs of the system. We avoid computing derivatives of the objective functions

by using a genetic algorithm, thus we do not need to simplify the problem finding tractable

mathematical expressions. Finally, we do not limit our final solutions to a subset of grid points

that were decided before solving the problem.

The next steps of this work are presented in the next chapter and involve its extension to

sensor placement in complex zones. These new ROIs may have obstacles that cause occlusions

on some sensors so that we have to take care of the coverage. At first, we do not know how

many sensors should we use to properly cover a complex ROI. We will include mutation opera-

tors that alter the number of sensors of a set. Using more sensors will increase the accuracy and

coverage in the area, or at least it will not reduce it. In order to look for an optimum number

of deployed sensors we need to define a metric that evaluates the difference of the objective

functions as well as the drawbacks of including more sensors, i.e. the increase of computa-

tional cost, energy consumption, and cost of the whole system. For the time being we will just

consider the amount of sensors as another objective to be minimized.



Chapter 5

Optimization of the coverage and

accuracy of an indoor positioning

system with a variable number of

sensors

This chapter describes the second contribution of this thesis, which extends the methods ap-

plied in Chapter 4 to situations where the number of sensors is not fixed and there are obstacles

in the ROI that cause occlusions. Main results were published in [Domingo-Perez et al., 2016a],

whereas prior work appeared in [Domingo-Perez et al., 2014]. The chapter is organized as

follows. We introduce the topic in Section 5.1. The problem of sensor placement considering

accuracy and coverage objectives is introduced in Section 5.2. Section 5.3 explains our pro-

posed algorithm to deal with the problem after highlighting the drawbacks of the algorithm

previously used. Results are shown in Section 5.4. Finally, we draw conclusions in Section 5.5.

5.1 Introduction

We apply again evolutionary multi-objective optimization (EMO) to obtain the optimum sen-

sor placement in this chapter. Inspired by [Chaudhry et al., 2011], we have adapted the well

known NSGA-II [Deb et al., 2002] to solve the sensor placement problem for target localiza-

tion. This chapter continues our work of Chapter 4, where we used a standard multi-objective

genetic algorithm to place sensors considering multiple criteria. In that chapter, we placed a

fixed number of sensors for localization with range-difference measurements while consider-

ing several criteria related to accuracy. However, the shape of the ROI was very simple and

59
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each sensor could almost cover the whole area. When introducing obstacles that cause occlu-

sions to the sensors, we do not know a priori how many sensors should we deploy. Hence, it

would be a good idea to obtain Pareto fronts with the trade-off between accuracy, coverage,

and amount of sensors.

This contribution introduces the problems that appear when applying the algorithm with-

out modifications considering a variable number of sensors. When the number of sensors of

different sets is not fixed to a single constant, the population has individuals with different

sizes. The amount of sensors is now an objective to be minimized, but we also have the prob-

lem of performing genetic operators that involve individuals of different size. We will also see

that the obtained Pareto front is biased toward the solutions with lower number of sensors.

Because of these reasons, we opt to modify the original NSGA-II adding speciation and evolv-

ing subpopulations according to the size of different sensor sets. Results show a considerable

improvement over standard NSGA-II. Overall, we can summarize the global advantages of our

work compared to those contributions in optimum sensor placement for target localization:

• The multi-objective optimization of different metrics from the CRLB. Most of the related

proposals deal with the determinant of the FIM. This metric is related to the volume of the

error ellipsoid. However, an elongated ellipsoid may result in a small volume, whereas

the error in the major axis is high.

• We do not constrain the position of the sensors.

• The consideration of obstacles that can cause occlusions to NLOS sensors. We must there-

fore maximize the coverage of the ROI.

• The number of sensors can vary within an interval. Searching solutions with high accu-

racy but a low amount of sensors is also an objective.

• Since we optimize conflicting objectives, we obtain a set of Pareto optimal solutions. We

find this to be the greatest advantage of multi-objective optimization, since we obtain

every optimal solution and know the values of the objectives. This information can be

used by the resource manager according to the current needs and availability. To the best

of our knowledge, there are not any other researchers that address the sensor placement

problem for localization this way. A comprehensive review of multi-objective optimiza-

tion applied to sensor networks was recently published [Iqbal et al., 2015]. Most of the

approaches referenced in the survey focus on sensor deployment for optimizing coverage

and energy management, and those that deal with target tracking just address the sensor

scheduling problem [Cao et al., 2013; Hu et al., 2013]. MOO was used in [Laguna et al.,
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2009] to obtain the optimal layout of beacons in an IPS. However, the accuracy metric

was very simple — DOP — and does not provide much information about the position

error. The other objectives are mostly similar to ours, namely, the amount of sensors and

the amount of area which is not covered by the IPS.

5.2 Problem statement

In order to obtain an optimum sensor deployment scheme, we focus on three design criteria,

namely, number of sensors, accuracy, and coverage. We aim to develop an algorithm that

automatically finds optimal deployment patterns that minimize the number of sensors in use

and the uncertainty of the target position estimation while maximizing the coverage. There is

obviously a trade-off among these criteria, since the accuracy and coverage improve as long

as the number of sensors increases. Different accuracy measures are also in conflict with each

other. Thus, we do not obtain a single optimum solution, but a set of optimal solutions, the

so-called PF. Selecting one of these Pareto-optimal solutions involves the application of high-

level criteria. The advantage of finding the Pareto front of the sensor deployment problem

is the fact that the resource manager knows every possible solution; therefore, he can select

one of them according to the current needs or the availability of resources. To summarize, we

will use the algorithm presented in Section 5.3 to solve a multi-objective optimization problem.

The objectives under consideration are described in this section. The decision variables are

the coordinates of the sensors. The amount of decision variables changes according to the

number of sensors. Since the sensors cannot be deployed out of the ROI or within obstacles,

our constraints are these boundaries. The last constraint is the amount of sensors, which is

given by two values representing the minimum and the maximum number. We detail the

actual parameters of the problem at the beginning of each example of Section 5.4.

5.2.1 Accuracy objectives

We use again performance metrics of the CRLB as described in Section 4.2, so we will not

repeat them again. In order to keep it simple, we consider in this chapter only the trace —

MSE — and the circularity measure of the CRLB. The two metrics are denoted by fMSE and

fcirc, respectively. Equations (5.1) and (5.2) show their computation, where operator eig(·) is

the vector of eigenvalues of its argument.

fMSE = ∑ eig(I−1) (5.1)
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fcirc =
max

(
eig(I−1)

)
min

(
eig(I−1)

) (5.2)

The eigenvalues of a covariance matrix are proportional to the length of the axes of the ellip-

soid. Equation (5.1) is equivalent to the trace of I−1, which is the MSE. Dividing the maximum

eigenvalue by the minimum provides a measure of the circularity — see Equation (5.2). The

goal is to keep fcirc as close to one as possible, without incrementing the value given by fMSE.

After defining the ROI where the localization of the target takes place, we select P test points

as candidates for the true localization of the target. A regular square or cubic grid is considered

for obtaining these points. After obtaining the P evaluations of the performance measures, we

need a scalar value related to the evaluation of the metric for the whole region. According to

the requirements of the resource manager, it could be interesting to focus on the worst case or

on the average uncertainty of the region. In the previous chapter we considered both metrics;

however, in these examples we will only optimize the average uncertainty favg in a ROI as

expressed in Eq. (5.3).

favg =
∑P

j=1
(
wj fmetric

)
∑P

j=1 wj
(5.3)

The function fmetric could be any of Eqs. (5.1) and (5.2). The weights wj j = 1, 2, . . . , P, take

real values between 0 and 1 to vary the priority given to different zones. Note that when NLOS

conditions are present, we replace P with the amount of points which are covered. Hence,

non-covered positions do not affect the accuracy metrics.

5.2.2 Coverage objective

The indoor positioning system should be able to provide the localization of a target in any part

of the ROI. When estimating a 2D position with RDOA, it is necessary to acquire at least two

range-difference measurements that provide two intersecting hyperbolae. Thus, we need at

least three distance measurements to perform localization. The target must therefore be within

the scope of at least three sensors, only when this condition is satisfied the target is considered

to be 3-covered. To ensure a high degree of coverage for localization we need to optimize the

k-coverage of the ROI, where k = 3 in 2D localization and k = 4 in a 3D scenario. We consider

that a point of the ROI is covered by a sensor if the point has a LOS connection with the sensor,

and we denote with Pk the number of points of the grid that are k-covered. Maximizing the

division of this number by the total amount of test points P increases the percentage of the ROI

which is k-covered:
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fk−cov =
Pk

P
(5.4)

We should clarify that we only consider that a point is covered by a sensor if there is a LOS

connection between the point and the sensor. Of course, the sensor will not detect anything if

its distance to the target is sufficiently high. In our prior work published in [Domingo-Perez

et al., 2014], we considered a coverage radius after selecting a desired deviation of the distance

measurement from Fig. 4.2b. For the sake of simplicity, we will not do it here. However, it

will not have any influence on the solution since sensors which are far from the target will not

contribute to the MLE solution as seen in Chapter 3. The coverage radius can also be used to

calculate the minimum number of sensors so that the area is covered. In [Domingo-Perez et al.,

2014] we used the approach described in [Li and Kao, 2010]. A fraction of the coverage radius

rc is used to reduce the k-coverage problem to k = 1. Finally, the minimum number of sensors

that cover a surface of area A is given by Nk
min = 4Ak

3πr2
c
. This approach considers that the area

covered by a sensor is a circle of radius rc and approximate it to an hexagon. This method can

be useful to determine the range of the number of sensors that it considered by our algorithm

in case we want to assure a full coverage.

5.3 Proposed algorithm

At the beginning of this section we describe the problems that we have encountered when

applying NSGA-II to the sensor placement problem. Then we introduce and justify the modifi-

cations that we propose for NSGA-II. We have used the DEAP framework available for Python

[Fortin et al., 2012] to implement an evolutionary algorithm based on NSGA-II and to obtain

the results that we present in Section 5.4.

NSGA-II starts ranking the population and assigning the crowding distance to the indi-

viduals. The algorithm compares the values that the individuals achieve after evaluating the

objectives. An individual dominates another individual if all the evaluated objectives of the

former are better than those of the latter. Individuals that are not dominated by any other indi-

vidual belong to the first front, which is called the PF. Individuals that are only dominated by

those individuals of the PF are assigned to the second front, and so on. Once the population

is ranked, the crowding distance is computed for each individual of a same front. The crowd-

ing distance is an estimation of the perimeter of the cuboid formed by an individual and its

immediate neighbours of the front in the objective space. Among the individuals of the same

front, NSGA-II prefers those with a higher crowding distance so as to keep diversity within

the population. After the assignation of non-dominance and crowding distance, the algorithm
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continues with the usual steps of a genetic algorithm (GA), namely, selection, crossover, and

mutation. When selecting the parents, the individuals compete in a tournament selection. The

algorithm selects the individual of the lowest front. In case they belong to the same front, the

individual whose crowding distance has a higher value is preferred. Crossover and mutation

operators create a new offspring population, which is merged with the original population. Fi-

nally, this bigger population is reduced to the size of the original population after reassigning

non-dominance and crowding distance. The reader can go deeper into NSGA-II through the

aforementioned work [Deb et al., 2002].

In [Domingo-Perez et al., 2016b] we used the algorithm out-of-the-box as it is implemented

in MATLAB for deploying a fixed number of anchor nodes. The obtained results were satisfac-

tory; however, when applying the algorithm for deploying a variable number of anchor nodes

we do not obtain a full PF. We should be able to obtain the same solutions that we would get

running the algorithm for different fixed numbers of anchor nodes independently. Of course,

the algorithm must discard those solutions that achieve a lower accuracy even though their

number of sensors is higher. After running NSGA-II for deploying 3 to 8 sensors in a regular

square, the obtained solutions are biased towards the lowest number of sensors. Figure 5.1 is

useful for explaining this tendency.
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Figure 5.1: Pareto fronts of two uncertainty metrics for different numbers of anchor nodes

Figure 5.1 shows the PFs for different number of sensors after optimizing the MSE and the

spread of the error ellipsoids. The solutions have been obtained with independent runs of
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NSGA-II varying the number of sensors. Since each PF has the same number of points, it can

be seen that the crowding distance of solutions with 3 sensors will be higher. The tournament

selection of NSGA-II uses the crowding distance as a mechanism to keep the variety of the

individuals within the population. It is well known that for many-objective optimization the

solution’s convergence of NSGA-II is usually biased and some researchers have proposed some

mechanisms for diversity management [Adra and Fleming, 2011; Deb and Jain, 2014]. Among

those mechanisms, evolving multiple subpopulations independently allows keeping diversity

and improves the performance of the evolutionary algorithm [Garza-Fabre et al., 2011], this

process is known as speciation or niching. After analyzing Fig. 5.1, it is evident that there is

a wide gap in the fitness landscape according to the number of sensors. Taking this issue into

account, it seems to be a good idea to consider that those topologies with the same number of

sensors belong to the same species. Additionally, we use the coordinates of the anchors with

real numbers as chromosomes; hence, crossover operations between individuals with different

number of sensors become cumbersome and that is another reason for speciation. We also have

the benefit of being able to generate new topologies using structural mutation and migration,

so that a topology formed after adding or removing a sensor competes with other topologies

of the same number of sensors. We took this idea from [Chaudhry et al., 2011], where authors

deploy a wireless sensor network optimizing coverage, connectivity, and energy. However,

they do not focus on accuracy.

Figure 5.2 provides a general overview of the proposed GA. The algorithm starts creating

S subpopulations SPk with the same size Sp. The index k of the subpopulations takes values

in the range [1, S]. The minimum and maximum number of sensors are constant and belong

to SP1 and SPS, respectively. The individuals of SP2 have exactly one more sensor than SP1,

and so on. The independent evolution of species also allows us to parallelize the creation and

evolution processes. To summarize, the proposed GA is a basic NSGA-II where the population

is split by the number of sensors. The subpopulations evolve concurrently, and it is possible

that the amount of sensors varies due to the mutation operator. A structural mutation involves

the addition or removal of a sensor. In case this happens to an individual of SPk, a migration

process moves the individual to SPk+1 if addition, or to SPk−1 when a sensor is removed. Each

subpopulation undergoes four states during an iteration of the GA:

• SPk: initial population. Population size: Sp.

• SP∗k : evolved population, the initial population and its offspring. It can contain individu-

als with different number of sensors. Population size: 2Sp.

• SP∗∗k : evolved population without individuals with different number of sensors. Popula-
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tion size varies among subpopulations.

• Trimmed SP∗∗k : best individuals of SP∗∗k according to NSGA-II selection; i.e., non-

dominance rank and crowding distance. It becomes the initial population in the next

GA iteration. The size of the population is Sp.

We only evaluate the objectives — and assign ranks and crowding distances — of the indi-

viduals after creating the initial population and at the beginning of the trimming step. Once

the algorithm has iterated over G generations, the resulting subpopulations are merged and the

algorithm returns the PF. We do not consider the number of sensors as an objective during the

GA iterations. However, after merging all the subpopulations we perform another NSGA-II

selection operation including the number of sensors as a function to be minimized. This allows

the algorithm to discard those solutions that achieve lower accuracy and coverage with more

sensors; since they can be dominated by some individuals of species with a lower index.

Finally, we describe the genetic operators that we use to create the offspring population.

The remaining aspects of the GA are common or should have already been clarified. Since the

beginning of the evolution step and just before the migration process we apply a sequence of

four genetic operators to the individuals of each subpopulation:

• Selection: tournament selection of two individuals. It selects Sp individuals, which will

be the parents of the offspring subpopulation. Two individuals are picked randomly

among the initial subpopulation. The method checks first the non-dominance rank of

each individual and selects the best one, in case they belong to the same front it chooses

the one with the higher crowding distance.

• Crossover: blend crossover. For each consecutive pair of two parents (pi and pi+1) of the

list given by the previous step there is an rx chance of generating two new individuals

(ci and ci+1) that replace the parents, otherwise they remain unchanged. Equation (5.5)

gives the new individuals:

ci = (1− α) ◦ pi + α ◦ pi+1

ci+1 = α ◦ pi + (1− α) ◦ pi+1

(5.5)

In our case, c and p are the coordinates of each sensor of the individual in a consecutive

array. The variable α is a vector of random elements with the same length of p and it

takes random values in the range [−1, 2]. The operator ◦ is the Hadamard (element-wise)

product. The offspring can therefore be in the expanded cuboid formed by the parents.

In case any sensor falls into any obstacle the algorithm sends them to the nearer corner

so that they cover a bigger space without altering their position too much.
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• Mutation: Gaussian mutation. There is an rm chance that an individual undergoes muta-

tion. If mutated, a random variable v ∼ (µm, σm) is added to each gene of the individual;

i.e., to a coordinate. We perform again the same procedure if the sensor falls into an

obstacle.

• Structural mutation: at a given chance rs a sensor can be added to or removed from

the individual. If the individual belongs to the first or last subpopulation we can only

add or delete a sensor, respectively; otherwise the operation is randomly selected. When

deleting, we compute the number of sensors that are LOS with each other and delete the

sensor with the higher value. When there are two or more sensors with the same number

of LOS sensors we compute the sum of the distance from each one of these sensors to

its LOS neighbors. The sensor with the lower value is then removed. The sensor which

is nearer to the others should be the sensor that adds less information, since very close

sensors result in almost overlapping hyperboloids. This deletion mutation allows us to

obtain a sensor placement scheme with less sensors without sacrificing a good deal of

accuracy and coverage. On the other hand, when adding a new sensor we compute the

k-coverage level for each grid point. We place the sensor in the point of the grid with the

lowest k-coverage level; in case two or more grid points share the same value, we choose

the one with the higher sum of the distances from the grid point to its LOS sensors.

5.4 Numerical example

We use the distance measurement model of an infrared system to get the covariance matrix of

the observations. As was shown in Figure 4.2a, the emitter moves along the xy-plane, while the

height between emitter and sensor is constant. The distance error is a function of the distance

between emitter and sensor d =
√

d2
xy + 2.152 as well as the angle of incidence φ = atan

(
dxy
2.15

)
.

We will not repeat the other constant parameters that model the system, which can be found

in the papers that describe it [Martin-Gorostiza, 2011; Martin-Gorostiza et al., 2014]. Finally,

Fig. 4.2b showed the evolution of the standard deviation of the distance measurement error σd

versus the distance in the xy-plane dxy. Since we know the height of the emitter, we perform 2D

localization in the horizontal plane.

We use the same probabilities for the genetic operators during the simulations that appear

in the following subsections. Table 5.1 shows these values.

After each test, we provide the average execution time of each iteration of the algorithm.

The code has been run in an Intel R© CoreTM i7-4712MQ mobile processor with 8GB RAM DDR3
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Figure 5.2: Proposed GA

1333 MHz.

Putting it all together, we define a model of the ROI and a grid of points, which are the can-

didates for the location of the target. Our approach evaluates the objectives using these points

as the position of the target and then it obtains a metric related to the whole area (e.g., the aver-

age accuracy). The algorithm starts generating a random population — sets of sensors placed in

the ROI — and evaluating the objective functions for each individual. To compute the accuracy

metrics, which are based on CRLB, we use the infrared model to obtain the covariance of the

distance measurements and get the value of CRLB. After evaluating the population, the algo-

rithm starts iterating until a given number of generations is reached. Finally, it returns the PF.
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Table 5.1: Probabilities of the genetic operators

operator Symbol Probability

Crossover rx 0.80

Mutation rm 0.10

Structural mutation rs 0.05

5.4.1 LOS sensors

These results show the Pareto front for a sensor placement case when there is always a LOS path

between the emitter and the sensors. It is the same case studied in [Domingo-Perez et al., 2016b]

without fixing the number of sensors to a scalar constant. We consider six subpopulations and

the amount of sensors varies in the range 3–8. Each subpopulation contains 100 individuals.

The ROI is a 9 m2 regular square and we evaluate 121 positions regularly separated by 3 cm and

equally weighted. The Pareto front with NSGA-II has been obtained with a population of 600

individuals, where only individuals with the same number of sensors can perform crossover.

We have run the algorithm for 2000 generations. The average time per iteration of the algorithm

was 12 s. Figure 5.3 evidences the benefits and necessity of speciation.

The Pareto front has been split in six graphs according to the number of sensors. Each al-

gorithm returns the same amount of Pareto solutions. As stated above, the solutions obtained

with NSGA-II tend to the lowest amount of sensors, whereas the proposed algorithm can con-

trol the amount of solutions of each subpopulation. Hence, it converges to a Pareto front closed

to that of Figure 5.1. Table 5.2 concludes this case study by providing a comparison of both

algorithms.

5.4.2 Occluded sensors

This section shows the application of the algorithm for the same cases of [Domingo-Perez et al.,

2014]. In that paper the standard NSGA-II did not converge to a smooth Pareto front. In

addition, it can be seen that many solutions provide a high position error. The new algorithm

provides a better convergence, as can be seen in the following results. We include a comparison

with random deployment to show the benefits of using a deployment algorithm. The values of

the objectives with random deployment have been obtained averaging 50 random sensor sets

for each number of sensors. Instead of considering a coverage radius, we consider that a point

is in the scope of a sensor if there is a straight line that joins them without crossing any obstacle.

The degradation of the accuracy in points which are not near a sensor is taken into account in
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Figure 5.3: Comparison of Pareto fronts with NSGA-II and the proposed algorithm

the measurement error model, as was shown in Figure 4.2b.

Case 1: one obstacle

This case study focuses on the placement of 5 to 12 sensors in a 25 m2 regular square with

an obstacle in the center. The obstacle is a 1 m2 square column. We evaluate a total of 112

grid points which are regularly separated by 0.5 m and equally weighted. The objectives to be

optimized are the averaged trace of the CRLB and the percentage of the points which are at
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Table 5.2: Extreme values of the Pareto fronts with NSGA-II and the proposed algorithm

Algorithm
Amount of

Sensors

Amount of

Solutions

Lowest CRLB

Trace (m2)

Lowest Ratio of

Eigenvalues

NSGA-II

3 573 4.4085e-5 2.0723

4 9 1.7882e-5 2.4111

5 3 8.2704e-6 2.6833

6 7 5.2845e-6 1.997

7 4 4.117e-6 1.8098

8 4 3.3222e-6 1.5838

Proposed

algorithm

3 100 4.4083e-5 2.0397

4 100 1.3753e-6 2.2331

5 100 7.8631e-6 1.9624

6 100 5.2156e-6 1.9014

7 100 4.0213e-6 1.7361

8 100 3.3117e-6 1.5749

least 3-covered. Each subpopulation contains 100 individuals and the algorithm was run for

2000 generations. Each iteration of the algorithm took 55 s on average. Figure 5.4 shows some

Pareto optimal solutions, and a comparison of our algorithm with random deployment can be

seen in Table 5.3.

Our algorithm outperforms random deployment considerably, and the lower the number of

sensors the higher the evidence. The higher coverage is achieved with any amount of sensors.

With a low number of sensors and the presence of occlusions it may easily happen that some

points of the ROI are only in the scope of collinear sensors. In case this happens, the accuracy

of the target localization in these points will be very poor — see Table 5.3, five sensors with

random deployment. As shown in Figure 5.4, the symmetry of the solutions is also a good

indicator of the algorithm’s performance.

Case 2: two obstacles

In this example we place 5 to 15 sensors in a room with the same shape considering the presence

of two obstacles. The obstacles are again 1 m2 square columns, their center points are [1.25, 2.5]

and [3.75, 2.5]. The subpopulations can contain 20 individuals. The algorithm has been run

for 1000 generations and each iteration took 30 s on average. Figure 5.5 shows some Pareto
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Figure 5.4: Some optimal configurations found by the proposed algorithm when deploying 5

to 12 sensors with an obstacle in the center. The whole ROI is at least 3-covered in all cases.

optimal solutions. The full coverage is not always achieved with the best accuracy and we

show the extreme solutions of the Pareto front in these cases. When the solution with the best

accuracy provides full coverage the Pareto front is made of a single solution and there is no

actual trade-off. The configurations show a certain degree of symmetry, some basic shapes can

also be recognized. Table 5.4 provides a comparison with random deployment. We only show

the worst values of the Pareto front for each objective, the improvement is evident.

Finally, after analyzing these solutions, it can be seen that sensors are usually placed near

the boundaries of the 5 × 5 m square and the obstacles. We can consider an intuitive approach

that places sensors in these boundaries regularly. However, this solution has probably the high-

est target-sensor distance; hence, it would be a good solution when the error due to distance

between sensor and target is low or negligible. We must also take into account the fact that the

area covered by a sensor decreases when the sensors are placed in the boundaries of obstacles.
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Table 5.3: Comparison of the Pareto optimal solutions obtained by the proposed algorithm and

random deployment for the case with one obstacle. The values for random deployment have

been obtained averaging 50 random placed sets of sensors for each amount of sensors.

Amount of Sensors
Proposed Algorithm Random Deployment

CRLB Trace (m2) Coverage CRLB Trace (m2) Coverage

5 9.5475e-5 1 2.1418 0.9116

6 4.1925e-5 1 0.5002 0.9552

7 2.1706e-5 1 0.5471 0.992

8 1.2324e-5 1 0.0382 0.9875

9 9.4244e-6 1 2.3467e-4 0.9989

10 6.9933e-6 1 1.5574e-4 0.9989

11 5.7051e-6 1 1.1498e-4 0.9996

12 4.7841e-6 1 6.4065e-4 0.9998

Nevertheless, we have evaluated this intuitive solution for the cases of one and two obstacles.

We have placed sensors in the corners (internal and external squares, 8 sensors for the first case

and 12 sensors for the second). Placing 8 sensors in the corners of the one obstacle case pro-

vides an average CRLB trace of 4.595e-5 m2. Comparing this value with Table 5.3 it can be seen

that we obtain a better accuracy with 6 sensors. When we place 12 sensors in the corners of the

case with 2 obstacles we get an accuracy of 1.533e-5 m2, which can be improved with 9 sensors

according to Table 5.4. Anyway, this intuitive solution could also be a good starting point for

generating the first population.

5.5 Conclusions

This chapter has presented a MOEA for deploying a variable number of sensors for RDOA

localization. Our results have shown a great improvement over random deployment in some

NLOS scenarios, which is singularity-prone in complex scenarios. We have used speciation

and structural mutations on NSGA-II, which is included in most standard libraries. Using this

approach we have avoided obtaining a solution which is biased towards the lowest number of

sensors. The algorithm should therefore be easy to implement modifying these libraries. We

have applied it on an infrared RDOA positioning system with a fairly complex measurement

noise model. Additionally, using RDOA implies that the covariance matrix of the observations
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Figure 5.5: Some optimal configurations found by the proposed algorithm when deploying 5

to 15 sensors with two obstacles. The first three figures show optimum coverage and accuracy

deployment, whereas the two objectives are simultaneously optimized in the other cases.
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Table 5.4: Comparison of the worst Pareto values obtained by the proposed algorithm and

random deployment for the case with two obstacles. The values for random deployment have

been obtained averaging 50 random placed sets of sensors for each amount of sensors.

Amount of Sensors

Worst Pareto Values

with Proposed Algorithm
Random Deployment

CRLB Trace (m2) Coverage CRLB Trace (m2) Coverage

5 2.0486e-4 0.7523 0.2175 0.7593

6 9.2725e-5 0.9817 0.5072 0.8930

7 3.2163e-5 0.9817 0.0178 0.9349

8 1.5879e-5 1 0.0123 0.9624

9 1.2524e-5 1 0.009 0.9679

10 9.4426e-6 1 2.9721 0.9811

11 7.0657e-6 1 0.3861 0.9868

12 5.8686e-6 1 8.2985e-4 0.9910

13 5.1978e-6 1 6.883e-3 0.9901

14 4.4578e-6 1 0.4218 0.9936

15 4.0501e-6 1 1.508e-4 0.9963

is not diagonal. Dealing with algebraic methods in such a system is quite hard or even unfeasi-

ble. However, with an evolutionary algorithm we only need to evaluate the objectives without

resorting to the computation of complicated derivatives. The structural mutations should im-

prove the performance and speed of the algorithm. This can intuitively be seen with the shapes

of some placement patterns. Deploying four sensors, we find the optimum configuration to be

a square; whereas the configuration that optimizes the placement of five sensors is a square

with a sensor in the center. It is evident that once we have obtained one of those solutions we

can obtain the other one with a structural mutation in a single step. Other approaches that con-

sidered modifying the number of sensors are [Laguna et al., 2009] and [Leune et al., 2013]. The

latter places or deletes the new sensor randomly. When deleting, there is only a 1/N chance

of deleting the worst sensor; when adding a new sensor, it may be placed in a point where

it does not provide much information. As for the former work, it deletes the sensor with the

lowest contribution to the objective function. However, it goes only backward. This has two

drawbacks, namely, the algorithm cannot be parallelized and the higher the amount of sensors

the higher the computational cost.



76 Variable number of sensors and NLOS situations



Chapter 6

Conclusions and future work

Section 6.1 summarizes the contributions of this thesis. A list of publications of the work related

to this thesis is shown in Section 6.2. Finally, we propose future research lines in Section 6.3.

6.1 Conclusions

The contributions of this thesis have already been stated in the respective sections of chapters

4 and 5. Here, we will only state the novel ideas explicitly to summarize and highlight our

contribution to the state-of-the-art.

In Chapter 2 we have exposed the most usual localization techniques first. Even though

our work focuses on RDOA, we have seen that the methods we use can be easily adapted to

range-only, RSS, or AOA. Then, we have provided a thorough review of the current sensor

deployment methods. We can see that there is a clear distinction among three approaches.

Those methods that deal with sensor deployment to locate a single point usually provide an

analytical treatment of the problem. Most of them optimize the determinant of the FIM or the

DOP. They have theoretical importance, since they allow to mathematically express the rela-

tion between the relative position of the sensors and the localization error. However, they rely

on oversimplifications of the problem so that they obtain mathematically tractable expressions.

Hence, they cannot be used in real applications where we focus on a whole ROI or the measure-

ment model is complex. To the second group belong those approaches that focus on covering

whole areas or several targets, this thesis belongs to this group as well. Our main contribu-

tion is the consideration of several metrics of the covariance of the estimation and the proposal

of a new algorithm based on NSGA-II to deploy sensors taking the presence of obstacles into

account. Finally, the third group is made of methods that solve the combinatorial problem of

selecting the best candidates out of a given set of possible positions. These methods need to a
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priori decide the possible positions of the sensors. Additionally, they have only been applied

to uncorrelated observations.

Chapter 4 has shown the first contribution of this thesis; that is, the MOO of several per-

formance metrics of the covariance of the estimation. We optimize the CRLB as a limit on the

attainable performance. The five proposed metrics are the trace of the CRLB, which is the MSE;

the determinant of the CRLB; the maximum eigenvalue; the ratio of maximum and minimum

eigenvalues, which is the condition number of the CRLB; and a measure of the variance in a

given direction. The condition number is not usually taken into account. If we check those

contributions that deal with optimal FIM for locating a single source, its optimal form is a di-

agonal matrix whose eigenvalues are equal. Hence, it is obvious that the FIM with minimum

determinant provides the optimum condition number. However, as can be seen in Section. 4.4,

when considering the grid points over a ROI there is a trade-off between the condition number

of the CRLB and its trace or determinant. Exploiting this set of placements we have improved

the performance of NLS searching the best configuration among the solutions of the PF. Addi-

tionally, we can provide more information in terms of error ellipsoids. Whereas other solutions

provide just the DOP or a metric of the CRLB, we can say that the solution we choose will

have a certain average MSE, a given isotropy of the error ellipsoids, and keep the maximum

deviation below a threshold.

Finally, Chapter 5 proposes a new MOEA to solve the sensor placement problem. We have

modified the probably most used MOO algorithm and obtained satisfactory results. As shown

in the chapter, NSGA-II did not provide a full PF when we optimized the MSE, ratio of eigen-

values, and number of sensors. Additionally, we found the problem of performing crossover

operations with set of sensors whose number is different. Dividing the whole population in

subpopulations with the same number of sensors — speciation — allowed us to overcome

those problems. In addition, we tested the algorithm including obstacles in the ROI that can

cause occlusions due to NLOS conditions. The comparison with random placement highlights

the importance of using a deployment algorithm.

6.2 Publications derived from the thesis

6.2.1 Peer-reviewed journals

• Domingo-Perez, F., Lazaro-Galilea, J.L., Wieser, A., Martin-Gorostiza, E., Salido-Monzu,

D., and Llana, A. (2016). Sensor placement determination for range-difference position-

ing using evolutionary multi-objective optimization. Expert Systems with Applications,
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47:95–105.

Journal Citation Reports Impact Factor (2015): 2.981. Category: Operations Research &

Management Science 6/82 Q1.

• Domingo-Perez, F., Lazaro-Galilea, J.L., Bravo, I., Gardel, A., and Rodriguez, D. (2016).

Optimization of the coverage and accuracy of an indoor positioning system with a

variable number of sensors. Sensors, 16(6):934.

Journal Citation Reports Impact Factor (2015): 2.033. Category: Instruments & Instrumenta-

tion 12/56 Q1.

6.2.2 International conferences

• Domingo-Perez, F., Lazaro-Galilea, J.L., Martin-Gorostiza, E., Salido-Monzu, D., and

Wieser, A. (2013). Accuracy of an indoor IR positioning system with least squares and

maximum likelihood approaches. In International Conference on Indoor Positioning and In-

door Navigation (IPIN 2013), pages 22–23.

• Domingo-Perez, F., Lazaro-Galilea, J.L., Martin-Gorostiza, E., Salido-Monzu, D., and

Wieser, A. (2014). Evolutionary optimization of sensor deployment for an indoor posi-

tioning system with unknown number of anchors. In Ubiquitous Positioning, Indoor Navi-

gation, and Location Based Services (UPINLBS 2014), pages 195–202.

• Domingo-Perez, F., Lazaro-Galilea, J.L., Bravo, I., Martin-Gorostiza, E., Salido-Monzu,

D., Llana, A., and Govaers, F. (2015). Sensor deployment for motion trajectory tracking

with a genetic algorithm. In IEEE International Conference on Industrial Technology (ICIT

2015), pages 3435–3439.

6.2.3 Other contributions

Applications of the methods described in this dissertation to work of other researchers:

• Martin-Gorostiza, E., Domingo-Perez, F., Lazaro-Galilea, J.L., Meca-Meca, F.J., Wieser,

A., and Salido-Monzu, D. (2016). Specular multipath model for an optimal anchor place-

ment evolutionary algorithm. In International Conference on Indoor Positioning and Indoor

Navigation (IPIN 2016).
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• Macho-Pedroso, R., Domingo-Perez, F., Velasco-Cerpa, J., Losada-Gutierrez, C., and

Macias-Guarasa, J. (2016). Optimal microphone placement for indoor acoustic localiza-

tion using evolutionary optimization. In International Conference on Indoor Positioning and

Indoor Navigation (IPIN 2016).

6.3 Future work

This section acknowledges some of the weaknesses and limitations of our proposed solutions.

To summarize, we have chosen to use methods that have some drawbacks and a simple mea-

surement model without considering extra sources of errors. There are limitations that are

inherent to GAs, such as its convergence to optimal solutions, parameter setting, execution

time, etc. Other limitations are the applicability of our approach to real situations due to the

existence of other error sources.

We have not included any real experiment in the thesis to validate the results. If the reader

checks most of the papers referenced in Chapter 2, it can be seen that none of those proposals

contains tests using a real implemented system. Of course, testing all the positions of sensors

that belong to the Pareto fronts obtained in Chapters 4 and 5 is completely unfeasible. Fur-

thermore, testing other configurations to check if they outperform the Pareto optimal solutions

is also a cumbersome task. However, there is no reason why the methods described in this

thesis should not work in real situations unless what were described in Section 3.1 of Chapter

3 and Eq. (3.6) were not true. In Eq. (3.6), we assume that RDOA measurements are Gaussian

variables whose mean is the true range-difference and variance is given by the model of Sec-

tion 3.1. Any source of errors that can affect the RDOA measurement will affect the optimum

sensor placement as well. One of the most common and highest errors is multipath. As a re-

sult of reflections in walls, ceiling, and floor, many reflected signals reach a sensor by different

paths. This phenomenon is known as multipath interference. Multipath causes an offset in the

distance measurement, which should be kept to a minimum. Our group is currently working

on obtaining a model that determines the offset that reflected signals cause in the final mea-

surement. The development and application of this model is an extremely difficult task since

multipath effect is highly dependable on the ROI. We should model the distance measurement

as a sum of the true distance between sensor and target, the noise of the LOS signal, and the

contribution of the multipath (offset). The latter term will be another objective of the optimiza-

tion problem. The transition from the measurement error due to multipath and the estimated

position error should also be studied.

Another line for future work is the improvement of the execution time of the algorithm
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exploiting the parallelization of modern multi-core processors and graphics processing unit

(GPU). As can be seen in Fig. 5.2, the migration operator is the only part of the algorithm that

cannot be parallelized, whereas evolution and trimming processes can happen concurrently.

The different simulations shown in this paper took from three hours up to a full day running in

a laptop, which is an affordable time for an offline process. Anyway, there are some application

cases of GPU implementation of NSGA-II with a significant speedup [Wong, 2009; Shen et al.,

2013; Padurariu and Marinescu, 2014].

We also need to select values for the parameters of the GA, i.e., rates of crossover and

mutation, number of generations, size of population, etc. A recent work [Jameii et al., 2016]

proposes combining NSGA-II with a learning automata that modifies the values of the muta-

tion and crossover probabilities according to their contribution in previous generations. This

approach could be applied to avoid the effect of the rate of the genetic operators.

The reliability of the algorithm is another weak aspect. Some researchers criticize genetic

algorithms because we cannot say that the solutions are optimal solutions. It is known that

every Pareto optimal solution must satisfy the Karush-Kuhn-Tucker (KKT) conditions. How-

ever, the computation of these conditions requires the calculation of gradients of the objectives.

There are approaches that perform a post optimality check to verify that solutions obtained by

a MOEA are close to KKT points [Deb et al., 2007] and also suggest to use this proximity mea-

sure as a stop condition even in non-differentiable problems [Abouhawwash and Deb, 2016].

We have chosen not to impose a stop condition but to run the algorithm for a high number of

iterations. At this moment we were not interested in evaluating or optimizing the convergence

speed of the algorithm. Hence, we preferred to leave enough room for the convergence to the

best possible solution.
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[Roa et al., 2006] Roa, J. O., Jiménez, A. R., Seco, F., Prieto, C., Ealo, J. L., Ramos, F., and Gue-

vara, J. (2006). Un método heurı́stico mejorado basado en algoritmos genéticos para opti-
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