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Abstract

Understanding the structure and material properties of hydrologic systems is important for

a number of applications, including carbon dioxide injection for geological carbon storage or en-

hanced oil recovery, monitoring of hydraulic fracturing projects, mine dewatering, environmental

remediation and managing geothermal reservoirs. These applications require a detailed knowledge

of the geologic systems being impacted, in order to optimize their operation and safety. In order

to evaluate, monitor and manage such hydrologic systems, a stochastic estimation framework was

developed which is capable of characterizing the structure and physical parameters of the subsurface.

This software framework uses a set of stochastic optimization algorithms to calibrate a heteroge-

neous subsurface flow model to available field data, and to construct an ensemble of models which

represent the range of system states that would explain this data.

Many of these systems, such as oil reservoirs, are deep and hydraulically isolated from the

shallow subsurface making near-surface fluid pressure measurements uninformative. Near-surface

strainmeter, tiltmeter and extensometer signals were therefore evaluated in terms of their potential

information content for calibrating poroelastic flow models. Such geomechanical signals are caused

by mechanical deformation, and therefore travel through hydraulically impermeable rock much more

quickly. A numerical geomechanics model was therefore developed using Geocentric, which couples

subsurface flow and elastic deformation equations to simulate geomechanical signals (e.g. pressure,

strain, tilt and displacement) given a set of model parameters. A high-performance cluster com-

puter performs this computationally expensive simulation for each set of parameters, and compares

the simulation results to measured data in order to evaluate the likelihood of each model. The

set of data-model comparisons are then used to estimate each unknown parameter, as well as the

uncertainty of each parameter estimate. This uncertainty can be influenced by limitations in the
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measured dataset such as random noise, instrument drift, and the number and location of sensors,

as well as by conceptual model errors and false underlying assumptions.

In this study we find that strain measurements taken from the shallow subsurface can be used

to estimate the structure and material parameters of geologic layers much deeper in the subsurface.

This can significantly mitigate drilling and installation costs of monitoring wells, as well as reduce

the risk of puncturing or fracturing a target reservoir. These parameter estimates were also used to

develop an ensemble of calibrated hydromechanical models which can predict the range of system

behavior and inform decision-making on the management of an aquifer or reservoir.
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Preface

The overall purpose of this dissertation is to evaluate how well strain tensor measurements

taken within the shallow subsurface can be used to estimate the structure and material properties

of remote geologic layers at greater depths, and to develop a reservoir calibration tool that uses

minimally invasive data collection methods to characterize a geomechanical system and forecast its

future behavior. New istruments were available, capable of measuring the elastic strain response

to well injection in a deep confined formation. A field test was therefore conducted evaluating the

capabilities of these sensors as well as the information value of the data they provide. Sensors

were installed in the Avant field, an oil field north of Tulsa, Oklahoma. A realistic simulation of this

pumping experiment required a computationally intensive 3D hydromechanical solver, so parallelized

inversion software was developed to run many iterations of this simulation until convergence to a

calibrated hydromechanical model.

During the course of this doctoral research five journal article manuscripts were prepared

for publication, and are presented here as chapters of this dissertation.

In Chapter One, a novel parameter estimation software called Distributed Multiobjective

Stochastic Optimization Framework (DMSOF) is developed and tested against benchmark inverse

problems with well known solutions and convergence properties. These include four benchmarks

taken from the inversion literature as well as one example problem from the hydrogeologic literature.

In Chapter Two, this parameter estimation software is used to analyze synthetic data, which

is produced by a finite element multiphysics solver. This provides proof-of-concept and indicates

that when signal to noise and conceptual model issues are accounted for, strain data measured in

the field can be sufficient to infer geomechanical parameters.

In Chapter Three, strain data measured in the field is used to infer reasonable values de-

scribing the location, size and material properties of a small oil reservoir. This reservoir is located at
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a depth of approximately 500 meters and is stressed by pressurization by an injection well, causing

elastic deformation which is measured by strainmeters at a shallower depth of 30 meters.

In Chapter Four, data from a second field test is analyzed and compared to the conventional

approach of using in-situ pressure transducers to calibrate a reservoir model. While including both

strain and pressure data yields lower uncertainties, we find that strain measurements alone predict

a very similar set of reservoir geometries (ie location, size) and material properties.

In Chapter Five, both pressure and strain are used to infer fine details about the range

of possible geometries of a subsurface formation, and these detailed models are used to accurately

predict geomechanical system behavior under later pumping conditions.
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Chapter 1

Development of a cloud computing

framework for model calibration

and decision support in the

geosciences

1.1 Abstract

The solutions to many problems in the geosciences involve a model calibration or param-

eter estimation step, where numerical simulations of a physical process are compared to measured

data to infer the value of some parameter that is difficult to observe directly. This becomes chal-

lenging when the necessary physical simulations are computationally intensive. To help overcome

these challenges, a cloud computing tool has been developed for model calibration and decision sup-

port called Distributed Multiobjective Stochastic Optimization Framework (DMSOF), which runs

several commonly used inversion algorithms in parallel allowing them to share results and thus

explore the parameter space more effectively. This framework also includes a job scheduler that

uses cloud services to distribute computational effort over multiple disparate high-performance and

high-throughput computing resources, allowing many forward model evaluations to be run simulta-
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neously. The code uses a modular, object-oriented approach that allows other researchers to readily

incorporate their own inverse algorithms or forward models. This inversion approach is tested using

several benchmark inversion problems as well as some more familiar geoscience inverse problems.

1.2 Introduction

Many problems in geoscience and environmental engineering involve some form of param-

eter estimation or model calibration. This can require applying computationally intensive physical

simulations to a set of possible geologic models, and comparing each set of simulation results with

real world field observations. These comparisons allow one to determine which geologic models best

match available data, and to iteratively build an improved set of geologic models until the full range

of models that explain the observable data have been identified.

As no analytical solution or multiphysics partial differential equation solver can perfectly

represent the full complexity of a real-world environmental system, whichever analysis or software

chosen will necessarily introduce some conceptual model error by simplifying or neglecting a physical

process, approximating a physical process at a lower spatial or temporal resolution, or assuming some

level of homogeneity over a heterogeneous domain [45].

In an inversion problem with multiple data-fitting objectives, this conceptual model error

often causes a non-uniqueness or trade-off issue such that a compromise can be made to fit one

dataset or another relatively well, but no single simulation result can explain the various datasets

simultaneously. A common solution to this problem is to choose a set of weighting coefficients that

allow one to sum the data-model misfits into a singular value representing the relative quality of

each geologic model, and to then minimize this value using single-objective inverse methods such as

gradient descent [69] or Markov chain Monte Carlo [29]. However, as this weighting approach tends

to obscure the extent of the non-uniqueness problem, it is often beneficial to explore the full range

of potential optimal data-fitting compromises that could be made in order to evaluate the validity

of a conceptual model.

Inversion techniques are available that have multi-objective variants designed to explore

trade-off regions, including Markov chain Monte Carlo (MCMC) [62], genetic algorithms [16, 71],

simulated annealing [53], neural networks [54] and particle swarm optimization [55]. Each technique

has strengths and weaknesses, with some being ideal for the properties of a particular inverse problem
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while others might fail to converge, or converge quickly to an incorrect solution. In order to converge

properly, many of these methods also require a long sequence of simulations run in series, rather than

many simulations run simultaneously in parallel. As this may not be feasible when the runtime of

the simulation is very long, it is often more beneficial to develop surrogate models, computationally

cheap functions that approximate the response of a more detailed model. Rather than computing a

long-runtime simulation and comparing it to measured data, a surrogate model takes the set of long-

runtime simulations that have already been completed and uses interpolation to approximate the

data-model misfit at any given point in the parameter space. This faster surrogate model approach

makes more traditional inversions such as McMC feasible for computationally intensive inversions.

In this paper, a model calibration and job scheduling framework is developed to run computationally-

intensive simulations in massive parallel in a heterogeneous, high-throughput computing environ-

ment. Multiple inversion methods can be run in parallel, and results can be shared between them

to allow their various strengths to reinforce one another. After thoroughly exploring the trade-offs

between objectives, surrogate models are then developed based on these simulation results and used

to run a second, much faster inversion which can run for a long enough series of iterations to assess

convergence and uncertainty according to conventional metrics.

1.2.1 Mapping of Parameter Space to Objective Space

The inversion process can be visualized as searching an n-dimensional parameter space by

investigating a series of points within the space according to a particular search strategy. Each point

in the search represents a unique geologic model which must be run through a physics simulation so

that the simulation results may be compared to observed data. Since n is the number of unknown

parameters, the size of the space being searched increases exponentially with respect to n. At each

step of this search, each model is evaluated according to a vector of m data misfits (often the L2

norm between measured and predicted data), where m is the number of data-fitting objectives. Some

search strategies are designed for single-objective optimization, and therefore require a single value

rather than a vector of data misfits. By multiplying each data misfit (Ei) by a weighting coeffecient

(ωi) and then summing each term to compute a single value

E =

m∑
i

Ei ωi (1.1)
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Figure 1.1: Illustration of Pareto optimality. a.) Results from three solutions plotted with respect
to objective functions f1 and f2. Colored rectangles indicate region of lower Pareto rank. b.) Pareto
ranking used to characterize model-data misfit for a set of 26 simulations with different parameter
sets. Blue dashed line represents the ’true’ Pareto front.

quantifying the data-model misfit (E). These search strategies can readily be used for multi-objective

optimization. These weighting parameters ωi represent a normalizing factor related to the data error

as well as an implicit assumption about the information value of each dataset. However, choosing

these weighting parameters can be arbitrary, and can unduly influence the convergence behavior of

the inversion.

An alternative approach is to use the concept of Pareto optimality, which allows one to

consider each objective’s data-model misfit separately. A solution is Pareto optimal when compared

with other solutions if no other solution in the group is superior to it in terms of all of the objec-

tive functions. For example, in the multiobjective minimization problem presented in Figure 1.1a,

solution 1 has a lower value in terms of objective f1, but a higher value in objective f2. Solution 2,

by contrast, has a lower value in terms of objective f2, but a higher value in objective f1. Therefore

neither solution is superior to the other in the Pareto optimality sense. However, solution 3 is not

Pareto optimal, because both solutions 1 and 2 have lower f1 and f2 values. The group of solutions

that are not dominated by any other solution are denoted rank 1, solutions that are dominated only

by rank 1 solutions are denoted rank 2, and so on. In Figure 1.1b, several ranks are identified and

color-coded. The rank 1 solutions represent the best approximation of the Pareto front.

As the number of unknown parameters increases, the size of the n-dimensional parameter
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space increases dramatically, and therefore the number of simulations necessary to thoroughly explore

the parameter space quickly becomes impractical. Overcoming this ’curse of dimensionality’ requires

the integration of high performance computing resources with an efficient search strategy. Since each

search strategy has its own advantages and disadvantages, one often cannot know which method is

ideal for solving a given inverse problem until after one has solved it.

Each search strategy strikes a balance between ’exploration’ and ’exploitation’. Exploration

refers to searching the entire parameter space as thoroughly as possible in order to find promising

new models. Exploitation refers to searching a narrower space around the most promising models

identified so far, refining and improving upon them. By coupling several of these methods into one

model calibration process, the parameter space can be explored thoroughly while the most promising

models can be carefully refined.

1.2.2 Inversion Algorithms

This inversion framework uses a modular programming approach and implements a variety

of standard inversion algorithms, which are described below.

1.2.2.1 Monte Carlo

At each iteration, Monte Carlo uses the prior model to generate a set of parameters to

be evaluated. The prior model is a statistical model representing any initial knowledge about the

parameter value. It may be a uniform distribution over the range of physically meaningful values (i.e.,

porosity between 0% and 100%), or a gaussian distribution centered about what is judged to be the

most likely value, with a variance representative of uncertainty in site conditions or otherwise judged

to be large enough to be sure of bounding the true value. The Monte Carlo approach is resilient

against premature convergence because it is not biased by results from previous simulations, but

also slow to converge because it does not learn from previous simulations to search more thoroughly

around areas of interest.

1.2.2.2 Gradient Descent

At the initial iteration, gradient descent [69] uses the prior model to generate a random

point within the parameter space. A set of points adjacent to this point is then evaluated in order to
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estimate the Jacobian of the forward model. The Jacobian [Equation 1.2] is made up of the partial

derivatives of each of the n parameters with respect to each the m objectives,

J =



∂f1
∂x1

∂f1
∂x2
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... ∂f1
∂xn

∂f2
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... ... ... ... ...
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∂fm
∂x3

... ∂fm
∂xn


, (1.2)

where each gradient is estimated using a central difference Taylor approximation,

∂fi
∂xj
≈ fi(x + δj)− fi(x)

(x + δj)− x
, (1.3)

as the reference model is perturbed by a small value +δ for each of the n parameters. The Jacobian

is then used to determine the down-gradient direction, and an appropriate step is taken in that

direction. This process continues until the gradient is below a given threshold, indicating a local

minimum has been found. Once local convergence has been detected, the prior model is again

used to generate a random point within the parameter space, and the gradient descent process

continues. By taking a series of steps directly down gradient, gradient descent can very quickly

find a nearby local minimum. However, for inverse problems where multiple local minimums exist,

gradient descent often misses the global minimum. By repeating the gradient descent process using

a number of different, random starting points within the parameter space, many local minimums

can be found making it more likely that the true global minimum is identified. This method can

also be very computationally intensive for high-dimensionality problems, as computing the Jacobian

requires n+ 1 function evaluations per step. It is also up to the user to select the step size, as well

as the finite difference offset values (δ).

1.2.2.3 Markov Chain Monte Carlo

The Markov Chain Monte Carlo (MCMC) algorithm also implicitly moves down-gradient,

but in a stochastic fashion. At each iteration, the MCMC chain takes a random step in the parameter

space, compares the error at the new step location to the error at the initial location, and proba-

bilistically selects the superior model. If the newer model has a lower error, it is accepted. If the
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new model has a higher error, it is accepted with a probability proportional to the ratio between the

old and new errors (Metropolis-Hastings criteria, [42]). The algorithm then takes another random

step in the parameter space, and continues. Therefore, an MCMC chain is capable of occasionally

moving ’up-gradient’, allowing it to leave a small local minima and explore the remainder of the

parameter space.

The MCMC accept/reject decision requires a single error value to compare each step to its

predecessor, whereas a complex multi-objective inversion problem may involve a separate data-model

misfit for each instrument installed in the field, potentially meaning dozens or hundreds of objectives.

Therefore in this implementation of MCMC, two methods are included to deal with multiobjective

optimization problems. One method uses the weighted sums approach (Equation 1.1), where each

error is weighted by the estimated noise in the data [40]. The other method sorts all simulations

run so far by Pareto rank, and uses the respective ranks of the two MCMC candidates as the basis

for the accept/reject decision. Examples of these two methods are shown in Figure 1.13.

1.2.2.4 Genetic Algorithms

Genetic algorithms [16, 71, 61] select the most promising models identified so far, recombine

them randomly using a process called crossover, and then perturb the recombined models using

a mutation operator. This heuristic approach to parameter estimation mimics the way evolution

naturally selects the most capable members of a population for reproduction, gradually shifting the

entire population towards a more robust, adaptive gene pool. Most genetic algorithms are designed

for single-objective optimization, using a single value to represent a models ’fitness’, which regulates

how the selection, crossover and mutation operators function. However, several multi-objective

genetic algorithms exist that use the concept of Pareto optimality (see Section 1.2.1, Figure 1.1) to

govern these operators.

Similar to populations in nature, genetic algorithms require genetic diversity to perform

well. The Non-dominated Sorting Genetic Algorithm (NSGA-II) [16] encourages a diverse set of

models by imposing a penalty on simulations that are too similar to each other in terms of their

position along the Pareto front. It accomplishes this by identifying the models nearest neighbor

on either side, along each of the m objective space dimensions. It then computes the ’crowding

distance’, or average distance to these 2m neighbors, and uses this distance as a criteria for the

selection operator. This prevents the population from crowding too closely around the first Pareto
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optimal model that presents itself, but instead investigating the entire Pareto front as thoroughly

and evenly as possible.

The Strength Pareto Evolutionary Algorithm (SPEA2) algorithm [72, 71] uses the concept

of elitism to ensure that Pareto optimal solutions are not inadvertently rejected due to the stochastic

nature of the selection process. The algorithm maintains an external population of all non-dominated

solutions that have been identified so far. At each generation, this external population is combined

with the current population and included in the selection operator. A Pareto rank based fitness is

assigned, and used in the selection, crossover and mutation operators. Similar to NSGA-II, a kth

nearest neighbor approach is used to penalize clustering along the Pareto front.

1.2.2.5 Space-filling algorithms

Space-filling algorithms are designed to explore the parameter space as uniformly as possible,

without referring to how previous simulation results mapped to the objective space. This helps avoid

issues of premature convergence, or neglecting large volumes of the parameter space that might

contain the true global minimum.

The simplest space-filling approach is called a grid search, where the parameter space is

subdivided into a uniform grid and each combination of parameters is simulated. While this brute-

force approach is simple to implement and minimizes the risk of premature convergence, it can be

computationally infeasible for high-dimensionality parameter spaces or for forward models with a

long runtime.

The Latin hypercube [52, 31] is an n-dimensional generalization of the Latin square, a

combinatorial puzzle where n different symbols are arranged in a table such that each symbol appears

in exactly one column and exactly one row. The Latin hypercube inversion method subdivides the

parameter space into a regular grid of arbitrary grid size, and then samples from this grid such that

each parameter is allowed to vary with respect to all other parameters. Latin hypercube methods

are commonly used in experimental design where a large number of unknowns are being investigated

using a limited number of experiments or simulations.

Centroidal Voronoi tesselation [46] uses computational geometry to produce an arbitrary

number of uniformly distributed points throughout the parameter space. This approach is mathe-

matically exact and efficient to compute in low-dimensionality inverse problems, but can be compu-

tationally challenging in high-dimensional space. For high-dimensionality parameter spaces, it can

10



1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1

Figure 1.2: Latin Square

be more efficient to relax this precision by simply generating a large number of proposed models,

comparing their distances with all existing models, and selecting the one with the greatest distance

to its nearest neighbor.

1.2.2.6 Simulated Annealing

The simulated annealing inversion algorithm is a variant of MCMC, which begins by making

accept/reject decisions based on a statistical model that represents any prior knowledge of the

system, and slowly shifts to sampling from the more data-driven likelihood model [39, 25].

This method uses a weighting approach [Eq 1.4] using a coefficient, T or “temperature”, to

control how quickly information from the likelihood model is introduced into the inversion. When

T is high, the prior model p(θ) is weighted more heavily, and as T approaches zero, the likelihood

function L(θ) begins to guide the inversion more.

p(θ|d) = p(θ)T + L(θ)1−T (1.4)

The technique is named after the metallurgical process of annealing, where a metal is heated

and then cooled slowly in order to avoid the formation of defects in the crystalline structure of the

metal. Similarly, the weighting parameter T must be reduced slowly in order to avoid latching on to

a local minimum and overly-exploiting it to the exclusion of any other unexplored optima, analogous

to a crystalline defect.

1.3 Methods

1.3.1 Computational Workflow

A computational workflow was developed which implements a wide range of inversion al-

gorithms with a common format and namespace, allowing the necessary forward model evaluations
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Figure 1.3: The simulated annealing process is illustrated. The prior model (p(θ)) is shown at high
temperatures (T ) while the likelihood model (L(θ)) begins to dominate at lower temperatures.

to be run in a highly distributed, heterogeneous computing environment while storing results in the

centralized namespace for later use.

This code takes advantage of the Amazon Web Services (AWS) cloud computing service.

An Elastic Compute Cloud (EC2) instance is used as the head node, which houses a MySQL rela-

tional database [Figure 1.4] on a solid state drive providing high read-write speeds and non-volatile

storage for information about the parameterization of the inverse problem, the prior models for each

parameter, and various other pieces of information specific to each inversion algorithm (step sizes,

population sizes, number of MCMC chains, etc).

The inversion code has each been implemented in Python using a modular, object-oriented

approach that mirrors the structure of the database [Figure 1.4] with one class definition per database

table. Classes and tables are synchronized using SqlAlchemy, a popular object-relational mapping

software. This approach allows the use of external Python libraries such as numpy and scipy (math

and statistics functions), matplotlib (graphics and visualization), and boto (AWS file transfer and

job management).
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Optimization
id int
name str
interpMethod blob

Relate
id this int
id that int
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relation enum
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Figure 1.4: Entity-Relationship diagram for the inversion database. Blue boxes indicate tables in
the database, while lines indicate the cardinality relationships between tables.

An abstract class (Optimization) contains general definitions for all the basic operations that

any inversion algorithm must be able to perform, while each specific inversion algorithm inherits

these definitions and adds some distinct code detailing how these operations are to be performed.

The physical properties of interest (i.e, density, permeability, compressibility) are listed in

the Property table, and the physical domains of interest (i.e., distinct rock layers) are listed in the

Domain table. The Prop X Domain table defines a particular Property of a particular Domain using

a statistical distribution, the prior model. Two or more Prop X Domains may be related by the

Constraint table, which contains a rejection function that tests whether a particular combination of

parameter values is feasible for the forward model. This allows one to define the feasible parameter

space as any arbitrary shape rather than simply as an n-dimensional hypercube. The Parameter

table lists the unknown parameters in the particular inverse problem. It is conceptually similar to

the Prop X Domain table, but remains a distinct table to allow for the special case of a tomography

or imaging problem, where many parameters may describe a single pixel or voxel of a given structure

but all have a common underlying statistical distribution. Where differing sets of prior information

(statistical distributions) exist are available for different regions in the field site, they can then be

assigned to the corresponding Domains.
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The types of instruments installed in the field (i.e., pressure sensor, temperature probe,

humidity etc) are listed in the InstrumentType table while specific instruments are listed in the

Instrument table with their name and location. In general, each instrument corresponds to a distinct

entry in the Objective table, however when there are multiple forward models available to attempt to

simulate the behavior of an Instrument, there may be multiple Obective entries for a single Instrument.

An Objective may relate to the Measurement table, where synthetic measurement is stored or where

actual measurements from the field are periodically uploaded.

Once these database tables are populated, the inversion process can begin. The basic

function of the Optimization object is to create an entry in the Sample table, create one entry in

the Estimate table for each Parameter, use these estimates to build a set of input files in a format

appropriate for the physics solver being used, then create an entry in the Simulation table and stores

the input files in this table. The input files are then uploaded to the Amazon Simple Storage Service

(S3) where it can be retrieved by any remote machine with both the appropriate credentials and the

S3 object key, a string of characters which uniquely identifies that particular set of input files. The

object key is then posted on the Amazon Simple Queue Service (SQS), another AWS service which

maintains the integrity of the simulation queue. A variety of remote machines can then periodically

check this queue to see if any new input files are available for evaluation, without the risk that

any two compute nodes will be served the same S3 object key and thus duplicating one another’s

work or causing table locking by attempting to modify the same database entry simultaneously.

Each compute node then uses their unique S3 object key to download the appropriate set of input

files, uses them to run a (perhaps computationally intensive) physical simulation, and performs

any necessary post-processing to extract the expected sensor responses from the larger output file.

Since sensors are generally relatively sparse compared to the scope of the simulated region, the

post-processed summary file is generally much smaller. The raw simulation output files are then

uploaded to long-term storage in an appropriate S3 bucket (or discarded if the storage cost is judged

prohibitive), while the simulated sensor data file is sent to short-term storage in a separate S3

bucket so it may be later downloaded by the head node. The head node then stores the simulated

sensor predictions in the Dataset table. The prediction is compared to the field data stored in the

Measurement table to arrive at a prediction-observation misfit.

Once prediction-observation misfits are available, each specific implementation of the Op-

timization object uses a unique strategy to interpret data-model misfits and assemble progressively
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better input files. These strategies are described in detail in the following section. Many of these

strategies involve relating one Sample to another, so these relationships are defined in the Relate

table.

1.3.2 Implementation of Inverse Methods

This code implements each of the inverse methods in Section 1.2.2, modifying them for

the multi-objective case as well as allowing them to run in parallel and incorporate one another’s

simulation results. The space-filling algorithm begins by filling the parameter space as evenly as

possible, then shifts to filling in the gaps left by other methods. The Markov chain Monte Carlo

and gradient descent methods have options to use either the Pareto rank or weighted sum as the

accept/reject criteria. The genetic algorithm implemented is a variant of NSGA-II which draws sim-

ulation results from other methods into its population at each iteration, and also places an optional

clustering penalty in the parameter space to avoid run too many simulations that are too similar

to each other. Similarly, the simulated annealing method includes an adjustable clustering penalty.

This combination of methods is an effective way to quickly and efficiently explore a parameter space

with a long-runtime forward model.

1.3.3 Interpretation of simulation results

Inversion results can be visualized by plotting each measured dataset on the same plot as

the simulated results [Figure 1.14a]. Line colors can be used to highlight models with the best

data-model misfits, allowing one to make a preliminary evaluation of whether any simulations have

yet been found that fit the data well. When the dimensionality of the parameter space is relatively

low, results can be visualized by calculating the data-model misfit for each simulation and plotting

them as a function of the parameter values [Figures 1.9,1.11,1.13,1.14] in order to evaluate whether

the shape of the error surface is beginning to resolve.

When a sufficient set of samples of the parameter space is available and some stopping

criteria is reached (see Section 1.3.3.2), statistical inference methods can be used to estimate the

values of the model parameters as well as quantify the uncertainty of those estimates. The Bayesian

approach to statistical inference is often used to make this estimate. Bayesian inference begins with a

prior probability distribution p (θ), a statistical model constructed using any prior knowledge about
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the parameters in question. This prior belief is then combined with new information using Bayes

theorem,

p (θ|d) = p (θ)
p (d|θ)
p (d)

. (1.5)

Bayes theorem relates the posterior distribution p (θ|d) to the prior distribution p (θ|d) via

the likelihood function L (θ|d). Put another way, Bayes theorem says that our belief in a given model

after accounting for new data is proportional to our belief before accounting for the data, and to

the degree of compatibility between the data and the model. This compatiblity is often quantified

using the probability density function of a Gaussian distribution

L (θ|d) =
p (d|θ)
p (d)

∝ 1√
2πσ2

n

exp

(
− [f(θ)− d]

2

2σ2
n

)
, (1.6)

where the the measured data, d is compared to f(θ), a function or simulation representing what the

numerical physics simulation predicts the data would be for the model θ. The difference between

the simulated and measured data is then compared to the variance σn, which represents the random

measurement error inherent in the measured data.

1.3.3.1 Parameter Space Integration

When integrated over the parameter space, these probability densities should be equal to

one [Eq 1.7].

∫
V

p (θ|d) dV = 1 (1.7)

However, because they are scattered at semi-random locations throughout the parameter

space, performing this integration can be challenging especially in high-dimensionality parameter

spaces. Several methods were implemeted for performing this integration [Figure 1.5]. The first

method uses a Python computational geometry library to perform a Voronoi tesselation on the

set of evaluated points in the parameter space, thus assembling a convex polygon about each one

that defines its nearest-neighbor space. The qhull library is then used to compute the area (2d),

volume (3d), or hypervolume (4d+) of each polygon. Where the polygon extends beyond the feasible

space selected, the polygon is first truncated by computing the intersection of the polygon with the
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planes defining the feasible space. While generally only very low-probability points near the edge of

the feasible space require truncation, many have enormous volumes which can skew the numerical

integration.

The Voronoi tesselation, truncation and convex hull computations become impractical at

high dimensionalities, so a less exact but more efficient method has been implemented for estimating

the hypervolume that each point represents [Figure 1.5]. Using a Python library function, the

Gaussian KDE (kernel density estimation) of the set of points is computed, and the hypervolume is

treated as being inversely proportional to the point density.

Figure 1.5: Illustration of two methods of estimating volume of the representative paramater space
of each simulation. Color represents sparsity, or the volume of empty space surrounding each point.
The (A) Voronoi tesselation method computes intersections between Voronoi polygons and the edges
of the parameter space, and uses these intersection points to compute exact volumes. The (B)
Gaussian KDE method instead fits a uni-modal Gaussian distribution to the points.

For dealing with the very large parameter spaces necessary for tomography and imaging

problems, a third integration method [Figure 1.6] has been implemented based on MCMC (see

Section 1.2.2.3). While MCMC can be effective for optimizing short-runtime forward models, such as

the benchmark functions shown in Section 1.4.1, its sequential nature makes it difficult to parallelize

effectively. This makes it impractical to run enough MCMC steps to optimize a computationally-

intensive forward model. However, when run for a sufficient number of iterations, MCMC has strong

convergence properties that are useful in approximating high-dimensional integrals [26].

Therefore, the set of parameter values and likelihoods (Equation 1.6) are exported to a
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compute node and the linear interpolation of this parameter to likelihood mapping is used as a sur-

rogate objective function. A random point in the parameter space is first selected, and interpolation

is used to estimate the likelihood at that location. A random step is then taken, interpolation is

again used to estimate the likelihood at that point, and the accept/reject decision is made based on

these respective likelihoods.

Iterations

θ1

θ2

Figure 1.6: Multi-chain MCMC results are shown for two parameters (θ1,θ2) as a function of itera-
tion, using an interpolation-based surrogate function as the fitting objective.

For cases where the interpolation step is many orders of magnitude faster than running the

forward model itself, a many-core compute node can be used to run several hundred MCMC chains

for enough iterations to converge in a reasonable amount of compute time. Running many chains

allows one to take advantage of parallelization, as well as ensuring that a unique solution is found.

1.3.3.2 Convergence Criteria

Many of the most effective parameter space sampling algorithms are heuristic, and therefore

lack the statistical rigor necessary to objectively determine when convergence has been reached. The

MCMC approach has a broad range of effective convergence diagnostics available in the literature

[23, 24, 30], however these diagnostics require many iterations of MCMC in order to meet the

convergence criteria. Using interpolation as a surrogate objective function, many MCMC chains can

be run for many iterations until these diagnostic convergence criteria are met. This allows one to

sample the posterior distribution and develop statistical interpretations of the inverse problem.

The challenge then is deciding whether a given sampling of the parameter space is sufficient
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to represent the real-world system. This problem can be approached using the bootstrap method,

by using a series of subsamples of some number n of the simulations and run the analysis using these

n simulation results only. The mean and variance of the resulting estimates and uncertainties can

then be computed. If the variance is low, this indicates that any n of the simulations will produce

the same results. By performing this for many values of n, one can examine the sensitivity of the

results to the number of simulations and therefore decide whether additional simulations are likely

to improve understanding of the system.

1.4 Results and Discusssion

A series of optimizations are run using benchmark functions common in the inversion liter-

ature. Field data from a well-studied pump test is then used to compare this methods parameter

estimates and uncertainties to previously published analyses. An inversion is performed on synthetic

pump test data with varying levels of random numerical error introduced, and the same inversion is

then performed introducing a systematic error in the form of a flawed conceptual model.

1.4.1 Benchmark Functions

The strengths and weaknesses of gradient descent and MCMC are first compared using the

sphere, Ackley, and Rosenbrock functions. Genetic algorithms are then compared to the gradient-

sensitive methods using the dropwave function. The Binh-Korn function, a multi-objective inverse

problem, is then used to compare the weighting coefficient approach to the Pareto approach. For

simplicity, each test problem is presented as a function f of a vector of input parameters x. Where

the global minimum is explicitly defined, it is presented as x0.

1.4.1.1 Sphere

The first and simplest test function is the sphere function [Eq 1.8]. This function is ideal for

gradient-based approaches because it contains a single minimum, and the down-gradient direction

is oriented toward the minimum at every point in the parameter space. In Figure 1.7, the Gradient

Descent chains move in a straight line directly toward the global minimum while the MCMC chains

meander back and forth in the correct direction, requiring more steps to reach the minimum. How-

ever, once the MCMC chains arrive at the global minimum, they continue a random walk around
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the vicinity of the minimum and provide one with better information about uncertainty.

f(x) =

n∑
i=1

(xi − x0,i)2 (1.8)

Figure 1.7: Comparison of Gradient Descent and Markov chain Monte Carlo for the sphere test
function. Color indicates the value of the objective function while black dots indicate paths taken
by Gradient Descent and Markov chain Monte Carlo.

1.4.1.2 Ackley

The Ackley function [1] contains many local minima, and one central global minimum.

f(x) = −20 · exp

(
−1

5

√
x21 + x22

)
− exp

(
1

2
[cos (2πx1) + cos (2πx2)]

)
+ e+ 20 (1.9)

This function [Eq 1.9] shows an advantage of MCMC over Gradient Descent, as each Gra-

dient Descent chain quickly falls into the nearest local minima and then proceeds to solve for that

particular global minimum more and more precisely. In this case, only a chain that happens to begin

very close to the global minimum will ever reach the global minimum. By contrast, MCMC chains

can spend many iterations exploring near a particular global minimum, but will eventually leave it

to explore other minima. This process may take many iterations, and is largely controlled by the

user-chosen step size. If the step size is too small, then climbing out of a local minima may require

many ’unlikely’ steps in a row, and therefore require many iterations before the chain climbs entirely

out of the local minima. If the step size is too large, MCMC may leap from one local minima to
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another without exploring inside the local minima.

Figure 1.8: Comparison of Gradient Descent and Markov Chain Monte Carlo for the Ackley test
function. Color indicates the value of the objective function while black dots indicate paths taken
by Gradient Descent and Markov chain Monte Carlo.

1.4.1.3 Rosenbrock

The Rosenbrock function [Eq 1.10]

f(x) =

n−1∑
i=1

[
100

(
xi+1 − x2i

)2
+ (xi − 1)2

]
(1.10)

contains a large, steep trough-shaped feature with the axis of the trough oriented parallel to the

y-axis. Near the origin is a long, narrow, roughly banana-shaped valley. The global minima is inside

this at, at x = (1, 1). Because of how sharply defined the valley is, the gradient is very sharp and

therefore rarely points in the actual direction of the global minima. As a result, most gradient-based

optimizations quickly find the valley but then zig-zag back and forth inside it, requiring many steps

to reach the global minima and only minimally exploring the overall shape of the valley. By contrast,

MCMC does tend to find the global minima as well as define the overall shape of the valley.
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Figure 1.9: A: Rosenbrock function is shown in 3-dimensional space. The height of the surface (z-axis
value) represents the output of the Rosenbrock function, while the color of the surface represents the
base-10 Log of the Rosenbrock function. This highlights the narrowness and sharpness of the banana-
shaped valley characteristic of the Rosenbrock test function. B: 10 chains of gradient descent, using
a total of 5156 function evaluations. Zoomed inset shows zig-zag pattern characteristic of gradient
descent. C: 10 chains of Markov chain Monte Carlo, using a total of 3897 function evaluations.

1.4.1.4 Drop Wave

The drop wave function [Eq 1.11]

f(x) = −
1 + cos

(
12
√
x21 + x22

)
0.5 (x21 + x22) + 2

(1.11)

is reminiscent of a drop of water on a pond, where sinusoidal waves expand out radially and are atten-

uated by distance. The global minimum is a small region centered around the origin (x = 0, y = 0),

with concentric rings of alternating minima and maxima. This makes the inverse problem very chal-

lenging since the true global minima occupies a very small region of the parameter space compared

to the other minima, and is only marginally lower in terms of the objective. Additionally, the true

global minima is not connected to the other minima, and therefore gradient-sensitive methods tend

to experience premature convergence and become trapped in the first ring that they encounter.
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Figure 1.10: Visualization of Dropwave function.

The gradient-descent, MCMC and NSGA-II methods [Figure 1.11] were run for approxi-

mately 8,000 simulations each. The gradient descent chains quickly converge to the nearest ring and

do not explore any further. The MCMC chains perform better, accomplishing a marginal amount of

lateral exploration along their nearest ring. However, the genetic algorithm performs much better,

exploring the space much more thoroughly and finding the global minimum.

Figure 1.11: Comparison of (A) Gradient Descent, (B) Markov Chain Monte Carlo, and (C) Genetic
Algorithm for the Drop wave test function. Grayscale color indicates the value of the objective
function while colored dots indicate paths taken by Gradient Descent and Markov chain Monte
Carlo.
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1.4.1.5 Binh-Korn

Multiobjective inversion problems are introduced using the Binh-Korn function [6], which

attempts to optimize two simple quadratic equations [Eqs 1.12, 1.13] with different vertices.

f1(x) = 4x21 + 4x22 (1.12)

f2(x) = (x1 − 5)2 + (x2 − 5)2 (1.13)

Since these functions have different local minima, no unique solution exists to this problem.

The goal therefore is to approximate the Pareto front and identify all solutions which lie between

the two optima.

An MCMC optimization was run using three different criteria as the minimized objective.

The first two use the weighted sum approach [Equation 1.1] to combine the Binh-Korn function’s

two objectives. Two different sets of weighting coeffecients are used, where the weight ratio favors

one objective over the other by a factor of 4. In these two cases, the MCMC chains converge on a

single point along the Pareto front, but do not explore the rest of the Pareto front. A third MCMC

optimization is then run using the Pareto rank rather than the weighted sum as the objective to

be minimized. In this case, the chains generally approached their nearest intersection with Pareto

front, and then tended to do a random walk along the Pareto front. This gives one a much more

complete understanding of the range of viable solutions to the Binh-Korn problem.

Figure 1.12: Visualization of both Binh-Korn functions, f1 and f2. Local minima are at A and A’.
Pareto front represented by red dashed line.

24



A

B

C

D

Figure 1.13: Comparison of Markov Chain Monte Carlo (A,B,D) and Gradient Descent (C) results
using the weighted sum approach for subfigures A (ω1 : ω2 = 0.25) and B (ω1 : ω2 = 4.0), and C
(ω1 : ω2 = 1.0), and the Pareto rank approach for subfigure D. Red dashed lines indicate the true
Pareto front.

1.4.2 Groundwater Model: Theis Solution

1.4.2.1 Analysis of Real Pumping Test Data

The Theis solution [58] models the response of the potentiometric surface to a well being

pumped at a constant rate. This solution assumes an infinite, homogeneous confined reservoir of

uniform thickness, and treats the well as a line source. The model space can be treated as one or

two-dimensional due to radial symmetry about the line source. Drawdown s of the potentiometric

surface is computed using the Theis equation,

s =
Q

4πT
W

(
r2S

4Tt

)
, (1.14)

where Q is the pumping rate out of the well, T is the transmissivity of the formation, S is the

storativity of the formation, r is the radial distance from the well, and t is time. The exponential

integral function W (u) defines the shape of the drawdown cone around the well, while the pumping
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rate and transmissivity control the magnitude of the cone.

W (u) =

∫ ∞
u

e−y

y
dy (1.15)

W (u) ≈ −γ − ln(u) + u− u2

2! · 2 +
u3

3! · 3 − ...+ (−1)n+1 un

n! · n (1.16)

u =
r2S

4Tt
(1.17)

In field sites where the Theis assumptions represent a reasonable approximation of the

geology, this equation can be used to estimate transmissivity and storativity based on drawdown

measurements in an observation well near a pumped well. An example pumping test dataset is drawn

from the literature, and an optimization is run on it using MCMC, Gradient Descent, Voronoi-based

space-filling, and NSGA-II. This dataset was used by [63] to estimate transmissivity and storativity

using a graphical method [36], and later by [41] using a method based on sensitivity analysis. In

this analysis the derivatives of the Theis equation with respect to transmissivity and storativity,

∂s

∂T
= −S

T
+

Q

4πT 2
exp

(
−r

2S

4Tt

)
,

∂s

∂S
= − Q

4πTS
exp

(
−r

2S

4Tt

)
, (1.18)

were used to construct an expression for the gradient of the error function, which was then used to

perform gradient descent and estimate the parameters. Taking this analysis one step further, these

derivatives are used to construct the uncertainties of the estimates (σS , σT ) made by [63] and [41],

and compared to the estimates and uncertainties.

σ2
s =

(
∂s

∂T

)2

σ2
T , σ2

s =

(
∂s

∂S

)2

σ2
S (1.19)

1

nm − 1

nm∑
i=1

[sm − s(T, S, ti)]2 =
1

nm − 1

nm∑
i=1

(
−S
T

+
Q

4πT 2
exp

(
− r

2S

4Tti

))2

σ2
T (1.20)

1

nm − 1

nm∑
i=1

[sm − s(T, S, ti)]2 =
1

nm − 1

nm∑
i=1

(
− Q

4πTS
exp

(
− r

2S

4Tti

))2

σ2
S (1.21)
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These uncertainties [Table 1.1] reflect the gradient of the data-model misfit in the region

around a given solution and do not account for any uniqueness in the inverse problem, which is

apparent from the range of plausible parameters shown in the map of likelihood [Figure 1.14b].

Figure 1.14: (A) Measured drawdown from a pumping test [63] is shown in red. Simulation results
are shown in gray while the 50 best-fitting curves are highlighted in black. (B) Model likelihoods
are plotted as color, as a function of storativity and transmissivity.

T (gpd/ft) S(ratio)

Walton, 1970 10100 ± 266* 2.00e-5 ± 39.42e-7*
McElwee, 1980 9910 ± 257* 2.10e-5 ± 40.77e-7*
Voronoi 9970 ± 202* 2.08e-5 ± 8.66e-7*
Gaussian KDE 10009 ± 154* 2.05e-5 ± 7.36e-7*
MCMC 9992 ± 213* 2.08e-5 ± 8.97e-7*
Analytical 9898 ± 117* 2.14e-5 ± 18.93e-7*

Table 1.1: Transmissivity and storativity estimates for the drawdown data in Walton, 1970 [63]
and McElwee, 1980 [41] are shown. Inversion results are also shown using the Voronoi, Gaussian
KDE, and MCMC approaches to likelihood integration (Section 1.3.3.1). Uncertainties marked with
an asterisk (*) were calculated using Equation 1.19, and were not drawn from the references. The
analytical estimate was calculated by choosing the best-fitting model and evaluating the derivative
at that point in the parameter space.

In order to examine the sensitivity of this inversion technique to the amount of random noise

in the data, the best-fitting model (S = 2.11 × 10−5, T = 9924 gpd/ft) is chosen and 100 different

levels of random Gaussian noise are added to the resulting drawdown curve, ranging from 0.1% to

50%. These 100 realizations are then used to perform each of the parameter estimation methods

available for this case: Voronoi integration, Gaussian KDE integration, MCMC, and analytical error

propagation using Equation 1.19. This error analysis shows that all the methods provide similiar

parameter estimates and uncertainties up to a measurement error of approximately 0.01–0.1 feet.
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Above 0.1 feet, the Gaussian KDE finds an estimate that is slightly closer to the truth, and a

lower uncertainty. The analytical error propagation approach appears to underestimate parameter

uncertainties at lower measurement errors, then rapidly diverges and over-estimates the uncertainty

at high measurement errors. The pumping test dataset [63] indicates that measurements were made

to the nearest 0.1 feet, however based on the data misfit between this data and the best-fitting Theis

equation model a measurement error of σn = 0.00905 ft is estimated.

Figure 1.15: Parameter estimates and uncertainties for transmissivity and storativity are made as
functions of measurements error, using the Voronoi, Gaussian KDE, MCMC, and analytical error
propagation approaches. Red dashed line indicates the estimate of the measurement error in the
source dataset. Note that no parameter estimates are shown for the analytical error propagation
method, as it does not estimate the parameter itself but only the uncertainty. The analytical error
propagation uncertainty is also linearly dependent on the measurement error σn, and therefore is
not subject to the stochastic variation shown by the other methods.

1.4.2.2 Analysis of synthetic data, random numerical noise

The Theis equation was then used to construct a fictitious dataset for a multi-objective

inversion. In this scenario there are two observation wells where drawdown is being measured and

two injection wells [Figure 1.16a] with only the nearer injection well being pumped initially. The

Theis equation is used to calculate drawdowns [Figure 1.16b], and various levels of random numerical

noise are added. A separate inversion is then run for each noise level, and the data-model misfits are

plotted as a function of storativity and transmissivity [Figure 1.16c] in order to examine how well the
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two dataseries agree in terms of their information content. In this case, while the level of parameter

uncertainty scales with the amount of randomly distributed data noise, the parameter estimates

themselves remain relatively consistent. Plotting the two objectives against one other [Figure 1.16],

data-model misfits fall roughly along a 1:1 line indicating that there is minimal tradeoff in the

objective space.
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Figure 1.16: A). Map view layout of the fictional pumping test field site. B). Pareto graph shows
Observation Well 1 data-model misfits plotted against their corresponding Observation Well 2 misfits
at each noise level. C). Fictional ’measured’ drawdown is shown (1% random noise) as red dots,
compared to 5000 proposed simulations (gray lines). Pareto optimal models are highlighted in black.
D). Data-model misfits are shown as a function of storativity and transmissivity.

1.4.2.3 Analysis of synthetic data, conceptual model error

In order to introduce systematic error in the data, a fictional dataset is constructed where

the second well begins pumping halfway through the experiment, and is treated as an unknown

29



process contaminating the data [Figure 1.17a]. Therefore, the forward model used to fit this data

does not include data from the second well. In this case a relatively minor systematic bias introduces

non-uniqueness that prevents one from inferring the correct parameter values. Plotting the misfits

against each other shows that rather than an ”L”-shape with a point approaching the origin, data-

model misfits are arranged along a diagonal form oriented normal to the origin, which indicating

that a tradeoff relationship exists such that data from one well cannot be fit better without fitting

data from the other worse.
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Figure 1.17: A). Drawdown as a function of time is shown for observation well 1, both with and
without the secondary well pumping. B). Fictional ’measured’ drawdown is shown (1% random
noise) as red dots, compared to 5000 proposed simulations (gray lines). Pareto optimal models are
highlighted in black. C). Pareto rank of each simulation is shown as a function of transmissivity
and storativity. D. Pareto graph shows Observation Well 1 data-model misfits plotted against their
corresponding Observation Well 2 misfits.
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1.5 Conclusion

This inversion framework distributes computational effort over various computing resources,

running a variety of standard inversion algorithms in parallel to efficiently explore a parameter

space while avoiding premature convergence. When forward model run times are too long to allow

for solid convergence using a sequential algorithm such as MCMC, interpolation of the existing

simulation results can be used to develop a surrogate model that can run quickly enough to meet

MCMC convergence diagnostics in a reasonable amount of time. Whether this surrogate model

is sufficiently similar to reality can then be evaluated by using the bootstrapping method as well

a certain amount of professional intuition about the physical problem of interest. This modular

programming approach will allow for other researchers to readily adapt their own forward models

and inversion algorithms so they may take advantage of better parallelization and job scheduling.
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Chapter 2

Numerical proof-of-feasibility of

using geomechanical measurements

to estimate poroelastic parameters

2.1 Abstract

Carbon injection projects introduce several risk-assessment challenges, including leakage

and escape of carbon dioxide through a fracture or derelict well, the reactivation of dormant faults,

topographic subsidence/uplift, or contamination of existing groundwater resources. In order to

help assess and manage these risks, a stochastic estimation framework has been developed which

is capable of characterizing the physical parameters of a formation during injection operations. A

numerical forward model developed using Geocentric couples the Darcy flow and elastic deformation

equations to compute a set of geomechanical signals (e.g. pressure, strain, tilt and displacement)

given a set of model parameters. A set of stochastic optimization algorithms are then used to

iteratively generate a sequence of parameter estimates, and a high performance cluster computer

efficiently evaluates this computationally expensive forward model for each set of parameters. The

set of converged parameter estimates is then used to find the best estimate and uncertainty of

each parameter, as well as the uncertainty of each expected value as required by the measurement

limitations (noise, model error, spatial/temporal constraints) imposed on the dataset. It is shown
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that synthetic geomechanical measurements taken from a target formation, either from a nearby

observation well or the injection well itself, can be used to accurately and efficiently estimate the

physical parameters of that formation. This experiment also demonstrates that measurements taken

in an overlying confining unit can be used to estimate the parameters of the target reservoir. This

parameter sensitivity indicates that measurements in the confining unit can significantly mitigate

drilling and instrument installation costs as well as reduce the risk of puncturing the confining unit.

2.2 Introduction

Carbon sequestration is one proposed method of reducing greenhouse gas emissions in order

to mitigate the effect of carbon dioxide on climate change, ocean acidification and human health

[15]. Carbon injection is the process of capturing carbon dioxide, compressing it into a super-critical

fluid, and injecting it at high pressures into a deep, hydraulically confined geologic structure such as

a saline aquifer, coal bed or depleted oil or natural gas reservoir. As supercritical carbon is injected

into a target formation, a pressure wave propagates through the permeable formation layer at a

relatively high velocity and begins diffusing through the impermeable cap rock layer much more

slowly. In response to those pressure changes, the pore skeleton experiences elastic deformation and

in turn exerts a stress on the cap rock. Unlike the diffusive pressure wave, this elastic response

propagates quickly through the solid skeleton of the cap rock. This suggests the possibility of

measuring the elastic response to injection from within either the cap rock or target formation, and

using these measurements to infer the physical properties of the subsurface.

Previous studies have found that measurements of the strain and deformation fields can be

used to infer some parameters of the subsurface. Seismic methods have been developed which relate

seismic velocities to CO2 saturation [65], and help identify geologic structures that can potentially act

as an escape conduit [66]. Pressure and displacement datasets (either measured or synthetic) have

been combined with stochastic methods such as Monte Carlo or Ensemble Kalman filtering [4], or

deterministic approaches such as least-squares estimation [19] or Newton congujate gradient descent

[32, 35]. Tiltmeters installed at the Earth’s surface or in boreholes have also been combined with

datasets such as pressure or displacement to study fractured reservoirs or karst systems [34], often

employing Monte Carlo [49, 50, 37] or linear least squares [59] approaches. Satellite interferometry

(InSAR) has also been used to fit vertical displacements using geomechanical flow models [11, 14],
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or to integrate surface deformation data with borehole fluid pressure [35] and production data

[12]. These studies have used linear optimization approaches [60], as well as genetic algorithms [38]

and data assimilation [73]. Borehole strainmeters have also been used in the past to estimate rock

properties by using a grid search approach to fit an analytical solution to strain data collected during

a pumping test [3]. However, this effort used an analytical solution which may not be sufficient to

describe geologic heterogeneities in a real field site.

The carbon sequestration process poses several operational risks including subsidence and

uplift, fault reactivation, and hydraulic fracturing resulting in leakage and escape of stored CO2.

Mitigation of these risks will require careful site assessment and close monitoring in order to manage

operations in a safe and economical manner.

The goal of this paper is to demonstrate the feasibility of using data from geomechanical

instruments such as tilt meters and strain meters to estimate the poroelastic properties of a confined

reservoir as it undergoes fluid injection. To this end, a forward model has been developed which

couples the fluid flow and elastic deformation equations to compute a set of predicted geomechanical

signals given a set of reservoir parameters. A set of stochastic optimization methods is then used

to perform a series of inversions on this forward model. As these stochastic methods require many

simulation runs in order to perform adequately, high-performance computing methods were used

to distribute simulation runs over many computational nodes on a cluster computer. Inversion of

this synthetic dataset is used to evalute how well strain measurements could constrain reservoir

properties.

2.3 Background

This project builds upon concepts from the fields of finite element simulation of geomechan-

ics, and statistical model calibration.

2.3.1 Forward Model for Geomechanical Response

Poroelastic simulations couple two important dynamics: deformation of the solid pore skele-

ton in response to changes in the stress tensor, and flow of pore fluid in response to changes in pore

pressure and deformation of the solid. These two processes are highly coupled; mechanical defor-

mation of the pore skeleton induces changes in the pore pressure driving flow, and the changes
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in pore pressure alters the stress on the pore skeleton. The Biot poroelasticity model [7] couples

these processes using four constitutive equations. One constitutive equation specifies conservation

of momentum of the fluid for a single phase during flow in a porous medium [Eq 2.1] based on the

pressure head formulation of Darcy’s law,

~v = − 1

ρfg
κ · ∇p (2.1)

where ~v is the fluid flow vector, ρf is the fluid density, g is the magnitude of acceleration due to

gravity, κ is the hydraulic conductivity tensor, and ∇p is the pressure gradient. The second equation

specifies conservation of mass of the fluid

−∇ · q =
1

M

∂p

∂t
+ α

∂εkk
∂t

(2.2)

where q is the volumetric flux, M is the Biot modulus, α is the Biot-Willis coeffecient, and εkk is

the volumetric strain. The third constitutive equation specifies conservation of momentum of the

solid,

−∇ · σ = ρtg, (2.3)

where σ is the total strain tensor, ρt is the total density, and g is gravity. The fourth equation

specifies a small-strain elastic deformation equation [Eq 2.4] based on Hooke’s law,

σ − S0 = C : (ε− ε0)− αBpfI (2.4)

S0 is the initial strain, C is the elasticity tensor and is a function of the Young’s modulus (E) and

Poisson ratio (ν)), ε is the stress and ε0 is the initial stress.

By defining a set of plausible values for the mechanical (i.e., E, ν, αB etc) and hydrogeologic

(K, φ) parameters above, a set of geologic structures can be defined. Using a finite element ap-

proach, one can then solve the resulting partial differential equation and simulate how pore pressure,

deformation and strain evolve through time at given points in the subsurface.

2.3.2 Parameter Space and Pareto Optimality

The goal of the parameter estimation process is to find sets of parameter values that best

fit a set of measured data, with the assumption that the parameters that best fit the data are
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representative of the true subsurface. In the case of reservoir characterization problems however, it

is often the case that the inverse problem is underdetermined or that many contradictory geologic

models would explain the observable data. In addition many separate sets of measured data are

often available, meaning the parameter estimation process must satisfy many distinct and sometimes

conflicting objectives. These objectives might include minimizing data misfits for the pore pressure,

deformation and strain misfits at a number of distinct points in the subsurface representing distinct

observation wells. The objective space is therefore an m-dimensional space where each dimension

represents one of the m data-fitting objectives. The goal of parameter estimation is therefore to

identify the models that minimize the data-model misift of each objective, or are as near as possible

to the origin of the objective space.

One approach to working with large, complex objective spaces [40] is to select a vector of

weighting coefficients typically related to the calibrated measurement error of the instrument, and

use these weights to combine the data-model misfits into a single value using equation 2.5,

ew =

k∑
i

eiωi, ei =
∣∣∣(d− d̂)2

∣∣∣ , (2.5)

where ew is the weighted error, ei is the L2 norm, or the sum of squared errors between the measured

and synthetic data, and ωi is the weighting coeffecient. Selecting the optimal weighting coefficients

can be challenging, and requires one to implicitly decide which data objectives are most reliable

and informative about the unknown parameters. One common approach is to divide by the range,

variance, or measurement error (σ2
d) of the measured data (Eqn 2.6) in order to normalize the data

errors and produce a single, unitless meaure of how well the parameters explain the data.

ωi =
1

σ2
d

(2.6)

Many inversion algorithms require a single error value to compare one solution to another,

including the gradient descent and MCMC algorithms described below. In contrast, some multi-

objective optimization algorithms instead use the concept of Pareto optimality [48] to treat each

objective separately, allowing these algorithms to efficiently explore tradeoff relationships between

data misfits. A specific set of parameter values is Pareto optimal when compared with other solutions

if no other solution is superior to it in terms of all objectives. For example, in the multiobjective

minimization problem presented in Figure 2.1a, solution 1 has a lower value in terms of objective f1,

36



1

2

3

f1

f2

a).
Ranks

1
2
3
4
5
6

f1

f2

b).

Figure 2.1: Illustration of Pareto optimality. Blue dashed line represents the ’true’ Pareto front.
Rank 1 solutions (blue dots) represent the best currently-available approximation of the Pareto front.

but a higher value in objective f2. Solution 2, by contrast, has a lower value in terms of objective

f2, but a higher value in objective f1. Therefore neither solution is superior to the other in the

Pareto optimality sense. However, solution 3 is not Pareto optimal, because both solutions 1 and 2

have lower f1 and f2 values. The group of solutions that are not dominated by any other solution

are denoted rank 1. Solutions that are dominated only by rank 1 solutions are denoted rank 2, and

so on. In Figure 2.1b, several ranks are identified and color-coded.

2.3.3 Parameter Space Search Methods

The parameter space is an n-dimensional space, where n is the number of unknown param-

eters in the reservoir model. Thus each point in the parameter space represents a unique model,

whose likelihood can be investigated by evaluating the numerical simulation and comparing the

results to measured data in order to find its position in the objective space.

The simplest way to define the parameter space is using a uniform distribution over the

range of possible values for each of the n parameters, and constructing an n-dimensional hypercube.

However, it is often possible to reduce the complexity of the problem by using additional information

to define a smaller feasible space with an arbitrary shape. This shape can be deterministic, based

on an analytical relationship between two of the parameters (as in the case of Equation 2.10), or it

can be statistical based on empirical observations [Figure 2.7].
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In order to define the mapping [Figure 2.2] between the parameter space and objective

space, there are a number of distinct search methods for sampling the parameter space. Each search

strategy strikes a balance between ’exploration’ and ’exploitation’. Exploration refers to searching

the entire parameter space as thoroughly as possible, in order to identify promising new models.

Exploitation refers to searching a narrower space around the most promising models identified so far,

refining and improving upon them. By running multiple search algorithms in parallel and allowing

them to share results at each iteration, exploration is balanced with exploitation.

Parameters Objectives

〈f(x)− d〉

Figure 2.2: Example of a mapping between a 2-dimensional parameter space and a 3-dimensional
objective space.

The Monte Carlo method [43] uses the prior model (based on any pre-existing knowledge

about the problem) to sample the parameter space at random. It has a simple, efficient implemen-

tation that searches the space thoroughly without sampling too densely in one space.

The gradient descent method [69] also begins by sampling a random point, but then samples

a grid of neighboring points in order to estimate the Jacobian matrix, or the gradient of the objective

functions with respect to the parameters. It then uses this gradient information to take a step in

the parameter space, and begins populating a new grid of neighboring points. Gradient descent

converges very efficiently on low-dimensionality problems, however because each step requires 2n+1

simulations in order to evaluate the Jacobian, it tends to become impractical when the number of

unknown parameters is high. It also tends to converge prematurely on local minima if they exist.

The Markov chain Monte Carlo (MCMC) method [42, 29] also begins at a random point

and takes a series of down-gradient steps. However, rather than estimating the gradient, MCMC
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simply takes a series of random steps, accepting or rejecting each step based on the change in error.

If a step reduces the error, it is accepted. If it increases the error, it is accepted with a probability

proportional to the change in error. This approach is more effecient for high-dimensionality problems

since it requires only one simulation per step. It tends to provide slower convergence than gradient

descent, but is also capable of escaping local minima and avioding premature convergence.

The sparsest point method uses computational geometry to identify points in the parameter

space that have been most sparsely explored by the other methods. This tends to disproportionately

explore less promising regions of the parameter space, but prevents the neglect of large unexplored

spaces.

Multiobjective genetic algorithms (NSGAII [16] and SPEA2 [71]) collect the broad range

of unqiue solutions available, and use the concept of Pareto optimality to select the best models.

By making random permutations of these selected models, they select the best attributes from the

existing population and recombine them to produce improved models. These populations tend to

quickly swarm around the best solutions found so far, then quickly abandon them if and when better

models are found.

2.4 Methods

2.4.1 Forward Model

The numerical forward model uses the geomechanical partial differential equation solver

Geocentric [67, 68] to perform simulations of a reservoirs poroelastic response to pumping. The

domain is cylindrical with a radius of 30 km [Figure 2.3a] and an axis of symmetry defined about a

central injection well. The model consists of three horizontal layers, a permeable formation (100 m

thickness) between a lower confining layer (100 m thickness) and an upper confining layer (1,000 m

thickness).

Axial symmetry is used to minimize computational effort, with the inner corner of the model

space representing the injection well as a line source. We prescribe a no-flow condition along the

upper and lower boundary and a specified fluid pressure (pf = 0) along the outer circumferential

boundary. The well is screened within the permeable reservoir and has a prescribed pressure that

starts at steady state (pf = 0) and quickly ramps to 1 MPa over 2 hours.

The lower boundary is a roller boundary allowing radial or circumferential displacement
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but not vertical displacement. The upper boundary can deform freely. The outer circumferential

boundary is also a roller boundary, allowing circumferential or vertical displacement but not radial

displacement.

The mesh is coarsest near the outer boundaries where gradients are expected to be very

small, and becomes denser near the injection well. Radial symmetry is used to minimize computation

time, thus flow and its accompanying geomechanical response are computed for only a wedge of the

cylinder [Figure 2.3b].

Figure 2.3: Geometry and mesh of conceptual model for numerical poroelastic simulation.

Geocentric has no licensing restrictions, so many instances of it were run on many separate

machines allowing a linear speedup limited only by the computational resources available. Using

100 high-end nodes (8 cores, 16 GB RAM), a sustained throughput of roughly 4,000 Geocentric

simulations per day was achieved. As conceptual models become more complex requiring heteroge-

neous structures, multiphase flow, plastic deformation or nonisothermal effects, the average runtime

will increase dramatically. Therefore, in order to be effective for near-real-time decision-making and

monitoring of carbon sequestration operations, an optimization approach is required that is capable

of converging reliably with a minimal number of function evaluations.

2.4.2 Synthetic model

We first select an arbitrary model with typical property values for a sandstone formation

and shale confining unit. This model is then treated as the ’true’ model which defines the synthetic

data. A set of instruments are defined with unique locations and levels of measurement noise. The

forward model is then used to generate a timeseries of synthetic data for each instrument, and
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random noise is used to represent measurement error.

Real data tends to have a characteristic baseline level of noise, and a scale-dependent com-

ponent of noise that increases with the magnitude of the process being measured. However, simply

scaling data noise to the magnitude of the measurement yields unrealistic behavior in cases where

the measured property starts at zero and fluctuates between large positive and negative values. The

noise model therefore represents the effects of hysteresis using the cumulative sum of the differ-

ences between time steps, producing a noise function that starts at the baseline value and smoothly

increases with the magnitude of the total change in the data.

2.4.3 Computational Workflow

We initialize the model calibration process by parameterizing the problem and defining the

unknown parameters of interest. For each unknown, a statistical distribution is built based on

prior knowledge about the problem. These statistical distributions are then used to generate a set

of initial geologic models. A while loop is run until convergence criteria are achieved. At each

iteration, the newest set of geologic models are evaluated to generate predicted timeseries for each

of the instruments at each installation. These results are then compared with measured or synthetic

datasets, and the data/model misfits are used to improve statistical distributions (see Section 2.4.4).

Each search algorithm then uses its own unique strategy to generate a new set of geologic models.

This approach allows one to share simulation results between separate search strategies. Since

each strategy has its unique advantages and disadvantages, coupling these processes allows one to

integrate the thorough exploration of some strategies with the careful exploitation of others.

2.4.4 Parameter Estimation

We use a statistical inference method based on Bayes theorem to summarize the simulation

results and infer statistics of the posterior probability of the model parameters. A data likelihood

function ρ(d|m) is used to relate a prior probability density function ρ(m) to a posterior probability

density function ρ(m|d).

ρ(m|d) = ρ(d|m)
ρ(m)

ρ(d)
(2.7)

By integrating the posterior probability density function over the volume of the parameter
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Figure 2.4: Illustration of parallel model calibration process. A hypothetical model Mtrue

is run through the forward model to generate a synthetic dataset, dtrue. Alternatively,
field observations can be collected dmeasured. A series of random models (Mi) are then
generated based on the prior model (mean µ0, variance σ0) and evaluated by the forward
model to produce simulated datasets (di) which are then compared to the measured or
synthetic dataset. These comparisons are used by a variety of inverse algorithms includ-
ing Monte Carlo (MC), Gradient Descent (GD), Markov Chain Monte Carlo (MCMC),
space-filling algorithms such as Latin Hypercube or Voronoi method (Sparse), genetic al-
gorithms (NSGA-II, SPEA2). These algorithms use data-model comparisons to produce
iteratively improved models and thereby reducing uncertainties and providing a better
characterization of the posterior distribution (mean µi, variance σi).

space, the posterior probability ρ(m|d) can be directly evaluted for any point sampled, and therefore

the expected value (mean) and uncertainty (standard deviation) of the model parameters as implied

by the data fits can be computed.

µ =

∫
m ρ(m|d) dm, (2.8)

σ2 =

∫
(m− µ)2 ρ(m|d) dm, (2.9)

In order to evaluate the integral at low dimensionalities, an n-dimensional voronoi grid is

constructed with centroids at each of the existing samples. The volume V (m) of each voronoi cell

is then computed using an n-dimensional convex hull algorithm [2], and the volume of each cell is
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multiplied by its probability density ρ(m|d). The product V (m) · ρ(m|d) is then summed across all

cells to arrive at the integral. At higher dimensionalities, stochastic approximations of the integral

may be more practical.

2.4.5 Experimental Design

The experimental design uses a set of instrument types and locations described in Table 2.1,

composed of four synthetic instruments located in two wells, one being the injection well and the

other an observation well 1000 meters from the injection. Both wells have one instrument located

in the vertical center of the formation (depth of 1050 meters), and another in the shallow cap rock

(depth of 150 meters). Fluid pressure, displacements, and strains are computed at each of these

locations. However, in a real field scenario, displacement measurements will only be possible near

the injection well while only strains will be observable in an observation well far from injection.

Therefore, these datasets are neglected in the analysis phase of the inversion.

For each case, poroelastic parameters of the formation are estimated including hydraulic

permeability κ, drained bulk modulus of the solid K, Poisson’s ratio ν, porosity φ and grain com-

pressibility Ks. The properties of the confining unit are assumed known with a permeability of 10−19

m2, bulk modulus of 10 GPa, Poisson’s ratio of 0.25, porosity of 0.20, and grain compressibility of

42.9 GPa (quartz). Using the mesh, boundary conditions and initial conditions described in Section

2.4.1, a synthetic pumping experiment is performed with injection pressure of 1 MPa for 108 seconds

or approximately 3 years. A hysteretic scale-dependent noise model is then applied to represent

measurement error.

Table 2.1: Summary of instruments and instrument locations. Fluid pressures (pf ), displacement
components (ux, uy, uz), strain components (εx, εy, εz) and tilt components (∇zux,∇zuy) measured
at different instrument positions.

Position Instrument Types
r [m] z [m] pf ux uy uz εx εy εz ∇zux ∇zuy

Injection well, deep 0.1 150 X X X X X X
Injection well, shallow 0.1 1050 X X X X X X
Observation well, deep 1000 150 X X X X X X
Observation well, shallow 1000 1050 X X X X X X

First, a single inversion is run using all available datasets, estimating for only three param-

eters (Young’s modulus, conductivity and Poisson’s ratio). This allows one to evaluate the overall

value of the combined datasets.
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Three separate inversions are then run with three different noise levels of 2%, 7%, and 21%

to investigate the sensitivity of the inversion to measurement error. Additionally, a fourth inversion

with a noise level of 1% is run during the parameter sampling and simulation phase. After these

simulations have been run, the noise function is re-applied at many different noise levels and the

parameter estimation [Section 2.4.4] procedure is re-evaluated for each noise level. This allows the

trend shown in Figure 2.6 (gray bars) to be generated, while using the fixed-noise inversions (red

bars) to verify that this trend is not an artifact of the sampling and simulation phase of the method,

but represents real sensitivity to the noise in the data.

A series of inversions are then run incorporating various limited combinations of instruments

type and location, to evaluate the optimal locations and instrument types for monitoring of a carbon

injection project.

The role that parameter tradeoff plays in the inversion is then investigated by attempting

to estimate all five poroelastic parameters of the formation, permeability κ, drained bulk modulus of

the porous solid K, bulk modulus of the solid grains Ks, Poisson’s ratio ν, and porosity φ. For this

case the properties of the confining unit are assumed to be known. A priori analytical constraints

are imposed on the parameters to reduce the size of the feasible space. The Biot coefficient αB

is a function of the bulk modulus of the porous skeleton and the bulk modulus of the solid grains

[Equation 2.10], and cannot physically be less than zero. In practice, for earth materials the Biot

coeffecient is generally greater than 0.5, so a large range of combinations of K and Ks can be

neglected from the analysis.

αB = 1− K

Ks
(2.10)

1/M =
αB − φ
Ks

+
φ

Kf
(2.11)

2.5 Results and Discussion

2.5.1 Base Case

The first inversion ran for approximately ∼6,000 simulations, and 60 unique sets of model

parameters [Figure 2.5] were found that explain all available data. Applying numerical integration
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of the posterior distribution yielded an estimated Young’s modulus value of 10.18 ± 0.12 GPa,

hydraulic conductivity of 10−5.98±0.18 m/s, and Poisson’s ratio of 0.29 ± 0.11. For comparison, the

’true’ synthetic model used a Young’s modulus of 10.2 GPa, hydraulic conductivity of 10−6 m/s and

a Poisson’s ratio of 0.25.
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Figure 2.5: Pareto optimal data fits are shown (top row) for fluid pressure, tilt, radial strain, and
vertical strain at the observation well in the center of the injection formation. Simulation results
are shown in gray while synthetic data measurements are shown in red. Data-model errors are
presented as a function of Young’s modulus and conductivity (middle row), and as a function of
Young’s modulus and Poisson’s ratio (bottom row).

2.5.2 Sensitivity to Data Noise

We find that parameter estimates exhibit moderate sensitivity to the magnitude of the

random measurement noise in the data. The estimate of permeability shows the least sensitivity to

random noise, while Young’s modulus and Poisson’s ratio are more sensitive. In each case while the

uncertainty in the parameter estimate begins to increase dramatically at around 10% measurement

error, the expected value does not deviate from the true value until around 20-30% measurement

error.
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Figure 2.6: Parameter estimates and uncertainties are presented as a function of the Gaussian noise
added to the synthetic data. Red error bars indicate separate runs of the parameter sampling (∼4000
simulations each). Each gray error bars re-uses the same sample of ∼4000 simulations, with different
levels of Gaussian noise applied to the synthetic data.

2.5.3 Sensitivity to Instrument Type and Location

The results indicate that pressure measurements by themselves are least effective at es-

timating the three parameters, whereas displacement, strain and tilt measurements have similar

information value [Tables 2.2 and 2.3].

However, combining pressure with displacement, strain or tilt improves these parameter

estimates, and all four data types improves the estimate. Deep instruments installed within the

formation have a slight edge over shallow instruments. However, in general combining multiple sen-

sor locations provides the most information. As models become more complex and heterogeneous,

the value of multiple data components in multiple locations should increase dramatically. There-

fore, since puncturing the confining unit and installing instruments within the formation carries a
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significant cost and risk, it is generally more effective to install a greater number of geomechanical

instruments in the shallow subsurface.

Table 2.2: Estimates of permeability (κ), bulk modulus (K) and Poisson’s ratio (ν) are shown in
terms of mean (µ), error (δ) and standard deviation (2σ), with various instrument types included
in the analysis. The synthetic datasets use a 2% noise level taken from the instrument locations
specified in Table 2.1, and include various combinations of pressure (P), displacement (D), tilt (T),
and strain (S) data.

Instrument Permeability [log10 m2] Bulk Modulus [GPa] Poisson’s Ratio
µ δ 2σ µ δ 2σ µ δ 2σ

P -12.9923 -0.059% 0.132 10.6912 6.912% 2.876 0.2170 -13.218% 0.122
D -12.9999 -0.001% 0.079 10.0318 0.318% 0.644 0.2491 -0.375% 0.025
S -12.9975 -0.019% 0.088 10.0110 0.110% 0.706 0.2488 -0.495% 0.032
T -12.9998 +0.002% 0.059 10.0523 0.523% 0.979 0.2506 +0.259% 0.026
P+D -12.9982 -0.014% 0.067 10.0383 0.383% 0.595 0.2493 -0.288% 0.023
P+S -12.9965 -0.027% 0.074 10.0173 0.173% 0.630 0.2491 -0.341% 0.028
P+T -12.9985 -0.011% 0.052 10.0371 0.371% 0.806 0.2504 +0.151% 0.021
All -12.9989 -0.009% 0.038 10.0332 0.332% 0.355 0.2503 +0.125% 0.010
True Value -13 10 0.25

Table 2.3: Estimates of permeability (κ), bulk modulus (K) and Poisson’s ratio (ν) are shown in
terms of mean (µ), error (δ) and standard deviation (2σ) with various instrument locations included
in the analysis. The synthetic datasets use a 2% noise level taken from all instrument types specified
in Table 2.1, and include various combinations of the injection (inj) and observation (obs) wells.

Instrument Permeability Bulk Modulus Poisson’s Ratio
µ δ 2σ µ δ 2σ µ δ 2σ

Inj -13.0068 +0.053% 0.088 10.0388 +0.388% 0.642 0.2498 -0.066% 0.028
Inj, deep -12.9972 -0.021% 0.084 10.0252 +0.252% 1.039 0.2499 -0.027% 0.026
Inj, shallow -13.0009 +0.007% 0.054 10.0411 +0.411% 0.440 0.2507 +0.272% 0.013
Obs -13.0002 +0.002% 0.074 10.0715 +0.715% 0.821 0.2492 -0.334% 0.024
Obs, deep -12.9935 -0.050% 0.095 9.9987 -0.013% 1.117 0.2485 -0.604% 0.029
Obs, shallow -12.9965 -0.027% 0.058 10.0290 +0.290% 0.658 0.2497 -0.126% 0.017
All deep -13.0021 +0.016% 0.051 10.0373 +0.373% 0.427 0.2497 -0.113% 0.017
All shallow -12.9959 -0.032% 0.063 9.9985 -0.015% 0.788 0.2493 -0.284% 0.020
All -12.9989 -0.009% 0.038 10.0332 +0.332% 0.355 0.2503 +0.125% 0.010
True Value -13 10 0.25

2.5.4 Parameter Tradeoffs

When estimating five unknown parameters simultaneously, synthetic geomechanical dataset

is found to be insufficient to uniquely constrain a single, unimodal solution. This occurs because

of tradeoffs between parameters. Initially, the parameter space is sampled using the space-filling

algorithm only. These simulations were then compared to the first 106 seconds (∼11 days) of

data measured and it was observed that the pressure wave from injection had begun to reach the

instruments in the deep observation well [Figure 2.7a]. By plotting these data-model misfits as a
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function of the permeability and porosity, a parameter tradeoff can be observed [Figure 2.7b] that

allows one to combine early pressure data with a physical understanding of the problem to develop

an additional parameter constraint, thereby reducing the size of the feasible space of the inverse

problem. Since the pressure travels as a diffusive wave the arrival of the pressure wave in the deep

observation well is linearly related to both the permeability κ and porosity φ,

D = K/S, K =
φκ

µ
∇P, S ≤ φ (2.12)

The inversion then began to incorporate other parameter search methods, therefore con-

strained within the smaller set of parameter combinations that agree with the pressure wave arrival.

Note that plots such as Figure 2.7b show a projection of a 5-dimensional space onto a 2-dimensional

plane. Therefore Figure 2.7b indicates that regardless of any variation in the other 3 parameters,

permeability and porosity must be along the dashed line in order to explain the data. This trend was

found to be consistent across all 36 datasets (9 instrument types at 4 distinct locations, see Table

2.1). Therefore a simple probability density function [Figure 2.7c] is defined, imposing the require-

ment that future models be drawn much more frequently from within this region of the parameter

space.

This approach mirrors the way that a real long-term experiment might operate. In practice,

simulations can begin running once the controlled parameters of a field experiment are known (ie

pumping rate, well locations, sensor calibration etc), but the search of the parameter space may

not be guided by information content of the data until much later in the field experiment. As

additional simulation results become available, parameter constraints may be modified according to

the judgment of the modeller and based on new information as it becomes available.
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Figure 2.7: Preliminary model calibration results. (A) Comparison of synthetic data and simulated
responses of the pressure breakthrough curve for the deep observation well. (B) Data-model misfits
(L2-norm) for pressure sensor in the deep observation well as a function of permeability and porosity.
Dashed line indicates the set of best-fit solutions. (C) Probability density function based on best-fit
solutions.

In the case of this five-parameter inversion, geomechanical data was unable to constrain

parameters to a unique solution. Instead a 5-dimensional tradeoff space emerges which can be

roughly visualized according to Figure 2.8. By selecting the set of models (171 models) that fit all

available datasets within a given tolerance (ie 2σn), this tradeoff space can be characterized as a

5-dimensional polygon. While this polygon extends over a broad region of the parameter space, in

this case it is constrained to approximately 2 millionths of a percent of the volume of the feasible

model space.
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Figure 2.8: Preliminary model calibration results. (A) Comparison of synthetic data and simulated
responses of the pressure breakthrough curve for the deep observation well. (B) Data-model misfits
(L2-norm) for pressure sensor in the deep observation well as a function of permeability and porosity.
Dashed line indicates the set of best-fit solutions. (C) Probability density function based on best-fit
solutions.

In a real field operation, this set of plausible models could be used for risk assessment and

planning purposes. Based on the set of 171 models that agree closely with the available data, one

may evaluate how and where they differ from each other, and use this information to predict the
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range of possible system behaviors as well as to identify optimal locations for additional instruments

for long-term monitoring. For example in Figures 2.9, the mean and standard deviation of these

171 pressure signals show that at day 183 the models have a higher variance in the formation in the

range of 2 km from the injection site. Therefore one might expect to improve parameter constraints

using data from a pressure sensor at that location. It can also be observed from Figure 2.10 that

the caprock near the injection site would be an ideal place for additional displacement instruments.

Once the parameters are constrained as much as possible, one might then run simulations of various

scenarios for pumping pressure and duration, and evaluate the probability of the formation exceeding

a given hydraulic fracturing pressure.
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Figure 2.9: Mean and standard deviation of the pressure of 171 plausible models is plotted as a
function of radial distance from the injection site and vertical distance above the lower confining
unit.
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Figure 2.10: Mean and standard deviation of the displacement magnitude of 171 plausible models is
plotted as a function of radial distance from the injection site and vertical distance above the lower
confining unit.

2.6 Conclusion

This study finds that geomechanical measurements of pressure, displacement, tilt and strain

can be used to estimate parameters within a poroelastic system such as a carbon storage reservoir.

While the relative information value of these data types is highly dependent on the particular

geomechanical problem, it is found that pressure measurements alone are generally less informative

than tilt, displacement and strain. Placing instruments inside the target formation is also more

informative than in the shallow confining unit, however rarely enough so as to justify the added

cost and risk associated with drilling through the confining unit of a carbon capture and storage

project. In cases where geomechanical field data is insufficient to conclusively estimate poroelastic

parameters, it can still often reduce the parameter space dramatically allowing for improved risk

assessment as well as informing installation of new instruments at more informative sites.

51



Chapter 3

Using borehole strain tensor

measurements to locate and

characterize subsurface

heterogeneities in the Bartlesville

formation in Avant field, Oklahoma

3.1 Abstract

Assessing reservoir properties frequently relies on measurements from wells drilled directly

to the depth of interest, penetrating reservoir or formation. A less intrusive method of evaluating

such reservoirs is therefore field-tested to demonstrate proof-of-concept of numerical results from

a previous study. Previous work based on numerical simulations demonstrated that in situ strain

measurements collected from shallow sensors could be used to monitor production and estimate

reservoir properties. This study validates these theoretical findings using a field test at the Avant

oil field in Oklahoma.

A shut-in test was performed by pumping produced water into a permeable reservoir at
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a fixed rate until steady state conditions were achieved, then briefly shutting-off injection for one

week. This pumping test was monitored using three components of the strain tensor at a nearby

shallow well (30 m depth, 1 km away). The data were then used to infer the position, size and

composition of the confined reservoir using a stochastic optimization technique was then applied to

simulate approximately 50,000 possible geomechanical models of the subsurface.

This field test confirmed that near-surface strainmeter data is sensitive to geologic processes

and structures at deeper depths. While a unique solution was not found, an ensemble of models which

explain the data adequately were constructed and used to dramatically reduce model uncertainties.

3.2 Introduction

Measuring strain and understanding geomechanical systems is important for a wide range

of applications. For example, geomechanics has been used for site assessment and monitoring the

geologic injection of compressed carbon dioxide for carbon capture and storage [13] and enhanced

oil recovery [70, 33, 51], optimization of hydraulic fracturing operations [20], geothermal energy

production [21], and water production from aquifers driven by fracture flow [5]. Understanding

responses to induced strain also has value in risk assessment studies as high-pressure injection into

a confined formation can cause human-induced microseismicity through fault reactivation [10, 47,

44], and displacement due to fracture behavior or aquifer compaction can cause damage to built

infrastructure [22] and may open a preferential flow pathway allowing pore fluid to move between

previously isolated reservoirs and potentially carrying contaminants into a fresh-water aquifer.

Being able to predict and manage strain responses requires an understanding of the geome-

chanical processes and parameters in a particular setting in order to estimate subsurface properties.

A number of inversion methods have been applied to geomechanical datasets. One study used an

Ensemble Kalman filter to fit a numerical geomechanics simulator to measured pore pressures and

well production data [12]. Other studies have combined measured or synthetic pressures with dis-

placement data using stochastic methods, such as Monte Carlo or Ensemble Kalman filtering [4], or

deterministic approaches such as least-squares estimation [19] or Newton congujate gradient descent

[32, 35]. Tiltmeters installed at the Earth’s surface or in boreholes have also been combined with

datasets such as pressure or displacement to study fractued aquifers or karst systems [34], often

employing Monte Carlo [49, 50, 37] or linear least squares [59] approaches. Satellite interferometry
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has also been used to fit vertical displacements to geomechanical flow models [11, 14]. These studies

have used linear approaches [60], as well as genetic algorithms [38] and data assimilation [73]. Bore-

hole strainmeters have also been used to estimate rock properties by using a grid search approach

to fit an analytical solution to strain data collected during a pump test [3].

While a variety of geomechanical datasets have been used in inverse problems, heterogeneous

3D numerical simulations have thus far proven too computationally intensive to calibrate to strain

data. In this study near-surface strain is measured during active oilfield operations, and parallelized

inverse methods are used to determine how sensitive these data are to stresses in deep confined

reservoirs, and whether it can be used to infer the structure and composition of the subsurface.

In particular this study investigates the sensitivity of geomechanical parameters to measurement

errors such as measurement noise and instrument drift, and to whether sensitivity to geomechanical

parameters of interest is less than or greater than sensitivity to unpredictable processes outside

of the conceptual model. This study also examines the existence, uniqueness, and computational

tractability of solutions to the resulting inverse problem. This field test is a follow up of previous

inversions [Section 2.5], where a similar inverse methodology was applied to establish proof-of-

concept using synthetic data. These results showed that non-uniqueness issues are common in

geomechanical inverse problems, so it is expected that real-world data will reduce the range of

possibilities dramatically but may not find a unique, unimodal solution.

3.3 Background

The strain response of a solid, porous material under stress by a pressurized pore fluid

is governed by a two-way coupling between the mechanical deformation of the solid medium, and

the diffusive flow of the pore fluid. Terzaghi’s theory of 1D consolidation [57, 56] modelled the

compaction of a porous saturated material by assuming that both the solid and fluid components

were incompressible. A general theory of poroelasticity [7, 8] was later developed to account for

compressibility, and was incorporated into the general framework of continuum mechanics [64]. The

continuum mechanics approach contrasts with fracture behavior, where a discrete discontinuity in

the porous material allows for displacement along a plane accomodating stress in some areas while

concentrating it in others.
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3.4 Methods

This study involved a field component, forward modelling component, and inverse modelling

component. A set of strainmeters and tiltmeters were installed and calibrated, and used to monitor

strain during a schedulued well shut-in. A forward model was developed and adjusted for optimal

accuracy and efficient use of computational resources. An inverse method using a combination of

Latin Hypercube and NSGA-II genetic algorithms was implemented, and used to identify a set of

models that would explain the measured field data.

3.4.1 Shut-In Experiment

Our field site is an active oil field near Avant, Oklahoma. The target reservoir in this

study is the Bartlesville Formation, a sandstone layer approximately 30 meters thick, at a depth of

approximately 500 m and confined by layers of shale. The disconnected lenses of high permeability

material directly underlying the Bartlesville and penetrating the lower shale are understood to have

been deposited under fluvial conditions. These high-permeability lenses are promising locations for

oil exploration and are important re-injection locations for produced water.

This field experiment included 5 active wells. Wells 1A, 4A, 731 and 25-1W [Figure 5.1] are

screened in the Bartlesville formation and underlying high-permeability lenses, but cased throughout

the confining unit. Injection had occurred at a relatively constant rate (1500 barrels/day) in each

of these wells for several weeks, resulting in an approximate steady-state condition. Well 1A was

then shut-in for one week, with some of the excess flow rate being partially redistributed to the

other three injection wells (200 barrels/day increase at well 4A, 200 barrels/day at well 731, and 400

barrels/day at well 25-1W). When injection resumed at Well 1A, the reservoir began to recover and

return to its previous steady-state condition. A Gladwin strainmeter was installed in a shallow well

(AVN2) at a depth of 30 meters, and the North-South, East-West, and shear strain were recorded

for the duration of both the shut-in and recovery.
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Figure 3.1: Location and conceptual model of the field site for 1A Shut-in test. Cross-section on
top shows stratigraphy with contrasts in permeability (circle) and locations of well 1A and Gladwin
strainmeter at AVN2. Location map of field site with wells included in the model.

3.4.2 Forward Modelling

The forward model is a poroelastic finite element partial differential equation solver called

Geocentric [67, 68], which simulates fluid flow and rock deformation. For this analysis four horizontal

layers are included in the model [Figure 5.1], an upper (500 m thick) and lower (100 m thick) confining

unit, a permeable confined unit representing the Bartlesville sandstone (27 m thick), and a thin lens

underlying the Bartlesville formation to represent the high-permeability fluvial lenses (5 m thick).

A 16 km by 16 km model space is defined, where the outer region is coarsely meshed and a smaller

interior region (4km by 4km) is much more finely meshed [Figure 3.2]. The side boundaries are

defined by fixed fluid pressure and a mechanical roller for strain, meaning that the displacement

normal to the boundary is zero. The lower boundary is specified to have zero flux, and a mechanical

roller for strain. The upper boundary also specifies no flow and zero total stress.

Well geometries are defined explicitly as a cylindrical shell with a smaller, concentric cylinder

inside. The volume of the outer shell represents the casing and has a bulk modulus and permeability

approximating that of steel (E =200 GPa, κ =10×10−99 m2), while the inner core represents the
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inner diameter of the well and has as low a bulk modulus and permeability as is computationally

feasible (K =3 GPa, κ =1×10−8 m2). The well casing is screened within the permeable lens, and

has a permeability of κ =1×10−8 m2. A flux is specified along the top surface of the inner cylinder,

corresponding to the measured volumetric flow injected into each well.

The computational mesh consists of free quadrilateral elements over a region approximately

4 km across embedded in a larger domain of rectangular elements [Figure 3.2]. The free quad

elements wrap around the wells. The mesh is swept vertically to create prismatic elements in 3D.

1AAVN2

4A

731

25-1W

Figure 3.2: Computational mesh in plan view for entire model (left) and finely meshed region around
well (inset).

The shut-in test at well 1A involved four separate injection wells and one observation well,

so the mesh is refined around these five locations [Figure 3.2]. Simulating all four injection wells

simultaneously was computationally intensive, and therefore the strain response of each well was

simulated individually and the joint response was obtained by applying superposition to sum the

contributions from all four wells. The validity of the superposition was tested by simulating two

wells jointly using a mesh refined at three points (2 injection wells and one observation well). Those

same two wells were then simulated separately using a mesh refined at only two points (injection well

and observation well). Results from the two separate simulations were superimposed and compared

to results from the simulation that included both wells together. The results [Figure 3.3] are nearly

identical, but the superposition simulation ran much faster. As a result, the analysis was conducted

using superposition of strains from individual wells.
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Figure 3.3: Measured and simulated strains as functions time. Effects of wells 1 and 2 simulated
individually (red and green), and their superposition (magenta), along with effects of both wells
simulated simultaneously (dotted), and compared to field data (black). (a) NS strain, (b) EW strain
and (c) shear strain.

As the true field site potentially involves heterogeneities and preferential flow pathways

at a very fine scale, a very large number of free parameters would be needed in order to fully

describe the field site, resulting in a computationally intractable data-fitting problem. A set of

simplfying assumptions were therefore made in order to approximate the field site using a manageable

number of parameters. These include assumptions that the confining unit, lens and Bartlesville

formation are internally homogeneous, that their Poisson’s ratios and porosities are fixed and known

(ν = 0.25, φ = 0.2), that their grain moduli are each that of quartz (Ks = 42.9 GPa), and that

the pore fluid was single-phase water (Kf = 2.15 GPa). The domain is modelled as a continuous

hydromechanical volume with no faults or fractures to accomodate or concentrate strain. The

lens was assumed to be circular, and intersecting with the 1A injection well. Allowing for these

assumptions, a data-fitting problem is therefore constructed with nine unknown parameters, namely

the permeability (κ) and bulk moduli (K) of the lens, Bartlesville formation and confining units,

and the geometry of the lens in terms of its centroid location (x,y) and radius (r).

3.4.3 Inverse Methods

A two-step inversion approach was used to identify an ensemble of reservoir properties that

produce simulated data that fit the field observations. First, a Latin Hypercube was used to explore

the parameter space as uniformly as possible while minimizing correlation between the initial samples

of the model parameters. The simulation results obtained with these samples was then used in a

multi-objective genetic algorithm (NSGA-II), which uses a Pareto ranking algorithm to explore the
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tradeoffs between multiple data-fitting objectives for each of the three components of measured strain

at AVN2. In order to perform the necessary simulations quickly, an object-relational programming

approach was used to couple the inversion code to a diverse set of compute nodes on a university

cluster computer, Open Science Grid (OSG), and Amazon Web Services (AWS).

Since the three measured components of strain (North-South, East-West, shear) represent

three potentially contradictory data-fitting objectives, NSGA-II was modified to run as a series of

sub-populations, alternating between fitting the tradeoff between the North-South and East-West

strain components, then the North-South and shear components, then the East-West and shear

components, then fitting all three components. After 19,134 models were run under the Latin

Hypercube, and an 28,773 additional models were run using NSGA-II (191,628 simulations total, ie

4 single-well simulations per sample of model parameters), the marginal data-fitting improvement

of each iteration was found to have dropped off significantly, and a variety of models were identified

that closely fit all three datasets.

3.4.4 Data Analysis

These three contradictory strain components are visualized using a Pareto front approach,

where each simulation is presented in terms of data-model misfits with one objective plotted against

another. A singular value representing the overall data fit of each simulation is then calculated as the

sum [Eq 3.1] of the squared prediction error for each of the strain time series, where the errors are

weighted by the magnitude of the data noise (σn). The data noise is estimated by fitting a high-order

polynomial to the time series data [Figure 3.3], and taking the sum of squared errors between the

noisy data and the smooth polynomial. The weighted error of each simulation is plotted as a function

of two parameters, cycling through the 36 possible pairs of 9 parameters ( 9!
2!7! ) to characterize the

error structure of the 9-dimensional parameter space being explored [two examples are shown in

Figure 3.7].

WS =

3∑
i=1

∑
(di − fi(m))

2

σn,i
(3.1)
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Figure 3.4: Measured NS Strain (red) and high-order polynomial fit (blue) as functions of time.

3.5 Results and Discussion

Of the 47,907 models evaluated, 5,490 unique sets of parameters were found which could

explain all three available datasets [Figure 3.5] within the error bounds of EW strain εEW ± 25 nε,

NS strain εNS±15 nε, shear strain εxy±10 nε. These error bounds were selected to avoid overfitting

of conceptual model noise. The best-fitting models, highlighted in black in Figures 3.5, 3.6, 3.8 have

errors falling between the data noise σn,i and these upper thresholds.

The distribution of simulations with small error is multi-modal when the confining unit is

relatively permeable in the range of k = 10−14 to 10−13 m2, for all values of the lens permeability

(blue dots on right side of Figure 3.7). Another region of low error (blue dots) occurs where the

confining unit permeability is in the range of 10−17 < k < 3 × 10−16 m2, and the permeability of

the lens is relatively high (3× 10−13 < k < 10−12 m2). This distribution indicates that a reasonable

data fit can occur for a relatively impermeable confining only if the lens itself is permeable, but if

the confining unit is permeable then the fit is insensitive to the lens permeability.

The inversion identified a small set of parameters that fit the NS and EW strains well, as

indicated by a Pareto front with an “L” shape (yellow points on the lower left of Figure 3.8a) oriented

toward the origin, indicating that models have been found which explain both signals well. Similar

shapes also occur for the other parameter sets (yellow points in Figures 3.8b and 3.8c) indicating

small sets of parameters that fit the data with little tradeoff.
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These results are encouraging, but they include parameter sets with a confining unit perme-

ability that is fairly high (the band on the right side of Figure 3.7). The confining unit is shale and

the permeability is expected to be low, so the parameter sets with high confining unit permeability

are inconsistent with the geologic conditions in our prior understanding of the site. As a result,

parameter sets with a high permeability confining unit were subsequently omitted. The Pareto front

that requires the confining unit to be relatively impermeable is more rounded and sparse than when

all the data are included (black dots on Figure 3.8). This indicates more tradeoff and a poorer fit

to the data when the confining unit permeability is low.

One reason for a decrease in the data fit occurs when injection resumes on day 14 [Figure 3.5].

The observed strain decreases sharply at this time, but the simulated strain with an impermeable

confining unit decreases only slightly. The mismatch that occurs when injection resumes on day 14

appears to be the reason why the models with an impermeable confining unit fit more poorly than

the models with a more permeable confining unit.

Assuming that the permeability of the confining unit is low constrains the problem to a less

multi-modal set of 661 solutions. The resulting whose lens geometries and physical properties are

shown in Figures 3.10 and 3.9. These results indicate the log permeability of the lens is 2×10−13 to

1.5×10−12 m2 (200 mD to 1500 mD), Bartlesville sandstone is 1×10−14 to 1×10−12 m2 (10 mD to

1000 mD), and the confining unit is 3×10−17 to 1×10−15 m2 (0.03 mD to 1 mD). The bulk modulus

of the lens is E=2 GPa to 4 GPa, the Bartleseville sand is E=12 GPa to 16 GPa and the confining

unit is E=20 GPa to 25 GPa [Figure 3.9].

The extent of the lens intersected by well 1A is 800 m to 1000 m and the centroid is to the

southwest of well 1A [Figure 3.10a]. For comparison, the isopach map of the lens thickness [Figure

3.10b] suggests that the lens extends approximately 500 m to the northeast, but the extent to west

is limited to less than 100 m.
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Figure 3.5: Strain as a function of time for 1A Shut-in Test. Measured strain data (red), simulation
results (gray). Best-fitting simulation results in black. Models with permeable confining layer
included.

Figure 3.6: Strain as a function of time for 1A Shut-in Test. Measured strain data (red), simulation
results (gray). Best-fitting simulation results in black. Models with permeable confining layer
excluded.
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Figure 3.7: The weighted error (Eq 3.1) of each simulation as a function of (a) the confining unit
permeability and lens permeability, and (b) the confining unit permeability and confining unit bulk
modulus. Blue points correspond to the black lines in Figure 3.5. Note that this plot projects a
9-dimensional parameter space to a 2-dimensional plane, and therefore some of the variation shown
is due to the other 7 parameters.

Figure 3.8: Data-model misfits for pairs of strain components (Pareto plots) with (a) East-West
strain against North-South, (b) East-West against shear strain, and (c) North-South strain against
shear for 1A Shut-in test. Yellow dots indicate models where the confining unit has a high per-
meability (greater than 10−15 m2), gray dots indicate models where the confining unit has a lower
permeability, and black dots indicate models with low confining unit permeability and also fit the
measured data within the selected error bounds (corresponding to black lines in Figure 3.6).
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Figure 3.9: Histograms of the best-fitting parameters for low permeability confining unit from 1A-
Shut-in test. Permeability as log base 10 m2. Bulk moduli are in GPa.
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Figure 3.10: (A). Lens geometries of the best-fitting models are shown with well locations for
comparison. Note that these lenses correspond to the black lines in Figure 3.5. (B). Lens thickness
isopach developed by Grand Resources Oil company.
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3.6 Conclusion

In this study, a numerical proof-of-concept was successfully field tested and it was demon-

strated that shallow strainmeter data is sensitive to the geometry and physical properties of dis-

tant, deep, hydraulically confined geologic structures. While non-uniqueness issues and data-fitting

tradeoffs remain, this type of data can dramatically reduce model uncertainties while requiring only

inexpensive wells completed in the shallow subsurface. This can allow stakeholders to develop an

improved understanding of a geologic formation, and determine ideal drilling locations and pumping

schedules.
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Chapter 4

Combining wellbore strainmeter

and pressure transducer data for

improved reservoir characterization

4.1 Abstract

In order to infer the structure and material properties of a deep confined reservoir, measure-

ments from borehole strainmeters completed in the shallow (30 m depth) subsurface were combined

with pressure transducer data completed in the deeper (500 m) confined reservoir. While including

pressure data in the analysis dramatically reduces uncertainties, strain data alone is found to be

highly sensitive to the subsurface parameters and has a very similar information content. In addi-

tion, drilling and installation of the strainmeter observation well is much cheaper and safer since the

pressurized reservoir does not need to be punctured.

4.2 Introduction

Projects involving exploration of oil and natural gas, mine dewatering, geologic carbon

storage and disposal of produced water require detailed knowledge about the geologic structure and

composition of the various rock layers at a given field site. The parameters of interest in these systems
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can influence both the fluid pressure at depth as well as the mechanical strain and deformation in

the shallow subsurface [27, 28]. However, collecting data on fluid pressure carries a greater cost

and risk since the drilling process is more involved for deeper wells, and puncturing into a confined

formation releasing fracking fluids into surficial drinking water aquifers, or releasing stored carbon

from a geologic storage operation. In order to mitigate these risks, it is critical to develop methods

of characterizing the subsurface using minimally invasive wells.

As a pressurized fluid moves through a porous medium, it influences the mechanical response

of the medium. Simultaneously, the elastic behavior of the medium can impact the fluid flow by

changing the pore diameters and tortuosity of the pore skeleton itself, as well as the propogation of

pressure throughout the system.

In this study, borehole strainmeter and pressure transducer data are combined to charac-

terize the subsurface, and their information value for site assessment and monitoring of geologic

reservoirs is compared.

An important and unique aspect of this work compared to prior studies is that the strain-

meter is installed in a shallow borehole well above a target formation, while pressure transducers

are completed within the target formation itself.

4.3 Methods

In the following sections, the field experiment and data collection process are described as

well as the approach to numerically approximating the field site’s hydromechanical behavior. Data-

fitting methods are then discussed in terms of both the particular inverse methods employed and

the computational workflow needed to accomplish the hydromechanical simulation runs.

4.3.1 Site Description and Pumping Experiment

An active oil field near Avant, Oklahoma was selected as the study area. This field site

includes a sandstone layer called the Bartlesville formation, with a thickness of approximately 30

meters and at a depth of approximately 500 m. This layer is confined by shale layers above and

below, and is underlain by permeable lenses which are used for oil exploration and development,

and re-injection of produced water.
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Figure 4.1: Active injection wells in the Avant oil field are shown in map view. Geological conceptual
model is shown in cross section.

This field experiment included 1 active injection well and 4 observation wells [Figure 5.1].

A Gladwin strainmeter was installed in a shallow well at AVN2 (depth of 30 meters) and measured

strain along the East-West, North-South, and vertical axes. Pressure was measured in wells 27, 29,

and 60, which are cased throughout the confining unit and screened in the high-permeability lenses.

Well 9A was pumped at a varying flow rate for approximately six days before flow was stopped,

after which recovery was monitored for seven more days.

4.3.2 Forward Model

Hydromechanical response to injection is simulated using Geocentric, a poroelastic finite

element partial differential equation solver [67, 68]. The mesh is composed of four layers [Figure 5.1]

representing the upper confining unit (500 m thick), Bartlesville formation (27 m thick), permeable

lenses (5 m thick) and lower confining unit (100 m thick).

The permeable lenses are laterally discontinuous, while the other layers are uniform through-

out the NS-EW plane. The model space is 16 km by 16 km, with the inner region (4 km by 4 km)

meshed finely compared to the outer region [Figure 4.2]. The mesh elements are made up of free
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quadrilateral elements, which are swept vertically forming hexahedral elements. The side boundaries

are assigned a constant fluid pressure and a mechanical roller condition ensuring that they cannot

move normal to the boundary. The lower boundary is specified as a zero flux condition, and a fixed

vertical position allowing it to deform along the xy-plane only. The upper boundary has a no-flow

condition and fixed zero total stress.

Injection and observation wells are meshed as a pair of concentric cylinders of radius 2.0 m

and 1.8 m. The outer shell has the material properties appropriate for steel casing (E =200 GPa,

κ =10×−99 m2), while the interior of the well has material properties that approximate free air

as closely as the solver will efficiently allow (E =3 GPa, κ =10×−8 m2). Within the permeable

lens, the steel casing is screened and therefore has a permeability of κ =10×10−8 m2. The injected

volumetric flux is specified along the top of the inner cylinder.

Figure 4.2: Outer, coarse mesh is shown with inset finely meshed region.

As the variations in flow rate were at a much finer timescale than would be reasonable for the

hydromechanical simulation, a smooth function was constructed to closely approximate the volume

of water injected at any given moment [Figure 5.3b] without precisely matching the instantaneous

injection rate history [Figure 5.3a].
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Figure 4.3: The injection rate over time and total injected volume over time are shown for both the
measured flow, and the smooth function approximating the measured flow.

4.3.3 Inverse Algorithms

The goal of this inversion is to use the 6 available timeseries of strain at AVN2 and pressure

data at wells 27, 29 and 60 to make inferences about the structure and composition of the subsur-

face. Three homogeneous poroelastic materials are used to represent the confining unit, Bartlesville

formation, and permeable lens. It is also assumed there are no faults or fractures in any of the

layers, that the bulk modulus of the solid grains is Ks = 42.9 GPa (quartz), and that the pore fluid

is water only with no air, oil or natural gas present (Kf = 2.15 GPa). It is also assumed that the

lens was either circular or elliptical, and could thus be parameterized using an x,y centroid location

and either a radius or a rotational angle, semi-major and semi-minor axis. Unknown parameters in

the model therefore include the permeability, bulk modulus, porosity and Poisson’s ratio of these

three materials, as well as the geometric parameters of the lens, for a total of 15 parameters in the

circular lens case and 17 in the elliptical lens case.

The optimization proceeded in stages. The circular lens case was analyzed first, the results

of which were used as a starting point for the elliptical scenario. A Latin Hypercube was used

to sample the parameter space (n=12,046) as evenly as possible while minimizing any correlations

between parameters. This helps prevent the inversion from neglecting large, unexplored regions

of the parameter space where the true model might lie. Next, a multi-objective genetic algorithm

(NSGA-II, [16]) was used to search for optimal parameter sets to fit the data.
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Due to the potential for sensor drift evident in the data, and the many simplifying assump-

tions built into the conceptual model, substantial tradeoff between data-fitting objectives is possible.

For example, the inversion might easily find models which explain one component of strain, but

strongly contradict the others. Or the inversion might find models that fit the pressure data nicely

but contradict the strain data. To mitigate the inherent difficulty of exploring a 15-dimensional

parameter space using 6 potentially contradictory datasets, the standard NSGA-II algorithm was

modified to run many subpopulations in parallel, with roughly a third of them attempting to strike

a balance between fitting only two of the datasets at a time, another third attempting to satisfy

three data-fitting objectives at a time, and another third attempting to fit all six datasets simultane-

ously. This breaks the inverse problem into many smaller, more solvable problems, and allows good

solutions to the easier problems to be continuously fed into the six-objective inversion as candidate

solutions.

After running 10,017 simulations using the NSGA-II approach and the 15-parameter circular

lens model, a second Latin Hypercube search (n=1,219) was then performed using the 17-dimensional

parameter space implied by an elliptical lens. The best-fitting circlular lenses were then converted

to an elliptical parameterization, and used to supplement this second Latin Hypercube sweep of the

parameter space. When these simulations were complete, the NSGA-II algorithm was continued for

an additional 20,178 simulations.

4.3.4 Distribution of Computational Effort

Stochastic model calibration can require on the order of 10s to 100s of thousands of sim-

ulations, with each simulation in this study requiring an average of 20 minutes to run [Figure 4.4]

on a 4-core, cpu-optimized machine. An efficient workflow [Figure 5.4] was therefore needed to run

the simulations in parallel as much as possible, distributing this computational effort over a wide

variety of compute nodes.

The approach is cloud based with a head node located on Amazon Web Services that man-

ages the overall progress of the optimization. The head node constructs simulation input files and

distributes them to compute nodes. To this end, a MySQL relational database [Figure 4.6] was

developed which organizes the incoming field data, simulation inputs and outputs, and lineage rela-

tionships between simulations. An Amazon S3 (Simple Storage Service) bucket is used to store these

input files and make them available online to a heterogeneous set of compute nodes, while Amazon
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SQS (Simple Queue Service) maintains the integrity of the distributed queue and ensures that no

two compute nodes begin simulating the same input file. The composition of compute nodes varies

depending on availability, but are drawn from Clemson University’s cluster computer (Palmetto),

Open Science Grid (OSG), and Amazon Web Services (AWS). The database also houses the mea-

sured field data, and includes information about the parameterization of the inverse problem, prior

statistical distributions of the parameters, and tuning parameters for the inversions. As simulations

are completed, the incoming simulation results are integrated into the overall inversion and used to

inform the next set of input files to be simulated.
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Figure 4.4: A histogram of simulation runtimes is shown.
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Figure 4.5: Illustration of parallel model calibration workflow. Inversion data is stored in
MySQL database, and Python code accesses this data to produce simulation input files
and store them in an AWS S3 bucket. Compute nodes retrieve these input files, run them
and produce output files, which are also stored in the S3 bucket and later retrieved by the
database.
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Optimization
id int
name str

Relate
id this int
id that int
id opt int
relation enum

Sample
id int
id optimization int

Prediction
id int
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data blob
misfit float

Simulation
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Figure 4.6: Entity-Relationship diagram for the inversion database. Blue boxes indicate tables in
the database, while lines indicate the cardinality relationships between tables.
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While the full mapping between the 15–17 dimensional parameter space and 6-dimensional

objective space is impossible to examine graphically, it can be simplified in several ways to draw

out the important dynamics. To summarize the overall data fit of each simulation as a function

of its model parameters, the weighted sum of the six misfits weighted by the magnitude of their

data noise (σn) is computed. The data noise is estimated by fitting a high-order polynomial to the

data [Figure 4.7], and taking the sum of squared errors between the noisy data and the smooth

polynomial. Therefore a weighted sum of 6.0 would indicate that the model fit all six measured

datasets at least as well as the smooth polynomial.

WS =

6∑
i=1

∑
j=0 (di,j − fi,j(m))

2

σn,i
(4.1)
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Figure 4.7: Measured NS Strain is shown compared to a high-order polynomial fit of the
data.
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4.4 Results and Discussion

In both the circular [Figure 4.8] and elliptical [Figure 4.9] cases, a set of models were found

which fit all available datasets within a selected margin of error. Many different models were found

early in the inversion which would fit all three strain components, but the algorithm had a much

harder time finding models which also explain the pressure signals [Figure 4.8]. In general, the

models which fit the strain data had too low of a pressure response, possibly indicating that the lens

volume was too large to pressurize the entire region, and that a circular geometry would not allow

a small enough lens that still contains all three pressure observations wells.

Figure 4.8: Simulation results from the circular parameterization inversion are compared
to their corresponding field measurements (red lines) for three components of strain, and
three pressure transducer locations. Simulation results are shown in gray, while best-fitting
results are highlighted in black.
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Figure 4.9: Simulation results from the elliptical parameterization inversion are compared
to their corresponding field measurements (red lines) for three components of strain, and
three pressure transducer locations. Simulation results are shown in gray, while best-fitting
results are highlighted in black.

While the tradeoff between all six objectives is impossible to examine graphically, 2-dimensional

tradeoffs can be examined by selecting two objectives at a time and plotting the corresponding

data-model misfits against each other [Figure 4.10]. For example the tradeoff between East-West

and vertical strain components shows an ”L” shape near the origin, indicating minimal tradeoff,

or that many simulations were found which fit both the East-West and vertical strain timeseries

equally well. By contrast North-South and vertical strain show a stronger tradeoff near the origin,

meaning that beyond a certain point (10–12 nanostrain), fitting one strain component marginally

better requires fitting the other marginally worse.

The NSGA-II algorithm is explicitly designed to identify simulations along the leading edge

of this tradeoff surface by making random combinations and mutations of these “equally good”

parameter sets, filling in the gaps. However the tradeoffs involving pressures were often much

more difficult to sample densely. This may indicate that pressure is much more sensitive to these

parameters, such that a slight mutation to a model along the tradeoff surface would result in a very

different pressure signal while leaving the strain data reasonably unchanged.

While the circular and elliptical parameterizations have similar performance in terms of
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fitting strains, the elliptical parameterization was better able to balance the tradeoff between strain

and pressure objectives. This may be because the elliptical lens allowed for a smaller overall lens

volume while still encompassing all four observation wells.

Figure 4.10: Data-model misfits are shown for all Geocentric simulations, for several pairs
of objectives. Red dots indicate circular lens simulations, blue dots indicate elliptical
lenses.
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The weighted sum of data misfits is plotted as a function of pairs of model parameters in

Figure 4.11. In order to compare the value of pressure and strain data, the data misfits calculated

using only the strain signals are shown in the lower portion of the figure, whereas the misfits cal-

culated using both the pressure and strain signals are shown in the upper portion of the figure.

Note that the porosity and Poisson’s ratio were observed to be the least sensitive parameters, and

therefore are not shown. Similarly, the geometric parameters were the most well-constrained and

exhibited minimal tradeoff, and are therefore presented separately in map view [Figure 4.13]. The

formation, lens and confining units permeabilities each were shown to have a single, unimodal range

that explains all six datasets well [Figure 4.11, diagonal].

These results indicate that a log10 permeability (m2) of approximately -18 to -17 for the

confining unit, -16 to -15 for Bartlesville sandstone, and -13.5 to -12.5 for the lens. The confining

unit shows a bulk modulus of approximately 6-8 GPa. However, the bulk modulus of the lens and

formation exhibit a multi-modal distribution. This multi-modal character may indicate that that the

data is simply less sensitive to the formation and lens moduli, or that a sparsely-explored tradeoff

surface exists between the compressibilities and permeabilities. This tradeoff surface may have been

sparsely-explored because it is topologically complex, because it represents a very narrow sub-region

within the parameter space, or simply because greater sensitivities to the material permeabilities

and lens geometry tended to dominate the inversion.

Strain data alone [Figure 4.11, (diagonal)] yield parameter distributions with modes that

are similar to what we observe when pressure is considered [Figure 4.12, (diagonal)]. While the

pressure data was better able to find unique solutions with less uncertainties, near-surface strain

data was much safer and less expensive to collect as the observation point was much shallower and

did not intersect the target formation. In a hydraulic fracking or carbon sequestration operation,

being able to study and monitor a target formation without puncturing an observation well into it

can be invaluable.

While the measurement noise of these strainmeters themselves is much smaller than the

strain signals observed here, it is important to note that conceptual model errors are likely consid-

erable. There is therefore a danger of overfitting model noise. In future work, it will be important

to run similar pumping tests in a repeated fashion in order to distinguish random drift from the

characteristic signal produced by a given pumping schedule.

In addition, improved hydromechanical solvers may be needed in order to effectively simulate

79



the full range of physical processes that may be influencing near-surface strain data. For example,

while this analysis assumes a single-phase fluid, it may be that multi-phase flow is necessary to

adequately explain all of the data. Likewise, fracture behavior may account for a component of

the signals that we see here, concentrating stress in unexpected areas while releasing it in others.

Another critical step in improving our ability to characterize the subsurface will be the integration of

additional strainmeters. Since including more complex physics simulations will necessarily increase

the number of unknown parameters, adding more objectives will be critical in keeping geomechanical

inversions computationally tractable.
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Figure 4.11: Parameter values for circular parameterization are shown as scatter plots in upper
right and lower left corners, where color represents a weighted sum summarizing how well all six
datasets (upper right) are fitted, and how well the three strain datasets are fitted (lower left). Blue
points represent the best-fit models. Histograms along diagonal show the parameter distribution of
best-fitting models, according to both the strain alone (S), and pressure and strain combined (P+S).
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Figure 4.12: Parameter values for elliptical parameterization are shown as scatter plots in upper
right and lower left corners, where color represents a weighted sum summarizing how well all six
datasets (upper right) are fitted, and how well the three strain datasets are fitted (lower left). Blue
points represent the best-fit models. Histograms along diagonal show the parameter distribution of
best-fitting models, according to both the strain alone (S), and pressure and strain combined (P+S).
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Figure 4.13: Best-fitting lens geometries are shown for both circular and elliptical param-
eterizations.

4.5 Conclusion

In this study, pressure and strain data were used to determine the geometry and properties of

rock layers in the subsurface. While pressure data was taken within the target formation, strain data

was measured from the shallow subsurface allowing one to much less invasively study the subsurface.

While strain data taken from the shallow subsurface was sufficient to locate and characterize a

potentially oil-bearing permeable lens, installing deeper observation wells in the target formation

allowed for much lower uncertainties in estimating of the reservoir properties.

Both strain and pressure data were shown to have a strong sensitivity to the shape of the lens,

and therefore the results obtained are biased by any geometric assumptions made by the modeller.

In future work, these geometric assumptions will be obviated using a dynamic parameterization that

allows the lens shape to vary during the optimization rather than assuming a lens shape.
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Chapter 5

Using geomechanical data to image

heterogeneous subsurface flow

systems

5.1 Abstract

The structure and material properties of a confined permeable lens were studied using in-

situ pressure transducer data combined with remote strainmeter taken in the shallow subsurface. A

novel inversion approach was used to fit these datasets using Geocentric, a hydromechanical finite

element solver.

The role of simplifying assumptions in inversion was investigated by initially using a fixed

parameterization which made strong assumptions about the lens shape, and by then successively

relaxing these assumptions. It was initially assumed that the permeable lens was circular, and an

inversion was performed to find the approximate location, size and material properties of the lens.

The lens was then assumed elliptical, and a second, more focused inversion was performed to find

the long axis and orientation while fine-tuning the location, size and material properties. The lens

shape was then allowed to vary dynamically and an image was constructed of the most likely lens

shape as well as its material properties.
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5.2 Introduction

Real subsurface flow systems are highly heterogeneous, and minor variations in the config-

uration of different rock layers can alter flow patterns significantly. Structures such as braided river

channels to fracture networks can create preferential flow pathways at many different scales. Any

model parameterization capable of allowing for all these possibilities would require many (ie, mil-

lions) unknown parameters, and the resulting inverse problem would be computationally challenging

or potentially intractable. It is therefore common to make simplifying assumptions that limit the

potential shapes of heterogeneous rock formations, reducing the effective size of the parameter space

and allowing one to construct a tractable inverse problem.

One approach to implementing these simplfying assumptions is the object-based method

[17], where heterogeneities are specified as easily parameterizable geometric shapes. For example

a flat, circular heterogeneity can be parameterized using only a few parameters, an x,y,z centroid

location and a radius. Another approach is the pilot point method [18], where arbitrarily-shaped

heterogeneities are constructed from a set of points and then adapted over many iterations until some

data-fitting objective is achieved. This method allows for a wider variety of geometries and may

better explain the behavior of real-world systems, but requires more free parameters and therefore

a longer runtime. The pilot point method is an example of a dynamic parameterization [9], since

the parameterization describing the system is variable throughout the course of the inversion and is

itself treated as one of the unknowns to be solved for.

In this study a hierarchical approach is used to combine these two approaches, solving the

inverse problem in its most simplified form before feeding the best solutions forward and using them

as initial guesses for progressively more challenging forms of the inverse problem. The forward model

[67, 68] uses the concept of poroelasticity [57, 7, 64] to fit geomechanical signals measured in the

shallow subsurface during injection of a confined permeable rock formation of unknown geometry.

The approach has potential applications in a wide range of industries such as oil and natural gas

development, mining and geothermal energy.

5.3 Methods

This study involved the design of a conceptual model and pumping schedule for the site,

implementation of a numerical model to represent the hydromechanical behavior of the field site,
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and software development of the inversion algorithm.

5.3.1 Site Description and Pumping Experiment

We conducted this experiment at an active oil field near Avant, Oklahoma. The local

geology include a 30-meter thick layer of sandstone called the Bartlesville formation, at a depth of

approximately 500 m. The sandstone formation has shale confining layers above and below, and is

underlain by permeable lenses thought to be formed by a braided stream system. These lenses have

wells installed for the purpose of oil exploration and for injection of produced water.
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Figure 5.1: Active injection wells in the Avant oil field are shown in map view. Geological conceptual
model is shown in cross section.

The field site had one injection well (9A) which was completed within the permeable lens,

one observation well (AVN2) completed to a depth of 30 m and instrumented with a Gladwin

strainmeter, and three additional observation wells (27, 29, 60) completed in the permeable lens and

used to monitor fluid pressure. The Gladwin strainmeter recorded the East-West, North-South and

vertical strain components. The injection well was performed at well 9A with a variable flow rate

for approximately six days before the injection was stopped for a seven day recovery.
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5.3.2 Forward Model

The numerical forward model uses a finite element software called Geocentric [67, 68] to

simulate the poroelastic response to the injection schedule. The model space is 16 km by 16 km,

with the inner region (4km by 4km) meshed finely while the outer region is coarser [Figure 5.2].

The finite element mesh consists of free quadrilateral elements defined over the inner region and

rectangular elements over the outer region [Figure 5.2], which were swept vertically forming 3D

hexahedral mesh elements. Wells are meshed explicitly using a vertical cylinder with material prop-

erties approximating steel (E =200 GPa, κ =10×10−99 m2), and an interior cylinder with a lower

bulk modulus and permeability (K =3 GPa, κ =1×10−8 m2). The well is screened (permeability

κ =1×10−8 m2) where it intersects with the permeable lens.

Flux equal to the measured volumetric injection rate is specified along the top of the well.

Other boundary conditions are defined along the outer side boundaries assuming a fixed fluid pressure

and a roller boundary for strain that allows the boundaries to deform parallel to the surface, but not

normal to the plane. This explicitly prevents the outer boundaries from expanding or contracting.

The lower boundary is specified as a zero-flux boundary for flow, and a roller boundary preventing

vertical deformation. The upper boundary is assigned zero total stress and a no-flow condition. The

model is divided into four layers [Figure 5.1] which represent the upper (500 m thick) and lower (100

m thick) confining units, Bartlesville formation (27 m thick), and permeable layers (5 m thick).

Figure 5.2: Outer, coarse mesh is shown with inset finely meshed region.
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An algebraic function [Figure 5.3] was developed which approximates the injection rate.

The measured flow rate fluctuated substantially over small time periods, making it impractical to

simulate enough timesteps to precisely represent the injection rate. However, this algebraic function

very closely matches the cumulative volume of water injected.
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Figure 5.3: The injection rate over time and total injected volume over time are shown for both the
measured flow, and the smooth function approximating the measured flow.

5.3.3 Parallelization of Computational Effort

In total, this inversion involved 24,125 simulations requring 30,756 core hours, and would

have taken nearly a year on a typical four-core desktop machine. In order to reduce computation

time, this effort was distributed over many compute nodes. A MySQL relational database [Figure 4.6]

was used to house the measured field data, and to store the information the inversion algorithms need

in order to run. This includes prior information about the field as well as the model assumptions

and controlled variables such as the well pumping rate and observation well locations. It also

includes information about the geometry of each heterogeneity being considered. This database

stores the input and output files necessary for simulation, and makes them available through the

web to computational nodes. These nodes were drawn from a combination of the university cluster

computer and Amazon Web Services (AWS). As each simulation is completed, the resulting strain

signals are returned to the database and compared to the measured data, and used to inform the

next set of simulation input files.
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• MySQL: Structured data

• Python:

– Inverse methods

– Input file assembly

– Data transfer

– Post-processing

– Visualization

• SQS/S3: Cloud storage

Figure 5.4: Illustration of parallel model calibration workflow. Inversion data is stored in
MySQL database, and Python code accesses this data to produce simulation input files
and store them in an AWS S3 bucket. Compute nodes retrieve these input files, run them
and produce output files, which are also stored in the S3 bucket and later retrieved by the
database.

5.3.4 Inverse Algorithm

The focus of this effort is an improving estimates of lens geometry using geomechanical data.

Our inversion method therefore successively relaxes constraints on the lens shape as all six measured

datasets are fitting the model. The inversion assumes that there are only three types of material

present, namely the confining shale, Bartlesville sandstone, and the high-permeability lenses.

We also neglected the possibility of any fracture behavior, which would allow inelastic dis-

placement along a plane, accommodating and reducing stress in some places while concentrating it

in others. It was assumed that the pore fluid had a uniform viscosity and compressibility of water,

and that no pockets of oil or natural gas were present. The solid grain bulk modulus was assumed

to be that of quartz (Ks = 42.9 GPa). In addition to the geometry of the lens, the permeability,

bulk modulus of the pore skeleton, porosity and Poisson’s ratio for these units are also fit during
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the inversion.

Initially the lens is assumed to be a flat, circular inclusion immediately below the Bartlesville

formation and therefore the geometry is described using three parameters: the centroid coordinates

(x and y), and the radius. A Latin Hypercube (LHC) algorithm is used (n=13,150) to sample the

parameter space as evenly as possible while minimizing any correlations between parameters. These

simulation results are obtained from these sampled parameter sets then fed into a multi-objective

genetic algorithm (NSGA-II, [16]). The genetic algorithm identifies the best models and creates

random permutations and mutations of them to iteratively improve the population of models until

a set of best-fitting models can be identified. The initial LHC step provides the genetic algorithm

with a highly diverse initial population that approximates the entire parameter space as closely as

possible.

A modified variant of the NSGA-II algorithm was used, running several instances of the

standard NSGA-II algorithm in parallel such that each instance attempted to optimize a different

combination of parameters. A third of these instances attempted to to explore the tradeoff between

only two objectives at a time, while another third focues on three at a time, and the remaining third

attempted to fit all six objectives simultaneously. As the actual six-dimensional tradeoff surface may

have been too topologically difficult to explore at once, this approach allowed good solutions from

the two- and three-objective inversions to feed into the more challenging six-objective inversion.

An additional 31,525 simulations using the circular lens assumption are run, and the best-fitting

(n=1,294) circular lens geometries and material properties are identified. These circular lenses are

re-parameterized to the elliptical parameterization, and a second Latin Hypercube search (n=22,213)

of the elliptical parameter space is run. An additional 17,295 simulations are then run using the

NSGA-II algorithm.

We then applied a novel, dynamically parameterized variation of NSGA-II which allowed

lens shape to vary on a pixel-by-pixel basis rather than assuming any particular geometric shape

[Figure 5.5]. At each iteration, a best-fitting lens is selected and either a random “chunk”, or set

of 2-7 contiguous mesh elements, along the outer edge of the lens is added or removed, allowing the

lens to deviate from its original circuar or elliptical shape. If this deviation in shape proves to fit

the field data better, it will be more likely to be selected in future iterations and be further modified

in shape. After enough iterations, a set of irregularly shaped lenses emerges which each explain the

data equally well. This ensemble can then be used to examine trends and commonalities between
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best-fitting models. This approach would normally be computationally intractable since the number

of effective free parameters is proportional to the mesh density of the finite element model. However

by using the results of the previous circular and elliptical inversions as starting models, this inversion

can be initialized very close to the best viable solution.
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Figure 5.5: Three stage heterogeneity inversion process uses a circular assumption (A), elliptical
assumption (B), followed by an irregularly shaped heterogeneity (C). Gray circles represent the Latin
Hypercube search of the entire space, while green circles represent the genetic algorithm result, and
blue circles represent the best-fitting models possible under the circular assumption. Gray ellipses
represent the second-stage Latin Hypercube search of the elliptical parameter space, supplemented
by the previous best-fitting circles from the first stage. Red ellipses represent the best-fitting ellipses
found using NSGA-II. Black line represents the jagged, irregularly shaped heterogeneity arrived at
by NSGA-II in the third stage.

5.4 Results and Discussion

We were able to find a set of models which fit the data well [Figure 5.6], with the elliptical

lenses showing a marginal improvement over circular lenses, and irregular lenses showing a much

more significant improvement. In particular the irregular lens performs much better in terms of

optimizing tradeoffs between pressure and strain data [Figure 5.7]. This might indicate the circular

and elliptical lenses were too high in volume while remaining large enough to encompass the pressure

observation wells. By contrast the irregular lenses can extend to the necessary observation points

while being smaller overall.

Of the approximately 1,886 models that fit the data within a selected error margin [Figure

5.6], two examples were chosen for Figure 5.8. This figure shows a plot of the irregular lens geometry,

data fits and material properties. A weighted average of the best-fitting 1,886 models was also

plotted, where each model was weighted according to how well it fit the data [Figure 5.9]. In most

lenses a small, poorly connected heterogeneity was observed extending northward. This may indicate
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the presence of a second distinct compartment hydraulically separated from the lens, which would

fit the fluvial geologic history of this rock layer.

Figure 5.6: Data fits are shown for three components of strain at the the AVN2 observation well,
and for pressure data at wells 27, 29 and 60. Simulation results are shown in gray while best-fit
simulations are highlighted in black. Measured field data shown as red dots.
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Figure 5.7: Data-fitting tradeoffs are presented for each pair of objectives.
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Figure 5.8: Results from two simulations (a) and (b) using irregular lens geometries for the inversion
of the October 2017 injection test at well 9A. Each group shows the lens geometry in map view in
the left corner. Parameters are shown in upper right corner, where red line represents the parameter
value used in the particular simulation, and blue bars are the distribution of 1,886 best-fit models.
Lower row shows data fit as black line, with gray lines representing 1,886 best-fit models.
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Figure 5.9: Weighted average lens geometry is shown in map view for both the object based (circular
and elliptical) lenses (left) and the irregular shaped lenses (right). The 1,886 best-fit models are
selected and given a rank according to their weighted data misfit.

One important application of this inversion approach is in risk assessment and decision

support. By using field data to calibrate a hydromechanical conceptual model, a large range of

models can be constructed which differ from one another in any number of ways, but closely agree

in that they explain all of the available field data within some selected error margin. By then

simulating the behavior of these hydromechanical models under different pumping scenarios, the

range of possible strain responses can be predicted given a proposed injection schedule, and these

predictions can be used to inform decision-making.

In this section the 1,886 best-fit models from the injection test were re-run using the pumping

schedule for a second pumping test of the same well and reservoir system. This set of simulations

were generally able to predict the strain and pressure responses quite well [Figures 5.10,5.11], but

failed to predict the tilt responses [Figure 5.12] perhaps due to the short duration of the test and

high level of sensor drift observed.

Rather than simply isolating individual sensor responses, these models can also be used to

predict the full pressure and strain fields. Predictions of the strain field can be useful when deciding

where to position additional sensors by providing an approximation of the likely information value

of hypothetical well locations. While the selection of best-fit models will likely closely agree with

one another in areas near existing strainmeter locations (because that is the criteria used to select

them), they may disagree with one another substantially in locations where data is not yet available.

By placing additional sensors at such locations, the set of best-fit models can be narrowed down
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and used to better refine our knowledge of the subsurface. For example in Figure 5.13 the East-

West, North-South, vertical and areal strain components agree closely with one another in the area

around the AVN2 sensor installation. However these models show strong disagreement in an area

approximately 200-300 meters northwest of AVN2, with a difference in magnitude on the order of

50-70 nanostrains. The shear strain component indicates different areas of maximum sensitivity,

but has a much lower magnitude that may not be resolvable given the degree of sensor drift and

conceptual model error.

Predictions of the pressure field can be useful when deciding an ideal injection schedule,

selecting flow rates and durations to dispose of as much produced water as possible while minimizing

the risk of hydraulic fracturing. In Figure 5.14, the maximum pressure predicted by any of the best-

fitting models can give managers a quantification of this risk. The maximum difference in pressures

can indicate locations in the field where pressure transducer data would be most valuable.

Figure 5.10: Strain components at AVN (North-South, East-West, shear) as functions of time for
the November 9A injection test. Vertical strain at well AVN3, areal strain at AVN4. Simulation
results are shown in gray and best-fit simulations are in black. Measured field data shown as red
dots.

96



Figure 5.11: Pressure readings at wells 27, 29 and 60 as functions of time for the November 9A
injection test. Simulation results are shown in gray and best-fit simulations are in black. Measured
field data shown as red dots.

Figure 5.12: Tilt components at AVN3 and AVN4 as functions of time for the November 9A injection
test. Simulation results are shown in gray and best-fit simulations are in black. Measured field data
shown as red dots.
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Figure 5.13: Differences in predicted strains are shown as a function of position. For each mesh
element, the greatest difference is computed between any two of the selected best-fit models (corre-
sponding to 5.10, 5.11). East-West (a), North-South (b), shear (c), vertical (d) and areal (e) strain
components are shown. Results are displayed in map view with the horizontal slice defined at a
depth of 30 meters, the approximate depth of the currently installed strainmeters.
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Figure 5.14: Maximum fluid pressure (a) and maximum difference in fluid pressure (b) are shown
as a function of position in map view. For each mesh element the maximum pressure represents
the highest pressure indicated by any of the selected best-fit models, while the maximum difference
represents the greatest pressure difference between any two best-fit models. Horizontal slice is located
in the vertical center of the permeable lens.

A third, much longer injection experiment was then run and simulations of this pumping

experiment were evaluated in order to predict the strain, pressure and tilt behavior for the longer

98



pumping schedule. These simulations generally fit strains and pressures [Figures 5.15,5.16] well for

the first few days, then systematically overestimated both strains and pressure at later times. This

may be due to the longer injection time, as in this case the diffusive pressure response is able to move

further out and interact with geologic structures further from the injection well. For the shorter

pumping tests, these structures may not have impacted the system much at all as the pressure wave

never reached them. In future work it may be beneficial to conduct repeated injection tests at various

durations, in order to develop models that explain both the long-injection and short-injection field

observations. This would allow one to establish the general trends of the larger geologic setting while

also resolving fine details in the immediate vicinity of pumping wells.

As with the second test, tilts were predicted poorly [Figure 5.17] and may require further

study in order to calibrate to filter out random noise.

Figure 5.15: Strain components at AVN (North-South, East-West, shear) as functions of time for
the July 2018 9A injection test. Vertical strain at well AVN3, areal strain at AVN4. Simulation
results are shown in gray and best-fit simulations are in black. Measured field data shown as red
dots.
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Figure 5.16: Pressure readings at wells 27, 29 and 60 as functions of time for the July 2018 9A
injection test. Simulation results are shown in gray and best-fit simulations are in black. Measured
field data shown as red dots.

Figure 5.17: Tilt components at AVN3 and AVN4 as functions of time for the July 2018 9A injection
test. Simulation results are shown in gray and best-fit simulations are in black. Measured field data
shown as red dots.

5.5 Conclusion

In-situ pressure measurements within a confined permeable formation (500 m depth) were

combined with remote strainmeter data measured in shallow wells (30m depth) to infer the geologic

structure and material properties of the subsurface. The influence of simplifying assumptions was

examined using three stages, one where the confined formation was assumed to be circular, one

where it was elliptical, and another where it was allowed to take any irregular shape necessary to

optimally fit the data.

While more computationally intensive, the irregular-lens assumption was found to yield the
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best data fits. However, the circular and elliptical assumptions allowed for a more thorough and

efficient initial exploration of the parameter space. By combining the three methods the param-

eter space was explored thoroughly and the general size and location of the permeable formation

determined, allowing a more detailed subsequent calibration of the lens shape.
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Summary

In this dissertation, a novel parallelized inversion and job-scheduling software was developed

in Python, using an object-relational approach to store the large, highly structured datasets involved.

This software was tested using benchmark problems as well as applications in the field. This software

has a variety of potential applications in hydrologic model calibration, as it allows coupling of

multiple forward models using very different programming languages and modelling approaches.

A geomechanical model was developed to represent an oil field in Avant, Oklahoma. This

model uses two-way coupling between groundwater flow and mechanical rock deformation to repre-

sent the strain response of a pressurized subsurface reservoir. A series of pumping tests were then

conducted at this oil field in order to cause a mechanical stress which produced a measurable strain

signal in the shallow subsurface. It was found that this near-surface strain data is sensitive to ma-

terial properties of the deeper subsurface as well as small, distant details in geologic structure. This

strain data has similar information content to in-situ pressure measurements, and therefore would

be an ideal method to less-invasively study and monitor an environmental remediation project,

hydraulic fracking site, enhanced oil recovery operation or geothermal energy field.

While nonuniqueness was found to be common in geomechanical inverse problems, this

software allows one to construct an ensemble of subsurface models that explain the near-surface

strain data. This ensemble can be used to predict the range of possible future system behaviors.

Incorporation of additional datasets and multiphysics solvers would likely reduce the uncertainty in

this range of behaviors, and produce a more accurate and reliable reservoir calibration tool.
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