423 research outputs found

    Supervisory machine control by predictive-reactive scheduling

    Get PDF

    Particle Swarm Optimization

    Get PDF
    Particle swarm optimization (PSO) is a population based stochastic optimization technique influenced by the social behavior of bird flocking or fish schooling.PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field

    Structural approach to the mapping problem in parallel discrete event logic simulations

    Get PDF

    3rd Many-core Applications Research Community (MARC) Symposium. (KIT Scientific Reports ; 7598)

    Get PDF
    This manuscript includes recent scientific work regarding the Intel Single Chip Cloud computer and describes approaches for novel approaches for programming and run-time organization

    Evolutionary algorithms for scheduling operations

    Get PDF
    While business process automation is proliferating through industries and processes, operations such as job and crew scheduling are still performed manually in the majority of workplaces. The linear programming techniques are not capable of automated production of a job or crew schedule within a reasonable computation time due to the massive sizes of real-life scheduling problems. For this reason, AI solutions are becoming increasingly popular, specifically Evolutionary Algorithms (EAs). However, there are three key limitations of previous studies researching application of EAs for the solution of the scheduling problems. First of all, there is no justification for the selection of a particular genetic operator and conclusion about their effectiveness. Secondly, the practical efficiency of such algorithms is unknown due to the lack of comparison with manually produced schedules. Finally, the implications of real-life implementation of the algorithm are rarely considered. This research aims at addressing all three limitations. Collaborations with DBSchenker,the rail freight carrier, and Garnett-Dickinson, the printing company,have been established. Multi-disciplinary research methods including document analysis, focus group evaluations, and interviews with managers from different levels have been carried out. A standard EA has been enhanced with developed within research intelligent operators to efficiently solve the problems. Assessment of the developed algorithm in the context of real life crew scheduling problem showed that the automated schedule outperformed the manual one by 3.7% in terms of its operating efficiency. In addition, the automatically produced schedule required less staff to complete all the jobs and might provide an additional revenue opportunity of £500 000. The research has also revealed a positive attitude expressed by the operational and IT managers towards the developed system. Investment analysis demonstrated a 41% return rate on investment in the automated scheduling system, while the strategic analysis suggests that this system can enable attainment of strategic priorities. The end users of the system, on the other hand, expressed some degree of scepticism and would prefer manual methods

    Optimisation for Large-scale Maintenance, Scheduling and Vehicle Routing Problems

    Get PDF
    Solving real-world combinatorial problems is involved in many industry fields to minimise operational cost or to maximise profit, or both. Along with continuous growth in computing power, many asset management decision-making processes that were originally solved by hand now tend to be based on big data analysis. Larger scale problem can be solved and more detailed operation instructions can be delivered. In this thesis, we investigate models and algorithms to solve large scale Geographically Distributed asset Maintenance Problems (GDMP). Our study of the problem was motivated by our business partner, Gaist solutions Ltd., to optimise scheduling of maintenance actions for a drainage system in an urban area. The models and solution methods proposed in the thesis can be applied to many similar issues arising in other industry fields. The thesis contains three parts. We firstly built a risk driven model considering vehicle routing problems and the asset degradation information. A hyperheuristic method embedded with customised low-level heuristics is employed to solve our real-world drainage maintenance problem in Blackpool. Computational results show that our hyperheuristic approach can, within reasonable CPU time, produce much higher quality solutions than the scheduling strategy currently implemented by Blackpool council. We then attempt to develop more efficient solution approaches to tackle our GDMP. We study various hyperheuristics and propose efficient local search strategies in part II. We present computational results on standard periodic vehicle routing problem instances and our GDMP instances. Based on manifold experimental evidences, we summarise the principles of designing heuristic based solution approaches to solve combinatorial problems. Last bu not least, we investigate a related decision making problem from highway maintenance, that is again of interest to Gaist solutions Ltd. We aim to make a strategical decision to choose a cost effective method of delivering the road inspection at a national scale. We build the analysis based on the Chinese Postman Problem and theoretically proof the modelling feasibility in real-world road inspection situations. We also propose a novel graph reduction process to allow effective computation over very large data sets

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF
    corecore