

Supervisory machine control by predictive-reactive scheduling

Citation for published version (APA):
Nieuwelaar, van den, N. J. M. (2004). Supervisory machine control by predictive-reactive scheduling. [Phd
Thesis 1 (Research TU/e / Graduation TU/e), Mechanical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR581686

DOI:
10.6100/IR581686

Document status and date:
Published: 01/01/2004

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR581686
https://doi.org/10.6100/IR581686
https://research.tue.nl/en/publications/c28d14cf-2214-4370-aa98-6cec6b14ef9c

Supervisory Machine Control by

Predictive-Reactive Scheduling

Norbertus Josephus Martinus (Barend) van den Nieuwelaar

Voorkant: Het aardige van dit proefschrift is dat het voorgestelde besturingsconcept ook
gëımplementeerd is, namelijk in de machine die op de voorkant is afgebeeld. T-ReCS is
het acroniem waaronder het besturingsconcept bij ASML bekend is: Task-Resource Con-
trol System. Het DROSTE effect geeft aan dat T-ReCS op een gelaagde manier ingezet
kan worden, waarbij taken vanuit een hogere laag (order)invoer zijn voor een lagere laag.

Cover: The nice thing about this thesis is the fact that the proposed control concept
is actually implemented, namely in the machine depicted on the cover. T-ReCS is the
acronym for the control concept as it is called at ASML: Task-Resource Control System.
The ”DROSTE” effect indicates that T-ReCS can be applied in a layered setting, where
the tasks of a higher layer are (order) input for a lower layer.

The work in this thesis has been carried out under the auspices of the re-
search school IPA (Institute for Programming research and Algorithmics).
IPA dissertation series 2004-21

c© Copyright 2004, N.J.M. van den Nieuwelaar
All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photo-
copying, recording or otherwise, without the prior written permission from the copyright
owner.

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Nieuwelaar, Norbertus J.M. van den

Supervisory machine control by predictive-reactive scheduling / by Norbertus
J. M. van den Nieuwelaar. - Eindhoven : Technische Universiteit Eindhoven, 2004.
Proefschrift. - ISBN 90-386-2756-4
NUR 804
Subject headings: supervisory machine control / predictive-reactive scheduling / excep-
tion recovery / kinematic calibration / deadlock avoidance / model checking / semicon-
ductor equipment

Reproduction: Universiteitsdrukkerij Technische Universiteit Eindhoven

The work described in this thesis has been carried out at ASML in Veldhoven, the Nether-
lands. It contains Intellectual Property Rights of ASML. All rights reserved.

Supervisory Machine Control by

Predictive-Reactive Scheduling

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van
de Rector Magnificus, prof.dr. R.A. van Santen,
voor een commissie aangewezen door het College
voor Promoties in het openbaar te verdedigen op

dinsdag 7 december 2004 om 16.00 uur

door

Norbertus Josephus Martinus van den Nieuwelaar
geboren te Tilburg

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr.ir. J.E. Rooda
en
prof.dr. J.C.M. Baeten

Copromotor:
dr.ir. J.M. van de Mortel-Fronczak

Preface

This thesis presents the results of four years of work in the field of supervisory machine
control. It has been a challenge for me to serve two customers during this period: both the
university and ASML. Looking back I get a satisfied feeling about what we achieved in the
form of papers and this thesis on the one hand, and patent applications and applicability
in practice on the other. I would like to use this preface to make some remarks about
this thesis and to thank the people that contributed to my PhD project.

This thesis is a collection of papers. A consequence of choosing for this form is that
there are some repetitions and that the last two papers have a different style and slightly
different conventions. I did my best to relate the different papers in the introduction,
and to conclude with an overall discussion of the applications and conclusions.

First of all, I would like to thank the management of ASML for giving me the oppor-
tunity to carry out this study while working for ASML. In particular I want to mention
Tammo van den Berg, Harry Borggreve and Robbert van der Kruk. Furthermore, I want
to thank my coaches at ASML, Rick van Lierop and Hans Onvlee, for helping me finding
my way in ASML and for their useful comments.

Special thanks go to professor Koos Rooda. I hereby want to express my great grat-
itude for what we made happen together, and I am looking forward to continue this.
Many thanks go to my co-promotor Asia van de Mortel for her coaching and especially
for her help in writing things down. I also thank Cor Hurkens for his guidance in the
area of scheduling. Furthermore I thank my second promotor, prof.dr. J.C.M. Baeten,
and the other members of my reading committee, prof.dr. W.J. Fokkink and prof.dr. H.
Nijmeijer, for their useful comments.

Besides the four years of work that I have put in this thesis, master students who
helped me together have worked for a period more than double of that. Some of them
are also co-authors of papers in this thesis: Roel Boumen, Niels Braspenning, Martin
Driessen, Robert Dumont, and Michiel Stoets. Their main contribution was the imple-
mentation of the described functionality and working out the cases. Also Maarten van
Bree, Suresh Punyamanthula, Stefan Roels, and Joris Vermunt did very valuable work. I
am very grateful for the contribution of these master students to both the contents and
the disclosure of this thesis, and to the great atmosphere in the T-ReCS team. I also
thank the other co-authors of the papers in this thesis: Jan Friso Groote, Martijn Hen-
driks, and Frits Vaandrager, for enthusiastically picking up the challenges that I brought
up and bringing in the computer science knowledge, mainly in the form of lemmas and
proofs.

I also want to thank my colleagues both at the university and at ASML. From the
university I want to mention Mieke Lousberg and thank her for her friendly help and

v

vi

care. Moreover, I thank Albert Hofkamp and Ramon Schiffelers for their help and pleas-
ant company. From ASML I thank all the people that contributed to this thesis, and
especially the early adopters and propagators of T-ReCS: Ed de Gast, Peter van Gils,
Koen van der Heijden, Wil Koenen, Raimond Visser, and Joost Worms. I want to thank
Wil also for his help with the cover.

Finally, I like to thank my parents, other relatives, and friends. Last, but not least, I
want to mention my wife with who I have two lovely kids: Ilse and Rick. Wendy, thank
you for your love.

Summary

The subject of this thesis is supervisory control of complex manufacturing machines.
ASML wafer scanners serve as carriers. A wafer scanner is a representative example of
a complex manufacturing machine, containing many mechatronic systems. In complex
manufacturing machines, many options exist to deploy the available resources to per-
form tasks that lead to the desired manufacturing purpose, resulting in various machine
behaviors. Supervisory Machine Control (SMC) is responsible for deciding when to do
which tasks using which resources.

The purpose of this project is to develop a suitable formal method for specification
of supervisory control of complex manufacturing machines. There are some complicating
requirements for SMC of complex manufacturing machines. First of all, the manufactur-
ing tasks are heavily product recipe dependent, for which SMC must be flexible. This
means that SMC must be able to handle a stream of mixed product types, which are
being processed concurrently. Secondly, SMC must be able to optimize machine behavior
by exploiting its resources in a best way possible within its manufacturing constraints.
What is best, may depend on the characteristics of the recipe. Thirdly, SMC must fit
in the dynamic environment that it is embedded in. This implies that it must react to
all kinds of triggers from the environment without introducing unnecessary control over-
head. A very important trigger is task failure: an exception, which requires a recovery
reaction of SMC to avoid human intervention. Finally, in order to keep up with the
increasing development pace in industry, SMC should allow easy adding and changing of
functionality.

To fulfill the requirements mentioned above, a scheduling-based SMC concept is de-
veloped. To structure the control decisions to be made, a layered task resource framework
is used. From an SMC point of view, a machine can be considered as a task resource
system (TRS). Tasks can be associated with manufacturing processes, whereas resources
can be associated with mechatronic systems. Transforming a manufacturing request into
machine behavior can be structured in three phases, throughout which the constraints of
the machine must be taken into account. First, a scheduling problem must be instantiated
for the manufacturing request. This transformation is called instantiating. Subsequently,
resources must be assigned to the tasks in the instantiated scheduling problem in some
order, taking into account the fact that resources are able to perform certain tasks only,
and only one at a time. This transformation is called selecting. The selected order of tasks
to be performed by selected resources may imply consecutive state transitions of those
resources. Finally, start and finish times can be assigned to the selected tasks, taking into
account the durations of the tasks. This transformation is called timing. Combination
of the selecting and timing transformation is referred to as scheduling. During the three

vii

viii

transformation phases of instantiating, selecting and timing, choices must be made. The
consequences of a choice in a certain transformation on the machine behavior can only
be evaluated by performing the consecutive transformations. Therefore, a transforma-
tion phase strongly relies on information from subsequent phases, which is expressed in
the layered TRS framework. In this thesis, the three transformation phases are formally
defined.

In this project, a predictive-reactive SMC framework has been developed that embeds
the layered TRS framework in the form of TRS translation functions. Several methods or
scenarios to react to different types of control triggers are described using these translation
functions. For the ‘nice weather’ triggers it is important to avoid control overhead. This is
done by making sure that reaction takes place in parallel with the manufacturing processes
if possible. For control triggers involving exceptions it is more important to ensure robust
recovery rather than to avoid control overhead. Therefore, reaction to exceptions is
sequential. Basically, exception recovery uses the same transformation functions as the
‘nice weather’ triggers mentioned before, which is an elegant characteristic.

The scheduling transformation that is embedded in SMC uses heuristic filters to
quickly find a good schedule. Several approaches are developed to avoid deadlocks.
One of them uses a model checker to configure a least restrictive deadlock avoidance
filter. A dedicated verification approach is developed to verify that the design of the
filter configuration indeed cannot result in invalid machine behavior such as deadlock.
This approach uses the specific structure of the scheduling model to apply state-space
reduction techniques. These techniques make it possible to verify cases of practical size.

Two instantiating approaches are developed. The first one uses a database of in-
stantiating rules and building blocks to generate a scheduling problem that fulfills the
manufacturing request. The other approach uses meta-tasks and their pre-conditions and
post-conditions to search for scheduling problem instances that fulfill the manufacturing
request, like in game theory. This approach is also developed for kinematic calibrations.
Kinematic calibration of high precision machines is in the scope of SMC as imperfections
and drift effects of hardware must be corrected for during production.

Application of the proposed control concept has significant benefits compared to cur-
rent practice at ASML. SMC related software development effort is expected to reduce by
factor 2, and machine performance is expected to improve by order of magnitude 1 %. A
limited version of the control concept has successfully been implemented in a part of the
control software of the ASML TWINSCAN wafer scanner platform. A road map covering
the evolutionary roll-out of the concept in the coming years is under development.

CONTENTS

Preface vii

Summary ix

1 Introduction 1
1.1 Complex manufacturing machines . 1
1.2 Supervisory control of manufacturing machines 1
1.3 Task-resource view . 4
1.4 Outline and context . 7
References . 9

2 Scheduling alternatives and algorithm 13
2.1 Introduction . 14
2.2 Scheduling in a dual-stage wafer scanner 17
2.3 Problem definition . 21
2.4 A scheduling algorithm . 24
2.5 Results . 28
2.6 Conclusions . 32
References . 32

3 Machine-specific scheduling constraints 35
3.1 Introduction . 36
3.2 Scheduling in a dual-stage wafer scanner 39
3.3 Selecting resource assignment and task order 45
3.4 Timing the selected tasks . 50
3.5 Results . 54
3.6 Conclusions . 55
References . 57

4 Reaction scenarios including exception recovery 59
4.1 Introduction . 60
4.2 Scheduling in a wafer scanner . 63
4.3 Planning . 66
4.4 Reaction to triggers . 77
4.5 Conclusions . 89
References . 94

ix

5 Exception recovery search in complex manufacturing machines 97
5.1 Introduction . 98
5.2 Wafer processing in a wafer scanner . 100
5.3 Uninstantiated system definition . 103
5.4 Instantiation of an exception recovery 107
5.5 Results . 112
5.6 Conclusions . 116
References . 117

6 Kinematic calibration sequencing in high-precision machines 119
6.1 Introduction . 120
6.2 Calibrating a wafer scanner . 122
6.3 System of linear geometric relations . 125
6.4 Calibration sequencing . 130
6.5 Results . 135
6.6 Conclusions . 139
References . 139

7 Model checker aided design of a controller for a wafer scanner 141
7.1 Introduction . 142
7.2 The EUV Machine . 144
7.3 A Least Restrictive Deadlock Avoidance Policy 146
7.4 Throughput Analysis . 151
7.5 Conclusions . 154
References . 155

8 A dedicated scheduling verification approach 157
8.1 Introduction . 158
8.2 Definition of the scheduling model as a transition system 161
8.3 Checking deadlocks by reducing the state space 170
8.4 Results . 173
8.5 Conclusions . 178
References . 180

9 Applications 183
9.1 Diffusion of innovations . 184
9.2 Application areas . 185
9.3 Roll-out . 186
9.4 Benefits . 188
References . 190

10 Conclusions 191
10.1 Discussion . 191
10.2 Further research . 193

Bibliography 195

Samenvatting 203

Curriculum Vitae 205

x

CHAPTER

ONE

Introduction

This PhD study is practice driven: existing practical issues are to be addressed by any
appropriate theory. As a consequence, the nature of the problems being faced in indus-
trial practice determines the research direction and the applicable theory in the form
of approaches, methods, and tools. Furthermore, focus is on the link between theory
and practice rather than on theory itself. This implies emphasis on capturing practical
phenomena in theory and enabling application of the theory in practice. This introduc-
tion starts with a description of the practical issues involved in complex manufacturing
machines and the supervisory control associated with them. Wafer scanners [1] serve as
carriers throughout this thesis. Inspired by the practical issues, the purpose of this study
is formulated. After that, a framework that structures the research items is described,
and the direction of the research is distilled. The framework is used to outline the theory
that is developed and applied in this thesis addressing the research items.

1.1 Complex manufacturing machines

A wafer scanner is a representative example of a complex manufacturing machine. Wafer
scanners are used in the semiconductor industry, and perform the most critical step in
the manufacturing process of integrated circuits. Their primary manufacturing process is
the exposure of an IC pattern onto a wafer, which is visualized in Fig. 1.1. Typically, the
pattern is engraved on a so-called reticle. Light projects the pattern via a demagnification
lens onto the wafer. During exposure the reticle and the wafer make a scanning movement,
which explains the name wafer scanner. Exposure must be performed with very high
accuracy. Therefore, reticles as well as wafers must undergo several pre-processing steps
before exposure can take place. Pre-processing includes measuring of imperfections of the
machine as well as the wafers and reticles to enable compensation for these imperfections.

To actually perform the processes, several mechatronic systems must be deployed.
In Fig. 1.2 the main modules of the ASML TWINSCAN wafer scanner are pointed out.
Typical for TWINSCAN is its dual wafer stage, enabling concurrent measurement and
exposure of wafers. The modules consist of multiple mechatronic systems, together con-
taining hundreds of sensors and actuators that can operate in parallel. A complex machine
like a wafer scanner costs about 107 euro.

1.2 Supervisory control of manufacturing machines

In complex manufacturing machines, many options exist to deploy the available resources
to perform tasks that lead to the desired manufacturing purpose, resulting in various
machine behaviors. Supervisory Machine Control (SMC) is responsible for deciding when

1

2 Chapter 1. Introduction

IC pattern

lens

wafer

scanning

movement

Figure 1.1: Exposure in a wafer scanner

to do which tasks using which resources such that the machine behaves as desired: task
coordination. Regulative control in the resources is responsible for execution of the tasks
received from SMC, and is not considered in this study. SMC is positioned in its context
in Fig. 1.3.

The ASML wafer scanner control software is developed per product platform. An
example of such a platform is the TWINSCAN platform. Platforms are developed in
parallel and per platform several machine types and options exist that all are supported by
the same embedded software package. A software package consists of order of magnitude
107 lines of C code, is deployed on approximately 10 processors and is developed and
maintained by a few hundred software developers. About half of the code is application
code and the rest is for support purposes like infrastructure. Although only one tenth of
the application code of a software package can be associated with SMC, this part is one
of the most complex parts whereas it largely determines the behavior of the machine.

Problems in current practice

The current practice in SMC of wafer scanners leaves considerable room for improvement.
SMC can be characterized as rigid and increasingly complex. To start with, software
complexity makes software development laborious and difficult to manage, leading to
development efficiency loss. The most important consequence of this in the high-tech
market of wafer scanners is the increase of time to market.

Furthermore, specification of SMC is often informal, which hinders analyzing the cor-
rectness of the design and the testing of the implementation. Even if a formal specification

1.2. Supervisory control of manufacturing machines 3

W a f e r h a n d l e r D u a l w a f e r s t a g e
L e n s

R e t i c l e h a n d l e r R e t i c l e s t a g e

L a s e r

Figure 1.2: ASML TWINSCAN wafer scanner

is available, the transformation from specification to implementation in embedded soft-
ware is done manually and therefore error-prone. Moreover, verification is hindered by
state-space explosion. The effect of these shortcomings is revealed in an above-average
number of problems per lines of code for SMC related software.

Finally, machine behavior cannot effectively be tailored to the specific demands of
the product and customer. As a consequence, behavior is tuned for a typical setting.
If machine behavior could be tailored better, the machines could better be fitted in the
manufacturing process of more customers, which supports improving customer satisfac-
tion and enlarging the customer base. Most importantly, tuning for a typical setting
overall results in machine performance loss and a machine market value decrease.

Purpose of this project

The main purpose of the project described in this thesis is to develop a suitable formal
framework for specification of supervisory machine control. Based on such a specification,
analysis should be possible by means of simulation and verification. Moreover, such a
specification should be the basis for the real supervisory machine control.

There are some important complicating requirements for SMC of complex manufac-
turing machines. First of all, manufacturing tasks as well as the definition of desired
machine behavior heavily depend on product recipes, for which SMC must be flexible.
Moreover, it must be able to handle a stream of mixed product types that are being pro-
cessed concurrently. Secondly, it must fit in the dynamic environment that it is embedded
in. This implies that it must react to triggers from the environment without introducing
unnecessary control overhead. Especially reaction to tasks that fail (exceptions) is im-
portant. High-precision machines have a specific additional requirement. As mentioned
before, they need to correct for geometric deviations originating from several sources dur-
ing manufacturing. Finally, the trend towards ever shortening development cycles and
increasing machine configuration variability demands that the machine behavior imposed
by SMC is easily adaptable.

4 Chapter 1. Introduction

Supervisory Machine Control

Resources

with

regulative control

Machine

manufacturing requests

Task execution

Task coordination

Figure 1.3: Context of Supervisory Machine Control

1.3 Task-resource view

This section briefly discusses supervisory control theory and scheduling theory to motivate
the choice to base this thesis on the scheduling point of view. Subsequently, a layered
Task Resource System (TRS) framework is introduced that forms the basis of this thesis.
Furthermore, known techniques suitable in the context of this framework are discussed
to motivate the research direction chosen in this thesis.

Supervisory control theory and scheduling theory

Wonham et al. [5, 11, 23] have developed a theory on supervisory control (SCT). In that
theory, the system under control is described using Finite State Machines. The possible
behavior of such a system is regarded as a language. A supervisory controller in the form
of a deterministic automaton is synthesized that restricts the language by disabling a
subset of events, to control the system to properly accomplish its task. This implies that
supervisors must be modelled specifically for the task to be accomplished. Unfortunately,
this does not meet the first requirement mentioned earlier. SMC for complex manufac-
turing machines must be more flexible as the manufacturing tasks are heavily dependent
on the particular recipe and, therefore, differ per manufacturing request. Moreover, the
requirements of an optimal controller differ per recipe.

From the scheduling point of view, the tasks to be performed under the restrictions
imposed by the machine resources can be regarded as a scheduling problem, as in [7, 15,
24, 25]. Per manufacturing request the task-related part of the scheduling problem must
be instantiated by SMC. The recipe-dependent definition of desired behavior translates to
run-time scheduling with recipe-dependent optimization criteria [19]. The fact that SCT
lacks the required flexibility that nicely matches the scheduling-based approach made us
decide to base this project on the scheduling point of view in which tasks and resources
play a prominent role.

Layered Task Resource System framework

From the SMC point of view, a machine can be considered as a TRS. Transforming a
manufacturing request into machine behavior can be structured in three phases. First, a
scheduling problem must be instantiated (defined) from the manufacturing request, taking

1.3. Task-resource view 5

Instantiating

Selecting

Timing

3:

C:

1:

0:

ro
om

 fo
r c

ho
ic

es

timed

selected
 untimed

A:

2:

B:

instantiated
 unselected

 uninstantiated
TRS

TRS

TRS

TRS

Figure 1.4: Layered Task Resource System framework

into account the limitations of the machine. This transformation is called instantiating.
The structure of the resulting scheduling problem shows many similarities with the job
shop scheduling problem [22]. The manufacturing process of a material instance can be
associated with a job, whereas the different parallel mechatronic systems can be associated
with the different machines in a job shop. Subsequently, resources must be assigned
to the tasks in the instantiated scheduling problem in some order, taking into account
the fact that resources are able to perform certain tasks only, and only one at a time.
This transformation is called selecting. The selected order of tasks to be performed by
selected resources implies consecutive physical state transitions of those resources, which
is analogous to the setup times for mode switching in job shop scheduling. Finally, start
and finish times can be assigned to the tasks, taking into account the physical restrictions
of the resources. This transformation is called timing.

During the three transformation phases of instantiating, selecting and timing, choices
must be made. The result of a choice in a certain transformation on the machine behav-
ior can only be evaluated by performing the consecutive transformations. Therefore, a
transformation phase strongly relies on subsequent phases, and this is analogous to the
Layers architectural pattern described in [6]. The layered TRS framework shown in Fig.
1.4 displays the hierarchically related transformation phases as functionality layers (A
through C) and the TRS definitions of different levels (0 through 3) as interfaces between
the layers. This framework was first presented in [21].

Discussion of techniques

This subsection discusses known techniques suitable to perform analysis based on the
system definitions characterized in the previous subsection, and is based on [21].

A task resource system can be classified as a hybrid system in the sense that it
contains both continuous-time and discrete-event characteristics. In computer science,
several generic hybrid paradigms and associated languages exist which are accompanied
by various analysis tools [4, 12]. After a mapping of the original system onto such a
paradigm and language, timing analysis can be performed. Supporting tools can be clas-
sified as either model checkers or simulators, in case of exploration of the complete state
space (all realizations) or exploration of just any realization, respectively. An essential
part of the derivation of such a realization is finding time-optimal trajectories, which
is very complicated in general. Therefore, a simulator is not suitable for derivation of

6 Chapter 1. Introduction

the minimal duration. A model checker is able to determine whether a certain property
holds. This property could be whether a solution exists that takes no more than a certain
amount of time. Embedding a model checker in an optimization algorithm that iterates
towards the optimal solution would be a possible though inefficient solution to finding a
time-optimal trajectory. Some model checkers have limited optimization extensions.

However, from a supervisory machine control point of view, only resource start and
end states are considered per task. Only the duration of a task matters, not the state
trajectory. Therefore, abstraction from continuous behavior is possible. Assuming that
the duration of the state transitions is known, the model can be simplified to the class of
discrete-event systems. In wafer scanners, determination of the required duration of the
resource state transition can be addressed in a pragmatic way. For the majority of the
resources, SMC requires only a finite set of state transitions. For these state transitions,
a table of state transition durations can be determined in several ways. Some resources
have to support an infinite number of state transitions: the stages. Determination of
their duration can be performed by combining analytical functions for most cases. Only
in very special cases, an approximation algorithm is required. As this concerns a very
restricted solution area, a very simple bisection algorithm suffices [16]. These dedicated
mathematical functions take less computing power to find a solution than a generic solver.

Also for discrete-event systems, a wide range of paradigms and languages exists, e.g.
[3]. Supporting tools can be classified analogous to the tools supporting hybrid languages.
Because there are no alternatives in case of a completely predefined system, both tool
classes are suited for analysis. This leaves the disadvantage of mapping the original
system onto the generic discrete-event paradigm and language. Even this mapping can
be prevented, as calculation of the minimal time to execute a selected untimed TRS
(level 1) with given resource state transition durations is in fact a linear programming
(LP) problem [28]. This enables the usage of a variety of mathematical tools, to derive
the total system behavior (level 0) from the durations of resource state transitions. In
case of dynamic scheduling, it is desirable that computation of system behavior starts
with tasks that can be dispatched first, called forward computation. In this way, some
tasks can already be released, while timing determination of the rest of the tasks is still
under progress. Forward computation is not applicable for generic LP problem solvers.
A mathematical approach for which this is applicable is the Heaps of Pieces approach
[27]. A restriction of this approach is that it cannot cope with precedence relations, that
are common in an unselected TRS (level 2).

TRS definitions of level (2) and (3) can have several realizations. Therefore, in princi-
ple a simulator is not suited for analysis, whereas a model checker is because it evaluates
all possible realizations. However, the combination of possible choices blows up the num-
ber of realizations exponentially. In model-checking terminology, this phenomenon is
known as state-space explosion. Furthermore, the mapping of the original model onto a
generic paradigm and language usually introduces even more possibilities than exhibited
by the original model. Therefore, model checkers are in principle not suited to analyse
practical cases. In operations research, several approaches can be found that address
certain aspects of the choices from alternatives. The choice of tasks and task precedences
for one resource results in different realization times of a certain scheduling problem in-
stance. This issue is widely discussed in literature, and is referred to as the Travelling
Salesman Problem [17], or more specific: the Rural Postman Problem or the Vehicle Rout-
ing Problem [26]. Because only one resource is considered in those approaches, there is
no parallelism. The choice from resource alternatives and task precedence alternatives for

1.4. Outline and context 7

R
ea

ct
io

n
to

 tr
ig

ge
rs

 4

Real-time

Timing
 2,3

Selecting

 Constraints
 3

 Alternatives
 2

Instantiating

 Planning
 4

Analysis

Manufacturing domain
 5

Calibration domain
 6

Verification

 Dedicated modeling
 7

 Dedicated reduction
 8

Resources

Supervisory Machine Control

Figure 1.5: Projection of the main contributions of the chapters of this thesis onto the
TRS framework

resources is also widely discussed in literature, and is referred to as the (Generalized) Job
Shop Scheduling problem (JSS) [28]. The fact that in a complex manufacturing machine
multiple tasks may exist that have the same effect gets little attention in scheduling lit-
erature. The same goes for machine-specific scheduling constraints imposed by the tight
physical space in a machine.

The precedence relation in a TRS of level 2 assumes that the related tasks are per-
formed successfully. When considering exceptional behavior, construction of a recovery
must be based on the constraints of the machine only: TRS level 3. These constraints
are analogous to rules of games [2]. Application of game theory [10] in this domain is
unknown.

Usage of predictions based on a model in a control system is known in control theory
literature as model-based predictive control [18]. The underlying line of thoughts can
also be used in supervisory control. In some cases, a well-founded decision can only be
made if future behavior can be predicted, for instance, by a model of the system that is
embedded in supervisory control.

In this thesis, the control decision-making process of SMC is specified by making the
TRS definitions and transformations shown in Fig. 1.4 explicit. Besides that, the TRS
framework is embedded in the real-time environment of SMC such that efficient and
effective reaction to triggers results.

1.4 Outline and context

This thesis is a collection of articles. In the sequel, the main contributions of the chap-
ters are projected onto the TRS framework and their coherence is described, which is
summarized visually in Figure 1.5.

8 Chapter 1. Introduction

Backbone

The backbone of the thesis is in Chapters 2 through 4, describing a scheduling-based
SMC concept.

Chapters 2 and 3 discuss the timing and the selecting functionality and complete the
definition of the static scheduling problem of transforming a TRS definition of level 2
into a TRS definition of level 0: timed machine behavior. Existing scheduling theory is
used where possible, and extensions have been introduced where necessary. Extensions
were necessary in two areas. One area is the definition of the room for choice of tasks,
which is described in Chapter 2. The other area is the definition of the machine-specific
constraints implied by the physical restrictions in a machine. These restrictions have to
do with material logistics and resource interference, and are described in Chapter 3. The
material logistic restrictions can cause the machine to deadlock. Additional constraints
are described to avoid deadlock. Besides the definition of the scheduling problem, a
predictive scheduling approach is proposed and a scheduling algorithm that is suited for
application in SMC is described.

Chapter 4 embeds the developed scheduling functionality in the dynamic environment
of SMC, encompassing instantiating and reaction to triggers from the environment. A
straightforward instantiating functionality, called planning, is described: rule-based con-
struction of a TRS definition of level 2 from predefined building blocks. The SMC concept
described consists of a predicting part that embeds the TRS framework and a real-time
dispatching part that is connected to the resources. Several scenarios to react to different
types of triggers (including exceptions) are described that enable efficient and effective
response. This completes the concept of SMC by predictive-reactive scheduling.

Instantiating constraints

Chapter 5 describes the combinatoric effect that makes it practically impossible to prede-
fine all recovery scenarios. This is a disadvantage of instantiating a TRS definition using
planning. Planning is based on predefined building blocks and construction rules instead
of the TRS definition of level 3 in Figure 1.4. A solution to this is to search run-time for
an exception recovery within the essential constraints imposed by the machine resources,
which is explored in Chapters 5 and 6. Chapter 5 captures the instantiating constraints
for general manufacturing processes and material transport in a TRS definition of level
3. Moreover, it proposes a search algorithm that can be applied to search for exception
recoveries.

Chapter 6 specifically focusses on the domain of calibration sequences in high-precision
machines. To capture the instantiating constraints, analysis of the geometric relations
and inaccuracies in the machine is necessary. This can be associated with theory on
kinematic calibration [14]. The main contribution of Chapters 5 and 6 lies in the explicit
capturing of the phenomena that constrain instantiation.

The primary purpose of these chapters is analysis. Embedding of the instantiating
functionality in SMC receives little attention.

Verification

Although the computer science part of the project described in [20] has not fully been ad-
dressed, some aspects concerned with verification have been investigated in co-operation

References 9

with the computer science departments of Radboud University Nijmegen and Eindhoven
University of Technology.

The predicting part of the described SMC concept can be used for analysis by sim-
ulation. Chapters 7 and 8 describe the mechanical engineering point of view concerning
analysis by verification. The machine-specific constraints captured in the scheduling
problem (TRS definition of level 2) ensure feasible behavior of the machine. In addition,
an essential property to guarantee is absence of deadlocks. Furthermore, it is desirable to
guarantee that the machine behaves in a time-optimal way. Such properties can be verified
using model checking [8], which is hindered by state-space explosion in industrial-sized
cases like this. Chapters 7 and 8 present two approaches that use specific information of
the property to be verified and the structure of the model to cope with this problem.

Chapter 7 focusses on a specific class of systems that can be described by a TRS
definition of level 2. The most important restriction is that all considered products are
processed in the same way: no recipe dependency. For this class of systems a least
restrictive deadlock avoidance policy is synthesized and checked. As opposed to the
deadlock avoidance constraints described in Chapter 3, this policy does not exclude more
schedules than necessary by also taking the transport direction of the material instances
into account. The approach results in an expression characterizing the safe states of the
machine. This expression can be applied in the scheduling approach described in Chapter
3, analogous to the other deadlock avoidance constraints. Deadlock is avoided by keeping
the machine in a safe state. Furthermore, time optimality of steady-state operation is
checked in Chapter 7. Two consistent models of different abstractions are used to verify
the two properties.

Chapter 8 considers the entire class of systems that can be defined by a TRS definition
of level 2, but is limited to the verification of absence of deadlocks. The specific structure
of the model is used to reduce the state space such that verification of the specific property
is still possible.

These approaches are in accordance with the message of the No Free Lunch Theo-
rem [29]: in combinatoric problems, dedicated approaches perform better than generic
approaches. For formal proofs related to verification we refer to the original computing
science documents [9, 13].

After the chapters describing the theory that has been applied and developed, appli-
cations of the theory in practice are described in Chapter 9. Chapter 10 concludes this
thesis with a discussion wrapping up the contributions of this project and suggestions for
further research.

References

[1] ASML, 2004. Information on wafer scanners available through URL
http://www.asml.com/, item: products - lithography.

[2] R. J. Aumann and S. Hart. Handbook of game theory: with economic applications.
Amsterdam, North-Holland, 2002.

[3] J. C. M. Baeten and W. P. Weijland. Process Algebra. Number 18. Cambridge Tracts
in Theoretical Computer Science, Cambridge University Press, 1990.

10 References

[4] D. A. van Beek and J. E. Rooda. Languages and applications in hybrid modelling
and simulation: positioning of Chi. Control Engineering Practice, 8(1):81–91, 2000.

[5] B. A. Brandin and W. M. Wonham. Supervisory control of timed discrete-event
systems. IEEE Transactions on Automatic Control, 39(2):329–341, 1994.

[6] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-
Oriented Software Architecture: A System of Patterns. Wiley, 1996.

[7] H. Chen and Baosheng Hu. Schedule-driven supervisory control of flexible manu-
facturing systems. In 30th Conference on Decision and Control, pages 2186–2191,
1991.

[8] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
2000.

[9] M. M. H. Driessen. Verification of task resource scheduling, June 2004. Internship
report of Department of Computer Science, Eindhoven University of Technology,
The Netherlands, available through URL http://se.wtb.tue.nl/∼bvdnieuw.

[10] A. Garnaev. Search games and other applications of game theory. Springer, 2000.

[11] P. Gohari and W. M. Wonham. Reduced supervisors for timed discrete-event sys-
tems. IEEE Transactions on Automatic Control, 48(7):1187–1198, 2003.

[12] H. Gueguen and M. Lefebvre. A comparison of mixed specification formalisms. In
Automation of mixed processes: Hybrid Dynamic Systems: ADPM 2000, pages 133–
138, Aachen, 2000. Shaker Verlag.

[13] M. Hendriks, N. J. M. van den Nieuwelaar, and F. W. Vaandrager. Model checker
aided design of a controller for a wafer scanner. Report NIII-R0430, Nijmegen Insti-
tute for Computing and Information Sciences, University of Nijmegen, The Nether-
lands, June 2004.

[14] J. M. Hollerbach. A survey of kinematic calibration. MIT Press, 1989.

[15] J. Kim, T. Lee, H. Lee, and D. Park. Scheduling analysis of time-constrained
dual-armed cluster tools. IEEE Transactions on Semiconductor Manufacturing,
16(3):521–534, 2002.

[16] C. M. H. Kuijpers, C. A. J. Hurkens, and J. B. M. Melissen. Fast movement strategies
for a step-and-scan wafer stepper. Statistica Neerlandica, 51(1):55–71, 1997.

[17] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. The Trav-
eling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley-
Interscience, Chichester, 1985.

[18] J. M. Maciejowski. Predictive control with constraints. Prentice Hall, Harlow, 2002.

[19] H. Marchand, O. Boivineau, and S. Lafortune. On the synthesis of optimal schedulers
in discrete-event control problems with multiple goals. SIAM Journal on Control
Optimization, 39(2):512–532, 2000.

References 11

[20] N. J. M. van den Nieuwelaar. Project plan: A framework for develop-
ment of machine control systems, November 2000. Available through URL
http://se.wtb.tue.nl/∼bvdnieuw.

[21] N. J. M. van den Nieuwelaar, J. M. van de Mortel-Fronczak, and J. E. Rooda. Design
of supervisory machine control. In K. Glover and J. Maciejowski, editors, Proceedings
of the European Control Conference 2003, 2003. CD-ROM.

[22] M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Prentice Hall, 1995.

[23] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event
processes. SIAM Journal on Control and Optimization, 25(1):206–230, 1987.

[24] S. Rostami and B. Hamidzadeh. Optimal scheduling techniques for cluster tools with
process-module and transport-module residency contraints. IEEE Transactions on
Semiconductor Manufacturing, 15(3):341–349, 2002.

[25] Y. Shin, T. Lee, J. Kim, and H. Lee. Modeling and implementing a real-time sched-
uler for dual-armed cluster tools. Computers in Industry, (45):13–27, 2001.

[26] P. Toth and D. Vigo. Predictive control with constraints. SIAM, Philadelphia, 2002.

[27] G. X. Viennot. Heaps of Pieces, I: Basic definitions and combinatorial lemmas.
In G. Labelle and P. Leroux, editors, Combinatoire Enumerative, pages 321–350.
Springer, New York, 1986.

[28] M. Wennink. Algorithmic Support for Automated Planning Boards. PhD thesis,
Eindhoven University of Technology, The Netherlands, 1995.

[29] D. H. Wolpert and W. Macready. No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1):67–82, 1997.

12

CHAPTER

TWO

SCHEDULING ALTERNATIVES AND

ALGORITHM

This chapter contains the paper Predictive Scheduling in Complex Manufacturing Ma-
chines: Scheduling Alternatives and Algorithm that has been protected in patent appli-
cation ASML ref. P-1784. First filing was in the US at December 23, 2003, number
10/743,320.
The paper was submitted to IEEE Transactions on Automatic Control in February 2004.

13

14 Chapter 2. Scheduling alternatives and algorithm

Predictive scheduling in complex manufacturing

machines: scheduling alternatives and algorithm

N.J.M. van den Nieuwelaar †*, J.M. van de Mortel-Fronczak †,
N.C.W.M. Braspenning †, J.E. Rooda †

Abstract

Supervisory control of a complex manufacturing machine - which involves co-
ordination of many mechatronic systems - requires proper scheduling. Supervisory
control must be flexible to concurrently process a mix of different product types
each requiring heavily recipe-dependent manufacturing tasks, without introducing
unnecessary control overhead. Analysis of the alternatives to choose from is done
using an example case, a wafer scanner. The job shop scheduling model is suited to
define alternatives concerning task order and resource assignment. This definition
is extended for alternatives with respect to tasks, as different tasks can lead to the
required manufacturing result. To formally describe the scheduling process that
transforms the model into a certain behavior, the transformation is split into two
phases: selecting and timing, according to a layered task resource system frame-
work. Constraints are formulated for each transformation phase and a scheduling
algorithm is described that is suited for usage in supervisory machine control. In
the algorithm, the two transformations are closely interweaved into a constructive
algorithm allowing early dispatching of the schedule. For efficiency, a compact data
structure is used to represent the choices made: heaps of pieces. Results show
intuitive modelling of the scheduling alternatives and effective machine behavior
optimization.

2.1 Introduction

The purpose of a manufacturing machine is to make products, which requires physical
manufacturing processes to be carried out. To actually do the work, mechatronic sys-
tems in the machine must be deployed. Control in the separate mechatronic systems is
referred to as low-level control and is not considered in this chapter. In complex manu-
facturing machines, many options exist to deploy the available resources to perform tasks
that lead to the desired manufacturing purpose, resulting in various machine behaviors.
Supervisory Machine Control (SMC) is responsible for deciding when to do which tasks
using which resources. There are three important complicating requirements for SMC
of complex manufacturing machines. First of all, the manufacturing tasks are heavily
product recipe dependent, for which SMC must be flexible. Furthermore, it must be
able to handle a stream of mixed product types, which are being processed concurrently.
Finally, no unnecessary control overhead may be introduced.

† Eindhoven University of Technology: P.O. box 513, 5600 MB Eindhoven, The Netherlands.
* ASML: De Run 6501, 5504 DR Veldhoven, The Netherlands.
Corresponding author: N.J.M. van den Nieuwelaar, e-mail: n.j.m.v.d.nieuwelaar@tue.nl

2.1. Introduction 15

2.1.1 Literature

Many approaches exist to describe a system under supervisory control using well-known
formalisms from computer science. Supervisory control theory as discussed by Wonham
et al. [2, 5, 13] models the system under control using Finite State Machines. The possible
behavior of such a system is regarded as a language. A supervisory controller in the form
of a deterministic automaton is synthesized that restricts the language by disabling a
subset of events, to control the system to properly accomplish its task. Supervisors must
be modelled specifically for the task to be accomplished, and therefore are not flexible
for handling different recipes.

Literature on performance analysis and supervisory control of complex manufacturing
machines that can handle different recipes [7, 14, 15] encapsulates models of the tasks to
be done for different recipes, which can be associated with scheduling theory. However,
in this work only part of the total problem is analyzed. Some of the work is restricted
to steady state behavior. As in complex manufacturing machines the time spent for
transient behavior (e.g. while switching product types) is of the same order of magnitude
as steady-state behavior, it is of importance not to focus on steady-state behavior only.
Other work is restricted with respect to other areas, for example a single resource [8]
or a subset of tasks [6], whereas SMC is responsible for control of the entire machine.
Moreover, the dynamic and real-time circumstances that SMC must operate in should
get sufficient attention, which is often underexposed in scheduling literature [16].

To properly address the recipe-dependent tasks to be done, an approach based on a
well-known scheduling problem is proposed in this chapter, as is also done in [10].

2.1.2 Layered task resource system framework

From a SMC point of view, a machine can be considered as a task resource system
(TRS). Tasks can be associated with manufacturing processes, whereas resources can
be associated with mechatronic systems. Transforming a manufacturing request into
machine behavior can be structured in three phases. First, a scheduling problem must
be instantiated from the manufacturing request, taking into account the limitations of
the machine. This transformation is called instantiating. The structure of the resulting
scheduling problem shows many similarities with the job shop scheduling problem [12].
The manufacturing process of a material instance can be associated with a job, whereas
the different parallel mechatronic systems can be associated with the different machines
in a job shop. Subsequently, resources must be assigned to the tasks in the instantiated
scheduling problem in some order, taking into account the fact that resources are able to
perform certain tasks only, and only one at a time. This transformation is called selecting.
The selected order of tasks to be performed by selected resources implies consecutive state
transitions of those resources, which is analogous to the setup times for mode switching
in job shop scheduling. Finally, start and finish times can be assigned to the tasks, taking
into account the speed of the resources. This transformation is called timing.

During the three transformation phases of instantiating, selecting and timing, choices
must be made. The result of a choice in a certain transformation on the machine behavior
can only be evaluated by performing the consecutive transformations. Therefore, a trans-
formation phase strongly relies on information from subsequent phases. The layered TRS
framework shown in Fig. 2.1 displays the hierarchically related transformation phases as
functionality layers (A through C) and the different TRS definition levels (0 through 3)
as interfaces between the layers (see Chapter 1 and [11]).

16 Chapter 2. Scheduling alternatives and algorithm

Instantiating

Selecting

Timing

3:

C:

1:

0:

ro

om
 fo

r c
ho

ic
es

timed

selected
 untimed

A:

2:

B:

instantiated
 unselected

constraints
 for
 TRS

TRS

TRS

TRS

Figure 2.1: Layered Task Resource System framework

2.1.3 Predictive scheduling in Supervisory Machine Control

This chapter discusses predictive scheduling [17] in SMC based on task-resource system
definitions. Scheduling can be associated with transforming a TRS definition of level 2
into a TRS definition of level 0, involving the layers A and B shown in Fig. 2.1. Several
motivations exist for predictive scheduling in SMC of complex machines. First, making
choices run-time enables optimized machine behavior for different products and users.
Several optimization approaches can be applied: heuristics can be used for guidance
and several schedules can be generated in several ways to do ‘what-if’ analysis. Second,
the TRS definitions used are suited for design-time analysis and any error-prone gap
between the design and the implementation is minimized as run-time execution is based
on the same model. Finally, predictive scheduling is flexible, which eases adaptation to
the evolution of machine configurations or machine operation philosophies. A potential
drawback of predictive scheduling is control overhead, which slows down the machine.
To minimize this effect, a constructive scheduling algorithm can be applied that allows
for partial schedule dispatching.

2.1.4 Structure of the chapter

This chapter is structured as follows. Throughout the chapter, an example of a com-
plex machine is used for illustration: a dual-stage wafer scanner [1]. Other examples
of complex manufacturing machines in the semiconductor industry are cluster tools and
tracks. Section 2.2 describes the wafer scanner example and how some of the scheduling
alternatives can be defined in the form of a generalized job shop scheduling problem.
It is pointed out that in complex manufacturing machines also choices with respect to
tasks play a role, which do not map onto the job shop scheduling problem. Analysis is
done using the example to determine the required expressivity for this type of scheduling
alternatives. Section 2.3 describes the additional TRS definition level 2 elements and
the concerned selecting constraints that can express the room for choices with respect
to tasks. Using these additional elements and constraints, the total scheduling problem
is defined. In Section 2.4, the transformations selecting and timing are integrated into
a scheduling algorithm that is suited for usage in a run-time environment. Section 2.5
shows an example manufacturing scenario for the wafer scanner to which the scheduling
algorithm is applied. Using two different heuristic settings, its potential for machine be-
havior optimization is shown. Finally, concluding remarks are presented in Section 2.6.

2.2. Scheduling in a dual-stage wafer scanner 17

E l v 0

I R I S

R o b o t

P O D

T u r r e t

R S

I R C I R L

E l v 1

1

2 3 54 6 7

8 9

1 1 1 0

1 2

Figure 2.2: Reticle handling tasks

2.2 Scheduling in a dual-stage wafer scanner

2.2.1 A dual-stage wafer scanner

In this subsection, a dual-stage wafer scanner is described. The primary manufacturing
process of a wafer scanner is the exposure of a mask containing an IC pattern onto
wafers. In a dual-stage wafer scanner, two wafer stages are available to carry wafers
during exposure. Typically, a few hundred integrated circuits or dies are placed on a
wafer of 300 mm diameter, and for the exposure step each of them must be scanned in
either direction: up or down. A mask is placed on a reticle, which is contained in a
POD (see Fig. 2.2) and needs to be pre-processed prior to being used for exposure at
the reticle stage (RS). Important pre-processing steps for reticles are cleaning (at IRC)
and inspecting (at IRIS), and for wafers aligning and measuring. Measuring encompasses
scanning a minimum number of mark pairs which are distributed over the wafer. In
between the processing steps, several logistic steps must take place, for instance, via the
Turret that consists of two elevators (Elv0 and Elv1). These logistic steps are illustrated
for reticles in Fig. 2.2 using numbered arrows. The dotted arrows concern the optional
usage of a buffer (IRL, tasks 6 and 7). Each resource is denoted by a square. Several
wafers and reticles are concurrently being processed, and their logistic paths can cross
each other like at the robot of Fig. 2.2. For instance at the robot, sequence dependent state
transitions (rotations) must be performed when switching from one reticle to another.
The number and layout of the dies and mark pairs on the wafer, as well as process speeds
are determined by the product recipes.

2.2.2 Job Shop Scheduling

In this subsection, job shop scheduling starting from an instantiated, unselected TRS
definition (level 2 in Fig. 2.1) is formally defined. First, the instantiated, unselected
TRS definition of a job shop scheduling problem is described, which subsequently is
extended following generalized job shop scheduling. After that, the selected, untimed
TRS definition is described, and the constraints to be taken into account when selecting
from the alternatives defined in definition level 2 to reach definition level 1. Finally,
the timed TRS definition (level 1) and the constraints concerning transformation A are
summarized.

18 Chapter 2. Scheduling alternatives and algorithm

A job shop scheduling model can be defined by a 6-tuple in terms of tasks and resources
(T2,R, I2,P2, Sb2, Se2) in which:

• T2 is a finite set of elements called tasks.

• R is a finite set of elements called resources.

• I2: T2 → R gives the resource that is involved in a certain task.

• P2 ⊆ T2×T 2 is the precedence relation between tasks.

• Sb2, Se2 : TR → S give the begin and the end (physical) state of the resource
involved in a certain task, where TR = {(t, r)|t ∈ T2, r = I2(t)}.

Note that, by convention, the definition level is added to each element in subscript.
Elements that are not level-specific have no subscript.

In the sequel, several constraints are defined and labelled according to the following
convention. Each constraint label starts with a C- followed by the transformation layer
identifier (A, B, C) or definition level identifier (0, 1, 2, 3) and subsequently by a letter
(a, b, ...).

The constraint that must be satisfied for the instances of the definition elements is as
follows:

C-2a P2 contains no cycles.

However, like in the wafer scanner example, in a complex machine multiple resources
can exist which all are capable of the same work. Furthermore, some tasks involve
synchronous transitions of multiple resources, e.g. a scan. As this can also be the case
in job shops, the job shop scheduling problem has been generalized to incorporate these
features [19].

A generalized job shop scheduling problem can be defined by an 8–tuple
(T2,R, C, I2,A,P2, Sb2, Se2):

• T2 is a finite set of elements called tasks.

• R is a finite set of elements called resources.

• C is a finite set of elements called capabilities.

• I2: T2 → P(C) gives the set of capabilities that are involved in a certain task.

• A: C → P(R) gives the set of resources that are available for a certain capability.

• P2 ⊆ T2×T 2 is the precedence relation between tasks.

• Sb2, Se2 : TC → S give the begin and the end (physical) state of each capability
involved in a certain task, where TC = {(t, c)|t ∈ T2, c ∈ I2(t)}.

Constraint C-2a remains.

The selecting transformation (B) assigns resources to tasks, and determines the order
in which tasks are executed for each resource. By this transformation, an unselected
TRS is transformed into a selected, untimed TRS, which can be defined by a 6-tuple
(T1,R, I1,P1, Sb1, Se1):

2.2. Scheduling in a dual-stage wafer scanner 19

• T1 is a finite set of elements called tasks.

• R is a finite set of elements called resources.

• I1: T1 → P(R) gives the set of resources that are involved in a certain task.

• P1 ⊆ T1×T 1 is the precedence relation between tasks.

• Sb1, Se1 : TR → S give the begin and the end (physical) state of the resource
involved in a certain task, where TR = {(t, r)|t ∈ T1, r ∈ I1(t)}.

Constraints that have to be satisfied for the instances of the definition elements are
as follows:

C-1a The sequence of tasks per resource is a chain.

Constraints that have to be satisfied for the selecting transformation can be formulated
as follows:

C-Ba The sequence of selected tasks per resource is a chain (similar to C-1a).

C-Bb For each selected task, an available resource must be selected for each involved
capability:
(∀t, r, c : t ∈ T1, r ∈ I1(t), c ∈ I2(t) : r ∈ A(c))

The begin and end state definition is obtained from the capability of the selected
resource.

By the timing transformation (A), a selected, untimed TRS is transformed into a
timed TRS, which can be defined by a 5-tuple (T0,R, I0, τS0

, τF0
):

• T0 is a finite set of elements called tasks.

• R is a finite set of elements called resources.

• I0: T0 → P(R) is the set of resources that are involved in a certain task.

• τS0
, τF0

: T0 → R+ are the start time and the finish time of a certain task, which
implies that all resources assigned to a task t are occupied for the same time span.

Furthermore, note that a timed TRS can be visualized as a Gantt chart.
The constraint that has to be satisfied for the instances of the definition elements is

as follows:

C-0a Per resource there is a chronological sequence of pairs of task start and task finish
times.

Constraints that have to be satisfied for the timing transformation are as follows:

C-Aa Nothing changes with respect to tasks and the (involved) resources: T0 = T1, I0 = I1

C-Ab By convention, time starts at 0. Furthermore, the finish time of a task equals its
start time plus its duration:
(∀t : t ∈ T1 : τS0

(t) ≥ 0 ∧ τF0
(t) = τS0

(t) + τt0(t))

C-Ac For consecutive tasks, it holds that the start time of the succeeding task is at least
the finish time of the preceding task:
(∀t, t′ : (t, t′) ∈ P1 : τS0

(t′) ≥ τF0
(t))

20 Chapter 2. Scheduling alternatives and algorithm

C-Ad To match the states of consecutive tasks on the same resource, state transitions of
the resource might be necessary. In these cases it holds that the start time of the
succeeding task is at least the finish time of the preceding task plus the duration of
the resource state transition between the tasks:
(∀t, t′, r : (t, t′) ∈ P ′

1, r ∈ I1(t) ∩ I1(t
′) : τS0

(t′) ≥ τF0
(t) + τr0

(r, Se1(t, r), Sb1(t
′, r)))

where:

• P ′

1 ⊆ P1 is the union of all resource task chains.

• τt0 : T1 → R+ gives the duration of a certain task, taking into account the behavioral
restrictions imposed by the task as well as the resources involved with the task.

• τr0
: R× S × S → R+ gives the duration of a resource state transition from some

state to another state, taking into account the behavioral restrictions imposed by
the resource.

For further information on τt0 and τr0
see [11].

2.2.3 Instantiating the dual-stage wafer scanner scheduling problem

In the wafer scanner example, and in complex manufacturing machines in general, several
selection alternatives exist. First of all, alternatives exist concerning precedences, which
can be defined like in the Job Shop Scheduling problem. The precedence alternatives
are outlined by P2 together with constraint C-Ba assuring mutual exclusiveness. The
additional precedence instances P1\P2 concern the scheduled interweaving of the instances
that are the result of selection B.

Second, alternatives exist concerning involved resources. In some cases, multiple
resources of the same kind are present in a machine, like the two wafer stages and the two
elevators. As a consequence, several resources can be chosen from to allocate to a certain
task. This is also the case in the generalized Job Shop Scheduling problem. For each type
of resource, a capability is introduced in model element C, e.g. ‘wafer stage’ and ‘elevator’.
The availability function A: C → P(R) describes which resources are available for a certain
capability. For the example in Fig. 2.2 this function defines, e.g., that resources ‘elv:0’
and ‘elv:1’ are available for the ‘elevator’ capability. The resource involvement selection
concerns selection of one available resource for each involved capability: constraint C-Bb.

Finally, alternatives exist concerning tasks. This is implied by the fact that in some
cases multiple tasks exist in a system that have an equivalent effect considering the
manufacturing process. For instance, multiple paths to transport material from one
place to another, or a set of (m) tasks of which only a subset (n) has to be selected. This
degree of freedom cannot be mapped onto the (generalized) job shop scheduling problem.
Therefore, in the sequel of this section, analysis is done to determine which expressivity
is required.

In Fig. 2.3, an overview of the alternatives with respect to tasks is given for the
example case. Regarding the exposure scanning of dies, a 1 out of 2 expressivity is
required: a die can be exposed (scanned) in two directions, of which one must be selected.
This is analogous to the Rural Postman Problem: n out of m, in which n = 1, and
m = 2 [9]. Regarding the measuring of mark pairs on a wafer, the requirements are
more difficult. From the (m) mark pairs on a wafer, a minimum number (n) must be
measured. A mark pair consists of two marks, each requiring a measure scan task in
either direction. In this case the task selection can be defined as a selection out of m,

2.3. Problem definition 21

expose wafer

die 1

.

.

.

die n

scan up

scan down

measure wafer

mark pair 1

.

.

.

mark pair m

mark x

mark y

scan up

scan down

move reticle

buffer reticle

task 6, task 7

Manufacturing processes
 Room for choices

1 out of 2

at least n pairs

1 out of 2

either or not

Figure 2.3: Alternatives with respect to tasks

in which the number of selected mark pairs must be an allowed number, and in which
for all marks in the selected mark pairs one scan task is selected. From this, it can be
concluded that nesting is needed and that the allowed number of alternatives can be more
than one number (n ∈ P(N+)). Furthermore, a complex machine contains buffer places
like the IRL. At certain points in the manufacturing process, it is possible to buffer a
manufacturing entity. To define this possibility in an intuitive way, it must be possible
to describe the fact that also no buffering is allowed, or: 0 can also be an allowed number
(n ∈ P(N)). The required expressivity that follows from this analysis has not been found
in literature.

2.3 Problem definition

To outline the required room for alternatives with respect to tasks, literature cannot be
followed. In general, tasks and their precedence relation can be visualized by a graph of
type ’activity on node’. For the purpose of modelling selection alternatives concerning
tasks, a more general node element N2 is introduced. Equivalent alternatives can consist
of a set of nodes (nesting). To identify such sets of nodes that all must be done and can
have precedence edges to each other, an additional node type cluster (L2) is introduced.
Function Ln2: L2 → P(N2) is introduced to define which nodes belong to which cluster.
Furthermore, it is possible that multiple numbers of alternative nodes are allowed to be
selected, including the possibility to select none of them. To be able to define which nodes
belong to such a group of alternatives, a node type group is introduced: G2. Function
Gn2 is introduced to define which nodes are in which group, whereas function Ga2 is
introduced to define how many of these nodes are allowed to be selected. In Fig. 2.4, the
node types are indicated for the example, and for groups the allowed numbers of selected
alternatives is shown.

The newly introduced definition elements, together with some additional selection
constraints outline the room for selections with respect to tasks. The resulting model can

22 Chapter 2. Scheduling alternatives and algorithm

expose wafer

die 1

.

.

.

die n

scan up

scan down

measure wafer

mark pair 1

.

.

.

mark pair m

mark x

mark y

scan up

scan down

move reticle

buffer reticle

task 6, task 7

Manufacturing nodes
 Node
 Allowed

 type
 numbers

cluster

group
 {1}

task

task

group
 {n..m}

cluster

group
 {1}

group
 {0,1}

cluster

task

task

task

Figure 2.4: Alternatives with respect to tasks: node info

express [n1 out of m] or [n2 out of m], ... (aggregates of) tasks, which is abbreviated to
[{n1, n2, ...nx} out of m].

Summarizing this analysis, an instantiated, unselected TRS D2 can be defined by a
14–tuple (T2,L2,G2,N2,R, C, I2,A,P2,Ln2,Gn2,Ga2, Sb2, Se2):

• T2 is a finite set of elements called tasks.

• L2 is a finite set of elements called clusters.

• G2 is a finite set of elements called groups.

• N2 is a finite set of elements called nodes and is a generalization of the model
elements mentioned earlier: N2 = T2 ∪ L2 ∪ G2.

• R is a finite set of elements called resources.

• C is a finite set of elements called capabilities.

• I2: T2 → P(C) gives the set of capabilities that are involved with a certain task.

• A: C → P(R) gives the set of resources that are available for a certain capability.

• P2 ⊆ N2×N 2 is the precedence relation between nodes.

• Ln2: L2 → P(N2) gives the set of nodes that are in a certain cluster.

• Gn2: G2 → P(N2) gives the set of nodes (alternatives) that a group consists of.

• Ga2: G2 → P(N) gives the allowed numbers (including 0) of nodes to be selected
from a group.

• Sb2, Se2 : TC → S give the begin and the end (physical) state of each capability
involved in a certain task, where TC = {(t, c)|t ∈ T2, c ∈ I2(t)}.

Constraint C-2a remains, and the additional constraints that have to be satisfied for
the instances of the model elements are as follows:

2.3. Problem definition 23

C-2b There is no group that has only 0 as allowed number of selected nodes:
(@g : g ∈ G2 : Gn2(g) = {0}).

C-2c Nodes which are element of a group have no preceding or succeeding nodes:
(∀g, n : g ∈ G2, n ∈ Gn2(g) : (@n′ : n′ ∈ N2 : (n′, n) ∈P2 ∨ (n, n′) ∈P2)).

C-2d Precedences do not cross group boundaries.

By making choice B, a TRS definition of level 2 is transformed to a TRS definition
of level 1. One of the choices has to do with selection from alternatives with respect to
tasks. We define a node to be selected if at least one of the tasks that is in it is selected.
Let N1 be the set of selected nodes, then the additional constraints for fB(D2) besides
C-Ba and C-Bb can be formulated as follows:

C-Bc Precedence relations are inherited:
(∀n, n′, t, t′ : n, n′ ∈ N1, t, t

′ ∈ T1, n ∈ anc(t), n′ ∈ anc(t′), (n′, n) ∈ P2 : (t′, t) ∈ P1),

where function anc : N2 → P(N2) is a recursive function that determines the
ancestors of a node, which are those nodes in which a node n is contained:

anc(n) = (∪n′ : n′ ∈ N2\T2, n ∈ Gn2(n
′) ∪ Ln2(n

′) : {n′} ∪ anc(n′))

This recursion is finite as the nodes have a hierarchical structure, which is explored
upwards only in this function.

C-Bd Any node that is not part of another node must be selected, except for groups for
which choosing nothing is allowed (‘nilgroups’):
(∀n, l, g: n ∈ N2, l ∈ L2, g ∈ G2, n /∈ Ln2(l), n /∈ Gn2(g)

, n /∈ {g′ ∈ G2|0 ∈ Ga2(g
′)} : n ∈ N1)

C-Be Any node that is part of a selected cluster must be selected, except for nilgroups:
(∀l : l ∈ L2 ∩N1 : {n ∈ Ln2(l)|n /∈ {g′ ∈ G2|0 ∈ Ga2(g

′)}} ⊆ N1).

C-Bf In case nilgroups are not considered, the constraint for groups would be that
the number of selected nodes that are part of a selected group must be allowed:
(∀g : g ∈ G2 ∩N1 : #(Gn2(g) ∩N1) ∈ Ga2(g)).
Presence of unselected nilgroups in a group relaxes this constraint somewhat, as
unselected nilgroups may either or not be counted regarding the allowed number of
selected nodes in a group. Knowing this, the constraint can be described as follows:
(∃a : a ∈ Ga2(g) :#(Gn2(g) ∩N1) ≤ a ≤

#(Gn2(g) ∩N1) + #{g′ ∈ G2 ∩ Gn2(g)|0 ∈ Ga2(g
′) ∧ g′ /∈ N1})

Transformation A is not affected by the extension for choices with respect to tasks. To
complete the formal definition of the optimization problem, a goal function fg : D0 → R
is defined, that quantifies the quality of a certain temporal behavior. Examples of factors
that play a role in this function are make span and number of tasks. Let fAB : D2 → D0

be the function that performs transformations A and B on the unselected TRS definition
and returns the temporal machine behavior. The constraints that have to be satisfied for
fAB(D2) can be constructed by combining the constraints of the separate transformations
A and B: fAB(D2) = fA(fB(D2)). Furthermore, two sets of valid functions for fA and fB
are introduced, FA, and FB, respectively. With this, the entire optimization problem can
be described as follows:

(max fA, fB : fA ∈ FA, fB ∈ FB : fg(fA(fB(D2))) (2.1)

24 Chapter 2. Scheduling alternatives and algorithm

2.4 A scheduling algorithm

In this section, the optimization approach is discussed. First, the argumentation that has
led to the approach and an outline of the algorithm are given. After that, the essential
steps of the algorithm are explained.

The run-time usability requirement has important consequences. To avoid the ma-
chine being idle while waiting for its controller computing ’optimal’ schedules, the al-
gorithm is developed such that tasks can be dispatched to start execution with very
small time delays. To achieve this, the schedule is determined in a constructive way,
which means from the start to the finish. This approach is also safe with respect to
extendability towards handling a TRS definition of level 3. Furthermore, it is possible
to dispatch a partial schedule after each task that is added to it. To ensure that the
dispatched schedule is an acceptable one, heuristic filters are used to direct the schedul-
ing choices involving choice B. Note that if the algorithm is interrupted to dispatch the
schedule, sub-optimal schedule solutions are taken for granted to just get the machine
to work, and non-repetitive behavior might result as a consequence. Moreover, heuristic
filters can be configured such that behavior of a state-based control architecture is copied,
which is convenient for software migration purposes. Concerning choice A, the duration
of tasks and setup resource state transitions between tasks is determined using dedicated
mathematical functions for efficiency and embedability in SMC. Furthermore, the default
heuristic of the approach with respect to selection A is to schedule a selected task ‘As
Soon As Possible’, resulting in an ‘active’ schedule. For memory efficiency, a compact
data structure is applied to store the result of selection B that is also compatible with
the constructive and ASAP scheduling heuristic of selection A: a heap of pieces [18]. A
piece defines a selected task and the selected involved resources, whereas the sequence
of pieces in the heap defines the selected precedence relation. Depending on the goal
function a postprocessing step is done with respect to selection A to postpone some tasks
in order to improve the schedule. Subsequently, other choices with respect to selection
B are considered. Taking the run-time aspect into account, the approach explores other
alternatives at the beginning of the schedule first, as these tasks will be dispatched first.
In Fig. 2.5, the approach is depicted in a flow chart. Summarizing, the approach is a
constraint-guided heuristic search algorithm [12] with the possibility to dispatch work
early if desired.

Below, steps 1 and 3 are described in detail. Steps 2 and 4 are very case-dependent.

Step 1

During transformation functionality B, selected alternatives are stored in a heap of pieces.
Piece p describes which task t ∈ T2 is selected, and the selected resources rr ⊆ R involved:
p ∈ T2 × P(R). The sequence of pieces in the heap h ∈ P((T 2 × P(R))∗) describes the
selected precedence relations in addition to the precedence relations in P2 (intrinsically
satisfying constraint C-Ba). The functions in this section are defined in the context of
the system definition, therefore the definition elements are not explicitly included in the
arguments.

If no alternatives with respect to tasks are taken into account, considering a heap h
containing passed (i.e. selected up to then) tasks tp ⊆ T2, a next piece p consisting of
task t and involved resources rr is eligible to form an extended heap hp if and only if:

2.4. A scheduling algorithm 25

Step 1

Determine eligible pieces

(selection B)

Step 2

Select most promising piece

(selection B)

Step 3

Add piece to heap

(selection A)

All nodes

finished?

Dispatch

best schedule

yes

no

Definition level 2

Empty heap

Step 4

Postprocess

(selection A)

All possible

selections

evaluated?

yes

no

next iteration

yes

Figure 2.5: Flow chart of optimization approach

• the predecessors of t are in pieces of heap h, and t is not:

Et(h) = {t ∈ T2\tp | (∀t ′ : (t ′, t) ∈ P2 : t ′ ∈ tp)} (2.2)

• constraint C-Bb is satisfied concerning rr:

Er(t) = {rr ⊆ R |(∀r , c : r ∈ rr , c ∈ I2(t) : r ∈ A(c))} (2.3)

The set of eligible next pieces for sequence h can be defined as follows:

E (h) = {(t, rr)|t ∈ Et(h) ∧ rr ∈ Er(t)} (2.4)

The set of feasible heaps H ⊆ P((T 2 ×P(R2))
∗) can be defined by induction as follows:

ε ∈ H (2.5)

h ∈ H ∧ p ∈ E (h) =⇒ hp ∈ H (2.6)

In (2.5), ε denotes the empty heap.

Considering alternatives with respect to tasks, function Et(h) must be extended.
During the selection process, tasks that are not selected and will not be selected anymore
are called ‘bypassed’. After the selection process, the set of bypassed tasks equals T2\T1.
Function Et(h) needs to consider only tasks that are neither passed nor bypassed. For
the tasks that are neither passed nor bypassed, the predecessor relation must be checked.
In case no alternatives with respect to tasks are considered, all predecessors must be in
the heap (see Equation 2.2). This condition is relaxed in case of predecessors of type
group: all (possibly inherited, see constraint C-Bc) predecessors must be ‘succeedable’.

26 Chapter 2. Scheduling alternatives and algorithm

Let function succ : N2 → P(N2) be a function that determines the successors of a
node n:

succ(n) = (∪n′ : n′ ∈ N2, (∃n′′ : n′′ ∈ anc(n) ∪ {n} : (n′′, n′) ∈ P2) : {n′}) (2.7)

A task is succeedable when it is passed, and a cluster is succeedable when all nodes
in it are succeedable. The non-succeedable nodes of a succeedable group may contain no
passed tasks. Furthermore, if none of the nodes of a group is succeedable whereas zero is
an allowed number, a group is succeedable when all of its predecessors are succeedable.
In other cases, a group is succeedable when the (non zero) number of succeedable nodes
of it is an allowed number.

Let ns : N2 → B be a recursive function that determines whether a node n is suc-
ceedable.

ns(n) = (n ∈ T2 ∧ n ∈ tp)
∨(n ∈ L2 ∧ (∀n′ : n′ ∈ Ln2(n) : ns(n′)))
∨(n ∈ G2 ∧ (∀n′ : n′ ∈ Gn2(n) ∧ ¬ns(n′) : (∀t : t ∈ T2 ∧ n ∈ anc(t) : t /∈ tp))

∧((@n′ : n′ ∈ Gn2(n) : ns(n′)) ∧ 0 ∈ Ga2(n))
∧(∀n′ : n′ ∈ N2 ∧ (n′, n) ∈ P2 : ns(n′))
)

∨(((∃n′ : n′ ∈ Gn2(n) : ns(n′)) ∨ 0 /∈ Ga2(n))
∧(|{n′|n′ ∈ Gn2(n) ∧ ns(n′)}| ∈ Ga2(n)))
)

)
(2.8)

This recursion is finite as the nodes have a hierarchical structure which is explored down-
wards only, and precedences have no loops and are explored backwards only. The set of
succeedable nodes, ns, can be defined as follows: ns = {n|n ∈ N2 ∧ ns(n)}.

Let ni be the set of initiated nodes. A node is initiated if it is not succeedable and
contains a passed task. This set can be defined as follows:

ni = (∪n : n ∈ N2\ns, (∃t : t ∈ tp : n ∈ anc(t)) : {n}) (2.9)

A task is bypassed when it is not passed and when it is in a (node of a) group that
is not succeedable or initiated whereas the maximum number of nodes of the group is
succeedable or initiated, or if any succeeding node of it is succeedable. The set of bypassed
tasks, tb, is defined as follows:

tb ={ t ∈ T2\tp
| (∃g : g ∈ G2: Gn2(g) ∩ (anc(t) ∪ {t})\(ns ∪ ni) 6= ∅

∧|Gn2(g) ∩ (ns ∪ ni)| = max(Ga2(g))
)

∨ (∃t′ ∈ tp : ({t} ∪ anc(t′)) ∩ succnil(t) 6= ∅)
}

(2.10)

Where function succnil: T2 → P(N2) determines the successors of a task t, including the
successors of succeeding nilgroups:

succnil(t) = succ(t) ∪ (∪n : n ∈ (succ(t) ∩ G2) ∧ 0 ∈ Gn2(n) : succnil(n)) (2.11)

Using this, function Et(h) when considering alternatives with respect to tasks is de-
fined as follows:

Et(h) = {t ∈ T2\tp \tb| (∀n, n′ : n ∈ anc(t) ∧ (n′, n) ∈ P2 : n′ ∈ ns)} (2.12)

2.4. A scheduling algorithm 27

Step 3

An ’As Soon As Possible’ (ASAP) heuristic for the choice concerning timing can be
associated with an intuitive interpretation, namely that of a heap of pieces [4, 18]. Tim-
ing behavior of a TRS can be visualized using a Gantt chart. When a Gantt chart is
turned 90◦ counter-clockwise, the resource occupation by tasks can be interpreted as
a heap of pieces p ∈ T2 × P(R). The first element of this tuple, p.0, equals the con-
sidered task, whereas the second element, p.1, equals the resources involved with this
task: p = (t , I1(t)). Resources can be associated with the slots on the horizontal axis,
whereas (task duration) time is represented on the vertical axis. Tasks are represented
by rectangular pieces. The task duration τt0 is represented by the height of a rectangular,
whereas the involved resources are represented by its ‘width’. The ‘ASAP’ heuristic can
be associated with pieces falling onto each other under the influence of ‘gravity’. This
corresponds to the mechanism of the Tetris or Brick game.

The upper contour of a heap is associated with the time until which the resources are
occupied by the pieces in the heap. It is defined as the R-dimensional row vector uH(h),
where uH(h,r) is the height of the heap on slot r. The upper contour state is defined as
the R-dimensional row vector uHs(h), where uHs(h,r) is the (physical) state of resource r
at time uH(h,r).

The horizontal ground convention (see constraint C-Ab), which can be associated with
time starting at 0, yields:

uH(ε) = (0, ..., 0) (2.13)

The upper contour of heap hp that results after piling up a piece p on top of a heap h is
equal to the finish time of task t for the resources that are occupied by t and equal to the
upper contour of h for the other resources:

uH(hp, r) =

{

τF0
(p.0, h) if r ∈ p.1

uH(h, r) if r /∈ p.1
(2.14)

The upper contour state of heap hp that results after piling up a piece p on top of
a heap h is equal to the end state of task t for the resources that are occupied by t and
equal to the upper contour state of h for the other resources:

uHs(hp, r) =

{

Se1(p.0, r) if r ∈ p.1
uHs(h, r) if r /∈ p.1

(2.15)

The finish time of a task t is obtained by adding its duration to its start time (see
constraint C-Ab):

τF0
(t , h) = τS0

(t , h) + τt0(t) (2.16)

The start time of a task t associated with piece p being piled up on top of a heap h is
influenced by two components: by its preceding tasks (see constraint C-Ac) on the one
hand and by the setup state transitions of the involved resources (see constraint C-Ad)
on the other. Note that this precedence constraint is an extension of [3]. It can be
determined by taking the highest value of either the highest finish time of its preceding
tasks, τS0p

(t , h), or the highest part of the upper contour of the heap h beneath the piece
after any required state transitions of the involved resources, τS0r

(t , h):

τS0
(t , h) = (max(τS0p

(t , h), τS0r
(t , h))) (2.17)

Regarding preceding tasks, the start time of task t equals the maximum finish time of
the passed tasks that precede t:

28 Chapter 2. Scheduling alternatives and algorithm

321

6

5

4C

B

A

Figure 2.6: Horizontal and vertical meander

τS0p
(t, h) = (max t′ : t′ ∈ tp ∧ t ∈ succnil(t′) : τF0

(t′, h)) (2.18)

Regarding resource setup, the start time of a task t can be obtained as follows:

τS0r
(t , h) = (max r : r ∈ I1(t) : uH(h, r) + τr0

(r , uHs(h, r), Sb1(t , r))) (2.19)

2.5 Results

The results are illustrated using an example manufacturing scenario, concerning three lots
of five wafers of a dual exposure recipe each. For each lot, different reticles are needed:
reticles 0 and 1 for the first lot, reticles 2 and 3 for the second lot and reticles 4 and 5 for
the third lot. Each wafer consists of 171 dies of size 26×13 [mm], in which the 13 [mm]
is the scanning direction.

On each wafer 25 alignment mark pairs are placed, of which at least 16 pairs must be
measured in either direction of each mark to reach the required minimum manufacturing
accuracy.

For the purpose of this chapter, only selection of tasks and their order is considered.
Alternatives can be found in the following areas:

1. The order and direction of exposing the dies of each wafer. Two basic approaches
are shown in Fig. 2.6: a horizontal and a vertical meander.

2. The mark pairs to measure and the order of the measurements.

3. The reticles to buffer and the order of buffering.

For illustration, the timing behavior resulting from two different settings for the heuris-
tic filters is shown. The description of the first setting, setting I, is as follows:

1. The exposure sequence is a horizontal meander, as visualized for this example in
Fig. 2.7.

2. The minimum number (16) of mark pairs is measured.

3. Preprocessing of reticles is started as soon as possible. If reticles cannot go through
to the reticle stage, they are put in the buffer (IRL).

In Fig. 2.8, the ASAP time behavior for setting I is depicted in a Gantt chart. The
vertical axis shows the mechatronic systems that are distinguished as resources. In the

2.5. Results 29

Figure 2.7: Horizontal meander for the example recipe

middle, there is the Light resource that is used for exposures, together with the reticle
stage (RS) and one the wafer stages (Chu:0 and Chu:1). The resources depicted above the
Light resource are reticle related, and can be found in Fig. 2.2. The resources depicted
below the Light resource are wafer related. The Track is the machine next to the wafer
scanner that delivers wafers to the pre-aligner (Prea), and takes them from the discharge
unit (Dist). Furthermore, there are two wafer robots, one for the incoming path to the
stages (Rob:i), and one for the outgoing path from the stages (Rob:o). In this chart, the
measure and the exposure sequence are depicted as one task, and tasks are colored per
wafer or reticle, where exposure tasks get the color of the reticle.

In Fig. 2.9, the critical path of the time behavior is depicted in a Gantt chart. The
chart shows that inspection of reticles 3 and 4 is on the critical path, and exposure of the
first lot is not.

The description of the second heuristic setting, setting II, is as follows:

1. The exposure sequence is a vertical meander.

2. All mark pairs (25) are measured.

3. Preprocessing of reticles is started only if less than four preprocessed reticles are
available for coming exposures. If the robot can choose to either put a reticle on
the turret or start preprocessing a next reticle, it chooses to put the reticle on the
turret. Reticles are put in the buffer (IRL) after preprocessing only if they have to
wait and the coming lot requires another reticle that is not preprocessed yet.

In Fig. 2.10, the resulting time behavior using setting II is depicted in a Gantt chart.
As can be seen in Fig. 2.11, the inspection of reticles 3 and 4 is not on the critical path
anymore, whereas exposure of the first lot is. The time needed for manufacturing the
three lots is decreased by more than 5% compared to setting I. Half of this reduction is
caused by the changed exposure sequence. The duration of this sequence itself decreased
by about 10%. The other half is caused by changed reticle handling. Moreover, better
product quality is achieved as more mark pairs are measured. This does not cost any
time, as measuring still is not on the critical path, that is shown in Fig. 2.11.

30 Chapter 2. Scheduling alternatives and algorithm

0 500 1000 1500 2000 2500 3000

Track

 Dist

 Prea

Rob:o

Rob:i

Chu:1

Chu:0

Light

 RS

elv:1

elv:0

Robot

 IRL

 IRC

 IRIS

 POD

Time [sec]

R
es

ou
rc

es

Gantt chart

prep
r0
r1
r2
r3
r4
r5
swap
w00
w01
w02
w03
w04
w05
w06
w07
w08
w09
w10
w11
w12
w13
w14

Figure 2.8: Gantt chart using heuristic setting I

0 500 1000 1500 2000 2500 3000
Rob:i

Chu:1

Chu:0

Light

 RS

elv:1

elv:0

Robot

 IRL

 IRC

 IRIS

 POD

Time [sec]

R
es

ou
rc

es

Gantt chart

prep
r0
r1
r2
r3
r4
r5
swap
w00
w01
w02
w03
w04
w05
w06
w07
w08
w09
w10
w11
w12
w13
w14

Figure 2.9: Gantt chart of critical path using heuristic setting I

2.5. Results 31

0 500 1000 1500 2000 2500

Track

 Dist

 Prea

Rob:o

Rob:i

Chu:1

Chu:0

Light

 RS

elv:1

elv:0

Robot

 IRL

 IRC

 IRIS

 POD

Time [sec]

R
es

ou
rc

es

Gantt chart

prep
r0
r1
r2
r3
r4
r5
swap
w00
w01
w02
w03
w04
w05
w06
w07
w08
w09
w10
w11
w12
w13
w14

Figure 2.10: Gantt chart using heuristic setting II

0 500 1000 1500 2000 2500
Rob:i

Chu:1

Chu:0

Light

 RS

elv:1

elv:0

Robot

 IRL

 IRC

 IRIS

 POD

Time [sec]

R
es

ou
rc

es

Gantt chart

prep
r0
r1
r2
r3
r4
r5
swap
w00
w01
w02
w03
w04
w05
w06
w07
w08
w09
w10
w11
w12
w13
w14

Figure 2.11: Gantt chart of critical path using heuristic setting II

32 References

2.6 Conclusions

Generalized job shop scheduling can form a basis for scheduling in complex machines.
However, to account for choices with respect to tasks, extension of the job shop schedul-
ing model is necessary. The scheduling problem in complex manufacturing machines is
formally defined in the context of the layered TRS framework presented in [11]. Further-
more, a constraint-guided heuristic search scheduling algorithm is described that imple-
ments the selecting and timing transformations in the layered framework. It is suited for
usage in the run-time environment of supervisory machine control as it features partial
dispatching and uses a compact data structure.

Defining manufacturing recipes using graphs is intuitive and offers great expressivity
concerning recipes, including the definition of alternatives with respect to tasks. The
approach is flexible for strongly recipe dependent products and covers the entire machine
(all tasks and resources, steady-state and transient behavior). Within the constraints
introduced and the available scheduling time, real-time optimization of machine behavior
is possible. The algorithm combines good behavior quality with little control overhead.
In extremely time-critical situations, partial schedules consist of only one task: no pre-
diction. In this case, the approach is similar to (current) state-based supervisory control
[13, 15]. However, these approaches are not flexible for handling multiple product types
at the same time. The applicability of the instantiated, unselected TRS and the possible
behavior improvement is illustrated using an example from a wafer scanner. Results show
that the definition elements allow intuitive modelling of the scheduling alternatives and
that the scheduling algorithm allows for effective machine behavior optimization.

The following open issues remain. Unlike in a job shop, the restricted physical space
in a complex manufacturing machine imposes additional requirements on valid schedules,
e.g. to overcome overloading of resources or interference of resources. Such additional
selection constraints implied by machine specific issues must be added [11]. Moreover, it
must be verified that no deadlocks or other invalid behavior can be implied by the applied
heuristic filters. Finally, the instantiation functionality (C) is to be developed to be able
to react on triggers like manufacturing orders and exceptions by instantiating unselected
TRS definitions. These open issues are subject of current research.

Acknowledgments

The authors would like to acknowledge Cor Hurkens for his valuable comments and Roel
Boumen and Maarten van Bree for their help with the case.

References

[1] ASML, 2004. Information on wafer scanners available through URL
http://www.asml.com/, item: products - lithography.

[2] B. A. Brandin and W. M. Wonham. Supervisory control of timed discrete-event
systems. IEEE Transactions on Automatic Control, 39(2):329–341, 1994.

[3] S. Gaubert and J. Mairesse. Task resource models and (max,+) automata. In
J. Gunawardena, editor, Idempotency, pages 131–144. Cambridge University Press,
Cambridge, UK, 1998.

References 33

[4] S. Gaubert and J. Mairesse. Modeling and analysis of timed Petri nets using heaps
of pieces. IEEE Transactions on Automatic Control, 44(4):683–697, 1999.

[5] P. Gohari and W. M. Wonham. Reduced supervisors for timed discrete-event sys-
tems. IEEE Transactions on Automatic Control, 48(7):1187–1198, 2003.

[6] D. Jevtic. Method and apparatus for automatically generating schedules for wafer
processing within a multichamber semiconductor wafer processing tool, 1997. Patent
no. US 6,201,999.

[7] J. Kim, T. Lee, H. Lee, and D. Park. Scheduling analysis of time-constrained
dual-armed cluster tools. IEEE Transactions on Semiconductor Manufacturing,
16(3):521–534, 2002.

[8] S. Kumar, N. Ramanan, and C. Sriskandarajah. Robotic system control, 2003.
Patent no. US 6,556,893.

[9] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. The Trav-
eling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley-
Interscience, Chichester, 1985.

[10] H. Marchand, O. Boivineau, and S. Lafortune. On the synthesis of optimal schedulers
in discrete-event control problems with multiple goals. SIAM Journal on Control
Optimization, 39(2):512–532, 2000.

[11] N. J. M. van den Nieuwelaar, J. M. van de Mortel-Fronczak, and J. E. Rooda. Design
of supervisory machine control. In K. Glover and J. Maciejowski, editors, Proceedings
of the European Control Conference 2003, 2003. CD-ROM.

[12] M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Prentice Hall, 1995.

[13] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event
processes. SIAM Journal on Control and Optimization, 25(1):206–230, 1987.

[14] S. Rostami and B. Hamidzadeh. Optimal scheduling techniques for cluster tools with
process-module and transport-module residency contraints. IEEE Transactions on
Semiconductor Manufacturing, 15(3):341–349, 2002.

[15] Y. Shin, T. Lee, J. Kim, and H. Lee. Modeling and implementing a real-time sched-
uler for dual-armed cluster tools. Computers in Industry, (45):13–27, 2001.

[16] S. F. Smith. Is scheduling a solved problem? In G. Kendall, E. Burke, and S. Petro-
vic, editors, Multidisciplinary International Conference on Scheduling : Theory and
Applications(MISTA’03), pages 11–20. ASAP, University of Nottingham, UK, Au-
gust 2003.

[17] G. E. Vieira, J. W. Herrmann, and E. Lin. Rescheduling manufacturing systems:
a framework of strategies, policies and methods. Journal of scheduling, 6(1):35–58,
2003.

[18] G. X. Viennot. Heaps of Pieces, I: Basic definitions and combinatorial lemmas.
In G. Labelle and P. Leroux, editors, Combinatoire Enumerative, pages 321–350.
Springer, New York, 1986.

34 References

[19] M. Wennink. Algorithmic Support for Automated Planning Boards. PhD thesis,
Eindhoven University of Technology, The Netherlands, 1995.

CHAPTER

THREE

MACHINE-SPECIFIC SCHEDULING

CONSTRAINTS

This chapter contains the paper Predictive Scheduling in Complex Manufacturing Ma-
chines: Machine-Specific Scheduling Constraints that has been protected in patent appli-
cation ASML ref. P-1784. First filing was in the US at Dec 23, 2003, number 10/743,320.
The paper was submitted to IEEE Transactions on Semiconductor Manufacturing in
February 2004.

35

36 Chapter 3. Machine-specific scheduling constraints

Predictive scheduling in complex manufacturing

machines: machine-specific constraints

N.J.M. van den Nieuwelaar †*, J.M. van de Mortel-Fronczak †,
N.C.W.M. Braspenning †, J.E. Rooda †

Abstract

Supervisory control of a complex manufacturing machine - which involves co-
ordination of many mechatronic systems - requires proper scheduling. Supervisory
control must be flexible to concurrently process a mix of different product types
each requiring heavily recipe-dependent manufacturing tasks, without introduc-
ing unnecessary control overhead. This chapter extends the generalized job shop
scheduling model for the restrictions on the physical space inside complex manufac-
turing machines. To formally describe the scheduling process that transforms the
model into a certain behavior, the transformation is split into two phases: select-
ing and timing, according to a layered task resource system framework. Selecting
involves selection of which tasks to do in which order by which resource, whereas
timing involves assignment of start and finish times to tasks. First, selecting con-
straints are introduced that ensure physically feasible behavior concerning the ma-
terial involved in the manufacturing process: material flow integrity, material flow
feasibility, and material capacity feasibility. To minimize scheduling overhead, it
must be possible to dispatch a partial schedule. To avoid any invalid behavior such
as deadlocks, additional selecting constraints are introduced. Furthermore, timing
constraints are introduced to ensure feasible behavior concerning resource interfer-
ence. Throughout the chapter, the approach is illustrated using a wafer scanner
example.

3.1 Introduction

The purpose of a manufacturing machine is to make products, which requires physical
manufacturing processes to be carried out. To actually do the work, mechatronic sys-
tems in the machine must be deployed. Control in the separate mechatronic systems is
referred to as low-level control and is not considered in this chapter. In complex manu-
facturing machines, many options exist to deploy the available resources to perform tasks
that lead to the desired manufacturing purpose, resulting in various machine behaviors.
Supervisory Machine Control (SMC) is responsible for deciding when to do which tasks
using which resources. There are three important complicating requirements for SMC
of complex manufacturing machines. First of all, the manufacturing tasks are heavily
product recipe dependent, for which SMC must be flexible. Furthermore, it must be
able to handle a stream of mixed product types, which are being processed concurrently.
Finally, no unnecessary control overhead may be introduced.

† Eindhoven University of Technology: P.O. box 513, 5600 MB Eindhoven, The Netherlands.
* ASML: De Run 6501, 5504 DR Veldhoven, The Netherlands.
Corresponding author: N.J.M. van den Nieuwelaar, e-mail: n.j.m.v.d.nieuwelaar@tue.nl

3.1. Introduction 37

3.1.1 Literature

Many approaches exist to describe a system under supervisory control using well-known
formalisms from computer science. Supervisory control theory as discussed by Wonham
et al. [2, 3, 11] models the system under control using Finite State Machines. The possible
behavior of such a system is regarded as a language. A supervisory controller in the form
of a deterministic automaton is synthesized that restricts the language by disabling a
subset of events, to control the system to properly accomplish its task. Supervisors must
be modelled specifically for the task to be accomplished, and therefore are not flexible
for handling different recipes.

Literature on performance analysis and supervisory control of complex manufacturing
machines that can handle different recipes [5, 12, 13] encapsulates models of the tasks to
be done for different recipes, which can be associated with scheduling theory. However,
in this work only part of the total problem is analyzed. Some of the work is restricted to
steady state behavior. As in complex manufacturing machines the time spent for transient
behavior (e.g. while switching product types) is of the same order of magnitude as steady-
state behavior, it is of importance not to focus on steady-state behavior only. Other work
is restricted with respect to other areas, for example a single resource [6] or a subset of
tasks [4], whereas SMC is responsible for control of the entire machine. Moreover, the
dynamic and real-time circumstances that SMC must operate in should get sufficient
attention, which is often underexposed in scheduling literature [14]. To properly address
the recipe-dependent tasks to be done, an approach based on a well-known scheduling
problem is proposed in this chapter, as is also done in [7].

3.1.2 Layered task resource system framework

From a SMC point of view, a machine can be considered as a task resource system
(TRS). Tasks can be associated with manufacturing processes, whereas resources can
be associated with mechatronic systems. Transforming a manufacturing request into
machine behavior can be structured in three phases. First, a scheduling problem must
be instantiated from the manufacturing request, taking into account the limitations of
the machine. This transformation is called instantiating. The structure of the resulting
scheduling problem shows many similarities with the job shop scheduling problem [10].
The manufacturing process of a material instance can be associated with a job, whereas
the different parallel mechatronic systems can be associated with the different machines
in a job shop. Subsequently, resources must be assigned to the tasks in the instantiated
scheduling problem in some order, taking into account the fact that resources are able to
perform certain tasks only, and only one at a time. This transformation is called selecting.
The selected order of tasks to be performed by selected resources implies consecutive state
transitions of those resources, which is analogous to the setup times for mode switching
in job shop scheduling. Finally, start and finish times can be assigned to the tasks, taking
into account the speed of the resources. This transformation is called timing.

During the three transformation phases of instantiating, selecting and timing, choices
must be made. The result of a choice in a certain transformation on the machine behavior
can only be evaluated by performing the consecutive transformations. Therefore, a trans-
formation phase strongly relies on information from subsequent phases. The layered TRS
framework shown in Fig. 3.1 displays the hierarchically related transformation phases as
functionality layers (A through C) and the different TRS definition levels (0 through 3)
as interfaces between the layers (see Chapter 1 and [9]).

38 Chapter 3. Machine-specific scheduling constraints

Instantiating

Selecting

Timing

3:

C:

1:

0:

ro

om
 fo

r c
ho

ic
es

timed

selected
 untimed

A:

2:

B:

instantiated
 unselected

constraints
 for
 TRS

TRS

TRS

TRS

Figure 3.1: Layered Task Resource System framework

3.1.3 Predictive scheduling in Supervisory Machine Control

This chapter discusses predictive scheduling [15] in SMC based on task-resource system
definitions. Scheduling can be associated with transforming a TRS definition of level 2
into a TRS definition of level 0, involving the layers A and B shown in Fig. 3.1. Several
motivations exist for predictive scheduling in SMC of complex machines. First, making
choices run-time enables optimized machine behavior for different products and users.
Several optimization approaches can be applied: heuristics can be used for guidance
and several schedules can be generated in several ways to do ‘what-if’ analysis. Second,
the TRS definitions used are suited for design-time analysis and any error-prone gap
between the design and the implementation is minimized as run-time execution is based
on the same model. Finally, predictive scheduling is flexible, which eases adaptation to
the evolution of machine configurations or machine operation philosophies. A potential
drawback of predictive scheduling is control overhead, which slows down the machine.
To minimize this effect, a constructive scheduling algorithm can be applied that allows
for partial schedule dispatching. In any case, the schedules generated should be feasible
and valid - which means that the machine should be able to carry out the schedule as
scheduled, and that invalid behavior (such as deadlock) should be avoided.

3.1.4 Job shop scheduling

Although the scheduling problem in machines shows many similarities with the gener-
alized job shop scheduling problem, there are some important differences. The most
important difference is the restrictions on physical space. Whereas a job shop has plenty
of room to store material and resources do not interfere with each other, this is not the
case in a complex machine. Moreover, material transport time in a job shop is much less
than processing time. Therefore, a job shop scheduling problem does not have a notion of
material, and neglects material transport. The purpose of this chapter is to address the
consequences of the tight physical space in a machine for the scheduling problem, as well
as for a constructive scheduling algorithm. The problem definition is based on the job
shop scheduling problem, and follows the framework shown in Fig. 3.1. To avoid infeasi-
ble machine behavior with respect to material, the notion of material and the constraints
concerning material (which affect selecting, see B in Fig. 3.1) are introduced. Further-
more, constraints to avoid resource interference are introduced, which affect timing (see A
in Fig. 3.1). This chapter also addresses how to avoid deadlocks during selecting to enable
partial schedule dispatching.

3.2. Scheduling in a dual-stage wafer scanner 39

3.1.5 Structure of the chapter

The structure of this chapter is as follows. Throughout the chapter, an example of a
complex machine is used for illustration purposes: a dual-stage wafer scanner [1]. Other
examples of complex manufacturing machines in the semiconductor industry are cluster
tools and tracks. In Section 3.2, the wafer scanner example is described and from this a
generalized job shop scheduling problem is instantiated. The machine-specific issues that
do not map onto the job shop scheduling problem are pointed out. Section 3.3 describes
the additional TRS definition level 2 elements and selecting constraints concerned with
the notion of material and ensuring feasible machine behavior.

Furthermore, avoidance of invalid machine behavior such as deadlocks using additional
selecting constraints is discussed. Section 3.4 discusses the additional TRS definition ele-
ments and timing constraints concerning resource interference. Both Sections 3.3 and 3.4
end with a constructive scheduling algorithm implementing the machine-specific schedul-
ing constraints. In Section 3.5, the additional elements are instantiated for the example
and a resulting schedule that indeed satisfies the machine-specific constraints is presented.
Finally, concluding remarks are presented in Section 3.6.

3.2 Scheduling in a dual-stage wafer scanner

3.2.1 A dual-stage wafer scanner

The primary manufacturing process of a wafer scanner is the exposure of a mask con-
taining an IC pattern onto wafers. A neighboring machine named ‘track’ performs some
pre-processing and post-processing steps. As the required accuracy of the exposure pro-
cess is very high, any imperfections concerning the wafers must be corrected for. To be
able to do this, wafers are measured before being exposed. Both the measuring step and
the exposure step take place at a wafer stage. The orientation of the wafer at a wafer
stage is of importance for successful measurement and exposure, whereas the orientation
is unknown when a wafer comes into the machine. Therefore, an alignment system is
incorporated. Furthermore, the wafer scanner under consideration uses Extreme Ultra
Violet light for exposure. As this light is absorbed by air, exposure must take place in
a vacuum, whereas the machine is at atmospheric pressure. To bring the wafers from
atmospheric pressure down to a vacuum, a load lock is incorporated. To transport the
wafers between the different subsystems, a robot is used. A schematic layout of the wafer
scanner is shown in Fig. 3.2. In this figure, circles depict the parallel mechatronic systems
considered, and arrows depict the possible transport paths. Each mechatronic system can
carry only one wafer, which is depicted between brackets. The tight layout of the machine
makes it possible for the robots to collide if they both move from or to a lock, which is
depicted by the double-dashed area. The wafer scanner is a dual-stage wafer scanner with
a separate measure and expose area. In the measurement area, wafers can be loaded onto
and unloaded from a stage at their load and unload positions, respectively. In general,
resources can have an infinite number of states, for instance the coordinates of the wafer
stages. For the purpose of this chapter, each resource can reach a limited number of
states. The Finite State Machines (or automata) of the different mechatronic systems
are shown in Fig. 3.3. In this figure, an extra circle denotes the initial state, and transi-
tions are labelled with a time duration and possibly a task name, which will be explained
later. The wafer stages, resources S0 and S1, can be in three states, corresponding with

40 Chapter 3. Machine-specific scheduling constraints

� �
C1

C0
R0

A0

R1

A1

L0

L1

T

wafer scanner

Figure 3.2: Schematic layout of a dual-stage wafer scanner

three locations: at the load or measure area (@lm), at the expose area (@e), or at the
unload area (@u). Switching between areas of the stages must be done synchronously to
avoid collision of the wafer stages: this is known as chuck swap. The dashed connections
between the diagrams of the two stages depict this synchronism. The locks, resources
L0 and L1, can be either at atmospheric pressure(atm) or at vacuum (vac). The track,
resource T0, can be in three states: ‘ready to send’, ‘ready to receive’, and ‘received a
wafer’. The robots, resources R0 and R1, have three main states, corresponding with
three locations: at the lock (@l), at the stage (@s), or at the alignment unit (@a). The
states @ca and @cs model the limits of the collision-hazardous area. The manufacturing
scenario used in this chapter concerns a typical batch (lot) of 15 wafers.

3.2.2 Job Shop Scheduling

In this subsection, job shop scheduling starting from an instantiated, unselected TRS
definition (level 2 in Fig. 3.1) is formally defined. First, the instantiated, unselected
TRS definition of a job shop scheduling problem is described, which subsequently is
extended following generalized job shop scheduling. After that, the selected, untimed
TRS definition is described, and the constraints to be taken into account when selecting
from the alternatives defined in definition level 2 to reach definition level 1. Finally,
the timed TRS definition (level 1) and the constraints concerning transformation A are
summarized.

A job shop scheduling model can be defined by a 6-tuple in terms of tasks and resources
(T2,R, I2,P2, Sb2, Se2) in which:

• T2 is a finite set of elements called tasks.

• R is a finite set of elements called resources.

• I2: T2 → R gives the resource that is involved in a certain task.

• P2 ⊆ T2×T 2 is the precedence relation between tasks.

• Sb2, Se2 : TR → S give the begin and the end (physical) state of the resource
involved in a certain task, where TR = {(t, r)|t ∈ T2, r ∈ I2(t)}.

Note that, by convention, the definition level is added to each element in subscript.
Elements that are not level-specific have no suffix.

3.2. Scheduling in a dual-stage wafer scanner 41

@e
@e

@lm

@lm

@u

@u

MEA

MEA

EXP
 EXP

R2S

R2S

S2R

S2R

Resource S0
 Resource S1

+ 1 [s]

+ 0.5 [s]

+ 1 [s]

+ 0.5 [s]

atm
 vac

T2L

Resource L0, L1

L2T
 L2R

R2L

+ 20 [s]

+ 10 [s]

Resource T0

ready

to

send

received

a

wafer

ready

to

receive

L2T

T2L

+ 5 [s]

+ 0 [s]

+ 5 [s]

@l

@ca

@cs

Resource R0, R1

@a

@s

L2R

R2L

R2A

A2R

R2S

S2R

Resource A0, A1

idle

R2A

A2R

AL

+ 0.5 [s]

+ 0.5 [s]

+ 0.5 [s]

+ 0.5 [s]

+ 0.5 [s]

+ 0.5 [s]

+ 0.5 [s]

+ 0.5 [s]

+ 1 [s]
 + 1 [s]

+ 10 [s]

+ 10 [s]

+ 25 [s]
+ 25 [s]

+ 1 [s]

+ 1 [s]

+ 1 [s]

+ 1 [s]

+ 1 [s]

+ 1 [s]
+ 1 [s]

+ 1 [s]

+ 1 [s]

+ 1 [s]

+ 1 [s]

+ 1 [s]

+ 1 [s]

+ 1 [s]

+ 1 [s]

+ 1 [s]

+ 5 [s]

+ 1 [s]

+ 1 [s]

Figure 3.3: Resource automata

In the sequel, several constraints are defined and labeled according to the following
convention. Each constraint label starts with a C- followed by the transformation layer
identifier (A, B, C) or definition level identifier (0, 1, 2, 3) and subsequently by a letter
(a, b, ...).

The constraint that must be satisfied for the instances of the definition elements is as
follows:

C-2a P2 contains no cycles.

However, like in the wafer scanner example, in a complex machine multiple resources
can exist which all are capable of the same work. Furthermore, some tasks involve
synchronous transitions of multiple resources, e.g. a scan. As this can also be the case
in job shops, the job shop scheduling problem has been generalized to incorporate these
features [16].

42 Chapter 3. Machine-specific scheduling constraints

A generalized job shop scheduling problem can be defined by an 8–tuple
(T2,R, C, I2,A,P2, Sb2, Se2):

• T2 is a finite set of elements called tasks.

• R is a finite set of elements called resources.

• C is a finite set of elements called capabilities.

• I2: T2 → P(C) gives the set of capabilities that are involved in a certain task.

• A: C → P(R) gives the set of resources that are available for a certain capability.

• P2 ⊆ T2×T 2 is the precedence relation between tasks.

• Sb2, Se2 : TC → S give the begin and the end (physical) state of each capability
involved in a certain task, where TC = {(t, c)|t ∈ T2, c ∈ I2(t)}.

Constraint C-2a remains.

The selecting transformation (B) assigns resources to tasks, and determines the order
in which tasks are executed for each resource. By this transformation, an unselected
TRS is transformed into a selected, untimed TRS, which can be defined by a 6-tuple
(T1,R, I1,P1, Sb1, Se1):

• T1 is a finite set of elements called tasks.

• R is a finite set of elements called resources.

• I1: T1 → P(R) gives the set of resources that are involved in a certain task.

• P1 ⊆ T1×T 1 is the precedence relation between tasks.

• Sb1, Se1 : TR → S give the begin and the end (physical) state of the resource
involved in a certain task, where TR = {(t, r)|t ∈ T1, r ∈ I1(t)}.

Constraints that have to be satisfied for the instances of the definition elements are
as follows:

C-1a The sequence of tasks per resource is a chain.

Constraints that have to be satisfied for the selecting transformation can be formulated
as follows:

C-Ba The sequence of selected tasks per resource is a chain (equals C-1a).

C-Bb For each selected task, an available resource must be selected for each involved
capability:
(∀t, r, c : t ∈ T1, r ∈ I1(t), c ∈ I2(t) : r ∈ A(c))

The begin and end state definition is obtained from the capability of the selected
resource.

By the timing transformation (A), a selected, untimed TRS is transformed into a
timed TRS, which can be defined by a 5-tuple (T0,R, I0, τS0

, τF0
):

• T0 is a finite set of elements called tasks.

• R is a finite set of elements called resources.

3.2. Scheduling in a dual-stage wafer scanner 43

• I0: T0 → P(R) is the set of resources that are involved in a certain task.

• τS0
, τF0

: T0 → R+ are the start time and the finish time of a certain task, which
implies that all resources assigned to a task t are occupied for the same time span.

Furthermore, note that a timed TRS can be visualized as a Gantt chart.
The constraint that has to be satisfied for the instances of the definition elements is

as follows:

C-0a Per resource there is a chronological sequence of pairs of task start and task finish
times.

Constraints that have to be satisfied for the timing transformation are as follows:

C-Aa Nothing changes with respect to tasks and the (involved) resources: T0 = T1, I0 = I1

C-Ab By convention, time starts at 0. Furthermore, the finish time of a task equals its
start time plus its duration:
(∀t : t ∈ T1 : τS0

(t) ≥ 0 ∧ τF0
(t) = τS0

(t) + τt0(t))

C-Ac For consecutive tasks, it holds that the start time of the succeeding task is at least
the finish time of the preceding task:
(∀t, t′ : (t, t′) ∈ P1 : τS0

(t′) ≥ τF0
(t))

C-Ad To match the states of consecutive tasks on the same resource, state transitions of
the resource might be necessary. In these cases it holds that the start time of the
succeeding task is at least the finish time of the preceding task plus the duration of
the resource state transition between the tasks:
(∀t, t′, r : (t, t′) ∈ P ′

1, r ∈ I1(t) ∩ I1(t
′) : τS0

(t′) ≥ τF0
(t) + τr0

(r, Se1(t, r), Sb1(t
′, r)))

where:

• P ′

1 ⊆ P1 is the union of all resource task chains.

• τt0 : T1 → R+ gives the duration of a certain task, taking into account the behavioral
restrictions imposed by the task as well as the resources involved with the task.

• τr0
: R× S × S → R+ gives the duration of a resource state transition from some

state to another state, taking into account the behavioral restrictions imposed by
the resource.

For further information on τt0 and τr0
see [9].

3.2.3 Instantiating the dual-stage wafer scanner scheduling problem

The mapping of the wafer scanner scheduling problem described earlier onto the definition
of a generalized job shop scheduling problem can be split into two sections: system-
dependent elements and work-dependent elements. The system-dependent elements can
be defined as follows:

• There are five capabilities: stage, robot, alignment unit, lock and track:
C = {S, R, A, L, T}.

• There are nine resources: stage0, stage1, robot0, robot1, aligner0, aligner1, lock0,
lock1, track0:
R = {S0, S1, R0, R1, A0, A1, L0, L1, T0}.

44 Chapter 3. Machine-specific scheduling constraints

T2L
 PD
 L2R
 RLA
 R2A
 AL
 A2R
 RAS
 R2S
 MEA
 SW
 EXP
 SW
 S2R
 RSL
 PU
 L2T
R2L

Figure 3.4: Steps in the manufacturing process of a wafer

T2L
 L2R
 R2A
 AL
 A2R
 R2S
 MEA
 EXP
 S2R
 R2L
 L2T

Figure 3.5: Life of a wafer

• The available resources for each capability are defined as follows:
A = {(S, {S0, S1}), (R, {R0, R1}), (A, {A0, A1}), (L, {L0, L1}), (T, {T0})}.

To define the work-dependent elements, the steps in the manufacturing process of
a wafer are analyzed. First, a wafer is transported from the track into a lock (T2L).
Subsequently, the pressure is pumped down (PD), and the wafer is transported onto the
robot (L2R). The robot rotates from the lock to the alignment unit (RLA), places the
wafer onto the alignment unit (R2A), and the alignment takes place (AL). After that, the
robot takes the wafer from the alignment unit (A2R), rotates to the stage (RAS), and
places the wafer onto the stage (R2S). On the stage, measurement takes place (MEA), and
after stage swap (SW) the wafer is exposed (EXP). Then, the stage swaps to the unload
position in the measure area (SW) where the robot takes the wafer from the stage (S2R).
The robot rotates to the lock (RSL), and puts the wafer in the lock (R2L). Finally, the
lock pumps up the pressure (PU) and the wafer is taken from the lock by the track (L2T).
The steps in the manufacturing process of a wafer can be defined by T2 and P2, and can
graphically be displayed by a graph, as is shown in Fig. 3.4. A first attempt to define the
task graph for the entire batch could be to define 15 of these identical sequences.

However, when looking more closely at the steps, it appears that some of the steps
in Fig. 3.4 may be necessary besides the steps for each wafer. For example, if a lock
subsequently has to pump down two wafers, it must pump up in between the two pump
down steps. The same is true for the rotate steps and the stage swap. In job shop
scheduling, such steps are called setups, which implies that they are a consequence of the
sequence of regular tasks using the same resource. Depending on the selected sequence of
tasks using the same resource, such steps may or may not be required. More specifically:
if for some resource the end state of a preceding task does not match the begin state of a
consecutive task, a state transition is inserted to bridge this gap. This implies that such
state transitions can be left out of the task sequence or ‘life of’ a wafer, as is shown in
Fig. 3.5.

For one wafer, for example wafer W1, the work-dependent elements can be instantiated
as follows:

• T2 = {W1-T2L, W1-L2R, . . . }.

• P2 = {(W1-T2L, W1-L2R), (W1-L2R, W1-R2A), . . . }.

• I2 = {(W1-T2L, {T, L}), (W1-L2R, {L, R}), (W1-R2A, {R, A}), . . . }.

• Sb2 = {((W1-T2L, T), ready to send), ((W1-T2L, L), atm), ((W1-L2R, L), vac),
((W1-L2R, R), @l), ((W1-R2A, R), @a), ((W1-R2A, A), idle), ((W1-AL, A), idle),
. . . }.

• Se2 = {((W1-T2L, T), ready to receive), ((W1-T2L, L), atm), . . . }.

3.3. Selecting resource assignment and task order 45

Note that by convention, state names are shown in lower case whereas task names are
in upper case and start with the associated material instance id.

Although the generalized job shop scheduling definition described above forms a good
basis for the scheduling problem in a complex machine, some essential constraints are
missing to avoid infeasible schedules. Some of them have to do with material logistics.
For instance, whereas material transport is feasible from the track to any of the lock
resources of the lock capability, this is not the case from any lock to any robot: logistic
flow feasibility. Moreover if, for instance, a wafer is transported into one of the locks it
must be assured that it is taken from the same lock: logistic flow integrity. Furthermore,
it must be assured that not too many wafers are in one of the locks at the same time as
physical room does not allow for that: material capacity feasibility.

Also resource interference causes additional constraints. Unlike in job shop scheduling,
a resource state transition may be constrained to be executed synchronously with other
resource state transitions only, for instance the stage swap. On the other hand, multiple
state transitions may be constrained to be executed one at a time as they involve visiting
the same hazardous area, for instance robot rotations in front of the locks. Both these
complications may be appropriate for part of a transition only, for instance the robot
rotation from state @a to state @l visits the hazardous area between the intermediate
state @ca and state @l only. Therefore, a possibly compound state transition must be
decomposed into elementary state transitions. The same holds for the state transition of
a wafer stage from @e to @lm, which must go via state @u.

Finally, the required nanometer accuracy imposes constraints in the form of time
windows. As the wafer is conditioned on the alignment unit and the stage (but not
between them), the time interval should not be no longer than necessary. This means
that tasks A2R and R2S should preferably be executed without delay. Furthermore, the
time between exposure and transport to the track (Post Exposure Bake time) should
be as constant as possible, to achieve good imaging uniformity. Other examples of time
windows can be found in [5].

3.3 Selecting resource assignment and task order

In the first subsection below, additional machine-specific constraints are introduced to
avoid infeasible selections. In the second subsection, the constraints to be taken into
account in a constructive selecting algorithm are described.

3.3.1 Machine-specific scheduling constraints

In the previous section, three machine-specific logistic integrity constraints involving ma-
terial were introduced: logistic flow feasibility, logistic flow integrity and material capacity
feasibility. An attempt to ensure material capacity feasibility for a job shop scheduling
problem could be to instantiate resources for each storage location. Furthermore, storage
location occupation tasks could be introduced that start as soon as a material is trans-
ported onto the resource associated with the storage location, and end when the material
is transported off it again. However, as choices with respect to resource assignment also
play a role in complex manufacturing machines, this attempt does not succeed in this
case. The question remains how to make sure that the logistic flow is feasible, such that
material can be transported from L0 to R0 but not to R1, or how to preserve logistic

46 Chapter 3. Machine-specific scheduling constraints

flow integrity such that if material is transported from T0 into L0, it is transported from
the same L0 and not from L1 to R0 afterwards.

The notion of material is added to TRS definition level 2 to describe the logistic
integrity restrictions in an intuitive way.

The following five elements are added to the unselected TRS definition D2:

• M is a finite set whose elements are called material instances.

• Cb2, Ce2: TC → P(M) give the begin and the end material configuration of each
capability involved in a certain task, where TC = {(t, c)|t ∈ T2, c ∈ I2(t)}

• Rm: R → N gives the number of material instances that can reside on a certain
resource.

• Mf⊆ R → R represents the physically possible material flow as a set of tuples
defining from which resource to which resource material can flow.

Additional constraints that have to be satisfied concerning D2:

C-2b It is assumed that the subsets of material instances involved in a task remain the
same from the begin to the end of a task:
(∀t : t ∈ T2 : {Cb2(t, c)|c ∈I2(t)} = {Ce2(t, c)|c ∈ I2(t)})

This constraint implies that only closed systems are considered, which means that
material does not enter or leave the system.

Let P2m: D2 ×M → P(T2×T 2) be a function describing for each material m ∈ M
in a TRS definition D2 ∈ D2, a precedence relation between related tasks (the material
‘life’) without redundant edges and with matching capabilities:

P2m(D2,m) = {(t, t′)
| (t, t′) ∈ P2

∧{c|c ∈ I2(t),m ∈ Ce2(t, c)} = {c|c ∈ I2(t),m ∈ Cb2(t
′, c)}

∧¬redundant(t, t′, P2)
}

(3.1)

Above, function redundant: T2×T 2×P(T2×T 2) → B determines whether a precedence
edge (t, t′) is redundant in a precedence relation P:

redundant(t, t′, P) = (∃t′′ : t′′ ∈ T2, t
′′ 6= t, t′′ 6= t′ : path(t, t′′, P) ∧ path(t′′, t′, P)) (3.2)

Here, function path: T2 × T2 × P(T2×T 2) → B determines whether there is a path
between two tasks t and t′ in a precedence relation P:

path(t, t′, P) =

{

true if t = t′

(∃t′′ : (t, t′′) ∈ P : path(t′′, t′, P)) if t 6= t′
(3.3)

The additional constraints that have to be satisfied to ensure logistic integrity for
transformation B from D2 into D1 are as follows.

3.3. Selecting resource assignment and task order 47

C-Bc Logistic flow integrity: the resources involved in life of material instance m ∈ M in
a TRS definition D2 ∈ D2 are matching:

(∀t, t′ : (t, t′) ∈ P2m(D2,m)
: I1(t) ∩ {r|r ∈ A(c), c ∈ I2(t),m ∈ Ce2(t, c)}
= I1(t

′) ∩ {r|r ∈ A(c), c ∈ I2(t),m ∈ Cb2(t
′, c)}

)

(3.4)

C-Bd Logistic flow feasibility: the combination of involved resources in material transport
is physically possible:

(∀t,m, rb, re : t ∈ T1,m ∈ M, rb, re ∈ R
, {rb} = I1(t) ∩ {r|r ∈ A(c), c ∈ I2(t),m ∈ Cb2(t, c)}
, {re} = I1(t) ∩ {r|r ∈ A(c), c ∈ I2(t),m ∈ Ce2(t, c)}
: rb = re ∨ (rb, re) ∈ Mf

)

(3.5)

C-Be Material capacity feasibility: the material capacity of a resource is not exceeded.
To define this constraint, some additional functions must be introduced. Let P1r :
D1×R → P(T1×T 1) be a function describing for each resource r in a TRS definition
D1 ∈ D1 a linear precedence relation between related tasks, where linear means that
the related tasks form a chain:

P1r(D1, r) = {(t, t′)
| (t, t′) ∈ P1, I1(t) ∩ I1(t

′) 6= ∅,¬redundant(t, t′,P1)
}

(3.6)

Let tchainr: P(T1×T 1)→ T ∗

1 be a function that returns the task chain correspond-
ing with a linear precedence relation Pl.

tchainr(Pl) =

{

ε if Pl = ∅
[t] ++ tchainr(Pl\firstp(Pl)) if Pl 6= ∅ ∧ {(t, t′)} = firstp(Pl)

(3.7)

Above, a ++b denotes concatenation of sequence a and b, and function firstp:
P(T1×T 1)→ P(T1×T 1) determines the first precedence edge in a linear precedence
relation Pl:

firstp(Pl) = {(t, t′)|(t, t′) ∈ Pl, (@t′′ : t′′ ∈ T1 : (t′′, t) ∈ Pl)} (3.8)

Let Sm(r, s) be the material configuration of resource r after execution of task
sequence s. Before executing any task, the material configuration of a resource is
given and is defined as the initial material configuration: Sm(r, ε) =Sm−i(r). The
material configuration after execution of task sequence s++ [t] or st is defined as
follows:

Sm(r, st) = Sm(r, s)\Cb2(t, c) ∪ Ce2(t, c), (3.9)

where r ∈ A(c).

Then the material capacity constraint for a TRS definition D1 ∈ D1 can be defined
as follows:

(∀r, st : r ∈ R, t ∈ T1, st � tchainr(P1r(D1, r)) : |Sm(r, st)| ≤ Rm(r)) (3.10)

48 Chapter 3. Machine-specific scheduling constraints

�
�

S1

(1)

S0

(1)

R0

(1)

A0

(1)

R1

(1)

A1

(1)

L0

(1)

L1

(1)

T0

(X)

wafer scanner
track

Figure 3.6: Deadlock situation in the example case

3.3.2 A constructive selecting algorithm

To avoid invalid behavior during constructive schedule generation, additional constraints
are introduced that outline the valid extension of a selection.

WIP ceiling

To avoid deadlock, such as the situation displayed in Fig. 3.6, it is required to make sure
that the number of material instances residing on a subset of the resources Rc does not
exceed some number rc.

C-Bf Work In Progress ceiling. When considering a constructive scheduling algorithm,
a partial selection D1p ∈ D1 can only be extended with a task t′ and related defi-
nition elements to form an extended partial selection D′

1p ∈ D1 if no WIP ceiling
constraints are violated for the extended partial selection.

Let WIPceil ⊆ P(R)× N be the set of applicable combinations of Rc and nc as
described earlier. Then the additional constraint is defined as follows:

(∀Rc, nc : (Rc, nc) ∈ WIPceil : (Σr : r ∈ Rc : |Sm(r, tchainr(P1r(D
′

1p, r)))|) ≤ nc)
(3.11)

Tied precedences

In many cases, material transport is performed by resources that can contain only one
material instance (one-lane logistic path). This means that the only possible next trans-
port task for such a resource is to transport the material instance further. However, when
a constructive scheduling algorithm is applied this can lead to deadlock. An example of
this is illustrated in Fig. 3.7. To avoid such deadlock situations, the scheduling algorithm
has to look some tasks further in life of this material instance than the next task only.

To describe these situations, the concept of tied precedences Pt2 ⊆ P2 is introduced.
This implies that the subsequent transport tasks of a certain material instance that have
to be executed without interrupting one another are connected by tied precedences. A
tie is defined as a chain of tasks that are connected by tied precedences. An open tie is
defined as a tie of which at least one - but not all - tasks are selected.

3.3. Selecting resource assignment and task order 49

�
�

S1

(1)

S0

(1)

R0

(1)

A0

(1)

R1

(1)

A1

(1)

L0

(1)

L1

(1)

T0

(X)

wafer scanner
track

Figure 3.7: Another deadlock example in the example case

When considering a constructive scheduling algorithm, the additional constraint con-
cerning ties is as follows:

C-Bg Tied precedences. A partial selection D1p ∈ D1 can only be extended with a task
t′ from a tie to form an extended partial selection D ′

1p ∈ D1 if it is possible to
subsequently select an entire tie. If a partial selection contains an open tie, it can
only be extended with a tied task.

Below, the possible schedule extensions for a constructive scheduling algorithm are
formulated. Let T1p, I1p, P1p be the tasks, involved resources and precedence relation
of partial selection D1p. Let T1e, I1e, P1e be the task t′, involved resources with t′ and
precedence edges to t′ of selection extension D1e. Let T ′

1p, I ′

1p, P
′

1p be the tasks, involved
resources and precedence relation of extended partial selection D′

1p, which is equal to
T1p ∪ T1e, I1p ∪ I1e, P1p ∪ P1e.
Let function Et : (D2×D1) → P(T1) be a function that determines for a partial

selection D1p all eligible next tasks, considering the precedence relation.

Et(D2,D1p) = {t ∈ T2\T1p|(∀t
′ : (t ′, t) ∈ P2 : t ′ ∈ T1p)} (3.12)

Let function Ett : (D2×D1) → P(T1) be a function that determines for a partial selection
D1p all eligible tied next tasks, considering the tied precedence relation.

Ett(D2, D1p) = {t′|t′ ∈ Et(D2, D1p), (∃t : t ∈ T1p : (t, t′) ∈ P2t)} (3.13)

Let function Er : (D2×T 1) → P(R) be a function that determines for an eligible task t all
eligible sets of involved resources, considering the available resources for the capabilities
involved.

Er(D2, t) = {rr ⊆ R |(∀r , c : r ∈ rr , c ∈ I2(t) : r ∈ A(c))} (3.14)

Let functions checkC−Ba through checkC−Bc : D2×D1×T 1×P(R) → B be functions
that check whether or not for a next task t′ and involved resources rr′ constraints C-Ba
through C-Bc are satisfied.

checkC−Ba(D2,D1p, t
′, rr′) = (∀t : t ∈ T1p ∧ (t, t′) ∈ P2m(m)

: I1(t) ∩ {r|r ∈ A(c), c ∈ I2(t),m ∈ Ce2(t, c)}
= rr ′ ∩ {r|r ∈ A(c), c ∈ I2(t),m ∈ Cb2(t

′, c)}
)

(3.15)

50 Chapter 3. Machine-specific scheduling constraints

checkC−Bb(D2,D1p, t
′, rr′) =

(∀m, rb, re : m ∈ M2 ∧ rb, re ∈ R1

, {rb} = rr ′ ∩ {r|r ∈ A(c), c ∈ I2(t),m ∈ Cb2((t, c))}
, {re} = rr ′ ∩ {r|r ∈ A(c), c ∈ I2(t),m ∈ Ce2((t, c))}
: rb = re ∨ (rb, re) ∈ Mf

)

(3.16)

checkC−Bc(D2,D1p, t
′, rr′) = (∀r : r ∈ rr′ : |Sm(r, tchainr(P1r(D1p, r)) ++[t′])| ≤ Rm(r))

(3.17)
Let function checkC−Bd : D2×D1×T 1×P(R)×P(P(R)× N) → B be a function that
checks whether or not for a next task t′ and involved resources rr′ constraint C-Bd is
satisfied.

checkC−Bd(D2,D1p,t
′, rr′,WIPceil) =

(∀Rc, nc : (Rc, nc) ∈ WIPceil : (Σr : r′ ∈ Rc ∩ rr′ : |Sm(r, tchainr(D1p, r) ++[t′])|) ≤ nc)
(3.18)

Let E : (D2×D1) → P(T1×P(R)×P(T1×T 1)) be the function that, given an unse-
lected TRS definition, returns all possible extensions e with which partial schedule D1p

can be extended to form an extended partial schedule D ′

1p. Such an extension e is in the
form of task t′, involved resources rr′ and precedences pr′. The extension definition D1e

can be determined from e by taking the first element from it, e.0, for T1e, the first and
second element, (e.0, e.1), for I1e, and the third element, e.2, for P1e. Then, function E
can be defined as follows:

E (D2,D1p) =
{(t′, rr′, V)
|V = {(t, t′)|(t, t′) ∈ P2

∨((I1p(t) ∩ rr′ 6= ∅) ∧ (@t′′ ∈ T1t : I1p(t) ∩ I1p(t
′′) 6= ∅ ∧ (t, t′′) /∈ P1p))

}
, (Ett(D1p) = ∅ ⇒ t ′ ∈ Et(D2,D1p)) ∧ (Ett(D1p) 6= ∅ ⇒ t ′ ∈ Ett(D2,D1p))
, rr′ ∈ Er(D2, t

′)
, checkC−Ba(D2,D1p, t

′, rr′)
, checkC−Bb(D2,D1p, t

′, rr′)
, checkC−Bc(D2,D1p, t

′, rr′)
, checkC−Bd(D2,D1p,WIPceil ,t′, rr′)
, (∃D ′

1e : D ′

1e ∈ D1 : Ett(D
′

1p ∪ D ′

1e) = ∅)
}

(3.19)
In function E, both the constraints involved in generalized job shop scheduling, and the

additional machine-specific scheduling constraints C-Ba through C-Bg can be recognized.

3.4 Timing the selected tasks

In the first subsection below, additional machine-specific constraints are introduced to
avoid infeasible timing behavior. In the second subsection, the transformation function
is described.

3.4. Timing the selected tasks 51

3.4.1 Machine-specific timing constraints

To avoid resources interfering with one another, some additional definition elements are
introduced. Subsequently, constraints are defined using these additional elements. Fur-
thermore, the constraint that must be satisfied to be able to time a selected TRS is
described. Finally, constraints with respect to task start and finish times are described.

Additional TRS definition elements

Forced synchronism

Some state transitions of some resources can only take place synchronously with state
transitions of other resources.

• Ts ⊆ P(R× S × S) gives the subsets of synchronous resource state transitions.

Collision avoidance

In a machine, certain areas exist in which resources can collide. These areas should be
visited by the resources only one at a time. This additional constraint can be described
by adding a resource to R for such a hazardous area, and involve this resource in every
resource state transition that visits this area as described in the previous subsection. For
the collision area resources, physical states do not play a role.

• Rc is a finite set whose elements are called collision areas.

• Tc : R×S ×S → Rc ∪ {∅} gives the collision area resource that is associated with
a certain resource state transition.

Compound state transitions

The state transitions might consist of several elementary sub transitions, each of which
might be involved with forced synchronism or collision avoidance.

• Te : R×S ×S → (R×S ×S)∗ gives the sequence of elementary sub transitions of
a resource state transition. If there are no elementary sub transitions, the original
state transition is returned.

Additional TRS definition constraints

C-a Every task is elementary:

(∀t, r: t ∈ T1, r ∈ I1(t) ∩ (R\Rc)
: Te(r, Sb1(t, r), Se1(t, r)) = [(r, Sb1(t, r), Se1(t, r))])

C-b Every task matches Ts, which implies that for each task t either the resource state
transitions involved encapsulate some set of synchronous state transitions s from
Ts, or none of the involved resource state transitions occurs in any s from Ts.

(∀t : t ∈ T1 : (∃s ∈ Ts : s ⊆ (∪r : r ∈ I1(t) : {(r, Sb1(t, r), Se1(t, r))}))
∨(∀s : s ∈ Ts : s ∩ (∪r : r ∈ I1(t) : {(r, Sb1(t, r), Se1(t, r))}) = ∅))

52 Chapter 3. Machine-specific scheduling constraints

C-c Every task matches Tc, which implies that for each task and each involved resource
(excluding hazardous areas) goes that for each resource state transition any involved
collision area is involved in the task too:

(∀t, r : t ∈ T1 ∧ r ∈ I1(t) ∩ (R\Rc) : Tc(r, Sb1(t, r), Se1(t, r)) ∈ I1(t))

Note that these constraints essentially hold for every TRS definition level (main =
level 1).

C-Ae A selected TRS D1 ∈ D1 is timeable if subsequent task end and begin states in the
chain of tasks per resource match:
(∀t, t′, r: (t, t′) ∈ tchainr(P1r(D1, r)), r ∈ I1(t) ∩ I1(t

′) ∩ (R\Rc)
: Se1((t, r)) = Sb1((t

′, r)))

Note that although the FSM in Fig. 3.3 allow a number of possible sequences of ele-
mentary resource state transitions between some possible resource state transition that is
implied by selection, only one is defined by function Te. Furthermore, for each elementary
state transition at most one collision area is defined by function Te. As this constraint
does not involve any selection and is a prerequisite for the timing transformation, it is
categorized as a constraint on the timing transformation.

When taking the issue of forced synchronous and elementary state transitions into
account, it is possible that a state transition of a resource implies state transitions of
other resources. These implied state transitions also have to match the states of the
resource in turn, which might imply other state transitions, and so on. To avoid an
infinite chain reaction caused by loops, additional constraints are defined.

A core state transition is defined as the resource state transition of a resource r from
the end state of the previous task on r to the begin state of the next task on r, in case
these states do not match. Using this definition, the constraints described below have to
be satisfied to prevent loops during the transformation into a timeable TRS.

• For two core state transitions necessary for one task t, the sets of resources involved
in state transitions implied by each core state transition do not overlap. For exam-
ple, when there are two core state transitions for resource A and B, and the core
state transition for resource A implies a synchronous state transition of resource C,
then the state transitions implied by the core state transition for resource B may
not involve resource C.

• For any state transition of resource r′ (either core or implied by other state transi-
tions), the set of resources involved in state transitions implied by this state transi-
tion does not contain r′ itself. For example, it is not allowed that a state transition
of resource B that is implied by a state transition of resource A on its turn implies
a state transition of resource A.

To conclude, a final machine-specific timing constraint is defined:

C-Af To transform a timeable selected TRS D1 to a timed TRS D0, besides the constraints
presented in Section II, additional time constraints can be introduced for the time
between certain task start or end times. Examples of these time windows from the
example case are the Post Expose Bake time and the time that a wafer resides at
a load robot.

3.4. Timing the selected tasks 53

3.4.2 Timing algorithm

Due to the constraints that ensure one possible finite transformation of a selected TRS
D1 to a timeable selected TRS Dᵀ

1 , this transformation can be defined by a function. In
the chain of tasks per resource of a definition D1, additional tasks are introduced such
that a chain of tasks results that satisfies constraints C-a through C-c and C-Ae to result
in a timeable selected TRS Dᵀ

1 .

Let insert be a function inserting tasks and precedence edges in a selected TRS D1

for all non-matching subsequent task end and begin states defined by
insert(D1) = D ′

1 such that:

(∀r, t, t′: r ∈ R, t, t′ ∈ T1, (t, t
′) ∈ P1r(D1, r), Se1(r, t) 6= Sb1(r, t

′)
: (t, t′) /∈ P ′

1

∧(∃t′′: t′′ ∈ T ′

1 , (t, t′′) ∈ P ′

1, (t
′′, t′) ∈ P ′

1

: I ′

1(t
′′) = {r} ∧ Sb′1(t

′′, r) = Se1(t, r) ∧ Se′1(t
′′, r) = Sb1(t

′, r)
)

)

(3.20)

and T ′

1 , P ′

1, I ′

1, Sb′1, and Se′1 are minimal.

Let et = Te(r, Sb1(t, r), Se1(t, r)). Let decomp be a function decomposing any com-
pound transitions in tasks of a selected TRS to match Te defined by
decomp(D1) = D ′

1 such that:

(∀t, r:t ∈ T1, r ∈ I1(t), T e(r, Sb1(r, t), Se1(r, t)) 6= (r, Sb1(r, t), Se1(r, t))
:(∀0 ≤ i < len(et)
:(∃t′: t′ ∈ T ′

1

: I ′

1(t
′) = {r} ∧ Sb′1(t

′, r) = e.i.1 ∧ Se′1(t
′, r) = e.i.2

∧(i = 0 ⇒ (∀t′′ : t′′ ∈ T1, (t
′′, t) ∈ P1r(D1, r) : (t′′, t) /∈ P ′

1 ∧ (t′′, t′) ∈ P ′

1))
∧(i = len(et) − 1 ⇒ (∀t′′: t′′ ∈ T1, (t, t

′′) ∈ P1r(D1, r)
: (t, t′′) /∈ P ′

1 ∧ (t′, t′′) ∈ P ′

1

)
)

)
)

)
(3.21)

and T ′

1 , P ′

1, I ′

1, Sb′1, and Se′1 are minimal.

Let notsync: D1 → T1 be a function determining which tasks of a selected TRS are
not matching the forced synchronism element Ts:

notsync(D1) = {t ∈ T1 |(∃s : s ∈ Ts : s * {(r, Sb1(t, r), Se1(t, r))|r ∈ I1(t)})} (3.22)

Let addsync be a function adding forced synchronous resource state transitions to
tasks of a selected TRS which are not matching Ts defined by

54 Chapter 3. Machine-specific scheduling constraints

addsync(D1) = D ′

1 such that:

(∀t : t ∈ notsync(D1)
: (∀s, ts : s ∈ Ts, ts ∈ s

: ts ∩ {(r, Sb1(t, r), Se1(t, r))|r ∈ I1(t)} 6= ∅
⇒ ts.0 ∈ I ′

1(t) ∧ ts = {(r, Sb′1(t, r), Se′1(t, r))}
)

)

(3.23)

Let addcoll be a function adding collision areas to tasks of a selected TRS that are
not according Tc: addcoll(D1) = D ′

1 such that:

(∀t, r: t ∈ T1, r ∈ I1(t) ∩ (R\Rc), T c(r , Sb1(t, r), Se1(t, r)) 6= ∅
: Tc(r , Sb1(t, r), Se1(t, r)) ∈ I ′

1(t)
)

(3.24)

To transform a selected TRS D1 that does not satisfy constraint C-Ae into a timeable
selected TRS Dᵀ

1 , function transA−t : D1 → D1 is defined as follows:

transA−t(D1) =
{

addcoll(decomp(insert(D1))) if notsync(decomp(insert(D1))) = ∅
transA−t(addsync(decomp(insert(D1)))) if notsync(decomp(insert(D1))) 6= ∅

(3.25)

The algorithm to optimize timing of a timeable selected TRS D ᵀ

1 given the timing
constraints is a linear programming (LP) problem [8]. The variables of the LP problem
are the start and finish times of each task, τS0

and τF0
, whereas the constraints are defined

by C-Ab and C-Ac. Constraint C-Ad is not necessary anymore, as all state transitions
in a timeable selected TRS are tasks.

3.5 Results

In this section, the theory presented in the previous sections is applied to the example
case. For the example system, the additional elements can be instantiated as follows:

• M = {W1, W2, . . . }.

• Cb2 = {((W1-T2L, T), {W1}), ((W1-T2L, L), {}), ((W1-L2R, L), {W1}), ((W1-
L2R, R), {}), . . . }.

• Ce2 = {((W1-T2L, T), {}), ((W1-T2L, L), {W1}), . . . }.

• Rm = {(T0, 1), (L0, 1), . . . }. This element can easily be extracted from Fig. 3.2.

• Mf = {(T0, L0), (L0, R0), (R0, A0), . . . }. This element can easily be extracted
from Fig. 3.2.

• Pt2 = {(W1-T2L, W1-L2R), (W1-L2R, W1-R2A), (W1-R2A, W1-AL), (W1-AL,
W1-A2R), (W1-A2R, W1-R2S), (W1-S2R, W1-R2L), (W1-R2L, W1-L2T), . . . }.
These precedence relations concern all transport tasks involving the robot.

3.6. Conclusions 55

• WIPceil = {({L0, R0, A0, S0}, 2), ({L1, R1, A1, S1}, 2)}.

• Ts = {{(S0, @lm, @e), (S1, @e, @lm)}, {(S1, @lm, @e), (S0, @e, @lm)}}.

• Rc = {HA}.

• Tc = {((R0, @ca, @l), HA), . . . }.

• Te = {((R0, @l, @a), [(R0, @l, @ca), (R0, @ca, @a)]), ((S0, @lm, @u), [(S0, @lm,
@e), (R0, @e, @u)]), . . . }. These sequences can be easily be extracted from Fig. 3.3.

Using a simple heuristic, such as ‘fill up the system as much as possible and schedule
tasks that can start earliest first’, a feasible and valid schedule is obtained. Subsequently,
a timing postprocessing step is done to fulfill the additional time windows: τF0

(W1-R2S)
- τS0

(W1-A2R) = 3 [sec] etc., and τF0
(W1-L2T) - τS0

(W1-EXP) = 50 [sec] etc. After this,
the schedule of Fig. 3.8 is obtained. It can be concluded that the schedule satisfies all
additional restrictions. Note that these constraints can not be fulfilled without prediction.

The critical path shown in Fig. 3.9: exposure (EXP) is on the critical path in steady-
state operation, which is as desired.

3.6 Conclusions

Generalized job shop scheduling can form a basis for scheduling in complex machines.
However, to account for machine-specific restrictions such that only feasible schedules re-
sult, additional scheduling constraints are introduced. To this end, the job shop schedul-
ing model is extended with some elements, based on which scheduling constraints are
defined.

During the selecting phase of scheduling, the additional constraints ensure feasible be-
havior concerning material logistics. To enable partial dispatching, partial schedules are
not allowed to lead to deadlock situations, as any backtracking is not possible after dis-
patching. However, as a consequence of the constraints introduced, deadlock is possible.
Additional selecting constraints are introduced to avoid such invalid behavior. Further-
more, additional timing constraints are introduced to ensure feasible behavior concerning
resource interference. Also the constraints concerning time windows are incorporated.

Defining manufacturing recipes using graphs is intuitive and offers great expressivity
concerning recipes. The approach is flexible for strongly recipe dependent products and
covers the entire machine (all tasks and resources, steady-state and transient behavior).
Within the constraints introduced and the available scheduling time, real-time optimiza-
tion of machine behavior is possible. In extreme time-critical situations, partial schedules
consist of only one task: no prediction. In this case, the approach is similar to (current)
state-based supervisory control [11, 13]. However, these approaches are not flexible for
handling multiple product types at the same time. The approach presented in this chap-
ter combines the benefits of both the optimization techniques from scheduling community
and the behavior validity and responsiveness from (supervisory) control community.

The applicability of the instantiated, unselected TRS and the possible behavior im-
provement is illustrated using an example from a wafer scanner. Results show that in-
stantiation of the machine-specific additional definition elements is straightforward. The
additional elements involving selecting can be taken from a schematic layout of the ma-
chine, whereas the elements involving timing can be extracted from Finite State Machines
(FSM) of the resources.

56 Chapter 3. Machine-specific scheduling constraints

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450

T0

L0

A0

R0

HA

R1

A1

L1

C0

C1

Time [sec]

R
es

ou
rc

es

Gantt chart of output/ganttinfo_mixed.txt

A2R
AL
C2R
EXP
L2R
L2T
MEA
R2A
R2C
R2L
T2L
setup

Figure 3.8: A resulting schedule for the example case

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450

T0

L0

A0

R0

HA

R1

A1

L1

C0

C1

Time [sec]

R
es

ou
rc

es

Gantt chart of output/ganttinfo_cp.txt

A2R
AL
C2R
EXP
L2R
L2T
MEA
R2A
R2C
R2L
T2L
setup

Figure 3.9: Critical path of a resulting schedule for the example case

References 57

The following open issues remain. To be absolutely sure that no deadlock schedules
will be generated, verification of whether the definition elements involved are instantiated
correctly is essential. Furthermore, the instantiation functionality (C) is to be developed
to be able to react on triggers like manufacturing orders and exceptions by instantiating
TRS definitions. These open issues are subject of current research.

Acknowledgments

The authors would like to acknowledge Cor Hurkens for his valuable comments.

References

[1] ASML, 2004. Information on wafer scanners available through URL
http://www.asml.com/, item: products - lithography.

[2] B. A. Brandin and W. M. Wonham. Supervisory control of timed discrete-event
systems. IEEE Transactions on Automatic Control, 39(2):329–341, 1994.

[3] P. Gohari and W. M. Wonham. Reduced supervisors for timed discrete-event sys-
tems. IEEE Transactions on Automatic Control, 48(7):1187–1198, 2003.

[4] D. Jevtic. Method and apparatus for automatically generating schedules for wafer
processing within a multichamber semiconductor wafer processing tool, 1997. Patent
no. US 6,201,999.

[5] J. Kim, T. Lee, H. Lee, and D. Park. Scheduling analysis of time-constrained
dual-armed cluster tools. IEEE Transactions on Semiconductor Manufacturing,
16(3):521–534, 2002.

[6] S. Kumar, N. Ramanan, and C. Sriskandarajah. Robotic system control, 2003.
Patent no. US 6,556,893.

[7] H. Marchand, O. Boivineau, and S. Lafortune. On the synthesis of optimal schedulers
in discrete-event control problems with multiple goals. SIAM Journal on Control
Optimization, 39(2):512–532, 2000.

[8] K. G. Murty. Linear Programming. Wiley-Interscience, Chichester, 1983.

[9] N. J. M. van den Nieuwelaar, J. M. van de Mortel-Fronczak, and J. E. Rooda. Design
of supervisory machine control. In K. Glover and J. Maciejowski, editors, Proceedings
of the European Control Conference 2003, 2003. CD-ROM.

[10] M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Prentice Hall, 1995.

[11] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event
processes. SIAM Journal on Control and Optimization, 25(1):206–230, 1987.

[12] S. Rostami and B. Hamidzadeh. Optimal scheduling techniques for cluster tools with
process-module and transport-module residency contraints. IEEE Transactions on
Semiconductor Manufacturing, 15(3):341–349, 2002.

58 References

[13] Y. Shin, T. Lee, J. Kim, and H. Lee. Modeling and implementing a real-time sched-
uler for dual-armed cluster tools. Computers in Industry, (45):13–27, 2001.

[14] S. F. Smith. Is scheduling a solved problem? In G. Kendall, E. Burke, and S. Petro-
vic, editors, Multidisciplinary International Conference on Scheduling : Theory and
Applications(MISTA’03), pages 11–20. ASAP, University of Nottingham, UK, Au-
gust 2003.

[15] G. E. Vieira, J. W. Herrmann, and E. Lin. Rescheduling manufacturing systems:
a framework of strategies, policies and methods. Journal of scheduling, 6(1):35–58,
2003.

[16] M. Wennink. Algorithmic Support for Automated Planning Boards. PhD thesis,
Eindhoven University of Technology, The Netherlands, 1995.

CHAPTER

FOUR

REACTION SCENARIOS INCLUDING

EXCEPTION RECOVERY

This chapter contains the paper Predictive-Reactive Scheduling in Complex Manufactur-
ing Machines: Reaction Scenarios Including Exception Recovery that has been protected
in patent application ASML ref. P − 1885. First filing was in the US in May 2004,
number 10/852,678.

59

60 Chapter 4. Reaction scenarios including exception recovery

Predictive-reactive scheduling in complex

manufacturing machines: reaction scenarios including

exception recovery

N.J.M. van den Nieuwelaar †*, J.M. van de Mortel-Fronczak †,
R. Boumen †, J.E. Rooda †

Abstract

Supervisory Machine Control (SMC) is responsible for a proper reaction to all
kinds of triggers from its environment by deciding when to do which tasks using
which resources. A predictive-reactive supervisory control concept is proposed,
embedding existing scheduling functionality. In this concept, SMC consists of two
parts: a predictive part and a dispatching part. The predicting part contains
planning functionality to instantiate scheduling problems using a scheme of prede-
fined construction rules. The scheme of planning rules describes how to transform
triggers into scheduling problems step by step by adding predefined scheduling
problem building blocks. After scheduling of the resulting problem, the schedule
is dispatched to the resources by the dispatching part. Several scenarios are de-
scribed to react to different control triggers, including exception recovery to react
to tasks that fail. To avoid control overhead, prediction takes place in parallel with
dispatching if possible. The control concept is illustrated using a representative
example of a complex manufacturing machine: a wafer scanner.

4.1 Introduction

The purpose of a manufacturing machine is to make products, which requires physical
manufacturing processes to be carried out. To actually do the work, mechatronic systems
in the machine must be deployed. In complex manufacturing machines, many options
exist to deploy the available resources to perform tasks that lead to the desired manu-
facturing purpose, resulting in various machine behaviors. Supervisory Machine Control
(SMC) is responsible for deciding when to do which tasks using which resources. There
are three important complicating requirements for SMC of complex manufacturing ma-
chines. First of all, the manufacturing tasks are heavily product recipe dependent, for
which SMC must be flexible. It must be able to handle a stream of mixed product types,
which are being processed concurrently. Second, SMC must be able to optimize machine
behavior by exploiting its resources best within its manufacturing possibilities. What
is best may depend on the characteristics of the recipe. Finally, it must fit in the dy-
namic environment that it is embedded in. This implies that it must react to all kinds
of triggers from the environment without introducing unnecessary control overhead. A
very important trigger is task failure: an exception, which requires a recovery reaction of
SMC to avoid human intervention.

† Eindhoven University of Technology: P.O. box 513, 5600 MB Eindhoven, The Netherlands.
* ASML: De Run 6501, 5504 DR Veldhoven, The Netherlands.
Corresponding author: N.J.M. van den Nieuwelaar, e-mail: n.j.m.v.d.nieuwelaar@tue.nl

4.1. Introduction 61

4.1.1 Literature

Many approaches exist to describe a system under supervisory control using well-known
formalisms from computer science. Supervisory control theory (SCT) as discussed by
Wonham et al. [3, 8, 17] models the system under control using Finite State Machines.
The possible behavior of such a system is regarded as a language. A supervisory con-
troller in the form of a deterministic automaton is synthesized that restricts the language
by disabling a subset of events, to control the system to properly accomplish its task.
Basic SCT theory does not meet the first requirement, as supervisors must be modelled
specifically for the task to be accomplished, and therefore are not flexible for handling
different recipes. Extensions to this theory have been developed to be able to control mul-
tiple predefined types of products with fixed routes [5, 18]. This still is not sufficient for
our purpose as the various recipe parameters imply an infinite number of product types,
which makes it impossible to predefine their route. Moreover, multiple routes might exist
that lead the the desired manufacturing purpose, and fixed routes might exclude optimal
behavior.

Optimization possibilities are restricted in SCT-based approaches, due to the lack of
predictive information. Scheduling-based control concepts are better suited for this [4],
especially a predictive-reactive scheduling approach [14]. In complex manufacturing ma-
chines multiple manufacturing possibilities may exist that all lead to the desired manu-
facturing purpose. This is in contrast with the predefined manufacturing sequences that
are typically assumed, e.g. in [4, 14]. It is important that these scheduling possibilities
can be expressed to be able to choose the optimal one. In Chapters 2 and 3 ([11, 12]),
a predictive scheduling approach is presented that is suited for complex manufacturing
machines. The scope of that work is a static scheduling problem. Any reaction to triggers
from the environment is not addressed, which requires a predictive-reactive scheduling
approach.

In the area of job shop scheduling, much research has been done on reactive scheduling
[1, 6, 23]. An overview of rescheduling environments, strategies and methods can be found
in [19, 22]. In that work, reaction on new work that arrives is straightforward: new jobs
consisting of a fixed graph of processes are instantiated and added to the old scheduling
problem. An important restriction of these rescheduling methods is that they do not
cover job modification which is required for exception recovery. Exception recovery is
discussed in SCT-based control approaches [7, 9, 16], but in this work only local recovery
is considered: only one product is affected.

The remainder of this chapter shows that in the application area of complex manu-
facturing machines, the mapping of new work that arrives onto the scheduling problem
is not straightforward. To add new work, it even can be interesting to modify the old
scheduling problem to get a better overall schedule. Furthermore, non-local exception
recovery is addressed, which also requires modification of the scheduling problem. The
problem of determining which activities are to be done is called planning in literature
[20]. In scheduling literature, planning typically is done in advance in a static setting. In
the context of SMC, planning must be embedded in a dynamic environment. This chap-
ter is based on Chapters 2 and 3 ([11, 12]) and adds the planning and dynamic reaction
functionalities.

62 Chapter 4. Reaction scenarios including exception recovery

Instantiating

Selecting

Timing

3:

C:

1:

0:

ro

om
 fo

r c
ho

ic
es

timed

selected
 untimed

A:

2:

B:

instantiated
 unselected

 uninstantiated
TRS

TRS

TRS

TRS

Figure 4.1: Layered Task Resource System framework

4.1.2 Layered task resource system framework

From the SMC point of view, a machine can be considered as a task resource system
(TRS). Tasks can be associated with manufacturing processes, whereas resources can
be associated with mechatronic systems. Transforming a manufacturing request into
machine behavior can be structured in three phases. First, a scheduling problem must
be instantiated from the manufacturing request, taking into account the limitations of
the machine. This transformation is called instantiating. The structure of the resulting
scheduling problem shows many similarities with the job shop scheduling problem [15].
The manufacturing process of a material instance can be associated with a job, whereas
the different parallel mechatronic systems can be associated with the different machines
in a job shop. Subsequently, resources must be assigned to the tasks in the instantiated
scheduling problem in some order, taking into account the fact that resources are able to
perform certain tasks only, and only one at a time. This transformation is called selecting.
The selected order of tasks to be performed by selected resources implies consecutive state
transitions of those resources, which is analogous to the setup times for mode switching
in job shop scheduling. Finally, start and finish times can be assigned to the tasks, taking
into account the speed of the resources. This transformation is called timing.

During the three transformation phases of instantiating, selecting and timing, choices
must be made. The result of a choice in a certain transformation on the machine behavior
can only be evaluated by performing the consecutive transformations. Therefore, a trans-
formation phase strongly relies on information from subsequent phases. The layered TRS
framework shown in Fig. 4.1 displays the hierarchically related transformation phases as
functionality layers (A through C) and the different TRS definition levels (0 through 3)
as interfaces between the layers (see Chapter 1 and [13]).

4.1.3 Structure of the chapter

The structure of this chapter is as follows. Throughout the chapter, an example of a com-
plex machine is used for illustration: a dual-stage wafer scanner [2]. Section 4.2 describes
the wafer scanner and instantiates a scheduling problem for a basic job. Section 4.3 de-
scribes the instantiation of a scheduling problem using a typical, more complex job as an
example. Analysis shows that building blocks and construction rules can be distilled that
describe how a user request is transformed into a scheduling problem (planning). The
necessary functionality to glue the building blocks together is captured in functions, that
are parameterized for the example for illustration. In Section 4.4, an SMC framework is

4.2. Scheduling in a wafer scanner 63

presented that embeds the layered TRS framework of Fig. 4.1. Different scenarios to react
on several types of triggers are discussed: reaction to delays, to new work that arrives,
but also to work that fails. Reaction to work that fails may require modification of the
scheduling problem to support exception recovery. For each type of trigger, an example
illustrates the result of the different reaction scenarios. Finally, concluding remarks are
presented in Section 4.5.

4.2 Scheduling in a wafer scanner

4.2.1 A dual-stage wafer scanner

The primary manufacturing process of a wafer scanner is the exposure of a mask contain-
ing an IC pattern onto wafers. Fig. 4.2 shows a schematic layout of a dual-stage wafer
scanner. In this figure, circles depict the mechatronic subsystems or resources regarded
here, and arrows depict the possible transport paths. The number of material instances
that a resource can carry is depicted between brackets. At the right side of the picture,
the resources involved in the exposure process are shown. At the upper-right, the reticle
stage (S0) that carries the mask containing the IC pattern is depicted. At the lower-
right, the two wafer chucks that are present in a dual-stage wafer scanner (C0 and C1)
are depicted, that carry the wafer during exposure. In between, a resource is depicted
that stands for the required optics and the light source (O0).

Furthermore, the lower part of the figure deals with wafers, whereas the upper part
deals with reticles. As the required accuracy of the exposure process is very high, any
imperfections concerning the wafers must be corrected for. To be able to do this, wafers
are measured at a wafer chuck before being exposed. The orientation of the wafer at
a wafer stage is of importance for successful measurement and exposure, whereas the
orientation is unknown when a wafer comes into the machine. Therefore, an alignment
unit (A0) has been incorporated. A neighboring machine named track (T0) performs some
pre-processing and post-processing steps, and delivers wafers to the alignment system. A
load robot (L0) transports wafers from the alignment system to the wafer chucks. An
unload robot (U0) transports wafers from the wafer chucks to the discharge unit (D0),
from which wafers are picked up by the track.

Reticles enter and leave the system via the reticle pod (P0). Each reticle that has
been in the pod must be inspected in the inspection station (I0) before it can be used for
exposure. A buffer station (B0) is available that can be used to store inspected reticles.
Transportation of reticles to and from the reticle stage is done by one of the two elevators
(E0 and E1). Transportation of reticles between the pod, the elevators and the inspect
and buffer stations is done by the reticle robot (R0).

4.2.2 Scheduling in a complex manufacturing machine

In Chapters 2 and 3 ([11, 12]), the scheduling model of a complex machine is defined.
For the purpose of this chapter, the elements needed for the timing transformation (see
Fig. 4.1) are not relevant. Without them, the scheduling model can be defined by an
18–tuple:

(T2,L2,G2,N2,Ln2,Gn2,Ga2,R, C, I2,A,P2,Pt2,M, Cb2, Ce2, Rm,Mf), where

• T2 is a finite set of elements called tasks.

64 Chapter 4. Reaction scenarios including exception recovery

S0

(1)

O0

(0)

C0

(1)

C1

(1)

L0

(1)

U0

(1)

A0

(1)

D0

(1)

T0

(99)

E1

(1)

E0

(1)

R0

(1)

P0

(6)

B0

(6)

I0

(1)

reticles

wafers

Figure 4.2: Schematic layout of a dual stage wafer scanner

• L2 is a finite set of elements called clusters.

• G2 is a finite set of elements called groups.

• N2 is a finite set of elements called nodes and is a generalization of the model
elements mentioned earlier: N2 = T2 ∪ L2 ∪ G2.

• Ln2: L2 → P(N2) gives the set of nodes that are in a certain cluster.

• Gn2: G2 → P(N2) gives the set of nodes (alternatives) that a group consists of.

• Ga2: G2 → P(N) gives the allowed numbers (including 0) of nodes to be selected
from a group.

• R is a finite set of elements called resources.

• C is a finite set of elements called capabilities.

• I2: T2 → P(C) gives the set of capabilities that are involved in a certain task.

• A: C → P(R) gives the set of resources that are available for a certain capability.

• P2 ⊆ N2×N 2 is the precedence relation between nodes.

• Pt2 ⊆ N2×N 2 is the tied precedence relation between nodes.

• M is a finite set whose elements are called material instances.

• Cb2, Ce2: TC → P(M) give the begin and the end material configuration of each
capability involved in a certain task, where TC = {(t, c)|t ∈ T2, c ∈ I2(t)}

• Rm: R → N gives the number of material instances that can reside on a certain
resource.

• Mf ⊆ R ×R represents the physically possible material flow as a set of tuples
defining from which resource to which resource material can flow.

Some of the elements have a suffix, which represents the definition level in Fig. 4.1.
The elements that do not have a suffix are level independent.

4.2.3 An instantiated scheduling model

The scheduling model in a complex machine can be split into two sections: system-
dependent elements and work-dependent elements. The system-dependent elements can
be defined using Fig. 4.2 as follows:

4.2. Scheduling in a wafer scanner 65

• There are thirteen capabilities. For wafers: the chuck, the load and unload robots,
the alignment and discharge units, and the track. For reticles: the stage, the
elevator, the robot, the inspection and buffer station, and the pod. Besides that,
there is a capability for the optics and light subsystems.
C = {C, L, U, A, D, T, S, E, R, I, B, P, O}.

• There are fifteen resources: one for each capability, except two wafer chucks and
two elevators:
R = {C0, C1, L0, U0, A0, D0, T0, S0, E0, E1, I0, B0, R0, P0, O0}.

• The available resources for each capability are defined as follows:
A = {(C, {C0, C1}), (L, {L0}), (U, {U0}), (A, {A0}), (D, {D0}), (T, {T0}), (S,
{S0}), (E, {E0, E1}), (I, {I0}), (B, {B0}), (R, {R0}), (P, {P0}), (O, {O0})}.

• The material capacity of the resources is one for each resource, except for the track,
the pod, and the buffer:
Rm={(C0, 1), (C1,1), (L0,1), (U0,1), (A0,1), (D0,1), (T0,99), (S0,1), (E0,1), (E1,1),
(I0,1), (B0,6), (R0,1), (P0,6), (O0,1)}.

• The possible material flow is defined as follows:
Mf = {(T0, A0), (A0, L0), (L0, C0), (L0, C1), . . . }.

To define the work-dependent elements, the steps in the manufacturing process of
wafer W1 and reticle RA are analyzed for one exposure. These ‘basic’ lives of a wafer and
a reticle are depicted in the precedence graph of Fig. 4.3. First, the wafer is transported
from the track onto the alignment unit (T2A). Subsequently, the alignment takes place
(Ali). After that, the load robot takes the wafer from the alignment unit (A2L), and
places the wafer onto a chuck (L2C). On the chuck, the wafer is measured (mea) and,
subsequently, exposed (exp). Then, the unload robot takes the wafer from the chuck
(C2U) and puts the wafer onto the discharge unit (U2D). Finally, the wafer is taken from
the discharge unit by the track (D2T).

The life of a reticle consists of the following steps. The robot takes the reticle from the
pod (P2R), and puts the reticle onto the inspection station (R2I), where it is inspected
(Ins). After taking the reticle from the inspection station (I2R), there is a possibility to
store the reticle (st?). Subsequently, the robot puts the reticle onto an elevator (R2E),
that puts the reticle onto the reticle stage (E2S). At the stage, the reticle is used for
exposure (exp). When exposure is done, an elevator picks the reticle up (S2E), after
which the robot takes the reticle over (E2R) and puts it back into the pod (R2P). All
nodes in Fig. 4.3 are tasks, except for the possible storage node (st?), that is depicted by
a double circle. A drill-down of this node exists, that is shown at the right side of the
figure. The node hierarchy is as follows. The upper node (st?) is a node of type group, of
which zero or one alternatives must be chosen. The group node consists of one alternative
of node type cluster (st!) consisting of two consecutive tasks, to describe transportation
of the reticle to the buffer (R2B), followed by a transportation back (B2R).

For the basic material lives of wafer W1 and reticle RA as depicted in Fig. 4.3, the
work-dependent elements can be instantiated as follows:

• T2 = {W1-T2A, W1-Ali, . . . , RA-P2R, RA-R2I, . . . }.

• L2 = {RA-st!}.

66 Chapter 4. Reaction scenarios including exception recovery

T2A

W1

A2L

W1

L2C

W1

mea

W1

exp

W1/RA

C2U

W1

U2D

W1

D2T

W1

P2R

RA

R2I

RA

Ins

RA

I2R

RA

R2E

RA

E2S

RA

S2E

RA

E2R

RA

R2P

RA

Ali

W1

R2B

RA

B2R

RA

st!

st?

RA

st?

RA
where:
 =

st?

Figure 4.3: Basic lives of a reticle and a wafer

• G2 = {RA-st?}.

• I2 = {(W1-T2A, {T, A}), (W1-Ali, {A}), . . . }.

• P2 = {(W1-T2A, W1-Ali), (W1-Ali, W1-A2L), . . . }.

• Pt2 = {(RA-P2R, RA-R2I), (RA-I2R, RA-st?), (RA-st?, RA-R2E), (RA-E2R, RA-
R2P)}. These precedence relations concern all transportation tasks involving the
reticle robot.

• Ln2 = {(RA-st!, {RA-R2B, RA-B2R})}.

• Gn2 = {(RA-st?, {RA-st!})}.

• Ga2 = {(RA-st?, {0, 1})}.

• M = {RA, W1}.

• Cb2 = {((W1-T2A, T), {W1}), ((W1-T2A, A), {}), ((W1-Ali, A), {W1}), . . . }.

• Ce2 = {((W1-T2A, T), {}), ((W1-T2A, A), {W1}), . . . }.

Note that by convention, task names are in upper case and start with the associated
material instance id.

A schedule for this basic wafer scanner scheduling problem is shown in Fig. 4.4.

4.3 Planning

4.3.1 Planning a typical wafer scanner order

Under the pressure of the ever shrinking critical dimension in semiconductor industry,
multiple exposure techniques are a trend in lithographic manufacturing. These techniques
use multiple reticles to expose a single IC, each containing parts of the pattern. A typical
example is the use of two reticles, one containing the coarse part of the circuit and one
containing the small details. In this section, we analyse planning of such a dual exposure
order for a batch of two wafers (order 1). The reticles involved are RA and RB, and
exposure should be done according to the ‘ABBA’ pattern. This means that the first
wafer is exposed using reticle RA first and then using RB, and for any next wafers, the
reticle order used for exposure is alternating.

A logical first step in the planning process is to focus on the primary manufacturing
process: exposure. For order 1, a sequence of four exposure steps can be determined: first
expose wafer W1 with reticle RA, then expose wafer W1 with reticle RB, subsequently
expose wafer W2 with reticle RB, and finally expose wafer W2 with reticle RA. Next, the
secondary manufacturing processes can be added: the logistics and the pre-processing.
Before a wafer can be exposed on a wafer chuck, a sequence of logistic input and pre-
processing steps must be carried out on the wafer, as is explained in the previous section,

4.3. Planning 67

0 150 300 450

 T0

 D0

 U0

 A0

 L0

 C0

 C1

 O0

 S0

 E1

 E0

 R0

 B0

 I0

 P0

Time [sec]

R
es

ou
rc

es
Gantt chart

Ret A
Waf 1
No Mat

Figure 4.4: Basic schedule for one reticle and one wafer

and shown in the lower-left part of Fig. 4.3. This sequence of steps is called ‘load wafer’
from now. After exposure of a wafer, a sequence of logistic output steps must be carried
out on the wafer, as is shown in the lower-right part of Fig. 4.3. This sequence is called
‘unload wafer’ from now. At the right side of Fig. 4.5, the precedence graph concerning
wafers for order 1 is depicted. The four exposure steps are depicted in a dashed box.
Before the first exposure step of each wafer, a ‘load wafer’ sequence is shown, whereas
an ‘unload’ wafer sequence is shown after the latest exposure step of each wafer. As the
track first delivers wafer W1 and then wafer W2, a precedence edge is drawn between the
first two ‘T2A’ nodes.

At the left side of Fig. 4.5, the reticle view on the precedence graph for order 1
is depicted. For clarity, the dashed box containing the four exposure nodes is copied.
Reticle RB, that is needed once at the reticle stage, needs a similar load and unload
like the wafers. However, reticle RA is needed twice. In between the exposures using
reticle RA, it is not necessary to go all the way back to the pod: the reticle can stay
on an elevator. Therefore, the total load and unload sequences for reticles are split in
two. The ‘load reticle’ and ‘unload reticle’ sequences consist of only one step: ‘E2S’
and ‘S2E’, respectively. Like ‘load wafer’ and ‘unload wafer’ they must be added for the
first and the last exposure step in which the reticle is needed, respectively. To transport
reticles from the pod to the elevators and back, the ‘preload reticle’ and ‘post unload
reticle’ sequences are added for the first and the last time the reticle is needed at an
elevator, respectively. Like in the wafer case, the first nodes of the reticle preload and

68 Chapter 4. Reaction scenarios including exception recovery

E2S

RA

R2E

RA

I2R

RA

Ins

RA

R2I

RA

P2R

RA

E2S

RB

R2E

RB

I2R

RB

Ins

RB

R2I

RB

P2R

RB

S2E

RA

S2E

RB

E2R

RB

R2P

RB

E2S

RA

S2E

RA

E2R

RA

R2P

RA

exp

W1/RA

exp

W1/RB

exp

W2/RB

exp

W2/RA

exp

W1/RA

exp

W1/RB

exp

W2/RB

exp

W2/RA

T2A

W1

A2L

W1

L2C

W1

mea

W1

C2U

W1

U2D

W1

D2T

W1

Ali

W1

T2A

W2

A2L

W2

L2C

W2

mea

W2

Ali

W2

C2U

W2

U2D

W2

D2T

W2

st?

RA

st?

RB

order

1

order graph

plan graph

planning

=

Figure 4.5: Planning: from order graph to task graph

load sequences are connected by a precedence edge.

Analyzing the planning steps of this example, some recurrent types of graph con-
struction steps can be distinguished. At several points, a subgraph (‘load wafer’, etc.)
is inserted into the existing graph. These subgraphs can be regarded as building blocks.
The primary manufacturing process, the exposure sequence, forms an important reference
to decide whether a subgraph should be added. Instead of inserting the subgraphs in one
step, it can be convenient to first insert a single node standing for the entire building
block, and then to replace this node by the subgraph itself. In fact, some of the nodes
in Fig. 4.5 need to be expanded to a smaller grain size before they can be executed by
mechatronic systems. Examples of those nodes are the measure and exposure nodes,
that consist of multiple elementary tasks, e.g. to measure one single mark or to expose
one single die. For the purpose of this chapter this smaller grain size is not explained.
The drill down of nodes into nodes of a smaller grain size by replacing them by building
blocks is another recurrent type of planning step. Also some recipe-dependent steps can
be distinguished. In the example, the generation of the sequence of exposure steps is one
of those steps. Other examples can be found at the lower node grain size: the number of
marks to measure or dies to expose is also recipe dependent. However, also here build-
ing blocks can be distinguished: exposure of a wafer with a reticle, measurement of a
single mark or exposure of a single IC (die). A final recurrent type of planning step is

4.3. Planning 69

precedence linking of nodes. For example, linking of sublives of some material instance
(e.g. reticle RA), or linking nodes of the same behavior type (e.g. ‘T2A’). All planning
or graph construction steps are executed only if the system state and the graph fulfill
certain criteria. The sequence of construction steps including the applicable criteria can
be regarded as planning rules.

4.3.2 Planning functions

In this subsection, a set of generic graph construction functions is defined. The replaceall
function replaces all nodes in a precedence graph that fulfill some criteria by a subgraph.
The nodes that are replaced are called ‘parent’ nodes, whereas the nodes of the subgraph
are called ‘child’ nodes. The insertall function inserts a subgraph at all nodes that fulfill
some criteria, called ‘foster nodes’. The nodes in the inserted subgraph are called ‘orphan’
nodes. Furthermore, linking functions are defined to introduce precedence edges: linkmat
to instantiate a precedence edge between sublives of material instances, and linkbeh to
instantiate precedence edges between nodes of the same behavior type. As an example, a
recipe-dependent generation function is described in the appendix. The domain-specific
check functions to determine for instance whether a material instance is needed later on
in the exposure sequence are not included in this chapter. Such check functions require
information concerning the graph constructed up to then, as well as the state of the
system.

The system state, S, consists of 4 components that are not explained further:

• Finish time of the last task per resource

• Material configuration per resource

• Physical state per resource

• Manufacturing state per material instance

During graph construction, a slightly modified TRS definition D2c is used. Differences
with the instantiated, unselected system definition D2 are:

• I2c, Cb2c, Ce2c are defined for nodes instead of for tasks.

Furthermore, for tracking of the construction process, two elements are introduced.

• Nr 2c: N2 → P(N2) is an additional element giving parent-child relations between
nodes.

• Ni2c: N2 → P(N2) is an additional element giving foster-orphan relations between
nodes.

The plan rules need the behavior type of the nodes, e.g. ‘T2A’, ‘exp’, ‘load wafer’ .
To define this, the following elements are introduced:

• B is the set of all possible behavior types

• Nb2c: N2 → B gives for each node its behavior type.

70 Chapter 4. Reaction scenarios including exception recovery

Besides this, nodes carry some recipe parameters. From these parameters, building
blocks can be generated and material instances can be instantiated.

• Np2c: N2 → Pm is an additional element giving the parameters of the nodes.

Summarizing, the work dependent part of D2c is the set of all possible elements from
the 17-tuple:
(N2c,L2c,Ln2c,G2c,Gn2c,Ga2c, I2c, Sb2c, Se2c, Cb2c, Ce2c,P2c,Pt2c,Nr 2c,Ni2c,Nb2c,Np2c)

The starting point of the planning process is a construction system definition D2c

containing the orders to plan as nodes in a precedence graph. This can be a sequence of
order nodes representing an order queue, but if there are no priorities order nodes can
also be modelled in parallel. After application of the planning rules, a more detailed
system definition D2c results, that is converted into an instantiated unselected system
definition D2. In this conversion, the information that is not needed in D2 is removed
from D2c. This concerns parent and foster node related elements and node behaviors.
Furthermore, all nodes that are not clusters or groups become tasks. As this conversion
is straightforward, the conversion function is not described in this chapter.

To determine to which nodes a construction step must be applied, the following func-
tions are involved. Set C: P(N2c×D2c×S) → B) is a library of check functions cx that
determine for some node given some system definition and system state whether certain
criteria hold. Function nodestobehandled: D2c ×P(B)×P(C) ×S → P(N2c) is a function
that determines which nodes are to be handled. In case they are used in a replace func-
tion, these nodes are called parent nodes, whereas these nodes are called foster nodes in
case they are used in an insert function. The nodes to be handled are the nodes in an
existing system definition De

2c with a behavior that is in a set of behaviors br and for
which condition checks cr hold in some system state sstate:

nodestobehandled(D e
2c, br, cr, sstate) =

{ne|ne ∈ N e
2c ∧ Nb(ne) ∈ br ∧ (∀c : c ∈ cr : c(ne,De

2c, sstate))} (4.1)

For generation of the exposure sequence, the node parameters need to contain part
of the recipe information. For the purpose of this chapter, the node parameters are a
tuple of tuples containing a set of capabilities and a list of material instance sets Np2c: N2

→(P(C)×P(M)*)2. By convention, the first element of the tuple concerns wafers and the
second element concerns reticles. Furthermore, the sets of capabilities involved in wafer
and reticle processing are assumed to be disjoint. For the wafers as well as the reticles,
the capabilities involved in this type of material and the material instances themselves
are described. In the appendix, a function that generates an exposure sequence using the
node parameters, genes, is described.

The nodes in a predefined basic building block are uninstantiated, implying that they
have no material assigned to them. The nodes in a generated building block, that is gen-
erated using a basic building block, do have material assigned to them. The information
required for that is obtained from the parameters of the parent node of the generated
building block. In the actual replacement step, the material assigned to the nodes in the

4.3. Planning 71

generated building block should be unchanged. In case of replacing a node by a basic
building block or inserting a basic building block, material should be inherited from the
parent or foster node. To assign material to a building block node, a function matassign
is defined with a parameter m to define whether or not material should be obtained from
the parameters np of a parent or foster node. Other parameters are the begin and the
end material configuration of the building block node, cba and cbe, respectively.

Function matassign: B × P(C × P(M))×P(C × P(M))×(P(C)×P(M)*)2 → P(C ×
P(M))×P(C × P(M)) is defined as follows:

matassign(m, cba, cea, np) =































(cba, cea) if ¬m
({(x.0, hd(y.1))|x ∈ cba ∧ x.1 6= ∅ ∧ y ∈ {np.0, np.1} ∧ x.0 ∈ y.0}

∪{x|x ∈ cba ∧ x.1 = ∅}
, {(x.0, hd(y.1))|x ∈ cea ∧ x.1 6= ∅ ∧ y ∈ {np.0, np.1} ∧ x.0 ∈ y.0}

∪{x|x ∈ cea ∧ x.1 = ∅}
)

if m
(4.2)

In case materials are not inherited, the begin and the end material configurations of a new
node are copied from the building block called addition. In case materials are inherited
and (default) material is configured in the node of the addition, the set of material
instances is inherited from the element of the parent node parameter that matches the
involved capability, by taking the first element from the list. If no materials are configured
in a node of the addition, this remains the same for the resulting instantiated material
configuration of that node.

Using the functions defined above, the functions to replace nodes by building blocks
and to insert building blocks can be defined.

Let function replaceone: D2c × N2c × D2c × B → D2c be a function that replaces
in an existing system definition De

2c a parent node ne by an addition Da
2c, taking into

account whether involved materials either or not must be inherited (depending on the
last parameter m). In the sequel, it is assumed that the nodes in the existing system
definition De

2c do not intersect the nodes in the addition Da
2c: N

e
2c ∩N a

2c = ∅. This might
imply renaming of nodes in the addition.

Function replaceone can be defined as follows:
replaceone(D e

2c, n
e,Da

2c,m) = D e′
2c such that D e′

2c = De
2c ∪ Da

2c where De
2c ∪ Da

2c is a
pairwise union of all set definition elements1 except that:

(∀ne′ : ne′ ∈ N a
2c

: (Cbe′
2c(n

e′), Cee′
2c(n

e′)) = matassign(m,Cba
2c(n

e′), Cea
2c(n

e′), Npe
2c(n

e))
∧ ((@na : na ∈ N a

2c : na ∈ anc(ne′) ∨ (na, ne′) ∈ P a
2c)

⇒ (∀n : (n, ne) ∈ P e
2c : (n, ne′) ∈ P e′

2c ∧ (n, ne) /∈ P e′
2c)

∧(∀n : (n, ne) ∈ Pte2c : (n, ne′) ∈ Pte′2c ∧ (n, ne) /∈ Pte′2c))
∧ ((@na : na ∈ N a

2c : na ∈ anc(ne′) ∨ (ne′, na) ∈ P a
2c)

⇒ (∀n : (ne, n) ∈ P e
2c : (ne′, n) ∈ P e′

2c ∧ (ne, n) /∈ P e′
2c)

∧(∀n : (ne, n) ∈ Pte2c : (ne′, n) ∈ Pte′2c ∧ (ne, n) /∈ Pte′2c))
∧ Npe′

2c(n
e′) = Npe

2c(n
e)

∧ ne′ ∈ Nre′
2c(n

e)
)

(4.3)

1As N e

2c
∪N a

2c
, this can be defined similarly for definition elements which are functions.

72 Chapter 4. Reaction scenarios including exception recovery

The system definition that results from function replaceone is the same as the union of the
existing system definition and the addition, except for the assignment of involved material
and the (strong) inheritance of precedence relations and parameters from the replaced
parent node. The assignment of involved material is taken care of by function matassign.
Concerning precedence relations, all top front nodes in the addition (i.e. at the top of
the node hierarchy and the front of the precedence graph) inherit the (tied) precedence
edges to the parent node, whereas all top rear nodes inherit the (tied) precedence edges
from the parent node. The precedence edges to and from the parent node are deleted.
Note that weak precedence inheritance can be useful, but this is not explained in this
chapter. Furthermore, the nodes added are instantiated as children of the parent node.

Using this, function replaceall: D2c × P(N2c) ×D2c × B → D2c can be defined recur-
sively:

replaceall(D e
2c, N

er,Da
2c,m) =







De
2c if N er = ∅

replaceall(replaceone(D e
2c, n

er,Da
2c,m), N er\{ner},Da

2c,m) if
N er 6= ∅
∧ ner ∈ N er

(4.4)

To replace all nodes in an existing system definition De
2c with a behavior that is in a set

of behaviors br and for which condition checks cr hold in some system state by some addi-
tion Da

2c, whether or not inheriting involved materials (depending on m), the following ex-
pression can be used: replaceall(D e

2c, nodestobehandled(D e
2c, br, cr, systemstate),Da

2c,m).

Let function insertone: D2c ×N2c ×D2c ×B×B×B×P(B) → D2c be a function that
inserts in an existing system definition De

2c before or after a foster node ne (depending
on b, see system definition below) an addition Da

2c. It takes into account whether involved
materials must be inherited from ne (depending on m), and whether the precedence
relation to the foster must be tied (depending on tied). The addition is inserted in between
the foster node and the nodes preceding or succeeding the foster node (depending on b) if
their behavior is in or: the ‘opposite’ nodes. Function insertone can be defined as follows:

insertone(D e
2c, n

e,Da
2c,m, b, tied, or) = D e′

2c such that D e′
2c = De

2c ∪ Da
2c except that:

(∀ne′ : ne′ ∈ N a
2c

: (Cbe′
2c(n

e′), Cee′
2c(n

e′)) = matassign(m,Cba
2c(n

e′), Cea
2c(n

e′), Npe
2c(n

e))
∧(b ∧ (@na : na ∈ N a

2c : na ∈ anc(ne′) ∨ (ne′, na) ∈ P a
2c)

⇒ (ne′, ne) ∈ P e′
2c ∧ (tied ⇒ (ne′, ne) ∈ Pte′2c))

∧(b ∧ (@na : na ∈ N a
2c : na ∈ anc(ne′) ∨ (na, ne′) ∈ P a

2c)
⇒ (∀n : (n, ne) ∈ P e

2c ∧ Npe
2c(n) ∈ or : (n, ne′) ∈ P e′

2c ∧ (n, ne) /∈ P e′
2c)

∧(∀n : (n, ne) ∈ Pte2c ∧ Npe
2c(n) ∈ or : (n, ne′) ∈ Pte′2c ∧ (n, ne) /∈ Pte′2c))

∧(¬b ∧ (@na : na ∈ N a
2c : na ∈ anc(ne′) ∨ (na, ne′) ∈ P a

2c)
⇒ (ne, ne′) ∈ P e′

2c ∧ (tied ⇒ (ne, ne′) ∈ Pte′2c))
∧(¬b ∧ (@na : na ∈ N a

2c : na ∈ anc(ne′) ∨ (ne′, na) ∈ P a
2c)

⇒ (∀n : (ne, n) ∈ P e
2c ∧ Npe

2c(n) ∈ or : (ne′, n) ∈ P e′
2c ∧ (ne, n) /∈ P e′

2c)
∧(∀n : (ne, n) ∈ Pte2c ∧ Npe

2c(n) ∈ or : (ne′, n) ∈ Pte′2c ∧ (ne, n) /∈ Pte′2c))
∧Npe′

2c(n
e′) = Npe

2c(n
e)

∧ne′ ∈ Nie′2c(n
e)

)

(4.5)

Function insertone resembles replaceone, except for the precedence relations. In case
the insertion is done before the foster node, all top rear nodes of the addition get a (tied

4.3. Planning 73

if applicable) precedence edge to the foster node. Furthermore, precedence edges are
inherited from the opposite nodes to all top front nodes of the addition. In case the
insertion is done after (not before) the foster node, the precedence edges are instantiated
the other way around.

Using this, function insertall: D2c ×P(N2c)×D2c ×B×B×P(B×B)×P(B) → D2c

can be defined recursively:
insertall(D e

2c, N
ei,Da

2c,m, b, brt, or) =























De
2c if N er = ∅

insertall(insertone(D e
2c, n

ei,Da
2c,m, b, bt.1, or) if N er 6= ∅

, N ei\{nei},Da
2c,m, b, brt, or ∧ nei ∈ N ei

) ∧ bt ∈ brt
∧ bt.0 = Nbe

2c(n
ei)

(4.6)

Here the tuples in brt ⊆ B × B define the behaviors of the foster nodes and whether or
not the precedence relation to the foster node must be tied.

To insert some addition Da
2c in an existing system definition De

2c before or after (de-
pending on b) all foster nodes, whether or not inheriting involved materials (depending
on m), and whether or not in between opposite nodes with behavior in or preceding or
succeeding the foster nodes, the following expression can be used:

insertall(D e
2c, nodestobehandled(D e

2c, {bt.0|bt ∈ brt}, cr, systemstate),D a
2c,m, b, brt, or).

To link the sublives of material instances, first the sublives are extracted from the
system definition using function P2m: D2c × M2c → P(N2c×N 2c). Function P2m is a
function describing for a material m ∈ M2c in a TRS definition De

2c ∈ D2c, a precedence
relation between related nodes without redundant edges:
P2m(De

2c,m) =

{(n, n′)
| (n, n′) ∈ P e

2c

∧{cm.0|cm ∈ Ce2c(n),m ∈ cm.1} = {cm.0|cm ∈ Cb2c(n
′),m ∈ cm.1}

∧¬redundant(n, n′, P e
2c)

}

(4.7)

Here function redundant: N2c×N 2c × P2c → B determines whether a precedence edge
(n, n′) is redundant in a precedence relation P:

redundant(n, n′, P) = (∃n′′ : n′′ ∈ N2c, n
′′ 6= n, n′′ 6= n′ : path(n, n′′, P) ∧ path(n′′, n′, P))

(4.8)
Function path: N2c × N2c × P2c → B used above determines whether there is a path
between two nodes n and n′ in a precedence relation P:
path(n, n′, P) =















true if n ∈ {n′} ∪ anc(n′)
(∃n′′, n′′′: n′′′ ∈ {n} ∪ anc(n), (n′′′, n′′) ∈ P if n /∈ {n′} ∪ anc(n′)

: path(n′′, n′, P)
)

(4.9)

Here, ancestor function anc : N → P(N) gives the nodes in which a certain node is
contained. The set anc(n) is the smallest set satisfying the following conditions:

74 Chapter 4. Reaction scenarios including exception recovery

• if n ∈ Gn(n′) or n ∈ Ln(n′), then n ∈ anc(n);

• if n′ ∈ anc(n) and n′′ ∈ anc(n′) then n′′ ∈ anc(n).

Function linkmat: D2c × B → D2c is a function that links the sub lives of material
instances together in the same order as the associated nodes of primary behavior pb ∈ B.

linkmat(D e
2c, pb) = D e′

2c such that D e′
2c = De

2c except that:

(∀m,n, n′ : m ∈ M e
2c, n, n′ ∈ N e

2c

, (@n′′ : n′′ ∈ N e
2c : (n, n′′) ∈ P2m(De

2c,m) ∨ (n′′, n′) ∈ P2m(De
2c,m))

, (∃n′′, n′′′ : n′′, n′′′ ∈ N e
2c, Nbe

2c(n
′′) = pb,Nbe

2c(n
′′′) = pb

: path(n′′, n′′′, P e
2c) ∧ path(n′′, n, P e

2c) ∧ path(n′, n′′′, P e
2c)

)
: (n, n′) ∈ P e′

2c

)
(4.10)

Function linkbeh: D2c × P(B × B) × B → D2c is a function that links tasks with a
certain behavior together in the same order as the associated nodes of primary behavior
pb ∈ B. The function takes the behaviors in the first elements of the tuples in set
bpr ∈ P(B×B) into account, where the second element of each tuple indicates whether
the behavior concerns pre-processing or post-processing (true or false, respectively).

linkbeh(D e
2c, bpr, pb) = D e′

2c such that D e′
2c = De

2c except that:

(∀b, p, n, n′ : (b, p) ∈ bpr, n, n′ ∈ N e
2c, Nbe

2c(n) = b,Nbe
2c(n

′) = b
, (∃n′′, n′′′

: n′′, n′′′ ∈ N e
2c, Nbe

2c(n
′′) = pb,Nbe

2c(n
′′′) = cb, path(n′′, n′′′, P e

2c)
: (p ∧ path(n, n′′, P e

2c) ∧ path(n′, n′′′, P e
2c))

∨(¬p ∧ path(n′′, n, P e
2c) ∧ path(n′′′, n′, P e

2c))
)

)
: (n, n′) ∈ P e′

2c

)

(4.11)

4.3.3 Automatic planning of the typical example

The planning functions described in the previous subsection enable automatic planning.
In this subsection, automatic planning is illustrated for the typical example order 1.

Planning involves application of the following sequence of planning rules:

1. First, the order node is replaced by an exposure sequence that is generated from
the parameters of the order node using function genes.

The function call looks as follows: replaceall(D e
2c, nodestobehandled(D e

2c, {n1}, {c0}),
genes(Da

2c, false,Np(n1), 2, 2,D ε
2c)), false)

Here:

• De
2c is the existing system definition, containing the node of order 1, n1 at that

moment.

• c0 is a dummy check function that always returns true.

• Da
2c is the system definition of the building block containing one exposure node.

4.3. Planning 75

• D ε
2c is the empty system definition.

2. Then, a ‘load wafer’ is inserted before each node of behavior ‘exp’ that fulfills the
following criteria:

(a) not preceded by a ‘mea’ node yet, and

(b) not preceded by a node of behavior ‘exp’ involving the same wafer, and

(c) the wafer is not present at a chuck yet.

The function call looks as follows:

insertall(D e
2c, nodestobehandled(D e

2c, {
′exp ′}, {ca, cb, cc}, systemstate),

D ‘load wafer′

2c , true, true, {(′exp ′, false)}, {})

Here:

• De
2c is the existing system definition, the result of planning step 1

• ca, cb, cc are the check functions implementing criteria a through c listed above

3. An ‘unload wafer’ is inserted after each node of behavior ‘exp’ that fulfills the
following criteria:

(a) not succeeded by a ‘C2U’ node yet, and

(b) not succeeded by a node of behavior ‘exp’ involving the same wafer.

4. A ‘load reticle’ is inserted before each node of behavior ‘exp’ that fulfills the fol-
lowing criteria:

(a) not preceded by a ‘E2S’ yet, and

(b) not preceded by a node of behavior ‘exp’ involving the same reticle, and

(c) the reticle is not present at the stage yet.

5. An ‘unload reticle’ is inserted after each node of behavior ‘exp’ that fulfills the
following criteria:

(a) not succeeded by a ‘E2S’ yet, and

(b) not succeeded by a node of behavior ‘exp’ involving the same reticle.

6. A ‘preload reticle’ is inserted before each node of behavior ‘E2S’ that fulfills the
following criteria:

(a) not preceded by a ‘R2E’ yet, and

(b) the reticle is not left at an elevator after an earlier expose and reticle unload,
and

(c) the reticle is not present at an elevator yet.

7. A ‘post unload reticle’ is inserted after each node of behavior ‘S2E’ that fulfills the
following criteria:

76 Chapter 4. Reaction scenarios including exception recovery

0 1 5 0 3 0 0 4 5 0 6 0 0 7 5 0

 T 0
 D 0
 U 0
 A 0
 L 0
 C 0
 C 1
 O 0
 S 0
 E 1
 E 0
 R 0
 B 0
 I 0
 P 0

T i m e [s e c]

Re
sou

rce
s

G a n t t c h a r t
R e t A
R e t B
W a f 1
W a f 2
N o M a t

Figure 4.6: Schedule for typical order 1

(a) not succeeded by a ‘E2R’ yet, and

(b) not needed for a later ‘exp’, and

(c) the reticle is not present at an elevator yet.

Note: these rules are sufficient for this example, and the other examples in this
chapter. To avoid violation of the material capacity of the elevators in all situations,
additional rules for reticle pre loads and post unloads should be added.

8. The material sublives are linked together around the exposure sequence using
linkmat(D e

2c,
′ exp ′).

9. Precedence edges between consecutive nodes of the same behavior are added using

linkbeh(D e
2c, {(

′P2R′, true), (′E2S ′, true), (′T2A′, true), (′D2T ′, false)}).

10. The construction system definition is converted into an instantiated unselected sys-
tem definition.

The result of these ten planning steps matches Fig. 4.5. In Fig. 4.6, a schedule for
order 1 is shown.

4.4. Reaction to triggers 77

Resources

Dispatching

Timing

Selecting

Instantiating

schedule

plan

time

timed

selected

instantiated

uninstantantiated

Supervisory Machine Control

orders

tasks

Predicting

unselected

untimed

TRS framework

Figure 4.7: SMC reaction functionality framework

4.4 Reaction to triggers

Whereas Chapters 2 and 3 ([11, 12]) and the previous section describe the transformation
functionalities of the layered TRS framework depicted in Fig. 4.1, this section describes
how the TRS framework can be embedded in SMC. Such an SMC framework is shown in
Fig. 4.7. SMC must react to triggers from its environment. These triggers can originate
from the user as well as from the machine resources (feedback) and may require revision
of the schedule. In the first subsection, the involved functionalities and definitions of the
SMC framework are summarized. The other subsections describe the reaction to several
types of triggers. Two categories of triggers originate from the machine resources: current
work delays, and exceptions occurring. The other category originates from the user: new
work arrives. Reaction implies translation of the triggers into a revised schedule, using
the functionalities and definitions of the first subsection.

4.4.1 Framework

The SMC framework consists of two parts: predicting and dispatching. The predicting
part accomodates the predictive scheduling functionality, that translates triggers into
schedules. The dispatching part is the real-time part, that connects the predictive part
to the resources. The main functionality of this part is dispatching the scheduled tasks
to the resources. In the predictive part, the layered TRS framework is embedded (see the
dashed box), which is implemented by three transformation functions: plan, schedule, and
time. The plan function is explained in the previous section and implements the instanti-

78 Chapter 4. Reaction scenarios including exception recovery

ating transformation. The time function implements the timing transformation, whereas
the schedule function implements both the selecting and the timing transformations, as
explained in Chapters 2 and 3 ([11, 12]).

An important requirement is avoidance of control overhead. Therefore, reaction or
predicting activity should take place in the shadow of real-time activity if possible. For
this reason, the part of the schedule being executed in the dispatcher that can run in
parallel with reaction activities to adapt the schedule is not revised. When following the
complete trajectory from the arrival of an order up to the moment at which the work is
finished, the following phases of the work are distinguished:

• Work Ordered, WO.

• Work Planned, WP.

• Work Scheduled, WS.

• Work to be Dispatched, WD: this is the part of the work that is not yet in progress,
but is scheduled to be in progress (safe bound) after reaction activity (including
ties). Reaction takes place in the (time) shadow of the execution of WD.

• Work In progress, WI.

• Work Executed, WE.

• Work Finished, WF: this is the part of the work executed that does not matter
anymore: all successors of this part of the work are executed. This ‘history’ is not
required for control anymore and can be removed.

A scheduled task (D0) can be in WS, WD, WI, WE, or WF, whereas nodes in a
plan (D2,D2c) can also be in WO or WP. By convention, the phases concerned in part
of a definition are denoted in superscript, e.g. Did

0 denotes the part of a schedule (0 in
subscript) that is in process or will be dispatched (id in superscript).

In this section, we use a plan function without any configuration parameters, thus ab-
breviating the functionality of the previous section: plan(initstate,D2c) = Dp

2 . Further-
more, we use a schedule and a time function that have a history schedule Dh

0 as a param-
eter. This history schedule is needed to avoid violation of precedence relations crossing
the initial state (time contour): schedule(Dh

0 , initstate,D t
2,D2) = (Ds

0 ,D
s
1 , endstate).

Here, D2 is the (unselected) definition of the work to be scheduled, and D t
2 is the

total definition concerning both the history schedule and the work to be scheduled:
time(Dh

0 , initstate,D t
1,D1) = (Ds

0 , endstate). Here D1 is the (selected) definition of the
work to be timed, and D t

1 is the total selection concerning both the history schedule and
the work to be timed.

Moreover, we need partitions of total system definitions as parameters for the plan,
time and schedule functions, depending on the required phases. To this end, we use
extraction functions to extract from total definitions the partition concerning a certain
set of nodes. For the purpose of this chapter, we only give the format of the extraction
functions:

• extract2c is a function that extracts from an unselected TRS definition D2c the part
that is related to a set of nodes N : extract2c(D2c,N) = De

2c.

• extract2 is a function that extracts from an unselected TRS definition D2 the part
that is related to a set of nodes N : extract2(D2,N) = De

2 .

4.4. Reaction to triggers 79

• extract1 is a function that extracts from a selected TRS definition D1 the part that
is related to a set of tasks T : extract1(D1,T) = De

1 .

• extract0 is a function that extracts from a timed TRS definition D0 the part that is
related to a set of tasks T : extract0(D0,T) = De

0 . A TRS definition D0 consists of
two types of tasks: core tasks and setup tasks. Core tasks also exist in the higher
TRS definition levels, and setup tasks are added to make sure that the physical
resource end states of tasks match the resource start states of consecutive tasks.

4.4.2 Current work delays

Due to several reasons, the actual duration of tasks can differ from the scheduled predicted
durations. To be robust for that, three guards are checked before dispatching a task:

1. Is the task start time reached?

2. Are the involved resources idle?

3. Are the preceding tasks finished?

The first guard ensures that there is no effect of tasks taking less time for the rest
of the actual execution. However, tasks taking more time than scheduled can cause the
scheduled prediction to be out of sync with actual execution. In Fig. 4.8, this effect is
illustrated for a delay of the inspection of reticle RA in order 1. The scheduled timing is
depicted at the resources with a ’ s’ extension, whereas the actual timing is depicted at
the resources without extension.

The fact that the remaining predicted schedule is out of sync with reality may result
in violations of time window constraints [12] or suboptimality. Therefore, the actual
finish of the delayed task could form a trigger for revision of the schedule. In Fig. 4.8,
the trigger time, tt, and the (worst case) duration of the reaction, tr, are depicted with
vertical lines. The tasks scheduled to start before the finish of the reaction form the work
to be dispatched (WD in Fig. 4.8), which is not revised. The work scheduled (WS in
Fig. 4.8) is withdrawn from the dispatcher and is returned after revision.

Two reaction scenarios are defined for this type of trigger originating from the current
work:

C1a Update current work, re-time

C1b Update current work, re-schedule

Both scenarios consist of two steps:

1. The purpose of the first step is to get a good starting point for revision of the work
scheduled (WS). This is done by re-timing the work up to the work to be dispatched
(a), and accounting for the reaction time (b).

(a) First the work to be re-timed is to be determined, which consists of WI up to
WD. The set of timed tasks covering D id

0 , T id
0 , is determined in three steps:

i. Determine the core tasks after WI that are scheduled to be in progress
after the reaction time, T d

2 (= T d
1):

T d
2 = {t|t ∈ T2\(T

e
0 ∪ T i

0), τS0
(t) < (tt + tr)}.

80 Chapter 4. Reaction scenarios including exception recovery

0 1 5 0 3 0 0 4 5 0 6 0 0 7 5 0

 S 0
 S 0 _ s
 E 1
 E 1 _ s
 E 0
 E 0 _ s
 R 0
 R 0 _ s
 B 0
 B 0 _ s
 I 0
 I 0 _ s
 P 0
 P 0 _ s
R e a c t

T i m e [s e c]

Re
sou

rce
s

G a n t t c h a r t
R e t A
R e t B
N o M a t

r e a c t i o n t i m e t rt r i g g e r t i m e t t

W F / W E W IW D W S

Figure 4.8: Inspection of reticle A delays

ii. Determine the core tasks T t
2 that are tied to T e

0 ,T i
0, or T d

2 :
T t

2 = {t|t ∈ T2, (∃t′ : t′ ∈ (T e
0 ∪ T i

0 ∪ T d
2) : path(t′, t, P t2))}.

iii. Include the setup tasks T idt
0 in between T e

0 ,T i
0,T

d
2 , and T t

2:
T idt

0 = {t|t ∈ T0, (∃t′, t′′: t′ ∈ (T e
0 ∪ T i

0 ∪ T d
2), t′′ ∈ (T d

2 ∪ T t
2)

: path(t′, t, P1) ∧ path(t, t′′, P1))}.
Then T id

0 = T i
0 ∪ T d

2 ∪ T t
2 ∪ T idt

0 .
With time(D e

0 , Estate,D1,D
id
1) the work up to WD is re-timed, where:

• De
0= extract0(D0,T

e
0);

• Estate is the state after WE;
• D1 contains at least WE till WD (As WS is also allowed no extraction

is needed);
• D id

1 = extract1(D1,T
id
0).

(b) As the work thereafter can never start earlier than (tt + tr), the state after
this work is to be updated with respect to the finish contour:

Dstate’ = Dstate except that (∀r : r ∈ R : finish(r) = max(finish(r),tt + tr)).

2. The purpose of the second step is to re-time (C1a) or re-schedule (C1b) the work
scheduled.

C1a With time(D id
0 ,Dstate ′,D1,D

s
1) the rest of the current work is re-timed, where:

• D id
0 = extract0(D0,T

id
0);

• Dstate′ is the state after WD including reaction time, resulting from
step 1;

4.4. Reaction to triggers 81

0 1 5 0 3 0 0 4 5 0 6 0 0 7 5 0

 S 0
 S 0 _ s
 E 1
 E 1 _ s
 E 0
 E 0 _ s
 R 0
 R 0 _ s
 B 0
 B 0 _ s
 I 0
 I 0 _ s
 P 0
 P 0 _ s
R e a c t

T i m e [s e c]

Re
sou

rce
s

G a n t t c h a r t
R e t A
R e t B
N o M a t

Figure 4.9: Updated schedule after delay

• Ds
1 = extract1(D1, (T0\(T

e
0 ∪ T id

0))).

C1b With schedule(D id
0 ,Dstate ′,D2,D

s
2) the rest of the current work is re-scheduled,

where:

• Ds
2 = extract2(D2, {n|n ∈ N2\(anc(T e

0 ∪ T id
0) ∪ T e

0 ∪ T id
0)}).

Fig. 4.9 shows the revised schedule that is in sync with reality again.

4.4.3 New work arrives

At any time, the user can give triggers involving new work, or revision of the current work.
Allowed revision of the current work concerns removal or shuffling priorities of orders that
are predicted, but not yet in process. Therefore, such revision triggers can be handled
by deleting the corresponding prediction and adding new work. In this subsection, the
reticle view on another example order (order 2) is used for illustration. This trigger is
received at time = 550 [sec], and requests exposure of two wafers according to the ‘ABBA’
pattern again, but now with reticles RB and RC, respectively.

To react on triggers from the user implying adding new work, six reaction scenarios
are defined:

N1a Add new work without current work. The machine is idle when the new work is
added. This case is explained in the previous section.

82 Chapter 4. Reaction scenarios including exception recovery

0 150 300 450 600 750 900 1050 1200 1350 1500

 R0

 E1

 E0

 R0

 B0

 I0

 P0

React

Time [sec]

R
es

ou
rc

es
Gantt chart

Ret A
Ret B
Ret C
No Mat

Figure 4.10: Schedule after adding work of order 2

N1b Add new work with current work, no revision of current work. In this case, previ-
ously ordered work is still being executed, but its schedule is not revised.

N2a Add new work, re-time current work. In this case, part of the previously ordered
work is re-timed such that actual execution is in sync with the schedule again.

N2b Add new work, re-schedule current work. In this case, part of the previously ordered
work is re-scheduled together with the new work.

N3a Add new work, re-plan current work. In this case, part of the previously ordered
work is re-planned together with the new work.

N3b (potentially) Add new work, re-order current work. In this case, part of the previ-
ously ordered work is re-ordered together with the new work. This way, orders can
be skipped and their priority can be changed.

Scenario N1a is described in the previous section. Scenario N1b, add new work with
current work has two steps:

1. The plan for the new work (order 2), D p
2 , is determined from the state after the

current scheduled work Sstate and the order definition D o
2c:

Dp
2 = plan(Sstate,D o

2c).

4.4. Reaction to triggers 83

The resulting precedence graph for order 2 is similar to the precedence graph for
order 1 in Fig. 4.5, with wafer W1 and W2 replaced by W3 and W4, and reticle
RA and RB replaced by RB and RC, respectively.

2. The schedule for the new work is determined as follows2:

schedule(∅, Sstate,D p
2 ,Dp

2).

In Fig. 4.10, the schedule resulting from this reaction for the example trigger is
depicted.

Scenarios N2a and N2b (N2): add new work, re-time or re-schedule current work, are
a combination of C1 and N1, involving three steps.

1. First, a scheduling step as described for the C1 scenarios is performed.

2. Besides this, a plan step consisting of two sub steps is done:

(a) Insert the new order (no) after the existing plan, resulting in D eids&no
2c

(b) Plan the result D eids&np
2 = plan(Fstate,D eids&no

2c), where Fstate is the state
after WF.

3. Here, a distinction is to be made between cases N2a and N2b.

N2a The remainder of the current work is re-timed like in the second step of C1a:

(Ds
0 , Sstate) = time(D id

0 , Dstate,D eids&np
2 ,Ds

1).

Subsequently, the new work is scheduled:

schedule(D ids
0 , Sstate,D eids&np

2 ,Dnp
2).

The schedule resulting from this reaction is equal to Fig. 4.10, as re-timing
had no effect.

N2b In case N2b, the remainder of all work is re-scheduled:

schedule(D id
0 ,Dstate,D eids&np

2 ,Ds&np
2).

In Fig. 4.11, the schedule resulting from this reaction for the example trigger
is depicted. This schedule is finished earlier than the schedule in Fig. 4.10, as
the two orders are interweaved now during rescheduling.

In the N3 scenarios: add new work, re-plan or re-order current work, besides the work
that will not be rescheduled as it remains in the dispatcher (up to WD), there is work
that will not be replanned. This is the part of the work scheduled that is generated using
the same planning step as work that is in the work up to WD. We call this part of the
work scheduled the initiated work scheduled. For the example, the status of the nodes in
the precedence graph at the arrival of order 2 is depicted including the initiated part of
WS, WS-I.

To differentiate the initiated nodes in WS, we define some functions. Let nodeeid :
(N2c, T

eid
0 ,D2c) → B be a function that determines whether a node n is an executed, in

progress or to be dispatched task, or an ancestor of one, or a parent of nodes that all are:

2Assumption: no intra-resource precedence relations between current and new work.

84 Chapter 4. Reaction scenarios including exception recovery

0 150 300 450 600 750 900 1050 1200 1350 1500

 R0

 E1

 E0

 R0

 B0

 I0

 P0

React

Time [sec]

R
es

ou
rc

es
Gantt chart

Ret A
Ret B
Ret C
No Mat

Figure 4.11: Schedule after rescheduling with work of order 2

nodeeid : (n, T eid
0 ,D2c) = (n ∈ T eid

0

∨ n ∈ anc(T eid
0)

∨ Nr2c(n) 6= ∅ ∧ (∀n′ : n′ ∈ Nr2c(n) : nodeeid(n′)}
)

(4.12)

Let nodeinit : (N2c, T
eid

0 ,D2c) → B be a function that determines whether a node n is
initiated, defined by:

nodeinit(n, T eid
0 ,D2c) =

(∃n′ : n′ ∈ Nr2c(n) ∪ Ni2c(n) : nodeeid(n′, T eid
0) ∨ nodeinit(n′, T eid

0))
∨ (∃n′, n′′ : n ∈ Nr2c(n

′) ∪ Ni2c(n
′), n′′ ∈ Nr2c(n

′) ∪ Ni2c(n
′)\{n}

: nodeeid(n′′, T eid
0) ∨ nodeinit(n′′, T eid

0)
)

∨ (∃n′ : n ∈ Ni2c(n
′) : nodeeid(n′, T eid

0))
∨ (∃n′ : n′ ∈ succ(n) : nodeinit(n′, T eid

0))

(4.13)

Then N eid
2c can be defined by: N eid

2c = {n|n ∈ N2c, nodeeid(n, T eid
0 ,D2c)}, and the initiated

nodes, N init
2c , can be defined by: N init

2c = {n|n ∈ N2c\N
eid
2c , nodeinit(n, T eid

0 ,D2c)}.

Using this, the add new work, re-plan (N3a) or re-order (N3b) current work trigger
can be handled in three steps (like N2):

4.4. Reaction to triggers 85

E2S

RA

R2E

RA

I2R

RA

Ins

RA

R2I

RA

P2R

RA

� �
E2S

RB

� �
� �

R2E

RB

I2R

RB

Ins

RB

R2I

RB

P2R

RB

S2E

RA

S2E

RB

E2R

RB

R2P

RB

� �
E2S

RA

S2E

RA

E2R

RA

R2P

RA

exp

W1/RA

� �
� �

exp

W1/RB
�

�
exp

W2/RB

� �
� �

exp

W2/RA

WE

	 	
WP

WD

� �
WS-I

WS

st?

RA

st?

RB

Figure 4.12: Node phase at arrival of order 2

1. A scheduling step as described for the C1 scenarios is performed.

2. Besides this (not necessarily after), a plan of the remainder is derived in four sub-
steps:

(a) Derive the work up to the initiated work using extract2c(D2c,N
eid
2c ∪ N init

2c)

(b) Insert after the initiated work the non-initiated order nodes of the current
work D co

2c (see N2 - step 2a): N o
2c\N

eid
2c \N init

2c . If required (N3b) in another
precedence order.

(c) Insert after this the new orders Dno
2c (if any).

(d) Plan the result: D eid&init&cp&np
2 = plan(Fstate,D eid&init&co&no

2c), where Fstate
is the state after WF. This step is visualized in Fig. 4.13.

3. Schedule the result of step 2:

schedule(D id
0 , Dstate′,Deid&init&cp&np

2 ,D init&cp&np
2).

In Fig. 4.14, the schedule resulting from this reaction scenario for the example
trigger is depicted. This schedule finishes earlier than the schedule in Fig. 4.11, as
the post unload and pre load of reticle RB are skipped now during replanning.

86 Chapter 4. Reaction scenarios including exception recovery

E2S

RB

E2S

RC

R2E

RC

I2R

RC

INS

RC

R2I

RC

P2R

RC

S2E

RB

S2E

RC

E2R

RC

R2P

RC

E2S

RB

S2E

RB

E2R

RB

R2P

RB

S2E

RB

E2S

RA

S2E

RA

E2R

RA

R2P

RA

exp

W2/RB

exp

W2/RA

exp

W3/RB

exp

W3/RC

exp

W4/RC

exp

W4/RB

order

2

E2S

RA

exp

W2/RB

exp

W2/RA
 plan

st?

RA

Figure 4.13: Precedence graph before and after replanning with work of order 2

4.4.4 Exceptions occur

Besides the nice weather triggers addressed before, things can also go wrong: exceptions
can occur, implying that tasks in the current work fail. Depending on the nature of
the failure cause, recovery is or is not possible. Exceptions originating from a defective
machine or material in general cannot be recovered. However, many exceptions can be
recovered. Although SMC cannot affect the cause of such exceptions, it can affect the
effect of them and avoid production loss by automatic recovery. This subsection explains
how recovery reaction scenarios can be implemented using the same functionality as
reaction to nice weather triggers.

The wafer view on another order (order 3) is used for illustration. This order is
received at time = 1050 [sec] and requests to expose six wafers (wafer W5 through W10)
with one reticle (RD). The schedule for this order is depicted in Fig. 4.15. The measure
task of wafer 7 fails. The status of the nodes at that moment is depicted in Fig. 4.16.

There is a fair chance that this exception can be recovered by re-aligning the wafer.
The alignment unit can be reached via the unload robot, using the ‘U2A’ behavior that
is depicted as a dashed arrow in Fig. 4.2. The FIFO (First In, First Out) requirement
states that wafers must leave the machine in the same order as the order in which they
entered the machine. If the wafers that entered the machine after W7 follow W7 to also

4.4. Reaction to triggers 87

0 150 300 450 600 750 900 1050

 R0

 E1

 E0

 R0

 B0

 I0

 P0

React

Time [sec]

R
es

ou
rc

es
Gantt chart

Ret A
Ret B
Ret C
No Mat

Figure 4.14: Schedule after replanning with work of order 2

make a cycle, this requirement is met.
To recover from an exception by recovery, three steps are to be performed:

1. If the dispatcher receives a trigger that a task has failed, it stops dispatching. The
failure message is accompanied by an exception code. The dispatcher waits till the
work in process is executed and gathers other exception codes from other tasks that
fail, if any.

2. Using the exception information xinfo: the set of failed tasks, their exception codes
and the system state, the remaining work scheduled (WS) is replanned to process
the recovery:

Drec
2 = recplan(xinfo,D s

2c).

The recovery plan function recplan uses a database that maps the exception infor-
mation onto plan rules and building blocks. In the example case, the plan rules
come down to insertion of a recovery building block defining the extra cycle before
the remaining lives of wafers W7, W8, and W9. The cycle recovery building blocks
can be generated from the cycle building block depicted in Fig. 4.17. Generation
comes down to removing the precedence edge that leads to the task that transports
the wafer from their current capability to the next capability involved in the cycle,
as depicted in Fig. 4.17 for the involved wafers. The generation function that imple-
ments this, function gencrbb, is shown in the appendix. Furthermore, the measure

88 Chapter 4. Reaction scenarios including exception recovery

1050 1200 1350

 T0

 D0

 U0

 A0

 L0

 C0

 C1

React

Time [sec]

R
es

ou
rc

es
Gantt chart

Waf 5
Waf 6
Waf 7
Waf 8
Waf 9
Waf 10
No Mat

Figure 4.15: Schedule of order 3

exp

W5

exp

W6

exp

W7

exp

W8

T2A

W5

A2L

W5

L2C

W5

mea

W5

C2U

W5

U2D

W5

D2T

W5

Ali

W5

T2A

W6

A2L

W6

L2C

W6

mea

W6

Ali

W6

C2U

W6

U2D

W6

D2T

W6

T2A

W7

A2L

W7

L2C

W7

mea

W7

Ali

W7

T2A

W8

A2L

W8

L2C

W8

mea

W8

Ali

W8

C2U

W7

U2D

W7

D2T

W7

C2U

W8

U2D

W8

D2T

W8

exp

W9

exp

W10

T2A

W9

A2L

W9

L2C

W9

mea

W9

C2U

W9

U2D

W9

D2T

W9

�
Ali

W9

T2A

W10

A2L

W10

L2C

W10

mea

W10

Ali

W10

C2U

W10

U2D

W10

D2T

W10

fail

WP

WS

WE

Figure 4.16: Exception: measure of wafer 7 fails

4.5. Conclusions 89

task for W7 must be added3.

3. There are two possibilities to get a revised schedule including recovery.

C2a One scenario is to only schedule the recovery part, and to re-time the remainder
of the old schedule. However, this scenario cannot be applied straightforwardly
in the example case, as the system’s material configuration after the recovery
part can differ from the system’s material configuration before recovery: wafers
W7 through W9 can reside at the other wafer chuck.

C2b A safe scenario is to schedule the entire result of step 2:

schedule(∅, Xstate′,D rec
2 ,D rec

2), which leads to the schedule depicted in Fig.
4.19.

The revised TRS definition that results after the three insertions is depicted in
Fig. 4.18. Also in [10] a database is used to determine schedule revisions, but here
job modification is not covered. The final steps of scenarios C1a and C2a can be classi-
fied as ‘schedule repair’, whereas scenarios C1b and C2b can be classified as ‘complete
regeneration’ [22].

4.5 Conclusions

Predictive scheduling is an appropriate approach for scheduling in complex manufacturing
machines, as shown in Chapters 2 and 3 ([11, 12]. SMC should be reactive to handle the
triggers it receives from its environment. Reactive SMC embedding predictive scheduling
requires translation of triggers into scheduling problem instances, which is described in
this chapter.

Unlike, for instance, in job shop scheduling, the instantiation of a scheduling problem
in a complex manufacturing machine is not straightforward. A rule-based instantiating
or planning functionality is explained. Defining planning rules is intuitive as it allows to
take the primary manufacturing process as the central axis, and to subsequently wrap
the secundary manufacturing processes around this axis. Also drilling down coarse man-
ufacturing steps into steps of a finer grain size is possible.

An SMC framework is described that embeds the layered TRS framework in the form
of TRS translation functions. Several methods or scenarios to react to different types of
control triggers are described using these translation functions. For the ‘nice weather’
triggers of type ‘current work delays’ and ‘new work arrives’ it is important to avoid con-
trol overhead. This is done by making sure that reaction takes place in parrallel with the
manufacturing processes if possible. For control triggers involving exceptions it is more
important to ensure robust recovery rather than to avoid control overhead. Therefore, re-
action to exceptions is sequential. A database provides the necessary information to plan
recovery ‘patches’ in the old scheduling problem instance. Basically, exception recovery
uses the same transformation functions as the ‘nice weather’ triggers mentioned before,
which is an elegant characteristic. The framework extends several approaches found in
literature [19, 21, 22, 24], which do not consider job construction and modification.

3Although this is not the case in the example, a redundant ‘Ali’ node can result, which must be
removed then.

90 Chapter 4. Reaction scenarios including exception recovery

Ali

A2L
 L2C

C2U
U2A

W9

W8

W7

Figure 4.17: Cycle building block

exp

W7

exp

W8

C2U

W6

U2D

W6

D2T

W6

U2A

W7

A2L

W7

L2C

W7

mea

W7

Ali

W7

U2A

W8

A2L

W8

L2C

W8

mea

W8

Ali

W8

C2U

W7

U2D

W7

D2T

W7

C2U

W8

U2D

W8

D2T

W8

exp

W9

exp

W10

U2A

W9

A2L

W9

L2C

W9

mea

W9

C2U

W9

U2D

W9

D2T

W9

Ali

W9

T2A

W10

A2L

W10

L2C

W10

mea

W10

Ali

W10

C2U

W10

U2D

W10

D2T

W10

C2U

W7

C2U

W8

L2C

W8

C2U

W9

L2C

W9

A2L

W9

Figure 4.18: Exception recovery: cycle wafers 7 through 9

4.5. Conclusions 91

1050 1200 1350 1500

 T0

 D0

 U0

 A0

 L0

 C0

 C1

React

Time [sec]

R
es

ou
rc

es
Gantt chart

Waf 5
Waf 6
Waf 7
Waf 8
Waf 9
Waf 10
No Mat

Figure 4.19: Exception recovery: cycle wafers 7 through 9

The SMC framework can be applied in a broad variety of settings. Besides applica-
tion of one central controller, composition of a hierarchical architecture of controllers is
possible. In this case, the tasks of a master controller are the orders for slave controllers
(see Fig. 4.7). Note that this hierarchy can also be expressed in the configuration of a
single central controller.

The following open issues remain. The combination of all possible things that can go
wrong with all material in all possible states at all possible locations implies an exploding
number of exceptional states. Although in some exceptions generating functions can be
applied to generate the required exception ‘patches’, it is practically impossible to fill a
recovery database for all possible exceptions. Ad-hoc search for exception recoveries is
subject of current research.

Acknowledgments

The authors would like to acknowledge Robert Dumont for his help with the case.

92 Chapter 4. Reaction scenarios including exception recovery

Appendices

Generate exposure sequence

For the purpose of the exposure pattern case, the parameters are a tuple of tuples con-
taining a set of capabilities and a list of material instance sets.

Np2c: N2 →(P(C)×P(M)*)2 is an additional element giving the parameters of the
nodes.

Let function addone : D2c×D2c×(P(C)×P(M)∗)2 → D2c be a function that adds after
an existing system definition De

2c a basic system definition Da
2c, with materials inherited

from np. Function addone can be defined as follows:
addone(D e

2c,D
a
2c, np) = D e′

2c such that: D e′
2c = De

2c ∪ Da
2c except that:

(∀ne′ : ne′ ∈ N a
2c

: (Cbe′
2c(n

e′), Cee′
2c(n

e′)) = matassign(true, Cba
2c(n

e′), Cea
2c(n

e′), np)
∧((@na : na ∈ N a

2c : na ∈ anc(ne′) ∨ (na, ne′) ∈ P a
2c)

⇒ (∀ne: ne ∈ N e
2c, (@n : n ∈ N e

2c : n ∈ anc(ne) ∨ (ne, n) ∈ P e
2c)

: (ne, ne′) ∈ P e′
2c

)
)

∧Npe′
2c(n

e′) = ((np.0.0, [hd(np.0.1)]), (np.1.0, [hd(np.1.1)]))
)

(4.14)

Using this, function genes : D2c ×B× (P(C)×P(M)∗)2 ×N×N×D2c → D2c can be
defined recursively. The genes function is suited to generate an exposure sequence for
a wide range of exposure patterns, for processing wafers in pairs and for any number of
reticles: e.g. patterns A, ABBA, ABAB, ABCABC, AABB, AABBCCDDDDCCBBAA
etc.

genes(Da
2c, prs, np,RpP,WpP,D e

2c) =
{

De
2c if len(np.0.1) = 0

genes(Da
2c, prs, np′, RpP ′,WpP ′, addone(D e

2c,D
a
2c, np)) if len(np.0.1) > 0

(4.15)

Where:

• Da
2c is the basic system definition used for generation, e.g. an exposure task includ-

ing all involved elements.

• prs defines whether wafers are processed per pair or not, e.g. false for ‘ABBA’
(DET) and true for ’AABB’.

• np are the node parameters, e.g. (({WS, PA, ...}, [{W1}, {W2}, {W3}, {W4},
{W5}]), ({RS, Turret, ...}, [{R1}, {R2},{R2}, {R1}])) for a five-wafer lot with
wafers W1 through W5 that must be exposed following the ‘ABBA’ pattern with
reticles R1 and R2.

• RpP is the number of reticles to go from that point to finish this pair of wafers (or
wafer).

• WpP is the number of wafers to go from that point to finish this pair of wafers for
this reticle.

• De
2c is the addition generated up to that point.

In Table 4.1, the variables used in the definition above are summarized.

4.5. Conclusions 93

Table 4.1: Definition of variables used in function genes.
prs len(np.0.1) RpP WpP np′ RpP ′ WpP ′

false > 0 1 1 ((np.0.0, np′

3)
, (np.1.0, np′1)
)

size(el(np.1.1)) 1

false > 0 > 1 1 (np.0
, (np.1.0, np′1)
)

RpP − 1 1

true 1 1 1 ((np.0.0, np′

3)
, (np.1.0

, tl(tl(np.1.1)))
)

RpP 1

true 1 > 1 1 (np.0
, (np.1.0

, tl(tl(np.1.1)))
)

RpP − 1 1

true > 1 > 1 2 ((np.0.0, np′

2)
, (np.1.0, np′1)
)

RpP 1

true > 1 > 1 1 ((np.0.0, np′

2)
, (np.1.0, np′1)
)

1 2

true > 1 1 2 ((np.0.0, np′

3)
, (np.1.0, np′1)
)

RpP 1

true > 1 1 1 ((np.0.0, np′

3)
, (np.1.0, np′1)
)

size(el(np.1.1)) 2

where:
np′1 = tl(np.1.1) ++[hd(np.1.1)]
np′2 = [hd(tl(np.0.1))] ++[hd(np.0.1)] ++tl(tl(np.0.1))
np′3 = tl(np.0.1)

94 References

Generate cycle recovery building blocks

Function gencrbb : D2c×M× C → D2c instantiates for material m residing at capability
ml a cycle recovery building block Da′

2c from the cycle building block Da
2c depicted in

Fig. 4.17. Such a generated building block can replace a general recovery node that is
inserted before the remainder of the plan.

gencrbb(Da
2c,m,ml) = Da′

2c such that: Da′
2c = Da

2c except that:

(∀n, n′ : (n, n′) ∈ P a
2c, Cba

2c(n
′,ml) 6= ∅, Cea

2c(n
′,ml) = ∅

: (n, n′) /∈ P a
2c

)
∧ (∀n, c : n ∈ Na

2c, c ∈ Ia
2c(n)

: (Cba
2c(n, c) 6= ∅ ⇒ Cba′

2c(n, c) = {m})
∧(Cea

2c(n, c) 6= ∅ ⇒ Cea′
2c(n, c) = {m})

)

(4.16)

References

[1] R. J. Abumaizar and J. A. Svestka. Rescheduling job shops under random disrup-
tions. International journal of production research, 35(7):2065–2082, 1997.

[2] ASML, 2004. Information on wafer scanners available through URL
http://www.asml.com/, item: products - lithography.

[3] B. A. Brandin and W. M. Wonham. Supervisory control of timed discrete-event
systems. IEEE Transactions on Automatic Control, 39(2):329–341, 1994.

[4] H. Chen and B. Hu. Schedule-driven supervisory control of flexible manufacturing
systems. In 30th Conference on Decision and Control, pages 2186–2191, 1991.

[5] S. Chung, S. Lafortune, and F. Lin. Limited lookahead policies in supervisory control
of discrete event systems. IEEE Transactions on Automatic Control, 37(12):1921–
1935, 1992.

[6] J. Dorn, R. Kerr, and G. Thalhammer. Reactive scheduling. International journal
of human-computer studies, 42:687–704, 1995.

[7] M. P. Fanti and M. Zhou. Deadlock control methods in automated manufacturing
systems. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems
and Humans, 34(1):5–22, 2004.

[8] P. Gohari and W. M. Wonham. Reduced supervisors for timed discrete-event sys-
tems. IEEE Transactions on Automatic Control, 48(7):1187–1198, 2003.

[9] Y. Li and Z. H. Lin. Supervisory control of probabilistic discrete-event systems with
recovery. IEEE Transactions on Automatic Control, 44(10):1971–1975, 1999.

[10] K. Miyashita and K. Sycara. CABINS: A framework of knowledge acquisition and
iterative revision for schedule improvement and reactive repair. Artificial Intelligence
Journal, 76(1-2):377–426, 1995.

References 95

[11] N. J. M. van den Nieuwelaar, J. M. van de Mortel-Fronczak, N. C. W. M. Braspen-
ning, and J. E. Rooda. Predictive scheduling in complex manufacturing machines:
scheduling alternatives and algorithm. submitted to IEEE TAC.

[12] N. J. M. van den Nieuwelaar, J. M. van de Mortel-Fronczak, N. C. W. M. Braspen-
ning, and J. E. Rooda. Predictive scheduling in complex manufacturing machines:
machine-specific constraints. submitted to IEEE TSM.

[13] N. J. M. van den Nieuwelaar, J. M. van de Mortel-Fronczak, and J. E. Rooda. Design
of supervisory machine control. In K. Glover and J. Maciejowski, editors, Proceedings
of the European Control Conference 2003, 2003. CD-ROM.

[14] D. Ouelhadj, P. I. Cowling, and S. Petrovic. Utility and stability measures for
agent-based dynamic scheduling of steel continuous casting. In IEEE International
Conference on Robotics & Automation, pages 175–180, 2003.

[15] M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Prentice Hall, 1995.

[16] R. G. Qiu and S. B. Joshi. A structured adaptive supervisory control methodology for
modeling the control of a discrete event manufacturing system. IEEE Transactions
on Systems, Man, and Cybernetics – Part A: Systems and Humans, 29(6):573–586,
1999.

[17] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event
processes. SIAM Journal on Control and Optimization, 25(1):206–230, 1987.

[18] A. Ramirez-Serrano and B. Benhabib. Supervisory control of flexible-manufacturing
workcells that allow the production of a priori unplanned part types. In IEEE
International Conference of Systems, Man and Cybernetics, pages 2127–2131, 2000.

[19] I. Sabuncuoglu and M. Bayiz. Analysis of reactive scheduling problems in a job shop
environment. European journal of operational research, 126:567–586, 2000.

[20] S. F. Smith. Is scheduling a solved problem? In G. Kendall, E. Burke, and S. Petro-
vic, editors, Multidisciplinary International Conference on Scheduling : Theory and
Applications(MISTA’03), pages 11–20. ASAP, University of Nottingham, UK, Au-
gust 2003.

[21] E. Szelke and R. M. Kerr. Knowledge-based reactive scheduling. In Proceedings of
the IFIP TC5/WG5.7 international workshop, 1993.

[22] G. E. Vieira, J. W. Herrmann, and E. Lin. Rescheduling manufacturing systems:
a framework of strategies, policies and methods. Journal of scheduling, 6(1):35–58,
2003.

[23] H. H. Wu and R. K. Li. A new rescheduling method for computer based scheduling
systems. International journal of production research, 33(8):2097–2110, 1995.

[24] M. Zweben and M. S. Fox. Intelligent scheduling. San Francisco: Morgan Kaufmann,
1994.

96

CHAPTER

FIVE

EXCEPTION RECOVERY SEARCH IN

COMPLEX MANUFACTURING MACHINES

This chapter contains the paper Exception Recovery Search in Complex Manufacturing
Machines that has been protected in patent application ASML ref. P-1704. The idea
has been filed with the first filing in Europe in October 2003, number 03256456.9. The
paper text is in the subsequent filing of September and October 2004, which is also filed
in Japan (number 2004-286595) and the US.

97

98 Chapter 5. Exception recovery search in complex manufacturing machines

Exception recovery search in complex manufacturing

machines

N.J.M. van den Nieuwelaar †*, J.M. van de Mortel-Fronczak †,
R.J. Dumont †, J.E. Rooda †

Abstract

As the number of exceptional states in a complex manufacturing machine is
very large and buffer space is limited, it is practically impossible to predefine all
exception recoveries. In this chapter, an approach is presented that can be em-
bedded in Supervisory Machine Control (SMC) to ad-hoc, run-time search for an
exception recovery once an exception is encountered. The manufacturing possibili-
ties of the machine are specified by so-called meta-tasks, having pre-conditions and
post-conditions. Pre-conditions define in which states of the machine the meta-task
can successfully be executed, whereas post-conditions define the expected machine
state after execution of the meta-task. A search algorithm is proposed that starts
from an exceptional state and searches for an exception recovery reaching a desired
state using the meta-tasks. The instantiated recovery is formulated in the form of a
scheduling problem that can be scheduled and dispatched afterwards using existing
theory. The approach is illustrated using a representative example of a complex
manufacturing machine: a wafer scanner.

5.1 Introduction

A complex manufacturing machine consists of many mechatronic systems and can process
many different types of products. Supervisory Machine Control (SMC) co-ordinates these
mechatronic systems: it decides when to do which manufacturing tasks using which
mechatronic subsystem resources. Many options exist to deploy the available resources
to perform tasks that lead to the desired manufacturing purpose, resulting in various
machine behaviors. SMC should optimize machine behavior, and what is best may depend
on the characteristics of the product recipe. Furthermore, SMC should properly react to
all kinds of triggers from the environment. A very important trigger is task failure: an
exception, which requires a recovery reaction of SMC to avoid human intervention.

5.1.1 Literature

Many approaches exist to describe a system under supervisory control using well-known
formalisms from computer science. Supervisory control theory (SCT) as discussed by
Wonham et al. [2, 7, 14] models the system under control using Finite State Machines.
The possible behavior of such a system is regarded as a language. A supervisory controller
in the form of a deterministic automaton is synthesized that restricts the language by
disabling a subset of events, to control the system to properly accomplish its task.

† Eindhoven University of Technology: P.O. box 513, 5600 MB Eindhoven, The Netherlands.
* ASML: De Run 6501, 5504 DR Veldhoven, The Netherlands.
Corresponding author: N.J.M. van den Nieuwelaar, e-mail: n.j.m.v.d.nieuwelaar@tue.nl

5.1. Introduction 99

Exception recovery in manufacturing systems described in literature is restricted to lo-
cal recovery. A task is retried at the same resource [8], at another equivalent resource [13],
or recovery is restricted to one product [3, 4, 15]. However, in complex manufacturing
machines it can be the case that in order to recover a previous manufacturing step at
another location in the machine must be executed again. Moreover, getting the product
over there might involve moving other products, as buffer places are limited (in contrast
to what is assumed in [3, 4, 15]).

A predictive-reactive scheduling approach is proposed in Chapter 4 that is also suited
for non-local exception recovery in complex manufacturing machines. It is based on the
predictive scheduling approach presented in Chapters 2 and 3 ([9, 10]) and is therefore
better suited for optimization than SCT-based approaches due to the expressivity for
scheduling alternatives and the use of predictive information. To react to exceptions a
database of predefined recoveries is used.

However, it is practically impossible to define how to recover for all possible exceptions
during design. This is caused by the fact that combination of all possible things that
can go wrong with all material instances in all possible states at all possible locations
implies an exploding number of exceptional states. However, the number of different
manufacturing steps that a machine can perform is not so large. Furthermore, the amount
of computing power on board in complex manufacturing machines is huge. Therefore,
this chapter proposes ad-hoc, run-time search for exception recovery from an encountered
exceptional state.

To search for a path from one location to another one is well-studied in route planning
literature [5]. However, also the other products in the machine must be taken into account.
They can block the path of the product to be recovered, and this blocking can be resolved
by SMC itself. In that sense, the recovery search problem resembles a board game, in
which the location of the pieces also determines which moves are possible [6]. In complex
manufacturing machines not only the moves play a role, but also the manufacturing
process must be taken into account.

5.1.2 Layered task resource system framework

From the SMC point of view, a machine can be considered as a task resource system
(TRS). Tasks can be associated with manufacturing processes, whereas resources can
be associated with mechatronic systems. Transforming a manufacturing request into
machine behavior can be structured in three phases. First, a scheduling problem must
be instantiated from the manufacturing request, taking into account the limitations of
the machine. This transformation is called instantiating. The structure of the resulting
scheduling problem shows many similarities with the job shop scheduling problem [12].
The manufacturing process of a material instance can be associated with a job, whereas
the different parallel mechatronic systems can be associated with the different machines
in a job shop. Subsequently, resources must be assigned to the tasks in the instantiated
scheduling problem in some order, taking into account the fact that resources are able to
perform certain tasks only, and only one at a time. This transformation is called selecting.
The selected order of tasks to be performed by selected resources implies consecutive state
transitions of those resources, which is analogous to the setup times for mode switching
in job shop scheduling. Finally, start and finish times can be assigned to the tasks, taking
into account the speed of the resources. This transformation is called timing.

During the three transformation phases of instantiating, selecting and timing, choices

100 Chapter 5. Exception recovery search in complex manufacturing machines

Instantiating

Selecting

Timing

3:

C:

1:

0:

ro

om
 fo

r c
ho

ic
es

timed

selected
 untimed

A:

2:

B:

instantiated
 unselected

 uninstantiated
TRS

TRS

TRS

TRS

Figure 5.1: Layered Task Resource System framework

must be made. The result of a choice in a certain transformation on the machine behavior
can only be evaluated by performing the consecutive transformations. Therefore, a trans-
formation phase strongly relies on information from subsequent phases. The layered TRS
framework shown in Fig. 5.1 displays the hierarchically related transformation phases as
functionality layers (A through C) and the different TRS definition levels (0 through 3)
as interfaces between the layers (see Chapter 1 and [11]).

5.1.3 Structure of the chapter

The structure of this chapter is as follows. Throughout the chapter, an example of a
complex machine is used for illustration: a dual-stage wafer scanner [1]. Section 5.2 de-
scribes how wafers are processed in such a wafer scanner. Besides nice weather operation,
also the manufacturing steps that can be useful to recover from exceptions are explained.
Section 5.3 defines the starting point of the exception recovery search: the system state
and the uninstantiated TRS definition (see Fig. 5.1). Moreover, capturing of the manu-
facturing steps of the wafer scanner example in such a TRS definition is demonstrated.
In Section 5.4, the instantiating functionality that transforms an uninstantiated TRS def-
inition into an instantiated unselected TRS definition (scheduling problem) is explained.
In case of exception recovery, the instantiating functionality searches for a way to reach
a recovered target state from the exceptional start state, resulting in a recovery in the
form of a scheduling problem. This section addresses the instantiating constraints, state
updating, and a search algorithm that is suited for practical use. Section 5.5 shows
the result of application of the approach for an example exception in the wafer scanner
example. Finally, concluding remarks are presented in Section 5.6.

5.2 Wafer processing in a wafer scanner

In this section, first wafer processing in a wafer scanner is explained. After that, the
result of instantiating is defined: an instantiated, unselected TRS or scheduling problem.
Finally, a scheduling model and a schedule are illustrated using an example order.

5.2.1 Wafer scanner description

The primary manufacturing process of a wafer scanner is the exposure of a mask contain-
ing an IC pattern onto wafers. Fig. 5.2 shows a schematic layout of a dual-stage wafer

5.2. Wafer processing in a wafer scanner 101

C0

(1)

C1

(1)

L0

(1)

U0

(1)

P0

(1)

D0

(1)

T0

(99)

Figure 5.2: Layout

T2P
 P2L
 L2C
 mea
 exp
 C2U
 U2D
 D2T
pre

Figure 5.3: Nice weather life of a wafer

scanner. In this figure, circles depict the mechatronic subsystems or resources regarded
here, and arrows depict the possible transport paths. The number of material instances
(wafers) that a resource can carry is depicted between brackets. At the right side of
the figure, the two wafer chucks that are present in a dual-stage wafer scanner (C0 and
C1) are depicted, that carry the wafer during exposure. As the required accuracy of the
exposure process is very high, any imperfections concerning the wafers must be corrected
for. To be able to do this, wafers are measured at a wafer chuck before being exposed.
There are separate measure and expose areas in the machine. The orientation of the wafer
at a wafer stage is of importance for successful measurement and exposure, whereas the
orientation is unknown when a wafer comes into the machine. Therefore, a pre-alignment
unit (P0) is incorporated. A neighboring machine named track (T0) performs some pre-
processing and post-processing steps, and delivers wafers to the alignment system. A
load robot (L0) transports wafers between the pre-alignment system, the wafer chucks
and the discharge unit. An unload robot (U0) can do the same, but cannot transport
wafers to the wafer chucks. Loading onto and from a chuck is only possible if it is at the
measure area of the machine. From the discharge unit (D0), wafers are picked up by the
track.

The steps in the manufacturing process of a wafer (’life of a wafer’) are as follows.
First, the wafer is transported from the track onto the pre-alignment unit (T2P). Subse-
quently, the pre-alignment takes place (pre). After that, the load robot takes the wafer
from the alignment unit (P2L), and places the wafer onto a chuck (L2C). On the chuck,
the wafer is measured (mea) and, subsequently, exposed (exp). Then, the unload robot
takes the wafer from the chuck (C2U) and puts the wafer onto the discharge unit (U2D).
Finally, the wafer is taken from the discharge unit by the track (D2T). A precedence
graph of the life of a wafer is depicted in Fig. 5.3.

Two types of manufacturing steps can be distinguished in the life of a wafer: process
steps and transport steps. Process steps take place at one location, whereas transport
steps move a wafer from one location to another and are depicted as arrows in Fig. 5.2.
However, Fig. 5.2 contains also dashed arrows. These arrows concern transportation
possibilities that are not involved in the nice weather life of a wafer, but can be useful
for recovery purposes. In any case, it is important that wafers leave the machine in the
same order as they entered it (FIFO).

102 Chapter 5. Exception recovery search in complex manufacturing machines

5.2.2 Scheduling model definition

In Chapter 3 ([10]), the scheduling model of a complex machine with its physical re-
strictions is defined. For the purpose of this chapter, the elements needed for the timing
transformation (see Fig. 5.1) are not relevant. Without them, the scheduling model can
be defined by a 12–tuple:

(T2,R, C, I2,A,P2,Pt2,M, Cb2, Ce2, Rm,Mf):

• T2 is a finite set of elements called tasks.

• R is a finite set of elements called resources.

• C is a finite set of elements called capabilities.

• I2: T2 → P(C) gives the set of capabilities that are involved in a certain task.

• A: C → P(R) gives the set of resources that are available for a certain capability.

• P2 ⊆ T2×T 2 is the precedence relation between tasks.

• Pt2 ⊆ T2×T 2 is the tied precedence relation between tasks.

• M is a finite set whose elements are called material instances.

• Cb2, Ce2: TC → P(M) give the begin and the end material configuration of each
capability involved in a certain task, where TC = {(t, c)|t ∈ T2, c ∈ I2(t)}

• Rm: R → N gives the number of material instances that can reside on a certain
resource.

• Mf ⊆ R → R represents the physically possible material flow as a set of tuples
defining from which resource to which resource material can flow.

5.2.3 An instantiated scheduling model and schedule

The scheduling model in a complex machine can be split into two sections: system-
dependent elements and work-dependent elements. The system-dependent elements can
be instantiated using Fig. 5.2 as follows:

• There are six capabilities: the chuck, the load and unload robots, the alignment
and discharge units, and the track.
C = {C, L, U, P, D, T}.

• There are seven resources: one for each capability, except two wafer chucks:
R = {C0, C1, L0, U0, P0, D0, T0}.

• The available resources for each capability are defined as follows:
A = {(C, {C0, C1}), (L, {L0}), (U, {U0}), (P, {P0}), (D, {D0}), (T, {T0})}.

• The material capacity of the resources is one for each resource, except for the track,
the pod, and the buffer:

Rm ={(C0, 1), (C1,1), (L0,1), (U0,1), (P0,1), (D0,1), (T0,99)}.

• The possible material flow is defined as follows:

Mf = {(T0, P0), (P0, L0), (L0, C0), (L0, C1), . . . }.

As an example, a batch or lot of six wafers, wafer W1 through W6, is processed. The
precedence graph for this lot is depicted in Fig. 5.4. It consists of six wafer lives, of
which the first and the ‘exp’ steps are connected with precedence edges to ensure FIFO
processing. The work-dependent elements for such a lot can be instantiated as follows:

5.3. Uninstantiated system definition 103

W5

A2L

W5

L2C

W5

mea

W5

exp

W5

C2U

W5

U2D

W5

D2T

W6

ali

W6

A2L

W6

L2C

W6

mea

W6

exp

W6

C2U

W6

U2D

W6

D2T

W6

T2A

W5

ali

W5

T2A

W3

A2L

W3

L2C

W3

mea

W3

exp

W3

C2U

W3

U2D

W3

D2T

W4

ali

W4

A2L

W4

L2C

W4

mea

W4

exp

W4

C2U

W4

U2D

W4

D2T

W4

T2A

W3

ali

W3

T2A

W1

A2L

W1

L2C

W1

mea

W1

exp

W1

C2U

W1

U2D

W1

D2T

W2

ali

W2

A2L

W2

L2C

W2

mea

W2

exp

W2

C2U

W2

U2D

W2

D2T

W2

T2A

W1

ali

W1

T2A

Figure 5.4: Initial precedence graph

• T2 = {W1-T2P, W1-pre, . . . , W2-T2P, W2-pre, . . . }.

• I2 = {(W1-T2P, {T, P}), (W1-pre, {P}), . . . }.

• P2 = {(W1-T2P, W1-pre), (W1-pre, W1-P2L), . . . , (W1-T2P, W2-T2P), (W2-T2P,
W2-pre), . . . }.

• Pt2 = {}.

• M = {W1, W2, W3, W4, W5, W6}.

• Cb2 = {((W1-T2P, T), {W1}), ((W1-T2P, P), {}), ((W1-pre, P), {W1}), . . . }.

• Ce2 = {((W1-T2P, T), {}), ((W1-T2P, P), {W1}), . . . }.

A schedule for this lot is shown in Fig. 5.5.

5.3 Uninstantiated system definition

Whereas tasks in an instantiated TRS (see Fig. 5.1) have material instances assigned to
them and a precedence relation, this is not the case for an uninstantiated TRS. Tasks can
be instantiated from so-called meta-tasks. Meta-tasks can be associated with the possible
manufacturing steps described in the previous section. Although there is no precedence
relation between meta-tasks, constraints exist for instantiating meta-tasks, ensuring that
the resulting instantiated TRS definition is feasible. Instantiation of a transport step or

104 Chapter 5. Exception recovery search in complex manufacturing machines

0 25 50 75 100 125 150 175 200 225

Track

Pre−Aligner

Load Robot

Chuck 1

Chuck 2

Unload Robot

Discharge Unit

Time [sec]

R
es

ou
rc

es

setup
material−1
material−2
material−3
material−4
material−5
material−6

Figure 5.5: Initial schedule

meta-task is only possible if there is material available at the ‘from’ location, and there
is enough room at the ‘to’ location. For example: picking up a wafer from the alignment
unit by a robot is only possible if there is a wafer at the alignment unit, and the robot has
no wafer yet. Furthermore, a process can only succeed if a wafer is at the right location
in the right state. For example: measuring an aligned wafer at a wafer chuck.

For the purpose of this chapter, the following is assumed:

1. Resources r, r′ of the same capability c are ‘equivalent’: they have the same mate-
rial capacity (Rm) and logistic connections (Mf). Furthermore, transportation of
material between resources of the same capability is not possible. These constraints
can be defined as follows.

(∀c, r, r′ : c ∈ C, r, r′ ∈ A(c)
: Rm(r) = Rm(r′)
∧(∀r′′ : (r′′, r) ∈ Mf : (r′′, r′) ∈ Mf)
∧(∀r′′ : (r, r′′) ∈ Mf : (r′, r′′) ∈ Mf)
∧(r, r′) /∈ Mf ∧ (r′, r) /∈ Mf

)

(5.1)

As a consequence, a capability can be regarded as a material location.

5.3. Uninstantiated system definition 105

2. The manufacturing phases of a material instance can be expressed using linear,
unit-distant material manufacturing phase identifiers Sm ⊆ N. These identifiers
and their description are as follows for the wafers in the example:

• 0: fresh

• 1: pre-aligned

• 2: measured

• 3: exposed

Under these assumptions, the system state can be defined by Ssys : C → P(M×Sm),
describing for each capability which material instances reside on it and their manufactur-
ing phase. Based on this system state, the definition elements concerning the meta-tasks
of the uninstantiated TRS definition can be formulated:

• T3 is a finite set of uninstantiated tasks or meta-tasks.

• I3: T3 → P(C) gives the set of capabilities that are involved in a certain meta-task.

• Cb3, Ce3: TC → P(N×Sm) give the pre-condition at the beginning and expected
post-condition at the end of a meta-task, where TC = {(t, c)|t ∈ T3, c ∈ I3(t)}. The
conditions are defined by a tuple per involved capability: the number of material
instances involved and their manufacturing phase.

In case of a process meta-task, the number of material instances at the beginning and
their manufacturing phase form the pre-condition for instantiating. The end manufac-
turing phase defines the manufacturing phase of a material instance resulting from the
meta-task, e.g. the pre-alignment meta-task ‘pre’: Cb3(‘pre’, ‘P’) = (1,0), Ce3(‘pre’, ‘P’)
= (1, 1).

In case of a transport meta-task, only the numbers of material instances form the
instantiating pre-condition. The manufacturing phase of material after transport depends
on the manufacturing phase before transport. It remains unchanged if the manufacturing
phase was equal to the required manufacturing phase at the beginning (pre-condition),
and is reset to the end manufacturing phase (post-condition) if not. For example the
conditions of meta-task ‘C2U’ describe that a wafer is transported from a chuck to the
unload robot, and keeps its manufacturing phase only if this was phase 3 (‘exposed’):
Cb3(‘C2U’, ‘C’) = (1, 3), Cb3(‘C2U’, ‘U’) = (0, 0), and that it is reset to 0 if not:
Ce3(‘C2U’, ‘C’) = (0, 0), Ce3(‘C2U’, ‘U’) = (1, 0). So, e.g. a ‘measured’ wafer (phase
< 3) becomes ‘fresh’ (phase 0) when it is transported from a chuck to the unload robot.
Table 5.1 gives an overview of all pre- and post-conditions of the meta-tasks in the
example.

Given the definition elements defining the meta-tasks, the types of meta-tasks can be
derived using function

106 Chapter 5. Exception recovery search in complex manufacturing machines

Table 5.1: Pre-conditions and expected post-conditions.
meta-task , capability (t, c) pre-condition Cb3(t, c) post-condition Ce3(t, c)

(pre, P) (1, 0) (1, 1)
(P2L, P) (1, 0) (0, 0)
(P2L,L) (0, 0) (1, 0)
(L2C,L) (1, 0) (0, 0)
(L2C,C) (0, 0) (1, 0)
(mea,C) (1, 1) (1, 2)
(exp, C) (1, 2) (1, 3)

(S2UR, S) (1, 3) (0, 0)
(C2U,U) (0, 0) (1, 0)
(U2D,U) (1, 0) (0, 0)
(U2D,D) (0, 0) (1, 0)
(L2P,L) (1, 0) (0, 0)
(L2P, P) (0, 0) (1, 0)
(D2U,D) (1, 0) (0, 0)
(D2U,U) (0, 0) (1, 0)
(P2U, P) (1, 0) (0, 0)
(P2U,U) (0, 0) (1, 0)
(U2P,U) (1, 0) (0, 0)
(U2P, P) (0, 0) (1, 0)
(D2L,D) (1, 0) (0, 0)
(D2L,L) (0, 0) (1, 0)
(L2D,L) (1, 0) (0, 0)
(L2D,D) (0, 0) (1, 0)
(C2L,C) (1, 3) (0, 0)
(C2L,L) (0, 0) (1, 0)

mtype : T3 → {′process′,′ transport′} defined as follows:

mtype(t) =

′process′ if

|I3(t)| = 1
∧ (∃c : c ∈ I3(t)

: Cb3(t, c).0 = 1 ∧ Ce3(t, c).0 = 1
∧ Cb3(t, c).1 < Ce3(t, c).1

)

′transport′ if

|I3(t)| = 2
∧ (∃c, c′, n : c, c′ ∈ I3(t), n ∈ N

: Cb3(t, c).0 = n ∧ Cb3(t, c
′).0 = 0

∧ Ce3(t, c).0 = 0 ∧ Ce3(t, c
′).0 = n

)

Note that for this restricted case with only two types of meta-tasks the type identification
could be a function returning a boolean value.

The meta-task definition elements outline the manufacturing possibilities of the sys-
tem, together with the system dependent elements.

5.4. Instantiation of an exception recovery 107

5.4 Instantiation of an exception recovery

Although the number of possible exceptional states of a complex manufacturing machine
is very large, the number of meta-tasks is limited: 14 for the example. This section
explains how this compact TRS definition level 3 can be used to instantiate a recovery,
once an exception is encountered. The instantiation transformation is split in two steps:
a search step and a conversion step. A search algorithm searches for traces of instantiated
meta-tasks that bridge the gap between a given (exceptional) system state and a certain
desired target system state. The conversion converts such a trace into an instantiated
unselected TRS definition of the recovery. After instantiation of the recovery definition
it can be merged with the remainder of the original definition. After scheduling of the
resulting definition (see Chapter 3, [10]), manufacturing can be resumed.

5.4.1 Search algorithm

The search algorithm generates a search graph, starting from the exceptional system state
and aiming to find a recovered target state. The nodes of the graph can be associated
with system states, and the edges with instantiated meta-tasks or tasks. An instantiated
meta-task can be characterized by the meta-task and the involved material instances. A
trace in the search graph can be characterized by a sequence of instantiated meta-tasks:
(T3×P(M))*.

Let function Cm: C → N be a function that determines the number of material
instances that can reside on all resources of a certain capability together.

Cm(c) =
∑

r∈A(c)

Rm(r) (5.2)

Let function E: (C → P(M×Sm)) → P(T3×P(M)) be a function that determines
which tasks including the involved material instances are eligible to be instantiated in a
certain system state:

E (Ssys) =
{ (t,mr) | t ∈ T3,mr ⊆ M
,mtype(t) =′ process′ =⇒ (∃c,m, sm : c ∈ I3(t),m ∈ mr, (m, sm) ∈ Ssys(c)

: sm ≥ Cb3(t, c).1
)

,mtype(t) =′ transport′ =⇒ (∃c, c′ : c, c′ ∈ I3(t)
, Cb3(t, c).0 = |mr|, Ce3(t, c

′).0 = |mr|
,mr ⊆ {ms.0|ms ∈ Ssys(c)}
: |Ssys(c′)| ≤ Cm(c′) − |mr|

)
}

(5.3)
Process-type tasks are eligible to be instantiated if there is a material instance at the
involved capability that is at least at the required manufacturing phase. Transport-type
tasks are eligible to be instantiated if there is enough material available at the ‘from’
capability (c) and enough room at the ‘to’ capability (c′).

Let function updatestate : (C → P(M×Sm)) ×(T3×P(M))→(C → P(M×Sm))
be a function that updates the system state given an instantiated meta-task defined by

108 Chapter 5. Exception recovery search in complex manufacturing machines

updatestate(Ssys, (t,mr)) = Ssys′ such that:

(mtype(t) =′ process′ =⇒ (∀c,m, sm

: c ∈ I3(t),m ∈ mr, (m, sm) ∈ Ssys(c)
: (m, sm) /∈ Ssys′(c) ∧ (m,Ce3(t, c).1) ∈ Ssys′(c)
)

)
∧ (mtype(t) =′ transport′ =⇒(∀c, c′,msr

: c, c′ ∈ I3(t), Cb3(t, c).0 = |mr|, Ce3(t, c
′).0 = |mr|

,msr = {ms|ms ∈ Ssys(c),ms.0 ∈ mr}
: msr 6⊆ Ssys′(c)
∧ (∀ms : ms ∈ msr

: (ms.1 = Cb3(t, c).1 ⇒ ms ∈ Ssys′(c′))
∧ (ms.1 < Cb3(t, c).1
⇒ (ms.0, Ce3(t, c

′).1) ∈ Ssys′(c′)
)

)
)

)
(5.4)

In case of a process meta-task, the manufacturing phase of the involved material is up-
dated. In case of a transport meta-task, the material involved is removed from the ‘from’
capability (c), and added to the ‘to’ capability (c′). The manufacturing phase of the
material involved remains unchanged if the actual manufacturing phase was equal to the
manufacturing phase at the beginning(pre-condition), and is reset to the end manufac-
turing phase (post-condition) if not.

The search algorithm should fulfill some requirements to fit in SMC. Without an
ad-hoc search algorithm, an exception for which no recovery is predefined would imply
an operator intervention. The machine’s down time including manual recovery typically
takes a few hours. Wafer processing cycle time is two orders of magnitude less, as can be
concluded from Fig. 5.5. Automatic recovery by SMC is likely to take an amount of time
which is of the same order. From this, it can be concluded that finding a recovery is most
important, rather than finding a time-optimal (fastest) recovery. However, in general it
is also possible that an exception cannot be recovered automatically as some essential
meta-tasks are simply not under control of SMC.

A breadth-first search algorithm is applied, with a maximum search depth (max d)
to avoid wasting time by fruitless searching. By default, searching stops when the target
state is reached for the first time. The time needed for recovery is expected to be rea-
sonable, as the path consists of a minimum number of tasks. To analyse recovery time
optimization possibilities, it is possible to extend the default search procedure to allow
longer recovery traces than the one found first. The number of additional tasks is param-
eterized by variable (max d diff). In Fig. 5.6 the search algorithm is shown. In step 1,
all eligible tasks are determined using function E. In step 2, the data sets describing the
nodes (states) and edges (instantiated meta-tasks) are updated using function updates-
tate. For each node, the search depth at first visit is recorded. Some pruning rules are
applied to reduce search graph growth:

• New edges are added only if the state reached is new or if the actual search depth
minus the depth at first visit of the reached state does not exceed the maximum

5.4. Instantiation of an exception recovery 109

actual_d: = 0

1. Determine

eligible edges for

all fresh nodes

2. Update edge

and node sets

max_d =

actual_d +

max_d_diff

Start

Stop
actual_d <

max_d?

actual_d:=

actual_d + 1

Target

reached first

time?

yes

no

no

yes

Figure 5.6: Search algorithm

depth difference (max d diff).

• Edges that result in non FIFO machine behavior are not added.

• Edges that close two-node cycles (from state b to a after an edge from state a to b)
are not added.

If necessary, more pruning rules can be added.

If the target state is reached the first time, the maximal search depth is revised such
that searching stops after max d diff more iterations.

5.4.2 Conversion of a search trace into an instantiated, unselected TRS

With a successful recovery trace tr from the search graph, a definition of level 2 can be
generated. Function convert: (T3×P(M)×T 2)*×(T3×P(M))*→ D2 is a function that
performs this conversion.

110 Chapter 5. Exception recovery search in complex manufacturing machines

convert(maptr, tr) =
{

Dε
2 if tr = ε

convert(maptr ++[hd(tr).0, hd(tr).1, t2], tl(tr)) ∪ D′

2 if tr 6= ε
(5.5)

Above, Dε
2 denotes the empty system definition, ε denotes the empty trace, and (t2, D

′

2) =
addtask(maptr, hd(tr)). To convert a found recovery trace tr into a recovery system
definition Drec

2 , the convert function is called with (ε, tr) as argument. The internal
variable maptr is used to record the mapping of the instantiated meta-tasks to tasks and
to determine the task precedence relation.

Function addtask: (T3×P(M)×T 2)*×(T3×P(M))→ (T2×D2) is a function that in-
stantiates for an instantiated metatask t3 a task t2 including its involved material mr to
form an extension for the system definition of level 2, given a map trace maptr defined
by addtask(maptr, (t3,mr)) = (t2, D

′

2) such that:

t2 ∈ T ′

2 ∧ t2 /∈ T2

∧ (∀c : c ∈ I3(t3) : c ∈ I ′

2(t2))
∧ (∀c : c ∈ I3(t3), Cb3(t3, c).0 6= 0 : Cb′2(t2, c) = mr)
∧ (∀c : c ∈ I3(t3), Ce3(t3, c).0 6= 0 : Ce′2(t2, c) = mr)

∧
(∀m,mtr : m ∈ mr,mtr = filtermtr(maptr,m)

: (hr(mtr).2, t2) ∈ P ′

2

)

∧
(∀c, ctr : c ∈ I3(t3), ctr = filterctr(maptr, c)

: capprec(ctr, c, t2,mr) ⊆ P ′

2

)

(5.6)

Above, function filterctr :(T3×P(M)×T 2)* ×C →(T3×P(M)×T 2)* filters the tasks
involving some capability c from a trace maptr, and is defined as follows:

filterctr(maptr, c) =






εif maptr = ε
filterctr(tl(maptr), c) if maptr 6= ε ∧ c /∈ I3(hd(maptr).0)
[hd(maptr)] ++filterctr(tl(maptr), c) if maptr 6= ε ∧ c ∈ I3(hd(maptr).0)

(5.7)

In addition, function filtermtr :(T3×P(M)×T 2)* ×M →(T3×P(M)×T 2)* filters the
tasks involving some material m from a trace maptr, and is defined as follows:

filtermtr(maptr,m) =






ε if maptr = ε
filtermtr(tl(maptr),m) if maptr 6= ε ∧ m /∈ hd(maptr).1
[hd(maptr)] ++filtermtr(tl(maptr),m) if maptr 6= ε ∧ m ∈ hd(maptr).1

(5.8)

Function addtask adds an additional task t2 to the existing definition D2, and assigns
to this task the involved capabilities and the material instances to its begin and end
material configuration. Furthermore, a precedence edge is instantiated from the rear
task of the material lives of the involved material instances to the new task. Finally,
precedence edges can be instantiated from tasks involving the same capabilities. This
is done using function capprec: (T3×P(M)×T 2)*×C × T 2×P(M)→ P(P2), which is

5.4. Instantiation of an exception recovery 111

defined as follows:

capprec(ctr, c, t2,mr) =






∅ if ctr = ε
{(hr(ctr).2, t2)} if ctr 6= ε ∧ |mr ∪ hr(ctr).1| > Cm(c)
capprec(tr(ctr), c, t2,mr ∪ hr(ctr).1) if ctr 6= ε ∧ |mr ∪ hr(ctr).1| ≤ Cm(c)

(5.9)
If the material capacity of an involved capability is equal to the involved number of
materials, a precedence edge from the latest task in the trace for that capability involving
another material is instantiated. For instance: a task involving the load robot capability
will be linked to the latest task in the map trace that also involves the load robot and
another material. If there is more room for material, as many material instances are
skipped as there is room for. For instance: a task involving the wafer stage capability
and material W3 will not be linked to the tasks involving another material W2, but will
be linked to the latest task involving the wafer stage and yet another material W1. Note
that some redundant precedence edges result from capprec, but they don’t hurt.

If recovery brings the system in the same state as was expected without the exception,
the remainder of the original scheduling problem can be resumed after recovery. Function
merge merges the recovery TRS definition Drec

2 and the remainder of the initial TRS
definition Dini

2 by linking the sub-lives of the involved material instances:
merge(Drec

2 , Dini
2) = D′

2 such that D′

2 = Drec
2 ∪ Dini

2 where Drec
2 ∪ Dini

2 is a pairwise
union of all set definition elements 1 except that the material sub-lives are connected:

(∀m, t, t′ : m ∈ M rec
2 , t ∈ T rec

2 , t′ ∈ T ini
2

, (@t′′ : t′′ ∈ T rec
2 : (t, t′′) ∈ P2m(Drec

2 ,m))
, (@t′′ : t′′ ∈ T ini

2 : (t′′, t′) ∈ P2m(Dini
2 ,m))

: (t, t′) ∈ P ′

2

)

(5.10)

Here, it is assumed that the nodes in the two system definitions do not intersect:
N rec

2 ∩N ini
2 = ∅. This might imply renaming of nodes in the recovery. Furthermore, P2m

is a function describing for a material m ∈ M2 in a TRS definition De
2 ∈ D2, a precedence

relation between related nodes without redundant edges:

P2m(De
2,m) = {(t, t′)

| (t, t′) ∈ P e
2

∧{cm.0|cm ∈ Ce2(t),m ∈ cm.1} = {cm.0|cm ∈ Cb2(t
′),m ∈ cm.1}

∧¬redundant(t, t′, P e
2)

}
(5.11)

Where function redundant: T2×T2×P2 → B determines whether a precedence edge (t, t′)
is redundant in a precedence relation P:

redundant(t, t′, P) = (∃t′′ : t′′ ∈ T2, t
′′ 6= t, t′′ 6= t′ : path(t, t′′, P) ∧ path(t′′, t′, P)) (5.12)

Function path: N2×N2×P2 → B used above determines whether there is a path between
two tasks t and t′ in a precedence relation P:

path(t, t′, P) =

{

true if t = t′

(∃t′′ : (t, t′′) ∈ P : path(t′′, t′, P)) if t 6= t′
(5.13)

1As functions can be seen as sets, ∪ on functions is defined analogously to ∪ on sets.

112 Chapter 5. Exception recovery search in complex manufacturing machines

C0

W2/3

C1

W3/0

L0

W4/1

U0

P0

W5/1

D0

T0

W1/3

W6/0

Figure 5.7: Situation in the machine after the exception

5.5 Results

To illustrate the approach, an example exception in the wafer scanner is considered: the
measure task of wafer W3 fails, which is raised at the end of the task at t = 91 [sec]
. After completion of the tasks in progress (pre-alignment of W5), at t = 94 [sec], the
situation in the machine is as depicted in Fig. 5.7.

The exception has caused wafer W3 to stick to manufacturing phase 1 (‘pre-aligned’)
rather than manufacturing phase 2 (‘measured’). A trivial recovery would be to retry the
measure task of the wafer. However, for the purpose of this wafer it is assumed that retry-
ing measuring is not useful without retrying pre-aligning. Therefore, the manufacturing
phase of wafer W3 is set to 0 (‘fresh’). The exceptional system state can be constructed
from Fig. 5.7 in a straightforward way. The target system state differs from this state
only for wafer W3: it should be in phase 2 (‘measured’).

First, the search algorithm is used to find a recovery without allowing longer traces:
max d diff = 0. This results in a recovery trace consisting of 14 tasks. After conversion
and merging the recovery with the remainder of the tasks to be done, the task precedence
graph of Fig. 5.8 results. In this precedence graph, the recovery tasks per wafer are
depicted horizontally, whereas the remainder of the original graph is unchanged: the
remaining tasks per wafer are depicted vertically. This recovery can be characterized
as a ‘rewind’ recovery: wafers W4 and W5 are parked at the Discharge unit and the
Unload robot, respectively, to clear the path for wafer W3 to be transported back to the
Pre-alignment unit. Assuming that recovery search and scheduling (SMC reaction) take
10 seconds, the schedule in Fig. 5.9 can be obtained.

This schedule finishes at t = 296 [sec], which is 81 seconds later than the original
schedule. From this, the recovery itself took 68 seconds, as 13 seconds were needed for
waiting till the machine was idle (3 [sec]) and SMC reaction (10 [sec]). It appears that
recovery indeed takes an amount of time that is in the same order as wafer processing
cycle time.

Subsequently, optimization possibilities are analyzed. The search algorithm is restarted
with max d = 14 and max d diff = 2, to allow for traces up to 16 tasks. After cutting
off unsuccessful traces, the search graph as depicted in Fig. 5.10 results. This search
graph also contains a trace consisting of 16 tasks that can be characterized as a ‘cycle’
recovery. The precedence graph for this recovery and the remainder of the original graph
is depicted in Fig. 5.11. Wafer W3, as well as wafers W4 and W5 follow an additional
cycle through the machine to reach the pre-alignment unit again via the unload robot. A
schedule of the cycle recovery is depicted in Fig. 5.12, assuming that SMC reaction still
takes 10 seconds. Although this recovery uses more tasks, it is faster as more parallelism
can be exploited. The end time of this schedule is 285 [sec], which means that the delay
caused by recovery is 14 % less than the ‘rewind’ recovery. This is an over-approximation

5.5. Results 113

W5

A2L

W5

L2C

W5

mea

W5

exp

W5

C2U

W5

U2D

W5

D2T

W6

pre

W6

P2L

W6

L2C

W6

mea

W6

exp

W6

C2U

W6

U2D

W6

D2T

W6

T2P

W3

exp

W3

C2U

W3

U2D

W3

D2T

W4

L2C

W4

mea

W4

exp

W4

C2U

W4

U2D

W4

D2T

W2

C2U

W2

U2D

W2

D2T

W5

pre

W4

P2L

W5

U2P

W5

P2U

W4

pre

W4

L2P

W4

D2L

W4

L2D

W3

mea

W3

L2C

W3

P2L

W3

pre

W3

L2P

W3

P2L

Figure 5.8: Precedence graph for ‘rewind’ recovery and remainder

0 25 50 75 100 125 150 175 200 225 250 275 300

Track

Pre−Aligner

Load Robot

Chuck 1

Chuck 2

Unload Robot

Discharge Unit

Time [sec]

R
es

ou
rc

es

setup
material−2
material−3
material−4
material−5
material−6

Figure 5.9: Schedule of rewind recovery

114 Chapter 5. Exception recovery search in complex manufacturing machines

0

3

5

2

4

266

160

184147

186

131

132

153

195

197154

151

155

196

124

159

185

156

158

170

176

207166 198

157

187

209

133

141

134

165

126

145

150

172

190

205 210

152

171

138

215

168

148

142

139

117

144

122

109

123

174

136 135

128

125

121120119

118

116

115

93

114

89

102

86 77

65

113

95

83

112

104

111

110

106

92

101

97

100

80

78

74

103

57

96

42

53

71

9141

98

54

79

73

67

72

58

35

76

32

55

45

82

87

81

23

30

43

64

94

66

50

88

70

59

44

60

31

63

21

20

62

14

51

47

8

9

13

52

48

24

38

12

36

34

249

247

255

230

291

231

217

26

28

29

11

7

1917

16

6

Figure 5.10: Search graph

5.5. Results 115

W5

A2L

W5

L2C

W5

mea

W5

exp

W5

C2U

W5

U2D

W5

D2T

W6

pre

W6

P2L

W6

L2C

W6

mea

W6

exp

W6

C2U

W6

U2D

W6

D2T

W6

T2P

W3

exp

W3

C2U

W3

U2D

W3

D2T

W4

L2C

W4

mea

W4

exp

W4

C2U

W4

U2D

W4

D2T

W2

C2U

W2

U2D

W2

D2T

W5

pre

W4

P2L

W5

U2P

W5

C2U

W5

L2C

W5

P2L

W4

pre

W4

U2P

W4

S2U

W4

L2S

W3

mea

W3

L2C

W3

P2L

W3

pre

W3

U2P

W3

C2U

Figure 5.11: Precedence graph for ‘cycle’ recovery and remainder

0 25 50 75 100 125 150 175 200 225 250 275 300

Track

Pre−Aligner

Load Robot

Chuck 1

Chuck 2

Unload Robot

Discharge Unit

Time [sec]

R
es

ou
rc

es

setup
material−2
material−3
material−4
material−5
material−6

Figure 5.12: Schedule 1 of cycle recovery

116 Chapter 5. Exception recovery search in complex manufacturing machines

0 25 50 75 100 125 150 175 200 225 250 275 300

Track

Pre−Aligner

Load Robot

Chuck 1

Chuck 2

Unload Robot

Discharge Unit

Time [sec]

R
es

ou
rc

es

setup
material−2
material−3
material−4
material−5
material−6

Figure 5.13: Schedule 2 of cycle recovery

as in reality SMC reaction is slowed down by the more extensive search, which could even
cost more than optimization brings.

To show that multiple schedules are possible for one recovery, Fig. 5.13 is added, that
shows another schedule for the ‘cycle’ recovery. This schedule ends at t = 297 [sec], which
is even later than the schedule for the ‘rewind’ recovery found first. In this case, wafer
W5 is transported from its chuck to the unload robot before wafer W3 is transported
from the load robot onto a chuck, which was done the other way around in Fig. 5.12.

5.6 Conclusions

The huge number of exceptional states that a complex manufacturing machine can get in
makes it practically impossible to predefine recoveries for each exception. This chapter
describes an approach to overcome this problem by ad-hoc run time recovery search once
a specific exception occurs.

The manufacturing possibilities can be defined intuitively within the TRS framework,
in the form of an uninstantiated TRS definition. A search algorithm bridges the gap
between the exceptional state and a target state, thus instantiating a recovery.

Results from an industrial case show that the algorithm is suited for practical use
as the first recovery is found in reasonable time, and recovery speed optimization is not
interesting. The recoveries found by the algorithm could be cached in a database by SMC
to let it learn how to recover from exceptions.

The following open issues remain. Instead of the pragmatic maximum search depth to
avoid fruitless searching, a more elegant approach would be to do a reachability analysis.

References 117

Furthermore, the application domain can be widened to cover not only transport and
process meta-tasks, but e.g. also initialization or calibration meta-tasks.

References

[1] ASML, 2004. Information on wafer scanners available through URL
http://www.asml.com/, item: products - lithography.

[2] B. A. Brandin and W. M. Wonham. Supervisory control of timed discrete-event
systems. IEEE Transactions on Automatic Control, 39(2):329–341, 1994.

[3] H. Cho and R. A. Wysk. Graph-theoretic deadlock detection and resolution for
flexible manufacturing systems. IEEE Transactions on Robotics and Automation,
11(3):413–421, 1995.

[4] M. P. Fanti and M. Zhou. Deadlock control methods in automated manufacturing
systems. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems
and Humans, 34(1):5–22, 2004.

[5] I. C. M. Flinsenberg. Route Planning Algorithms for Car Navigation. PhD thesis,
Eindhoven University of Technology, The Netherlands, September 2004.

[6] A. Garnaev. Search games and other applications of game theory. Springer, 2000.

[7] P. Gohari and W. M. Wonham. Reduced supervisors for timed discrete-event sys-
tems. IEEE Transactions on Automatic Control, 48(7):1187–1198, 2003.

[8] Y. Li and Z. H. Lin. Supervisory control of probabilistic discrete-event systems with
recovery. IEEE Transactions on Automatic Control, 44(10):1971–1975, 1999.

[9] N. J. M. van den Nieuwelaar, J. M. van de Mortel-Fronczak, N. C. W. M. Braspen-
ning, and J. E. Rooda. Predictive scheduling in complex manufacturing machines:
scheduling alternatives and algorithm. submitted to IEEE TAC.

[10] N. J. M. van den Nieuwelaar, J. M. van de Mortel-Fronczak, N. C. W. M. Braspen-
ning, and J. E. Rooda. Predictive scheduling in complex manufacturing machines:
machine-specific constraints. submitted to IEEE TSM.

[11] N. J. M. van den Nieuwelaar, J. M. van de Mortel-Fronczak, and J. E. Rooda. Design
of supervisory machine control. In K. Glover and J. Maciejowski, editors, Proceedings
of the European Control Conference 2003, 2003. CD-ROM.

[12] M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Prentice Hall, 1995.

[13] R. G. Qiu and S. B. Joshi. A structured adaptive supervisory control methodology for
modeling the control of a discrete event manufacturing system. IEEE Transactions
on Systems, Man, and Cybernetics – Part A: Systems and Humans, 29(6):573–586,
1999.

[14] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event
processes. SIAM Journal on Control and Optimization, 25(1):206–230, 1987.

118 References

[15] H. J. Yoon and D. Y. Lee. Deadlock-free scheduling of photolithography equipment
in semiconductor fabrication. IEEE Transactions on Semiconductor Manufacturing,
17(1):42–54, February 2004.

CHAPTER

SIX

KINEMATIC CALIBRATION SEQUENCING

IN HIGH-PRECISION MACHINES

This chapter contains the paper Kinematic Calibration Sequencing in High-Precision
Machines that has been protected in patent application ASML ref. P-1704. The idea
has been filed with the first filing in Europe in October 2003, number 03256456.9. The
paper text is in the subsequent filing of September and October 2004, which is also filed
in Japan (number 2004-286595) and the US.

119

120 Chapter 6. Kinematic calibration sequencing in high-precision machines

Kinematic calibration sequencing in high-precision

machines

N.J.M. van den Nieuwelaar †*, J.M. van de Mortel-Fronczak †,
M.A.R. Stoets †, J.E. Rooda †

Abstract

In high-precision manufacturing machines, geometric imperfections in both ma-
chine hardware and product material need to be corrected for during production. To
that end, sequences of calibration steps are performed consisting of measurements
using different types of sensors and computations. In this chapter, a framework
is presented that identifies the constraints for kinematic calibration sequences in
high-precision machines. The framework can be applied to design calibration se-
quences. Moreover, it can be complemented with a search algorithm for run-time
application in Supervisory Machine Control (SMC). The different calibration steps
are specified by, so-called, meta-tasks having pre-conditions and post-conditions.
Pre-conditions define in which machine state, in terms of geometric parameter in-
accuracies, the meta-task can be executed successfully. Post-conditions define the
machine state expected after execution of the meta-task, which in case of computa-
tions depends on the machine state before execution. This dependency is specified
in terms of linear equations that can be deduced from the kinematic chains of the
different sensor measurements. Linear transformations are used to predict the state
transition resulting from a calibration step. Calibration sequences are transformed
into scheduling problems to enable prediction of time performance. The framework
is illustrated using an example calibration sequence from a wafer scanner.

6.1 Introduction

Machines manufacturing at nanometer accuracy (high-precision machines) have to correct
for all kinds of geometric imperfections. Literature describes many kinematic chain-based
approaches to correct for imperfections in the machine hardware [2, 3, 5, 6, 13, 14, 16, 17].
However, in high-precision machines, some complicating requirements play a role. One
of them is that also imperfections originating from the material that is processed must
be corrected for, as well as drift effects in the machine hardware. This implies that
kinematic calibration is not only an off-line activity, but it must also be performed during
production. Any on-line production activities are a responsibility of Supervisory Machine
Control (SMC), which implies that kinematic calibration must be done autonomously:
without help of an operator. Besides that, the kinematic calibration is under timing
pressure: the longer the calibration takes the less productivity is obtained. Furthermore,
the imperfections being faced are multiple orders of magnitude bigger than allowed. On
the other hand, high-end sensors available in a high-precision machine have a limited
capture range and typically have an inaccuracy that is only one order of magnitude smaller

† Eindhoven University of Technology: P.O. box 513, 5600 MB Eindhoven, The Netherlands.
* ASML: De Run 6501, 5504 DR Veldhoven, The Netherlands.
Corresponding author: N.J.M. van den Nieuwelaar, e-mail: n.j.m.v.d.nieuwelaar@tue.nl

6.1. Introduction 121

than their capture range. This implies that calibration must consist of a sequence of steps
combining multiple types of sensors, each having their own type of kinematic chain. The
multiple sensors might make it possible to perform calibration steps in parallel.

A desirable property for SMC is predictability, as explained in Chapters 2 and 3 ([9,
10]). In the context of kinematic calibration, predictability implies predictable geometric
parameter inaccuracy. This chapter describes a framework for analysis and generation
of kinematic calibration sequences in, for instance, high-precision machines that can be
embedded in SMC.

6.1.1 Layered task resource system framework

From an SMC point of view, a machine can be considered as a task resource system (TRS).
Tasks can be associated with manufacturing processes, whereas resources can be asso-
ciated with mechatronic systems. Transforming a manufacturing request into machine
behavior can be structured in three phases. First, a scheduling problem must be instanti-
ated from the manufacturing request, taking into account the limitations of the machine.
This transformation is called instantiating. In the context of kinematic calibration this
comes down to generation of a calibration sequence. Although the word ‘sequence’ might
suggest otherwise, it may encompass task parallelism and therefore ‘task graph’ would be
a more precise description. The structure of the resulting scheduling problem containing
the task graph shows many similarities with the job shop scheduling problem [12]. The
manufacturing process of a material instance can be associated with a job, whereas the
different parallel mechatronic systems can be associated with the different machines in
a job shop. Subsequently, resources must be assigned to the tasks in the instantiated
scheduling problem in some order, taking into account the fact that resources are able
to perform certain tasks only, and only one at a time. This transformation is called
selecting. The selected order of tasks to be performed by selected resources may imply
consecutive state transitions of those resources, which is analogous to the setup times for
mode switching in job shop scheduling. Finally, start and finish times can be assigned to
the tasks, taking into account the speed of the resources. This transformation is called
timing. Combination of the selecting and timing transformation is referred to as schedul-
ing, and scheduling in complex manufacturing machines is addressed in Chapters 2 and
3 ([9, 10]).

During the three transformation phases of instantiating, selecting and timing, choices
must be made. The consequences of a choice in a certain transformation on the machine
behavior can only be evaluated by performing the consecutive transformations. There-
fore, a transformation phase strongly relies on information from subsequent phases. The
layered TRS framework shown in Fig. 6.1 displays the hierarchically related transforma-
tion phases as functionality layers (A through C) and the different TRS definition levels
(0 through 3) as interfaces between the layers (see Chapter 1 and [11]).

6.1.2 Structure of the chapter

The structure of this chapter is as follows. Throughout the chapter, we use a case of
a calibration sequence in a high-precision machine for illustration: reticle stage align in
a wafer scanner [1]. Section 6.2 introduces the issues involved in instantiating a cali-
bration sequence using the wafer scanner case (layer C in Fig. 6.1) and explains how a
calibration sequence can be defined as a scheduling problem (TRS level 2 in Fig. 6.1).

122 Chapter 6. Kinematic calibration sequencing in high-precision machines

Instantiating

Selecting

Timing

3:

C:

1:

0:

ro

om
 fo

r c
ho

ic
es

timed

selected
 untimed

A:

2:

B:

instantiated
 unselected

 uninstantiated
TRS

TRS

TRS

TRS

Figure 6.1: Layered Task Resource System (TRS) framework

Section 6.3 describes the relation between calibration parameter inaccuracies as a system
of linear geometric relations. In Section 6.4, we define the constraints for instantiating a
calibration sequence: the uninstantiated system definition (level 3) in Fig. 6.1. First, we
consider parameter inaccuracies without variance. We define the system state, as well
as the instantiation constraint parameters in the form of the TRS definition elements.
Based on these constraint parameters, we define the instantiation constraints themselves.
Subsequently, we describe the consequences of adding variance to the parameter inaccu-
racies. Finally, we discuss conversion of a calibration sequence into a scheduling problem.
In Section 6.5, we illustrate the framework using the reticle stage align case from the
wafer scanner. After definition of the example as an uninstantiated TRS (TRS level 3 in
Fig. 6.1), we show the evolution of the parameter errors for an example sequence, based
on which we verify the sequence. Furthermore, we analyse the timing performance of the
sequence. Finally, we present some concluding remarks in Section 6.6.

6.2 Calibrating a wafer scanner

6.2.1 Reticle Stage Alignment

The primary manufacturing process of a wafer scanner is the exposure of a mask con-
taining an IC pattern onto wafers. The mask is engraved on a so-called reticle that is
situated at a reticle stage. Light projects the pattern on the reticle onto the wafer that
is situated at a wafer stage. During exposure, the reticle stage and the wafer stage make
a scanning movement. Before wafers can be exposed they must be measured to make
correction for imperfections possible. The machine under consideration is a dual stage
wafer scanner that is equipped with two wafer stages to enable parallel measurement and
exposure of wafers. As a consequence, wafer stages need to be swapped from measure to
expose position and vice versa. At each position, a separate relative position measuring
system is used. After a swap, this measuring system must be zeroed, which is done using
sensors with an inaccuracy in the order of micrometers. The resulting so-called zeroing
error is too big to start exposure, which requires an inaccuracy in the order of nanometers.
Therefore, an on-line calibration sequence called Reticle Stage Alignment (RSA) must
be executed: the reticle stage carrying the reticle must be aligned versus the wafer stage
carrying the wafer. In this chapter, we consider the levelling part of RSA that focusses
on the deviation in wafer stage height and tilt.

In this calibration sequence two types of measurements can be applied, see Fig. 6.2.

6.2. Calibrating a wafer scanner 123

A Confidence Sensor measurement (CS) determines the height of a point on the surface

RS

WS0
ISIS

a b

cscs

RS

light beam

IS object mark

lens

frame

WS1
ISIS

a b

exposure measureswap

Figure 6.2: Overview of the main subsystems involved in Reticle Stage Alignment (RSA)

of a wafer stage (WS0 or WS1). In an Image Sensor (IS) measurement, IS object marks
on the reticle stage (RS) are projected through the lens. Image sensors mounted on the
wafer stage measure the aerial position of the projected object marks. Sensors can operate
in different modes that are characterized by their specific capture range and inaccuracy.
However, the different types of measurements involve different parameters. Each type of
measurement is characterized by its own kinematic chain, as is depicted in Fig. 6.3.

1 LOW LEVEL MEASUREMENTS1

Two types of measurements are investigated:2
• Wafer stage surface point height measurement using3

• either level sensor or confidence sensor4
• wafer stage5

• Image surface point height measurement using6
• transmission image sensor7
• wafer stage8

9

1.1 WAFER STAGE SURFACE POINT HEIGHT MEASUREMENT10

In this paragraph we will investigate the measurement of a single surface point using a single level sensor11
spot or confidence sensor spot.12

1.1.1 EXACT RELATION13

A surface (wafer or fiducial) is fixed to the WSCS. The level sensor spot and its zero point are fixed to the WZCS. The wafer stage14
is positioned such that the surface is close to the LS spot zero point. The spot measures the height of a single point on the surface15
w.r.t. its zero point. Next, a surface point height w.r.t. the WSCS is calculated.16

ze
r

ye
r

s
r

l
r

xa
r

za
r

ya
r

 surface
observed

by CS

h
rxe

r

CSw
r

surface point
to be

measured

WZ_CS
origin

WS_CS
origin

CS spot
zero point

17
Figure 1 The level/confidence sensor configuration18

19
Define:20

measuredbepoint tosurfaceorigin to WS_CSfromvector

origin WZ_CSorigin to WS_CSfrom vector

pointzeroLSorigin to WZ_CSfromvector

measuredbepoint tosurfacepoint tozeroLSfromvector

=
=
=

=

LSw

s

l

h

r

r

r

r

21

22

The vector relation23

(a) Confidence sensor

EDS Metrology Levelling EDS - Mathematical Models

Author :
Doc Id / Version :
Last update :
Status :

Wil Koenen
melved03.doc//04
07/18/00 2:40 PM
accepted

For internal use only - ASML proprietary information Page 25 of 132

4.2 IMAGE PLANE POINT HEIGHT MEASUREMENT

In this paragraph we will investigate the measurement of a single image point using a single image sensor
(each grating of a transmission image sensor is considered a separate image sensor).

4.2.1 EXACT RELATION

An image point is fixed to the WZCS. The image sensor is fixed to the WSCS. The wafer stage is positioned
such that the image sensor zero point is close to the image point. Scan moves are performed, light
intensities and stage positions are sampled and the height of a single image point w.r.t. the image sensor
zero point is calculated. Next, an image point height w.r.t. the WZCS is calculated6.

ze
�

ye
�

s
�

ISf
�

xa
�

za
�

ya
�

xe
�

m
�

WZ_CS
origin

WS_CS
origin

IS zero pointn
�

image point

Figure 11 TIS measurement configuration

Define:

point zero IS origin to WS_CSfromvector

origin WZ_CSorigin to WS_CSfrom vector

measured be point to image origin to WZ_CSfromvector

measuredbepoint toimagepoint tozeroIS fromvector

=
=
=

=

m

s

f

n

IS

�

�

�

�

The vector relation

smnf IS

���

�

−+=

6 In practice, the image point height w.r.t. to the image sensor zero point does not have to be calculated explicitely. The

sum of this height and the wafer stage height is used instead.

(b) Image sensor

Figure 6.3: Kinematic chains for (a) the confidence sensor (CS) and (b) the image sen-
sor (IS)

Fig. 6.3(a) shows the kinematic chain for a CS measurement involving

• Wafer stage coordinate system (WS CS) with base α = (~ax,~ay,~az).

• Wafer (metro)frame coordinate system or wafer stage zeroing coordinate system
(WZ CS) with base ε = (~ex, ~ey, ~ez).

124 Chapter 6. Kinematic calibration sequencing in high-precision machines

• CS spot zero point.

• Surface point to be measured.

We can identify the following vectors in Fig. 6.3(a):

• ~h: vector from the CS spot zero point to the surface point to be measured.

• ~l: vector from the WZ CS origin to the CS spot zero point.

• ~s: vector from the WS CS origin to the WZ CS origin.

• ~wCS: vector from the WS CS origin to the surface point to be measured.

We derive the following vector relation representing te kinematic chain for a CS measure-
ment:

~s +~l + ~h = ~wCS. (6.1)

Fig. 6.3(b) shows the kinematic chain for an image sensor measurement involving

• WS CS and WZ CS as in the CS kinematic chain.

• Image sensor (IS) zero point.

• Image point.

We can identify the following vectors in Fig. 6.3(b):

• ~s: as in the CS kinematic chain.

• ~n: vector from the IS zero point to the image point.

• ~fIS: vector from the WZ CS origin to the image point.

• ~m: vector from the WS CS origin to the IS zero point.

When the wafer stage is in the aligned position, the IS zero point and the image point are
at the same position. In that case, ~n reduces to zero and ~s is the aligned position vector.
From Fig. 6.3(b) we derive the following vector relation representing the kinematic chain
for an IS measurement:

~fIS + ~s = ~m. (6.2)

To bridge the gap between the initial inaccuracy in the order of micrometers and desired
accuracy in the order of nanometers, the results of both types of measurements must
be combined. In between the different types of measurements, the geometric relation
between the different parameters must be used for conversion.

6.3. System of linear geometric relations 125

6.2.2 A calibration sequence as a scheduling problem

In Chapter 3 ([10]), the scheduling model of a complex machine with its physical re-
strictions is defined. For the purpose of this chapter, the elements needed for the timing
transformation (see Fig. 6.1), as well as material logistics are not relevant. Without
them, the scheduling model can be defined by a 6–tuple (T2,P2,R, C,A, I2):

• T2 is a finite set of elements called tasks, e.g., an exposure.

• P2 ⊆ T2×T 2 is the precedence relation between tasks, e.g., a RSA task precedes an
exposure task.

• C is a finite set of elements called capabilities, e.g., wafer stage (WS).

• R is a finite set of elements called resources, e.g., wafer stage 0 and 1 (WS0, WS1).

• A: C → P(R) gives the set of resources that are available for a certain capability,
e.g., resources WS0 and WS1 for capability WS.

• I2: T2 → P(C) gives the set of capabilities that are involved in a certain task, e.g.,
an exposure task involves WS and RS.

6.3 System of linear geometric relations

In this section, we compose and explain a system of linear geometric relations between pa-
rameter inaccuracies using simple examples concerning the determination of the position
of a plane. Subsequently, we apply the resulting relations to the reticle stage alignment
case.

6.3.1 Parameter relations

As discussed in the previous section, a high-precision machine is equipped with different
types of sensors that are able to perform different types of measurements. The parameters
involving some type of measurement can be related using a linear equation. The equations
for different types of measurements can be defined using matrices:

Ax = b (6.3)

Here, b contains known constants, x contains parameters and A contains coefficients.
Each type of measurement can be done at a limited number of measurement positions and
sensor units. For different measurement positions and sensor units, different equations
are applicable. If we instantiate (6.3) for these, we get

Apxp = bp (6.4)

Example 1 (Plane positioning) We consider a plane nearly parallel to the XY-plane
of a coordinate system with base α = (~ax,~ay,~az) and origin Oα (see Fig. 6.4). A sensor
is available to measure the height (z) of points on the plane. We derive the following
linear relation of the parameters involved in the height measurement:

sα
zp

= sα
z0

+ Rys
α
xp

+ Rxs
α
yp

. (6.5)

126 Chapter 6. Kinematic calibration sequencing in high-precision machines

We ran rewrite this in the form of (6.3) as follows:

sα
z0

+ Rys
α
xp

+ Rxs
α
yp
− sα

zp
= 0. (6.6)

Suppose that the sensor can measure at three different positions in the XY-plane: (sα
xp

,
sα

yp
) = (1, 0), (0, 1), and (1,1), (see Fig. 6.4). Instantiating the three positions in (6.6)

yields:

α
0zs

α
0zs

α
0zs

α
1xysR

α
2yxsR

αα
33 yxxy sRsR +

ya
r

xa
r

za
r

αO

Figure 6.4: Plane positioning using three height measurements





1 1 0 −1 0 0
1 0 1 0 −1 0
1 1 1 0 0 −1





















sα
z0

Ry

Rx

sα
z1

sα
z2

sα
z3

















= 0. (6.7)

Using m equations from a linear system such as (6.4), it is possible to derive r un-
known parameters. Here, r denotes the rank of the coefficient matrix for the m equations,
i.e., the number of linearly independent parameters. If more than r parameters are un-
known, a solution can be to combine unknown parameters into combined parameters. A
combined parameter can be defined as some linear combination of original parameters.
Substitution of such combined parameters in the m equations may result in a solvable
system. The solution encompasses some original parameters and the combined parame-
ters, thus localizing the solution freedom in the combined parameters. Using this result
it might be possible to execute a subsequent calibration task if the combined parameters
are not needed as an input, or if the combined parameters suffice as input. The equations
defining the combined parameters in terms of the original parameters can be of use to
determine the original parameters later on. Therefore, we add the combined parame-
ters and the equations defining them to (6.4), together with the equations resulting from
substitutions, yielding:

Apcxpc = bpc. (6.8)

Note that numerous combined parameters and substitutions can be thought of. Fur-
thermore, numerous subsets of equations from (6.8) can be thought of to derive numerous
subsets of parameters from. We limit ourselves to providing constraints for combining
and substituting parameters.

6.3. System of linear geometric relations 127

Example 2 (Combining parameters) Suppose we can measure the plane height at
two positions sα

4 (x, y) = (−1,−1) and sα
5 (x, y) = (1, 1) yielding sα

z4
and sα

z5
. Then, the

system describing the parameter relations yields:

[

1 −1 −1
1 1 1

]





sα
z0

Ry

Rx



 =

[

sα
z4

sα
z5

]

. (6.9)

The rank of the coefficient matrix indicates that we can only solve (6.9) for two parame-
ters. Therefore, we define a combined parameter

Rxy = Rx + Ry, (6.10)

and substitute this combined parameter into (6.9) to obtain the following system with full
rank:

[

1 −1
1 1

] [

sα
z0

Rxy

]

=

[

sα
z4

sα
z5

]

. (6.11)

Now, the tilt of the plane can be determined versus the line x = y. Adding Equa-
tions (6.10, 6.11) to (6.9) results in the following system of geometric relations:













1 −1 −1 0 −1 0
1 1 1 0 0 −1
0 1 1 −1 0 0
1 0 0 −1 −1 0
1 0 0 1 0 −1





























sα
z0

Rx

Ry

Rxy

sα
z4

sα
z5

















= 0. (6.12)

6.3.2 Parameter error relations

We define an estimate x̃ of parameter x with error ∆x as follows:

x̃ ≡ x + ∆x. (6.13)

In certain circumstances, it is allowed to assume that parameter coefficients can be esti-
mated accurately enough to neglect their errors, i.e.,

α̃ ≡ α + ∆α ≈ α. (6.14)

In the plane example this is the case as the measured plane is nearly parallel to the
XY-plane and the measurement positions lie relatively far apart. Therefore, the height
and tilt parameters are relatively insensitive for small deviations in the measurement
position coefficients. If the role of parameters and coefficients would be exchanged, the
assumption would not be justified. In that case, the height and tilt ‘coefficients’ would
form the basis to determine the (x, y) position ‘parameters’ of the sensors. In that case,
the (x, y) position is relatively sensitive for small deviations in the tilt of the plane.

If the circumstances mentioned above apply, linear system (6.8) can be written in
terms of parameter errors as follows:

Apcx̃pc = b̃pc,

Apc(xpc + ∆xpc) = bpc + ∆bpc.
(6.15)

128 Chapter 6. Kinematic calibration sequencing in high-precision machines

Subtracting exact relation (6.8) from estimate relation (6.15) yields the relation between
parameter errors:

Apc∆xpc = ∆bpc. (6.16)

We can conclude that in certain circumstances, both parameter values and parameter
errors are equally related. For convenience, we omit ∆ in the remainder of this chapter.

The parameter errors show some distribution. We refer to such a parameter error
distribution as parameter inaccuracy in the remainder of this chapter. To determine
whether parameters are in capture range of a sensor, or whether a calibration sequence
results in the required inaccuracy, the limit of the absolute error is of importance. A
straightforward approach to express inaccuracy is to consider the worst case error bound.
A more realistic approach is a statistical approach, using a distribution that is character-
ized by a mean and a variance. In whatever form the inaccuracy is expressed, the linear
system (6.8) composed in the previous subsection can be used for deriving parameter in-
accuracies from other parameters inaccuracies: computation tasks. Using measurements,
parameters (or their inaccuracy) can be obtained directly. We can extend (6.8) for deriv-
ing parameter inaccuracies resulting from measurements by adding sensor inaccuracies
to bpc and rows indicating the measured parameters to Apc

Apcmxpc = bpcm. (6.17)

Example 3 (Sensor inaccuracies) In the plane positioning example, we measure the
height sα

zp
of a point p in the plane with a certain inaccuracy βp. Adding the sensor

inaccuracies for the two measurements yields the following system:




















1 −1 −1 0 −1 0
1 1 1 0 0 −1
0 1 1 −1 0 0
1 0 0 −1 −1 0
1 0 0 1 0 −1
0 0 0 0 1 0
0 0 0 0 0 1





































sα
z0

Ry

Rx

Rxy

sα
z4

sα
z5

















=





















0
0
0
0
0
β4

β5





















. (6.18)

Now, the parameter vector contains parameter inaccuracies. The vector of known con-
stants contains both known constant inaccuracies (all zero in this example) and sensor
inaccuracies.

6.3.3 Reticle Stage Alignment inaccuracy relations

We have derived the linear parameter relations for the CS and IS measurements in the
reticle stage alignment case from the vector relations depicted in Fig. 6.3. This derivation
involves considering a zeroing error, a lens-to-stage offset, and the vector coordinates
transformation as depicted in Fig. 6.5 for the XZ-plane. The machine design and initial
situation at the start of the RSA sequence justifies that several geometric parameters
can be considered as known constants. Furthermore, the derived coefficients are such
that small deviations in them have a negligible effect on the parameters. Therefore, the
obtained linear relations as formulated in (6.19) can also be used to relate parameter
inaccuracies.

sα
zc

+ sα
z0

+ Ry0
sα

xc
= βCS. (6.19a)

sα
zc

+ σε
z − (Rγε

y − Ry0
)f ε

x + sα
z0

+ Ry0
sα

xc
= βIS. (6.19b)

6.3. System of linear geometric relations 129

α
0zs

α
cxy sR

00yR

α
czs xe

r

ze
r

α
cxs

za
r

xa
r

s
r

(a) Zeroing offset

γ
FyR

γε
yR

εγε
xy fR

εγ
xy fR

F

ε
zfεσ z

γ
0zj

xe
r

ze
r xc

r

zc
r

f
r

image plane

ε
xf

(b) Lens-to-stage offset

xe
r

xa
r

ze
r

za
r

ε
xy fR

ε
xf

α
zf

ε
zf

f
r

(c) Vector coordinates
transformation

Figure 6.5: Derived views from the kinematic chains

For CS, relation (6.19a) involves a zeroing error only (Fig. 6.5(a)). For IS, relation
(6.19b) involves both a zeroing error (Fig. 6.5(a)) and a lens-to-stage offset (Fig. 6.5(b)).
As the lens-to-stage offset involves both the α and ε coordinate systems, relation (6.19b)
also involves the vector coordinates transformation (Fig. 6.5(c)).

Measurements can be done at two sα
xc

positions, a and b. Per sα
xc

position, one CS
sensor unit is available, each having its own sα

zc
parameter. For sα

xc
position a, four

IS sensor units are available, whereas for position b two IS sensor units are available.
Each sensor unit has its own f ε

x coefficient, whereas each combination of measurement
position and IS unit has its own sα

zc
parameter. Therefore, Equation (6.19a) for CS can

be expanded as follows:

sα
zc,aCS

+ sα
z0

+ Ry0
sα

xc,a
= βaCS, (6.20a)

sα
zc,bCS

+ sα
z0

+ Ry0
sα

xc,b
= βbCS, (6.20b)

whereas Equation (6.19b) for IS can be expanded as follows

sα
zc,aISi

+ σε
z − (Rγε

y − Ry0
)f ε

xISi
+ sα

z0
+ Ry0

sxc,a
= βaISi

, i = 1, 2, 3, 4, (6.21a)

sα
zc,bISi

+ σε
z − (Rγε

y − Ry0
)f ε

xISi
+ sα

z0
+ Ry0

sxc,b
= βbISi

, i = 1, 2. (6.21b)

Some examples of combined parameters are:

τ ε
z = σε

z + sα
z0

, (6.22a)

να
z = sα

z0
+ Ry0

sα
xc

. (6.22b)

These combined parameters can be substituted into (6.19) yielding the following equa-
tions:

{τ ε
z } : sα

zc
+ τ ε

z − (Rγε
y − Ry0

)f ε
x + Ry0

sα
xc

= βIS, (6.23a)

{να
z } : sα

zc
+ σε

z − (Rγε
y − Ry0

)f ε
x + να

z = βIS. (6.23b)

Note that these equations can also be instantiated for the different measurement positions.

130 Chapter 6. Kinematic calibration sequencing in high-precision machines

6.4 Calibration sequencing

This section describes the constraints for instantiating a calibration task graph (instan-
tiated, unselected TRS (2) in Fig. 6.1): the uninstantiated TRS (3) in Fig. 6.1. First,
we consider parameter errors without variance. We define the system state and the TRS
definition elements that parameterize the instantiation constraints, based on which we
define the constraints afterwards. Then, we describe the consequences of adding vari-
ance to the parameter errors. Finally, we convert a sequence of calibration tasks into an
instantiated unselected TRS as described in Section 6.2, thus incorporating parallelism
possibilities.

6.4.1 Uninstantiated system definition

Let the elements in parameter vector xpc be contained in set X . Assuming that the
parameter errors contain no variance, we define the state of a system with respect to
parameter errors by Sx : X → R ∪ {⊥}, giving the error value of each parameter, which
can also be undefined (⊥).

Whereas tasks in an instantiated TRS have a precedence relation, this is not the
case for an uninstantiated TRS. Tasks can be instantiated from so-called meta-tasks. A
computation meta-task involves deriving a certain -solvable sized- subset of parameters
from a certain subset of equations from (6.8). Although there is no precedence relation
between meta-tasks, constraints exist for instantiating meta-tasks ensuring that the re-
sulting instantiated TRS definition is feasible: pre-conditions. A computation can be
executed if all input parameters are defined. A measurement can only be executed suc-
cessfully if the parameter inaccuracies are in capture range. These measurement capture
range constraints can also be defined in matrix form:

Cxpc ≤ d. (6.24)

Here, d contains capture ranges, and C contains coefficients that indicate which parame-
ters are of importance for a certain measurement. Furthermore, execution of a meta-task
results in changed error values of certain calibration parameters, which can be associated
with post-conditions.

Example 4 (Capture range) For a successful measurement, the point to be measured
must be placed in capture range of the sensor. In the plane positioning example, the
capture range expresses how close to the point to be measured the sensor needs to be
positioned in order to capture the target. To be able to do so, we need a height estimate
of the point to be measured that is accurate enough. Let dp denote the capture range of
a measurement of point p, i.e., the maximum allowed inaccuracy sα

zp
of a height estimate

of point p. We can define the following constraints for the two height measurements:

[

0 0 0 0 1 0
0 0 0 0 0 1

]

















sα
z0

Ry

Rx

Rxy

sα
z4

sα
z5

















≤

[

d4

d5

]

. (6.25)

6.4. Calibration sequencing 131

The elements of an uninstantiated TRS (level 3 in Fig. 6.1) that define calibration
meta-task pre- and post-conditions can be defined as follows:

• T3 is a finite set of uninstantiated calibration tasks, or meta-tasks. Two types of
calibration meta-tasks exist: measurements and computations (T3 = Tm3 ∪ Tc3).

• Cb3, Ce3: T3 → P(X) × P(N) give the parameters involved in the pre-condition
(input parameters) and in the post-condition (output parameters) of a meta-task.
The meaning of the tuple elements depends on the type of meta-task and pre-
condition or post-condition, and is given in the following table:

Measurement: t3 ∈ Tm3 Computation: t3 ∈ Tc3

Cb3(t3).0 Input parameters Input parameters
Ce3(t3).0 Output parameters Output parameters
Cb3(t3).1 Equations of (6.24) used in pre-condition Equations of (6.17) used

(rows of C and d)
Ce3(t3).1 Equations of (6.17) used in post-condition Equations of (6.17) used

(rows of Apcm and bpcm)

Constraints on these definitions that follow from their meaning described in the pre-
vious section are:

1. For measurements, the equations of (6.24) identified by Cb3(tm3).1 involve exactly
the input parameters: Cb3(tm3).0. This implies that the columns of C corresponding
with the remaining parameters contain only zeros at the identified rows. On the
other hand, the equations of (6.17) identified by Ce3(tm3).1 involve exactly the
output parameters: Ce3(tm3).0. Hence, the columns of Apcm corresponding with
the remaining parameters contain only zeros at the identified rows.

2. For computations, Cb3(tc3).1 and Ce3(tc3).1 identify the same equations of (6.17)
involving exactly the input and the output parameters: Cb3(tc3).0 ∪ Ce3(tc3).0.
The columns of Apcm corresponding with the remaining parameters contain only
zeros at the identified rows.

3. The number of output parameters of a meta-task Ce3(t3).0 may not exceed the num-
ber of solvable parameters given the equations of (6.17) used, identified by Ce3(t3).1.

6.4.2 Instantiating a calibration sequence

This subsection describes two functions: one to determine which meta-tasks are eligible
to be instantiated in a certain system state, and one to update the system state for the
execution of a meta-task. These functions can be used to verify a calibration sequence
and can be embedded in an algorithm to automatically generate calibration sequences,
similar to Chapter 5.

We say that C is of size m × n, meaning that it has m rows and n columns. By cij

we denote the element of C at the ith row and the jth column. By xj we denote the
element of x at the jth row, or Sx(j). By di we denote the element of d at the ith row.

132 Chapter 6. Kinematic calibration sequencing in high-precision machines

Let function eligible: (X → R ∪ {⊥}) → P(T3) be a function that determines which
meta-tasks are eligible to be instantiated in a certain system state (Sx):

eligible(Sx) = {t|t ∈ T3, precond(t, Sx)}. (6.26)

Function precond: T3×(X → R ∪ {⊥})→ B is a function that determines whether the
pre-conditions of a meta-task are satisfied in some system state:

precond(t, Sx) = (∀j : j ∈ Cb3(t).0 : Sx(j) 6= (⊥))

∧ (t ∈ Tm3 =⇒ (∀i : i ∈ Cb3(t).1 :
n

∑

j=1

cijxj ≤ di)).
(6.27)

We use B to denote the set of boolean values: B = {true, false}. Function precond checks
whether all input parameters are defined and in case of a measurement also whether the
input parameter inaccuracies are in capture range.

To update the system state, we wish to express the values of the state variables that
are updated as a function of the old state. To be able to do so, we introduce a composed
vector x̄ and rewrite (6.17) into

Āx̄ = 0, (6.28)

where

Ā =
[

Apcm −I
]

, x̄ =

[

xpc

bpcm

]

. (6.29)

Let x̄t denote the inaccuracies of the parameters and knowns involved in meta-task t.
For each meta-task t, a matrix Pt can be defined that extracts x̄t from x̄:

x̄t = Ptx̄. (6.30)

Furthermore, a matrix Qt can be defined that selects the relevant rows from A. Using
Qt and Pt, we can define a matrix Āt that contains the coefficients for meta-task t as
follows:

Āt = QtĀPT
t . (6.31)

Equations (6.30, 6.31) can be used to select the parameter relations involved in meta-
task t from (6.28) as follows:

QtĀPT
t Ptx̄ = 0. (6.32)

We can separate the input and output parameter inaccuracies in (6.32) as follows:

QtĀ
[

PinT

t PoutT

t

]

[

Pin
t

Pout
t

]

x̄ = 0. (6.33)

Bringing the input parameter inaccuracies to the right-hand side yields:

QtĀPoutT

t Pout
t x̄ = −QtĀPinT

t Pin
t x̄. (6.34)

Let x̄out′

t denote a solution for the output parameter inaccuracies after execution of meta-
task t. A solution exists if the constraints for the uninstantiated TRS definition are
satisfied. Using the pseudo-inverse ([4]) of QtĀPoutT

t , denoted by (QtĀPoutT

t)+, we find
the following solution:

x̄out′

t = Pout
t x̄ = −(QtĀPoutT

t)+QtĀPinT

t Pin
t x̄. (6.35)

6.4. Calibration sequencing 133

When system (6.34) is fully determined, (6.35) provides an exact solution. In the case
that (6.34) is overdetermined, an approximative least-squares solution is provided by
(6.35). We can now express the inaccuracies of the updated parameters as a function of
the old state as follows:

x̄out′

t = Uout
t x̄, (6.36a)

where

Uout
t = −(QtĀPoutT

t)+QtĀPinT

t Pin
t . (6.36b)

Updating the system state for the execution of a meta-task t can be described in the form

x̄′ = Utx̄. (6.37)

Only the output parameters in x̄ need to be updated by the update matrix Ut. We can
construct Ut from an appropriately sized identity matrix and Uout

t by replacing the rows
of the identity matrix corresponding with the output parameters by the corresponding
rows of Uout

t .

6.4.3 Adding parameter inaccuracy variance

To incorporate a calibration parameter distribution having a mean and variance compo-
nent, we extend the state of a system such that Sx : X → R ∪ {⊥} × R+

0 ∪ {⊥} gives the
mean and variance of the inaccuracy of each parameter, which can also be undefined (⊥).
Let x̄µ denote the vector of mean values of parameter inaccuracies, and let x̄σ2

denote
the vector of variance values of parameter inaccuracies.

To check whether the pre-condition of a measurement meta-task is satisfied, the maxi-
mum absolute value of the input parameters must be considered. This maximum absolute
error can be derived from the mean and the variance of the parameter inaccuracies. Re-
defining function eligible : (X → R ∪ {⊥} × R+

0 ∪ {⊥}) → P(T3) for the added variance
concerns only redefining function precond : T3 × (X → R ∪ {⊥} × R+

0 ∪ {⊥}) → B:

precond(t, Sx) = (∀j : j ∈ Cb3(t).0 : Sx (j).0 6= ⊥ ∧ Sx(j).1 6= ⊥)

∧ (t ∈ Tm3 =⇒ (∀i : i ∈ Cb3(t).1 :
n

∑

j=1

cij|x
µ
j + c

√

xσ2

j | ≤ di)).
(6.38)

Scalar c can be chosen using Chebychev’s inequality,

P (|xj − xµ
j | ≥ c

√

xσ2

j) ≤ 1/c2, (6.39)

which implies that the probability that a random parameter differs from its mean by at
least c standard deviations is less than or equal to 1/c2 [8].

From statistics, we know how to derive the mean and variance value yµ and yσ2

of a
linear combination L of variables x, each having a mean and variance xµ and xσ2

:

yµ = Lxµ, (6.40a)

yσ2

= L2xσ2

. (6.40b)

134 Chapter 6. Kinematic calibration sequencing in high-precision machines

Here, L2 denotes a matrix containing the pointwise squared elements of L.
However, the restriction for the derivation of variance values using (6.40) is that the

input parameters are independent random parameters, which is not the case in general.
In fact, a computation task by definition results in output parameters that depend on
the input parameters. If these parameters are used together as inputs later in the se-
quence, (6.40) can not be used anymore. We assume that the initial parameter inaccura-
cies, i.e., the parameter inaccuracies defined before calibration starts, and the parameter
inaccuracies resulting from measurements are independent. To be able to calculate the
state transition from the current state, we have to log the dependencies of parameters x̄
somehow as a function of the independent parameters x̄i. Therefore, we define

x̄ = Lix̄i, (6.41)

where Li is a linear transformation from the independent parameter vector x̄i to current
parameter vector x̄. We add Li to the system state.

Substituting (6.41) into (6.37) yields:

x̄′ = UtLix̄i. (6.42)

Because x̄i contains only independent parameters, applying (6.40) to (6.42) yields:

xµ′ = UtLix
µ, (6.43a)

xσ2 ′

= (UtLi)
2xσ2

. (6.43b)

Hence, we can use the update matrix Ut to update Li for the effect of execution of
meta-task t:

L′

i = UtLi. (6.44)

It appears that the inaccuracies can be derived from the inaccuracies of the initial inde-
pendent parameters and knowns, x̄0

i . Therefore, we can replace x̄ by Li in the system
state if we add x̄0

i to the system definition.
Concluding, the initial system state can be defined by x̄0

i , and Li is suited to define
the current state. Initially, L0

i equals I. The following elements together parameterize
the constraints that play a role in instantiating a calibration sequence (uninstantiated
TRS):

• Equation (6.24): Cxpc ≤ d, defining the capture ranges of measurements (pre-
conditions).

• Equation (6.28): Āx̄ = 0, defining the linear relation between parameter inaccura-
cies, both for computations and measurements (post-conditions).

• T3 = Tm3 ∪ Tc3, defining the set of available meta-tasks.

• Cb3, Ce3: T3 → P(X) × P(N), defining the meta-task pre-conditions and post-
conditions by associating them with the relevant parts of (6.24) and (6.28).

To be able to schedule the calibration sequence for timing analysis, the capabilities in-
volved with resources need to be defined, denoted by I3 : T3 → P(C). This information
is not used for instantiating a calibration sequence.

6.5. Results 135

6.4.4 Conversion of a calibration sequence into an instantiated unselected
TRS

To convert a calibration sequence cs into a level 2 TRS definition in the calibration
domain, denoted by Dcal

2 , we call the recursive function convert with (ε, cs) as argu-
ment. During recursion, the internal variable mapcs is used to record the mapping of the
instantiated meta-tasks to tasks and to determine the task precedence relation.

convert(mapcs, cs) =

{

Dε
2 if cs = ε

convert(mapcs ++[(hd(cs), t2)], tl(cs)) ∪ D′

2 if cs 6= ε.
(6.45)

where Dε
2 denotes the empty TRS definition and ε denotes the empty sequence. The

tuple (t2, D
′

2) is specified by addtask(mapcs , hd(cs)).
Function addtask : (T3 × T2)

∗ × T3 → (T2 ×D2) instantiates a task t2 for an instanti-
ated meta-task t3 to extend the level 2 TRS definition D2. This is obtained by adding
an additional task t2 to the existing TRS definition D2, copying the capabilities involved,
and instantiating for each input parameter of t2 a precedence edge from the previous task
in the calibration sequence that had that parameter as an output parameter. Given a
map sequence mapcs , addtask(mapcs , t3) specifies a tuple (t2, D

′

2) such that

t2 ∈ T ′

2 ∧ t2 /∈ T2

∧ (∀c : c ∈ I3(t3) : c ∈ I ′

2(t2))
∧ (∀x, xcs: x ∈ Cb3(t3).0, xcs = filterxcs(mapcs, x)

: (hr(xcs).1, t2) ∈ P ′

2

)

(6.46)

Function filterxcs : (T3 × T2)
∗ ×X → (T3 × T2)

∗ filters the tasks from a map sequence
mapcs that have some parameter x as output parameter:

filterxcs(mapcs , x) =










ε if mapcs = ε

filterxcs(tl(mapcs), x) if mapcs 6= ε ∧ x /∈ Ce3(hd(mapcs).0).0

[hd(mapcs)] ++filterxcs(tl(mapcs), x) if mapcs 6= ε ∧ x ∈ Ce3(hd(mapcs).0).0.

(6.47)

6.5 Results

In this section, we analyse an example RSA sequence taken from a wafer scanner in
industry [1]. The following sequence of levelling-related measurements is performed in
this RSA sequence:

1. A CS measurement at position a: aCS.

2. An IS measurement at position a with medium accuracy: aIS-M.

3. An IS measurement at position a with fine accuracy: aIS-F.

4. A CS measurement at position b: bCS.

5. An IS measurement at position b with fine accuracy: bIS-F.

136 Chapter 6. Kinematic calibration sequencing in high-precision machines

The capture ranges and inaccuracies for the different types of measurements are listed in
Table 6.1. Several computations are performed in between the measurements. Table 6.2
presents the initial inaccuracy as well as the desired inaccuracy after calibration.

Table 6.1: Capture ranges and inaccuracies for the measurements in RSA.

Measurement Parameter Capture Inaccuracy Unit
xj |xµ

j + 3xσ
j | ≤ 3xσ

j 10−6

CS να
z 5.0 0.06 [m]

IS Medium sα
zc

1.0 0.1 [m]
IS Fine sα

zc
0.25 0.025 [m]

Table 6.2: Initial, desired, and predicted inaccuracy of RSA.

Parameter Initial error Desired error Predicted error Unit
xj 6xσ

j |xµ
j + 3xσ

j | ≤ |xµ
j + 3xσ

j | 10−6

σε
z 0.20 ⊥ 0.100 [m]

sα
z0

1.5 ⊥ 0.042 [m]
Rγε

y 8.0 1.3 1.076 [rad]
Ry0

4.0 0.1 0.093 [rad]
τ ε
z ⊥ 0.014 0.012 [m]

We have implemented the theory presented in the previous sections in MATLAB, and
have simulated the RSA sequence using the theory described in the previous sections.
Fig. 6.6 shows the trajectory of the predicted inaccuracies along the tasks in the RSA
sequence. Every involved parameter or combined parameter is plotted on its own axis.
The horizontal axis represents the tasks in the RSA sequence, whereas the vertical axes
represent the parameter inaccuracies on a logarithmic scale, i.e., the predicted maximum
parameter error (c = 3). The task numbers correspond with the order in which the
meta-tasks are instantiated in the RSA. Only the top four parameters are defined at
the beginning of the sequence (x̄0

i). The remaining parameters are computed along the
sequence. The circular-shaped markers indicate the input parameters for each compu-
tation task, whereas the triangular-shaped markers indicate the output parameters for
each calibration task.

The slope of the lines in Fig. 6.6 shows that measurements in a wafer scanner cause
inaccuracy improvements of approximately one order of magnitude: tasks 3, 6, 11, 13,
18. Because of this, the computations can also change the inaccuracy with that order
of magnitude. Most computations in the RSA sequence involve simple substitutions.
However, computation tasks 14 through 16 demonstrate the dependencies between the
different computations. Within these three tasks, two computation tasks (tasks 14 and
15) are involved that actually solve a linear system. Note that due to the sequential order
of solving the linear systems, the computation sequence 14 through 16 predicts different
inaccuracies than in the case that the involved parameter relations were solved at once.
Update matrix Ut and logging matrix Li ensure that the sequential computations are
performed in terms of independent random parameters only. Every calibration task in
the sequence influences the inaccuracy of at least one parameter. Notice the redundancy
of tasks 6 and 7, which is caused by the implementation of RSA in the wafer scanner.

6.5. Results 137

10−910−710−5
σ

z
ε input parameter

output parameter

10−910−710−5
s

z
0

α

10−910−710−5
R

y
γε

10−910−710−5
R

y
0

10−910−710−5
s

z
c, aIS

1

α

10−910−710−5
s

z
c, aIS

2

α

10−910−710−5
s

z
c, aIS

3

α

10−910−710−5
s

z
c, aIS

4

α

10−910−710−5
s

z
c, bIS

1

α

10−910−710−5
s

z
c, bIS

2

α

10−910−710−5
s

z
c, aCS

α

10−910−710−5
s

z
c, bCS

α

10−910−710−5
τ
z
ε

10−910−710−5
ν

z
a

α

10−910−710−5
ν

z
b

α

10−910−710−5
ψ

z
aIS

1

ε

10−910−710−5
ψ

z
aIS

2

ε

10−910−710−5
ψ

z
aIS

3

ε

10−910−710−5
ψ

z
aIS

4

ε

10−910−710−5
ψ

z
bIS

1

ε

5 10 15 20
10−910−710−5

ψ
z

bIS
2

ε

Tasks

Figure 6.6: Predicted parameter inaccuracy along the RSA calibration sequence

We verify the instantiated RSA sequence by comparing the predicted inaccuracies
before each measurement with the specified capture ranges, and comparing the predicted
and desired end inaccuracies. Fig. 6.7 shows the ratio between the predicted maximum
parameter error (|xµ

j +3xσ
j |) and the specified capture range for the measurements in the

RSA sequence. From Fig. 6.7 we conclude that the predicted inaccuracies are all well in
capture range. This raises the question whether or not a RSA sequence with less steps
or shorter measurements is also possible. The predicted end inaccuracies are depicted in
Table 6.2. From this table we can conclude that the desired end inaccuracy is reached.

aCS aIS−M aIS−F bCS bIS−F
0

0.2

0.4

0.6

0.8

1

P
re

di
ct

io
n

/ b
ud

ge
t

Tasks

Measurement capture ranges

Figure 6.7: Capture range / actual inaccuracy

To be able to predict timing performance, we have converted the parameter depen-
dencies between the tasks into a task precedence graph, which is displayed in Fig. 6.8.
We used the theory described in Chapters 2 and 3 ([9, 10]) to generate two possible

138 Chapter 6. Kinematic calibration sequencing in high-precision machines

schedules (see Fig. 6.9), both satisfying the task precedence graph. Note that besides the
task precedence graph, additional information must be defined. The resources involved
with measurements are modelled as resource rmeas, whereas computations are performed
by resource rcomp. The alternative schedule leads to a shorter completion time than the
schedule currently implemented due to more use of parallelism between measurement and
computation tasks.

1
 2
 3

4
 5
 6
 7
 8
 11
 12

9
 10
 13

15

14

16
 17
 18
 19

20

aCS

aIS-M
 aIS-F

bCS

bIS-F

Figure 6.8: Task precedence graph corresponding with RSA

Current

0 500 1000 1500 2000 2500

rcomp

rmeas

R
es

ou
rc

es

Time [msec]

aCS aIS-M aIS-F bCS bIS-F

Alternative

0 500 1000 1500 2000 2500

rcomp

rmeas

R
es

ou
rc

es

Time [msec]

aCS aIS-M aIS-FbCS bIS-F

Figure 6.9: Current and alternative schedule for RSA

6.6. Conclusions 139

6.6 Conclusions

High-precision machines have to perform on-line calibrations to correct for imperfections
in materials and drift in machine hardware. To be able to compensate for these imper-
fections with the required accuracy, calibration requires a sequence of calibration steps.
Such a sequence involves measurements with multiple sensor types and computations to
interrelate the different kinematic chains of the sensor types. This chapter describes the
constraints to be taken into account in instantiating a calibration sequence. These con-
straints can be associated with a layered TRS framework that is suited for application in
SMC.

We define the system state during calibration in terms of inaccuracy values of geomet-
ric parameters. We specify pre-conditions on the system state that have to be satisfied
to successfully execute a calibration step. Furthermore, we specify post-conditions for
execution of a calibration step by predicting the resulting state transition. These pre-
dictions follow from solving sets of linear equations relating the inaccuracy values of the
geometric parameters. Inaccuracies are expressed by a mean and variance component
to account for the random effects encountered in practice. We convert an instantiated
calibration sequence into a task precedence graph (part of TRS definition level 2) using
the parameter dependencies in the sequence. From that point, existing scheduling the-
ory and tools concerning the lower part of the TRS framework can be used for timing
performance analysis.

We illustrate the application of the theory by verifying an existing calibration sequence
from a wafer scanner. Verification results confirm that the measurement input param-
eters are in capture range, and that the inaccuracy resulting after calibration suffices.
Timing performance analysis shows that alternative schedules with different durations
are possible. The described functionality can also be embedded in a search algorithm for
automatic calibration sequence generation. If an effective search algorithm can be found,
application of this theory in real-time SMC is possible. A remaining open issue for future
research is the question which parameter combinations to choose [7, 15].

Acknowledgements

The authors would like to thank Wil Koenen for his useful suggestions, constructive
criticism, and his help with the case.

References

[1] ASML, 2004. Information on wafer scanners available through URL
http://www.asml.com/, item: products - lithography.

[2] Y.-J. Chiu and M.-H. Perng. Self-calibration of a general hexapod manipulator
using cylinder constraints. International Journal of Machine Tools & Manufacture,
43:1051–1066, 2003.

[3] D. Daney, Y. Papegay, and A. Neumaier. Interval methods for certification of the
kinematic calibration of parallel robots. In Proceedings of the 2004 IEEE Interna-
tional Conference on Robotics & Automation, April 2004.

140 References

[4] G. H. Golub and C. F. Van Loan. Matrix Computations. The John Hopkins Univer-
sity Press, Baltimore, ML, 1983.

[5] J. M. Hollerbach. A survey of kinematic calibration. MIT Press, 1989.

[6] J. M. Hollerbach and C. W. Wampler. The calibration index and taxonomy for
robot kinematic calibration methods. International Journal of Robotics Research,
15(6):573–591, 1996.

[7] S. Manetti and M. C. Piccirilli. A singular-value decomposition approach for am-
biguity group determination in analog circuits. IEEE Transactions on Circuits and
Systems—I: Fundamental Theory and Applications, 50(4):477–487, 2003.

[8] D. C. Montgomery and G. C. Runger. Applied Statistics and Probability for Engi-
neers. John Wiley & Sons, Inc., New York, 1994.

[9] N. J. M. van den Nieuwelaar, J. M. van de Mortel-Fronczak, N. C. W. M. Braspen-
ning, and J. E. Rooda. Predictive scheduling in complex manufacturing machines:
scheduling alternatives and algorithm. submitted to IEEE TAC.

[10] N. J. M. van den Nieuwelaar, J. M. van de Mortel-Fronczak, N. C. W. M. Braspen-
ning, and J. E. Rooda. Predictive scheduling in complex manufacturing machines:
machine-specific constraints. submitted to IEEE TSM.

[11] N. J. M. van den Nieuwelaar, J. M. van de Mortel-Fronczak, and J. E. Rooda. Design
of supervisory machine control. In K. Glover and J. Maciejowski, editors, Proceedings
of the European Control Conference 2003, 2003. CD-ROM.

[12] M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Prentice Hall, 1995.

[13] J. Renders, E. Rossignol, M. Becquet, and R. Hanus. Kinematic calibration and
geometrical parameter identification for robots. IEEE Transactions on Robotics and
Automation, 7(6):721–732, 1991.

[14] J. Ryu and A. Rauf. A new method for fully autonomous calibration of parallel
manipulators using a constraint link. In 2001 IEEE/ASME International Conference
on Advanced Intelligent Mechatronics Proceedings, pages 8–12, 2001.

[15] J. A. Starzyk, J. Pang, S. Manetti, M. C. Piccirilli, and G. Fedi. Finding ambi-
guity groups in low testability analog circuits. IEEE Transactions on Circuits and
Systems—I: Fundamental Theory and Applications, 47(8):1125–1137, 2000.

[16] C. W. Wampler, J. M. Hollerbach, and T. Arai. An implicit loop method for kine-
matic calibration and its application to closed-chain mechanisms. IEEE Transactions
on Robotics and Automation, 11(5):710–724, 1995.

[17] G. Yang and I. M. Chen. Kinematic calibration of modular reconfigurable robots.
Journal of Robotics Systems, 16(4):213–225, 1999.

CHAPTER

SEVEN

MODEL CHECKER AIDED DESIGN OF A

CONTROLLER FOR A WAFER SCANNER

This chapter is a slightly revised version of the paper Model Checker Aided Design of
a Controller for a Wafer Scanner and is referred to in patent application ASML ref.
P-1784.010.
The paper has been accepted for ISoLA 2004: 1st International Symposium on Leveraging
Applications of Formal Methods, and an extended version has been submitted to IEEE
Transactions on Automatic Control in July 2004.

141

142 Chapter 7. Model checker aided design of a controller for a wafer scanner

Model Checker Aided Design of a Controller for a

Wafer Scanner

Martijn Hendriks 1, Barend van den Nieuwelaar 2, Frits Vaandrager1

Abstract

For a case-study of a wafer scanner from the semiconductor industry it is shown
how model checking techniques can be used to compute (i) a simple yet optimal
deadlock avoidance policy, and (ii) an infinite schedule that optimizes throughput.
Deadlock avoidance is studied based on a simple finite state model using Smv,
and for throughput analysis a more detailed timed automaton model has been
constructed and analyzed using the Uppaal tool. The Smv and Uppaal models
are formally related through the notion of a stuttering bisimulation. The deadlock
avoidance policy and the schedule that optimizes throughput were obtained within
two weeks, which confirms once more that model checking techniques may help to
improve the design process of realistic, industrial systems. Methodologically, the
case study is interesting since two models (and in fact also two model checkers)
were used to obtain results that could not have been obtained using only a single
model (tool).
Keywords: Resource allocation systems, deadlock avoidance policy, throughput
optimization, model checking, finite and timed automata, stuttering bisimulation.

7.1 Introduction

Scheduling and resource allocation problems occur in many different domains, for instance
(1) scheduling of production lines in factories to optimize costs and delays, (2) scheduling
of computer programs in (real-time) operating systems to meet deadline constraints, (3)
scheduling of micro instructions inside a processor with a bounded number of registers and
processing units, (4) scheduling of trains (or airplanes) over limited quantities of railway
tracks and crossroads, and (5) mission planning for autonomous robots on spacecrafts.
Typically, in each of these domain problems are solved using different approaches and
mathematical tools. The EU IST project Ametist (http://ametist.cs.utwente.nl/)
envisages a unifying framework for time-dependent behavior and dynamic resource allo-
cation that crosses the boundaries of application domains.

In the Ametist approach, components of a system are modeled as dynamical systems
with a state space and a well-defined dynamics. All that can happen in a system is
expressed in terms of behaviors that can be generated by the dynamical systems; these
constitute the semantics of the problem. Verification, optimization, synthesis and other
design activities explore and modify system structure so that the resulting behaviors
are correct, optimal, etc. Preferably, the limitations of currently known computational
solutions should not influence modeling too much: only after the semantics of a problem is

1 Nijmegen Institute for Computing and Information Sciences, University of Nijmegen, The
Netherlands.

2 Department of Mechanical Engineering, Eindhoven University of Technology, The Nether-
lands.

7.1. Introduction 143

properly understood, abstractions and specialization due to computational considerations
can intervene. In such situations, the soundness of abstractions should ideally also be
proved, either via deductive verification or model checking.

The mission of Ametist is to extend this approach, which underlies the successful
domain of formal verification, to resource allocation, scheduling and other time-related
problems. The mathematical carrier for the Ametist methodology is the timed automaton
model [2, 3], a modeling framework for discrete event dynamical systems that can handle
quantitative timing delays between events. Some tools for model checking timed automata
already exist, e.g., Kronos [22] and Uppaal [13]. Model checking is a method for
formally verifying dynamical systems. Specifications about the system are expressed
as temporal logic formulas, and efficient symbolic algorithms are used to traverse the
model and to check (fully automatically) if the specification holds or not. We aim at
further improving model checking tools for timed automata, investigating the applicability
of these tools, and establishing links to tools developed in specific domains whenever
appropriate.

In this chapter, as an illustration of the Ametist methodology, we use model checking
techniques to solve the deadlock avoidance and throughput optimization problems for a
realistic case of a wafer scanner from the semiconductor industry.

A major concern in the design of controllers for many resource allocation systems
(RASs) is deadlock, a permanently blocking condition. There are three general ways of
handling deadlock: (i) deadlock prevention, (ii) deadlock detection and resolution, and
(iii) deadlock avoidance. Deadlock prevention restricts the system in such a way that
deadlock is a priori impossible. As a consequence, performance may be unnecessarily
low. Deadlock detection and resolution, on the other hand, is not restrictive at all and
detects and resolves a deadlock at run-time. This, however, may be very expensive.
Deadlock avoidance achieves a middle ground; it dynamically chooses the control actions
to avoid the occurrence of deadlock. In this chapter, we show how a least restrictive
deadlock avoidance policy (DAP) for the wafer scanner can be easily computed using
Smv, a model checker for finite automata. This DAP can be represented by a very short
predicate over the states of the wafer scanner, which can be used by the controller for
the wafer scanner.

In addition, we use the timed automaton tool Uppaal to define a refined model that
adds timing constraints to address the issue of throughput optimization. We relate the
Uppaal model to the Smv model via the concept of stuttering bisimulation introduced
by Browne, Clarke and Grumberg [5]. Since stuttering bisimulation preserves validity of
CTL formulas (without nexttime operator), all properties (and in particular the DAP)
that we established for the untimed model using Smv, carry over to the Uppaal model.
It is not possible to compute the least restrictive DAP directly for the Uppaal model
since (a) Uppaal does not support full CTL, and (b) the state space of the Uppaal

model is so big that it cannot be fully explored. Using heuristics, however, we are able
to use the Uppaal model checker to find an infinite schedule that optimizes throughput.

Contribution. We obtained the deadlock avoidance policy and the schedule that op-
timizes throughput within two weeks, and we believe that our method can be applied
by engineers with a background in computer science after training of only a few days.
This confirms that model checking may help to improve the design process of realistic,
industrial systems. Our DAP computation approach is referred to in a patent application
of ASML [4], which shows its significance for industry. Methodologically, the case study
is interesting since two models (and in fact also two model checkers) were used in com-

144 Chapter 7. Model checker aided design of a controller for a wafer scanner

bination to obtain results that could not have been obtained using only a single model
(tool). Our approach illustrates once more that building models that are just abstract
enough for addressing a specific question, often provides a way to deal with the state
space explosion problem. The Smv and Uppaal models are formally related through
the notion of a stuttering bisimulation. We are not aware of other work that addresses
both deadlock avoidance and throughput optimization in (what essentially is) a single
framework.

Related work. Other papers in which model checking tools are used to solve scheduling
problems include a case study in which a control schedule for a smart card personalization
system is synthesized using the Smv model checker [10], and a case study in which the
Uppaal model checker is used to find feasible schedules for a steel plant [9]. The present
work is a follow-up on Chapter 3, which uses suboptimal deadlock avoidance heuristics
to generate schedules that are not guaranteed to be optimal. The present work, however,
gives a least restrictive (and thus optimal) DAP and a schedule that optimizes stationary
throughput in the absence of errors.

Much research has been devoted to deadlock avoidance in RASs, see for instance [18,
19]. Discouraged by the NP-completeness of optimal deadlock avoidance for many RAS
classes, see for instance [14], this kind of work generally focuses either on computation
of suboptimal but polynomial DAPs or on optimal policies for very specific sub classes.
Much of this work uses the Petri net formalism [17] for the modeling and analysis of
RASs.

In [11] a deadlock free controller is constructed by an iterative process. The parallel
composition of the controller and the plant is checked against deadlock by Smv. If a
deadlock state is found, then the controller is adjusted to exclude the counterexample
and the verification is run again. Otherwise, the controller is deadlock free. Finally, the
work presented in [21] deals with verification of several DAPs using Smv.

Outline. First, Section 7.2 informally presents the case study. Section 7.3 then
presents the Smv model and shows two ways of obtaining an optimal DAP using Smv. In
Section 7.4, a Uppaal model of the wafer scanner is proposed and infinite schedules which
optimize throughput are computed. Finally, Section 7.5 draws some conclusions and gives
directions for future work. A full version of this article, which includes all the proofs, is
available as [12]. The complete Smv and Uppaal models used in our case study are avail-
able at the URL http://www.cs.ru.nl/ita/publications/papers/martijnh/.

7.2 The EUV Machine

Lithographic machines, called wafer scanners, are used within the semiconductor industry
to project chip designs on slices of silicon which are called wafers. A key performance
characteristic of wafer scanners is throughput, i.e., the number of wafers that can be
processed per time unit. For a typical recipe1 it is desirable that the exposure operation
(which uses the lens which is the most expensive part of the machine) is critical in
optimal schedules. In order to maximize throughput, a controller should have a strategy
that optimizes throughput in the absence of errors. Furthermore, we require that the
controller is deadlock-free, since deadlock resolution is expensive.

Figure 7.1 schematically depicts a possible design of an Extreme Ultra Violet machine
(EUV machine), which is a particular type of wafer scanner that is currently being devel-

1The timing parameters of the production depend on the chips to be produced.

7.2. The EUV Machine 145

Locks Chucks

turn

turn

Internal robots

swap

measure expose

Figure 7.1: Wafer paths within the EUV machine.

oped by ASML. The inside of an EUV machine is kept vacuum as EUV light is absorbed
by air. The wafer flow is presented in Figure 7.1.

First, the external track robot (which is not shown) puts a wafer in one of the four
locks. This lock is depressurized, and then the wafer is picked up by one of the two
internal robots. Each internal robot has two arms that can each hold a wafer and that
are opposite to each other. The internal robot turns and puts the wafer on the closest
chuck, which is in the so-called “measure position”. The wafer is measured and a chuck
swap is performed. The chuck with the measured wafer now is in the “expose position”
and the wafer is exposed. After another chuck swap, the exposed wafer is picked up by
one of the internal robots which turns and puts it in a depressurized lock. After the lock
has been pressurized, the track robot removes the exposed wafer from the machine. Each
wafer thus has a fixed recipe for its route: lock - internal robot - chuck - internal robot
- lock. There is a choice which locks, internal robots and chucks are used by a wafer.
An obvious question that arises is why we do not let the unexposed wafers flow through
the upper two locks and let the exposed wafers exit through the lower two locks. In that
case there are no crossing material paths which means that there is no deadlock possible
by construction. The answer is twofold. First, if locks are unidirectional then filling
the machine from the initial, empty, state takes unnecessarily long. Second, if locks are
unidirectional then the depressurization operation might become critical instead of the
exposure, since depressurization takes more than twice as long as exposure in a typical
wafer recipe. As noted above, this is undesirable. In Section 7.4, we will prove that
indeed the exposure subsystem is critical in the design of Figure 7.1, and that restricting
the wafer flow to prevent deadlock a priori lowers both the throughput and the utilization
of the exposure subsystem.

A typical example of a deadlock situation in the EUV machine would be a state
in which all four robot arms hold unprocessed wafers, and both chucks hold processed
wafers. A controller for the EUV machine should ensure that no such deadlock situation
can ever be reached. The problem of finding such a control strategy is commonly referred
to as the deadlock avoidance problem. The EUV machine is a disjunctive RAS according
to the taxonomy of [15]. Instead of the traditional Petri net or graph based approaches
to solving the deadlock avoidance problem, we will show in the next section how it can
be tackled using the Smv model checker.

146 Chapter 7. Model checker aided design of a controller for a wafer scanner

7.3 A Least Restrictive Deadlock Avoidance Policy

In this section, after a (very) brief introduction into Smv, we present our Smv model of
the EUV machine, discuss how one can formalize the notion of deadlock as a temporal
logic formula, and present the deadlock avoidance policy that we synthesized using Smv.
The reader is referred to [7] and [16] for an extensive introduction into model checking
and Smv.

7.3.1 SMV

In the approach supported by the Smv model checker, a system is modeled as a finite
transition system, i.e. as a tuple (S, sinit,→) where S is a finite set of states, sinit is the
initial state, and → ⊆ S × S is the transition relation. We write s → s′ instead of
(s, s′) ∈→. A state is defined as a valuation of a number of state variables. The value of
state variable v in state s is denoted by s(v). Furthermore, s[v := c] denotes the state
that is obtained by updating the value of v in state s to c. A path of a transition system
is a sequence s0s1s2 · · · such that for all i, si → si+1. A state is reachable if it occurs on
some path that starts in sinit.

In Smv, specifications are described in Computation Tree Logic (CTL), a branching
time temporal logic. Below some examples of CTL formulas are given, which should be
sufficient to understand the present chapter. The basic building blocks of CTL are atomic
formula, which denote functions from the set of states to {true, false}. For instance, if
v is a state variable, then v = 2 is an atomic formula, which denotes the function from
states to {true, false} that maps a state s to true iff s(v) = 2. In this case, we say state
s satisfies formula v = 2, notation s |= (v = 2). Every atomic formula is a state formula.
State formulas can be combined with Boolean connectives and path operators. We show
three path operators that are relevant for this chapter. First, if φ is a state formula, then
AG(φ) also is a state formula. A state s satisfies AG(φ), denoted by s |= AG(φ), if for
all paths s0s1s2 . . . with s = s0, and for all i ≥ 0, si |= φ. Second, if φ is a state formula,
then EF(φ) is also a state formula. We define s |= EF(φ) if there exists a path s0s1s2 . . .
such that s = s0 and si |= φ, for some i ≥ 0. Finally, if φ is a state formula, then EG(φ)
also is a state formula. We define s |= EG(φ) if there exists a full path s0s1s2 . . . with
s = s0 such that for all i ≥ 0, si |= φ.

7.3.2 An SMV Model of the EUV Machine

The EUV machine can be modeled conveniently and concisely in Smv. In fact, the full
code is displayed in Figure 7.2.

For each of the 10 positions in the machine our model contains a state variable: an
array l of size 4 for the locks, a 2-dimensional array rb of size 2 × 2 for the robots, and
an array c of size 2 for the chucks. These state variables can either take value e (empty),
which means that the position is empty, value r (red), which means that the position is
occupied by an unexposed wafer, or g (green), which means that the position is occupied
by an exposed wafer. Initially, the machine is completely empty and all state variables
have value e.

To model the system dynamics, i.e., the movement and exposure of wafers, we intro-
duce 22 asynchronous processes, which are executed in an interleaving fashion:

7.3. A Least Restrictive Deadlock Avoidance Policy 147

module main () module entry_exit (p)

{ {

-- state variables if (p=e)

l : array 0..3 of {e,r,g}; next(p):=r;

rb: array 0..1 of array 0..1 of {e,r,g}; else if (p=g)

c : array 0..1 of {e,r,g}; next(p):=e;

}

-- initialization

for (i=0; i<4; i=i+1) module move (lft,rgt)

init(l[i]):=e; {

for (i=0; i<2; i=i+1) if (lft=r && rgt=e)

for (j=0; j<2; j=j+1) {

init(rb[i][j]):=e; next(lft):=e;

for (i=0; i<2; i=i+1) next(rgt):=r;

init(c[i]):=e; }

else if (lft=e && rgt=g)

-- system dynamics {

for (i=0; i<4; i=i+1) next(lft):=g;

tl[i]: process entry_exit(l[i]); next(rgt):=e;

}

for (i=0; i<4; i=i+1) }

for (j=0; j<2; j=j+1)

lr[i][j]: process move(l[i],rb[(i<2?0:1)][j]); module expose (p)

{

for (i=0; i<2; i=i+1) if (p=r)

for (j=0; j<2; j=j+1) next(p):=g;

for (k=0; k<2; k=k+1) }

rc[i][j][k]: process move(rb[i][j],c[k]);

for (i=0; i<2; i=i+1)

exp[i]: process expose(c[i]);

}

Figure 7.2: Smv model of EUV machine.

• For each of the 4 locks i we have process tl[i], which may either put an unexposed
wafer in lock i if it is empty, or move an exposed wafer from the lock to the track
robot. In the definition of process tl[i] we use an auxiliary function entry exit

that describes the state change that results from running this process.

• For each of the 16 pairs of positions i, j such that i is on the left of j and a wafer
can move directly from i to j (or back), we introduce a process that takes care of
moving unexposed wafers from i to j, and exposed wafers from j back to i. In the
definition of these processes we use a function move(lft, rgt) that describes the
state change that results from moving a wafer from lft to rgt or vice versa.

• For each of the 2 chucks i we introduce a process exp[i] that models exposure of
the wafer. An auxiliary function expose describes the state change that results
from exposing the wafer at position p: the value of the corresponding state variable
changes color from r (red) to g (green).

In the Smv model we abstract from the turning of internal robots. So a wafer can

148 Chapter 7. Model checker aided design of a controller for a wafer scanner

be picked up by both arms of an internal robot (possibly, the robot first has to turn).
Similarly, the Smv model abstracts from chuck swaps and the measure operation. In
Section 7.4, we present a more detailed model of the EUV machine in which we do not
abstract from these aspects.

As it turns out, our Smv model has 57116 reachable states, which is close to the total
number of states which equals 310 = 59049. An example of an unreachable state is one
in which the machine is completely filled with exposed wafers. Transition systems of
this size can very easily be handled by Smv and the computer hardware that is available
today. In fact, Smv routinely handles systems with 1020 states and beyond, so we expect
that our approach can also be applied to considerably larger designs.

7.3.3 Defining Deadlock and Safety in SMV

Standard textbooks on operating systems, e.g. [20], state four conditions for deadlock in
systems that consist of processes that compete for resources. The first three conditions
concern the model itself and are necessary, and the fourth condition concerns the states
of the model and is necessary and sufficient when the first three are met: (i) mutual
exclusion: only one process may use a resource at a time, (ii) hold and wait: a process
may hold allocated resources while awaiting assignment of others, (iii) no preemption:
no resource can be forcibly removed from a process that is holding it, and (iv) circular
wait: a closed chain of processes exists such that each process holds at least one resource
needed by the next resource in the chain.

In the EUV machine, the wafers are modeled as the processes and they compete
for the positions in the machine that constitute the resources. The model of the EUV
machine satisfies the first three conditions for deadlock. The fourth condition, which thus
is necessary and sufficient for deadlock, can be formalized with help from a needs function,
that specifies for each wafer the set of positions it may move to. Let P denote the set
of positions in the EUV machine. For p ∈ P and c ∈ {r, g}, we define needs(p, c) ⊆ P
to be the set of positions (different from p) to which a wafer with color c at position p
may move next. In particular, if p is a chuck, then needs(p, r) = needs(p, g) = R, where
R is the set of positions of the internal robots. If s is a state and p a position then we
use needss(p) as an abbreviation for needs(p, s(p)). The circular wait property can now
be defined as follows.

Definition 7.3.1 (Circular wait) A state s has a circular wait in Q ⊆ P iff s(q) 6=
e ∧ ∅ 6= needss(q) ⊆ Q 6= ∅ for all q ∈ Q.

It is not possible to directly formulate the circular wait property in terms of CTL, so
some encoding is required. The basic idea is that the machine has a circular wait in a
subset Q of positions iff the wafers in Q will never be able to move again. Observe that if
in our model a transition s → s′ moves a wafer from place p to place p′, then p is empty
in s′. Thus, the property that some wafer cannot move anymore can be formalized in
CTL as follows.

Definition 7.3.2 (Jam) A position p is jammed in state s iff s |= AG(p 6= e). A state
s is jammed iff some position is jammed in s.

Proposition 7.3.3 below asserts the equivalence of the circular wait and jammed prop-
erties, thereby providing us with a way to express deadlocks in the model of the EUV

7.3. A Least Restrictive Deadlock Avoidance Policy 149

machine in CTL. It has only been proven for our model of the EUV machine, but from
the proofs it should be clear that these results can be generalized to a whole class of
resource allocation problems.

Proposition 7.3.3 A state has a circular wait in some Q iff it is jammed.

In the remainder of this chapter, we will say that a state is deadlocked if it has circular
wait, i.e., if it is jammed. The question that we need to answer is whether and how we
can prevent the system of entering a deadlocked state. In Dijkstra’s paper on the banker’s
algorithm [8], the first published deadlock avoidance algorithm, a state is defined to be
safe if “all processes can be run to completion”. In our case, the wafers are the processes
and “a wafer is run to completion” if it exits the machine. Thus, Dijkstra’s definition
can be translated to CTL as follows.

Definition 7.3.4 (Safe states) A state s is safe iff s |= EF
(

∧

p∈P (p = e)
)

.

Note that in general safe and not being deadlocked are different things. If a state s is
not deadlocked then s |=

∧

p∈P EF(p = e), i.e., each individual position can be emptied,
but it need not be the case that all positions can be emptied simultaneously. If a state
is deadlocked it is unsafe, but if it is unsafe it need not be deadlocked. However, in
many cases and (according to Smv) in particular for our model of the EUV machine, the
following property does hold2:

AG(safe ⇐⇒ (EG ¬deadlock)). (7.1)

This formula suggests a simple least restrictive DAP: just keep the system in a safe state.
This policy can be realized for the EUV machine. Every non-initial safe state has at
least one safe successor (different from itself). In addition, we verified using Smv that all
successors of the initial state are again safe, which completes the proof that the system
can be kept in a safe state.

7.3.4 A Least Restrictive DAP

In order to actually build a controller that always keeps the system in a safe state, it
would clearly be very helpful to have a simple, yet exact characterization of the set of
safe states. We see two ways to obtain such a characterization.

1. When checking whether the initial state is safe, Smv computes a binary decision
diagram (BDD, see [6]) which provides a compact representation of the set of safe
states. With the available Smv releases it is not possible to get the BDD out.
However, since there is an open-source distribution available solving this problem
should just be a matter of programming.

2In fact, in the EUV machine a state is safe if and only if it has no deadlock. It is easy to come up
with variations of the machine with states that are not safe and not deadlocked, for example a design
in which the internal robots only have one arm. In such cases, in order to make formula (7.1) hold, we
need to require weak fairness for all processes in the Smv model to exclude runs in which no progress is
made due to infinite stuttering of some components.

150 Chapter 7. Model checker aided design of a controller for a wafer scanner

Figure 7.3: The four unsafe scenarios (modulo symmetry) in the EUV machine.

2. The set of safe states can be manually characterized by the following iterative
procedure:

S := true
while¬ (sinit |= AG(safe ⇐⇒ S))

S := S ∧ (¬C)

where C is the characterization of the last state of the counter example that is
generated by Smv.

The first approach enables a least restrictive DAP with linear time complexity, since
checking whether a state is included in a BDD takes O(n) operations, where n is the
number of booleans from which the BDD is composed (20 in case of the EUV machine).
The size of the BDD, however, can in the worst case be exponential in the number
of booleans. A second drawback is that it can be difficult to derive individual unsafe
and/or deadlock situations from a BDD, which may be required during the design phase
of the system. The second approach can quickly become practically infeasible since all
unsafe states are explicitly enumerated. If it is carried out manually, however, then
it might be possible to abstract from irrelevant state information and to visualize the
various unsafe situations in the system. Of course, this requires some effort and creativity
from the analyst. The second approach has been used to characterize the safe states of
the EUV machine. With five iterations, we found four unsafe situations, depicted in
Figure 7.3, which happen to characterize all deadlocks. A right-pointing arrow represents
an unexposed wafer, a left-pointing arrow represents an exposed wafer, and a black square

7.4. Throughput Analysis 151

represents an unexposed or exposed wafer. The predicate S that exactly characterizes
the set of safe states is the negation of the situations shown in Figure 7.3, and can be
described in the input language of Smv with 695 characters.

Note that Smv can also be used to obtain a simple under-approximation of the set
of safe states (when, e.g., the BDD is too large to use and the iterative process is too
time consuming). If C is a candidate for a simple under-approximation, then this can be
verified with the CTL property AG(C ⇒ safe). Again, counter-examples can be used to
correct C while retaining low complexity. Note, however, that it now becomes necessary
to ensure that the initial state is reachable from any state in C (this is true by definition
for the set of all safe states).

7.4 Throughput Analysis

A first objective for a controller of the EUV machine is to avoid deadlocks. In the
previous section, using our Smv model, we synthesized a least restrictive control policy
that achieves this. A second key objective for a controller of the machine of course is
to maximize throughput. Our Smv model is not sufficiently detailed to address this
issue since, for instance, relevant information about the delays in the locks and the speed
of the robots has not been included. Also, the Smv model abstracts from the delays
due to turning of the internal robots, measuring of wafers, and swapping of the chucks.
Therefore, in this section, we present a more refined timed automata model ([2, 3]), which
contains sufficient information to address the throughput issue.

In order to define and analyze our model, we used the Uppaal model checking tool.
Uppaal supports modeling of systems in terms of networks of timed automata which are
extended by blocking synchronization and bounded integer variables. Similarly to Smv,
the semantics of a Uppaal model is defined by a transition system. In addition to the
discrete part, the states also contain a real-valued clock valuation. For these models, the
Uppaal model checker can decide a subset of Timed Computation Tree Logic (TCTL, see
[1]). For a detailed account of Uppaal we refer to [13] and to http://www.uppaal.com.

After presenting the Uppaal model of the EUV machine in Section 7.4.1, we dis-
cuss the relationship between the Uppaal and Smv models in Section 7.4.2. Then, in
Section 7.4.3, we use Uppaal to derive a schedule for the EUV machine that optimizes
throughput.

7.4.1 UPPAAL Model

The Uppaal model of the EUV machine contains the same state variables as the Smv

model for the positions in the machine: arrays l, rb and c, which may take the same values
e, r and g to indicate that a position is respectively empty, filled with an unexposed wafer,
or with an exposed wafer. In addition, the Uppaal model has a number of Boolean state
variables to ensure “physical integrity”. For instance, an internal robot can only access
a lock if it is vacuum. This requirement is modeled using the Boolean lb[id] for lock
number id. The model consists of 12 automata, of which 11 model physical components
of the machine: the track robot, the four locks, the four robot arms (two for each of the
robots), and the two chucks. These automata move wafers around with certain delays
and according to the material paths as specified in Section 7.2. An additional automaton,
the observer, is used for throughput optimization.

152 Chapter 7. Model checker aided design of a controller for a wafer scanner

at_locks at_chuck

turning
x<=TURN

turning2
x<=TURN

L02R
x<=L2R_T

R2L0
x<=R2L_T

C02R
x<=C2R_T

R2C0
x<=R2C_T

L12R
x<=L2R_T

R2L1
x<=R2L_T

R2C1
x<=R2C_T

C12R
x<=C2R_T

turn!
x:=0

x==TURN
turn!

turn!
x:=0

x==TURN
turn!

l[l0]==R &&
rb[id][0]== E &&
!lb[l0]
l[l0]:=E, rb[id][0]:=R,
lb[l0]:=true, x:=0

x==L2R_T
lb[l0]:=false

rb[id][0]==G &&
l[l0]==E &&
!lb[l0]
rb[id][0]:=E, l[l0]:=G,
lb[l0]:=true, x:=0

x==R2L_T
lb[l0]:=false

rb[id][0]==R &&
c[0]==E &&
!cb[0]
rb[id][0]:=E, c[0]:=R,
cb[0]:=true, x:=0

x==R2C_T
cb[0]:=false

rb[id][0]==E &&
c[0]==G &&
!cb[0]
rb[id][0]:=G, c[0]:=E,
cb[0]:=true, x:=0

x==C2R_T
cb[0]:=false

rb[id][0]== E &&
l[l1]==R && !lb[l1]
l[l1]:=E, rb[id][0]:=R,
lb[l1]:=true, x:=0

x==L2R_T
lb[l1]:=false

rb[id][0]==G &&
l[l1]==E && !lb[l1]
rb[id][0]:=E, l[l1]:=G,
lb[l1]:=true, x:=0

x==R2L_T
lb[l1]:=false

rb[id][0]==R &&
c[1]==E &&
!cb[1]
rb[id][0]:=E, c[1]:=R,
cb[1]:=true, x:=0

x==R2C_T
cb[1]:=false

rb[id][0]==E &&
c[1]==G &&
!cb[1]
rb[id][0]:=G, c[1]:=E,
cb[1]:=true, x:=0

x==C2R_T
cb[1]:=false

Figure 7.4: Template for a robot arm.

L0 L1
unload?
x:=0

unload?
x:=0

Figure 7.5: Process for the observer.

To illustrate the modeling in Uppaal, we present the template for one arm of an
internal robot, see Figure 7.4. This template has four parameters: a constant id that
identifies the internal robot to which the arm belongs, two constants l0 and l1 that
identify the locks to which the robot arm has access, and a channel turn. When a robot
arm is at the locks, then it can get a wafer from a lock (L02R and L12R), or it can put
a wafer in a lock (R2L0 and R2L1). Of course, it can only perform these actions if the
lock is vacuum, and if the wafer flow is as specified in Section 7.2. Similarly, when a
robot arm is at the chucks then it can load/unload a wafer to/from the chuck that is at
the measure location. The cb variables are used to ensure that only one robot arm has
access to the chuck at a time and that the chuck cannot execute a transition while the
robot arm is loading/unloading a wafer.

Figure 7.5 shows the observer process which, as we will explain in more detail in
Section 7.4.3, is used to ensure progress in the model. This process measures the time
until the first wafer exits the system (this is called an unload event) in location L0, and
the time between two consecutive unload events in location L1 using its local clock x.

7.4.2 Bisimulation between SMV and UPPAAL models

Clearly, there is a relationship between the Smv model and the Uppaal model. The
Smv model is an abstraction from the Uppaal model, which has the property that
every transition in the Uppaal model can be simulated in the Smv model, and vice
versa. Formally, the relationship between the two models can be expressed as a stuttering
bisimulation relation in the sense of [5]. Stuttering bisimulations are defined in terms of

7.4. Throughput Analysis 153

Kripke structure, an extension of transition systems in which to each state a set of atomic
propositions is associated that hold in that state.

For a proof sketch using Kripke structures and stuttering bisimulation we refer to [12].
From that we may conclude that all the results on deadlock avoidance established using
Smv in Section 7.3 carry over to the Uppaal model. It is not possible to obtain these
results directly using the Uppaal tool since (a) Uppaal does not support full CTL, and
(b) the state space of the Uppaal model is so big that it cannot be fully explored.

7.4.3 Finding an Optimal Schedule

As mentioned above, the observer process of Figure 7.5 observes unload events. It starts
in location L0 and upon the first unload event it resets its local clock x and enters location
L1. In location L1 the clock is reset whenever an unload event takes place. The observer
is used to find an infinite schedule that takes at most H time units until the first unload
event, and that has at most S time units between two unload events. Such a schedule is
specified by the following TCTL property that can be checked by Uppaal.

EG((observer.L0 ⇒ observer.x ≤ H) ∧ (observer.L1 ⇒ observer.x ≤ S)) (7.2)

If this property is satisfied, then Uppaal can return an example execution that con-
sists of a path followed by a cycle. Such an execution thus gives an infinite control
schedule for the wafer scanner with a stationary throughput of at least one wafer per S
time units. Unfortunately, the size of the reachable state space prevents Uppaal from
finding such an execution directly. We therefore added heuristics to the model to prune
the state space:

1. The DAP derived in the previous section has been used to avoid unsafe material
configurations of the machine.

2. Some transitions are useless (or suboptimal) in certain states, e.g., an internal robot
can always turn, but this is useless if it does not hold wafers. The state space has
been reduced by adding guards that prevent such useless behavior.

3. The optimal behavior of the locks in the initial phase (the filling of the machine)
differs from their optimal behavior in the stationary phase. Therefore a heuristic
has been added to enforce this difference: a lock can pressurize when it contains
either an exposed wafer, or it is empty and the machine is not yet filled with enough
wafers to be in the stationary state.

4. Some transitions have been made urgent (greedy): they must be taken as soon as
they are enabled. For instance, if the DAP allows loading a wafer to a lock, then
this must be done immediately.

Note that using urgent transitions without the DAP may be an unwise idea, since this
can result in many deadlocks with the effect that an execution satisfying Property 7.2
does not exist anymore in the model. Also note that at least the last three heuristics may
remove good schedules.

A lower bound on the time until the first unload event, minh, can easily be derived
from the model. It is also easy to see that the minimal separation time between exposed
wafers that appear at the chuck that is in the measure position (and can therefore be

154 Chapter 7. Model checker aided design of a controller for a wafer scanner

A B

TrackRobot

L3

L2

L1

L0

R11

R10

R01

R00

C1

C0

LENS

C2R
DEPRES
EXPO
L2R
L2T
MEAS
PRES
R2C
R2L
SWAP
SWITCH
T2L
TURN

Figure 7.6: A schedule that optimizes the stationary throughput of the EUV machine.
The cyclic part of the schedule consists of the interval between points A and B. Note that
the operation of the lens is only interrupted by the chuck swap (which is necessary).

picked up by an internal robot) equals mins = EXPOSE + SWAP, where the former is
the time needed for the expose operation and the latter is the time needed for the chuck
swap. Therefore, the theoretical maximal stationary throughput of the machine is at
most one wafer per mins time units. For the Uppaal model with heuristics it is possible
to find an execution that satisfies Property 7.2 for a value of H that is 5% larger than
minh and for S = mins. Figure 7.6 shows this schedule that optimizes the stationary
throughput of the EUV machine.

It took only little effort to change the Uppaal model in order to analyze two alter-
native machine designs w.r.t. throughput. In the first design, the incoming wafers have
been restricted to the upper two locks and the outgoing wafers to the lower two locks
(to prevent deadlock a priori; see Section 7.2). We can easily find an optimal sched-
ule with S = 1.61 · mins that shows that not the expose operation but the locks have
become critical. This confirms our suspicion that has been stated in Section 7.2. The
second alternative design consists of only two locks and one internal robot. We can easily
find a schedule with S = 1.82 · mins, but we cannot guarantee that this is an optimal
schedule.

7.5 Conclusions

The Smv model checker has been used successfully to characterize the set of safe states
of the EUV machine. This characterization consists of a very short boolean expression

References 155

over the places in the machine and is useful for the design of an actual controller since
deadlock can easily be avoided by examining the possible successor states of the current
state. Since the characterization is exact, the controller implements a least restrictive
(optimal) deadlock avoidance policy. The approach is suited for industrial practice as no
expertise on mathematical proofs is needed. Furthermore, we used the Uppaal model
checker to compute infinite schedules for the EUV machine that optimize stationary
throughput. It took little effort to change the Uppaal model in order to analyze two
alternative machine designs.

In theory, our approach can be applied to a broad class of resource allocation systems.
As always when using model checking, the state space explosion is the main problem
for scalability. Building models that are just abstract enough for addressing a specific
question, often provides a good way to deal with the state space explosion problem.
Furthermore, in both cases, to obtain the results presented manual interventions are
needed: to characterize the set of safe states in Smv and to define the scheduling heuristics
in Uppaal. Nevertheless, in our view, the present work nicely illustrates the usefulness
of model checking techniques to support the design process of applications that involve
resource allocation and scheduling.

Acknowledgements. The authors thank Biniam Gebremichael for his useful suggestions
concerning the Smv model, and the anonymous reviewers for their helpful comments on
a preliminary version of the present paper.

References

[1] R. Alur, C. Courcoubetis, and D. L. Dill. Model checking in dense real time. Infor-
mation and Computation, 104:2–34, 1993.

[2] R. Alur and D. L. Dill. Automata for modeling real-time systems. In 17th In-
ternational Colloquium on Automata, Languages and Programming, pages 322–335,
1990.

[3] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

[4] ASML, 2004. Information on wafer scanners available through URL
http://www.asml.com/, item: products - lithography.

[5] M.C. Browne, E.M. Clarke, and O. Grümberg. Characterizing finite Kripke struc-
tures in propositional temporal logic. Theoretical Computer Science, 59(1,2):115–
131, 1988.

[6] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transaction on Computers, C-35(8):677–691, August 1986.

[7] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
2000.

[8] E. W. Dijkstra. Cooperating sequential processes. In F. Genuys, editor, Programming
Languages: NATO Advanced Study Institute, pages 43–112. Academic Press, 1968.

156 References

[9] A. Fehnker. Scheduling a steel plant with timed automata. In Proceedings of the
sixth International Conference on Real-Time Computing Systems and Applications
(RTCSA’99). IEEE Computer Society Press, 1999.

[10] B. Gebremichael and F. W. Vaandrager. Control synthesis for a smart card person-
alization system using symbolic model checking. In K. G. Larsen and P. Niebert,
editors, Formal Modeling and Analysis of Timed Systems (FORMATS’03), number
2791 in LNCS, pages 189–203. Springer–Verlag, 2004.

[11] V. Hartonas-Garmhausen, E. M. Clarke, and S. Campos. Deadlock prevention in
flexible manufacturing systems using symbolic model checking. In IEEE Conference
on Robotics and Automation, volume 1, pages 527–532, 1996.

[12] M. Hendriks, N. J. M. van den Nieuwelaar, and F. W. Vaandrager. Model checker
aided design of a controller for a wafer scanner. Report NIII-R0430, Nijmegen Insti-
tute for Computing and Information Sciences, University of Nijmegen, The Nether-
lands, June 2004.

[13] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. International Journal
on Software Tools for Technology Transfer, 1(1/2):134–152, 1997.

[14] M. Lawley and S. A. Reveliotis. Deadlock avoidance for sequential resource allocation
systems: Hard and easy cases. International Journal of Flexible Manufacturing
Systems, 13(4):385–404, 2001.

[15] M. Lawley, S. A. Reveliotis, and P. Ferreira. Design guidelines for deadlock han-
dling strategies in flexible manufacturing systems. International Journal of Flexible
Manufacturing Systems, 9(1):5–30, January 1997.

[16] K. L. McMillan. Symbolic Model Checking. PhD thesis, Carnegie Mellon University,
Pittsburgh, May 1992.

[17] T. Murata. Petri nets: Properties, analysis, and applications. Proceedings of the
IEEE, 77(4):541–580, 1989.

[18] J. Park and S. A. Reveliotis. Deadlock avoidance in sequential resource allocation
systems with multiple resource acquisitions and flexible routings. IEEE Transactions
on Automatic Control, 46(10):1572–1583, 2001.

[19] S. A. Reveliotis, M. Lawley, and P. Ferreira. Polynomial-complexity deadlock avoid-
ance policies for sequential resource allocation systems. IEEE Transactions on Au-
tomatic Control, 42(10):1344–1357, 1997.

[20] W. Stallings. Operating Systems – Internals and Design Principles. Prentice–Hall,
1998.

[21] Y. Wang and Z. Wu. Deadlock avoidance control synthesis in manufacturing systems
using model checking. In IEEE American Control Conference, volume 2, pages 1702–
1704, 2003.

[22] S. Yovine. Kronos: a verification tool for real-time systems. International Journal
on Software Tools for Technology Transfer, 1(1/2):123–133, 1997.

CHAPTER

EIGHT

A DEDICATED SCHEDULING

VERIFICATION APPROACH

This chapter is based on the paper A Dedicated Verification Approach for Scheduling in
Complex Manufacturing Machines (TU/e Computer Science Reports 04/27), and defines
some of the prerequisites for formal verification of the control concept proposed in this
thesis. The paper has been protected in patent application ASML ref. P-1784.010, and
will be submitted to the European Control Conference 2005.

157

158 Chapter 8. A dedicated scheduling verification approach

A Dedicated Verification Approach for Scheduling in

Complex Manufacturing Machines

N.J.M. van den Nieuwelaar12, M.M.H. Driessen3, J.F. Groote3

1ASML Netherlands B.V., De Run 6501, 5504 DR Veldhoven, The Netherlands.

2Department of Mechanical Engineering, Eindhoven University of Technology,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

3Division of Computer Science, Eindhoven University of Technology,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

N.J.M.v.d.Nieuwelaar@tue.nl, M.M.H.Driessen@student.tue.nl, J.F.Groote@tue.nl

Abstract

Dynamic scheduling of the production in complex industrial manufacturing ma-
chines can lead to problems such as, for instance, deadlocks bringing the production
to a standstill. An approach to ensure that deadlock is avoided in these highly flex-
ible systems is to investigate all potential schedules. But verification of industrially
sized systems by state space traversal is practically impossible due to combinatoric
effects causing state-space explosion. We present an effective approach to overcome
this problem. The approach exploits specific characteristics of the systems and
properties under consideration. Three situations in which state-space reduction
techniques can be applied have been identified, formally defined and implemented
in a dedicated checker. Results show that two of the techniques can reduce state
spaces with an exponential factor, and one technique has a linear effect. The ap-
plication on a number of wafer scanners shows that this approach makes it possible
to verify industrially sized systems.

8.1 Introduction

The purpose of a manufacturing machine is to make products, which requires physical
manufacturing processes to be carried out. In complex manufacturing machines, differ-
ent types of products are concurrently being processed. Each type of product requires
different manufacturing processes. To account for these recipe dependencies, a scheduling-
based control approach is proposed in this thesis ([14]). The manufacturing steps to be
performed are referred to as tasks, whereas the parallel operating mechatronic systems are
referred to as resources. Supervisory Machine Control (SMC) is responsible for deciding
when to do which tasks on which resources.

In complex manufacturing machines, many options exist to deploy the available re-
sources to perform tasks that lead to the desired manufacturing purpose. Hence, such
machines will exhibit a huge number of different machine behaviors that cannot all be
tested beforehand. The choices in these machines can be categorized in three areas: which
tasks to do, which resources to assign to them and which sequence of tasks to do at each
resource (see Chapter 2, [12]). Conversely, the machine hardware imposes physical re-
strictions on the freedom for choices, e.g. with respect to material logistics (see Chapter
3, [13]). The freedom for choices that is applicable for some manufacturing request and

8.1. Introduction 159

for some machine with its logistic restrictions can be defined in a scheduling model or
system definition.

The system definition outlines the feasible behavior of the system, which still allows
for invalid behavior. Non-FIFO behavior can be an example of invalid behavior: material
leaves the machine in another order than it entered the machine. Another problem is
deadlock. For instance a product must enter a particular machine unit that must first
be emptied. But the machine unit can only be emptied along the route that the product
is blocking. This is a small instance of, so-called, circular waiting situations of resources
that have become a real problem in automated complex manufacturing systems.

Literature describes many approaches to avoid a manufacturing system to stop man-
ufacturing due to deadlocks. For an extensive overview we refer to [4]. However, to
the best of the authors’ knowledge, the expressivity of their modelling approach is too
limited for complex manufacturing machines. Some consider only a fixed routing per
product [2, 17, 18, 19], or at least a predefined sequence of manufacturing processes [16].
In complex manufacturing machines, the manufacturing sequence can be flexible and
even choices with respect to which manufacturing processes to carry out may be present.
The scheduling-based modelling approach presented in Chapters 2 and 3 ([12, 13]) cap-
tures this scheduling flexibility. The deadlock-avoidance techniques used in [2, 17, 18, 19]
cannot be proven to be correct in the more flexible domain of complex manufacturing
machines. Also deadlock resolution as described in [20, 22, 23] is not desirable as dead-
locks may not be locally resolvable due to the lack of buffer places. As a consequence, we
have to develop another approach to verify deadlock absence in the scheduling problem
defined in Chapters 2 and 3 ([12, 13]).

In Chapter 3 ([13]), validity constraints are described to avoid invalid behavior, espe-
cially deadlocks. First, constraints on the number of material instances residing at a set
of resources are defined, like in [2]. These are called maxWIP constraints. Second, tied
precedences are formulated, which express that tasks must be executed after each other
without being interrupted, like in [19]. These constraints are formulated in this way,
because they can easily and very quickly be checked. The scheduler must only verify that
each action that it prescribes to the machine will never lead to a situation that invalidates
a constraint.

The purpose of this chapter is to show how to verify that validity constraints indeed
always avoid invalid machine behavior. This chapter concentrates on the deadlock absence
property.

SMC uses guiding heuristics to quickly find a good schedule with respect to timing
performance. Such heuristics compare the time effects of scheduling alternatives. In
Fig. 8.1, the possible schedules are depicted as a search tree. The total tree covers all
schedules representing physically feasible behavior (A). The validity constraints restrict
this space to result in the space of valid behavior (B), which in turn is restricted by
guiding heuristics to result in the space of good behavior (C). As mentioned before, the
purpose of this chapter is to verify that SMC avoids invalid behavior, more specifically
deadlocks. It may seem to be sufficient to explore area C for deadlocks. However, in
practice it is not adequate to check area C. The guiding heuristics use predicted timing
information that in the real-time environment of SMC can differ from the actual timing.
This difference can trigger a rescheduling action, in which the guiding heuristics might
choose another schedule due to the different timing. As a consequence, area C can drift.
However, it will always stay within area B. Therefore, area B must be explored on the
basis of the system definition and the validity constraints.

160 Chapter 8. A dedicated scheduling verification approach

� � � � �� � � � �� � � � �� � � � �

Feasible behavior

Valid behavior

Good behavior

A

B

C

Figure 8.1: Search tree visualization of state space

It is technically convenient to use a directed graph, also called a state space or tran-
sition system, to represent the behavior of complex manufacturing machines. In essence,
checking for the absence of deadlocks boils down to verifying whether each state has at
least one outgoing edge until manufacturing is finished. Due to several effects, the state
space can grow exponentially, which is called state-space explosion. This is partly due to
parallelism in the system. If in some state n tasks can be executed in parallel, interleav-
ing implies n! possible execution sequences. Other exponential effects originate from the
combinatoric structure of the scheduling problem. For instance m equivalent resources
may be available in the machine, which is for instance the case in the Generalized Job
Shop scheduling problem [21]. If a product visits such a resource n times, mn differ-
ent schedules are possible. Another combinatoric scheduling example is a set of n tasks
having no precedence relation that must be executed by the same resource. These tasks
can be scheduled in n! different sequences, like in the Travelling Salesman scheduling
problem [10].

These exponential effects often make it practically impossible to perform an exhaustive
state space traversal for industrially sized problems. One approach to limit the state-space
explosion is to manually tailor the abstraction level of the model to the property to be
verified, and prove that the different models that are used for the different properties are
behaviorally consistent, as in Chapter 7 ([8]).

In this chapter, we take a radically different approach. We have developed a general
tool into which we can feed system definitions and validity constraints and which outputs
whether the constraints are sufficient to guarantee absence of deadlock. We use our
specific knowledge about the nature of manufacturing machines to make reductions of
the state space in such a way that bad behavior is preserved and can be detected in the
reduced state space.

The first reduction that we apply is to give some actions priority and ignoring the
other actions in certain states. This can be justified using a confluence argument [7]. The
effect of this operation is that for independent tasks only one particular order needs to
be investigated in which they can occur. All other permutations of this ordering can be
ignored, which is similar to partial order reduction [5].

The second reduction is based on the symmetry between equivalent resources that
have the same material capacity and the same flow of material. For any machine model,
it does not matter via which resource products are processed. Technically spoken, both
options are strongly bisimilar [11, 15], and it is allowed to explore only one.

8.2. Definition of the scheduling model as a transition system 161

The third reduction is based on the irrelevance of the scheduled sequence of certain
tasks that have no logistic effect for the deadlock absence property. In this case, a
confluence argument can be used as well, to show that it is sufficient to explore only one
schedule to investigate all possible deadlocks.

Depending on the particular circumstances, the reduction techniques can reduce the
state space exponentially, preserving the deadlocks that may be present in the behavior
of the machine. Using manufacturing facilities with different layouts we show the effect
of the reductions. The tool is currently in use to analyze the designs of various wafer
scanners and regularly finds unexpected deadlock situations. At the end of the chapter
we show its applicability using two of such examples.

The structure of this chapter is as follows. In Section 8.2, a manufacturing system is
defined using a static and a dynamic system definition. The behavior of such systems is
defined as a transition system. Based on this transition system the validity constraints
as well as the deadlock property are defined. Section 8.3 describes three specific cases in
which state-space reduction techniques can be applied. The reduction effect of each of
the three reduction techniques is illustrated using typical example manufacturing systems
in Section 8.4. Moreover, several instances of a wafer scanner from the semiconductor
industry [1] are used to show the applicability of the approach in industrial practice.
Finally, concluding remarks are presented in Section 8.5.

8.2 Definition of the scheduling model as a transition system

We use the manufacturing model from Chapters 2 and 3 ([12, 13]). This model consists of
a static part and a dynamic part. The static part defines the machine-specific restrictions
imposed by the hardware of the machine, which is resource related. It describes which
capabilities the resources can provide, how many material instances can reside on them,
and which logistic transports are possible.

Definition 8.2.1 (Static system definition) A static system definition is a 5-tuple
Σ = (R,C,A,Rm,Mf), where

- R is a given set of available resources;

- C is a given set of capabilities;

- A : R → C is a function that gives the capability which a resource can provide;

- Rm : R → N is a function that gives the maximum number of material instances
that can reside on a resource, called the material capacity;

- Mf : R → P(R) is a function that gives the resources to which material can be
transported from a certain resource.

A simple example called Simple Machine is depicted in Fig. 8.2. The machine consists
of two equivalent main processing resources: P0 and P1. Furthermore, products can
be transported from the environment (E0) to a processing resource using a robot (R0).
At the processing units, a cleaning resource (C0) is available to clean products before
processing. Note that although the cleaning unit is essential in the production process,
products will never be put on the cleaning resource itself. The robot and the processing
resources can each contain one product (denoted between brackets in Fig. 8.2). The
arrows in Fig. 8.2 depict how products can be transferred from resource to resource. The
static system definition of Simple Machine looks as follows:

162 Chapter 8. A dedicated scheduling verification approach

P0

(1)

P1

(1)

R0

(1)
 C0
E0

(100)

Simple

Machine

Figure 8.2: Layout of a simple manufacturing machine

- R = {E0, R0, P0, P1, C0};

- C = {E, R, P, C};

- A = {(E0, E), (R0, R), (P0, P), (P1, P), (C0, C)};

- Rm = {(E0, 100), (R0, 1), (P0, 1), (P1, 1), (C0, 0)};

- Mf = {(E0, {R0}), (R0, {E0, P0, P1}), (P0, {R0}), (P1, {R0})}.

The dynamic system definition describes the tasks to do for a certain manufacturing
request. They can recursively be structured in clusters and groups (see Chapter 2 [12]).
The set of all tasks, clusters and groups are the nodes. A cluster indicates that if the
cluster node is chosen all children of the cluster must be chosen, whereas a group has
an attribute defining the allowed numbers of children to be chosen. Such an allowed
number can be less than the number of children, which makes it possible to bypass tasks.
Furthermore, as defined later, precedences of nodes cannot cross group boundaries, but
they can cross cluster boundaries.

For each task the set of involved capabilities is defined, and at which capability which
material instances reside at the beginning and at the end of the task. This, together with
the precedence relation between nodes, outlines the room for choices with respect to task
order.

Definition 8.2.2 (Dynamic system definition) Let Σ = (R,C,A,Rm,Mf) be a static
system definition. Then a dynamic system definition is a 12-tuple
∆ = (T,G, L, Ln, Gn, Ga, I, P,M,Cb, Ce, m̂s), where

- T is a given set of tasks;

- G is a given set of groups;

- L is a given set of clusters;

Now we define N, the set of nodes, as: N = T ∪ G ∪ L

- Ln : L → P(N) gives the nodes contained in a certain cluster;

- Gn : G → P(N) gives the nodes contained in a certain group;

- Ga : G → P(N) gives the allowed numbers of node alternatives to be selected from
a group;

- I : T → P(C) is a function that gives the capabilities required to perform a certain
task;

- P : N → P(N) is a function that gives the predecessors of a certain node;

- M is the set of material instances;

8.2. Definition of the scheduling model as a transition system 163

- Cb, Ce : T × C → P(M) are functions that give the material instances residing on
one of the resources with a certain capability that is involved in a certain task at
the beginning and end of that task, respectively;

- m̂s : R → P(M) is a function that gives the material instances initially residing on
a certain resource.

We only consider static and dynamic system definitions that satisfy the following prop-
erties:

1. The nodes in the system have a hierarchical structure. For all nodes n ∈ N it must
hold that n /∈ anc(n). Here, anchestor function anc : N → P(N) gives the nodes
in which a certain node is contained. The set anc(n) is the smallest set satisfying
the following conditions:

• if n ∈ Gn(n′) or n ∈ Ln(n′), then n′ ∈ anc(n);

• if n′′ ∈ anc(n′) and n′ ∈ anc(n) then n′′ ∈ anc(n);

2. No group has only 0 as allowed number. I.e. Ga(g) 6= {0} for all groups g ∈ G;

3. The capabilities in Cb(t) and Ce(t) exist also in I(t). I.e. for all tasks t ∈ T and
capabilities c ∈ C if Cb(t, c) ∪ Ce(t, c) 6= ∅ then c ∈ I(t);

4. P contains no cycles. For each node n ∈ N it must hold that n 6∈ allsucc(n). The
function allsucc : N → P(N) gives all successors of a node. It is the smallest set
satisfying the following condition:

• for all nodes n′ ∈ N , n′′ ∈ {n} ∪ anc(n), if n′′ ∈ P (n′) then n′ ∈ allsucc(n),
and allsucc(n′) ⊆ allsucc(n);

5. There is no precedence relation between node alternatives in a group. For all groups
g ∈ G and nodes n ∈ N it holds that if n ∈ Gn(g) then P (n) = ∅;

6. Precedence relations do not cross group boundaries. For all groups g ∈ G and
nodes n, n′ ∈ N it is the case that if g ∈ anc(n) then n′ ∈ P (n) ⇒ g ∈ anc(n′) and
n ∈ P (n′) ⇒ g ∈ anc(n′);

7. All tasks in a group concern the same material:

∀t, t′ ∈ T, g ∈ G ∩ anc(t) ∩ anc(t′). mat(t) = mat(t′).

Function mat gives the materials involved with a node:

mat(n) = {m∈M | ∃t∈T, c∈C. n∈{t} ∪ anc(t) ∧ m∈Cb(t, c) ∪ Ce(t, c)};

8. The subsets of material instances involved in a task remain the same from the
beginning to the end of a task. I.e. for all tasks t ∈ T :

⋃

c∈I(t)

Cb(t, c) =
⋃

c∈I(t)

Ce(t, c).

This constraint implies that only closed systems are considered where no material
enters or leaves the system;

9. Initially, the material capacity of all resources is not exceeded. For any resource
r ∈ R it holds that #m̂s(r) ≤ Rm(r). Here #S gives the number of elements in the
set S.

164 Chapter 8. A dedicated scheduling verification approach

t0

-p0

t1

-p0

t2

-p0

t3

-p2

t4

-p2

t0

-p2

g0

-p2
 c0

-p2

t5

-p2

tE2R

-p0

tR2P

-p0

tE2R

-p2

tR2P

-p2

tP2R

-p2

tR2E

-p2

tP2R

-p0

tR2E

-p0

lo
ad

pr

oc
es

s

un

lo
ad

t0-p2

c0-p2

t3-p2

t4-p2

g0-p2 (1 out of 2)
t0

-p1

t1

-p1

t2

-p1

tE2R

-p1

tR2P

-p1

tP2R

-p1

tR2E

-p1

Figure 8.3: Three products to be produced by the simple manufacturing machine

As an example, we consider three products (p0, p1 and p2) to be manufactured by
Simple Machine. The work to be done for these products is depicted in Fig. 8.3. By
convention, node names end with a hyphen and the product id. Each product must be
loaded, processed, and unloaded, respectively. Loading consists of an E2R task to transfer
the product from the environment onto the robot, followed by an R2P task to transfer
the product from the robot onto a processing unit, which is similar for unloading. The
horizontal precedence arrows show that the products are loaded in the sequence p0, p1
and then p2. Products p0 and p1 are of the same type. They require a cleaning task (t0),
and after that two processing tasks after another: t1 and t2, respectively. The cleaning
of product p2, however, can also be done otherwise. Instead of the cleaning task, t0,
cleaning can also be done by two successive other tasks, t3 and t4, that do not require
the cleaning unit. Either one of the alternatives can be scheduled. In Fig. 8.3 this choice
with respect to cleaning tasks is depicted as nested nodes in the graph, and additionally
as a hierarchical node structure at the right. After cleaning, p2 requires one process
task, t5. The dynamic system definition for this example looks as follows:

- T = {tE2R-p0, tE2R-p1, tE2R-p2, tR2P-p0, tR2P-p1, tR2P-p2, t0-p0, t0-p1, t0-p2,
t3-p2, t4-p2, t1-p0, t1-p1, t2-p0, t2-p1, t5-p2, tP2R-p0, tP2R-p1, tP2R-p2, tR2E-p0,
tR2E-p1, tR2E-p2};

- G = {g0-p2};

- L = {c0-p2};

- Ln = {(c0-p2, {t3-p2, t4-p2})};

- Gn = {(g0-p2, {t0-p2, c0-p2})};

- Ga = {(g0-p2, {1})};

- I = {(tE2R-p0, {E, R}), (tE2R-p1, {(E, R}), (tE2R-p2, {E, R}), (tR2P-p0, {R, P}),
(tR2P-p1, {R, P}), (tR2P-p2, {R, P}), (t0-p0, {P, C}), (t0-p1, {P, C}), (t0-p2, {(P,

8.2. Definition of the scheduling model as a transition system 165

C}), (t3-p2, {P}), (t4-p2, {P}), (t1-p0, {P}), (t1-p1, {P}), (t2-p0, {P}), (t2-p1, {P}),
(t5-p2, {P}), (tP2R-p0, {P, R}), (tP2R-p1, {P, R}), (tP2R-p2, {P, R}), (tR2E-p0, {P,
E}), (tR2E-p1, {P, E}), (tR2E-p2, {P, E})};

- P = {(tR2P-p0, {tE2R-p0}), (t0-p0, {tR2P-p0}), (t1-p0, {t0-p0}), (t2-p0, {t1-p0}),
(tP2R-p0, {t2-p0}), (tR2E-p0, {tP2R-p0}), (tE2R-p1, {tE2R-p0}), (tR2P-p1, {tE2R-
p1}), (t0-p1, {tR2P-p1}), (t1-p1, {t0-p1}), (t2-p1, {t1-p1}), (tP2R-p1, {t2-p1}),
(tR2E-p1, {tP2R-p1}), (tE2R-p2, {tE2R-p1}), (tR2P-p2, {tE2R-p2}), (g0-p2, {tR2P-
p2}), (t4-p2, {t3-p2}), (t5-p2, {g0-p2}), (tP2R-p2, {t5-p2}), (tR2E-p2, {tP2R-p2})};

- Pt ={};

- M = {p0, p1, p2};

- Cb = {((tE2R-p0, E), {p0}), ((tE2R-p0, R), {}), ((tE2R-p1, E), {p1}), ((tE2R-p1, R),
{}), ((tE2R-p2, E), {p2}), ((tE2R-p2, R), {}), ((tR2P-p0, R), {p0}), ((tR2P-p0, P),
{}), ((tR2P-p1, R), {p1}), ((tR2P-p1, P), {}), ((tR2P-p2, R), {p2}), ((tR2P-p2, P),
{}), ((t0-p0, P), {p0}), ((t0-p0, C), {}), ((t0-p1, P), {p1}), ((t0-p1, C), {}), ((t0-
p2, P), {p2}), ((t0-p2, C), {}), ((t3-p2, P), {p2}), ((t4-p2, P), {p2}), ((t1-p0, P),
{p0}), ((t1-p1, P), {p1}), ((t2-p0, P), {p0}), ((t2-p1, P), {p1}), ((t5-p2, P), {p2}),
((tP2R-p0, P), {p0}), ((tP2R-p0, R), {}), ((tP2R-p1, P), {p1}), ((tP2R-p1, R), {}),
((tP2R-p2, P), {p2}), ((tP2R-p2, R), {}), ((tR2E-p0, R), {p0}), ((tR2E-p0, E), {}),
((tR2E-p1, R), {p1}), ((tR2E-p1, E), {}), ((tR2E-p2, R), {p2}), ((tR2E-p2, E), {})};

- Ce = {((tE2R-p0, E), {}), ((tE2R-p0, R), {p0}), ((tE2R-p1, E), {}), ((tE2R-p1, R),
{p1}), ((tE2R-p2, E), {}), ((tE2R-p2, R), {p2}), ((tR2P-p0, R), {}), ((tR2P-p0, P),
{p0}), ((tR2P-p1, R), {}), ((tR2P-p1, P), {p1}), ((tR2P-p2, R), {}), ((tR2P-p2, P),
{p2}), ((t0-p0, P), {p0}), ((t0-p1, P), {p1}), (t0-p0, C), {}), ((t0-p1, C), {}), ((t0-
p2, P), {p2}), ((t0-p2, C), {}), ((t3-p2, P), {p2}), ((t4-p2, P), {p2}), ((t1-p0, P),
{p0}), ((t1-p1, P), {p1}), ((t2-p0, P), {p0}), ((t2-p1, P), {p1}), ((t5-p2, P), {p2}),
((tP2R-p0, P), {}), ((tP2R-p0, R), {p0}), ((tP2R-p1, P), {}), ((tP2R-p1, R), {p1}),
((tP2R-p2, P), {}), ((tP2R-p2, R), {p2}), ((tR2E-p0, R), {}), ((tR2E-p0, E), {p0}),
((tR2E-p1, R), {}), ((tR2E-p1, E), {p1}), ((tR2E-p2, R), {}), ((tR2E-p2, E), {p2})};

- m̂s = {(E0, {p0, p1, p2}), (R0, {}), (P0, {}), (P1, {}), (C0, {})}.

Given the two system definition parts, the physically feasible behavior of the machine
carrying out the schedule is defined in the form of a transition system, which is often also
called a state space or (behavioral) automaton, in Def. 8.2.7. The states represent which
tasks have been executed and which material instances reside at which resources. The
transitions indicate all allowed possibilities to go from one such state to another.

Before giving the main definitions two auxiliary concepts must be characterized. The
predicate successful(n, tp) expresses whether node n is successfully executed given the
successful tasks in tp. A task is successful if it occurs in tp. A cluster is successful if
all its subnodes are successful. A group is successful iff an allowed number of nodes in
the group are successful. If this number is zero, all predecessors of the group need to be
successful.

Definition 8.2.3 Let ∆ = (T,G, L, Ln, Gn, Ga, I, P,M,Cb, Ce, m̂s) be a dynamic system
definition. Let n ∈ N be a node and tp ⊆ T a set of executed tasks. We inductively define
that n is successful in tp, notation successful(n, tp), iff

• if n ∈ T is a task, then n ∈ tp;

• if n ∈ L is a cluster, then for all n′ ∈ Ln(n) it must hold that successful(n′, tp);

166 Chapter 8. A dedicated scheduling verification approach

• if n ∈ G is a group, then

#{n′∈Gn(n) | successful(n′, tp)} ∈ Ga(n) ∧
(#{n′∈Gn(n) | successful(n′, tp)} = 0 ⇒ ∀n′′∈P (n). successful(n′′, tp)).

For a set of nodes np and a set of executed tasks tp the predicate successful(np, tp) holds
if for all nodes n∈np successful(n, tp) is valid.

The second auxiliary predicate that we define is bypassed . In order to define it, we must
introduce two additional predicates. For a node n ∈ N the expression successor(n) gives
the successor nodes of n that can immediately be executed after n. The definition is
somewhat involved, because it can be that a direct successor of n is a group in which 0
tasks can be executed. Then the successor of such a group is also a successor of n.

Definition 8.2.4 Let ∆ = (T,G, L, Ln, Gn, Ga, I, P,M,Cb, Ce, m̂s) be a dynamic sys-
tem definition. The predicate successor(n) for a node n ∈ N is defined as the smallest
predicate satisfying:

successor(n) = {n′∈N | (n ∪ anc(n)) ∩ P (n′) 6= ∅} ∪
{successor(n′) | n′∈successor(n) ∩ G ∧ 0∈Ga(n

′)}.

Another additional definition is the notion of initiated nodes. These are nodes that have
already been started.

Definition 8.2.5 Let ∆ = (T,G, L, Ln, Gn, Ga, I, P,M,Cb, Ce, m̂s) be a dynamic system
definition. For a set of executed tasks tp the set of nodes initiated(tp) is defined by

initiated(tp) = {n∈N | ∃t∈T. t∈tp ∧ n∈anc(t)}.

The second auxiliary predicate that we define is bypassed(t, tp) for a task t ∈ T and a set
of tasks tp ⊆ T . Its definition is quite involved. The predicate bypassed(t, tp) holds for
task t and set of tasks tp, if t is not successful (i.e. t /∈ tp) and

• either a subsequent task is already successful,

• or the number of initiated nodes in a group containing that task is equal to the
maximum number of nodes that can be successful in that group.

Definition 8.2.6 Let ∆ = (T,G, L, Ln, Gn, Ga, I, P,M,Cb, Ce, m̂s) be a dynamic system
definition. Let t ∈ T be a task and tp ⊆ T a set of executed tasks. We define that t is
bypassed, notation bypassed(t, tp) iff

t /∈ tp ∧∃g∈G ∩ anc(t).
successor(g) ∩ tp 6= ∅ ∨
(((anc(t) ∪ {t}) ∩ Gn(g)) \ initiated(tp) 6= ∅ ∧

#(Gn(g) ∩ initiated(tp)) = max(Ga(g))).

Here max(S) for a finite set of natural numbers S is the largest number in S. The set
bypassed(tp) is defined as {t∈T | bypassed(t, tp)}.

This provides sufficient basic material to define the state space of a system.

8.2. Definition of the scheduling model as a transition system 167

Definition 8.2.7 (The state space of the system) Let Σ = (R,C,A,Rm,Mf) be a
static system definition and ∆ = (T,G, L, Ln, Gn, Ga, I, P,M,Cb, Ce, m̂s) be a dynamic
system definition. Then the state space is defined as the transition system Ω = (St, ŝ, Ac, τ),
where

- St = (P(T) × (R → P(M))) are the states. The first component indicates the
tasks that have been executed and the second component indicates which material
instances can be found at which resource.

- ŝ = (∅, m̂s) is the initial state;

- Ac = (T ×P(R)) are the labels of states indicating which task is executed at which
resources;

- τ = {((tp,ms), (t, r), (tp′,ms′)) ∈ St × Ac × St

| successful(P (t), tp) (8.1)

∧ t ∈ T\(tp ∪ bypassed(tp)) (8.2)

∧ ∀cap∈I(t). ∃res∈r. A(res) = cap (8.3)

∧ ∀res∈r. Cb(t, A(res)) ⊆ ms(res) (8.4)

∧ ∀res∈r,m∈M. (8.5)

m∈ms(res) ⇒ m∈ms′(res) ∨ (∃res ′∈Mf (res). m∈ms′(res ′))

∧ ∀res∈R. #ms′(res) ≤ Rm(res) (8.6)

∧ tp′ = tp ∪ {t} (8.7)

∧ ∀res∈r. ms′(res) = (ms(res)\Cb(t, A(res))) ∪ Ce(t, A(res)) (8.8)

∧ ∀res /∈r. ms′(res) = ms(res)} (8.9)

contains the transitions from state to state.

To make sure that the transitions conform to the intuition of the dynamic system defi-
nition, several cases must be distinguished. Cases one through three are properties that
must hold for the task that is performed in the transition and cases four through seven
are properties that must hold for the resources assigned to the task. Seven through nine
express the update of the system state. Below each line of the definition of a state space
is explained separately.

1. All predecessors of the task that is performed in the transition were successful before
the transition.

2. The task to be performed did not happen and has not been bypassed.

3. For every capability involved in the task, there is a resource assigned to the task
that can provide that capability.

4. The material to be used in the task is present at the resources that are assigned to
the task. This check imposes logistic flow integrity as defined in Chapter 3 ([13]).

5. Material that is at an involved resource before a transition is at that same resource
after the transition, or it has been transported to a resource to which it could be
transported. This check imposes logistic flow feasibility as defined in Chapter 3
([13]).

6. After a transition, the material capacity of all resources is not exceeded. This check
imposes material capacity feasibility as defined in Chapter 3 ([13]).

168 Chapter 8. A dedicated scheduling verification approach

P0

P1

R0
 C0
E0

Simple

Machine
�� ��

Figure 8.4: Deadlock in the simple manufacturing machine

7. The set tp′ contains all tasks that have been performed before the transition and
the task that has been performed during the transition.

8. After the transition, the material configuration of the resources involved in the task
is the same as the material configuration at the beginning of the transition except
for the changes made by the task.

9. After the transition, the material configuration of the resources not involved in the
task is the same as the material configuration at the beginning of the transition.

As already argued in the introduction, it is possible that deadlocks occur in the state
space. In the simple example, deadlock occurs when three products are loaded without
one being unloaded first, as is depicted in Fig. 8.4. The product at resource R0 wants to
move to either P0 or P1, whereas the products at resources P0 or P1 must move to R0.

In order to avoid such undesirable deadlocks, validity constraints are defined. A
validity constraint is a predicate on states that expresses which states are and which
are not accessible. The intention is that the validity constraints are defined such that
deadlocks are avoided. Furthermore, these constraints are defined such that they can be
quickly checked while dynamically scheduling a next task. We first define a constraint in
an abstract sense.

Definition 8.2.8 Let Σ = (R,C,A,Rm,Mf) be a static system definition and ∆ =
(T,G, L, Ln, Gn, Ga, I, P,M,Cb, Ce, m̂s) be a dynamic system definition.
Let Ω = (St, ŝ, Ac, τ) be a state space. We call a function VC : τ → B a validity con-
straint. The constrained state space ΩVC = (St, ŝ, Ac, τVC) has a constrained transition
relation which is defined by

τVC = {(s, (t, r), s′) ∈ τ | V C((s, (t, r), s′))}.

Note that the trivial validity constraint VC (tr) = true for any tr ∈ τ keeps the original
state space unchanged.

We explicitly define the notion of a deadlock state in a constrained state space as
those states that do not have outgoing edges, but are also not finished. A finished state
is a state where all tasks are either successful or bypassed.

Definition 8.2.9 (Finished and deadlocked states) Let Σ = (R,C,A,Rm,Mf) be a
static system definition and ∆ = (T,G, L, Ln, Gn, Ga, I, P,M,Cb, Ce, m̂s) be a dynamic
system definition. Let Ω = (St, ŝ, Ac, τ) be a state space and VC : τ → B be a validity
constraint. The set of finished states F (ΩVC) is defined as

F (ΩVC) = {(tp,ms) ∈ St | (∀t ∈ T. ∃n ∈ {t} ∪ anc(t). successful(n)}.

8.2. Definition of the scheduling model as a transition system 169

The set of deadlock states D(ΩVC) is defined by:

D(ΩVC)={(tp,ms)∈St |(tp,ms)/∈F (ΩVC) ∧
∀t∈T, r∈P(R), (tp′,ms′)∈St. ((tp,ms), (t, r), (tp′,ms′))/∈τVC}.

Note that a state space of a production system never has a loop. This follows from the
fact that in each transition the set tp is always extended with one task. A consequence
of this is that a constrained state space without deadlocks always has finished states
that will be reached. In other words, a constrained production machine works fine as
long as deadlock freedom has been shown. In essence checking deadlock freedom is very
easy by inspecting each state. The only problem is that the number of states can grow
dramatically. In the next section techniques are provided to reduce the size of the state
space maintaining the deadlocks in the system.

We define two concrete classes of validity constraints. The first one restricts the
maximum number of material instances that are allowed to occupy a group of resources.
These are called maximum work in progress constraints or maxWIP constraints. For
the simple machine the maxWIP constraint that expresses that at most two material
instances may occupy R0, P0 and P1 is sufficiently strong to prevent deadlocks. These
constraints are formulated using the predicate maxWIPΓ where Γ is a set of pairs of the
form (r, n). Here r ⊆ R is a set of resources and n ∈ N is a natural number. It is
formalized as follows:

Definition 8.2.10 (MaxWIP constraints) Let Σ=(R,C,A,Rm,Mf) be a static sys-
tem definition, ∆ = (T,G, L, Ln, Gn, Ga, I, P,M,Cb, Ce, m̂s) a dynamic system definition
and Ω = (St, ŝ, Ac, τ) a state space. Let Γ be a set of pairs with a set of resources and a
natural number. Then maxWIPΓ is the validity constraint defined as:

maxWIPΓ(((tp,ms), (t, r), (tp′,ms′))) = ∀(r, n) ∈ Γ. (
∑

res∈r

#ms′(res)) ≤ n

for every transition ((tp,ms), (t, r), (tp′,ms′))) ∈ τ .

Another way to avoid deadlocks is to use precedence constraints. The idea is that
some tasks, or groups of tasks, can only be executed if it is guaranteed that another task
can succeed it. The first task is called a tied predecessor of the second.

In the example of the simple production machine deadlock can be avoided by tying
the movements of products onto the robot to the task of moving the product from the
robot. In this way the robot always will become empty and available to move further
products.

We use a function Pt : N → N ∪ {⊥} that provides the tied predecessor of a node,
unless there is no such a tied predecessor, in which case it yields ⊥. We assume that Pt

satisfies that if Pt(n) = Pt(n
′) and Pt(n) 6= ⊥, then n = n′.

Definition 8.2.11 (Tied precedence constraints) Let Σ = (R,C,A,Rm,Mf) be a
static system definition and ∆ = (T,G, L, Ln, Gn, Ga, I, P,M,Cb, Ce, m̂s) be a dynamic
system definition. Let Ω = (St, ŝ, Ac, τ) be a state space. Let Pt : N → N be a tied
predecessor function satisfying that Pt(n)∈

⋃

m∈M Pm(n)∪ {⊥} for all n∈N . Here, Pm is
the part of P that concerns material m:

Pm(n) = {n′∈P (n) | m∈mat(n) ∩ mat(n′)}.

170 Chapter 8. A dedicated scheduling verification approach

Then the tied precedence constraint tiedprecedencePt
is defined by:

tiedprecedencePt
(((tp,ms), (t, r), (tp′,ms′))) =

∀t′ ∈ tp. (t ∈ ftsucc(t′) ∨ ftsucc(t′)\tp = ∅) ∧ carrythrough((tp′,ms′)).

We define ftsucc(n) as the first tasks in a tied successor node of n:

ftsucc(n) = {n′′ ∈ firsttasks(n′) | n′∈succ(n, P) ∩ succ(n, Pt)}.

Here, succ(n,V) gives the successors of a node n, given a precedence relation V :

succ(n, V) ={n′∈N | n∈V (n′)}∪
{n′′∈N |¬∃n′∈N. n∈V (n′)∧

∃n′′′∈N. n∈Gn(n′′′) ∪ Ln(n′′′) ∧ n′′∈succ(n′′′, V)}.

If no nodes succeed n directly, a node one level higher in the node hierarchy is looked at.
Note that due to the hierarchical node structure, succ is well defined.

The function firsttasks gives the first tasks in a node:

firsttasks(n) = {t∈T | n∈{t} ∪ anc(t) ∧ ¬∃n′∈N. t∈allsucc(n′) ∧ n∈anc(n′)}.

The predicate carrythrough indicates that all non-executed tied successor tasks of all exe-
cuted tasks can be finished.

carrythrough((tp,ms)) =
∀t ∈ tp, t′ ∈ ftsucc(t)\tp ⇒

∃r ∈ P(R), tp′ ∈ P(T),ms′ ∈ R → P(M).
((tp,ms), (r, t′), (tp′,ms′)) ∈ τ ∧ carrythrough((tp′,ms′)).

Note that as the state space has no cycles, carrythrough is well defined.

8.3 Checking deadlocks by reducing the state space

In order to know that maxWIP and tied precedence constraints guarantee that it is
impossible to reach deadlock states, it is sufficient to generate all possible states of the
machine that can be reached and to check that each such state is not a deadlock state
(Def. 8.2.9).

This can very simply be achieved, except that the number of states in the machine
is generally (larger than) astronomical. In this section, we present three ways to reduce
the size of the state space, while maintaining potential deadlocks. For detailed proofs we
refer to [3].

8.3.1 Interleaving of independent parallel tasks

The first reduction technique has to do with interleaving of independent parallel tasks.
In some situations, no matter what interleaving is chosen during traversal, the same
state will be encountered in the end. A general state-space reduction technique that can
be applied in this case is the priorisation of actions [7], also called τ -priorisation. In
literature, τ is used to denote internal transitions, which applies to all our transitions,
because we are interested in deadlocks, and not in the particular nature of individual

8.3. Checking deadlocks by reducing the state space 171

transitions. It is allowed to apply priorisation of actions, if the system has no infinite
behavior and is confluent. Our transition system has no infinite behavior, as with each
step, an additional task is executed. Confluence is defined below. It says that in every
state, where a transition from a confluent set of transitions can be chosen, and another
transition is possible, a common state can be reached. The general definition of confluence
is given in the form of a set of conditions on a confluent set of transitions (cf. [6]).

Definition 8.3.1 (Confluence) Let (St, ŝ, Ac, τ) be a state space. Let C ⊆ τ be a set
of transitions. The set C is called τ -confluent if for all (s, a, s′) ∈ C and (s, a′, s′′) ∈ τ it
holds that:

(∃s′′′ ∈ St. (s′, a′, s′′′) ∈ τ ∧ (s′′, a, s′′′) ∈ C) ∨ (8.10)

∃a′′∈Ac. (s′′, a′′, s′) ∈ C ∨ (8.11)

∃a′′′∈Ac. (s′, a′′′, s′′) ∈ τ ∨ (8.12)

s′ = s′′ (8.13)

The prioritized state space is defined as follows. It says that Ω′ can be constructed out of
Ω by removing outgoing transitions from a state, as long as at least one transition from C
remains. This generally reduces the size of a transition system substantially, especially,
because many states become unreachable. We have the important theorem that says that
if we apply τ -priorisation with a τ -confluent set, then the state space of the system has
exactly the same deadlocks.

Definition 8.3.2 (τ-priorisation) Let Ω = (St, ŝ, Ac, τ) and Ω′ = (St, ŝ, Ac, τ ′) be
state spaces. Let C ⊆ τ be a set of τ -confluent transitions. We say that Ω′ is a τ -
prioritized reduction of Ω iff

• τ ′ ⊆ τ ;

• ∀s, s′ ∈ St, a ∈ Ac. (s, a, s′) ∈ τ ⇒ (s, a, s′) ∈ τ ′ ∨ ∃s′′ ∈ St, a′ ∈ Ac. (s, a′, s′′) ∈
τ ∩ C.

A set of τ -confluent transitions C in the state space of a system as defined in the previous
section is defined as follows. A more detailed explanation is given after the definition.

Definition 8.3.3 (Confluent transition set C) Let Σ = (R,C,A,Rm,Mf) be a static
system definition and ∆ = (T,G, L, Ln, Gn, Ga, I, P,M,Cb, Ce, m̂s) be a dynamic system
definition. Let (St, ŝ, Ac, τ) be the state space of the system. We define C ⊆ τ to be the
set consisting of the transitions ((tp,ms), (t, r), (tp′,ms′)) for which for all transitions
((tp,ms), (t′, r′), (tp′′,ms′′)) with t 6= t′ the following conditions hold.

1. ∀t′′ ∈ T. mat(t′′) ∩ mat(t) 6= ∅ ⇒ (t′′ ∪ anc(t′′)) ∩ allsucc(t) 6= ∅;

2. ∀res ∈ r. res ∈ unsafe ⇒ Ce(t, A(res))\Cb(t, A(res)) = ∅;

3. ∀g ∈ G, n ∈ (g ∪ anc(g)). (anc(t) ∪ {t}) ∩ succ(n, P) = ∅;

4. G ∩ anc(t) = ∅.

172 Chapter 8. A dedicated scheduling verification approach

The auxiliary functions used in this definition are defined directly below Def. 8.2.2 and in
Def. 8.2.11, except for unsafe, which is given below. The set of unsafe resources contains
those resources for which it is possible to put material onto it from more than one other
location.

unsafe = {res ∈ R |
∑

res ′∈R,res∈Mf (res′)

Rm(res ′) > 1}.

Condition one says that parallel tasks involving the same material are not necessarily
confluent. Furthermore, the fact that in the end the same state will be encountered
implies that no deadlock may be involved in the confluent set. If none of the transitions
in the confluent set loads to an unsafe resource, i.e. a resource that can receive material
from multiple other locations, confluence is not harmed. This is condition 2. Finally, the
logistic effect of a group depends on which tasks are chosen in that group. Therefore,
groups form an unreliable basis for confluence and are excluded as predecessor or relative
of tasks in the confluent set. This yields conditions 3 and 4, respectively. Note that these
conditions on set C are at the safe side. The set can be extended, but τ -confluence of an
extended set has not been proven in [3].

8.3.2 Resource symmetry

The second reduction technique concerns equivalent resources in the system. In such
a case multiple equivalent schedules can be generated, in which the only difference is
that equivalent resources are swapped. The state space can be reduced in such cases
using strong bisimulation [11], provided that it does not relate finished and deadlocked
states. In such a case strong bisimulation reduction maintains deadlocks in our production
machines, and hence, only the reduced system needs to be investigated.

Definition 8.3.4 (Strong bisimilarity) Let (St, ŝ, Ac, τ) be a state space. For two
states s, t ∈ St to be strongly bisimilar, there must be a strong bisimulation relation R
relating s and t, i.e. sRt. A relation R is a strong bisimulation relation iff it is symmetric,
and for all states s, t such that sRt it holds that:

(s, a, s′) ∈ τ ⇒ ∃t′ ∈ St. (t, a, t′) ∈ τ ∧ s′Rt′.

Two resources are symmetric in our transition system if they are of the same capability,
have the same material capacity, and material can flow from and to the same resources.
Note again that this definition can be extended, as e.g. also groups of resources can be
symmetric, but this is not taken into account here.

Definition 8.3.5 (Symmetric resources) Let Σ = (R,C,A,Rm, Mf) be a static sys-
tem definition. We say that two resources r ∈ R and r′ ∈ R are symmetric, notation
symm(r, r′), iff

A(r) = A(r′) ∧
Rm(r) = Rm(r′) ∧
Mf (r) = Mf (r

′) ∧
∀res ∈ R. r ∈ Mf (res) ⇒ r′ ∈ Mf (res)

Consider the state space (St, ŝ, Ac, τ) of the system. If there are two states (tp,ms) ∈ St
and (tp,ms′) ∈ St such that ∀res ∈ R. ms(res) = ms′(res)∨∃res′ ∈ R. symm(res, res′)∧
ms(res) = ms′(res′) then it holds that (tp,ms) and (tp,ms′) are strongly bisimilar.

8.4. Results 173

Furthermore, it is easy to see that with this definition no deadlocked and finished states
are related. So, this definition can then be employed in the following way. It is only
necessary to investigate one state from the whole set of bisimilar states. So, in order
to explore the full state space, it is only necessary to investigate only the first state
encountered from the whole bisimilar set of states.

8.3.3 Non-logistic tasks

The third state-space reduction deals with mutually exclusive non-logistic tasks. A non-
logistic task has no logistic effect as the materials stay at resources of the same capabil-
ities. Tasks having no logistic effect can be executed in any arbitrary sequence without
influencing deadlock behavior. Using a similar confluence argument as in Section 8.3.1
the state space can be reduced. We use the following confluent transition set.

Definition 8.3.6 (Confluent transition set D) Let Σ = (R,C,A,Rm,Mf) be a static
system definition and ∆ = (T,G, L, Ln, Gn, Ga, I, P,M,Cb, Ce, m̂s) be a dynamic system
definition. Let (St, ŝ, Ac, τ) be the state space of the system. We define D ⊆ τ to be the set
consisting of the transitions ((tp,ms), (t, r), (tp′,ms′)) for which the following condition
hold.

anc(t) ∩ NL 6= ∅ ∧ ∀g ∈ G ∩ anc(t). g ∈ NL.

Here, the definition of the non-logistic groups and clusters, notation

NL = {n ∈ (G ∪ L) | ∀t ∈ T, c ∈ C. n ∈ anc(t) ⇒ Cb(t, c) = Ce(t, c)}.

This definition only considers groups or clusters containing only non-logistic tasks.
Using the fact that D is a confluent set of transitions, it is only necessary to investigate

only one edge labelled with a non-logistic task in each state having such an edge. All
other edges in this state can be ignored, while exactly finding all deadlocks in the system.

8.4 Results

This section presents the results that can be obtained by application of the reduction
techniques presented in the previous section. A dedicated verification tool has been im-
plemented in the C programming language. It traverses the state space as defined in Def.
8.2.7 and takes into account validity constraints as defined in Def. 8.2.10 and Def. 8.2.11.
Furthermore, the state space reduction techniques as described in the previous section
are implemented.

The explored system states St = (P(T)× (R → P(M))) are stored such that memory
usage is minimized. The states are put in a labelled structure. A bit array is used to
indicate whether or not a task is passed, which implements P(T). Furthermore, an array
of material locations is used to store the material configuration of the system, which
implements R → P(M). To be able to analyse an encountered deadlock state, it must
be possible to generate a transition trace that led to the deadlock state. Therefore, the
label of the state s that first led to a state s′ is stored with state s′, whereas the other
transitions leading to s′ are not stored at all.

This section first illustrates the reduction power of each of the three state-space re-
duction techniques using three typical example manufacturing systems. After that, ap-
plicability of the reduction techniques in industrial practice is illustrated using a wafer
scanner [1].

174 Chapter 8. A dedicated scheduling verification approach

SS

A

B
 C

D

E

F
G

H

T1

T9

T2

T3

T4

T5

T6

T7

T8

(a) Layout

Effect of Tau confluence reduction in typical example 1

1

10

100

1000

10000

100000

Number of products

N
um

be
r

of
 s

ta
te

s
(lo

g)

ON

OFF

ON
 27
 53
 79
 105
 131

OFF
 27
 345
 2779
 15867
 68505

1
 2
 3
 4
 5

(b) Reduction power of interleaving reduction

Figure 8.5: Typical example 1: manufacturing cell

8.4.1 Reduction power

Interleaving of independent parallel tasks

To illustrate the power of the reduction for interleaving of independent parallel tasks, the
manufacturing cell depicted in Fig. 8.5(a) serves as an example. The cell consists of eight
processing stations, A through H. Products enter the cell in a predefined sequence from
unit SS, to which products also leave the cell. The SS unit and the processing stations are
connected via a conveyor belt transportation system consisting of independent segments
(T1 through T9). Each processing station and each conveyor belt segment can hold
one product. Each product has to undergo 26 tasks. In case only one product is to
be manufactured, 27 states are to be traversed, no matter which reduction technique is
applied. In case multiple products are to be manufactured, many different interleaved
traces are possible. However, interleaving of independent parallel tasks does not matter
for deadlock. This is where the reduction for interleaving is very powerful, as is shown in
Fig. 8.5(b). In the graph the number of states are shown with the τ -priorisation switched
on and off. In this typical case, a state space with exponential size in the number of
products is reduced to a linear state space.

Resource symmetry

The power of the resource symmetry reduction is illustrated using an example litho-
graphic area in a semiconductor factory, as depicted in Fig. 8.6(a). The area is equipped
with two types of processing equipment: litho cells and furnaces. Each batch of wafers
has to undergo four processing cycles consisting of an exposure step in a litho cell and
a bake step in a furnace. The wafer batches are transported using automatic guided
vehicles (AGVs). Multiple instances of the processing and transportation equipment can
be available. Including the transport from and to the store, each batch of wafers has to
undergo 26 tasks, like in the previous example. In case only one instance of each type
of equipment are available, 27 states are to be traversed for such a batch. However, in
case multiple instances (resources) of each type of equipment (capability) is available, the
number of traces (or schedules) that can be followed grows rapidly. As we do not store
which resources are used in the passed tasks, the effect on the growth of the state space

8.4. Results 175

Litho Cells
 Furnaces
AGVs

Store

(a) Layout

Effect of resource symmetry reduction in typical example 2

0

20

40

60

80

100

120

140

Number of equivalent resources per capability

N
um

be
r

of
 s

ta
te

s

ON

OFF

ON
 27
 27
 27
 27
 27

OFF
 27
 52
 77
 102
 127

1
 2
 3
 4
 5

(b) Reduction power of resource symmetry re-
duction

Figure 8.6: Typical example 2: part of a semiconductor factory

(a) Layout

Effect of non-logistic symmetry reduction in typical example 3

1

10

100

1000

Number of dies

N
um

be
r

of
 s

ta
te

s
(lo

g)

ON

OFF

ON
 2
 3
 4
 5
 6

OFF
 3
 9
 27
 81
 243

1
 2
 3
 4
 5

(b) Reduction power of non-logistic reduction

Figure 8.7: Typical example 3: integrated circuits on a wafer

is only linear in the number of equipment instances. However, for the deadlock property
it does not matter which instance is chosen. Reduction for resource symmetry makes
the state-space size independent of the number of equipment instances, as is shown in
Fig. 8.6(b).

Non-logistic tasks

To illustrate the power of the reduction for non-logistic tasks, the exposure of integrated
circuits (ICs) onto a wafer in a wafer scanner serves as an example. During exposure,
the wafer is carried by a wafer stage. Each wafer can contain over a hundred ICs. In
Fig. 8.7(a) the center coordinates of the ICs on a typical wafer are depicted by ‘+’ signs.
SMC is free to choose in which order and in which direction (up or down) to scan the ICs
such that the fastest route results. The number of routes and states is exponential in the
number of ICs. However, which route is taken is not of importance for the verification of
the absence of deadlock, as the wafer stays at the same resource, which is called the wafer
stage. This is where the reduction for non-logistic tasks is very powerful, as is shown in
Fig. 8.7(b). An exponential size of the state space in the number of ICs is reduced to a

176 Chapter 8. A dedicated scheduling verification approach

PA

UR

LR

DU

CH

CH2LR
LR2CH

PALR1

LR2PA

LR2DU

DU2LR

UR2PA

WS2UR

WS2UR

UR2DU

DU2UR

PA

WS1

mea

exp

WS2

mea

exp

PALR2 +

DO4 +

LR2WS

PALR2 +

DO4 +

LR2WS

TR

TR2PA

DU2TR

Figure 8.8: Layout of the wafer scanner with carrier handler: first industrial case

TR2PA
 PA
 PALR1
 PALR2
 DO4
 LR2WS
 mea
 WS2U

R
 UR2DU
 DU2TR

CH2LR
 PA
 PALR1
 PALR2
 DO4
 LR2WS
 mea
LR2PA

CH2LR
 PA
 PALR1
 PALR2
 DO4
 LR2WS
 mea
DU2UR
LR2DU
 UR2PA

exp

t
 t
 t
 t

exp

exp

WS2U

R
 UR2DU
 DU2LR
 LR2CH

WS2U

R
 UR2DU
 DU2LR
 LR2CH

t
 t
 t
 t
 t
 t

t
 t
 t
 t
 t
 t
 t

mat0..4

&10..14

mat5

mat6..9

Figure 8.9: Different routes for first industrial case

linear one.

Practical use

The applicability of the reduction techniques is illustrated using two example wafer scan-
ners from industry. The first example concerns an existing wafer scanner, the ASML
TWINSCAN. The second example concerns a wafer scanner under development at ASML
that uses Extreme Ultra Violet light for exposure, which is therefore called the EUV ma-
chine.

TWINSCAN

A layout of the TWINSCAN is depicted in Fig. 8.8. Typical for the TWINSCAN system
is that it contains two wafer stages, shown at the right of Fig. 8.8: WS1 and WS2. Wafers
can enter and leave the system via two different resources. By default, wafers enter the
machine via the track (TR), and undergo the tasks depicted at the top of Fig. 8.9. In
this figure, tied precedence edges are labelled with a ‘t’. Note that the routing details
as described in the third example of the previous section are left out here. It is also
possible to bring wafers into the machine via the carrier handler unit (CH). In this case,
the wafers can follow two paths, as depicted in the middle and the bottom of Fig. 8.9.
As an example, we consider the processing of three lots, each consisting of five wafers
(mat0 through mat14). Which path which wafer must follow is depicted at the right
of Fig. 8.9. When we verify this case, we find several deadlock states. For one of
them, the material configuration in the deadlock state is depicted in Fig. 8.10, showing

8.4. Results 177

PA

UR

LR

DU

CH

CH2LR
LR2CH

PALR1

LR2PA

LR2DU

DU2LR

UR2PA

WS2UR

WS2UR

UR2DU

DU2UR

PA

WS1

mea

exp

WS2

mea

exp

PALR2 +

DO4 +

LR2WS

PALR2 +

DO4 +

LR2WS

TR

TR2PA

DU2TR
 mat5

mat6

mat7

mat8

Figure 8.10: Deadlock state in first industrial case without maxWIP constraint

a circular wait condition. An example trace that leads to this deadlock state is shown
in Fig. 8.11. This figure contains Gantt chart bars as well as material location lines,
colored per material instance. Such deadlock states can be avoided with the introduction
of an additional maxWIP validity constraint, stating that the pre-alignment unit (PA),
the wafer stages (WS1 and WS2), and the discharge unit (DU) together contain no more
than three wafers. For the deadlock state in Fig. 8.10, mat8 would not have entered the
system, and the deadlock would be avoided. Verification confirms that indeed only valid
schedules remain in this case. An example schedule is shown in Fig. 8.12.

0 50 100 150 200 250 300 350 400 450 500

 DU

 UR

 WS2

 WS1

 LR

 PA

 Track

 CHLR

Time [sec]

R
es

ou
rc

es

Gantt chart

mat0
mat1
mat2
mat3
mat4
mat5
mat6
mat7
mat8

Figure 8.11: Deadlock trace for first industrial case without maxWIP constraint

178 Chapter 8. A dedicated scheduling verification approach

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625

 Comm

 Software

 DU:vacuum

 DU

 UR:Gripper

 UR

 WS2:E−pins

WS2:E−Chuck

 WS2

 WS1:E−pins

WS1:E−Chuck

 WS1

PA:DockUnit

 LR:Gripper

 LR

 PA:Mea_vac

 PA:Mea

 PA:Cooling

 PA:TSU_gas

 PA:TSU

 PA:P−Chuck

 CHUR

 CHLR

 Track

Time [sec]

R
es

ou
rc

es

Gantt chart

mat0
mat1
mat10
mat11
mat12
mat13
mat14
mat2
mat3
mat4
mat5
mat6
mat7
mat8
mat9

Figure 8.12: Schedule for first industrial case with additional maxWIP constraint

EUV wafer scanner

A layout of the EUV wafer scanner is shown in Fig. 8.13. As EUV light is absorbed by
air, exposure must take place in vacuum. Therefore, the machine is equipped with two
load locks (L1 and L2) to bring wafers entering the machine from atmospheric pressure
to vacuum, and vice versa when leaving the machine. Furthermore, instead of two single-
armed robots in TWINSCAN, only one combined robot with two arms (R1a and R1b) is
available for wafer transportation. Again, two wafer stages are available (WS1 and WS2).
Only loading from the track (TR) is considered in this example. Three maxWIP validity
constraints are used, as depicted by the dotted squares and the numbers in Fig. 8.13. The
absence of tied precedences and presence of multiple resources of the machine capabilities
results in many scheduling possibilities. In case of five wafers, the state space consists of
67496 states. Application of the reduction techniques reduces the state-space size with
one order of magnitude to 6746 states. Fig. 8.14 shows the influence of the number of
wafers in the case on the state-space size, which still is exponential. Nevertheless, the
reduction effect and memory usage efficiency of order of magnitude 107 states per gigabyte
are sufficient to verify industrially sized problems.

8.5 Conclusions

A dedicated verification approach has successfully been developed to verify industrially
sized cases of complex manufacturing machines for absence of deadlock. The cases are

8.5. Conclusions 179

L1

R1a

R1b

WS1

WS2

TR

L2

3
 3

4

Figure 8.13: Layout of EUV machine: second industrial case

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20

Number of wafers

N
um

be
r

of
 s

ta
te

s

Figure 8.14: Number of states versus number of wafers in second industrial case

described by a definition of the manufacturing system (static system definition) and
the work to be done (dynamic system definition), based on which a definition of the
feasible state space is defined. Furthermore, a set of validity constraints that should
avoid deadlock is specified. Several combinatoric effects cause the state space to grow
exponentially, which makes it practically impossible to perform an exhaustive state space
traversal for industrially sized problems.

As opposed to general paradigms to define system behavior such as automata or
Petri nets, the system definition consists of lots of elements. The fact that elements
have a specific and intuitive meaning makes it possible to formalize intuitive state-space
reduction possibilities in terms of the system definition elements.

Three situations in which state space reduction techniques can be applied have been
identified and formally defined. They can be justified by applying meta proofs to the
specific characteristics of manufacturing systems and the deadlock absence property. A
verification tool has been developed that can traverse the state space taking into account
the validity constraints to detect deadlock states. The reduction techniques have been
implemented, and memory usage is optimized.

Results show that two of the techniques can reduce exponential growth to linear
growth, and one technique can make the state-space size independent of a linear effect.
Furthermore, results of real wafer scanner problems show that the approach is suited for

180 References

verification of industrially sized problems.
The three reductions that we provide are rather straightforward. By making them

more sophisticated, it should be possible to achieve further state-space reductions. Many
other reductions are conceivable. An example is material symmetry. In case of identical
product recipes, the state space can consist of many recurrent patterns that only differ
in terms of material instances. These recurrent patterns can be mapped onto each other,
as is e.g. done in [9].

The present work shows an effective approach to overcome state-space explosion prob-
lems by using specific knowledge of the nature of the type of systems and the properties
to be verified to reduce state spaces. This approach has been used to effectively find and
remove deadlock situations in a number of machines at ASML.

References

[1] ASML, 2004. Information on wafer scanners available through URL
http://www.asml.com/, item: products - lithography.

[2] Z. A. Banaszak and B. H. Krogh. Deadlock avoidance in flexible manufacturing
systems with concurrently competing process flows. IEEE Transactions on Robotics
and Automation, 6(6):724–734, December 1990.

[3] M. M. H. Driessen. Verification of task resource scheduling, June 2004. Internship
report of Department of Computer Science, Eindhoven University of Technology,
The Netherlands, available through URL http://se.wtb.tue.nl/∼bvdnieuw.

[4] M. P. Fanti and M. Zhou. Deadlock control methods in automated manufacturing
systems. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems
and Humans, 34(1):5–22, 2004.

[5] P. Godefroid and P. Wolper. Using partial orders for the efficient verification of dead-
lock freedom and safety properties. In K. G. Larsen and A. Skou, editors, Computer
Aided Verification (CAV ’91), number 575 in LNCS, pages 332–342. Springer, 1991.

[6] J. F. Groote and J. C. van de Pol. State space reduction using partial tau-confluence.
In Nielsen, Mogens, and Rovan, editors, Mathematical Foundations of Computer
Science 2000, number 1893 in LNCS, pages 383–393. Springer–Verlag, 2000.

[7] J. F. Groote and M. P. A. Sellink. Confluence for process verification. Theoretical
Computer Science B (Logic, semantics and theory of programming), 170(1-2):47–81,
1996.

[8] M. Hendriks, B. van den Nieuwelaar, and F. Vaandrager. Model checker aided design
of a controller for a wafer scanner. In Proceedings of the 1st International Symposium
on Leveraging Applications of Formal Methods (ISoLA 2004), October 2004.

[9] M. Hendriks, N. J. M. van den Nieuwelaar, and F. W. Vaandrager. Recognizing finite
repetitive scheduling patterns in manufacturing systems. In G. Kendall, E. Burke,
and S. Petrovic, editors, Proceedings of the Multidisciplinary International Confer-
ence on Scheduling : Theory and Applications (MISTA’03), pages 291–319. Auto-
mated Scheduling, Optimisation and Planning Group, University of Nottingham,
UK, August 2003.

References 181

[10] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. The Trav-
eling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley-
Interscience, Chichester, 1985.

[11] R. M. Milner. Calculus of communicating systems. Lecture Notes in Computer
Science, 92, 1980.

[12] N. J. M. van den Nieuwelaar, J. M. van de Mortel-Fronczak, N. C. W. M. Braspen-
ning, and J. E. Rooda. Predictive scheduling in complex manufacturing machines:
scheduling alternatives and algorithm. submitted to IEEE TAC.

[13] N. J. M. van den Nieuwelaar, J. M. van de Mortel-Fronczak, N. C. W. M. Braspen-
ning, and J. E. Rooda. Predictive scheduling in complex manufacturing machines:
machine-specific constraints. submitted to IEEE TSM.

[14] N. J. M. van den Nieuwelaar, J. M. van de Mortel-Fronczak, and J. E. Rooda. Design
of supervisory machine control. In K. Glover and J. Maciejowski, editors, Proceedings
of the European Control Conference 2003, 2003. CD-ROM.

[15] D. M. R. Park. Concurrency and automata on infinite sequences. In P. Deussen,
editor, Proceedings of the 5th GI-Conference, number 104 in LNCS, pages 167–183.
Springer–Verlag, 1981.

[16] J. Park and S. A. Reveliotis. Deadlock avoidance in sequential resource allocation
systems with multiple resource acquisitions and flexible routings. IEEE Transactions
on Automatic Control, 46(10):1572–1583, 2001.

[17] S. E. Ramaswamy and S. B. Joshi. Deadlock-free schedules for automated manufac-
turing workstations. IEEE Transactions on Robotics and Automation, 12(3):391–400,
June 1996.

[18] S. A. Reveliotis, M. Lawley, and P. Ferreira. Polynomial-complexity deadlock avoid-
ance policies for sequential resource allocation systems. IEEE Transactions on Au-
tomatic Control, 42(10):1344–1357, 1997.

[19] E. Roszkowska. Supervisory control for deadlock avoidance in compound processes.
IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Hu-
mans, 34(1):52–64, January 2004.

[20] N. Viswanadham, Y. Narahari, and T. L. Johnson. Deadlock prevention and dead-
lock avoidance in flexible manufacturing systems using petri net models. IEEE
Transactions on Robotics and Automation, 6(6):713–723, December 1990.

[21] M. Wennink. Algorithmic Support for Automated Planning Boards. PhD thesis,
Eindhoven University of Technology, The Netherlands, 1995.

[22] R. A. Wysk, N. S. Yang, and S. Joshi. Detection of deadlocks in flexible manufactur-
ing cells. IEEE Transactions on Robotics and Automation, 7(6):853–859, December
1991.

[23] H. J. Yoon and D. Y. Lee. Deadlock-free scheduling of photolithography equipment
in semiconductor fabrication. IEEE Transactions on Semiconductor Manufacturing,
17(1):42–54, February 2004.

182

CHAPTER

NINE

APPLICATIONS

Two of the applications discussed in this chapter have been protected in patent applica-
tions that were not mentioned earlier in this thesis.
The first application is a mechatronic idea to increase machine throughput for wafer
scanners equipped with dual planar wafer stages, which is protected in patent appli-
cation ASML ref. P-0346. The first filing was in Europe in September 2002, number
03255923.9. The subsequent filing in September 2003 was also done in other countries
like the US and Japan.
The second application concerns synchronization of a wafer scanner and a track machine
without a litho cell controller, using predictive information. This application is protected
in patent application ASML ref. P-1818. The first filing was in the US in February 2004,
number 10/781,945.

183

184 Chapter 9. Applications

Applications

Whereas the previous chapters discussed the supervisory machine control concept, this
chapter discusses application of the concept in industrial practice. Section 9.1 discusses
diffusion of innovations in industry. In Section 9.2, the areas in which the results of
this project can be applied are outlined. Section 9.3 discusses the issues involved in the
roll-out of the developed supervisory machine control concept in embedded software of
wafer scanners. A suitable roll-out strategy is sketched as well as the current status of the
implementation at ASML. Section 9.4 concludes this chapter with a quantitative estimate
of the benefits of the new concept compared to the current practice. It must be noted
that this chapter contains no details for confidentiality reasons.

9.1 Diffusion of innovations

Whereas journal publications are common in the academic world, diffusion of innovations
via text documents is not effective in industry. Therefore, lots of presentations have
been given during this project. Theory has not been explained using mathematics but
using metaphors. Timing and selecting have been explained using the brick game, and
instantiating has been explained using the domino game. Besides disclosure of the theory,
also a more structured way of thinking in the organization resulted from this. The benefits
of application of the theory have been illustrated using small successes in relevant practical
cases. Lots of pictures have been used and especially live demos using a prototype
implementation, named T-ReCS: Task-Resource Control System. Most of the demos
have been given in a simulation environment, but also control of a real reticle handler
has been demonstrated. To be able to present the results of this demonstration that had
to take place in a clean room, it was recorded on video tape. The video shows that the
available resources can be deployed more efficiently than is done in the current control
software by better exploitation of parallelism 1.

Whereas on the one hand lots of effort has been put in spreading information through-
out ASML, on the other hand confidentiality of information had to be taken into account.
Research partners had to sign non-disclosure agreement forms, and all documents leav-
ing ASML had to be approved by the technical publication board. Most importantly,
the intellectual property of all papers has been claimed by ASML in patent applications
prior to publishing in the academic world. A patent application has been filed concerning
scheduling as described in Chapters 2 and 3, and verification as described in Chapters 7
and 8 has been added afterwards. Also planning and reacting as described in Chapter 4
are protected in a patent application. A third patent application protects instantiating
as described in Chapters 5 and 6. This project yielded two more patent applications,
focussing on application of the theory. These patent applications are referred to in the
next section.

1It must be noted that comparisons relate the new concept to the current practice. Some of the
improvements can also be achieved without the new control concept.

9.2. Application areas 185

9.2 Application areas

The theory described in this thesis can be applied for analysis as well as for real su-
pervisory machine control. Some applications have been described in the examples of
the previous chapters, but there are more. The ones of most practical importance are
mentioned in the sequel.

Analysis

Analysis of machine behavior from a task resource point of view has proven to be very
useful. Critical path analysis has, for instance, been applied to reduce software overhead
and chuck swap time. It has also resulted in a mechatronic idea to increase machine
throughput for machines equipped with dual planar wafer stages, that has been protected
in a patent application [2]. Furthermore, the predicting part of the developed control
concept can be used during design-time for simulation experiments. A prototype of a
timing forecast tool covering the whole machine has been developed successfully. The
behavior of the current real machine or of reference models can be matched accurately
due to the flexible configuration possibilities. Results will especially be realistic if the
real supervisory machine control would use the same predicting functionality.

Specifically for high-precision machines like wafer scanners, the developed prototype
tool for instantiating kinematic calibration sequences [3] can be of great help during
design. The design of calibration sequences is considered one of the most complex software
development activities at ASML.

Real supervisory machine control

As described in the introduction, the specification of the supervisory machine control
should form the basis for the real supervisory machine control software. In the project
plan [1], automatic code generation from this specification was envisioned. This solves
the problems of manual transformation from specification to implementation, which is
labor-intensive and error-prone. However, another problem remains. The behavior of the
machine is still tuned for a typical setting. Run-time interpretation and scheduling of
the tasks specified in a TRS definition as described in this thesis and [6] also solves this
problem.

The SMC concept developed can be applied to control a wafer scanner, as is shown in
the cases in the previous chapters. According to this concept, separate software drivers
of mechatronic systems (peripherals) can be controlled. Also, a hierarchical architecture
consisting of master and sub SMC controllers can be thought of, as is described in [5].
Besides application in other types of machines, the scope under control of SMC can be
broadened to a cluster of machines, e.g. a litho cell containing a wafer scanner and a
track machine. An architecture consisting of only one controller can be thought of, or
a hierarchical architecture with a litho cell master controller controlling a wafer scanner
sub controller and a track sub controller. However, synchronization of both machines
with their own controller without a master controller is also possible by exploiting the
predictive information in the new concept. The latter idea is protected and described in
another patent application [4].

186 Chapter 9. Applications

9.3 Roll-out

Several issues complicate the implementation of the new SMC concept in ASML wafer
scanners. This section describes these issues and a strategy how to cope with them.
Furthermore, the current status of the implementation is described.

Strategy

First of all, there is the risk of malfunctioning caused by unforeseen problems that come
with the introduction of a new control concept. A new control concept can only be
introduced evolutionary to limit the risk involved with each step.

Secondly, making a step in the roll-out of the concept requires a certain investment,
whereas the ASML software development resources are constantly under time pressure
to deliver new functionality. Therefore, such required functional deliverables preferably
serve as carriers to take steps in the introduction of the new control concept.

Thirdly, one should be very careful to change the behavior of the machine, even if the
changed behavior does not violate the specification. The reason for this is that customers
might rely on an unspecified part of the old behavior. Customers should, initially, not even
notice that the machine is controlled using a new control concept. Therefore, introduction
is first done without changes of interfaces and the new controller is configured such that
it copies the old behavior.

Only after initial introduction of the new concept changes are planned to exploit
more of the potential of the new concept. An example is the merging of control scopes
to exploit scheduling possibilities. In the future also recovery search functionality can
be envisioned. However, this is where the commercial issue comes in: any performance
improvement must be paid for by the customer.

A road map covering the roll-out in several implementation steps in the coming years
is under development. Besides the engineering activities for implementation in the em-
bedded machine software, the road map also covers addressing open research issues as
pointed out in the next chapter. Furthermore, a development traject is anticipated to
connect research and engineering activities. Development activities focus on limiting risks
in the main engineering stream and making the theory better accessible. To limit risks,
the applicability of the concept in certain control scopes is validated in pilot activities
to encounter unforeseen issues in an early stage. To make the theory better accessible,
visual tools for configuration of the new SMC concept will be developed [7]. This makes
application of the theory better scalable: adaptation of SMC for new functionality will
often be restricted to changing its configuration, which could be done by non-experts
then. Consequently, configuration management becomes more and more important.

Current status

At the time of writing this chapter, an initial implementation step has been taken. One of
the order of magnitude 10 software modules responsible for production-related SMC has
been transformed to the new SMC concept. Two functional deliverables that had to be
implemented in this module have served as carriers. Furthermore, the limited complexity
of its control scope and the fact that its behavior should be unchanged allowed for a
light-weight implementation of the new concept: T-ReCS Lite.

9.3. Roll-out 187

0

R−LAWA

R−MEAS

R−COWA

C−PFNW

 RS−CN

 SN−E

P−IMDA

 KR

 KS

 KE

 RH

Time

R
es

ou
rc

es
Gantt chart from T−ReCS Lite Dispatcher

CalcROUTE
CheckPFNW
ExposeI
FinishLOT
FlushSWAP
GetRSCD
GetSWAP−R
LoadLASTR
LoadRET
PrepNI
ProcWID
RecCOWA−R
RecLW−R
RecMEAS−R
ReqSWAP
StartLOT

Figure 9.1: A schedule from T-ReCS Lite controlling a real machine

Nevertheless, the core elements of the new concept as described in Chapters 2 through 4
have already been applied. First of all, there is the higher abstraction level based on tasks
and resources. Furthermore, a dispatching part and a predicting part are distinguished,
the latter consisting of a planner and a scheduler. Also the exception recovery function-
ality using plan reconstruction has been applied, which appeared to be very powerful.
Another elegant characteristic of the design is the clear division of control and data
passing. Data is synchronized and passed through, but not via the control path.

In spite of the great timing pressure, the transformation has been performed very
successfully. Only minor issues have been encountered during testing. Most of them
did not concern control itself, but passing of data. The issues that did involve control
concerned non-specified behavior that was implicitly present in the old implementation
and that is being used for test purposes. Thanks to the configurability of the new concept
these issues have been solved very quickly.

Figure 9.1 shows a Gantt chart obtained from a real machine. The timing depicted is
real execution timing obtained from dispatcher tracing. The schedule concerns exposure
of a lot consisting of two wafers each requiring three reticles.

188 Chapter 9. Applications

9.4 Benefits

The benefits of the application of the new SMC concept can be classified in two main
categories: development effort and machine performance. This section gives order-of-
magnitude benefit estimates that are substantiated by extrapolation of preliminary facts
and the expertise of several insiders at ASML.

Development effort

The configurability of the new concept has a very positive influence on the development
effort required, both for implementation of changes in machine configuration as well as
for changes in machine behavior.

An example case of a machine configuration change concerns a feasibility study of an
alternative reticle handler configuration initiated by a cost of goods reduction programme.
Reconfiguration of the T-ReCS prototype for this change took a few days. Changing the
current implementation would take several months of development effort.

An example case of a change in machine behavior are the two deliverables that served
as carriers for the introduction of T-ReCS Lite as mentioned in the previous section.
Each of the two functional deliverables has been estimated to take a few months of
development effort in the old implementation. The initial implementation of T-ReCS
Lite also has taken a few months of development effort. However, after that, each of the
functional deliverables has taken only a few days of effort.

Extrapolation of these preliminary results and taking some reservations into account,
an SMC-related software effort reduction of factor 2 is expected to be a safe claim. In
the type of market of ASML, the most important effect of this reduction lies in time to
market. Taking the development budget into account, the ASML technology road map
indicates that a development efficiency increase of factor 2 is indeed necessary to keep up
with the required development pace.

Machine performance

Looking at machine performance, improvements lie in several areas. An important area
is throughput, but besides that overall equipment efficiency (OEE) [8] plays a role.

Throughput

During this project, several example cases of throughput improvements were encountered,
as for example presented at the 2002 ASML Technology Conference and in Chapters 2
and 3. These cases show throughput improvements of order of magnitude 10 %. However,
these cases are quite specific, and their occurrence frequency is not known.

Nevertheless, for some other example cases of throughput improvement the overall
effect on productivity can be estimated. One of those cases has been mentioned previously
in this chapter in the context of the demonstration on the real reticle handler. The better
exploitation of parallelism in that case results in an average productivity increase of order
of magnitude 0.1 %. A throughput improvement of order of magnitude 0.1 % is equivalent
with a machine market value increase of order of magnitude 104 euro.

In the area of reticle handling another case of throughput improvement can be iden-
tified. In the current implementation no more than two reticles are allowed on the turret

9.4. Benefits 189

and the reticle stage to avoid deadlock. Application of the exact deadlock avoidance con-
straint as described in Chapter 7 allows for a faster load/unload schedule, overall leading
to an average throughput improvement of order of magnitude 0.1 %.

Another case concerns the initial implementation of T-ReCS Lite mentioned in the
previous section. Although not intended, this also resulted in an average productivity
increase of order of magnitude 0.1 %. The old implementation is complex, and not fully
transparent. As a consequence, potential parallelism was hidden, as opposed to the new
concept in which parallelism is exploited automatically by design.

Overall equipment efficiency

Not all manufactured products meet the required quality, resulting in a quality efficiency
loss. The new SMC concept can improve this in three ways. First of all, besides tuning for
throughput, also tuning for product quality in critical circumstances is possible. This can
be achieved by, e.g., scheduling extra calibrations, measurements, and other extra cau-
tious processing behavior. Furthermore, the predictive functionality enables non-greedy
behavior. This includes ’As Late As Possible’ scheduling and time window variability
reduction as is explained in Chapter 3, which has a positive effect on product quality.
This is not possible in the old implementation. Finally, the improved exception recovery
functionality can be applied to avoid rejection of wafers to result in a yield increase.

Sometimes the machine has to wait for wafers or reticles, resulting in a rate efficiency
loss. The predicting functionality in SMC of the scanner can be used to synchronize
better with the external logistics: the track and the reticle transportation system.

The availability of the machine is reduced by scheduled down time for preventive main-
tenance and unscheduled down time caused by interventions. The predictive functionality
enables foreseeing gaps in the schedule that could be used for preventive maintenance,
thus reducing scheduled down time. The improved exception recovery functionality can
also be applied to avoid some of the interventions by automatic recovery. Furthermore,
repair time can be reduced as better diagnostic information can be provided. In the cur-
rent implementation, only the place where things went wrong can be traced (root error).
Implementation of the pre- and post-conditions in terms of machine state as discussed
in Chapters 5 and 6 could additionally provide information concerning why things went
wrong (root cause). The avoidance of interventions and reduction of repair time result
in a reduction of unscheduled down time. This is particularly important just after intro-
duction of a new machine platform, when unscheduled down time is relatively high (time
to quality).

Summing up and extrapolating these preliminary results, an overall productivity in-
crease of order of magnitude 1 % is estimated to be well possible, without changes in
the machine hardware. Such a productivity increase is equivalent with a market value
increase of order of magnitude 105 euro per machine, with equal cost of goods.

190 References

References

[1] N. J. M. van den Nieuwelaar. Project plan: A framework for develop-
ment of machine control systems, November 2000. Available through URL
http://se.wtb.tue.nl/∼bvdnieuw.

[2] N. J. M. van den Nieuwelaar. Skip zeroing of IF at exposure side, September 2002.
Patent application ASML ref. P-0346, application number Europe: 03255923.9 (EP
1 404 712 A2), US: 10/665,351, China: 03125493.4, Japan: 2003-330017, Korea: 10-
2003-0065530, Singapore: 200305621-5, Taiwan: 92125033.

[3] N. J. M. van den Nieuwelaar, W. H. G. A. Koenen, J. Onvlee, H. P. J. van Lierop,
R. J. Dumont, M. A. R. Stoets, and J. E. Rooda. Run-time conditional sequencing
mechanism for supervisory machine control, October 2003. Patent application ASML
ref. P-1704, application number Europe: 03256456.9, Japan: 2004-286595.

[4] N. J. M. van den Nieuwelaar, J. Onvlee, and R. Boumen. Synchronization of wafer
scanner and track to increase lithocell productivity, February 2004. Patent application
ASML ref. P-1818, application number US: 10/781,945.

[5] N. J. M. van den Nieuwelaar, J. Onvlee, H. P. J. van Lierop, R. Boumen, R. J. Dumont,
and J. E. Rooda. Supervisory machine control featuring dynamic scheduling, May
2004. Patent application ASML ref. P-1885, application number US: 10/852,678.

[6] N. J. M. van den Nieuwelaar, J. Onvlee, H. P. J. van Lierop, N. C. W. M. Braspenning,
J.E. Rooda, M. M. H. Driessen, J. F. Groote, M. Hendriks, and F. Vaandrager. Run-
time, model based supervisory control of manufacturing machines, December 2003.
Patent application ASML ref. P-1784, application number US: 10/743,320.

[7] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference
Guide. Addison Wesley, Reading, 1999.

[8] SEMI. Standard for definition and measurement of equipment productivity. Technical
report, Semiconductor Equipment an Materials International, 2000. Available through
URL http://www.semi.org/.

CHAPTER

TEN

Conclusions

This thesis focusses on problems being faced in the industrial practice of supervisory
control of complex manufacturing machines (SMC). ASML wafer scanners serve as car-
riers. Problems lie in the area of development efficiency and machine performance. In
the current wafer scanner, the control decision making software is interweaved with non-
control functionality, and it is designed and implemented in a rigid way. Furthermore,
formal specifications enabling verification often lack. However, the development cycles
are shortening and machine configuration variability is increasing. This leads to more
complex and error-prone software, more laborious implementation of new functionality,
and makes software development more difficult to manage. The rigidness of the current
SMC software also hinders tailoring the behavior of the machine for the specific demands
of the product and customer, resulting in machine performance loss.

The main purpose of this PhD project was to develop a suitable formal method for
specification of supervisory machine control. The specification should enable analysis
and, moreover, should form the basis for the real SMC. This thesis describes how this
purpose has been achieved using a scheduling-based specification approach. Furthermore,
suggestions for further research are given.

10.1 Discussion

From the SMC point of view, a machine can be regarded as a task resource system
(TRS). SMC decides when to do which tasks using which resources. In this thesis, we
partition this decision-making process into three transformation phases: instantiating,
selecting, and timing. The instantiating transformation defines a scheduling problem for
a manufacturing request. The selecting transformation selects in the scheduling problem
which tasks to do in which order using which resources. The timing transformation
assigns start and finish times to the selected tasks, thus defining machine behavior.

The transformations are structured in a layered TRS framework shown in Fig. 1.4.
The layers indicate that transformations rely on subsequent transformations in the sense
that the effect of a decision made in some transformation on the machine behavior can
only be evaluated by performing the consecutive transformations. Several TRS definition
levels are distinguished, the level indicating the available room for choices. With each
transformation certain decisions are made, and the TRS definition level decreases.

In this thesis, we specified the different TRS definition levels and the constraints that
must be satisfied during the transformations in the TRS framework. This specification,
together with the developed approaches to avoid state-space explosion enable analysis
of SMC. Furthermore, we proposed a predictive-reactive control approach to embed the
TRS framework in the dynamic environment of real SMC.

191

192 Chapter 10. Conclusions

Specification and analysis

Concerning instantiating, we discussed two possible approaches: a non-deterministic and
a deterministic approach. Both approaches result in an instantiated, unselected TRS def-
inition, D2. The non-deterministic approach starts from the upper TRS definition level:
the uninstantiated TRS definition D3. Tasks are instantiated from meta-tasks. Meta-
tasks have pre-conditions and post-conditions on the system state. Pre-conditions define
the instantiating constraints, whereas post-conditions define the expected state transfor-
mation after execution of an instantiated meta-task. We discussed general meta-tasks to
process or transport products or other material, but also measurements and computations
involved in the more specific domain of kinematic calibration. In the deterministic ap-
proach called planning, we defined the instantiating transformation in terms of planning
rules. A sequence of predefined planning rules describes how manufacturing requests are
detailed step by step to the task granularity matching with the resources under control
(D2). We showed that both instantiating approaches can also be applied to recover from
exceptions.

Concerning selecting, we proposed an intuitive way to outline which tasks can be done
by which resources in which order. On the one hand, selection freedom is defined with
respect to resource assignment and task order, but also with respect to which tasks are
allowed to be selected in order to achieve the desired manufacturing purpose. On the
other hand, selection restrictions are defined that are imposed by the physical layout of
the machine. These restrictions ensure feasible behavior concerning material flow and
buffering in the selected TRS definition (D1) resulting after this transformation. Within
the feasible behavior, invalid behavior such as deadlock is still possible. We introduced
additional validity constraints to avoid such invalid behavior.

Concerning timing, we showed that the hybrid nature of a manufacturing machine
can be abstracted from for the purpose of SMC. Given a selected TRS that satisfies the
constraints concerning physical resource interference (D1), we encapsulate the continuous
behavior of the resources in between physical states in tasks. Given the begin and end
physical state, we obtain the duration of each task by solving the differential equations
describing the physical characteristics of the involved resources for that task. We show
that, given the duration of tasks, the determination of the start and finish times of tasks
(D0) can be regarded as a linear programming problem. Not only the task precedence
relation, but also time windows can be described as linear constraints. Optimization can
be applied not only to obtain a minimized total duration, but also to obtain non-eager
behavior of certain tasks.

The TRS specification enables analysis of complex machines under SMC, e.g. to sup-
port design of sequences or to predict its behavior. To enable analysis by verification, we
have applied two different approaches to overcome the state-space explosion problem. In
the first approach, we use general model checking tooling and tailored models, whereas
in the second approach we use a general model (D2) and a tailored model checker. In
the first approach we verify for a subset of D2 time optimality of steady-state operation
and deadlock absence. We use two consistent models of different abstractions that each
are tailored for a specific property. In the second approach we verify deadlock absence
in any D2 using characteristics of the property and model to apply state space reduction
techniques. These approaches are in accordance with the message of the No Free Lunch
Theorem: in areas suffering from combinatoric effects, dedicated approaches perform
better than generic approaches.

10.2. Further research 193

Real supervisory machine control

We proposed a predictive-reactive scheduling approach to embed the TRS framework in
the dynamic environment of SMC. In this approach, SMC consists of a predicting part
and a dispatching part. The dispatching part is connected to the resources and dispatches
tasks in a schedule obtained from the predicting part to the resources. The TRS frame-
work is embedded in the predicting part in the form of TRS translation functions. We
describe several scenarios to react to different types of control triggers using these TRS
translation functions.

The presented planning function is suited to quickly react to triggers from the user or
to exception triggers for which recovery is predefined. In case recovery is not predefined,
it can be searched for using the instantiating functionality within the constraints of the
uninstantiated TRS (D3). We proposed a scheduling algorithm combining the selecting
and timing transformation that is suited for application in SMC. The algorithm applies
heuristics to quickly find a good schedule, and enables partial schedule dispatching to
avoid control overhead.

In the proposed concept of supervisory machine control by predictive-reactive schedul-
ing the TRS definitions serve for configuration of SMC rather than as a source for code
generation. This way, run-time predictive scheduling is possible to enable optimization
of machine behavior for specific settings.

The contribution of this thesis lies in the effective application of theory from different
areas rather than in the development of theory itself. We gathered ingredients from me-
chanical engineering, game theory, scheduling, computer science, and mathematics and
integrated them into one framework. The framework makes the phenomena playing a
role in SMC explicit in the form of TRS definition elements. Furthermore, the frame-
work structures and relates the phenomena and their consequences on control decisions
in the form of transformation constraints. Compared to current practice in machine con-
trol software, the complexity that was implicit and interweaved is now unravelled and
localized.

The applications chapter shows that the framework is well applicable in industrial
practice and that development effort and machine performance are indeed improved con-
siderably. A safe estimate of the expected SMC-related software effort reduction is a
factor 2, which is necessary to keep up with the development pace. A safe estimate of
the expected machine performance increase is order of magnitude 1 %, which increases
the gross margin per machine by order of magnitude 105 euro. The roll out of the new
SMC concept at ASML is currently in progress.

10.2 Further research

As discussed before, this thesis combines theory from many expertise areas into one
framework. Breadth as well as depth of exploration per expertise area has been chosen
in a pragmatic way, such that a consistent mix and practically applicable package of
theory resulted. In our opinion, this thesis forms a solid basis for further development
and engineering to successively cash the involved benefits. Further exploration in lots of
areas can be thought of. In this section we mention some directions for further research
that we envision to be useful complements to the current work.

194 Chapter 10. Conclusions

The first interesting research direction is optimization. In this thesis, the timing
and selecting transformation layers have been integrated into a rather straightforward
scheduling algorithm. Instantiating has only been applied in an isolated setting, such
that only after instantiation of an entire TRS definition of level 2 the successive transfor-
mations were applied. Moreover, search algorithms were investigated to a limited extent
only. Integration of all three transformation layers would enable more effective decision
making with respect to instantiating. Moreover, it would be interesting to investigate
application of more sophisticated optimization algorithms to all three integrated layers.

The second interesting area for further research is software architecture. In this the-
sis, a machine control concept has been proposed that can be applied as a control engine
in embedded machine software. However, some software architectural questions remain.
One of these questions is whether and how to split the total machine into different control
scopes, and how to connect the different controllers into a composed architecture. Some
options were illustrated during this project, but a theoretically founded approach would
be useful. Another question is how to ensure a correct flow of data through the machine
without bothering the control engine with passing through of data that it doesn’t use
itself. For the implementation of T-ReCS Lite a specific solution has been chosen, but
a generic and theoretically founded approach would again be useful. The third ques-
tion concerns reaction dynamics. This thesis describes several reaction scenarios, but
the question remains which one to apply in which circumstances. Moreover, other reac-
tion scenarios can be thought of. Furthermore, reaction scenarios in composed control
architectures remain to be investigated.

The third interesting research direction is verification, which is understandable as
this thesis only describes the mechanical engineering part of a larger project. The orig-
inal project was intended for two PhD students: a mechanical engineer and a computer
scientist. The second part of the project, the computer science part, has in principle
not been undertaken. This thesis only pays attention to the case-specific verification of
deadlock absence in the selecting transformation. It would be interesting to broaden this
scope in several directions. In the context of the TRS framework, we think of verifica-
tion for classes of cases, other properties and other transformations. We think, e.g., of
proving deadlock absence for all possible manufacturing requests, timed properties, and
reachability in instantiating, respectively. In the context of machine control we think of
verification of reaction dynamics and behavior of composed control architectures.

BIBLIOGRAPHY

R. J. Abumaizar and J. A. Svestka, “Rescheduling job shops under random disruptions,”
International journal of production research, vol. 35, no. 7, pp. 2065–2082, 1997.

R. Alur, C. Courcoubetis, and D. L. Dill, “Model checking in dense real time,” Informa-
tion and Computation, vol. 104, pp. 2–34, 1993.

R. Alur and D. L. Dill, “Automata for modeling real-time systems,” in 17th International
Colloquium on Automata, Languages and Programming , 1990, pp. 322–335.

R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical Computer Science,
vol. 126, pp. 183–235, 1994.

ASML, 2004, information on wafer scanners available through URL
http://www.asml.com/, item: products - lithography.

R. J. Aumann and S. Hart, Handbook of game theory: with economic applications , Ams-
terdam, North-Holland, 2002.

J. C. M. Baeten and W. P. Weijland, Process Algebra, no. 18, Cambridge University
Press: Cambridge Tracts in Theoretical Computer Science, 1990.

Z. A. Banaszak and B. H. Krogh, “Deadlock avoidance in flexible manufacturing systems
with concurrently competing process flows,” IEEE Transactions on Robotics and
Automation, vol. 6, no. 6, pp. 724–734, 1990.

D. A. v. Beek and J. E. Rooda, “Languages and applications in hybrid modelling and
simulation: positioning of Chi,” Control Engineering Practice, vol. 8, no. 1, pp. 81–
91, 2000.

B. A. Brandin and W. M. Wonham, “Supervisory control of timed discrete-event sys-
tems,” IEEE Transactions on Automatic Control , vol. 39, no. 2, pp. 329–341, 1994.

M. Browne, E. Clarke, and O. Grümberg, “Characterizing finite Kripke structures in
propositional temporal logic,” Theoretical Computer Science, vol. 59, no. 1,2,
pp. 115–131, 1988.

R. E. Bryant, “Graph-based algorithms for boolean function manipulation,” IEEE Trans-
action on Computers , vol. C-35, no. 8, pp. 677–691, 1986.

195

196 Bibliography

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-Oriented
Software Architecture: A System of Patterns , Wiley, 1996.

H. Chen and B. Hu, “Schedule-driven supervisory control of flexible manufacturing sys-
tems,” in 30th Conference on Decision and Control , 1991, pp. 2186–2191.

Y. Chiu and M. Perng, “Self-calibration of a general hexapod manipulator using cylin-
der constraints,” International Journal of Machine Tools & Manufacture, vol. 43,
pp. 1051–1066, 2003.

H. Cho and R. A. Wysk, “Graph-theoretic deadlock detection and resolution for flexible
manufacturing systems,” IEEE Transactions on Robotics and Automation, vol. 11,
no. 3, pp. 413–421, 1995.

S. Chung, S. Lafortune, and F. Lin, “Limited lookahead policies in supervisory control of
discrete event systems,” IEEE Transactions on Automatic Control , vol. 37, no. 12,
pp. 1921–1935, 1992.

E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking , The MIT Press, 2000.

D. Daney, Y. Papegay, and A. Neumaier, “Interval methods for certification of the kine-
matic calibration of parallel robots,” in Proceedings of the 2004 IEEE International
Conference on Robotics & Automation, 2004.

E. W. Dijkstra, “Cooperating sequential processes,” in Programming Languages: NATO
Advanced Study Institute, F. Genuys, Ed., pp. 43–112, Academic Press, 1968.

J. Dorn, R. Kerr, and G. Thalhammer, “Reactive scheduling,” International journal of
human-computer studies , vol. 42, pp. 687–704, 1995.

M. M. H. Driessen, “Verification of task resource scheduling,” , 2004, internship report of
Department of Computer Science, Eindhoven University of Technology, The Nether-
lands, available through URL http://se.wtb.tue.nl/∼bvdnieuw.

M. P. Fanti and M. Zhou, “Deadlock control methods in automated manufacturing sys-
tems,” IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems
and Humans , vol. 34, no. 1, pp. 5–22, 2004.

A. Fehnker, “Scheduling a steel plant with timed automata,” in Proceedings of the
sixth International Conference on Real-Time Computing Systems and Applications
(RTCSA’99), IEEE Computer Society Press, 1999.

I. C. M. Flinsenberg, “Route planning algorithms for car navigation,” Ph.D. dissertation,
Eindhoven University of Technology, The Netherlands, 2004.

A. Garnaev, Search games and other applications of game theory , Springer, 2000.

S. Gaubert and J. Mairesse, “Task resource models and (max,+) automata,” in Idempo-
tency , J. Gunawardena, Ed., pp. 131–144, Cambridge, UK: Cambridge University
Press, 1998.

S. Gaubert and J. Mairesse, “Modeling and analysis of timed Petri nets using heaps
of pieces,” IEEE Transactions on Automatic Control , vol. 44, no. 4, pp. 683–697,
1999.

Bibliography 197

B. Gebremichael and F. W. Vaandrager, “Control synthesis for a smart card personal-
ization system using symbolic model checking,” in Formal Modeling and Analysis
of Timed Systems (FORMATS’03), K. G. Larsen and P. Niebert, Eds., no. 2791 in
LNCS, Springer–Verlag, 2004, pp. 189–203.

R. J. v. Glabbeek and W. P. Weijland, “Branching time and abstraction in bisimulation
semantics,” Journal of the ACM , vol. 43, no. 3, pp. 555–600, 1996.

P. Godefroid and P. Wolper, “Using partial orders for the efficient verification of deadlock
freedom and safety properties,” in Computer Aided Verification (CAV ’91), K. G.
Larsen and A. Skou, Eds., no. 575 in LNCS, Springer, 1991, pp. 332–342.

P. Gohari and W. M. Wonham, “Reduced supervisors for timed discrete-event systems,”
IEEE Transactions on Automatic Control , vol. 48, no. 7, pp. 1187–1198, 2003.

G. H. Golub and C. F. V. Loan, Matrix Computations , Baltimore, ML: The John Hopkins
University Press, 1983.

J. F. Groote and J. C. v. d. Pol, “State space reduction using partial tau-confluence,” in
Mathematical Foundations of Computer Science 2000 , Nielsen, Mogens, and Rovan,
Eds., no. 1893 in LNCS, Springer–Verlag, 2000, pp. 383–393.

J. F. Groote and M. P. A. Sellink, “Confluence for process verification,” Theoretical
Computer Science B (Logic, semantics and theory of programming), vol. 170, no.
1-2, pp. 47–81, 1996.

H. Gueguen and M. Lefebvre, “A comparison of mixed specification formalisms,” in
Automation of mixed processes: Hybrid Dynamic Systems: ADPM 2000 , Aachen:
Shaker Verlag, 2000, pp. 133–138.

V. Hartonas-Garmhausen, E. M. Clarke, and S. Campos, “Deadlock prevention in flexible
manufacturing systems using symbolic model checking,” in IEEE Conference on
Robotics and Automation, vol. 1, 1996, pp. 527–532.

M. Hendriks, N. J. M. v. d. Nieuwelaar, and F. W. Vaandrager, “Model checker aided
design of a controller for a wafer scanner,” Report NIII-R0430, Nijmegen Institute
for Computing and Information Sciences, University of Nijmegen, The Netherlands,
2004a.
*http://www.cs.kun.nl/ita/publications/papers/fvaan/HNV04.html

M. Hendriks, B. van den Nieuwelaar, and F. Vaandrager, “Model checker aided design of
a controller for a wafer scanner,” in Proceedings of the 1st International Symposium
on Leveraging Applications of Formal Methods (ISoLA 2004), 2004b.

M. Hendriks, N. J. M. van den Nieuwelaar, and F. W. Vaandrager, “Recognizing finite
repetitive scheduling patterns in manufacturing systems,” in Proceedings of the Mul-
tidisciplinary International Conference on Scheduling : Theory and Applications
(MISTA’03), G. Kendall, E. Burke, and S. Petrovic, Eds., Automated Schedul-
ing, Optimisation and Planning Group, University of Nottingham, UK, 2003, pp.
291–319.

J. M. Hollerbach, A survey of kinematic calibration, MIT Press, 1989.

198 Bibliography

J. M. Hollerbach and C. W. Wampler, “The calibration index and taxonomy for
robot kinematic calibration methods,” International Journal of Robotics Research,
vol. 15, no. 6, pp. 573–591, 1996.

D. Jevtic, “Method and apparatus for automatically generating schedules for wafer pro-
cessing within a multichamber semiconductor wafer processing tool,” , 1997, patent
no. US 6,201,999.

J. Kim, T. Lee, H. Lee, and D. Park, “Scheduling analysis of time-constrained dual-armed
cluster tools,” IEEE Transactions on Semiconductor Manufacturing , vol. 16, no. 3,
pp. 521–534, 2002.

C. M. H. Kuijpers, C. A. J. Hurkens, and J. B. M. Melissen, “Fast movement strategies
for a step-and-scan wafer stepper,” Statistica Neerlandica, vol. 51, no. 1, pp. 55–71,
1997.

S. Kumar, N. Ramanan, and C. Sriskandarajah, “Robotic system control,” , 2003, patent
no. US 6,556,893.

K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,” International Journal
on Software Tools for Technology Transfer , vol. 1, no. 1/2, pp. 134–152, 1997.

E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, The Traveling
Salesman Problem: A Guided Tour of Combinatorial Optimization, Chichester:
Wiley-Interscience, 1985.

M. Lawley and S. A. Reveliotis, “Deadlock avoidance for sequential resource allocation
systems: Hard and easy cases,” International Journal of Flexible Manufacturing
Systems , vol. 13, no. 4, pp. 385–404, 2001.

M. Lawley, S. A. Reveliotis, and P. Ferreira, “Design guidelines for deadlock handling
strategies in flexible manufacturing systems,” International Journal of Flexible
Manufacturing Systems , vol. 9, no. 1, pp. 5–30, 1997.

Y. Li and Z. H. Lin, “Supervisory control of probabilistic discrete-event systems with
recovery,” IEEE Transactions on Automatic Control , vol. 44, no. 10, pp. 1971–
1975, 1999.

J. M. Maciejowski, Predictive control with constraints , Harlow: Prentice Hall, 2002.

S. Manetti and M. C. Piccirilli, “A singular-value decomposition approach for ambigu-
ity group determination in analog circuits,” IEEE Transactions on Circuits and
Systems—I: Fundamental Theory and Applications , vol. 50, no. 4, pp. 477–487,
2003.

H. Marchand, O. Boivineau, and S. Lafortune, “On the synthesis of optimal schedulers
in discrete-event control problems with multiple goals,” SIAM Journal on Control
Optimization, vol. 39, no. 2, pp. 512–532, 2000.

K. L. McMillan, “Symbolic model checking,” Ph.D. dissertation, Carnegie Mellon Uni-
versity, Pittsburgh, 1992.

Bibliography 199

R. M. Milner, “Calculus of communicating systems,” Lecture Notes in Computer Science,
vol. 92.

K. Miyashita and K. Sycara, “CABINS: A framework of knowledge acquisition and iter-
ative revision for schedule improvement and reactive repair,” Artificial Intelligence
Journal , vol. 76, no. 1-2, pp. 377–426, 1995.

D. C. Montgomery and G. C. Runger, Applied Statistics and Probability for Engineers ,
New York: John Wiley & Sons, Inc., 1994.

J. M. v. d. Mortel, J. E. Rooda, and N. J. M. v. d. Nieuwelaar, “Specification of a flexible
manufacturing system using concurrent programming,” CERA International Jour-
nal on Concurrent Engineering: Research and Applications , vol. 3, no. 3, pp. 187–
194, 1995.

T. Murata, “Petri nets: Properties, analysis, and applications,” Proceedings of the IEEE ,
vol. 77, no. 4, pp. 541–580, 1989.

K. G. Murty, Linear Programming , Chichester: Wiley-Interscience, 1983.

N. J. M. v. d. Nieuwelaar, “Project plan: A framework for development of machine control
systems,” , 2000, available through URL http://se.wtb.tue.nl/∼bvdnieuw.

N. J. M. v. d. Nieuwelaar, “Skip zeroing of IF at exposure side,” , 2002, patent application
ASML ref. P-0346, application number Europe: 03255923.9 (EP 1 404 712 A2),
US: 10/665,351, China: 03125493.4, Japan: 2003-330017, Korea: 10-2003-0065530,
Singapore: 200305621-5, Taiwan: 92125033.

N. J. M. v. d. Nieuwelaar, W. H. G. A. Koenen, J. Onvlee, H. P. J. v. Lierop, R. J.
Dumont, M. A. R. Stoets, and J. E. Rooda, “Run-time conditional sequencing
mechanism for supervisory machine control,” , 2003a, patent application ASML
ref. P-1704, application number Europe: 03256456.9, Japan: 2004-286595.

N. J. M. v. d. Nieuwelaar, J. M. v. d. Mortel-Fronczak, N. C. W. M. Braspenning, and
J. E. Rooda, “Predictive scheduling in complex manufacturing machines: schedul-
ing alternatives and algorithm,” submitted to IEEE TAC .

N. J. M. v. d. Nieuwelaar, J. M. v. d. Mortel-Fronczak, N. C. W. M. Braspenning, and
J. E. Rooda, “Predictive scheduling in complex manufacturing machines: machine-
specific constraints,” submitted to IEEE TSM .

N. J. M. v. d. Nieuwelaar, J. M. v. d. Mortel-Fronczak, and J. E. Rooda, “Design of
supervisory machine control,” in Proceedings of the European Control Conference
2003 , K. Glover and J. Maciejowski, Eds., 2003b, cD-ROM.

N. J. M. v. d. Nieuwelaar, J. Onvlee, and R. Boumen, “Synchronization of wafer scanner
and track to increase lithocell productivity,” , 2004a, patent application ASML ref.
P-1818, application number US: 10/781,945.

N. J. M. v. d. Nieuwelaar, J. Onvlee, H. P. J. v. Lierop, R. Boumen, R. J. Dumont, and
J. E. Rooda, “Supervisory machine control featuring dynamic scheduling,” , 2004b,
patent application ASML ref. P-1885, application number US: 10/852,678.

200 Bibliography

N. J. M. v. d. Nieuwelaar, J. Onvlee, H. P. J. v. Lierop, N. C. W. M. Braspenning,
J. Rooda, M. M. H. Driessen, J. F. Groote, M. Hendriks, and F. Vaandrager,
“Run-time, model based supervisory control of manufacturing machines,” , 2003c,
patent application ASML ref. P-1784, application number US: 10/743,320.

D. Ouelhadj, P. I. Cowling, and S. Petrovic, “Utility and stability measures for agent-
based dynamic scheduling of steel continuous casting,” in IEEE International Con-
ference on Robotics & Automation, 2003, pp. 175–180.

D. M. R. Park, “Concurrency and automata on infinite sequences,” in Proceedings of the
5th GI-Conference, P. Deussen, Ed., no. 104 in LNCS, Springer–Verlag, 1981, pp.
167–183.

J. Park and S. A. Reveliotis, “Deadlock avoidance in sequential resource allocation sys-
tems with multiple resource acquisitions and flexible routings,” IEEE Transactions
on Automatic Control , vol. 46, no. 10, pp. 1572–1583, 2001.

M. Pinedo, Scheduling: Theory, Algorithms, and Systems , Prentice Hall, 1995.

R. G. Qiu and S. B. Joshi, “A structured adaptive supervisory control methodology for
modeling the control of a discrete event manufacturing system,” IEEE Transactions
on Systems, Man, and Cybernetics – Part A: Systems and Humans , vol. 29, no. 6,
pp. 573–586, 1999.

P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of discrete event
processes,” SIAM Journal on Control and Optimization, vol. 25, no. 1, pp. 206–
230, 1987.

S. E. Ramaswamy and S. B. Joshi, “Deadlock-free schedules for automated manufacturing
workstations,” IEEE Transactions on Robotics and Automation, vol. 12, no. 3,
pp. 391–400, 1996.

A. Ramirez-Serrano and B. Benhabib, “Supervisory control of flexible-manufacturing
workcells that allow the production of a priori unplanned part types,” in IEEE
International Conference of Systems, Man and Cybernetics , 2000, pp. 2127–2131.

J. Renders, E. Rossignol, M. Becquet, and R. Hanus, “Kinematic calibration and geo-
metrical parameter identification for robots,” IEEE Transactions on Robotics and
Automation, vol. 7, no. 6, pp. 721–732, 1991.

S. A. Reveliotis, M. Lawley, and P. Ferreira, “Polynomial-complexity deadlock avoidance
policies for sequential resource allocation systems,” IEEE Transactions on Auto-
matic Control , vol. 42, no. 10, pp. 1344–1357, 1997.

S. Rostami and B. Hamidzadeh, “Optimal scheduling techniques for cluster tools with
process-module and transport-module residency contraints,” IEEE Transactions on
Semiconductor Manufacturing , vol. 15, no. 3, pp. 341–349, 2002.

E. Roszkowska, “Supervisory control for deadlock avoidance in compound processes,”
IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Hu-
mans , vol. 34, no. 1, pp. 52–64, 2004.

Bibliography 201

J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Language Reference
Guide, Reading: Addison Wesley, 1999.

J. Ryu and A. Rauf, “A new method for fully autonomous calibration of parallel manip-
ulators using a constraint link,” in 2001 IEEE/ASME International Conference on
Advanced Intelligent Mechatronics Proceedings , 2001, pp. 8–12.

I. Sabuncuoglu and M. Bayiz, “Analysis of reactive scheduling problems in a job shop en-
vironment,” European journal of operational research, vol. 126, pp. 567–586, 2000.

SEMI, “Standard for definition and measurement of equipment productivity,” Tech. rep.,
Semiconductor Equipment an Materials International, 2000, available through URL
http://www.semi.org/.

Y. Shin, T. Lee, J. Kim, and H. Lee, “Modeling and implementing a real-time scheduler
for dual-armed cluster tools,” Computers in Industry , , no. 45, pp. 13–27, 2001.

S. F. Smith, “Is scheduling a solved problem?” in Multidisciplinary International Confer-
ence on Scheduling : Theory and Applications(MISTA’03), G. Kendall, E. Burke,
and S. Petrovic, Eds., ASAP, University of Nottingham, UK, 2003, pp. 11–20.

W. Stallings, Operating Systems – Internals and Design Principles , Prentice–Hall, 1998.

J. A. Starzyk, J. Pang, S. Manetti, M. C. Piccirilli, and G. Fedi, “Finding ambigu-
ity groups in low testability analog circuits,” IEEE Transactions on Circuits and
Systems—I: Fundamental Theory and Applications , vol. 47, no. 8, pp. 1125–1137,
2000.

E. Szelke and R. M. Kerr, “Knowledge-based reactive scheduling,” in Proceedings of the
IFIP TC5/WG5.7 international workshop, 1993.

P. Toth and D. Vigo, Predictive control with constraints , Philadelphia: SIAM, 2002.

G. E. Vieira, J. W. Herrmann, and E. Lin, “Rescheduling manufacturing systems: a
framework of strategies, policies and methods,” Journal of scheduling , vol. 6, no. 1,
pp. 35–58, 2003.

G. X. Viennot, “Heaps of Pieces, I: Basic definitions and combinatorial lemmas,” in
Combinatoire Enumerative, G. Labelle and P. Leroux, Eds., pp. 321–350, New
York: Springer, 1986.

N. Viswanadham, Y. Narahari, and T. L. Johnson, “Deadlock prevention and deadlock
avoidance in flexible manufacturing systems using petri net models,” IEEE Trans-
actions on Robotics and Automation, vol. 6, no. 6, pp. 713–723, 1990.

C. W. Wampler, J. M. Hollerbach, and T. Arai, “An implicit loop method for kinematic
calibration and its application to closed-chain mechanisms,” IEEE Transactions on
Robotics and Automation, vol. 11, no. 5, pp. 710–724, 1995.

Y. Wang and Z. Wu, “Deadlock avoidance control synthesis in manufacturing systems
using model checking,” in IEEE American Control Conference, vol. 2, 2003, pp.
1702–1704.

202 Bibliography

M. Wennink, “Algorithmic support for automated planning boards,” Ph.D. dissertation,
Eindhoven University of Technology, The Netherlands, 1995.

D. H. Wolpert and W. Macready, “No free lunch theorems for optimization,” IEEE
Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67–82, 1997.

H. H. Wu and R. K. Li, “A new rescheduling method for computer based scheduling
systems,” International journal of production research, vol. 33, no. 8, pp. 2097–
2110, 1995.

R. A. Wysk, N. S. Yang, and S. Joshi, “Detection of deadlocks in flexible manufacturing
cells,” IEEE Transactions on Robotics and Automation, vol. 7, no. 6, pp. 853–859,
1991.

G. Yang and I. M. Chen, “Kinematic calibration of modular reconfigurable robots,”
Journal of Robotics Systems , vol. 16, no. 4, pp. 213–225, 1999.

H. J. Yoon and D. Y. Lee, “Deadlock-free scheduling of photolithography equipment in
semiconductor fabrication,” IEEE Transactions on Semiconductor Manufacturing ,
vol. 17, no. 1, pp. 42–54, 2004.

S. Yovine, “Kronos: a verification tool for real-time systems,” International Journal on
Software Tools for Technology Transfer , vol. 1, no. 1/2, pp. 123–133, 1997.

M. Zweben and M. S. Fox, Intelligent scheduling , San Francisco: Morgan Kaufmann,
1994.

Samenvatting

Dit proefschrift gaat over supervisory control van complexe productiemachines. ASML
wafer scanners zijn de carriers van dit onderzoek. Een wafer scanner is een representatief
voorbeeld van een complexe productiemachine, bestaande uit vele mechatronische syste-
men. In een complexe productiemachine bestaan vele mogelijkheden om de beschikbare
middelen (resources) aan te wenden voor het uitvoeren van taken (tasks) die leiden tot
het gewenste productiedoel, resulterend in verschillend gedrag van de machine. Super-
visory Machine Control (SMC) is verantwoordelijk voor de bepaling van wanneer welke
taken gedaan worden door welke middelen.

Het doel van dit project is om een geschikte formele methode te ontwikkelen voor de
specificatie van supervisory control van complexe productiemachines. Er moet rekening
gehouden worden met lastige eisen aan SMC van complexe productiemachines. Ten
eerste zijn de productietaken in grote mate afhankelijk van het productrecept, waarvoor
SMC flexibel moet zijn. Dit betekent dat SMC een stroom van gemixte producttypes
moet kunnen verwerken, die gelijktijdig worden geproduceerd. Ten tweede moet SMC het
gedrag van de machine kunnen optimaliseren door haar middelen op een zo goed mogelijke
manier in te zetten binnen haar productiebeperkingen. Wat het beste is kan afhangen
van de karakteristieken van het recept. Ten derde moet SMC passen in de dynamische
omgeving waar zij in zit. Dit betekent dat zij op allerlei signalen vanuit haar omgeving
moet reageren zonder onnodig besturingsoverhead te introduceren. Een heel belangrijk
signaal is het falen van een taak: een exceptie, die vraagt om een herstelreactie van
SMC om tussenkomst van een mens te voorkomen. Tenslotte moet SMC zich lenen om
eenvoudig functionaliteit toe te voegen en te wijzigen, om de stijgende ontwikkelsnelheid
in de industrie bij te kunnen houden.

Om de bovengenoemde eisen te vervullen is een scheduling gebaseerd SMC con-
cept ontwikkeld. Om de te nemen besturingsbeslissingen te structureren wordt een
gelaagd task-resource raamwerk gebruikt. Vanuit het oogpunt van SMC kan een ma-
chine beschouwd worden als een ‘task resource’ systeem (TRS). Taken kunnen geasso-
cieerd worden met productieprocessen, terwijl resources geassocieerd kunnen worden met
mechatronische systemen. Het transformeren van een productie-opdracht in machinege-
drag kan gestructureerd worden in drie fases, gedurende welke rekening gehouden dient
te worden met de beperkingen van de machine. Eerst moet er een scheduling probleem
gëınstantieerd worden voor de productie-opdracht. Deze transformatie wordt instan-
tiating genoemd. Vervolgens moeten middelen toegekend worden aan de taken in het
gëınstantieerde scheduling probleem in een bepaalde volgorde, rekening houdend met het
feit dat middelen slechts bepaalde taken uit kunnen voeren en maar één tegelijkertijd.
Deze transformatie wordt selecting genoemd. De geselecteerde volgorde van taken die

203

204 Samenvatting

uitgevoerd moeten worden door de geselecteerde middelen kunnen toestandsovergangen
tussendoor tot gevolg hebben. Tenslotte kunnen start- en eindtijden toegekend worden
aan de geselecteerde taken, rekening houdend met de duur van de taken. Deze transfor-
matie wordt timing genoemd. De combinatie van de selecting en timing transformatie
wordt ook wel scheduling genoemd. Gedurende de drie transformatiefases instantiating,
selecting en timing, moeten keuzes gemaakt worden. De consequenties van een keuze
in een bepaalde transformatiefase kan alleen bepaald worden door de opvolgende trans-
formaties te doen. Vandaar dat een transformatiefase sterk leunt op informatie van
opvolgende fases, wat aangegeven is in het gelaagde TRS raamwerk. In dit proefschrift
worden de drie transformatiefases formeel gedefinieerd.

In dit project is een voorspellend-reactief SMC raamwerk ontwikkeld dat het gelaagde
TRS raamwerk in zich heeft in de vorm van TRS translatiefuncties. Verschillende me-
thoden of scenario’s om te reageren op verschillende types van besturingsimpulsen worden
beschreven middels deze translatiefuncties. Voor de ‘goed weer’ impulsen is het belangrijk
om besturingsoverhead te voorkomen. Dit wordt gedaan door zeker te stellen dat reactie
- indien mogelijk - plaatsvindt parallel aan de productieprocessen. Voor besturingsim-
pulsen die excepties betreffen is het belangrijker om op een robuuste manier te herstellen
dan om besturingsoverhead te voorkomen. Vandaar dat de reactie op excepties sequen-
tieel is. Bij het herstellen van excepties worden dezelfde transformatiefuncties gebruikt
als bij de bovengenoemde ‘goed weer’ impulsen, wat een elegante eigenschap is.

De schedulingtransformatie die in SMC zit gebruikt heuristische filters om snel een
goed schedule te vinden. Er zijn verschillende aanpakken ontwikkeld om het vastlopen
(deadlock) van de machine te voorkomen. Bij één van hen wordt een model checker
gebruikt om een filter te configureren dat deadlock voorkomt, terwijl het aantal schedules
zo min mogelijk wordt beperkt. Een specifieke verificatie-aanpak is ontwikkeld om zeker te
stellen dat het ontwerp van de filterconfiguratie inderdaad niet kan resulteren in ongeldig
machinegedrag zoals deadlock. Deze aanpak maakt gebruik van de specifieke structuur
van het schedulingmodel om toestandsruimte-reductietechnieken toe te passen. Deze
technieken maken het mogelijk om gevallen van praktische omvang te verifiëren.

Er zijn twee instantiatie-aanpakken ontwikkeld. De eerste maakt gebruik van een
database van instantiatieregels en bouwblokken om een schedulingprobleem te genereren
die de productie-opdracht vervult. De andere aanpak gebruikt metataken en hun pre-
en postcondities om te zoeken naar instanties van schedulingproblemen die de productie-
opdracht vervullen, zoals in game theory. Deze aanpak is tevens uitgewerkt voor kinema-
tische kalibraties. Kinematische kalibratie van precisiemachines valt onder SMC omdat
afwijkingen en drifteffecten in de hardware gecorrigeerd moeten worden tijdens productie.

Toepassing van het voorgestelde besturingsconcept heeft significante voordelen vergele-
ken met de huidige gang van zaken bij ASML. De verwachting is dat de SMC gerelateerde
software ontwikkelingsinspanning reduceert met een factor 2, en dat de machineprestatie
verbetert met orde-grootte 1 %. Een beperkte versie van het besturingsconcept is suc-
cesvol gëımplementeerd in een deel van de besturingssoftware van het ASML TWINSCAN
besturingsplatform. Een road-map die het evolutionair uitrollen van het concept in de
komende jaren behelst is in ontwikkeling.

Curriculum Vitae

N.J.M. (Barend) van den Nieuwelaar was born on June the 6th, 1972 in Tilburg, the
Netherlands. After finishing Atheneum B at the Theresia Lyceum in Tilburg in 1990, he
started his studies at the Eindhoven University of Technology, Department of Mechanical
Engineering. During the internship he co-authored a journal article [J.M. van de Mortel
et al., 1995]. He carried out his final project at Schelde Energy and Environmental
Systems in Vlissingen, where he studied the assembly of steam equipment in an electricity
generation plant. He graduated in May 1996.

From June 1996 till March 1997 he worked at Schelde Energy and Environmental
Systems as project planner and cost controller. In April 1997 he started working at
Steelweld BV, where he has set up a project planning and cost control team to support
project leaders by supplying project progress and forecast information. He was leader of
this team and advised the management team.

In January 2001, he started working at ASML as a member of the software architecture
group. From then, he has worked on a framework for the development of machine control
systems, resulting in this PhD thesis.

205

206

Titles in the IPA Dissertation Series

J.O. Blanco. The State Operator in Process Al-

gebra. Faculty of Mathematics and Computing
Science, TUE. 1996-01

A.M. Geerling. Transformational Development

of Data-Parallel Algorithms. Faculty of Mathe-
matics and Computer Science, KUN. 1996-02

P.M. Achten. Interactive Functional Programs:

Models, Methods, and Implementation. Faculty of
Mathematics and Computer Science, KUN. 1996-
03

M.G.A. Verhoeven. Parallel Local Search.
Faculty of Mathematics and Computing Science,
TUE. 1996-04

M.H.G.K. Kesseler. The Implementation of

Functional Languages on Parallel Machines with

Distrib. Memory. Faculty of Mathematics and
Computer Science, KUN. 1996-05

D. Alstein. Distributed Algorithms for Hard

Real-Time Systems. Faculty of Mathematics and
Computing Science, TUE. 1996-06

J.H. Hoepman. Communication, Synchroniza-

tion, and Fault-Tolerance. Faculty of Mathemat-
ics and Computer Science, UvA. 1996-07

H. Doornbos. Reductivity Arguments and Pro-

gram Construction. Faculty of Mathematics and
Computing Science, TUE. 1996-08

D. Turi. Functorial Operational Semantics and

its Denotational Dual. Faculty of Mathematics
and Computer Science, VUA. 1996-09

A.M.G. Peeters. Single-Rail Handshake Cir-

cuits. Faculty of Mathematics and Computing
Science, TUE. 1996-10

N.W.A. Arends. A Systems Engineering Spec-

ification Formalism. Faculty of Mechanical Engi-
neering, TUE. 1996-11

P. Severi de Santiago. Normalisation in

Lambda Calculus and its Relation to Type Infer-

ence. Faculty of Mathematics and Computing Sci-
ence, TUE. 1996-12

D.R. Dams. Abstract Interpretation and Par-

tition Refinement for Model Checking. Faculty of
Mathematics and Computing Science, TUE. 1996-
13

M.M. Bonsangue. Topological Dualities in Se-

mantics. Faculty of Mathematics and Computer
Science, VUA. 1996-14

B.L.E. de Fluiter. Algorithms for Graphs of

Small Treewidth. Faculty of Mathematics and
Computer Science, UU. 1997-01

W.T.M. Kars. Process-algebraic Transforma-

tions in Context. Faculty of Computer Science,
UT. 1997-02

P.F. Hoogendijk. A Generic Theory of Data

Types. Faculty of Mathematics and Computing
Science, TUE. 1997-03

T.D.L. Laan. The Evolution of Type Theory in

Logic and Mathematics. Faculty of Mathematics
and Computing Science, TUE. 1997-04

C.J. Bloo. Preservation of Termination for Ex-

plicit Substitution. Faculty of Mathematics and
Computing Science, TUE. 1997-05

J.J. Vereijken. Discrete-Time Process Algebra.
Faculty of Mathematics and Computing Science,
TUE. 1997-06

F.A.M. van den Beuken. A Functional Ap-

proach to Syntax and Typing. Faculty of Mathe-
matics and Informatics, KUN. 1997-07

A.W. Heerink. Ins and Outs in Refusal Testing.
Faculty of Computer Science, UT. 1998-01

G. Naumoski and W. Alberts. A Discrete-

Event Simulator for Systems Engineering. Faculty
of Mechanical Engineering, TUE. 1998-02

J. Verriet. Scheduling with Communication for

Multiprocessor Computation. Faculty of Mathe-
matics and Computer Science, UU. 1998-03

207

208 Titles in the IPA Dissertation Series

J.S.H. van Gageldonk. An Asynchronous Low-

Power 80C51 Microcontroller. Faculty of Mathe-
matics and Computing Science, TUE. 1998-04

A.A. Basten. In Terms of Nets: System Design

with Petri Nets and Process Algebra. Faculty of
Mathematics and Computing Science, TUE. 1998-
05

E. Voermans. Inductive Datatypes with Laws

and Subtyping – A Relational Model. Faculty of
Mathematics and Computing Science, TUE. 1999-
01

H. ter Doest. Towards Probabilistic Unification-

based Parsing. Faculty of Computer Science, UT.
1999-02

J.P.L. Segers. Algorithms for the Simulation of

Surface Processes. Faculty of Mathematics and
Computing Science, TUE. 1999-03

C.H.M. van Kemenade. Recombinative Evolu-

tionary Search. Faculty of Mathematics and Nat-
ural Sciences, UL. 1999-04

E.I. Barakova. Learning Reliability: a Study

on Indecisiveness in Sample Selection. Faculty of
Mathematics and Natural Sciences, RUG. 1999-05

M.P. Bodlaender. Scheduler Optimization in

Real-Time Distributed Databases. Faculty of
Mathematics and Computing Science, TUE. 1999-
06

M.A. Reniers. Message Sequence Chart: Syn-

tax and Semantics. Faculty of Mathematics and
Computing Science, TUE. 1999-07

J.P. Warners. Nonlinear approaches to satisfia-

bility problems. Faculty of Mathematics and Com-
puting Science, TUE. 1999-08

J.M.T. Romijn. Analysing Industrial Protocols

with Formal Methods. Faculty of Computer Sci-
ence, UT. 1999-09

P.R. D’Argenio. Algebras and Automata for

Timed and Stochastic Systems. Faculty of Com-
puter Science, UT. 1999-10

G. Fábián. A Language and Simulator for Hy-

brid Systems. Faculty of Mechanical Engineering,
TUE. 1999-11

J. Zwanenburg. Object-Oriented Concepts and

Proof Rules. Faculty of Mathematics and Com-
puting Science, TUE. 1999-12

R.S. Venema. Aspects of an Integrated Neural

Prediction System. Faculty of Mathematics and
Natural Sciences, RUG. 1999-13

J. Saraiva. A Purely Functional Implementation

of Attribute Grammars. Faculty of Mathematics
and Computer Science, UU. 1999-14

R. Schiefer. Viper, A Visualisation Tool for Par-

allel Program Construction. Faculty of Mathe-
matics and Computing Science, TUE. 1999-15

K.M.M. de Leeuw. Cryptology and Statecraft

in the Dutch Republic. Faculty of Mathematics
and Computer Science, UvA. 2000-01

T.E.J. Vos. UNITY in Diversity. A stratified ap-

proach to the verification of distributed algorithms.
Faculty of Mathematics and Computer Science,
UU. 2000-02

W. Mallon. Theories and Tools for the Design of

Delay-Insensitive Communicating Processes. Fac-
ulty of Mathematics and Natural Sciences, RUG.
2000-03

W.O.D. Griffioen. Studies in Computer Aided

Verification of Protocols. Faculty of Science,
KUN. 2000-04

P.H.F.M. Verhoeven. The Design of the Math-

Spad Editor. Faculty of Mathematics and Com-
puting Science, TUE. 2000-05

J. Fey. Design of a Fruit Juice Blending and

Packaging Plant. Faculty of Mechanical Engineer-
ing, TUE. 2000-06

M. Franssen. Cocktail: A Tool for Deriving Cor-

rect Programs. Faculty of Mathematics and Com-
puting Science, TUE. 2000-07

P.A. Olivier. A Framework for Debugging Het-

erogeneous Applications. Faculty of Natural Sci-
ences, Mathematics and Computer Science, UvA.
2000-08

E. Saaman. Another Formal Specification Lan-

guage. Faculty of Mathematics and Natural Sci-
ences, RUG. 2000-10

M. Jelasity. The Shape of Evolutionary Search

Discovering and Representing Search Space Struc-

ture. Faculty of Mathematics and Natural Sci-
ences, UL. 2001-01

R. Ahn. Agents, Objects and Events a compu-

tational approach to knowledge, observation and

communication. Faculty of Mathematics and
Computing Science, TU/e. 2001-02

M. Huisman. Reasoning about Java programs in

higher order logic using PVS and Isabelle. Faculty
of Science, KUN. 2001-03

I.M.M.J. Reymen. Improving Design Processes

through Structured Reflection. Faculty of Mathe-
matics and Computing Science, TU/e. 2001-04

S.C.C. Blom. Term Graph Rewriting: syntax

and semantics. Faculty of Sciences, Division of
Mathematics and Computer Science, VUA. 2001-
05

Titles in the IPA Dissertation Series 209

R. van Liere. Studies in Interactive Visualiza-

tion. Faculty of Natural Sciences, Mathematics
and Computer Science, UvA. 2001-06

A.G. Engels. Languages for Analysis and Test-

ing of Event Sequences. Faculty of Mathematics
and Computing Science, TU/e. 2001-07

J. Hage. Structural Aspects of Switching Classes.
Faculty of Mathematics and Natural Sciences, UL.
2001-08

M.H. Lamers. Neural Networks for Analysis

of Data in Environmental Epidemiology: A Case-

study into Acute Effects of Air Pollution Episodes.
Faculty of Mathematics and Natural Sciences, UL.
2001-09

T.C. Ruys. Towards Effective Model Checking.
Faculty of Computer Science, UT. 2001-10

D. Chkliaev. Mechanical verification of con-

currency control and recovery protocols. Faculty
of Mathematics and Computing Science, TU/e.
2001-11

M.D. Oostdijk. Generation and presentation of

formal mathematical documents. Faculty of Math-
ematics and Computing Science, TU/e. 2001-12

A.T. Hofkamp. Reactive machine control: A

simulation approach using χ. Faculty of Mechan-
ical Engineering, TU/e. 2001-13

D. Bošnački. Enhancing state space reduction

techniques for model checking. Faculty of Mathe-
matics and Computing Science, TU/e. 2001-14

M.C. van Wezel. Neural Networks for Intelli-

gent Data Analysis: theoretical and experimental

aspects. Faculty of Mathematics and Natural Sci-
ences, UL. 2002-01

V. Bos and J.J.T. Kleijn. Formal Specifica-

tion and Analysis of Industrial Systems. Faculty
of Mathematics and Computer Science and Fac-
ulty of Mechanical Engineering, TU/e. 2002-02

T. Kuipers. Techniques for Understanding

Legacy Software Systems. Faculty of Natural Sci-
ences, Mathematics and Computer Science, UvA.
2002-03

S.P. Luttik. Choice Quantification in Process Al-

gebra. Faculty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2002-04

R.J. Willemen. School Timetable Construction:

Algorithms and Complexity. Faculty of Mathe-
matics and Computer Science, TU/e. 2002-05

M.I.A. Stoelinga. Alea Jacta Est: Verification

of Probabilistic, Real-time and Parametric Sys-

tems. Faculty of Science, Mathematics and Com-
puter Science, KUN. 2002-06

N. van Vugt. Models of Molecular Computing.
Faculty of Mathematics and Natural Sciences, UL.
2002-07

A. Fehnker. Citius, Vilius, Melius: Guiding and

Cost-Optimality in Model Checking of Timed and

Hybrid Systems. Faculty of Science, Mathematics
and Computer Science, KUN. 2002-08

R. van Stee. On-line Scheduling and Bin Pack-

ing. Faculty of Mathematics and Natural Sciences,
UL. 2002-09

D. Tauritz. Adaptive Information Filtering:

Concepts and Algorithms. Faculty of Mathematics
and Natural Sciences, UL. 2002-10

M.B. van der Zwaag. Models and Logics for

Process Algebra. Faculty of Natural Sciences,
Mathematics, and Computer Science, UvA. 2002-
11

J.I. den Hartog. Probabilistic Extensions of Se-

mantical Models. Faculty of Sciences, Division of
Mathematics and Computer Science, VUA. 2002-
12

L. Moonen. Exploring Software Systems. Fac-
ulty of Natural Sciences, Mathematics, and Com-
puter Science, UvA. 2002-13

J.I. van Hemert. Applying Evolutionary Com-

putation to Constraint Satisfaction and Data Min-

ing. Faculty of Mathematics and Natural Sciences,
UL. 2002-14

S. Andova. Probabilistic Process Algebra. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2002-15

Y.S. Usenko. Linearization in µCRL. Faculty of
Mathematics and Computer Science, TU/e. 2002-
16

J.J.D. Aerts. Random Redundant Storage for

Video on Demand. Faculty of Mathematics and
Computer Science, TU/e. 2003-01

M. de Jonge. To Reuse or To Be Reused: Tech-

niques for component composition and construc-

tion. Faculty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2003-02

J.M.W. Visser. Generic Traversal over Typed

Source Code Representations. Faculty of Natu-
ral Sciences, Mathematics, and Computer Science,
UvA. 2003-03

S.M. Bohte. Spiking Neural Networks. Faculty
of Mathematics and Natural Sciences, UL. 2003-
04

T.A.C. Willemse. Semantics and Verifica-

tion in Process Algebras with Data and Timing.
Faculty of Mathematics and Computer Science,
TU/e. 2003-05

210 Titles in the IPA Dissertation Series

S.V. Nedea. Analysis and Simulations of Cat-

alytic Reactions. Faculty of Mathematics and
Computer Science, TU/e. 2003-06

M.E.M. Lijding. Real-time Scheduling of Ter-

tiary Storage. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT. 2003-07

H.P. Benz. Casual Multimedia Process Annota-

tion – CoMPAs. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT. 2003-08

D. Distefano. On Modelchecking the Dynam-

ics of Object-based Software: a Foundational Ap-

proach. Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2003-09

M.H. ter Beek. Team Automata – A Formal Ap-

proach to the Modeling of Collaboration Between

System Components. Faculty of Mathematics and
Natural Sciences, UL. 2003-10

D.J.P. Leijen. The λ Abroad – A Functional Ap-

proach to Software Components. Faculty of Math-
ematics and Computer Science, UU. 2003-11

W.P.A.J. Michiels. Performance Ratios for the

Differencing Method. Faculty of Mathematics and
Computer Science, TU/e. 2004-01

G.I. Jojgov. Incomplete Proofs and Terms

and Their Use in Interactive Theorem Proving.
Faculty of Mathematics and Computer Science,
TU/e. 2004-02

P. Frisco. Theory of Molecular Computing –

Splicing and Membrane systems. Faculty of Math-
ematics and Natural Sciences, UL. 2004-03

S. Maneth. Models of Tree Translation. Faculty
of Mathematics and Natural Sciences, UL. 2004-
04

Y. Qian. Data Synchronization and Browsing for

Home Environments. Faculty of Mathematics and
Computer Science and Faculty of Industrial De-
sign, TU/e. 2004-05

F. Bartels. On Generalised Coinduction and

Probabilistic Specification Formats. Faculty of Sci-
ences, Division of Mathematics and Computer Sci-
ence, VUA. 2004-06

L. Cruz-Filipe. Constructive Real Analysis: a

Type-Theoretical Formalization and Applications.
Faculty of Science, Mathematics and Computer
Science, KUN. 2004-07

E.H. Gerding. Autonomous Agents in Bargain-

ing Games: An Evolutionary Investigation of Fun-

damentals, Strategies, and Business Applications.

Faculty of Technology Management, TU/e. 2004-
08

N. Goga. Control and Selection Techniques

for the Automated Testing of Reactive Systems.
Faculty of Mathematics and Computer Science,
TU/e. 2004-09

M. Niqui. Formalising Exact Arithmetic: Rep-

resentations, Algorithms and Proofs. Faculty of
Science, Mathematics and Computer Science, RU.
2004-10

A. Löh. Exploring Generic Haskell. Faculty of
Mathematics and Computer Science, UU. 2004-11

I.C.M. Flinsenberg. Route Planning Algo-

rithms for Car Navigation. Faculty of Mathemat-
ics and Computer Science, TU/e. 2004-12

R.J. Bril. Real-time Scheduling for Media Pro-

cessing Using Conditionally Guaranteed Budgets.
Faculty of Mathematics and Computer Science,
TU/e. 2004-13

J. Pang. Formal Verification of Distributed Sys-

tems. Faculty of Sciences, Division of Mathemat-
ics and Computer Science, VUA. 2004-14

F. Alkemade. Evolutionary Agent-Based Eco-

nomics. Faculty of Technology Management,
TU/e. 2004-15

E.O. Dijk. Indoor Ultrasonic Position Estima-

tion Using a Single Base Station. Faculty of
Mathematics and Computer Science, TU/e. 2004-
16

S.M. Orzan. On Distributed Verification and

Verified Distribution. Faculty of Sciences, Divi-
sion of Mathematics and Computer Science, VUA.
2004-17

M.M. Schrage. Proxima - A Presentation-

oriented Editor for Structured Documents. Fac-
ulty of Mathematics and Computer Science, UU.
2004-18

E. Eskenazi and A. Fyukov. Quantitative

Prediction of Quality Attributes for Component-

Based Software Architectures. Faculty of Mathe-
matics and Computer Science, TU/e. 2004-19

P.J.L. Cuijpers. Hybrid Process Algebra. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2004-20

N.J.M. van den Nieuwelaar. Supervisory Ma-

chine Control by Predictive-Reactive Scheduling.
Faculty of Mechanical Engineering, TU/e. 2004-
21

	Preface
	Summary
	Contents
	1. Introduction
	2. Scheduling alternatives and algorithm
	3. Machine-specific scheduling constraints
	4. Reaction scenarios including exception recovery
	5. Exception recovery search in complex manufacturing machines
	6. Kinematic calibration sequencing in high-precision machines
	7. Model checker aided design of a controller for a wafer scanner
	8. A dedicated scheduling verification approach
	9. Applications
	10. Conclusions
	Bibliography
	Samenvatting
	Curriculum vitae
	Titles in the IPA dissertation series

