
A Structural Approach to the Mapping Problem in

Parallel Discrete Event Logic Simulations

Mark Davoren

July 21, 1989

Ph.D.

University of Edinburgh

1989

Abstract

It is shown that traditional techniques are inadequate for mapping irregular asyn-

chronous problems to distributed-memory parallel architectures. It is also shown

that by using problem specific knowledge, such as the problem's structure, rea-

sonable mappings can be produced.

Parallel discrete event simulation of digital logic circuits is used as an appli-

cation to study various mapping algorithms. The structural approach uses the

structure of the problem, in this case the design hierarchy of the circuit, to pro-

duce a locality tree which is an approximation of the communication behaviour of a

problem. An algorithm is presented which generates mappings from such locality

trees onto a grid of processors.

A conservative parallel discrete event simulator was implemented on a grid

of Transputers. Analysis of experimental results shows that for sufficiently sized

problems, the structural approach produces mappings which result in relatively low

inter-processor communication and within limits of load balancing better overall

performance.

1

Acknowledgements

I would like to thank my friends without whom I would probably not have finished

this thesis. They introduced me to the highlands, gliding and above all to Scottish

music and dancing. For the latter, I am especially grateful to everybody at New

Scotland; they kept me happy allowing me to concentrate on my work.

To everybody who helped me with my work, I also give thanks. In particular,

I would like to thank Rob Pooley for all the help he gave me in our friendly and

fruitful conversations, my supervisor, Roland Ibbett, for his time and patience and

the Goths who bailed me out of system problems on numerous occasions.

This work was, in part funded by a University of Edinburgh Postgraduate

Studentship.

Finally, I give thanks to Juliet for the love and support she has given to me.

Declaration

I declare that this thesis was composed by myself and that all the work presented

as original is my own.

Table of Contents

1. The Mapping problem 1.

1.1 Introduction 1

1.1.1 	Inter-Module Communication 2

1.2 Problem representation 5

• 1.2.1 	A graph based description 5

• 1.2.2 	Problem metrics and constraints 8

1.2.3 	Optimisation goals 10

1.3 Problem solutions 12

1.3.1 	Problem complexity 13

1.3.2 	Restricted optimal solutions 14

1.3.3 	Approximate solutions 18

1.4 Annotations 29

1.5 Conclusion 33

2. A structural approach 	 35

	

2.1 	Introduction35

	

2.2 	Locality trees36

11

Table of Contents 	 111

2.2.1 Simple trees 	 . 	37

2.2.2 	Cross linked trees37

2.2.3 	Locality tree operations40

	

2.3 	Mapping locality trees43

2.3.1 	Slicing45

2.3.2 	Load balancing control50

2.3.3 	Arranging51

2.3.4 	Allocation55

3. Parallel Simulation
	

57

	

3.1 	Motivation 57

	

3.2 	What is a simulator?58

	

3.3 	The process model60

3.3.1 	A parallel implementation61

3.3.2 	Time62

3.3.3 	The simulation mechanism64

3.4 Deadlock and Failure to proceed66

3.5 Deadlock avoidance and recovery68

3.5.1 	Null messages69

3.5.2 	2 phase approach72

	

3.6 	Optimistic schemes73

	

3.7 	Digital logic simulation75

3.8 	Summary 76

Table of Contents
	 lv

The implementation of a simulator

	

4.1 	Overview 78

	

4.2 	The master process80

	

4.3 	The slave process82

4.3.1 	Structure 82

4.3.2 	The simulation engine83

4.3.3 	The event queue manager88

4.3.4 	The controller process88

	

4.4 	The network93

4.4.1 	Routing93

4.4.2 	Deadlock94

4.4.3 	Congestion 99

Results and Discussion
	 101

5.1 An analysis of performance102

5.1.1 	Implementation derived delays104

5.1.2 	Simulation derived delays105

5.2 A quantitative analysis of a simple circuitiWi.

5.2.1 The simulation phase of X, Y and Z108

5.2.2 The Waiting phase112

5.2.3 Conclusions of the simple analysis114

5.2.4 Lessons for a new implementation115

5.3 A qualitative analysis of a complex circuit116.

Table of Contents 	 V

5.3.1 The circuit 	 . 118

5.3.2 	The mappings 118

	

5.4 	The measurements121

5.5 Comparison of mappings 123

	

5.6 	General Performance126

6. Summary and Conclusions
	 134

	

6.1 	Future Directions139

A. Published paper 	 150

Chapter 1

The Mapping problem

1.1 Introduction

To implement software on a parallel computer requires the software to be parti-

tioned into components. These components are then assigned or mapped to

the various processors. This mapping involves both where and when a component

is to be executed. Deciding what such a mapping is to be, is often referred to as

the mapping problem.

The study of the mapping problem has its origins in the job scheduling required

in multi-process operating systems. A number of algorithms have been developed

to determine the order in which jobs are to be executed on a single processor. This

is now a reasonably well understood topic [16][49, Chap 4].

When the problem of mapping to multiple processors is considered the task

becomes considerably more complex. Not only must the order of execution be de-

cided, but so too, the location. The mapping problem as opposed to the scheduling

problem is assumed to be set in the context of a multi-processor environment.

The term module will be used to refer to a component of the software being

mapped, ie. an object of the mapping. A component of the hardware to which is

being mapped, ie. a target of the mapping, will be referred to as a processor.

1

Chapter 1. The Mapping problem

Though the mapping should have no effect on the result of a program; it in

general has a significant effect on its performance. Therefore, the mapping problem

is to produce a function from modules to processors which results in the

minimum overall completion time, see Fig. 1-1.

Modules

Processors

Figure 1-1: Assignment of modules to processors

1.1.1 inter-Module Communication

A major simplification of the mapping problem is to have completely indepen-

dent modules. Since there are no dependencies between them, the modules can

be executed in any order and the choice of executing processor is based on the

characteristics of each module in isolation.

Such a simplification is in fact very common in traditional multi-user systems

where the modules are independent programs run by the users. These modules

are often called jobs or processes and the mapping problem is often referred to as

job scheduling or load balancing.

Now consider the problem in which modules can be inter-dependent. The

placement of a module cannot be treated in isolation. Nor can the order of exe-

cution be so simply determined.

It is quite sensible to have a system with two levels. Such a system would

consist of unrelated sets of related modules, with load balancing at the higher level

and module mapping at the lower. This survey concentrates on the mapping of

Chapter I. The Mapping problem 	 3

related modules. The mappings described ignore external effects of any enclosing

system; they assume that only a single set of inter-dependent modules is being

assigned to an empty set of processors.

This inter-dependence between modules is realised as inter-module commu-

nication, IMC. IMC is often expressed in terms of message passing, where one

module sends messages to another which receives them. Although there are

other models of IMC such as the procedural and memory access models, message

passing makes explicit the separate, independent existence of the modules, which

is the basis of a mapping.

C

A

Figure 1-2: A grid of processors

An inhomogeneous processor topology is one where the cost of communication

varies between pairs of processors within a system. For example, Fig. 1-2 por-

trays a collection of processors connected by a rectangular grid of links which are

assumed to have identical characteristics.

Assume that for the system described in Fig. 1-2, the cost of communicating

data from one processor to another is proportional to the number of links the data

has to traverse. So the cost of communicating data from A to C is three times

the cost as from A to B. If two communicating modules are to be assigned to

different processors then the cost of their communication will be reduced if they

are assigned to A and B rather than to A and C.

Chapter 1. The Mapping problem
	 4

The mapping algorithm is now being pulled in two directions. To optimise

communication costs, all modules should be placed on the same processor, but

to optimise computation time, the modules should be spread evenly amongst the

processors to gain the benefits of parallelism. Such goals of the mapping algorithm

are discussed later.

A particular pattern of IMC which has been very much studied is one where

a module only communicates at the beginning and end of its execution. After

receiving all of its inputs, it goes into a compute-only phase, then passes its results

onto other waiting modules and finally terminates. In this case, a module is

basically a procedure which can be executed on a possibly different processor to

that of the calling module.

Such patterns arise especially when programs written in sequential languages

such as Fortran are partitioned into modules. The partitioning is often at the

procedural level or sometimes at the level of single statements.

Since enormous amounts of effort have been invested in such existing soft-

ware, it is desirable that these programs should be automatically partitioned and

executed on parallel machines with the ensuing performance benefits.

Much of the research into mapping algorithms has assumed this pattern of

IMC, eg. [54,14,15]. However, such an approach ignores the extremely large class

of problems where the pattern of communication is less restricted. There are many

problems which require a module to engage in IMC during its lifetime and not

just at its initiation and completion.

In particular, for programs written in languages with explicit parallel and IMC

constructs, the assumption of a restricted IMC is invalid. Therefore the mapping

algorithms cited from the literature are inapplicable to the modules of programs

written in languages such as OCCAM [41], POOL [1] or any other language with

explicit IMC constructs available to the programmer.

Chapter 1. The Mapping problem
	 5

It will be shown that traditional mapping mechanisms are also inapplicable in

the case of digital logic simulation where a logic gate is mapped to a processor

and has to handle many separate events during its lifetime.

1.2 Problem representation

When the pattern of IMC is reasonably stable the system is said to have a static

structure. In such systems the number of modules and their relationship can be

determined before execution begins. This allows the mapping to be completely

determined before run time. The alternative is a dynamic structure where map-

ping decisions can be made only during execution as modules are created and their

relationships become known.

This survey will concentrate on mapping static structures of modules to fixed

topologies of processors. Though the dynamic structure is more general it can

often be viewed as a series of phases where each phase can be considered as static.

In addition, it seems likely that a dynamic mapping would give better results if it

is preceded by an optimising static mapping. This has been demonstrated in the

case of pipelines of modules by Iqbal et al. [30].

There are two common forms of representing the mapping problem; graph

theoretic and number theoretic. The former allows a structural description of the

problem and can make use of the wealth of graph theory available. The latter

allows the easier introduction of restrictions, but can only describe facets of the

problem which can be given a numeric value.

1.2.1 A graph based description

The following is one possible representation in graph theoretic terms which is

used by Stone [54] and Bokhari [10], amongst others. The structure of the modules

Chapter 1. The Mapping problem 	 6

Figure 1-3: A module graph

is represented by a module graph Gm = (Vm , Em). In this graph, the nodes or

vertices, Vm , represent the modules and two nodes i, j E V are connected by an

edge (i,j) E Em if and only if their corresponding modules communicate or have

the potential to do so during the execution of the program. Such a structure is

presented in Fig. 1--3.

Figure 1-4: A module dependency graph

An alternative framework can be used to show dependencies between modules

as is found in partitioned sequential programs. In this representation Gm is a

directed graph. If module j requires data from module i before it can execute

then there is an arc (i, j) E Em from node i to node j. Such a graph is called a

dependency precedence graph, eg. Fig. 1-4. In many cases precedence graphs will

be acyclic and therefore are much easier to handle than the more general graphs

which may contain cycles. However, they are intimately bound to the restricted

model of IMC and so will not be used in this thesis.

The structure of the processors is described by a processor graph G = (V,, E)

where the nodes represent processors and edges represent communication links

Chapter 1. The Mapping problem 	 7

between processors, eg. Fig. 1-2. The number of edges incident to a node is called

the degree of that node.

An assignment or mapping is a function A: Vm V. A one-to-one mapping

is one where each module is assigned to a different processor. Some systems restrict

A to be a one-to-one function, but other systems allow more than one module to

be mapped to a single processor. Such a mapping is called many-to-one. An

onto mapping is one where every processor is assigned at least one module.

Putting the two together, a one-to-one and onto mapping is one where every

module is assigned a unique processor and every processor has a unique module

assigned to it. This gives a list of module-processor pairs in which -'every processor

and module appears exactly once. It follows that for such an assignment the

number of processors and modules must be the same.

To be valid, the mapping must be total, ie. A is defined for every element of

Vm . An example of module and processor graphs together with an assignment is

given in Fig. 1-5.

An advantage of the graph based approach is that it makes possible solutions

derived from the inter-connection structure of the modules and processors. Shen

and Tsai [52] present an approach which reduces the module graph until it can be

matched with the processor graph. It is a matter of clustering nodes of the module

graph until this cluster graph is isomorphic to a subgraph of the processor graph,

ie. there is a one-to-one pairing of nodes and edges of the cluster graph onto those

of the processor subgraph.

Nodes of the module graph are fused or clustered together until an acceptable

mapping is found. A mapping is acceptable if any two modules which communi-

cate are assigned to the same processor or to two processors which have a direct

communication link.

Chapter 1. The Mapping problem

To decide which of the acceptable mappings are optimal, numeric values -

metrics - are introduced so that the goodness of the different mappings can be

compared. These values can also be used to specify constraints on the mappings.

Gm

G

Figure 1-5: A graph based assignment

1.2.2 Problem metrics and constraints

In general, the goodness of a mapping is dependent on how well it reduces the

overall cost subject to certain constraints, where the cost is typically measured in

terms of the time taken. It is often assumed that the overall cost can be expressed

as the sum of two independent quantities; execution cost and communication cost.

Execution cost is often defined in terms of

exec(m,p) 	m E V,p E VP

which is the cost of module m executing on processor p. To signify the case where

a module m cannot execute on processor p, let exec(m, p) = 00. In homogeneous

systems, where processors are identical, exec(m, p) can be simplified to exec(m).

Chapter 1. The Mapping problem 	 9

Communication cost is similarly defined in terms of

cornm(m 1 , m 2 , Pi, P2) 	m 1 , m 2 E Vm , P1, P2 E Vp

which is the cost of module m 1 communicating with m2 when m 1 is mapped to p1

and m2 mapped to P2 Iffm 1 and m2 are mapped to the same processor p then it

is typical to let comm(m 1 ,m2 ,p,p) = 0 since the ultra-processor costs are usually

negligible in comparison with inter-processor costs.

Some proposals express comm as the product of the inter-module communica-

tion cost and the inter-processor communication cost;

c0mm(m 1 , in2, Pi, P2) = IMc0st(m 1 , m2) x IPc0st(p 1 ,p2)

If a graph theoretic representation is used then each edge (i, i) E Em of the module

graph is weighted with IMcost(i, j) and each edge (k, 1) e EP of the processor

graph is weighted with IPcost(k, 1).

This can be further simplified for bus and fully-connected topologies where

inter-processor communication costs are a constant, ie. IPcost(p1 ,p2) = 1 when

expressed in appropriate units.

It is important to recognise the limitations of these metrics. To specify the

execution time of a module assumes that this value is independent of the rest of

the system. That it does not depend on the execution costs of other modules. Nor

does it depend on any delays due to synchronisation or resource control. From

this, it follows that for an execution cost to be meaningful there can be no IMC

during the execution of a module, it can only occur at the beginning or at the end

of that module's execution.

Of course, this assumes that the module's execution does in fact have a begin-

ning and an end and is not a permanently executing module such as a server or a

filter. The basic pattern assumed in many proposals is that the module executes

once, with no intermediate IMC, then disappears.

Chapter 1. The Mapping problem 	 10

This is the functional patterh of IMC referred to above. It is this limitation

which prevents many of the published mapping proposals from working with lan-

guages which allow explicit IMC.

Similarly, to specify a communication cost assumes that it too is independent of

the rest of the system. As Lee and Aggarwal [39] have noted, unless every module

edge maps to a unique processor edge then there can be interference which affects

the IPcost due to bandwidth interference.

Finally, to state that the overall cost is the sum of execution costs and commu-

nication costs is to assume that these two quantities are independent. However in

many systems, execution and communication are overlapped. In the case of time

taken, the overall time will be less than the sum of the execution and communi-

cation times.

Other metrics that have been considered are the likelihood of processors failing

and the cost of recovery [14].

In addition to the above metrics, some systems consider constraints on the

problem. In particular, the memory requirements of all the modules mapped to a

given processor must not exceed that processor's memory capacity [4,50].

1.2.3 Optimisation goals

For M modules and P processors there are P M valid mappings. We need some

objective function by which to judge the myriad mappings. In a real sense, as long

as a program satisfies its requirements, the only true objective function is the time

it takes to complete its tasks. It has been traditional to relate this completion

time to a function of simpler parameters which are more easily determined and

controlled. Inspite of the problems discussed in the previous section it is this latter

function which is used as the objective function.

Chapter 1. The Mapping problem
	 11

There is a class of problems for which the goodness of a solution is based

solely on the value of an objective function applied to that solution and where an

optimal solution is one which has a minimal or maximal value. This is the class

of optimisation problems.

One of the simplest objective functions is based on the Quadratic Assignment

Problem, QAP, which was first formulated by Koopmans and Beckmann [36].

Hanan and Kurtzberg present a review of QAP and other related assignment

problems in [25].

The problem is to assign a set of M facilities F = [1,. . . , M] to a set of N

locations L = [1.....N], M < N. In addition, the M x M matrix C and the

N x N matrix D are given. An element cij of matrix C is the amount of traffic

flow from facility i to j and element dkl of matrix D is the cost of transporting

one unit from location k to 1. The objective is to minimise the cost G,

N

G = 	Cij X 	a(j)

over all assignments a, where a is a one-to-one mapping from F to L.

By equating modules with facilities and processors with locations, the QAP

provides a solution to the mapping problem. However, the assignment function

a of the QAP is a one-to-one function which is not necessarily desirable in the

mapping problem. In addition, the QAP deals only with communication costs

and does not allow for execution costs. With a consequent increase in complexity,

the QAP can be extended as follows, find a, so that G,

N 	 N

C = > eia(i) + E Ci X da(i) a(j)
i 	 i,j=1

is a minimum, where a is a possibly many-to-one function from F to L and 6jk

is the cost of placing facility i at location k. It is assumed that dkl is defined for

all k and 1. If there is no actual processor edge connecting processors k and 1

Chapter 1. The Mapping problem 	 12

then either the shortest path between them is used with dkj being the sum of the

weights of the component edges or else dkl = 00;

This is an example of expressing the mapping problem in number theoretic

terms. This formulation allows the easy addition of restrictions such as,

Si < Sk 	K = { ila(i) = k}
iE K

where s2 is the memory requirements of module i and Sjç, is the memory capacity

of processor k.

Another objective function, proposed by Bokhari [9], is the cardinality of a

mapping. The cardinality of a one-to-one and onto mapping, IaI, is the number of

module edges that fall directly onto processor edges. It is assumed that the number

of modules is equal to the number of processors. The objective is to maximise the

cardinality over all mappings. This approach is an approximation which ignores

computation costs and also the communication costs of those module edges which

do not fall onto processor edges.

When considering the various objective functions, it must be recognised that

there is only one real objective; the reduction of overall completion time. All other

goals are simply means to this end.

1.3 Problem solutions

In the previous sections we have seen a number of ways of representing the mapping

problem. In particular, there are the graph and number theoretic representations

and a choice of objective functions, the optimisation of which should reduce the

overall cost of executing a parallel program. It is now time to examine some of

the solutions which have been proposed.

Chapter I. The Mapping problem
	

13

The simplest solution is to enumerate every possible mapping, evaluate the

objective function and choose a mapping which gives an optimal value - there

may be more than one which does so. Unfortunately, for any more than a handful

of modules and processors, this is enormously time consuming.

1.3.1 Problem complexity

Complexity theory defines P to be the class of decision problems which can be

solved in polynomial time. Decision problems are ones with a solution of either

"yes" or "no" and they often take the form of a search for a pattern or structure

which satisfies certain. problem specific properties. A problem can be solved in

polynomial time if the time taken to solve it is less than a polynomial function of

the size of the problem's parameters.

The class NP, is the class of decision problems which can be solved in poly-

nomial time if the solution pattern is magically guessed straight away, or alterna-

tively, if all patterns are tried simultaneously.

NP includes P, but it is unknown whether there are any other problems in NP

which are not in P or whether P = NP. It has been shown that there is a class of

problems within NP such that if they are in P then so too are all the problems in

NP and therefore they all can be solved in polynomial time. This special class of

the hardest problems in NP is called NP-Complete [22].

It is widely assumed, but as yet unproved that P :A NP and that the lower

time bound for NP-Complete problems is exponential.

When the mapping problem is re-phrased as a decision problem it is NP-

Complete. So too are the QAP and many other problems in numeric optimisation

and graph theory, such as the subgraph isomorphism problem mentioned in section

1.2.1. So unless there is a major breakthrough in complexity theory, which is

now seen as unlikely, the mapping problem is fundamentally an expensive (non-

Chapter 1. The Mapping problem 	 14

polynomial) problem to solve. Typically, the time required to find an optimal

mapping is an exponential function of the number of modules and processors.

The mapping problem must be solved whenever a parallel program is run on

a parallel machine. So a compromise must be made to produce a mapping within

an acceptable time. There are number of alternatives.

1.3.2 Restricted optimal solutions

Up until now we have considered mapping arbitrary module graphs to arbitrary

processor graphs and found that optimal mappings are particularly difficult to

produce within a reasonable time. One way to avoid this impasse is to restrict

the problem being tackled. By constraining the number of nodes or the inter-

communication topology allowed in the module and processor graphs a number of

fast optimal solutions have been developed.

Perhaps the most noted mapping algorithm published to date is due to Stone

[54]. He presented a description of the mapping problem in terms of commodity

flow graphs. These usually take the form of a set of source nodes which produce

goods and a set of sink nodes which consume them. Goods flow from sources to

sinks via a network. The edges of this network are weighted with a capacity which

is the maximum amount of goods which can flow along that edge. A common

question asked of commodity networks is what is the maximum flow of goods

from sources to sinks.

A cut set of a commodity graph is a set of edges which when removed discon-

nects the source nodes from the sink nodes. Thus all the goods which flow from

source to sink must flow through the cutset. No proper subset of a cutset is .a

cutset. The capacity of a cutset is equal to the sum of the capacities of the edges

in that cutset.

Chapter 1. The Mapping problem
	 ii;i

This capacity is the maximum flow of goods through the cutset and therefore

is a limit on that flow. The cutset with the lowest capacity is the bottleneck of the

whole network and its weight is the maximum possible flow through the network.

This minimum cutset, mm-cut, can be found in polynomial time.

In Stone's method, a source node and a sink node are just two special nodes of

which there can be many, one for each processor. Every cutset which disconnects

each of the special nodes from the other special nodes, corresponds to a partition;

the mm-cut corresponding to the optimal mapping. Using the polynomial time

solution for standard commodity flow networks, Stone produced an optimal map-

ping algorithm for two processors. He later extended this to solve in polynomial

time, the three processor case [55].

Let us consider the two processor case. Stone's method begins with a module

graph such as defined in section 1.2.1. Each edge is weighted with the cost of IMC

between the two associated modules were they to be placed on different processors.

To this graph are added two special nodes S 1 and S2 that represent processors

P1 and P2 respectively. To each ordinary node edges are added to each of S 1 and

S2 . The weight of the edge to S 1 carries the cost of executing the corresponding

module on P2 and the weight of the edge to S 2 carries the cost of executing the

module on P1 . (The reversal of the subscripts is intentional). See Fig. 1-6.

Each cutset of the augmented module graph partitions the nodes of the graph

into two disjoint sets, with S1 and 52 in distinct subsets. Each cutset corresponds

to a module assignment where if a cutset partitions a node into the subset con-

taming S then the corresponding module is assigned to P1 .

Stone proves that the weight of a cutset of the augmented module graph is

equal to the cost of the corresponding assignment. From this it follows that to

find the optimal assignment, one has to find the cutset with the minimum weight;

the mm-cut. Fig. 1-7 shows three assignment cutsets with A 2 being the optimal.

Chapter 1. The Mapping problem
	 16

A

C

Figure 1-6: An augmented module graph

Stone references Karzanov [34] as an example of a fast algorithm for solving this

max-flow, mm-cut commodity problem.

Stone's method is an example of how graph theory can provide a solid frame-

work in which to tackle the mapping problem. It also shows how a restricted

version of the problem can be solved in a reasonable time. However, it does re-

quire a knowledge of the amount of IMC and of execution times.

In addition, the pattern of IMC is restricted. It is basically sequential with

only one module being executed in the system at a time, with the other processor

left idle. Thus the total running time of a program consists of the total running

time of the modules on their assigned processors plus the cost of IMC between

modules assigned to different processors. There is no overlap of computation and

communication or computation and computation. If parallelism were introduced

the total running time would not be the simple sum of its components and the

weight of the cutset would lose its meaning.

Another example of tackling a restricted version of the mapping problem is

that proposed by Iqbal, Saltz and Bokhari [30]. Here, the number of modules and

Chapter 1. The Mapping problem
	 17

P.91

P1 P2

A, ('1!) ,q2(47)

Figure 1-7: An augmented module graph with cuts

processors is unconstrained, but the topology of the modules and processors must

be a linear chain. This is a pipeline where node i is connected only to node i + 1

and i - 1. The assignment is that of contiguous subchains to adjacent processors,

so that modules i and i + 1 are assigned to the same or adjacent processors, see

Fig. 1-8.

Iv- V GP

Figure 1-8: A pipelined assignment

Iqbal et al. present a graph based solution which gives optimal results in

polynomial time. The graph consists of layers of nodes which together correspond

to every possible assignment of subchains to processors. These are connected

with weighted edges carrying the execution cost of the associated subchain and

processor. There are also a starting node s and a terminating node t such that

every path from s, through the layers, to t, corresponds to an assignment.

Chapter 1. The Mapping problem
	 UP

The edge with the highest weight in a path corresponds to the most heavily

loaded processor, ie. the bottleneck on performance. The optimal assignment

has the path with the minimum maximum weight - the bottleneck path. An

algorithm for m modules and n processors is presented which finds an optimal

path in O(m 3n) time.

A third example of a restricted optimal solution is presented by Bokhari [9]. In

this approach, the module graph is restricted to being a tree and the IMC pattern

constrained to a procedure call hierarchy. In Bokhari's algorithm, each node in

the module tree is expanded into a layer of nodes. This layer consists of one node

for each possible assignment of the module to a processor. Each node is linked

to the nodes in the layers of the original node's parent and children and the links

are weighted with execution and communication costs. The optimal assignment

corresponds to the minimum weight tree which connects the root to the leaves.

1.3.3 Approximate solutions

Rather than restricting the problem to achieve an optimal solution, an alternative

is to accept a solution to the general problem which is possibly not optimal.

Approximation algorithms can provide very good solutions, but often they cannot

guarantee to do so every time. However, they do produce their results, good or

bad, quickly.

If we have to accept a suboptimal solution it would be desirable if it can be

guaranteed to be close to the optimal. Let OPT(A) be the cost of an optimal

assignment and APPROX(A), the cost of an assignment produced by an approx-

imation algorithm, then APPROX(A) is an €-approximation algorithm if

OPT(A) - APPROX(A)

OPT(A)

for some fixed (hopefully small) e. That is, the approximate solution is guaranteed

to be within a fixed percentage of the optimal solution [27, Pg.5611.

Chapter 1. The Mapping problem
	 19

Sahni and Gonzalez [51] have shown that unfortunately the existence of a

polynomial solution to such an approximation for the QAP would imply P =

NP which is considered very unlikely. So if we are to have a polynomial time

approximation algorithm then we cannot guarantee that it will produce good

results for all cases, though it may be unlikely that the worst-case results occur in

practice.

Approximation as a search

An approximation algorithm for an optimisation problem is a search for the best

solution it can find. The path from some initial state to a solution state consists

of a sequence of small incremental steps and at each of these steps the algorithm

has to decide which of several possible steps it will take next. It does this by

evaluating the different possible descendant states and then selecting one. Thus

the progress of the path is based on the immediate set of descendant states and

not on any global information relating the current state to the final states. This

is the approximation.

One way to describe a search is with a search tree. This is a tree where

each node represents a possible state in the problem space. For the mapping

problem, each node would be associated with a particular mapping with leaf nodes

corresponding to a complete mapping.

In a search tree, the root represents the initial state and the leaves correspond

to final states. A node has a descendant node for each state that is reachable in

a single step, but a state may be represented by many nodes, each corresponding

to that state being reached by a different path.

For the mapping problem, there are two classes of approximation algorithms.

One starts with an empty mapping and progresses towards a complete mapping.

This is called a constructive initial assignment. An example of a step in this

Chapter 1. The Mapping problem 	 20

search is to choose one of the unmapped modules using a selection function and

assign it in a way which optimises an objective function.

(A1,B1) 	(A1,132) 	(A2,13 1) 	(A2,B2)

Figure 1-9: A search tree

Fig. 1-9 shows a search tree using this approach for two modules A and B, and

two processors 1 and 2. We can see that the mapping associated with the root is

empty. The next level down contains the possible mappings for A. At each lower

level, the mapping is extended by the possible assignments for a single module

until, at the leaves, the mapping is complete, all modules are assigned.

The alternative class starts with an existing assignment and attempts to im-

prove it. Here a step might be to select and reassign a module or to choose two

modules and swap their assignments. Algorithms in this class are said to use

iterative improvement.

Fig. 1-10 shows a transition graph for the assignment of three modules to

three processors with one module per processor. Each node corresponds to an

assignment, each edge to an iteration step where the assignment of two modules

are swapped. Fig. 1-11 shows the search tree for this graph starting with the

assignment ABC to a depth of two iteration steps.

Control Strategies

Which ever the class of approximation algorithm, constructive initial assignment

or iterative improvement, the result is a path from an initial state to a final state

Chapter 1. The Mapping problem
	 21

CBA... RO .BCA

AC! \AC/ \AB

BACW 	WCAB

Figure 1-10: A 3 module, 3 processor transition graph

ABC

CBA

BCA CAB ABC BCA ABC CAB ABC BCA CAB

Figure 1-11: The search tree starting at ABC

and though the evaluating and selecting functions will be different, the control

strategies about to be covered are applicable to both.

The search trees of figs. 1-9 and 1-11 had all their internal nodes expanded.

If a search control strategy simply expanded the tree like this, its work would

increase exponentially at each step. Therefore, we wish to adopt strategies that

hopefully expand only a very small part of the tree.

Search control strategies can be divided into two types called irrevocable and

tentative strategies [46, Chap.11. In both cases, steps are evaluated and selected,

but in the irrevocable strategy, once a step has been taken it cannot be withdrawn;

the step is irrevocable. Whereas in the tentative strategy, it is permitted to try a

number of paths without commitment to any one.

Note that with an irrevocable strategy it is not possible to retract a step, but

Chapter 1. The Mapping problem 	 22

in some cases its effect may be undone by later steps. If the searching step is to

swap two modules then to undo a swap, simply repeat it.

Horowitz and Sahni [27, Chap.41 present a general irrevocable control strategy

which they call the greedy method. It is used as the basis for a number of

constructive initial assignment algorithms.

Tentative strategies can be further divided into two groups, those that allow

backtracking and those that perform a graph-search.

The backtracking strategy is a depth first traversal of the search tree. It allows

a path to be tried, but if it is later found to be a poor choice then it can be

"forgotten" and another path tried instead. As the algorithm traverses down the

search tree, it remembers the nodes on the path back to the root. Should the

current line of search prove fruitless, the algorithm retraces its steps - backtracks -

until it finds a node with untried alternatives and chooses one of these. Obviously,

the better the algorithm chooses its alternatives, the less backtracking that occurs

and the search is more efficient.

The more general graph-search approach allows a number of paths to be tried

concurrently. At each step, the most promising state is selected and its descendant

states are added to the list of states to be considered for the next step. The manner

in which the new states are inserted into the list determines the route of the search.

If new nodes are always added to the head of the list, the graph-search degenerates

into a depth first search.

An analogy

One can imagine the search for an optimum as being like climbing a mountain

in heavy cloud to find the height of its peak, armed with only an altimeter. At

various points of the trek, there will be a number of paths from which to choose

the way forward, but because of the cloud, one cannot tell which path leads to the

Chapter 1. The Mapping problem 	 23

top. Often it will never be certain that the top has been found just that there is

nowhere further to go, but down.

If the mountain is a simple hump or cone, it is called convex. For such convex

problems it is easy to produce a quick optimal algorithm; always choose a path

which goes up. The most efficient algorithm being always to choose the steepest

path up. This is the greedy method of Horowitz and Sahni[27].

However, like nature, the optimisation mountains usually have foothills, ridges

and plateaus, not to mention cliffs and the greedy algorithm quickly runs into

problems.

Consider our intrepid cloud bound mountaineer. If he always chooses an up-

wards path he may unwittingly find himself stuck at the top of a foothill perhaps

even concluding that this is indeed the top of the mountain.

Another possibility our climber might face is to be on the crest of a ridge which

extends upwards in front of him, but the only paths he can see lead down the sides

of the ridge. Perhaps these paths meet others which lead to points further up the

ridge, but this is unknown.

Depending on the strategy used, the problems of foothills and ridges may result

in the climber stopping at what he thinks is the mountain peak when in fact it

isn't. He has found what is called a local optimum, a maximum in this case.

To escape foothills and ridges, the climber needs to adopt a tentative strategy

or to take a risk by possibly choosing a level or even downward path. The risk is

that the search may go on forever.

Our questing climber might discover a flat, level plateau where all the paths

he can see neither go up nor down. Unless he notes all the points he has visited

so as to avoid them later, he could wander in circles forever searching.

Chapter 1. The Mapping problem
	 24

Irrevocable strategies

Whereas tentative strategies, by their nature, can avoid foothills and ridges, but

at the cost of wasted time, an irrevocable strategy can do so only with a suitable

choice of selection functions and allowable search steps.

The constructive initial assignment algorithm by Lee and Aggarwal [39] at-

tempts to avoid foothills by using a more advanced selection function. To do this

they define the communication intensity of a module ito be FliEVm comm(i,j)

While there are unmapped modules, the algorithm selects the module with the

highest communication intensity out of those modules which are unmapped and

adjacent to modules which are already mapped. That is, the selection function

picks the most "communicative" unmapped module. This is then assigned to

that processor which minimises the objective function. The algorithm starts by

picking the module with :the highest communication intensity and assigning it to

the processor which is the closest in degree (see sect. 1.2.1) to the module.

An alternative to picking unmapped modules one at a time is the technique of

fusion [24,5,19]. This is where nodes of the module graph are clustered or fused

into new single nodes to reduce the number of modules to that of the processors.

Arora and Rana [5] use a Stone graph. Module nodes are selected in an arbi-

trary order and each is merged with that node connected to it with the greatest

IMC weight. If two module nodes are merged then, for mapping purposes, they

are considered as one. If a module node and a processor node are merged then this

means that the module is assigned to that processor. The merging is continued

until there are no more modules left unassigned.

An algorithm of Gylys and Edwards [24] and an extension to their method

presented by Efe [19] deal only with the module graph. Pairs of modules are chosen

which have the highest IMC between them. In Gylys and Edwards' algorithm, the

module nodes are merged if the resulting. module could fit on a single processor. In

Chapter 1. The Mapping problem 	 25

Efe's algorithm, the nodes are merged regardless and imbalances and overloadings

are handled in a later phase. Merging continues until no more merges are possible

[24] or the number of clusters is reduced to the desired number which will be less

than or equal to the number of processors [19].

There have been a number of iterative improvement algorithms published

which use an irrevocable strategy: Though unlike some constructive initial as-

signment algorithms where once a module is mapped it is stuck there, an iterative

improvement algorithm can return to a state after a series of further search steps.

However, local maxima and plateaus are still major problems. Let us consider

three iterative improvement algorithms to see how they handle these problems.

Arora and Rana [5] presented an algorithm based on selecting and moving a mod-

ule from one processor to another. Lee and Aggarwal [39] and Bokhari [9] attempt

to improve assignments by swapping the assignments of pairs of modules.

The algorithm presented by Arora and Rana plays it safe by only accepting

changes which improve the assignment. (This is according to the text of the

paper. However, the program fragment presented, algorithm II, allows changes

of zero improvement and so could get trapped on a plateau forever). Lee and

Aggarwal also state that, in their algorithm, only changes which will improve the

assignment will be made, but the algorithm presented explicitly allows a change

which results in no improvement in the assignment.

Bokhari [9] presents a much more substantial device for avoiding the optimi-

sation pitfalls. He introduces probabilistic jumps. First of all his algorithm uses

a standard pairwise exchange step to find a local optimum. It then randomly ex-

changes some pairs of modules and repeats the pairwise exchanges to improve the

mapping. If this results in a better assignment then the process of probabilistic

jumps and pairwise exchanges is repeated. Otherwise the algorithm terminates

with the assignment of the previous local optimum.

Chapter 1. The Mapping problem
	 Nei

Simulated annealing

A powerful optimisation technique using probabilities was presented in 1983 by

Kirkpatrick, Gelatt and Vecchi [35]. The technique, called simulated annealing,

is based on the theory of statistical mechanics. They show that annealing a physi-

cal system to find a low energy configuration can be considered as an optimisation

problem and that techniques used to model the annealing process can be used to

provide very good solutions of optimisation problems in general.

In simulated annealing, the states of the physical system correspond to the

states of the system being optimised, the physical energy corresponds to the objec-

tive function and the temperature becomes a controlling factor of the optimisation

process.

At a fixed temperature, the structure of a physical system, such as a solid,

undergoes random perturbations or rearrangements as it tends towards thermal

equilibrium. This is very similar to an iterative improvement algorithm trying to

minimise its objective function.

We can model the physical system and minimise the objective function by gen-

erating perturbations and accepting or rejecting them according to the Metropolis

criterion [42]:

If /2E < 0 	Accept it

If z~ E > 0 	Accept it with prob. P(E) = e_/lcBT

where E is the energy or objective function value for a particular configuration of

the system, LE = Ejnai - Ejnjtjai, T is the temperature and kB is Boltzmann's

constant. By repeating this basic step, the system will tend towards equilibrium

for that temperature.

Simulated annealing consists of "melting" the system at a high temperature

then slowly lowering the temperature in stages until the systems "freezes" and no

further changes occur. The sequence of decreasing temperatures and the number

Chapter 1. The Mapping problem 	 27

of rearrangements attempted at each temperature to allow the system to reach a

steady state, is called the annealing schedule.

With this technique, the large scale features of the optimal solution are formed

at the higher temperatures and the fine details are developed as the temperature is

lowered. Since steps to less optimal states are allowed, the iterative improvement

algorithm can escape local optima.

If the system is "cooled" too quickly, then it may get trapped in a local opti-

mum at a high energy. This is called quenching. The rate of cooling becomes

more critical as the systems gets close to freezing. Therefore, it is common to

use an annealing schedule where the decrements in temperature get exponentially

smaller, eg. T = (T1 /T0)'T0 with the ratio T1 1T0 < 1.

Donnett, Starkey and Skillicorn implemented a number of mapping algorithms

including simulated annealing [18]. Their, results show that it consistently gives

better results than the other methods, but that it is much more time consuming.

Communication costs need to be over 1000 times more than execution costs before

they consider it to be cost effective.

Tentative strategies

Up until now we have been considering examples only of irrevocable strategies.

Tentative strategies have also been used, particularly the graph search approach.

One way to view a graph search is as an enumeration of all possible states.

However, in the mapping problem this would mean that for M modules and P

processors there would be of the order P m search steps to find the optimal map-

ping. As the graph search algorithm is expanding the search tree, it .needs to

decide which paths to follow and which to ignore. It is through these decisions

that the graph search approach can produce good - though possibly not optimal

- results within an acceptable time.

Chapter 1. The Mapping problem 	 28

Shen and Tsai [52] have used Nilsson's A* algorithm [46] as part of a construc-

tive initial assignment algorithm. This involves expanding the search tree using

an evaluation function to select promising nodes.

This evaluation function consists of two parts:

f(n) = g(n) + h(n)

where g(n) is the traditional objective function presented earlier which quantifies

the "goodness" of the partial mapping so far. The second term, h(n) is a heuristic

function which is an estimate of h*(n), the cost of the minimal cost path from this

partial mapping to an optimal mapping.

If h(n) < h*(n) for all ii, ie. a lower bound, then this algorithm is guaranteed

to find an optimal solution. In a degenerate case, where g(n) is the length of the

current path and h(n) = 0 then the algorithm is a breadth first search. The higher

the value of h(n) the more branches that will be ignored and therefore the more

efficient the search, but if h(n) is not a lower bound on h*(n), it is possible for

optimal solutions to be missed.

A variation on the graph search approach is the branch and bound algorithm.

This technique is a depth first search which incorporates constraints to eliminate

parts of the search tree. Since eliminating a branch means that the entire subtree

from that branch is ignored, potentially enormous savings can be made.

Ma, Lee and Tsuchiya [40] present a mapping algorithm based on the branch

and bound method. They use bounds such as the memory capacity of the pro-

cessors. They can constrain modules to be on particular processors. In addition,

pairs of modules can be constrained to be on different processors. Using these

constraints and others they reduced the number of iterations required in their

application from an upper bound of 0(100) down to 0(10).

Chapter 1. The Mapping problem
	 29

1.4 Annotations

In recent years, a number of explicitly parallel language models, such as Occam[41]

and POOL [1], have been developed. These language models allow arbitrary com-

munication patterns between the modules. Since most of the techniques discussed

in the literature assume the limited functional model of IMC, more general map-

ping algorithms are needed.

Given the difficult nature of automated mappings, the solution adopted in

Occam, POOL and the parallel functional language ParAlfl[29} is to have the pro-

grammer specify the mapping manually. This is done by annotating the modules

with a reference to the processor on which they are to be executed.

Occam

Occam[41] is based on Hoare's model of communicating sequential processes,

CSP[26]. It allows the programmer to specify a static hierarchy of modules, which

are called processes. A process can be either a primitive process such as as-

signment or an I/O operation or it can consist of a collection of further processes

which are executed either in parallel or sequentially. In addition, there are chan-

nels which provide a one-way communication link between pairs of processors.

Processes declared at the top level of a program can be annotated with a place-

ment expression. This expression, which is evaluated at compile time, specifies

the processor on which that process and all its component processes are to be

executed. The processors are referred to by some machine dependent name such

as a unique fixed processor ID.

For example, the following program fragment declares 10 processes; a host

process, a master process and 8 slave processes. It allocates each to a separate

Chapter 1. The Mapping problem
	 30

processor referred to as processors 0 to 9. The arguments to the processes are

channels which connect the host to the master and the master and slaves in a

ring. The T4 specifies the type of processor.

PLACED PAR

PROCESSOR 0 T4

host.proc(host.to .master, master.to .host)

PROCESSOR 1 T4

master.proc(master.to .host, host.to .master,

right [0] , left [0] , right [1] , left [1])

PLACED PAR i = 2 FOR 8

PROCESSOR i T4

slave.proc(right[i-11, left[i-1]

right [i REM 91, left [1 REM 9])

It is up to the programmer to partition the program into modules which can be

assigned to the processors with a one-to-one mapping. Furthermore, modules are

restricted to communicate with only those modules assigned to directly connected

processors. Thus both partitioning and mapping must be done manually in a

possibly restrictive environment.

POOL

A team at the Philips Research Laboratories in The Netherlands have developed

a family of parallel object-oriented languages collectively known as POOL [1,2,3].

A POOL program consists of object specifications which are instantiated at

run time to create a collection of communicating objects. As in sequential object-

oriented languages such as Smalltalk[57] POOL objects are abstract data struc-

tures consisting of a state and a set of operations which can manipulate this state.

Chapter 1. The Mapping problem
	 31

In addition, POOL also allows each object to have an active component which can

execute independently of requests to invoke an object's operations. This active

component requires that the object be mapped to a processor for its execution.

A proposal has been presented by Augusteijn et al. [6] to allow the programmer

to assign objects to virtual nodes. These virtual nodes are then to be assigned

to physical nodes in an as yet undefined manner except that there will be at most

one virtual, node assigned to a physical node. Thus the programmer is specifying

a partitioning rather than a mapping.

The proposal defines two object classes; Nodes and Node-set. The operations

of these classes allow an object to find out what node itself or another object is

executing on. It can also convert an integer into a node reference allowing the

calculation of the node at run time. The pragmas annotating object creations and

copyings .take an instance of Node-set as their arguments.

'ParAlfi

ParAlfi is a para-functional language developed by Paul Hudak and colleagues at

Yale university[29,28]. It is a functional language which has been extended with

annotations to provide more control over the parallel evaluation process.

In a referentially transparent language such as ParAlfi, the arguments to a

function can be evaluated concurrently without any fear of them interfering with

each other. These function evaluations can be treated 'as modules in a dynamic

structure.

In ParAffi, expressions can be annotated with $on E, where E has the value of

a processor identifier. For example, in the expression f(a) $on go, go is evaluated

first to decide where 1(a) should be evaluated. If an expression is unannotated

then it is executed on the processor of its parent expression; the current processor.

ParAlfi provides the $self primitive which has the value of the current processor

Chapter 1. The Mapping problem
	 32

identifier. It can be used to reference processors in a manner relative to the current

processor.

1

4 	5 	6 	7

Figure 1-12: A processor binary tree

For example, if the processor topology is a binary tree numbered as in Fig. 1-

12, then the following functions might be defined.

left(pid) == 2*pid

right(pid) 	2*pid+1

parent(pid) 	pidl2

and could be used in

(f(x) $on left($self)) + (g(y) $on right($self))

This would cause the evaluation of 1(x) on the left child processor, g(y) on the

right child and the addition to be evaluated on the current processor.

Chapter 1. The Mapping problem 	 33

1.5 Conclusion

When implementing any parallel algorithm on a parallel architecture one must

always solve the mapping problem - to decide which processor should execute

which module. Not only is it a necessity, but it can have a dramatic effect on the

performance of the system.

A survey of several approaches to solving the mapping problem has been pre-

sented. The approaches fall into two categories; manual, where the programmer

specifies the mapping completely and automatic where an algorithm produces a

mapping given various parameters of the program and the architecture.

Manual mechanisms such as annotations and placements are practical for small

or simple systems, especially when the physical topology is suited to the logical

topology. There are several examples showing how to map large synchronous

systems which have a very regular structure and simple communication model [20].

However, as the systems become larger and more complex and good mappings are

no longer intuitively obvious, an automated mapping mechanism is desired.

The automatic mappings are all based on the underlying assumption that

the various parameters used in the objective function are meaningful and can be

determined. For this to be so the automatic methods surveyed rely on a restricted

pattern of interaction - the functional non-overlapping model. Even with this

restricted model it is often difficult to determine the value of such metrics as

simple execution and communication costs and even if they can be determined

the possibly enormous amounts of data can make their processing impractical.

The problems are more fundamental when a less restrictive pattern of commu-

nication is allowed. When the time taken for a task to complete depends on more

than the communication and execution costs, but also depends on synchronisation

Chapter 1. The Mapping problem
	

34

delays, the overlapping of computation and communication and network conges-

tion then the traditional objective functions no longer relate to the completion

time and are meaningless.

These new costs are not static or independent variables, but depend on the

interaction between modules executing in a real system in real time. In all but

trivial cases it is impossible to quantify these costs. Therefore, mapping methods

based on objective functions will always be inadequate for complex asynchronous

systems. They give the impression of precision and yet are approximate and even

inaccurate.

A new approach is needed; one that is not based on incomplete or unmeasurable

quantities, but on a fuller understanding of the behaviour of complex systems.

This thesis presents a new approach which utilises problem specific knowledge

and structure to guide the generation of a mapping.

Chapter 2

A structural approach

2.1 Introduction

As was concluded in the previous chapter there is a need for a mechanism which

can generate a good mapping without the need for a detailed knowledge of the

system's computation and communication costs. These costs are difficult to obtain

and process, sometimes ill-defined and the final result is usually an approximation

anyway.

Increasingly, systems are being designed hierarchically. Such an approach

places a superstructure over the otherwise ad hoc collection of component activi-

ties. Before any existing mapping mechanisms can be applied, such superstructure

must be removed leaving a simple flattened process graph (section 1.2.1). It will

be shown that rather than being something to be eliminated, this superstructure

provides valuable information.

This thesis shows that in certain applications, the hierarchical design structure

of a system can be used as an approximation to the system's communication

behaviour and can be used to produce a better mapping. As a consequence, it is

demonstrated that in these applications a principle of locality is at work where

locality is defined by the hierarchical design structure.

35

Chapter 2. A structural approach
	

36

The remainder of this chapter defines a structure called a locality tree which

is an approximate description of a system's communication behaviour and shows

how a locality tree can be used to produce a mapping which reduces the costs of

communication. By clustering modules according to a locality tree it is intended

that not only transmission costs will be reduced, but so too will be delays due to

synchronisation and message congestion between closely connected modules. An

algorithm is presented which takes as input such a locality tree and produces a

mapping for a rectangular grid of processors.

Since locality trees are structural rather than numeric they do not depend on

parameters such as those discussed in the previous chapter. There is no objective

function which gives the illusion of precision. They are an approximation from

the start and unashamedly so since a. deterministic model of performance for

asynchronous systems seems attainable.

2.2 Locality trees

We define a locality tree to be a rooted directed graph which by its structure

approximates the levels of communication between activities in a system. Rather

than using a numeric value, the level of communication between two activities is

indicated by their relative "closeness" in the tree.

The leaves of a locality tree represent the component activities of the system

and internal nodes are used to group together those activities which communicate

more with each other than with activities outside of the group. The higher the

level of inter-communication between two activities, the closer they will be related

in the tree, the highest level corresponding to two siblings. As the degree of inter-

communication lessens, pairs of activities become increasingly distant relatives,

culminating in their closest common ancestor being the root of the tree.

Chapter 2. A structural approach
	

37

In contrast to the actual level of inter-communication which is basically a

continuous variable, the approximation uses an arbitrary discrete scale with the

number of divisions equal to twice the height of the tree. The level of inter-

communication between two activities is approximated by the length of the short-

est path between the two corresponding leaf nodes.

There is, however, no arithmetic relation between the levels, simply an order-

ing. If one pair of activities has twice the inter-node path length than another

pair, this does not imply that there is half the amount of communication. All it

represents is that the former pair communicates less than the latter.

2.2.1 Simple trees

K

A B C D 	E F G H

Figure 2-1: Simple tree

The simplest case of a locality tree is a straight forward acyclic tree; the only links

being from a parent to its children. In Fig. 2-1, we see that A, B, C and D are

clustered together, so too are E, F, G and H. This indicates that there is a higher

level of communication between A and B than say A and E.

2.2.2 Cross linked trees

A simple tree may be said to be vertically rigid, but horizontally free, since the

parent-child relations are completely defined, but there is no information on the

Chapter 2. A structural approach

relationship between siblings, cousins, etc. To provide horizontal rigidity, simple

trees can be extended by allowing cross links.

A cross link between any two nodes expresses a higher level of communication

than would otherwise be indicated by their position in a simple tree. This allows

nodes to be pulled together laterally. It represents an attraction between siblings,

cousins, etc. and allows the expression of finer degrees of communication levels by

describing the relation between particular pairs rather than whole families. Not

just leaves, but internal nodes may also be cross linked. Thus expressing a higher

level of communication between all of the leaf activities of one subtree and those

of the other.

Since cross links exist to express extra information on top of a simple local-

ity tree, it is meaningless for a node to be cross linked to one of its ancestors,

descendants or itself as such linkage is already expressed by the simple tree.

In order to preserve the meaning of the locality tree, two types of cross links

are distinguished. To connect two siblings together, an junk is used. An junk is

an internal link within a parent-children nuclear family. It extends the information

in the locality tree by allowing a node to be more closely related to one sibling

than to the others. Junks always come in pairs since cross linking is a symmetrical

relation, but they are usually considered as single bi-directional links.

RN

A B C D 	E F G H

Figure 2-2: Cross linked tree

Fig. 2-2 shows a simple tree which has been extended by cross linking B with

Chapter 2. A structural approach 	 39

A and C. As B and A, and B and C are sibling relations ilink pairs are used. Such

a tree indicates that B has a higher level of communication with A, C and D than

with E, F, G or H. Furthermore, it shows that B is particularly communicative

with A and C.

For more distantly related nodes an external link or elink is used. Elinks are

used to express external forces on the children of a family caused by the rest of

the locality tree. However, they will never override the family structure. They

allow particular children within a family to be drawn towards other parts of the

locality tree. Having this second type of link allows emphasis to be given to the

hierarchical structure of the locality tree, but still to recognise connections across

that hierarchy.

As with their sibling counterparts, two non-sibling nodes will be cross linked

with a pair of links, in this case elinks. In addition, uni-directional elinks are used

to express how the family as a whole as represented by its parent is also drawn

towards the remotely cross linked node. For example, in Fig. 2-2, if a descendant

of C was cross linked with a descendant of D, then the locality tree should reflect

this increased degree of communication between the two families by cross linking

C and D.

z

A B

Figure 2-3: Tree with external links

Consider Fig. 2-3, A and B are cross linked. Therefore A is elinked to B and

Chapter 2. A structural approach 	 40

vice versa. Furthermore, A's parent, S, needs an elink to B so that when the

children of X are considered for mapping, S and therefore A is pulled towards B.

A similar argument requires an elink from T to A. If there were any other ancestor

nodes between S and X or T and Y then they too would be elinked. In the case

of X and Y, the greatest uncles of B and A respectively, they are simply ilinked

to indicate a special closeness between the two families.

In general, if A and B have as their closest common ancestor Z, and X and Y,

children of Z, are ancestors of A and B respectively then all the ancestors from

A up to, but excluding X are elinked to B. If A and X are the same node then

there is no clink to B. Siñiilarly, all the ancestors from B up to, but excluding Y

are clinked to A. In addition, X and Y are junked. If we consider a node to be

an ancestor of itself then this definition reduces to an ordinary pair of ilinks when

the two nodes to be cross linked are siblings. It follows from this definition that a

node will never have an clink to any of its parents' descendants.

2.2.3 Locality tree operations

There are times when it is necessary to broaden or narrow a locality tree. Part of

the mapping algorithm described later requires that the number of children of a

parent be "matched" to the number of processors available. The actual number of

descendant leaf activities remains constant, but the children of a node are grouped

differently in order to increase or decrease the number of nodes at the level below

the parent.

To reduce the number of children a parent has, some of the children can be

adopted by a foster parent which is in turn adopted by the original parent. For

example, Fig. 2-4 shows the creation of a foster parent F, and the successive

adoption by F of two children of P. The net result is that P now has only three

children, A, B and F.

F F

links must be considered when C is adopted.

19

. - B/ /C
	

A B\

-

E 	 C

Chapter 2. A structural approach
	

41

IN

F

D 	 CD

Figure 2-4: Child adoption

The adopt operation is complicated by having to maintain the cross link in-

variants, ie. junks only between siblings, no elinks to greatest uncles, etc. Fig. 2-5

shows another adoption where node C is being adopted by its sibling F. C has

junks to B and F and an clink to E. In addition, D has an elink to C. All these

Figure 2-5: Child adoption with cross links

C is now a sibling of D therefore its cross link must be an junk not an clink.

Conversely, C and B are no longer siblings therefore they must be clinked rather

than junked. This involves an clink from C to B and an junk between B and F.

There is no clink from B to C since B is a greatest uncle of C. C may have other

nodes to which it is clinked, eg. E. If E is a descendant of a former sibling of C

then there needs to be an junk between F and that sibling as F is now a greatest

uncle of E, otherwise an clink from F to E is required..

Chapter 2. A structural approach 	 42

The inverse operation to adoption is promotion. In this case a child node is

"promoted" to the same level as its parent, ie. the child becomes a child of its

grandparent. Another analogy is the promotion of an employee or a soldier to the

next level up the hierarchy.

G 	 G

A B 	 A

Figure 2-6: Promoting a node

Fig. 2-6, shows how a node, B, is promoted up a level and becomes a child of

G. It is possible for all the children of a node to be promoted in which case the

parent becomes redundant.

Just as in adoption, promotion involves manipulating the cross links to main-

tain the cross link invariants. Cross linked nodes which were siblings and are

now no longer, need to convert their ilinks to elinks. Similarly cross linked nodes

which have become siblings need to be junked instead of elinked. Fig. 2-7 gives

an example of some the changes which are made to cross links when a node is

promoted. The ilink between A and B has become an elink from A to B and an

ilink between P and B. The elink from B to C is replaced with an ilink between

them.

Chapter 2. A structural approach
	

43

G 	 G

HE

A B 	 A

Figure 2-7: Promoting a linked node

2.3 Mapping locality trees

An algorithm has been developed which uses a locality tree to produce a mapping

with reduced communication costs. It uses the structure and links of the tree to

determine bounds on the possible mappings in an attempt to place those activities

which communicate a lot, close together. It is intended that this will reduce

transmission costs and also the level of message traffic in the system thereby

reducing communication delays of various sorts.

The algorithm presented here is for a rectangular grid of processors. Such a

topology was chosen as it is commonly used and easily made. However, similar

algorithms could be developed for other topologies. In all cases it is assumed

that there is some mechanism which can deliver messages from one module to

another regardless of which processor they are assigned. This could be provided

in hardware or by a layer of software often called a network layer or communication

harness.

The mapping algorithm is a recursive algorithm which at every step acts only

on a node and its children. The tree is never treated as a whole, but by a sequence

of local actions. This means the algorithm is linear in the number of nodes in

the tree and higher order only in the number of children per node. This local

Chapter 2. A structural approach 	 44

processing is an approximation, but has a massive effect on the processing time of

a tree with many nodes when compared to a globally optimising algorithm.

Using a divide and conquer approach, the locality tree is divided into subtrees,

likewise, the grid of processors is divided into subgrids. Each subtree is then as-

signed to a subgrid and the algorithm is recursively invoked on the subtree/subgrid

pairs.

Since the minimum communications cost would be achieved if all the nodes

were assigned to a single processor, some concept of load spreading is required.

Locality trees are designed to approximate communication behaviour not exe-

cution loads, but in reasonably homogeneous applications such as digital logic

simulation we can assume a unit execution load. The results of the even mapping

presented in chapter 5 show that this assumption is not invalid. Therefore the

weight of a leaf node is considered to be unity. The execution load of a subtree is

the sum of the execution load of its leaves.

The basic structure of the locality tree, ie. its simple locality tree, determines

the overall assignment of nodes to processors. It limits those processors to which

a node may be mapped by restricting it to a subgrid of its parent node's grid.

To which subgrid a node is mapped is determined in two steps. First, the parent

processor grid is divided into "virtual" slices in proportion to the execution load

weight of the children nodes. This ensures that the processors are roughly balanced

in their computation load. After the grid has been sliced the ilinks and elinks are

used to determine what the actual assignment of slices to processors is. They

determine how the subgrids are arranged, causing slices which are cross linked to

be moved closer together. and thereby reducing communication costs.

Chapter 2. A structural approach
	

45

2.3.1 Slicing

The slice algorithm determines the number of slices each child is to receive. It is

left to section 2.3.3 to describe how it is decided which slices a node actually gets.

•A processor grid is divided into subgrids using a technique inspired by various

VLSI routing algorithms. Each grid is a rectangle, p x q, with p ~! q, it is divided

into p slices of q x 1. These slices are allocated to the children nodes according to

their relative execution load weights so that a child receiving n slices is allocated

an n x q rectangle of processors.

If, as is usual, n < q then when. this smaller rectangle of processors is assigned

it is divided across the grain, ie. it is treated as a rotated p' x q' rectangle where

P' = q and q' = n. In general, the grid of processors is sliced vertically, then

each slice is divided horizontally and the process continues alternatively slicing

one way and then the other until just a single processor remains. If n > q then

the rectangle is treated as is, ie. unrotated.

Z 	 z

ABC 	D 	E 	*
Figure 2-8: Simple layout showing slicing and allocation

Fig. 2-8 shows how the grid associated with node Z has been sliced verti-

cally into two grids corresponding to nodes X and Y. Each of these are sliced

horizontally into subgrids corresponding to their associated children nodes.

Deciding how many slices a node should get is an extended form of the bin

packing problem and therefore is NP-complete. In spite of the number of children

Chapter 2. A structural approach 	 46

often being small, it cannot be guaranteed that it is always so and therefore an

approximation algorithm is used.

A child should receive a number of slices proportional to its fraction of the

total execution load of all the children of the parent. Associated with each child is

a standardised weight which represents how worthy the child is of receiving more

slices than it currently has. The weight is an integer between -100 and 100, ie.

.a signed whole number percentage which is a percentage of the total number of

slices being shared out.

As a child starts off with no slices, its initial standardised weight is set to the

percentage it deserves. As slices are allocated to a node, its weight is decreased

by the percentage of the total number of slices which have been allocated to it. If

the standardised weight is positive then the child still deserves more slices, if it is

negative then it has been oversupplied. If child i of node n has a real weight of r1

and has been allocated t2 slices out of a possible p then its standardised weight is

given by,

si 	
flOOr\ 	(loot.

= TNT (- TNT (
" Sn I 	\ p

To distribute the slices, the children nodes are placed in decreasing standard-

ised weight and are allocated their share of the slices in turn. Due to the rounding

errors of integer arithmetic and the granularity of the slices, it is quite likely that

some nodes will receive more than their share and some will receive less, possibly

none.

After the initial allocation, those nodes which have not been allocated any

slices are associated with those with more than their fair share. All of the poor

nodes which have been associated with a particular wealthy benefactor node are

removed from their parent and adopted by a child minder. The child minder and

the benefactor are then merged under one node which is adopted by the original

parent.

Chapter 2. A structural approach
	

47

Figure 2-9: Matching children to slices

Fig. 2-9 shows a family of four nodes, A, B, C and D which have execution

load weights of 14, I, 4 and 1, respectively. This gives a total of 20. They are to

be mapped to a grid containing 3 slices. So they deserve 2.1, 0.15, 0.6 and 0.15

slices respectively.

As it is not possible to allocate fractions of slices, the nodes must be regrouped

in a way which reduces internal fragmentation. The standardised weight of each

node is calculated and the nodes are placed in order of decreasing weight; A (70),

C (20), B (5), D (5). The nodes are taken in order and allocated slices where each

slice has a standardised weight of 33. While there are still slices, a node is given

a minimum of 1 slice and up to, but not more than its weight's worth. In our

example, the list now looks like;

B has 0 slices and weight 5

D has 0 slices and weight 5

A has 2 slices and weight 4

C has 1 slice and weight -13

Note that due to rounding errors, the sum of standardised weights does not nec-

essarily equal zero.

Unfortunately, B and D have not been allocated any slices. So they have to be

merged with the more successful nodes. Each deprived child is taken in turn and

associated with that node which has the most spare capacity. In this example, B

Chapter 2. A structural approach 	 48

is associated with node C giving C a new standardised weight of —13 + 5 = —8.

As C is still the wealthiest child, It takes in D as well. All the nodes which are

being taken in by C are adopted by a child minder or nanny, N. Finally, each

benefactor and its nanny are merged under a new node. So, C and N are merged

under M.

A

M

B D

Figure 2-10: Result of matching, adoption and benefaction

The result is the tree shown in Fig. 2-10. Node A is allocated two slices and B,

C and D having been gathered together under the new node M receive one slice to

be shared between them. Note that this is not exactly what they deserved. Node

A deserved 2.1 slices, but received only 2. B, C and D as a group deserved 0.9,

but received one full slice. However, at the bottom level, a node must be mapped

to a particular processor and it may be impossible to do this evenly, eg. three

nodes to two processors.

As the slice algorithm is not invoked if the subgrid contains only one processor,

there will always be more than one slice being shared out. This leaves just one

pathological case which is best described by example. Consider the case where

there is a big node of size 99, a little one of size 1 and there are two slices.

The big node gets allocated both slices and becomes a benefactor of the small

node. Unfortunately, this results in the same configuration as the starting one.

Chapter 2. A structural approach 	 49

The slicing of the left tree in Fig. 2-11 results in the right tree. Both slices get

allocated to M, but when it is considered for slicing, it is in an identical situation

to P. If not avoided, this will produce an infinite tree.

The solution is for the big node to adopt the foster node rather than be merged

with it. Assuming that the parent has more than one child then they will be smaller

than the parent and less likely to get all the slices when competing with the foster

node. If there are k slices then the need for this special action occurs when the

size of the big node is greater than

flOO(k - i)\
INT(% 	

k 	
) +1

As the sum of the small nodes is always less than this it is not possible for the

foster node to get all the slices and the other children of the big node to get none

when the big node comes to get sliced. If a single child of the big node receives

all the slices then the process is repeated. As the tree is finite and the leaves have

weight 1, the algorithm will terminate.

22

-40

B2 	so

FO

so

Figure 2-11: A pathological case

The slice algorithm has time complexity O(n2 1 2) where there are n children each

assumed to have 1 links. Its aim is to cluster the children into groups which match

the available number of slices; the better the match, the better the load balancing.

Furthermore, it attempts to do this with as little disruption to the structural

Chapter 2. A structural approach 	 50

information as possible. Except for the pathological case just described, poor

children are adopted by a nanny rather than the benefactor directly in order to

keep them separate from the benefactor's children. It also combines poor children

into a bigger family which will have a better chance of receiving slices in its own

right. Finally, the resulting tree tends towards being tall and thin which reduces

the time taken to process a family, a quadratic function, at the cost of traversing

more nodes, a linear function.

2.3.2 Load balancing control

If nodes received exactly the number of slices they deserved then all the processors

would be evenly loaded given our assumption of unit execution load. However, as

we saw in the previous example there can be a discrepancy between what a node

deserves and what a node gets. This will cause uneveness in the load balancing of

the processors.

The slicing algorithm was extended to allow control over the level of permitted

load imbalance. A limit, p, can be imposed which prevents the production of a

mapping which has allocated too many or too few activities to a grid of processors

in comparison with the overall average load.

An evenly balanced load, /3 is equal to the real weight of the whole tree divided

by the number of processors. Load imbalance is measured in terms of deviation

from 3. A value of p = 1 corresponds to a deviation from 3 by /3, ie. double the

average load.

After the slices have been divided up amongst the children, a check is made

to see whether any node has been under allocated by more than an allowable

amount. A node i, with real weight r1 and t2 slices of size q has been unacceptably

underpowered if

r2 > /3tq(1 + p)

Chapter 2. A structural approach
	

611

Unacceptable slicings arise from the discrete sizes of the nodes. A node may

be given a slice, much of which is surplus to its needs. If there are no poor nodes

which can be taken in to use up some of this surplus capacity, then the node is

overpowered and other nodes will be underpowered, ie. the loading is unbalanced.

When such a situation is detected, the largest child of the family is "broken

up". All of its children are promoted. This approach has two benefits. In general,

it reduces the size of the largest node and it increases the number of nodes being

considered. It is therefore more likely to produce an acceptable slicing.

2.3.3 Arranging

Once a node's children have each been allocated a number of slices, the next step

is to determine which particular slices of the processor grid each child will get.

This is done by placing the children in a line and then allocating the appropriate

number of consecutive slices to each child in turn. The order of the children will

determine the mapping and hence affect the cost of communication between nodes.

The arrange algorithm attempts to place the children in an order which will

reduce communication costs. In the case of ilinks, this is done by attempting to

reduce the number of slices between pairs of cross linked nodes.

Consider mapping the four nodes A to D onto a 4 x q grid of processors. Fig. 2-

12 presents two possible mappings. The left hand mapping has placed the nodes

according to the locality tree. The right hand mapping has not. In the right hand

mapping, the nodes with which B communicates most are the furthest away with

a consequent increase in communication costs.

The first stage of the algorithm is to place the children in an initial order

which will then be improved by an approximation algorithm described later. The

task of the improvement algorithm can be made much shorter, by taking a bit of

effort with the initial assignment. As nodes with no ilinks are not attracted to

'$'

Chapter 2. A structural approach
	

52

Figure 2-12: Two mappings

anything and just keep other linked nodes apart, they are put to one side out of

the way. The other nodes are placed in order by picking unprocessed nodes and

following their ilinks to collect up strings of nodes which can placed as groups.

Thus for a node in the initial ordering there is a good chance that it is junked

to its neighbours. In fact, the optimal mapping in Fig. 2-12 would be produced

directly by this initial assignment without need of any improvement.

The approximation algorithm used is of the iterative improvement class de-

scribed in chapter 1. It proceeds by evaluating the consequences of swapping two

adjacent nodes and if this leads to a reduction in link lengths, it performs the swap.

So as to avoid recalculating the link lengths at every evaluation, sufficient infor-

mation is retained at each node to calculate whether swapping two adjacent nodes

will reduce the junk length. Also associated with each node is an approximation

of the elink information.

Each child is assigned a value denoting the net flow of ilinks, up or down in the

sequence. Thus if it has three junks to nodes in higher positions in the sequence

and two to lower nodes, its net flow value is one up. This net flow, along with the

size of an adjacent node, is used to decide whether it would be an improvement

to swap the two nodes. Fig. 2-13 shows the net ilink flow for each node. It can be

seen that the better arrangement has a lower sum of the magnitudes of net junk

flows.

Chapter 2. A structural approach
	

53

To judge the effect of a swap on a node's external links, its external balance

point is calculated, ie. the position in its parent's slice which minimises the sum

of its elinks. When considering these external forces, a swap is treated as an

improvement if it brings the two nodes closer to their balance points.

To find a node's balance point, each node to which it has an elink is examined

to find its location. If this node has already been assigned to a processor grid then

its position relative to the slice being arranged can be determined. Otherwise, its

ancestors are studied in turn until the information is found. If the only information

is that of an ancestor of the original node then it is discarded as useless.

Thus each child has a pull up or down towards the majority of its junked

siblings and a pull towards a particular position due to external forces. The

relative value of internal and external improvements is determined by compile-

time constants. For the purposes of this thesis they have equal weightings.

The list of children is repeatedly traversed, swapping adjacent children when

it reduces the weighted sum of the internal and external costs. If nodes which are

ilinked are swapped then the net flow of ilinks is altered. The sweeps are repeated

until it is not possible' to swap any more children and get an improvement or until

a fixed number of sweeps have been made.

LIki

J_J

Do Do

[1H _

rF
_

Figure 2-13: Improvement of an arrangement

Fig. 2-13 shows how the poor mapping of Fig. 2-12 is improved into a better

Chapter 2. A structural approach 	 54

one. In this example, each of the nodes has been allocated a single slice and there

are no elinks.

The first step is to allocate those nodes with no ilinks. For this reason D is

placed in slot 0, out of the way. Next, an unprocessed node is chosen and allocated

to slot 1. Normally, a node with just 1 ilink is chosen if it exists in an attempt to

straighten out tangles in the iliuk graph. However, for the sake of example, node

B is chosen to go into slot 2. Those nodes to which B has an junk are examined

and the first unprocessed node found is allocated to the next slot. In this case, it is

A. The junks of A are checked, but all its links are to processed nodes. Therefore

another node, C, is chosen from the list of unprocessed nodes and allocated to the

next slot. As all of the nodes are allocated, the initial assignment is complete.

Before the improvement algorithm can commence, the net ilink flow is calcu-

lated for each node. This is just the number of ilinks to nodes in higher positions

minus the number of iliiiks to nodes in lower ones. The net flows are shown in the

middle mapping of Fig. 2-13.

As there are no elinks, D will never move. So the first swap to be considered

is that of B and A. Moving B down a slot would improve the mapping by +2

(B's net flow times the size of A, ie. 1) and moving A up would improve it by

+1 (A's net flow times the size of B) From the total of +3 is subtracted 2 (the

sum of their sizes) as the two adjacent nodes are ilinked and the swapping does

not affect that ilink. As +1 > 0, the swap is done giving the right hand mapping

in the figure. In the next sweep through the nodes, no improvement is found and

the algorithm terminates. Swapping A and B or B and C gives an improvement

of -1 and therefore these swaps are discarded.

The combination of a simple initial assignment with an improvement algorithm

produces good results. For small numbers of nodes it is possible to evaluate the

objective function for every arrangement of nodes in every possible topology. This

Chapter 2. A structural approach 	 55

was done and an optimal mapping for each combination of links for a given number

of nodes was found.

For each combination, the optimal mapping was compared with the mapping

found by the algorithm presented above. It was found that the algorithm found

an arrangement equal to the optimal in all topologies of four nodes, over 95% of

topologies with five nodes and over 2/3 of the topologies with 6 nodes.

The time complexity of the algorithm is linear in the product of the number of

nodes and the number of ilinks; evaluating and executing a swap takes constant

time.

2.3.4 Allocation

After the nodes have been sliced and arranged they are allocated in turn to the

subgrids of the parent node's grid according to whether the grid is sliced verti-

cally or horizontally. Finally the mapping algorithm is invoked on each of the

node/subgrid pairs.

The tree is traversed in a depth-first manner for the sake of convenience, but

it is important that each child of a family is allocated to a specific processor

grid before any of the child subtrees are processed. This provides a node being

assigned with a general indication of the location, in relation to its own processor

grid, of any node to which its children have an elink. This is enough information

to determine the external balance points of the children nodes.

The mapping algorithm is an approximation algorithm and is not guaranteed

to give the optimal arrangement. However, it is the intention that tall, thin trees

are used with a small number of children per node. In these cases, very good results

for each node are likely within a short amount of time. The mapping algorithm is

0(m2), but the proof of the pudding is in the eating so the remaining chapters of

Chapter 2. A structural approach
	

56

this thesis present an implementation in which to test this new approach and the

results of using it.

Chapter .3

Parallel Simulation

3.1 Motivation

One application which displays the properties required by the structural mapping

approach is that of the simulation of digital logic circuits. It is becoming more

common for logic circuits to be designed hierarchically and yet they do not have

a regular structure which allows their simulation to be easily mapped.

The trend in circuit design is to use hardware description languages (HDLs)

such as Ella [45] and Model [38] and computer aided design environments such as

SOLO 1000 [38], which promote a structural approach to the design of circuits.

Apart from its suitability as an application for a structural mapping, there is a

growing demand for more powerful logic simulators. A parallel approach has the

potential for significant performance improvements.

57

Chapter 3. Parallel Simulation
	

RRI

3.2 What is a simulator?

A simulator is a tool which given a description of a system can, within the limita-

tions of the description, behave like that system. Thus the simulator implements

an abstraction of the described system where the state of the simulation at a given

simulation time corresponds to the state of the real system at the corresponding

real time. We say a simulation is correct if this correspondence is indeed the case.

Simulators can be divided into two classes. In one, simulation time progresses

smoothly. Such simulators are called continuous and are often implemented

using analogue techniques. They are typically used when the system is described in

terms of continuous equations such as the wave equation or the laws of gravitation.

The alternative is for simulation time to progress in a series of steps. Sim-

ulators which have such a quantised time are called discrete and are typically

implemented using a digital computer. This thesis is concerned only in the latter

class of discrete simulators.

To say simulation time proceeds as a series of steps means that the state of the

simulation is calculated only at specific points in the simulation time continuum.

For such a simulation to be correct, the simulation designer needs to ensure that

the simulation does not miss any state changes during such time steps.

In time-driven simulators, the series is regular; there is a constant time

interval between state calculations, eg., simulating a digital circuit in 1 ns steps.

In this case, it is necessary to ensure that the value of signals do not change then

change again within less than 1 ns otherwise the simulator would miss all but the

last change.

Another pitfall of the time-driven approach is that if the time interval is much

Chapter 3. Parallel Simulation 	 59

shorter than the time between changes, then the simulator wastes a lot of its time

simulating a system which is not changing.

One way to avoid these problems, is to perform state calculations only when

the state actually changes. Such a state change is called an event. In event-

driven simulators, simulation time progresses as a series of jumps from one event

to the next. Hence, simulation time proceeds quickly or slowly (in comparison to

real time) depending on the rate of changes to the simulation state.

This does lead to one major problem. Whereas a time-driven simulator has to

deal only with the present, an event-driven simulator has to manage the future

of the simulation as well. It has to keep track of all the events which are due to

occur later in simulation time.

Traditionally, this is done with a time ordered event queue, a sorted list

of records describing forthcoming events. The event with the earliest time, ie.

the next event to occur, is the record at the head of the queue. The simulator

proceeds by removing the next event and simulating the state change it represents.

This will typically cause the creation of future events which are placed in their

appropriate positions in the event queue. To start the ball rolling, initial events

are placed into the event queue. The simulation is complete when there are no

more events left in the queue, though, typically, there is a predetermined time

limit for the simulation such that the simulation stops when the next event has a

time greater than or equal to this limit.

The characteristics of the system being modelled determine the dependencies

between events. For example, in a car, its engine will not start until the ignition

key is turned on, its interior light will not go off until all the doors are closed.

• A correct simulator must maintain these dependencies. However, because of

the linear nature of the event queue, a sequential simulator imposes an arbitrary

order on events. It forces one event, say the engine starting, to be completely

Chapter 3. Parallel Simulation 	 60

simulated before or after another, eg. the interior light going off, even though

they are totally independent and could be simulated in parallel. Thus the use of

the event queue destroys any natural parallelism that might be present in the real

system by forcing a serial execution of the simulation.

3.3 The process model

Often, a natural way to describe a system is to describe the behaviour of its com-

ponents and how they interact. The process or scenario model as it is called by

Franta [21] views a. system as a collection of interacting activities; a network of

processes where each process is a.separate, independently existing agent. Typi-

cally, but not necessarily, an agent maintains some local state information.

Such an approach is similar to that of the object model [33] where the state of

the system is described in terms of the states of its components. Here, the system

is described as a collection of objects; an object being some local, private state

information and a well-defined set of operations on that state which other objects

can invoke. For example, in Smalltalk80 [57], objects are accessed by invoking

their operations using a restricted form of message passing similar to a procedure

call.

The essential difference between the two is that the process model emphasises

the activities within the system. Its basic unit is an active component, perhaps

with no state at all, a pure function. The object model focuses on the state of the

system and systems are described in terms of passive components.

Typically, as is the case in Smalltalk80, objects are active only when they are

handling requests. On the other hand, processes are not so restricted, making the

process model more powerful. In those object based systems such as POOL [3,

Chapter 3. Parallel Simulation 	 61

1] where objects can be active between requests the distinction between models

becomes quite blurred.

3.3.1 A parallel implementation

Independently, Bryant at MIT [11] and Chandy at a series of lectures at the

University of Waterloo and later in conjunction with Misra [12,13,44] proposed

mechanisms for successfully implementing a process based simulation on a parallel

processing system.

In their approach, each of the physical components or processes in the real sys-

tern is simulated by an autonomous logical process in the simulator. For example,

there would be a logical process for each gate in a circuit or each unit volume in a

model of the weather. The interaction between two physical processes is simulated

by the sending of messages between the two corresponding logical processes.

More strictly, a physical system can be simulated by associating a separate

logical process (ip) with each physical process (pp) where 1p i simulates the actions

of pp• If ppi affects pp, then let there be a channel or link from 1pi to lp3 . If

an ip knows the initial state and all the events that occur to its corresponding pp

up to time t then it can simulate the actions of the pp up to at least that time t

and possibly beyond.

As an example consider the simulation of a doctors' surgery, as described in

Fig. 3-1. Patients enter the surgery and go into the waiting room. When a doctor

becomes free, the patient who has been waiting the longest is sent to see him.

After consultation, the (hopefully) cured patient leaves via the exit.

Fig. 3-1 is an annotated interconnection graph (as described in section 1.2.1) of

a doctor's surgery system. Each of the nodes represent a physical process such as a

queueing of waiting patients or a doctor's consultation with a patient. The arrows

Chapter 3. Parallel Simulation
	 62

t? 	[Dr. A
ients

	

Waitin 	
Patients 	

•Exit Entralv ~~ 	

PatientsRoom

Patients

ts

Patients

Next?

Figure 3-1: A Doctors' surgery

represent links between the physical components, describing how one component

can affect another, eg. by the movement of patients.

Since the simulation structure is isomorphic to the physical interconnection

structure, the interconnection graph also describes the network of logical processes.

In this case, the nodes represent logical processes and the arrows represent inter-

process communication channels or links.

In Fig. 3-1 there are two types of interactions or events which support the

flow of information between processes. The first is when a patient moves from one

room to another. The other is when a doctor becomes free and asks "Next?". In

both cases interaction in the physical system and the sending of a message in the

logical system are the result of a local change of state in the originating process,

eg. the finishing of a consultation.

3.3.2 Time

As already discussed, the concept of time is fundamental to a simulation. The

time dependencies of the physical system must be preserved in the logical system.

For example, in Fig. 3-1, the logical process Exit needs to know at what time the

patients finish their consultations so it can correctly simulate the order in which

patients leave the surgery.

Chapter 3. Parallel Simulation
	

63

To enable these time dependencies to be preserved in the simulation, all mes-

sages sent in the logical system are tagged with the time at which their corre-

sponding event occurs in the physical system. Thus, in a correct simulation, for

every event in the physical system there will be a corresponding time-stamped

message sent in the logical system.

These messages travel in sequence from one process to another. If we ensure

that the time-stamps of messages sent along a link are always increasing then the

receiving process can be sure it has received all of the messages from the source

process with time-stamps up to that of the last message.

The clock value of a channel is the time of the last message received on that

channel by the receiving process. The clock value of a logical process is the min-

imum clock value of all its input channels. An ip can safely simulate its corre-

sponding pp up until its clock value since it knows of all the messages received by

its pp up until that time.

It may be possible for an lp to predict the output of its pp for some time

into the future - to look ahead. This will happen when the outputs are a delayed

response to the inputs. Indeed this must be the case for at least one process in

every cycle of connected processes in a system. Otherwise, the inputs to a process

would be a function of themselves! This property of physical systems is sometimes

called the condition of predictability.

For example, in Fig. 3-1, if consultations are of a constant duration, C, then

when a patient event arrives at a Doctor's ip with time t, the ip can calculate that

at time t + C the consultation will finish. Therefore it can output a message with

this later time even though it is greater than its current time, ie. its own clock

value.

If the consultation time, C, is variable, eg. derived from a probability dis-

tribution function then the lp must ensure that a later incoming event does not

Chapter 3. Parallel Simulation 	 64

generate an outgoing event with an earlier time. The time of an outgoing message

represents an upper bound on the known future of an ip and its corresponding pp.

.3.3.3 The simulation mechanism

An ip simulates its pp by examining its input links to find the event with the

lowest time, the next event. The event is consumed and the appropriate output,

if any, is generated. This is repeated until the consumed event has a time greater

than some predetermined limit at which point the ip terminates.

Unfortunately, if an ip has any links which are empty of messages then it is

unable to decide whether to process the next event of which it knows or if it must

wait for an arrival on an empty link and process that. To be safe, it has to wait

until it has received messages on all of its input links before choosing the next

event. Until this happens the lp is blocked.

Fig. 3-2 describes the simulation of a 5 ns delay 3 input nand gate with inputs

A l B and C shown in the timing diagram. The signals in the real system are

simulated as a sequence of messages (T, V) which have the meaning that the

value of the last message received on that channel is valid until time T at which

point the signal takes the value V until further notice. Thus the signals in the

physical system are represented in the logical system by their transitions.

In Fig. 3-2, the lp records the current value of each input, shown in brackets.

For each input, it also maintains a FIFO queue containing any unconsumed mes-

sages. If there are no empty links, it chooses those events with the lowest time

(marked with an asterisk) and processes them, possibly producing one or more

output messages. Such output is based on the input values at the current time

which will be the new values just accepted and the existing values for the other

inputs.

Chapter 3. Parallel Simulation 	 65

0 	10 	20 	30 	40 	50 	60 	70

A

I:]

C

0 	 1

Events A 	 B 	 C Output

A 20 H (L) 20:H (L) - (H) -

B 30 H (L) 20:H (L) 30:H (H) -

B 50 L (L) 20:H (L) 30:H 50:L (H) -

C 10 L (L) 20:H (L) 30:H 50:L (H) 10 : L* t = 15 LLL -> H

C 40 H (L) 20 : H* (L) 30:H 50:L (L) 40:H t = 25 HLL -> H

C 60 L (H) - (L) 30:H 50:L (L) 40:H 60:L

A 60 L (H) 60:L (L) 30:H* 50:L (L) 40:H 60:L t = 35 HilL -> H

(H) 60:L (H) 50:L (L) 40:H* 60:L t = 45 HHH -> L

(H) 60:L (H) 50 : L* (H) 60:L t = 55 HLH -> H

A 70 L (H) 60:L 	70:L (L) - (H) 60:L

C 70 L (H) 60:L 70:L (L) - (H) 60:L 70:L

B 70 L (H) 60:L* 70:L (L) 70:L (H) 60:L* 70:L t = 65 LLL -> H

(L) 70 : L* (L) 70 : L* (L) 70 : L* t = 75 LLL -> H

Figure 3-2: Simulation of a 5 ns delay, 3 input nand gate

Chapter 3. Parallel Simulation

Consider the arrival of (10, L) on input C. At this point there are messages

on each link so the ip can safely choose 10:L on input C as the next event. It

removes this event from its queue, sets the ip's clock value to 10 and outputs an

event. This event is computed as follows. At time 10, all inputs have become low

therefore in 5 ns time the output will become high. Note that the output may have

already been high, the new message simply extends the receiving ips' knowledge

by saying that the output is high until at least time 15.

Though they do not correspond to any transition in the physical system, the

events with time 70 are necessary. They ensure that the lp receives the full history

of each input signal up until the time limit of the simulation. If they were not

sent, the output of the gate would not be known for certain after time 55. Since

they are sent, the lp can provide definite values for the output of the gate until at

least the time limit.

Let us call a message with a time at or after the simulation time limit a

terminating message. Once an ip has received a terminating message on each of

its input channels, it is able to send out terminating messages of its own and for

itself to terminate. It is necessary that any source of signals into the system sends

a terminating message to ensure that all the lps can correctly terminate.

3.4 Deadlock and Failure to proceed

If for any reason an input link of an lp remains empty then the lp cannot proceed

beyond the time of the last message received on that link. Returning to the

doctors' surgery example of Fig. 3-1, if the waiting room attendant always sends

patients to Dr A then Exit will never receive any messages from Dr B. Therefore

the Exit ip fails to proceed since it cannot be sure that after processing events from

Dr A, events with earlier times will not arrive from Dr B. As soon as a message

R 20:L 3:1-1

S

us

Eel

Chapter 3. Parallel Simulation 	 67

is sent to Dr B resulting in a message to Exit then the latter can recommence its

simulation. Hence, it is essential for the Waiting Room lp to send a terminating

message to both its output channels.

Figure 3-3: An RS Flip Flop in deadlock

• Fig. 3-3 shows an implementation of an RS flip-flop, the fundamental storage

unit at the gate level. its output, Q, can be set or reset by temporarily making the

S or R inputs high respectively. It will "remember" which input was last active.

Let us assume a propagation delay of 5 ns for each gate and that the clock value

of both lps isO.

In the circumstances shown, simulation of the flip-flop cannot proceed. There

are unprocessed events on both the Rand S input links, but no events on the Q

and Q input links. Neither gate can proceed because it has an empty input link.

Each link will only become non-empty when the other gate outputs an event, but

this will never happen. Such a situation is called deadlock. Deadlock occurs

when there is a cycle of ips each blocked on the next so that none can proceed

unless there is some external intervention.

Misra presents the. following definition of deadlock [44]. "A set of lp's D is

deadlocked at some point in the computation if all of the following conditions

hold: (1) every lp in D is either waiting to receive or is terminated; (2) at least

Chapter 3. Parallel Simulation 	 68

one ip in D is waiting to receive; (3) for any lp 3 in D that is waiting to receive

from some 1p3 , lp3 is also in D, and there is no message in transit from 1p i to lp."

Deadlock is different from the failure to proceed in the doctors' surgery example

because regardless of what other events might come along, the flip flop simulation

is permanently blocked. However, there is a possibility, if the terminating message

has not been received, that an event might arrive in the doctors' surgery example

which allows the simulation to proceed. Therefore, there might not actually be

a problem except that of storing all the unprocessed messages. The difficulty is

to distinguish between the failure to proceed which will be resolved when another

message eventually arrives and true deadlock when another message will never

arrive.

3.5 Deadlock avoidance and recovery

To avoid the problem of deadlock, Peacock et al. developed a more powerful test

on which to block lps [48,47]. Let net(i) be the minimum time of messages received

and waiting to be accepted at lp 2 and c(i,j) = 1 when there is a path of empty links

from 1pi to lp3 and 0 otherwise. If min{net(i) such that c(i,j) = 11 <net(j) then j

is blocked. It is guaranteed that the lp with the minimum net in the entire system

is not blocked and therefore the simulation cannot deadlock. Unfortunately, it is

very expensive to calculate c(i, j) in general making the algorithm unfeasible.

Consider Fig. 3-3, with knowledge of the state of both gates, it can be seen that

it is safe for the FF1 lp to accept the next event which it knows about, 3:H, since

whatever events arrive on its empty link will have a later time-stamp. Similarly,

it is safe for Exit to accept the events from Dr A even in the absence of messages

from Dr B. Unfortunately, such global knowledge is not available at the local level

of the lps.

Chapter 3. Parallel Simulation
	

MIS

The basic problem is the logical system's inability to simulate inaction. Mes-

sages are sent only when they are simulating an action in the physical system.

The simulation mechanism as described can only simulate the lack of action by

not sending any messages, but these messages are sometimes essential for the

simulation to succeed.

3.5.1 Null messages

Chandy and Misra [12] have proposed the use of null messages which can be sent

to say that nothing has changed allowing the receiving lps to proceed. In the

doctors' surgery example, the Waiting Room lp could send null messages to the Dr

B ip which would cause it to send null messages to Exit which could then happily

accept events from Dr A. In the flip-flop example, FF2 can send a null message to

FE1 with time 5 with safety, since whatever events arrive after its current clock

value of 0 will produce events with times greater than 5. Now that FF1 has no

empty links it can proceed to accept its next event.

To use null messages, the basic simulation mechanism is extended as follows.

At the end of every simulation cycle of an lp, the simulator ensures that the clock

value of each output channel is at least that of the clock channel of the ip by

sending out a null message on every output channel. If 1p i can predict that pp

will not send any more messages to pp, before time t 23 then it sends a null message

with time t ij to lp3 after sending the sequence of real messages. The times t, are

guaranteed to be at least that of the clock value of the ip.

Basically, if an lp is to send out a real message on one of its output channels,

it also sends out null messages on the other output channels. These null messages

might then cause other lp's to fire. Thus avoiding deadlock.

Even when the physical system being simulated deadlocks the simulator will

Chapter 3. Parallel Simulation 	 70

still proceed to completion since it can use null messages to describe the physical

system's inaction.

Misra presents a proof that a simulator based on such an extended mechanism

will never deadlock [44]. However, the proof is incomplete since the paper never

describes how the simulator is properly initialised. By defining the clock channel

value to be 0 if no message has been received along that channel, Misra implies that

input links begin empty. In both the basic and extended mechanisms, messages are

output only in response to an input message. Putting these two points together,

an ip will only output messages, null or otherwise, once it has received messages

on all its inputs which still leaves our flip-flop deadlocked. However, once the

deadlock has been recovered from, the flip-flop will not deadlock again.

Though it is not described in the text, by studying one of the example tables,

(table 6) it is revealed that Misra allows lps to send messages, which are not in

response to any input message. At the start of the simulation, every ip in the

system sends a null message with a time as far into the future as it can safely

predict. There are two disadvantages with this scheme. By requiring unprompted

messages, the data driven nature of the mechanism has been destroyed, compli-

cating the implementation. Secondly, such a scheme causes a flood of initial null

messages which can cause a cascade of further unnecessary null messages.

The simulator presented later in this thesis avoids these problems by initialising

all input queues to contain a (0, NULL) message. No null messages need be

sent and channel and ip clock values have a sensible initial value. The storage

requirements are well within that which is required for normal processing during

a simulation. With this extension, Misra's proof is now valid for the ordinary

data-driven extended simulation mechanism.

A major problem with the null message approach is that the acceptance of

any message, with a distinct time, even a null message, will cause the creation of

at least one new message for each output channel. If the network contains nodes

Chapter 3. Parallel Simulation 	 71

with a high branching factor or fanout, this can cause the simulator to become

overloaded with null messages. This becomes particularly acute when the system

contains cycles. A form of positive feedback in the generation of null messages can,

exist which leads to an explosion of null messages consuming all the simulator's

storage.

Such flooding of the system can be alleviated to some extent by allowing real

messages to subsume any null messages before them in an input queue. Since

a null message has no effect if it is followed by a real message it can be safely

eliminated when the next real message arrives on the same channel.

In a similar vein, it might improve performance if lps delayed transmission of

the null message in case a real message is generated soon after. If no real message

is generated within a certain time only then is the null message sent. This scheme

reduces to the ordinary null message scheme if the time-out is zero. However, an

extensive literature search has failed to find any empirical studies describing the

effect of non-zero time-outs.

Going one step further Misra[44] proposed that the simulator can have ips

which send null messages only when one is demanded of them. When an ip has

been waiting on an empty channel for too long, it queries that channel's driving

ip. If the driving lp has a higher clock value than that of the querying ip it is able.

to send a null message immediately which would allow the receiving lp to proceed.

Alternatively, the driving lp needs to advance its own clock value and so queries

those ips which it is in turn waiting on. Thus queries propagate backwards through

the network in a tree-like fashion with every query trying, directly or indirectly,

to advance the clock value of the originating root node.

It is quite possible for the graph of waiting ips to be cyclic in which case the

simulator deadlocks with each ip waiting on the next for a response to its query.

To detect such a deadlock cycle requires recognising when a chain of causally

related queries visits the same node twice. Since there may be many independent

Chapter 3. Parallel Simulation 	 72

query chains outstanding at a given moment the simulator must make sure not to

confuse them and falsely declare deadlock.

Misra suggests that every query message contains a list of all the nodes it has

passed through and if it arrives at one which is already in the list then deadlock

is declared [44]. However, when the number of ips is large as is the case in digital

logic simulation, this scheme becomes impractical.

Even if a cycle is found, it may only be a subcycle of the deadlocked set.

To proceed, the minimum of the next event times of each lp in the entire set

is needed. A second problem is that the simulator can become inundated with

query messages, particularly when components have a high fan-in, again typical

of digital logic simulation. It is quite likely that as deadlock approaches many of

the lps will start sending out queries further exacerbating the situation.

3.5.2 2 phase approach

The null message scheme was designed to avoid deadlock. An alternative approach

is to allow the basic simulation scheme to deadlock and then use a recovery mech-

anism to allow the simulation to continue. Chandy and Misra have developed a

scheme where the simulation proceeds by alternating phases; one where simulation

proceeds until deadlock is detected, the other recovering from this deadlock and

allowing the simulation to continue [13].

To detect deadlock, they propose a special type of message which circulates

through the network traversing every channel sometime during each circuit. The

marker message, as it is called, contains the number of consecutives ips it has

just visited which have neither sent nor received a message since the last time

the marker visited them. If this number reaches the number of channels in the

network, deadlock is declared. The marker message can also contain the identity

Chapter 3. Parallel Simulation
	

73

of the ip which has the minimum next event time over the whole network so the

simulator can cause that node to be fired thereby recovering from deadlock.

3.6 Optimistic schemes

A fundamental restriction of the schemes described so fax is that an lp cannot

proceed until it has received a message on each of its input channels for fear of

accepting a message out of order. Such schemes are considered very conservative;

they take no risks.

An alternative approach presented by Jefferson and Sowizral, called the Time

Warp mechanism is much more optimistic [31,32]. Rather than carefully waiting

until it knows its absolutely safe to accept an event, a Time Warp object carries

on regardless, only blocking when its single -merged input queue becomes empty

and then only until the next message arrives.

A Time Warp object gambles that incoming events never have time-stamps

earlier than its own clock value. If it wins the gamble then no time is wasted

in unnecessary blocking. If it loses then it must roll back to a previously saved

state and cancel any messages it should not have sent. This might in turn require

the roll back of other objects which have already processed the mistakenly sent

messages. Thus the simulation proceeds by repeatedly rushing on and rolling back,

but generally progressing forward. In Time Warp, simulation time is referred to

as virtual time to emphasise its "elastic" nature and to suggest an analogy with

virtual memory and page faulting.

To enable an object to roll back, copies of the object's state are saved and

a record is kept of every message the object has sent or received. If a message

from the past does arrive, a so called straggler, the object has to roll back to

a state previous to the time stamp of the message. It then proceeds forward

Chapter 3. Parallel Simulation
	 74

again, through the saved received messages, this time processing the straggler in

its correct position in virtual time. As well as restoring an earlier state, all of

the messages sent with times after that of the straggler's must be "unsent" or

cancelled.

To unsend each message, the object sends out anti-messages which are iden-

tical to the original messages apart from a sign flag which is set negative; ordinary

messages have positive sign. When a message and its anti-message are placed in

the same input or output queue the two annihilate each other.

If an anti-message arrives with a time-stamp earlier than the clock value of

the object, meaning that the original message has already been processed, then

the anti-message is treated like an ordinary straggler causing roll back as well as

the usual message anti-message annihilation. When the object proceeds forward

again it does so without processing the original erroneous message which has just

been annihilated.

One way to reduce the cost of roll back is not to apply the aggressive cancel-

lation which has just been described, but lazy cancellation. Rather than always

cancelling messages during roll back, lazy cancellation cancels messages only if

they are found to be incorrect. After an object has rolled back and is progressing

forward to take account of the straggler, it compares what it has already sent

with what it should have sent and only if there is a discrepancy is a message or

anti-message sent. This saves unnecessary cancellations. Furthermore, an object

might have acted upon an erroneous message which later turned out to be correct

resulting in the object correctly accepting an event ahead of time. [8].

It is claimed that "although some computation effort is 'wasted' when a pro-

jected future is thrown away, a conservative mechanism would keep the object

blocked for the same amount of time, so the time would be 'wasted' anyway" [31].

However, in implementations with many more objects than processors, a proces-

Chapter 3. Parallel Simulation 	 75

sor usually has some other event to process and so the time is rarely 'wasted' in

conservative mechanisms.

Time Warp contains the concept of global virtual time (GVT) which is an

approximation (from below) of the minimum time of the clock value of every

object and the time stamp of every outstanding message. This is calculated on an

occasional basis and distributed to all the objects. It has no effect on the logical

behaviour of the object, but it does allow the object to discard all but one of the

saved states with times earlier than the GVT. In addition all messages with time

stamps earlier than this one pre-GVT state can be likewise discarded. It can be

shown that GVT never decreases and given a fair scheduling policy will eventually

increase to complete the simulation.

Whether the gains of optimism outweigh the penalties of mistakes is still an

open question. It depends on the behaviour of the system being simulated as to

how often roll backs are required and how expensive it is to cancel the possible

cascades of erroneous messages. It also depends considerably on the scheduling

policy used. If some objects are allowed to proceed too far ahead then roll back

is inevitable.

3.7 Digital logic simulation

The simulation of digital logic circuits is distinguished from other classes of simu-

lations by the sheer number of its components. Circuits can contain over 100,000

gates without any regular structure which could ease the workload.

For any reasonably sized circuit, this means that several gates will need to be

simulated on a single processor. The effect of multiple processes per processor

on the performance of the simulation mechanisms just described is still an open

question.

Chapter. 3. Parallel Simulation
	 76

Digital circuits do not have a regular structure so the mapping of gates to

processors is not trivial. However, they are often designed hierarchically and this

superstructure can be used to produce a mapping with reduced inter-processor

communications as described in the previous chapter and demonstrated in later

chapters.

The simulator described in this thesis is a 3 value, gate level simulator with

an assignable delay model [17,56]. This means that the basic components of the

system are logic gates such as nand, not, or, etc. Their outputs can take one of

three values; high, low and unknown and the gate propagation delay is determined

by the type of gate. This provides a reasonably powerful model of a digital circuit.

An important feature of a gate level description is that it is quite natural to

restrict nodes to a single logical output, ie. a single stream of output events.

The events in this stream may be later duplicated, distributed and even inverted,

as would be required in an ECL simulation, but the node itself produces just one

stream. This allows the basic mechanism of Chandy and Misra to be used without

fear of deadlock. As there is at most one output link per ip and an output message

will always be scheduled as a delayed response to an incoming event, the clock

value of the output channel will always be greater than the clock value of the

lp. Thus the condition which guarantees the extended mechanism to be deadlock

free is satisfied without the need for null messages. Therefore, if the simulation is

properly initialised, it will never deadlock.

3.8 Summary

This chapter has presented a brief overview of the field of parallel discrete event

simulation. The two major approaches have been presented - the conservative and

the optimistic mechanisms - and issues such as deadlock and roll back have been

Chapter 3. Parallel Simulation
	 77

touched upon. For the sake of brevity, discussions of flow control and scheduling,

though of considerable importance, have been omitted.

Though they are very different in philosophy and implementation they can

still both be considered as a collection of processes communicating via message

passing. As such they are typical of complex asynchronous systems and present a

challenge to map.

The simulator described in the next chapter uses the conservative mechanism.

It would be interesting to explore also the behaviour of an optimistic simulator,

to study the relation between roll back performance and mapping and to compare

the level of synchronisation and congestion delays.

Chapter 4

The implementation of a simulator

This chapter describes a Chandy-Misra style simulator for digital logic circuits

implemented on the Edinburgh Concurrent Supercomputer. In so doing it presents

various techniques which can improve the performance of such simulators. It

also discusses the problem of deadlock within parallel programs and presents a

lightweight protocol, deadlock-free communications harness.

4.1 Overview

The digital logic simulator described here provides three logic values; High, Low

and Unknown and allows a different propagation delay for each type of logic func-

tion. Its basic structure is that of a batch simulator. A description of the circuit,

the net list and some driving events are read in when the program starts and at

its finish those events which have been sent to a sink node are output.

Though each gate's logical process is restricted to a single output so as to avoid

the deadlock problems described in chapter 3, events from this single output can

be distributed to many inputs. Thus gates can have a fanout greater than one.

The output connection of a gate is specified by a wire number which can be

given as an input connection of several gates.

W

Chapter 4. The implementation of a simulator 	 79

The Edinburgh Concurrent Supercomputer (ECS) upon which the simulator

was implemented is a Meiko Computing Surface consisting of several hundred T8

Transputers[7]. These are partitioned into fixed size domains each of which has

access to a file server.

The simulator was implemented on 65 11ansputers. One runs the master

process, the remaining 64 execute the simulator slaves (Fig. 4-8). Thus the

simulator consists of 64 processors which do the actual simulation and a master

process which initialises the slaves, collects the results and provides overall control.

Each slave processor is responsible for the simulation of a subset of the circuit's

gates as specified by the mapping.

To allow communication between the master and slaves and between the slaves

themselves, a communications harness was developed which allows event, initiali-

sation, result, control and debug messages to be transmitted. The harness, which

is a basic network layer, provides point to point transmission from any processor

to any other and a broadcast facility from the master to all of the slaves.

The simulator is written in a mixture of C and Occam; about 3600 lines. C

was used for the major parts of the simulator which are basically sequential and

Occam provided the parallel and communication constructs. The intention being

to use the language best suited to the task.

It was decided to use C as well as Occam, which is the native language for

the Transputers since C provides many data structure constructs which Occam

does not, eg. record structures and pointers which were essential in developing

the simulator. On the other hand, the version of C available on the ECS does not

provide the necessary communications and parallelism constructs.

Chapter 4. The implementation of a simulator 	 80

4.2 The master process

The master supervises the simulator. It handles all I/O with the file system. It

broadcasts initial data to the slaves, collects the results and tells the slaves when

to start and when to stop.

The master is not involved in the actual simulation apart from collecting the

result and termination messages. Its interference is kept to a minimum in order

not to upset the performance of the simulator proper. During the simulation

it accepts messages and simply stores them. It performs no I/O or any other

operations which could act as a bottleneck to the simulator.

The first task of the master process is to read in the net list. The net list

contains a one line description of each gate specifying its function and its input

and output wire numbers i 1 , ..., i and o, 0m in the format:

function-number: function-type [n] i 1 ... i -> [m]

As discussed in chapter 3, functions are limited to a single logical output and

therefore it must be the case that in < 1. The master also reads in the map file

which contains a line for each function of the form:

function-number ON (x, y)

where (x, y) is the coordinate of the target processor in the grid. (1, 1) refers to

the processor connected to the master.

The details of the net and map files are combined into a sequence of messages,

one per function, which, along with the simulation end time, are broadcast to all

of the slaves.

Chapter 4. The implementation of a simulator

The data file contains a collection of forced events; these are triples of the form:

wire-number time value

The master generates events with that time and value for each of the functions

driven by that wire and sends them to the appropriate processor.

Driving or forced events can only be used on source wires. These are wires

defined in the net list as input to the whole circuit and are "driven" by special

source functions which do nothing. It would be difficult to allow forced events

with time greater than zero on other wires due to the restriction to monotonically

non-decreasing time stamps of events sent along a channel.

Once all the initial events are distributed, the master broadcasts the GO mes-

sage to the slaves initiating the actual simulation. It then waits to receive result

and termination messages.

When an event is accepted by a sink node, no output event is generated.

Instead, a result message is sent to the master detailing the wire number and the

time and value of the event. The master collects these messages for display once

the simulation proper has finished.

Each slave is responsible for simulating a certain number of logical processes.

When all of its ips have terminated, ie. accepted an event with time greater than

or equal to the simulation end time, then the slave sends its termination message

to the master. When the master has received a DONE message from each of the

slaves, it orders them all to shutdown. In response to the SHUTDOWN message

broadcast by the master, the slaves respond with various statistical information

and then terminate. The master outputs the result events and the statistical

information and terminates, finishing the simulation.

One last feature of the master is that it accepts messages from the user which

cause it to broadcast a QUERY message. The slaves respond with some details

Chapter 4. The implementation of a simulator 	 82

of their current state which the master displays. Such queries would invalidate

any timing results, but were extremely useful as a debugging tool. It allowed

monitoring of the buffer usage and event counts in the slaves. It also showed up

deadlock when some of the slaves failed to respond.

4.3 The slave process

The simulator was implemented as a collection of communicating, but indepen-

dently executing slave processes. Each slave is responsible for simulating a subset

of the gates in the circuit. It accepts events for its gates and any resulting events

are either kept locally or sent to the responsible processor to be processed there.

4.3.1 Structure

Initially, it was desired to implement the slaves as in Fig. 4-1. The event queue

manager would accept events from both the network and the simulation engine.

These events would be sent out over the network or to the simulation engine

depending on which processor was responsible for them. The simulation engine

would simply take the next event and perhaps generate some more events in reply.

Netw4 	E § H 	SE

Figure 4-1: The desired structure of a slave

Unfortunately, when the simulator was implemented, the version of C available

on the Meiko did not provide the facility to wait for messages from more than one

channel at a time.

Chapter 4. The implementation of a simulator

Therefore, the event queue manager which was to be implemented in C could

have only a single input channel. A separate controller process was written in

Occam which provides the required facility with the ALT construct.

Net

Figure 4-2: The actual structure of a slave

This forced a new structure onto the slave as shown in Fig. 4-2. The event

queue manager and the simulation engine are both written in C and have single

input and output channels. The controller is written in Occarn and connects the

event queue manager, the simulation engine and the network driver together.

4.3.2 The simulation engine

On every slave processor there runs a simulation engine. This simulation engine

is responsible for simulating those gates which have been mapped to its processor.

It stores the incoming events, generates the outgoing events and maintains the

current state of simulation for its assignment of gates.

In chapter 3, it was described how the gates of a circuit can be simulated by

a collection of logical processes passing event messages between them. Every ip

has a queue for each of its inputs which holds incoming events. Whenever all of

an lp's input queues become non-empty, the queued events are accepted in order

of increasing time stamp until one or more of the queues become empty.

Chapter 4. The implementation of a simulator 	 84

In addition to the input queues, an ip also maintains the values of each input

which are valid for the time of the next event. These current values are updated

when an event is accepted and are the input values to the gate's logic function.

The central data structure of the simulation engine is the function table. It

describes the gates being simulated and their connections. There is an entry for

each gate, source and sink in the circuit.

The initial state of the function table is derived from the net list read in by

the master and broadcast to each of the slaves. Each entry of the table contains

the following:

. The time of the last event accepted; the ip's simulation time.

. The current input values.

. Pointers to the input queues

. The output wire number, if any.

. The value and time of the last event output.

A pointer to a C routine which generates output values from input values.

. The ID of the processor on which the gate is to be simulated.

Once the simulation engine is initialised, it enters a cycle which is terminated

only by a shutdown message from the master. This cycle starts by waiting for and

receiving the next event from the event queue manager. The event message, of the

form (f, i, t, v) contains the function, f, and input, i, to which the event is addressed

and the time, t, and value, v, of that event. If the simulation time of lp f is greater

than or equal to the simulation end time then the event is ignored. Otherwise

it is placed on the end of the specified function/input queue. If this reduces the

Chapter 4. The implementation of a simulator 	 85

number of empty input queues to zero then the function is fired repeatedly until

one of the queues becomes empty.

When a function is fired, the time stamps of the events in each queue are

examined to find the minimum, ie. the time of the next event. Events which have

this minimum time are removed from their input queue and their values overwrite

the current value for that input. The current time of the ip is updated to this new

time. Note that storing an ip's current time is not necessary for the simulation

mechanism, but this time is used by the logic function to generate the time of

output events.

There may be several events, some possibly on the same queue, with time equal

to the time of the next event. It is important for reasons of performance which are

discussed later that they are all accepted in one go before the gate's logic function

is invoked.

Once all the new input values have been accepted the logic function is invoked

on the function table entry. If it is a sink node then a result message is sent to the

master, otherwise the output value is computed and an event is sent out with its

time stamp set to the ip's current time plus the propagation delay for that logic

function. The output wire number of the gate is used to determine the recipient

functions and copies of the event addressed to each function/input pair are sent

to the event queue manager for distribution to the appropriate processor.

For every source node within a simulation engine's assignment of logical pro-

cesses, a terminating event is sent on its output wire. If an ip accepts an event

with time greater than or equal to the simulation end time, it is considered ter -

minated. When all of a slave's non-source functions have terminated, the slave

sends a message to the master informing it that the slave has finished its share of

the simulation.

In chapter 3 it was described how it was possible for the Chandy-Misra sim-

Chapter 4. The implementation of a simulator 	 86

ulation mechanism to deadlock if it was not initialised properly. The solution

proposed was to place a null message on each input of every logical process. This

is done in each simulation engine by placing an event with time 0 and value Un-

known into each of the input queues of every active function.

One of the problems which can arise in the basic Misra-Chandy mechanism is

the explosion of the number of events due to the presence of cycles. If nothing is

done to prevent it, the simulator can be flooded with event messages which will

overflow buffers or at least cause a lot of unnecessary processing.

Consider the case where an ip accepts only one event at a time. For example,

Fig. 4-3 shows a very simple circuit. Input A is used to introduce an event and

follows it with a terminating event which keeps that input queue non-empty. Every

time the lp fires it produces two events with identical time stamps, but as it only

accepts one event at a time, the queues get progressively longer until some buffer

limit is reached. The problem to avoid is that of the ip generating consecutive

events with the same time stamp since all but the last are made redundant and

are possibly incorrect.

Figure 4-3: An explosion of events

• It is a simple, but important step, to allow the ip to accept all of the events

at the head of its input queues which have the same minimum time. One can

and should go one step further to allow the lp to accept all of the events in its

input queues with the minimum time, not just the ones at the head of its queues.

Because of the time ordering of messages, the lp has only to accept events from

Chapter 4. The implementation of a simulator
	

EYi

each queue until it finds an event with a non-minimum time stamp or the queue

becomes empty.

It is still possible for an ip to generate redundant events. This occurs when

events with identical time stamps arrive separately and cause the ip to fire on

each arrival. One way to prevent at least some of these events getting out into

the system and causing more redundant messages is to compare each message

generated with the last message sent. If they are identical then the latest message

is discarded rather than sent.

One final technique which reduces the number of events in the system is the

elision of consecutive events in an input queue. Fig. 4-4 shows a time signal with

three events. If the first two are queued and the third arrives then it makes the

second redundant. By throwing away the second event the simulation engine has

avoided unnecessary processing.

T1 :H 	T2 :H 	T3 :H

Figure 4-4: Event elision

These techniques have as a direct result the reduction of the number of mes-

sages in the system, but it is the follow-on effect which is potentially the much

more significant. As an ip can distribute events to several lps perhaps including

itself, the elimination of one event may save the processing of several consequential

events and avoiding these may avoid many more and so on. In a simulator with

finite limitations it may prove the difference between being able to complete the

simulation or not.

In early simulations of the circuit decribed in chapter 5 the simulator needed to

process almost 4 times as many events as it needed to after event, elision and mul-

Chapter 4. The implementation of a simulator 	 88

tiple acceptances were introduced. Often it was the case that the simulation did

not complete at all due to the overflowing of memory limitations in the simulation

engine and the event queue manager.

4.3.3 The event queue manager

The event queue manager provides a simple FIFO queue server. Event messages

are accepted originating from one of the simulation engines somewhere in the

system. If the event is destined for the local simulation engine it is stored in the

queue. Otherwise, the correct address is found and the event is sent off to the

remote processor.

Due to the fixed memory constraints, there is a limit to the number of messages

which can be stored at any one time. With the current implementation, if the

queue overflows it is a fatal error and the simulation aborts.

4.3.4 The controller process

The task of the controller is to route messages between the event queue manager,

the simulation engine and the network driver. The main problem to be solved is

to do this without allowing the processes to deadlock.

As has been mentioned a number of times before, deadlock can occur in a

collection of processes if and only if there is a cycle of processes each waiting on

the next. This could be waiting to receive an event, but that would only occur if

there are no events left in the system, a termination condition or a problem in the

simulator as a whole.

Therefore, the problem faced is one of deadlock caused by processes blocking

on output. This is made particularly acute by the Occam/CSP model disallowing

Chapter 4. The implementation of a simulator 	 89

output guards in an alternation. That is, when a process wishes to output it has

to commit itself to output on a single pre-determined channel.

To avoid deadlock, the program as a whole has to ensure that there is always

at least one process in every possible cycle waiting (or will wait) to receive from

its predecessor and not blocked on output.

Whether an action will lead to deadlock can only be known through a global

knowledge of the system. A complete knowledge of the global state of the system

is usually not available to individual processes within the system. They have to

make decisions based on locally available information from which they build up a

model of the global system. In conservative mechanisms, the process has to play

it safe accepting the cost of unnecessary actions and delays for the guarantee of

deadlock avoidance.

Locally, a process needs to know whether sending a message will cause it to

block and complete the cycle. In some cases sufficient knowledge of the way the

rest of the system behaves can be programmed into the process. Consider Fig. 4-5.

FUMM MMR
Figure 4-5: Two processes: knowledge to avoid deadlock

If A knows that B will reply to every message it receives with one in return then

A can avoid deadlock by waiting for B's reply before sending its next message.

The system can be generalised by including store-and-forward buffers. If there

are n buffers then A can send upto n messages to B before waiting for a reply from

B and still avoid deadlock. A can even avoid deadlock if B sends back m replies

for every one of A's messages since A can predict the behaviour of the processes

with which it interacts.

Chapter 4. The implementation of a simulator 	 90

This approach fails if A cannot predict B's behaviour, eg. if in reply to A's

messages, B replies with an unpredictably varying number of messages. A can-

not know, simply by counting the replies, whether to wait for more messages or

whether it has received them all and B is waiting for it to send some more.

In this situation, extra information must be communicated from B to A either

as part of the data or by some extra control messages. It is important to note

that though buffers can increase the number of outstanding messages allowed they

can never prevent deadlock if the processes cannot predict the communications

behaviour of their neighbours.

For a process to maintain sufficient knowledge to decide when it is safe to

send, ahand-shaking protocol is required. The receiving process sends a control

message to the sender acknowledging the previous p messages and informing the

sender it is OK to send another n messages. Typically, p = n = 1

The simulation engine receives the next event message and replies with zero

or more events to be sent to the event queue manager. The controller forwards

events to the event queue manager which will possibly reply with a single message

for the network driver. Since the controller cannot predict how many messages

the simulation engine and the event queue manager will send in reply to a single

message, a hand-shaking protocol must be used. All three processes, including

the network driver, send a special control message to the controller when they are

ready to receive another message.

Using hand-shaking, the controller knows when not to send a message, but

what is it to do with an incoming message destined for a process which is not

ready for it? It could buffer it, but as we have seen, no finite number of buffers

can guarantee a deadlock free system. The alternative is for the controller not to

receive it in the first place.

Guards are placed on the controller's input channels which allow messages to

Chapter 4. The implementation of a simulator 	 91

be received only when it is possible to forward them immediately. For example,

the input channels from both the simulation engine and the network driver are

guarded by a boolean which is set false every time a message is sent to the event

queue manager and true when it replies with a ready message.

The use of guards needs to be carefully considered. If control and data infor-

ination pass along the same channel then guarding the channel blocks both types

of messages. This very quickly leads to deadlock if the guards are used symmet-

rically. Fig. 4-6 shows a simple case of a controller and two processes A and B. If

Figure 4-6: Example against symmetrical guards

A sends a message to B then it cannot send any more, including a ready message,

until B sends a ready message back to the controller. If, instead, B replies with a

data message then A cannot acknowledge it by sending a ready message until B

has sent its, which it cannot do until the controller receives a ready message from

A. Neither process can proceed.

Therefore an asymmetrical use of guards is required; one which has been de-

signed in conjunction with the protocol and the processes themselves.

Fig. 4-7 shows such a design. The input channel from the event queue manager

is free of guards and therefore can always send its ready messages to the controller.

This makes it possible for the network driver and in turn the simulation engine to

send their ready messages.

There is no danger of the event queue manager sending messages which could

cause the controller to block on forwarding them. It will send a message to the

simulation engine only when the simulation engine requests one. It will send a

message to the network driver only in response to a message from the simulation

Chapter 4. The implementation of a simulator
	 92

ND

Figure 4-7: The use of guards in the slave process

engine which cannot send messages if the network driver is not ready. The network

driver does not need a guard for the simulation engine because termination and

debug messages destined for the simulation engine are routed to the event queue

manager first and it passes them on when the simulation engine next requests a

message.

The practical issues of parallel programming are so little understood that such

simple systems as that described here have to be designed from scratch. The

interplay between flow-control, load balancing, deadlock avoidance and correctness

still seems a black art. We need to build up the body of practical experience

through programs such as the ones presented in this thesis. We also need to

bridge the gap between the various theories of concurrent processes which have

been developed, eg. CCS[43] and CSP[26], and the practical demands of real

programs. Development and verification tools need to be built which can be used

by programmers to help them in their real-world tasks.

Chapter 4. The implementation of a simulator 	 93

4.4 The network

The third and final part of the simulator is the communications harness which

joins together the master and the slaves. The communications harness provides

for the transmission of messages from one processor to another, possibly travelling

through several intermediate processors. Since there was no software available to

provide this network layer, a communications harness was developed from scratch.

Every processor, including the master, is given a unique address which can be

used as a destination for messages. Using these addresses, the communications

harness provides a point-to-point message transmission mechanism. In addition,

the harness allows the master to broadcast a message to all of the slaves using a

special destination address.

Apart from the basic delivery of messages, the simulator also requires that the

communications harness preserves the order of messages sent from one processor

to another. This is necessary to satisfy the condition that messages sent along a

channel from one ip to another have monotonically non-decreasing time-stamps

as described in section 3.3.2.

It was decided when developing the mapping algorithm that the target of the

mapping would be a grid or mesh of processors. This allowed the communications

harness to be greatly simplified by taking full advantage of this topology. It allowed

a very light-weight protocol to be used and yet remain deadlock free.

4.4.1 Routing

Fig. 4-8 shows the basic structure of the network. There is the grid of slaves,

the master and the interconnecting lines representing the bi-directional channels

between processors.

Chapter 4. The implementation of a simulator
	 94

Figure 4-8: Basic structure of the simulator

To route messages, the harness follows a particular policy.

First, send the -message to the correct column

Then send it to the correct processor.

By always following this policy it is ensured that messages from one processor

to another will always traverse the same route and therefore will always arrive in

the correct order.

4.4.2 Deadlock

A major problem of any communications harness is that of deadlock. Should the

harness seize up there is usually no way for the program to recover. It is not even

necessary for the entire harness to become blocked to prevent a program from

completing, though experience gained from debugging the simulator suggests that

once one part of the harness deadlocks this usually causes a snowball of blocking

processes until most, if not all, of the harness is in deadlock.

Chapter 4. The implementation of a simulator
	 95

In some situations it may be acceptable to allow some small risk of deadlock, if

this alleviates other problems such as message buffer space or protocol complexity.

However, in the case of the simulator the rate and number of messages entering

the network is so high as to make deadlock highly probable if it is at all possible.

Therefore, a harness which would never deadlock was required.

In chapter 3 we stated that deadlock occurs if and only if there is a cycle of

processes where each process is blocked waiting on the next. When discussing com-

munications harnesses it is useful to distinguish between the harness deadlocking

and the program which uses the harness deadlocking.

When designing a harness, it is important to avoid the former situation where

the sender has sent or is trying to send a message and the intended recipient is

ready and waiting for it, but because of the harness being deadlocked the message

never arrives at its destination.

Figure 4-9: A deadlocked harness

For example, Fig. 4-9 shows processor A trying to send a message to processor

B which is waiting for it. Unfortunately, the intervening processors are all blocked

in a cycle CDEF and no messages can get through.

For the harness to be useful in applications such as simulation it must guarantee

that as long as the nodes of the network obey some specified set of protocol rules

then a message sent from one node will always (eventually) arrive at its destination.

On each of the slave processors there exists a set of processes collectively known

as the network driver. It is the network driver on each slave which makes up the

communications harness and is responsible for the correct delivery of messages.

Chapter 4. The implementation of a simulator
	

9119

The network driver has 4 input - output channel pairs connected to the adjacent

processors, plus a pair of channels to the slave process on the processor itself. One

possible arrangement is that of a star topology as shown in Fig. .4-10. It is very

simple to implement, but has the disadvantage that only one message transmission

can pass 'through the network driver process at a time.

// Sim

W . • Q
LI

Figure 4-10: Star structure network driver

Fig. 4-11 shows a structure which avoids the central process bottleneck. In this

arrangement it is possible to have five separate message transmissions occurring

simultaneously. The messages can be sent without interfering with each other

thereby reducing the potential for congestion.

Let us ignore for the moment the slave processes. When we consider those

links that are actually used by messages following the routing policy, an important

feature of the network becomes clear. Fig. 4-12 shows a grid of network drivers

with the unused links and links to all of the slaves removed for clarity. The network

contains NO cycles. Thus the communications harness can never deadlock itself.

If we consider the whole network, including the slave processes, we see that if

there is to be a cycle then it must include slave processes. So to avoid deadlock,

the program must ensure that a cycle of slaves never becomes blocked.

Chapter 4. The implementation of a simulator
	 WN

Figure 4-11: Actual structure of the network driver .process

A process can only block in the Occam/CSP model when it tries to send a

message to a process which is not ready to receive it. If a slave process can avoid

trying to send a message to its network driver unless it knows that the network

driver is ready to receive it then the slave will never block and the program will

never deadlock.

This knowledge can be gained simply by having the network driver signal the

slave when it has forwarded the last message it received and is about to wait for

another one. Fig. 4-13 shows a simple device for doing just this.

Process B multiplexes messages from its two input channels through to the

slave. Process A forwards messages from the slave to the network driver. After

each message has been forwarded a ready message is sent back to the slave via B.

Thus as long as the slave never sends a message until after it has received a ready

message in response to its last message, the harness will not deadlock.

The approach used in the communications harness described above can also

be used in other topologies such as triangular meshes and 3-dimensional square

grids. It can be used on topologies where the nodes can be considered points in

an n-dimensional Euclidean space. This rules out topologies which wrap around

on themselves such as a torus

Chapter 4. The implementation of a simulator

Figure 4-12: Active links in a grid of network drivers

Chapter 4. The implementation of a simulator.

TBSlave Network

__

Figure 4-13: A flow control regulator

4.4.3 Congestion

The communications harness will not deadlock as long as the slaves obey the

required hand-shaking protocol. However, it is still possible for the network to

become congested. Messages will eventually reach their destination, but they may

be seriously delayed due to the transmission of other messages.

A number of attempts were made to reduce congestion in an attempt to reduce

overall simulation time. However, what improvement they may have provided was

outweighed by the extra cost of data transferral or protocol messages.

Two approaches are worth mentioning. In the current harness, a node will

accept a message regardless of its destination and attempt to route it. It may

be possible for a node to inform its neighbours for which outgoing channels it is

prepared to receive incoming messages. However these control messages would

greatly increase the number of messages being sent and would suffer the same

problems of mixing control and data messages as discussed in section 4.3.4.

Another possible solution is to use buffers. One cause of congestion is that

messages cannot exit the network quick enough. This is a familiar problem in

traffic flow where for example, a busy motorway empties into a collection of smaller

capacity roads. In an attempt to allow quicker consumption of messages, a set

of buffers was added to the channel from the network driver to the controller on

each slave. This involved each message being copied an extra two times and two

more processes to provide the circular buffer of an arbitrary size, in this case 100.

It was found that this increased the overall time for the simulation to complete

Chapter 4. The implementation of a simulator
	 LIII]

by at least 10%. Again, the costs of extra complexity outweighed any benefits of

reduced congestion.

Chapter 5

Results and Discussion

The previous chapters described a new structural approach to the mapping prob-

lem and presented digital logic simulation as an application to test this new ap-

proach. The simulator is equivalent to an operating system where the gates being

simulated are the processes, albeit simple ones, which communicate by sending

event messages. It provides a testbed in which the effects of different mappings

can be explored.

In this chapter, two families of mappings are studied. One is generated by the

new structural approach and is directed towards reducing communication costs.

The second family endeavours to give each processor an equal computation load.

It is shown that the new approach does indeed reduce the level of communication

traffic in comparison to the control mapping and that, under limitations of load

imbalance, results in lower overall completion times.

101

Chapter 5. Results and Discussion 	 102

5.1 An analysis of performance

The most important metric of performance is the total time taken to complete

the simulation. The simulation completes when the master has received a DONE

message from each of the slaves. Therefore,

Tglobal = max(Tiocai. + Td0111)

Tdone is the time taken for the DONE message to be sent from the slave to the

master and can be ignored for all but the shortest simulations. Tk is the time

from the slave's reception of a GO message until the completion of its part of the

simulation. This time is made up Of two disjoint intervals,

Tiocai = 1 im + T.ait (+kE) 	 (5.1)

The first, 1,, is the time taken by the simulation engine to handle the incoming

evenland generate any outgoing events. is the time spent by the simulation

engine waiting for the next event, ie. from when it initiates the request for the

next event until that request is satisfied. kE allows for the small time interval

between receiving a message and deciding that it is an event rather than some

diagnostic message.

Slavel

F
E 	 I

L---------J

Figure 5-1: Three categories of events within a slave

If we consider the flow of event messages as seen by the slave, they fall into three

categories as shown in Fig. 5-1. Incoming events arrive from other processors.

Chapter 5. Results and Discussion 	 103

Foreign events are generated by the slave and destined for other slaves and Local

events are generated and consumed within the same slave. The number of events

in each category is denoted by I, F and L respectively. The total number of events

processed by a slave, ie. the sum of I and L, is denoted by E.

The time spent in the simulation phase depends on several factors. Part of the

time is spent handling events arriving at the simulation engine and part is spent

transmitting resulting events back out to the event queue manager. This latter

time is independent of whether the event is local or foreign bound. In addition

there is some complex overhead due to communications which we will consider in

greater detail later. Thus simulation time can be written as,

Tim = (L + I)Thandle + (L + F)Tsend + 1comms {?} 	(5.2)

The time the simulation engine spends idle is by definition due to delays. The

simulation engine has to wait for an event that is coming from elsewhere whether it

be from its event queue manager or from some other slave. It cannot proceed until

that next event arrives. These delays are very complex in makeup, but one feature

which can be isolated is the minimum time for the simulation engine to request

and receive the next event. This represents a necessary cost of the implementation

due to the slave protocol and is independent of delays due to interference or an

empty event queue.

= (L + I)Tletch + Twcomms {?}

The remaining delay Twcommg , like 7COmm81 is dependent on many factors. Be-

cause of the parallel nature of the Transputer and the slave processes, particularly

the overlapping of communications and computation, many of the overheads are

independent of the phase of the simulation engine and cannot be wholly assigned

to one phase or the other. Therefore we introduce the overall communications

overhead Tcomm s

Tcomms = 'comm8 + Twcomms

Chapter 5. Results and Discussion 	 104

Tcomms is the time penalty for distributing the simulation amongst several proces-

sors. Against this penalty is the time saved through processing several events in

parallel.

There are two basic classes of delays to be considered. One class contains

all the delays which arise from the implementation of the simulator. The other

contains the delays which are due to the behaviour of the simulation itelf.

5.1.1 Implementation derived delays

Though designed to support a parallel computation model, the Transputer can

execute only one process at a time. When an event is sent to another slave, it

passes through several processes within the communication harness each of which

consumes processing time. The use of cycle-stealing by the DMA communication

links of the Transputer can also slow down the execution of the simulation engine.

Similar delays occur due to incoming messages. These can be considered indirect

or invisible overheads since they are best measured by the difference their presence

makes to the timings of the simulation engine and the simulation as a whole.

Another indirect delay is due to the processing of through messages. These

are messages passing through the processor on the way from one slave to an-

other. They are totally invisible to the slave, being handled completely within the

communication harness.

A second category of delays which are implementation derived consists of those

arising from protocol and congestion. The protocol used within a slave can cause

messages to be delayed in order to avoid deadlock. This can occur when messages

are sent to or received from the network. The simulation engine will be prevented

from outputting messages whenever the controller is waiting for the communica-

tions harness or the event queue manager to signal its readiness to receive.

Chapter 5. Results and Discussion 	 105

This leads to another important delay, that due to congestion of network traffic.

It is quite possible that a slave can be prevented from proceeding because it cannot

output a message to the network. This can be in spite of the fact that the recipient

of the message might be idle, just waiting for a message.

Figure 5-2: A congested network

Consider Fig. 5-2 where the blocks are communication routers. The commu-

nication processes between A and D are blocked waiting for D to consume its

messages. Were B to attempt to send a message to C it would be suspended until

its communications harness could accept the message even though the congestion

was due to traffic for other routes - like being caught in the traffic after a football

match even though you were not at it.

Another type of delay becomes important when a slave is idle. This is the time

to route a message through the network to that slave. The faster the message

transmission, the shorter time the slave will have to wait. The delay includes the

time taken to transmit a message across a 'fransputer link as well as the time

spent within the communication harness forwarding messages.

5.1.2 Simulation derived delays

- The second class of delays we consider arise from the simulation itself. They

occur when a simulation engine requests an event and the event queue manager is

empty. Since the event queue manager will never be empty just after receiving a

local event, the mapping, by determining whether events are local or foreign, has

a dominant effect on this class of delays.

Chapter 5. Results and Discussion
	 106

This is particularly significant in systems containing small cyclic dependencies,

eg. a flip-flop where after generating a foreign event, a slave may be idle until some

incoming event, in response to that foreign event, is received. Delays such as this

can be complex and lengthy as the other slave may have many events to process

before it accepts and replies to the foreign event from the original slave.

Mapping the two logical processes to the same slave would eliminate the pos-

sibility of such major delays as well as reducing the potential for congestion which

can affect many other slaves. Of course, doing this eliminates any potential for

parallelism.

5.2 A quantitative analysis of a simple circuit

The behaviour of the simulator for all but the most simple circuits is extremely

complex and is usually non-deterministic due to the asynchronicity of messages

and the high degree of parallelism in the system. Before assessing the effects of

various mappings on a real circuit, a collection of very simple circuits which allow

the behaviour of the simulator to be studied in depth, is analysed. Unfortunately,

there is a scarcity of information on performance details for real systems in action.

Therefore, analyses such as this one need to be done from scratch.

To separate out the various timing components we need to restrict, as much

as is possible, the simulator to doing only one thing at a time, ie. to make the

simulator run sequentially. To achieve this, three simple circuits were "developed",

C, Cy and C, which appear in Fig. 5-3.

These circuits are used since, after an initial event, only one processor is active

at a time with, at most, one message in transit. (Circuit C z is a slight exception

as there can be two messages existing at the same time, but this does not affect

the basic sequential nature of the circuit.) To ensure that there are no extraneous

Chapter 5. Results and Discussion
	 107

Circuit X Circuit Y

Circuit Z

Figure 5-3: Simple circuits X, Y and Z

messages, the initial null events, normally stored in each input queue, as described

in section 3.5.1, are omitted.

The circuits C, C y and Cz were each mapped onto the simulator using the

families of mappings, X, Y and Z respectively. Each family of mappings partitions

its corresponding circuit into two as shown by the dashed lines of Fig. 5-3 then

maps them either to the same processor, (ie. mappings X o , Yo and Z0), or to

two processors separated by n links (X v , Y. and Zn). We collectively refer to the

mappings with n > 0, ie. those which use two processors, as X >0, Y>o and Z >o.

In the case of Y >° and Z>0, the behaviour of the two slaves is different. They

are distinguished by referring to the one with fewer events as Y' or Z' and the

other as Y" or Z".

The three circuits consist of nand, buffer and inverter gates each with a propa-

gation delay of 5 nominal time units. After an initial event each circuit is simulated

Chapter 5. Results and Discussion 	 108

for 50000 time units. There are no sinks in the circuits and therefore no potential

for bottlenecks caused by communication with the simulation master.

As only one event is in circulation the simulator does not suffer from delays

due to congestion or other interactions between messages. Those delays that are

incurred for messages between processors are the minimum times for messages

to travel through the communication harnesses and inter-Transputer links and

should be directly proportional to the number of inter-Transputer messages sent

and received. In the case of the X 0 , Y0 and Z0 mappings there are no such messages

so the communication overheads

Tscomms = Twcomm s = 0

Table 5-1 shows a summary of timing results from a series of simulations of

the simple circuits. Twajt and T101 were measured in clock ticks using the

internal low priority clock of the T800 Transputer which has a clock period of

64s. Note that the clock measures absolute real time and not process time. It

needs to be treated carefully when processes can be context switched since, in

particular, 1jm can include time spent processing the event queue manager and

the network driver.

In order to reduce experimental error, the results in Table 5-1 are an average of

three experiments including a mapping where the processors are swapped to allow

for differences in individual processor performance. The results were found to be

consistent with those produced during six other sessions. Since the two slaves in

the X>0
mappings have very similar performances only their averaged results are

presented.

5.2.1 The simulation phase of X, Y and Z

The simulation phase of the simulation engine begins with the arrival of an event

and ends just before the next NEXT message is sent. 7jm is the sum of all the

Chapter 5. Results and Discussion
	 109

Mapping TI., ai 7 im Twait Mapping Tiocai 1 im TWtht

X 0 103 40.0 60.3 Z0 153 64.0 83.8

X 1 166 22.7 142 228 70.2 156

X 2 191 22.7 167 228 28.6 196

216 22.7 192 ZI 253 70.2 181

244 22.7 220 z1f 253 28.5 222

X5 272 22.7 248 278 70.2 206

YO 103 40.0 60.2 z1f 278 28.5 246

Y11
145 15.2 129 306 70.2 234

Y111
145 28.4 115 Z 306 28.5 274

162 15.2 146 Z 334 70.2 262

162 28.4 131 zg 334 28.5 302

178 15.2 162

178 28.4 148

197 15.2 181

197 28.4 166

215 15.2 199

Y 11 215 28.4 185
All Timings are in units of 1000 ticks

Table 5-1: Timing results for simulation circuits X, Y and Z

times spent in the simulation phase over the entire simulation. The simulation

phase is not exclusively computational as it also includes delays incurred when

sending out generated events. With the help of the protocol diagrams shown in

Figs. 5-4 and 5-5 we can break down Tsjm into several components.

For every event received, the simulation engine needs to store it and decide

what other action needs to be taken. Let us call the time for this initial handling

of an event, TH.

Chapter 5. Results and Discussion 	 110

EQM 	 C 	 SIM

Tf.tch iTwait

Figure 5-4: Protocol diagram for local events - (Z0)

2im also includes the time taken to send out messages. If the event being

sent is the last of the current phase then as soon as it is sent to the event queue

manager, the phase completes. In this case, Tsjm does not include any delays due

to intra-slave protocol.

However, if the simulation engine has to wait until the event queue manager

and perhaps the network driver have signalled their readiness to receive before

it can send the next event then Tim will include this entire delay. The delay is

considerable for foreign events since the network driver runs at high priority and

runs to completion before the controller can receive the ready signals from it or

the event queue manager.

We therefore distinguish four basic times. TL ,, and TF0 are the times to send

the last local or foreign event of the simulation phase. From the protocol diagrams

Chapter 5. 	Results and Discussion 111

E L0 L F0 F Tsim 1

X0 ,Y0 10002 10002 0 0 0 40.0 0

Z0 15003 10002 5001 0 0 64.0 0

X>. 0 5001 0 0 5001 0 22.7 5001

Y 0 3335 0 0 3334 0 15.2 3335

6668 3334 0 3334 0 28.4 3334

Z 0 5001 0 0 5001 5001 70.2 5000

10002 0 0 5000 0 28.6 10002

Table 5-2: Performance equations

we would expect these two values to be the same since the simulation phase can

complete as soon as the event is sent to the controller, it being irrelevant whether

the event is local or foreign bound. Looking at the results for Y>0 it is clear that

there is some difference between the simulation times for sending the two types of

messages. It seems likely that for foreign bound messages Tsjm also includes some

(extra?) time spent in the event queue manager or in sending the longer event

(rather than READY) message from the event queue manager to the controller.

When considering the sending of a local or foreign event which is followed

by another event, it is quite clear from the protocol diagrams that two separate

measures are needed; TL. and TF.. We now propose a model for Tsim .

Tsim = ETH + LOTL0 + LTL. + FOTF0 + FTF. 	 (5.3)

Table 5-2 presents the seven different sets of results. The last column, I, is

presented for use when studying the waiting phase. They form a set of simultane-

ous equations which can be solved by row manipulation and substitution to give

the following results:

Chapter 5. Results and Discussion 	 112

2X>0 - => 	TF, = 	3.36

TF0 	X>o TH = 	1.18

TH—*Xo = 	T 0 = 	2.82

TH&TLO 4 Zo => 	TL = 	3.62

TH &TFO 	Z >O => T = 	9.50

So fax the Y mappings have not been used so we can use them to test the

calculated values of TH, TL0 and TF0 . The calculated values of Tj m for Y10 and

Y 0 using Eq. 5.3 are 15.1 and 28.5 respectively which differ from the measured

results by less than 0.5%, thus supporting the validity of the--model in Eq. 5.3 and

the calculated times.

5.2.2 The Waiting phase

Let us now turn to the waiting phase of the simulation engine as measured by

Twait .

Fig. 5-4 shows the protocol diagram for the slave in an X 0 or Y0 mapping. In

this case there is no interference from network traffic and the event queue manager

can immediately reply to every request. This delay is a lower bound for the given

implementation. Let us call it Tfet th.

When I = F = 0, Twait = ETf etch

T' ° = 60300 	Tf,,tch = 6.03 wait

The protocol diagram for two slaves in an X >0 mapping is given in Fig. 5-5.

This clearly shows that each slave must wait while the other slave deals with the

incoming event and generates the reply. This is an example of simulation derived

	

Chapter 5. Results and Discussion
	 113

delays and it makes the transmission delays significant. The following equation is

proposed as a model for Ywait in the X>0 and Y>° mappings.

Ywait = ETfth + (I + F)Tharness + (I + F)HTlflk + Tproc i 	 (5.4)

Titarness is the cost of sending or receiving a network message. 7'Iink is the time

for an unloaded intermediate processor to forward it and H is the number of hops

the message has to make. Tproc i is the time taken for the other slave to process

and respond to an event. For T° and

	

wait 	wait" I

Tproc ; = T.i. ,

For T9 the other slave has to process the incoming message plus a local

event before responding therefore,

Tproc i = 1 im' + L'T td, + kL'

where k is the constant of Eq. 5.1. From Table 5-1, the average value of k is

calculated to be 0.3163.

In the simulation of circuit, C, messages travel from the buffer to the nand

gate in pairs. This complicates the analysis considerably. The simulation engine

on Z" is waiting for an event. Its wait is over once it receives the first message of

the pair. Therefore only the first incoming event of every pair has a major effect

on Twait . I" and F' are effectively halved. The second message appears merely as

an event which has to be fetched and as some overhead when the high priority

network driver is scheduled. The message pairing also affects the calculation of

Tproc i since Z" does not wait for Z' to complete its simulation phase, but only for

Z' to send its first foreign event.

Fig. 5-6 shows a graph of Twa i t versus H. As expected from Eq. 5.4 the curves

are linear in H. Linear regression of the data points produces,

Chapter 5. Results and Discussion
	 114

Tx>0
wait = 114000+26500H =

10002 - - 	2.65

° T1'>it' wa - - 110000+17500H 3' =
6668

- - 	2.63

wai t " - — 	96500+17500H link 	
= 17500

6668 - - 	2.63

Tz>o
wait' - - 128000 + 26500H = Thfl, 	= 2QQ

10002 - - 	2.65

Tz>O
wait" - - 	169000 + 26400H = 10001 - - 	2.64

By defining I and F to include only the first message of a pair, the five results

give very similar answers for TlIk supporting the validity of Eq. 5.4. Substituting

for the case of H = 1 gives

Th 	- 	 - ETfetch - (I + F)HTlk - Tproc i) arness - I+ \ wait F

= 6.26 harness

- 6.25 har ness' -

rnY>O " - 6.28 harness 	-

Again very similar results indicate the validity of Eq. 5.4. The model of Eq. 5.4

is specific to the single message circuits we have just considered, but the basic times

should be applicable to all circuits.

Tfetth = 6.03

Th arness = 6.26

Tlik 	= 2.64

5.2.3 Conclusions of the simple analysis

Perhaps the most notable result arising from the analysis is that in spite of being

very simple circuits with an almost sequential behaviour their analysis was not

trivial. The protocols needed to be studied particularly carefully and one needed

Chapter 5. Results and Discussion
	 115

an insight into the scheduling policy of the processor. There is a definite need of

tools to help find out what a program is doing and where it is spending its time.

Turning to the results themselves, it is of considerable importance to note that

the slaves spend much of their time waiting. Even in the best cases, X 0 and Y0

as seen in Table 5-1, the simulation engine is idle 58.5% of the time. We have

also seen from Z that during the simulation phase itself there can be considerable

delays. This does not mean the processor is idle for this time as it will be processing

the event queue manager and controller, but it does mean the processor spends

more of its time supporting the simulation than doing the simulation itself. We

can expect this figure to be much higher for simulations where there are many

inter-processor messages and simulation derived delays.

The high cost of communication foreshadows the desirability of reducing the

number of inter-processor messages even at the cost of a more imbalanced execu-

tion load. The issue is not simply a matter of reducing the time spent communi-

cating messages though it is true that a foreign event is 2 1 times as costly as a

local one. To send an inter-slave message increases the probability of congestion

and protocol delays. Furthermore, it introduces the possibility of simulation de-

rived delays as now processors may be idle waiting for messages. Such messages

act as a catalyst for many significant overheads over and above the actual costs of

sending.

5.2.4 Lessons for a new implementation

The high simulation idle time which is solely due to fetching next events underlines

the high cost of communication in comparison to computation within a slave. An

improved simulator would result if greater emphasis was placed on reducing intra-

slave communications to a minimum.

Chapter 5. Results and Discussion
	 116

This could be achieved by replacing the controller and event queue manager

with a single event queue manager as originally planned. This would require

rewriting the event queue manager in Occam, but the disadvantage in using an

unsuitable language - one with no support for records or linked lists - would be

outweighed by the reduction in communications which turned out to be signifi-

cantly more expensive than originally envisaged. It would eliminate much of the

protocol derived delays and eliminate half of the data transfers.

A single event queue manager could include buffering for outgoing messages

avoiding the separate process which required extra data traansfers. As discussed

in section 4.4.3, buffering would allow the simulation engine to continue simulating

when it would normally be blocked by a blocked network driver.

The second major improvement would be to avoid READY or NEXT messages.

Instead, the outgoing data messages should be tagged signifying when it is safe

to send a message in the opposite direction. READY or NEXT messages would

only be needed if there were no data messages to be sent. This would marginally

increase the computational complexity, but give significant savings by reducing

communication traffic and avoiding unnecessary delays waiting for messages.

5.3 A qualitative analysis of a complex circuit

The analysis of the simple circuits of the previous section has given us an insight

into the "molecular" view of the simulator in action. We identified and measured

individual actions which was only possible due to the almost sequential behaviour

of the system.

Analysis of a complex circuit will be very different in its method and type of

results due to the different nature of the subject of analysis. Individual actions are

no longer identifiable. When simulating the test circuit many millions of events

Chapter 5. Results and Discussion 	 117

occur and their interactions are very complex because of the parallel execution

of the system. We are limited to studying the "bulk" behaviour of the system;

dealing with aggregate and average counts and timings. We cannot draw protocol

diagrams such as in Figs. 5-4 and 5-5 or state a total ordering of the events

because of the distributed nature of simulation time over the processors[37]. Like

a physicist modelling a gas, we need both a molecular and a bulk model.

When studying a large asynchronous system we need to consider its robustness.

It is possible for a very small change in the system or even the random fluctuations

of the implementation to upset the ordering of events and cause dramatic changes

in behaviour; such is the basis of Chaos theory. For example, a processor, X,

is waiting for two messages; one, A, is to be forwarded to another processor, Y,

where a large amount of computation will occur as a result; the other, B, will

cause a large amout of computation on X.

If A is accepted before B then the two processors can compute in parallel. On

the other hand, if B is accepted before A, Y is idle while X is computing B then

after X has accepted and forwarded A, it is idle while Y computes. Thus the

computation can degenerate into a sequential execution depending on the arrival

order of its messages and this is subject to the system, the mapping and the

implementation. If the two messages would normally arrive close together then

small delays can have a dramatic effect on the behaviour of the system.

In our simulator, the units of computation resulting from a message are small

and so the system should be reasonably robust. However, it is possible for the

network to become congested quite suddenly. Slight fluctuations in timing can

cause messages to be delayed by significantly varying amounts. This Butterfly

effect [23] means that there will always be a level of unpredictability when consid-

ering mappings for asynchronous systems.

Chapter 5. Results and Discussion
	 118

5.3.1 The circuit

The complex circuit used to study the effects of various mappings was developed

within the Department of Electrical Engineering at the University of Edinburgh.

It implements an 8 bit serial multiplier using VLSI technology as part of a signal

processing chip. It is based on circuits presented by Smith and Denyer[53].

There are three key features of the circuit for our purposes. The first is that

it contains many more logical processes (gates) than the simulator has physical

processors. Secondly, the interconnection graph is irregular so there are no obvious

simple mappings. Finally, there are many cycles which are a major problem for

other distributed simulators.

The circuit was designed using the SOLO 1000 computer aided design system [38].

SOLO 1000 is based on Model, a hierarchial HDL (Hardware Description Lan-

guage). It allows parts to be defined as the interconnection of subparts which are

either similarly defined or one of a collection of primitive parts. Once defined, a

part can be instantiated throughout the circuit. A circuit is simply an instance

of a single part which causes the instantiation of the part's subparts and their

subparts and so on forming an instantiation tree defining the whole circuit.

It is this hierarchical tree which guides the generation of a structural mapping.

There are nine levels in the hierarchy of the test circuit containing a total of 504

internal nodes, 1060 gates and 2463 (input) wires. The test data contains 117

initial events, the majority of which are clock transitions which are distributed to

much of the circuit.

5.3.2 The mappings

22 different mappings were studied in detail. In addition, a further six points

were studied before the imbalance limit p (section 2.3.2) was implemented. The

Chapter 5. Results and Discussion
	 119

Processor 	Values of p 	Values of 5

Configuration I Structural Mapping I Even Mapping

2 x 4 00 1

4x4 20 50 	 1 	2 	3

6 x 4 00 1

8 x 4 10 20 	30 	50 	90 	1 	2 	3

8 x 6 00 1

8 x 8 10 20 	30 	40 	50 	1 	2 	3 	4

Table 5-3: Mapping Configurations

three structural mappings of the latter have an equivalent value of p = 0. The

experiments were conducted on a p x q rectangular grid of processors, Table 5-3

shows the various configurations and parameters considered.

The structural mappings

The output from the Model compiler is an IDL (Intermediate Design Language)

file which contains the design hierarchy and details of the gates and their inter-

connections. The IDL file is used as input to a preprocessor which implements

the mapping algorithm described in chapter 3 to produce the net and map files

for the simulator.

The Model system uses a library of primitive parts. A subset of these primitive

parts plus buffer and not are implemented by the simulator. There are 11 different

basic gates: nand, and, nor, or, not, andnor2l, andnor2, ornand2l, buffer, carry

and sum with the first four having variable numbers of inputs. The preprocessor

modifies the circuit slightly. It turns input and output signals to the circuit into

source and sink processes.

As well as producing a net list, the preprocessor uses the circuit to generate

a mapping file. It uses the design hierarchy to produce a simple structure tree

Chapter 5. Results and Discussion 	 120

and uses the wires to cross link the nodes (section 2.2.2). If a wire connects two

immediate subparts of a part then an ilink is used otherwise a full cross link is

created. If two nodes are already linked no extra links are created; this prevents

stronger links between nodes where there are many connections, but it is much

simpler and keeps the mapping algorithm non-numeric.

The even mappings

In order to judge the structural mapping, other mappings were explored. A num-

ber of mapping techniques, as surveyed in chapter 1, strive for an even processor

load and as such they represent an established approach to mapping.

An evenly balanced mapping can be produced for the test circuit being studied

by assigning each leaf node (gate) in the circuit tree a unique number from 1 to

the number of gates using a depth first traversal order. Similarly, the processors

can be given a number between 1 and the number of processors, N. If gate i is

mapped to processor i mod N then a system which has a fairly even number of

events per processor results. That this is so is shown later in Fig. 5-11.

This mapping divides the gates into equivalence classes which are each mapped

to a different processor. By rearranging the mapping of equivalence class to pro-

cessor we can vary the inter-processor distance 6 between consecutively numbered

gates without changing the load distribution. For example, in a 6 = 1 mapping

two consecutively numbered gates are mapped to adjacent processors. In a 6 = 3

mapping there are 3 inter-processor hops between them.

It should be noted that this even mapping is still derived from the structure tree

though this does not detract from its usefulness as a representative of traditional

evenly loaded mappings. Since gates are numbered in depth first order, gates

forming a part will have consecutive numbers. One could consider the structural

mapping as being a special mapping loosely related to a 6 = 0 mapping. It is in

Chapter 5. Results and Discussion 	 121

fact much more advanced than this since it not only considers the relation between

consecutively numbered gates, but also between all gates connected by wires. In

addition, it maps into a two-dimensional space rather than a one-dimensional

sequence.

Fig. 5-7 is the processor numbering used for 64 processors where each gate is

1 hop from its neighbours in the sequence, ie. 5 = 1. Similarly Figs. 5-8, 5-9 and

5-10 show mappings for 5 equalling on average 2, exactly 3 and approximately 4

respectively.

Random mappings

An attempt was made to use a random mapping, ie. each gate was assigned to

a processor chosen at random from a uniform distribution of processor numbers.

Unfortunately, the resulting simulation caused the communication patterns to be

so chaotic that in every attempt one of the slaves ran out of memory trying to

store all of its unprocessed incoming messages. If flow control were added to the

simulator then it would be interesting to re-explore this mapping.

5.4 The measurements

During each simulation run various aspects of the system were measured. The

results presented here are the average of three sets of experiments between which

there was agreement to 3 significant figures.

Typical of these measurements is the number of events processed on each pro-

-

cessor. This measure is commonly used as a measure of computation load and

as a basis for quantifying load balance. Fig. 5-11 is a set of histograms for the

nine 64 processor mappings showing the number of processors versus the number

of events per processor. They indicate the spread of computational load amongst

Chapter 5. Results and Discussion 	 122

the processors. The top five arise from the structural mapping with values of

p = 10,20,30,40 and 50. The bottom four are based on the even mapping with

6 = 1, 2,3 and 4.

One can see that the evenly loaded mappings are just that - evenly loaded.

They are tightly clustered in a normal bell-shaped distribution with no processor

handling significantly more or less events than any other processor. They are also

identical as would be expected since the same gates are being grouped together in

each case, just the distance between groups is being changed. The fact that they

are different indicates varying amounts of event message elision (section 4.3.2).

The distributions for the structural mappings are quite different. They are

much more spread out allowing significant load imbalances; nor are .they normally

distributed being either skewed or bi-modal. Therefore such measures of load im-

balance as the variance of the processor loads are invalid. Given that the overall

simulation time depends on the maximum of the slave simulation times, the dis-

tribution is irrelevant. A better measure of load spread would be the difference

between maximum and minimum loadings, ie. the range.

Using the range of the processor load distribution as a measure of load im-

balance, we can see from Fig. 5-11 that p does indeed have the desired effect on

the load imbalance. However it would be difficult to quantify the relation as p

controls the number of gates assigned to a processor which only indirectly affects

the number of events handled by that processor.

Chapter 5. Results and Discussion 	 123

5.5 Comparison of mappings

Fig. 5-12 is a graph of the total number of inter-processor messages sent versus the

number of processors used. It quite clearly shows the different behaviour produced

by the two families of mappings. The structural mappings have a significantly

reduced level of inter-processor communications over the evenly loaded mappings.

To a reasonable extent this is reflected in the completion times for the simu-

lation. Fig. 5-13 shows that the fastest times are for those simulations using the

structural mappings thus demonstrating that the structural mapping is the better

of the two.

Let us now turn to the inter-processor messages. Table 5-4 shows the count of

such messages (F) and the average number of hops they had to make (H).

In the case of the structural mappings, foreign events make up between 20%

and 40% of the total number of events. This is to be compared to the even

mappings where nearly all of the events are foreign. This indicates that there is

a strong pattern of locality within the simulation. Furthermore, it indicates that

the locality tree does approximate the locality of the communication patterns. In

those mappings in which gates, closely connected in the locality tree, are placed

on the same processor, 1MG is low; where they are placed on different processors,

IMC is high.

This is further borne out by the fact that whereas F stays almost constant

as N increases for even mappings it increases for the structural mappings. As

gates become partitioned into more groups, more closely connected gates are being

separated; in the even mappings they are already separated.

It is also clear that once two gates have been separated it is still important

how far apart they are placed. The even mappings allow direct control over the

124 Chapter 5. Results and Discussion

N 	p/ö 	T106 	E106 	F 106 	H 	W% 	S%

64 10 10.6 14.4 5.18 3.9 78.5 20.6

64 20 10.9 14.4 5.03 3.9 78.7 20.4

64 30 10.5 14.4 4.50 4.0 78.7 20.3

64 40 13.0 14.4 4.24 4.1 81.9 17.3

64 50 13.0 14.4 4.24 4.0 81.7 17.4

32 10 11.6 14.4 4.09 2.9 66.2 32.1

32 20 14.8 14.4 4.16 2.8 75.2 23.6

32 30 14.7 14.4 3.98 2.8 75.3 23.5

32 50 14.9 14.4 3.72 2.8 75.4 23.4

32 90 16.5 14.4 3.72 2.8 76.6 22.2

16 20 20.2 14.4 3.24 2.2 68.2 30.1

16 50 24.6 14.4 2.95 2.4 66.3 32.0

64 1 11.6 14.0 14.0 2.4 82.7 16.7

64 2 12.0 13.9 13.9 3.2 82.7 16.7

64 3 12.4 13.9 13.8 4.0 82.4 17.0

64 4 12.6 13.9 13.9 4.8 81.1 18.3

32 1 16.2 14.1 14.0 2.1 73.9 25.3

32 2 17.5 14.2 '14.1 2.7 74.6 24.6

32 3 22.2 14.4 14.3 3.6 78.4 20.9

16 1 26.5 14.5 14.3 1.8 67.6 31.3

16 2 29.9 14.5 14.3 2.3 70.6 28.4

16 3 30.4 14.5 14.3 2.8 69.5 29.6

Table 5-4: Measurements of the 22 experiments

Chapter 5. Results and Discussion 	 125

inter-module distance by changing 6. Fig. 5-13 shows that increasing 6 has a

direct effect on the completion times. This means that not only is the partitioning

of the problem important so too is the mapping.

As indicated by Table 5-4, H is much higher for structural mappings than for

the even 6 = 1 mappings, but that the actual number of messages sent is 2 to 3

times lower. This supports the assertion that the structural mapping significantly

reduces the number of short distance messages; messages between closely con-

nected gates being localised to within a processor. Thus inter-processor messages

would tend to be between bigger structures over longer distances.

The reduction in the number of inter-processor messages has a number of

effects. We know from our analysis of the simple circuits that non-local events

have a much higher overhead than local events, not only do they increase delays

within the slave, but the through-routing of messages not destined for the processor

also consumes processing time. Fewer foreign events should also lead to reduced

simulation derived delays.

The decrease of communication overheads using the structural mapping is re-

flected in general by the increase in the percentage of time spent simulating, S%.

We should note that due to the large numbers of foreign events, the value of S%

for the even mappings will be inflated as was found in the simulation of circuit C.

This strengthens the point that reducing the number of inter-processor messages

and the distance they travel leads to fewer and shorter delays and to more efficient

simulators, and consequently faster ones.

Chapter 5. Results and Discussion 	 126

•5.6 General Performance

When we consider Fig. 5-13 a number of aspects are worth noting. With both

mappings there is a marked flattening of the curves as the number of processors

increases. This is to be expected. For a problem of fixed size, as the number of

processors increases, the grain size, ie. the amount of calculation each processor

has to do, decreases. Opposed to this is the increase in communication required

as more gates need to communicate with gates on other processors. Thus the sim-

ulation becomes dominated by communication- costs as the number of processors

increases. Using the terminology of Fox et al. [20], the volume-to-surface ratio gets

worse.

It is this increase in communication costs which limits the speed up of the

system. As the number of processors used is increased there will come a point

after which further processors will increase the overall completion time. Irregular

problems are particularly susceptible to communication dominance since as well

as requiring communication between distant parts of the system, this increase in

communication incurs higher protocol and congestion costs.

We can see from Table 5-4 that apart from one case, the fraction of the total

processing time (T) when the simulation engine is idle (W%) increases with the

number of processors (N). In the case of 16 processors it is about 68% rising to

almost 82% for N = 64. This is to be compared with 58% of the time spent idle

in a quiet system fetching events (section 5.2.3).

It is worth noting that there are 3.5% fewer events processed when using the

even mappings. This is due to event elision as described in section 4.3.2. It is

more likely for this to occur when their are foreign events since delays in foreign

events arriving allow for elision on the other inputs of a gate. In spite of causing

less work, the even mappings are still inferior to the structural mappings.

Chapter 5. Results and Discussion
	 127

If we look at Fig. 5-11 and Table 5-4 we can see that the structural mapping

can produce several quite different mappings depending on the value of p. From

Fig. 5-13 we can see that for 64 processors there are two distinct clusters of points.

This shows up in the difference in percentage idle times in Table 5-4 and quite

clearly in the different shaped distributions of Fig. 5-11. The better performance

comes with the more restricted load balancing determined by a lower value of

p.. Thus although reducing 1MG is of primary importance, it is still relevant to

consider load balance.

Chapter 5. Results and Discussion
	 128

Processor 1
	

Processor 2

EQM 	C ND SIM 	 EQM ND C 	SIM

:I, 	

R

<E 	 N

:E

Figure 5-5: Protocol diagram for foreign events - (X0)

-

-

y if

200.00

240.00

200.00

M
E

100.00

0)
C

4-

120.00

00.00

40.00

Chapter 5. Results and Discussion
	 129

	

0.00 I 	I 	 I I

	

0 	
Number or Hops

Figure 5-6: Graph of 	against H

123 4 5 678

64 15 14 13 12 11 10 9

63 16 17 18 19 20 21 22

62 29 28 27 26 25 24 23

61 30 31 32 33 34 35 36

60 43 42 41 40 39 38 37

59 44 45 46 47 48 49 50

58 57 56 55 54 53 52 51

Figure 5-7: Processor numbering with 6 = 1

Chapter 5. Results and Discussion 130

1 	64 	2 63 3 62 4 61

57 	8 	58 7 59 6 60 5

9 	56 	10 55 11 54 12 53

49 	16 	50 15 51 14 52 13

17 	48 	18 47 19 46 20 45

41 	24 	42 23 43 22 44 21

25 	40 	26 39 27 38 28 37

33 	32 	34 31 35 30 36 29

Figure 5-8: Processor numbering with average 6 = 2

48 55 4 29 10 53 6 27

3 30 49 54 5 28 11 52

5647 32 9 50 13 26 7

31 2 57 46 33 8 51 12

44 1940. 1 14 25 34 63

39 58 45 18 41 64 15 24

20 43 60 37 22 17 62 35

59 38 21 42 61 36 23 16

Figure 5-9: Processor numbering with 6 = 3

1 64 24 45 9 37 29 52

58 16 36 30 53 17 44 8

25 46 2 59 23 51 10 38

35 31 54 15 43 7 60 18

3 63 22 47 11 39 28 50

57 14 34 27 55 19 42 6

26 48 4 62 21 49 12 40

33 32 56 13 41 5 61 20

Figure 5-10: Processor numbering with 6 4

	

Chapter 	5. Results and Discussion
	 131

Structural Mappings

	

/0 = 10 	-------+---------+---------+---------+---------+---------

	

= 20 	-------+---------+---------+---------+---------+---------

= 30 -------+---------+---------+---------+---------+---------

= 40 ---

'O = 50 -------+---------+---------+---------+---------+--------

Even Mappings

	

= 1 	-------+---------+-------------------+---------+---------

	

2 	-------+---------+--------.

	

£ = 3 	-------+---------+---------+---------+---------+_________

	

= 4 	-------+---------+---------+-------------------+---------
60000 	120000 	180000 	240000 	300000 	360000

Figure 5-11: Histograms of processor loading

132 Chapter 5. Results and Discussion

8 	 16 	 24 	 32 	 40 	 48 	 56 	 64

Number oF Processors (N)

Figure 5-12: Inter-processor messages sent versus N

0.00
0

133 Chapter 5. Results and Discussion

8 	 16 	 24 	 32 	 40 	 48 	 56 	 54

Number of' Processors (N)

50000.00

45000.00

40000.00

35000.00

10000.00

5000.00

0. oc
0

Figure 5-13: Total simulation time versus N

30000.00

E

F-

c 25000.00

0

U)
20000.00

E
0

(-)

15000.00

P = '#, s -e'

jO= 10,90,30

Chapter 6

Summary and Conclusions

Previous attempts at automatic mapping, as surveyed in chapter 1, have all relied

on a deterministic model of behaviour in the form of an objective function. This

latter, a deterministic function of a few measurable and controllable parameters, is

a model or predictor of the time required to complete the application. By finding

a mapping which optimises (perhaps approximately) this objective function, the

surveyed techniques assume that they will find one which will optimise overall

completion time.

Such an assumption is valid where the objective function is an accurate model

of the completion time, but accuracy depends on the completeness of the model. If

the completion time is simply the sum of costs such as computation and communi-

cation then existing techniques can be used. This can be the case in synchronous

problems where the implementation proceeds by alternate phases of computation

and communication each of which is easily measured.

However, if the completion time also includes other costs, in particular, costs

of interaction which are practically impossible to quantify then the objective func-

tion fails and therefore so too do the traditional mapping techniques. Unlike syn-

chronous problems with their restricted patterns of communication, asynchronous

problems introduce synchronisation delays where a processor may be idle wait-

134

Chapter 6. Summary and Conclusions 	 135

ing for a signal from another processor. These delays depend on the relative

behaviours of the components of the system and usually cannot be isolated or

determined. Typically they are problem specific.

If it were possible to model the interactive behaviour of an asynchronous prob-

lem at a macro level avoiding the need for a complete and detailed model of

computation then this would be a sound basis for a mapping technique.

Chapter 2 presents such a model: the locality tree - an approximate descrip-

tion of the interaction between modules. Through the structure of the tree it

indicates various levels of interaction. Closely related nodes, such as siblings,

represent modules which communicate a lot and are likely to be closely tied to-

gether in their behaviour. Distantly related nodes represent modules which are

much more independent of each other. By assigning closely related modules to the

same processor, or at least to closely related processors, it is intended to reduce

transmission, congestion and synchronisation delays.

As well as the hierarchy, a locality tree may include cross links. These indicate a

secondary and subordinate level of closeness across the tree. Whereas the hierarchy

provides the vertical structure, the cross links provide the horizontal. They allow

different parts within a tree to be drawn together without upsetting the basic

hierarchic structure.

A recursive algorithm was presented in chapter 2 which mapped a locality tree

onto a grid of processors. The hierarchy, in general, determines the partitioning

of modules into groups which are then mapped to the different processors. It

determines the subset of processors to which a module can be assigned. Within

this framework, the cross links are used to arrange the subsets so that inter-module

distance is reduced.

A very simple computation model was added to the locality tree to provide

various levels of load balance. It was assumed that each gate performed an equal

Chapter 6. Summary and Conclusions 	 136

amount of work and the results of chapter 5 did not invalidate this assumption.

The load imbalance factor p was used to discard mappings which contained too

great a variation in the number of modules assigned to a grid of processors. Chap-

ter 5 showed that reducing p did reduce the range of processor loads, but that the

relation was not clear cut.

For the locality tree to be useful as a concept, it must be possible to construct

one for a given problem. Whereas other mapping methods require detailed infor-

mation of the problem, the structural approach suffices with general, structural

information. In their attempt at generality, traditional approaches discard any

problem specific structure, but as this thesis shows, this is throwing away valuable

information.

One application where the required structural information exists is digital logic

simulation where the circuit has been designed hierarchically. The design hierarchy

can be used to build a locality tree and as the results of chapter 5 show it provides

a reasonable description of the interactive behaviour of the circuit's simulation.

The theory and implementation of a parallel discrete event simulator were

presented in chapters 3 and 4. The two major approaches - conservative and op-

timistic - were described. One characteristic common to both approaches is the

high level of communication involved in comparison to the amount of computa-

tion. A number of techniques such as event elision and multiple acceptances were

presented which reduced the level of communication considerably.

In order to implement the simulator, a communication harness was required to

support processor to processor communication and thus avoid the limitations of

the underlying architecture. To be of use, the harness needed to be deadlock free

and to use a minimum of computation resources. Such a harness was presented in

chapter 4. The requirement for such a harness is general to irregular problems. Its

efficiency and transfer rate have a serious performance impact on problems such

Chapter 6. Summary and Conclusions 	 137

as logic simulation and therefore it is an area where hardware support would be

useful.

Chapter 5 began with a discussion of the types of delays one could expect in

an asynchronous problem's execution. They fall into two classes; those that are

due to the implementation and those that arise from the the simulation itself.

The former are general to all simulations and can be measured, the latter are

interactive delays and are practically impossible to quantify.

A series of simple experiments was conducted to measure the implementa-

tion delays. It was found that communications dominated the execution of the

simulator. Several suggestions were made on how to reduce the amount of im-

plementation derived communication, in particular the tagging of data messages

instead of sending extracontrol messages.

It is common philosophy amongst the Occam and Transputer community that

processes are cheap and the use of many processes should be encouraged. However,

this ignores the consequent effect of increased communication. It is not just the

extra transfers of data which should be considered, but the increase in protocol

complexity and the consequent delays which can occur.

The simple experiments also highlighted the need for performance analysis

tools. Since the order of processing can have a dramatic effect on performance, it

is important for a programmer to be able to analyse the behaviour of a program

in detail. It is hoped that synthesis and verification tools will become available

in the future. However, as they are normally concerned with program correctness

rather than performance and because of the non-determinism involved there will

still need to be tools which analyse the program in its execution environment.

Any monitoring tool will potentially interfere with the behaviour of the system

being studied. An extra piece of software to be run or another piece of hardware

loading the signal lines may delay an interaction sufficiently to upset the original

Chapter 6. Summary and Conclusions 	 138

order of events. However, it is specious to say that monitoring tools therefore

give misleading results and should not be used. In many cases, the systems will

be robust enough to absorb the interference without upset. Simply comparing

results with and without monitoring should indicate any problems in this respect.

Even if the tools are intrusive, when used with a knowledge of their limitations,

they can still be of considerable use in understanding the behaviour of the system.

We should also distinguish between tools which give details of the individual

actions of a program and those which give aggregate measures of performance.

The former are important, particularly in debugging, but also because, as was

noted in chapter 5, a minor reordering of actions can have a significant impact on

performance. Such tools would only be used to study small sections of a program.

The aggregate monitoring tools are needed to give an overview of the behaviour

of the system as a whole; to reduce the enormous amounts of monitoring infor -

mation down to a manageable size. These tools would be used to study levels of

communication, congestion and other macro-properties of the system.

Finally, the structural mapping method was used to map a real circuit. Though

the traditional mapping approaches were inapplicable to the program at hand,

one of the goals common to several of them was to produce an evenly balanced

computation load over the processors in the system. From the design hierarchy it

was possible to produce a family of such mappings and they were used to provide

a comparison for the structural approach.

It was found that the structural mapping did indeed result in a much lower level

of inter-module communication than the evenly balanced mapping, thus demon-

strating the usefulness of locality trees. It also shows that the design hierarchy

of the circuit provides locality information for the simulation of that circuit. The

clustering provided by the design hierarchy corresponded to groups of closely re-

lated modules with a high level of interaction. By placing these clusters on the

Chapter 6. Summary and Conclusions 	 139

same processor the number of inter-processor messages was reduced to 1/3 of the

number resulting from the even mapping.

The reduction of IMC (Inter-Module Communication) also resulted, in general,

in lower overall completion times. However, it was found that although a secondary

factor, load balancing was still important. By constraining the excesses of load

imbalance within the structural framework, the best results were produced.

The variation of results is of particular interest when considering speedup.

As was seen in the case of 32 processors, changing the mapping can double the

completion time. If completion time is significantly affected by interactive delays

such as synchronisation then graphs of performance versus number of processors

need to be treated with considerable caution.

6.1 Future Directions

One disadvantage of a purely structural approach is that it assumes an homoge-

neous level of activity throughout the whole circuit. There will be many circuits

where this is not the case, where the state of different parts of a circuit will be

stable or undergo rapid change depending on the functional nature of the circuit's

subsystems. As a result of this uneven behaviour, processors simulating clusters

of gates can have significantly different amounts of work compared with the rest

of the system and this work load can change dramatically over time. This raises

the possibility of a processor being idle because its cluster of gates has become

inactive, perhaps because the gates are waiting for some trigger or enabling signal

or perhaps because they have completed their simulation before other parts of the

circuit.

To tackle this problem, a hybrid structural/scattered approach is proposed.

As was seen in chapter 5, a large amount of communication is local. Therefore

Chapter 6. Summary and Conclusions 	 140

the structural approach has greatest effect at the lower levels of the locality tree.

However, as we move lip the locality tree there is less inter-cluster communication

and it is expected that locality will be of less importance for these super clusters.

Therefore, rather than using the structural approach for the entire locality tree,

it is proposed that for the upper levels the super clusters are scattered over the

processors in order to reduce the chance that at any one time all of the gates

assigned to a processor are blocked.

One way to do this is to use the structural approach to map the lower clusters

onto a grid of virtual processors several times larger than the actual topology then

fold the virtual topology over onto itself so that several unrelated clusters are

mapped onto the same real processor. This hybrid approach retains the localised

nature of the structural model at the levels where communication levels are high

and introduces a scattered decomposition at the higher levels in order to even out

load fluctuations.

Another direction for future work is to explore the use of a structural approach

in other applications. Two applications which are similar in structure to logic

simulation are the simulation of air traffic and of packet based networks. In both

cases, geographical locality could be used to provide the structural information.

The sky and the network can reasonably be described in terms of national, regional

and local groupings which can be used to map a simulation.

The structural method represents a completely different approach to mapping.

Whereas traditional methods try to be as general as possible, only using metrics

common to all parallel programs such as communication and execution costs, this

thesis argues that for the more difficult case of asynchronous, irregular problems

knowledge specific to the problem should be used. In the application studied here,

the knowledge is structural. In other applications, there may be other types of

knowledge which can be used to produce good mappings.

This thesis has explored a number of the difficulties encountered when imple-

Chapter 6. Summary and Conclusions
	 141

menting irregular asynchronous problems on a parallel distributed memory archi-

tecture. It has shown why traditional mapping techniques are inapplicable to such

problems and has presented an alternative: the structural approach.

Bibliography

P. America.

Definition of the programming language POOL-T.

Doc. nr. 0091, Philips Research Laboratories, Sept. 1985.

P. America.

Rationale for the design of POOL.

Doc. nr. 0053, Philips Research Laboratories, Jan. 1986.

P. America, J. de Bakker, J. Kok, and J. Rutten.

Operational semantics of a parallel object-oriented language.

In proc. 13th ACM symp. on the Princs. of Prog. Langs., pages 194 - 208,

Jan. 1986.

R. K. Arora and S. P. Rana.

Analysis of the module assignment problem in distributed computing

systems with limited storage.

Inf. Process. Lett., 10(3):111 - 115, Apr. 1980.

R. K. Arora and S. P. Rana.

Heuristic algorithms for process assignment in distributed computing

systems.

Inf. Process. Lett., 11(4,5):199 - 203, Dec. 1980.

L. Augusteijn, J. M. Jansen, F. Van DerLinden, and F. Sijstermans.

Programmer controlled object allocation.

142

Bibliography
	 143

Doc. nr. 0286, Philips Research Laboratories, Esprit Project 415A, May

1987.

I. M. Barron, P. Cavill, D. May, and P. Wilson.

The transputer.

Electronics, page 109, Nov 17 1983.

0. Berry.

Performance evaluation of the Time Warp distributed simulation

mechanism.

PhD thesis, Univ. Southern California, 1986.

S. H. Bokari.

On the mapping problem.

IEEE Trans. Comput., C-30(3):207 - 214, Mar. 1981.

S. H. Bokhari.

Dual processor scheduling with dynamic reassignment.

IEEE Trans. Softw. Eng., SE-5(4):341 - 349, July 1979.

R. E. Bryant.

Simulation of packet communication architecture computer systems.

Technical Report LCS TR-188, MIT, 1977

K. M. Chandy and J. Misra.

Distributed simulation: A case study in design and verification of

distributed programs

IEEE Trans. Softw. Eng., SE-5(9):440 - 452, Sept. 1979.

K. M. Chandy and J. Misra.

Asynchronous distributed simulation via a sequence of parallel

computations.

Commun. ACM, 24(11):198 - 206, Apr. 1981.

Bibliography
	 144

T. C. K. Chou and J. A. Abraham.

Load balancing in distributed systems.

IEEE Trans. Softw. Eng., SE-8(4):401 - 412, July 1982.

W. W. Chu, M. T. Lan, and J. Hellerstein.

Estimation of inter-module communication and its application in

distributed processing systems.

IEEE Trans. Comput., C33(8):691 - 699, Aug. 1984.

E. G. Coffman, Jr., editor.

Computer and Job-shop scheduling theory.

Wiley, 1976.

M. A. d'Abreu.

Gate-level simulation.

IEEE Design and Test of Computers, pages 63 - 71, Dec. 1985.

J. G. Donnett, M. Starkey, and D. B. Skillicorn.

Effective algorithms for partitioning distributed programs.

Unpublished report. Queen's University Kingston Canada.

K. Efe.

Heuristic models of task assignment scheduling in distributed systems.

Computer, pages 50 - 56, June 1982.

G. Fox, M. Johnson, G. Lysenga, S. Otto, J. Salmon, and D. Walker.

Solving problems on concurrent processors.

Prentice-Hall International, 1988.

W. R. Franta.

The process view of simulation.

North-Holland, NY, 1977.

M. R. Garey and D. S. Johnson.

Bibliography
	 145

Computers and Intractability: A guide to the theory of NP-Completeness.

Freeman and Co., 1979.

J. Gleick.

Chaos: Making a new science.

Sphere, 1988.

V. B. Gylys and J. A. Edwards.

Optimal partitioning of workload for distributed systems.

In Digest of papers Compcon Fall, pages 353 - 357, 1976.

M. Hanan and J. M. Kurtzberg.

A review of the placement and quadratic assignment problems.

SIAM Review, 14(2):324 - 342, Apr. 1972.

C. A. R. Hoare.

Communicating Sequential Processes.

Commun. ACM, 21(8):666-677, Aug. 1978.

E. Horowitz and S. Sahni.

Fundamentals of computer algorithms.

Pitman, 1978.

P. Hudak.

Para-functional programming.

Computing, 19(8):60 - 71, Aug. 1986.

P. Hudak and L. Smith.

Para-functional programming: A paradigm for programming multiprocessor

systems.

In proc. 13th ACM symp. on the Princs. of Frog. Langs., pages 243 - 254,

1986.

M. A. Iqbal, J. H. Saltz, and S. H. Bokhari.

Bibliography 	 146

A comparative analysis of static and dynamic load balancing strategies.

In proc. of the 1986 mt. Conf. on Parallel Processing, pages 1040 - 1047,

1986.

D. Jefferson and H. Sowizral.

Fast concurrent simulation using the Time Warp mechanism. Part 1: local

control.

Technical report, The Rand Corporation, June 1983.

D. Jefferson and H. Sowizral.

Fast concurrent simulation using the Time Warp mechanism.

In proc. SCS distributed simulation conference, pages 63 - 69, 1985.

A. K. Jones.

The object model: a conceptual tool for structuring software.

In R. Bayer, editor, Operating Systems, chapter 2, pages 7 - 16.

Springer-Verlag, 1979.

A. V. Karzanov.

Determining the maximal flow in a network by the method of preflows.

Soviet Math. Dokiady, 15(2):434 - 437, 1974.

S. Kirkpatrick, C. D. Gelatt, Jr, and M. P. Vecchi.

Optimization by simulated annealing.

Science, 220(4598):671 - 680, May 1983.

T. Koopmans and M. Beckmann.

Assignment problems and the location of economic activities.

Econornetrica, 25:53 - 76 7 1957.

L. Lamport.

Time, clocks and the ordering of events in a distributed system.

Commun. ACM, 21(7):558 - 565, July 1978.

Bibliography
	 147

Lattice Logic Ltd., Edinburgh.

CHIPSMITH, A random logic compiler for gate arrays, optimised arrays

and standard cell implementations, 1985.

S.-Y. Lee and J. K. Aggarwal.

A mapping strategy for parallel processing.

IEEE Trans. Comput., C-36(4):433 - 442, Apr. 1987.

P. R. Ma, E. Y. S. Lee, and M. Tsuchiya.

A task allocation model for distributed computing systems.

IEEE Trans. Comput., C-31(1):41 - 47, Jan. 1982.

D. May.

Occam 2 language definition.

Technical report, Inmos Ltd, Feb. 1987.

N. Metropolis, A. Rosenbiuth, M. Rosenbluth, A. Teller, and E. Teller.

Equation of state -calculations by fast computing machines.

J. Chem. Phys., 21:1087 - 1091, 1953.

R. Milner.

Communication and concurrency.

Prentice Hall International, 1989.

J. Misra.

Distributed discrete-event simulation.

Computing Surveys, 18(1):39 - 65, Max. 1986.

Morison, Peeling, and Thorp.

Ella, a hardware description language.

In IEEE, mt. conf on circuits and computers, 1982.

N. J. Nilsson.

Principles of Artificial Intelligence.

Tioga, 1980.

Bibliography

J. K. Peacock, J. W. Wong, and E. G. Manning.

A distributed approach to queueing theory.

In 1979 Winter simulation conference, pages 399 - 406, 1979.

J. K. Peacock, J. W. Wong, and E. G. Manning.

Distributed simulation using a network of processors.

Computer Networks, 3(1):44 - 56, Feb. 1979.

J. L. Peterson and A. Silberschatz.

Operating system concepts, 2nd ed.

Addison-Wesley, 1985.

G. S. Rao, H. S. Stone, and T. C. Hu.

Assignment of tasks in a distributed processor system with limited memory.

IEEE Trans. Comput., C-28(4):291 - 299, Apr. 1979.

S. Sahni and T. Gonzalez.

P-complete approximation problems.

J. ACM, 23(3):555 - 565, July 1976.

C.-C. Shen and W.-H. Tsai.

A graph matching approach to optimal task assignment in distributed

computing systems using a minimax criterion.

IEEE Trans. Comput., C-34(3):197 - 203, Mar. 1985.

S. G. Smith and P. B. Denyer.

Serial-Data Computation.

Kluwer Academic Publishers, 1988.

H. S. Stone.

Multiprocessor scheduling with the aid of network flow algorithms.

IEEE Trans. Softw. Eng., SE-3(1):85 - 93, Jan. 1977.

H. S. Stone and S. H. Bokhari.
I

Bibliography 	 149

Control of distributed processes.

Computer, pages 97 - 106, July 1978.

S. A. Szygenda and E. W. Thompson.

Digital logic simulation in a time-based, table-driven environment Part-1.

Design verification.

Computer, 8(3):24 - 36, Mar. 1975.

The Xerox Learning Research Group.

The Smalltalk-80 system.

Byte, pages 36 - 48, Aug. 1981.

Appendix A

Published paper

The following paper was published in the Proceedings of the SCS Multiconference

on Distributed Simulation, 28-31 March, 1989, Tampa Florida.

The publishers accept that I retain the right to republish this paper in whole

or in part in any book of which I am an author or editor and to make personal

use of this work in lectures, courses, or otherwise.

150

Dis1rutec Simulation 1989
1989 	The Society for Computer

Smuator,
ISBN 0-911801.49-9

A structural mapping for parallel digital logic simulation

Mark Davoren
Dept. of Computer Science

and The Edinburgh Concurrent Supercomputer Project
University of Edinburgh

Scotland EH9 3JZ

ABSTRACT

A new technique for mapping components of a simulation
to processors in a parallel system is presented. It is designed for
simulations involving many parts with an irregular structure, as
found in digital logic simulation. Locality trees are presented
as non-numeric approximations to the communication levels be-
tween components. A simulator has been implemented on 64
Transputers and the effects of two mappings are described.

kP;(IJI1I1•ilfI)

In any parallel simulation it must be decided how to parti-
tion and map the components of the simulation onto the various
processors. Such partitioning and mapping play no part in the
logical behaviour of the simulation, but can have a dramatic
effect on the time taken for the simulation to complete.

At work are two competing forces; the desire ,to reduce the
amount of inter-processor traffic and the desire to optimise the
execution load per processor. There are two traditional ap-
proaches to solving the mapping problem. One is to solve a
minimisation problem given the execution cost of every process
and the amount of communication between every pair of pro-
cesses. The other is to do it by hand which is just impractical
for all but trivial mappings.

The former approach is exemplified by the work of Stone
and Bokhari (Stone and Bokhari 1978) where they use a graph
to describe the modules of a parallel program. Each arc is
weighted with either the amount of communication between
two modules or the execution cost of running a module on a
particular processor. The optimal mapping corresponds to the
minimum cutset of the graph.

However, there are major disadvantages with this approach.
There are serious problems in obtaining the required data. There
is no recognised technique for predicting the values so there is
no way to produce the mapping before executing the program.
Furthermore, it is unclear what exactly is being predicted or
measured. To state the time it takes for a process to execute
ignores any synchronisation delays. It is assumed the comple-
tion time for a parallel program is simply the sum of the com-
putation and communication times and the normal overlapping
of the two is ignored or excluded.

Existing techniques (Stone and Bokhari 197$; Cylvs and
Edwards 1976: Lee and Aggarwal 1937) usually assume pro-
cesses are compute only, ie. functional, with communication
of data in at the beginning and results out at the end. Such
a model is inapplicable to a simulation logical process which
receives and sends messages throughout its lifetime.

Even if it is possible to obtain the requited data, the amount
of data and processing required to produce a mapping is of-
ten unacceptable. To produce an optimal mapping is an NP-
Complete problem so approximation techniques have to be used
in all but the trivial cases. The amount of data increases as the
square of the number of processes. Since the number of pro-
cesses in a digital logic simulation is usually large (the rather
small example presented later has over 1000 gates) it is imprac-
tical to produce a mapping by these methods.

In summary, these costs are difficult to obtain and process,
often ill-defined and the final result is an approximation any-
way. If these costs can be approximated to begin with then
much of the overhead of existing methods can be avoided with-
out necessarily reducing the quality of the mapping produced.
Furthermore, if a non-numeric approximation can be found then
the dependence on poorly defined metrics can be eliminated.

Increasingly, systems are being designed hierarchically. Such
an approach places a superstructure over the otherwise ad hoc
collection of component activities. Before any existing map-
ping mechanisms can be-applied, such superstructure must be
removed to leave a simple flattened process graph. It will be
shown that rather. than being something to be eliminated, this
superstructure provides valuable information. In certain appli-
cations, the hierarchical design structure of a system can be
used as an approximation to the system's communication costs
and can be used to produce a better mapping.

We define a locality tree to be a rooted directed graph which
by its structure approximates the levels of communication be-
tween activities in a system. Rather than using a numeric value,
the level of communication between two activities is indicated
by their relative "closeness in the tree.

The leaves of a locality tree represent the component activi-
ties of the system and internal nodes are used to group together
those activities which communicate more with each other than
with activities outside of the group. The higher the level of
inter-communication between two activities, the closer they will
be related in the tree, the highest level corresponding to two
siblings. As the degree of inter-communication lessens, pairs of
activities become increasingly distant relatives culminating in
the toot of the tree being hteir closest common ancestor.

The simplest case of a locality tree is a straight forward
acyclic tree: the only link- being fro.n a parent to its children.
The SitU pie tree in Fig. 1. tows A. II and C ci us t cted toii.et I icr.
as are I) and F. This ine:.:ates that there is a higher level of
communication bet wecti :\ :eid II t 11:1:1 say A and I). SO the map-
ping algorithm should tlt.?:.'fote >1517c all (!tiih) lI;tSis Ott tltappiutg

179

ABC 	D 	E 	x Y

Figure 1: Simple layout showing slicing and allocation

A closer to B than to D.

A simple tree can be extended by allowing cross links. A
cross link between any two nodes expresses a higher level of
communication than would otherwise be indicated by their po-
sition in a simple tree. This allows nodes to be pulled together
laterally; an attraction between siblings, cousins, etc. An in-
ternal node may be cross linked to another node expressing
a higher level of communication between all of its descendant
activities and those of the other node.

So as to preserve the meaning of the locality tree, two types
of cross links are distinguished. To connect two siblings to-
gether, an junk is used. An ilink is an internal link within a
parent-children nuclear family. It extends the information in
the locality tree by allowing certain siblings to be more closely
related than others. Ilinks always come in pairs since cross link-
ing is a symmetrical relation, but they are usually considered
as single bi-directional links. Fig. 2 shows the simple graph of
Fig. 1, but with C ilinked to A and to B. The mapping algo-

rithm uses this extra information to produce a better mapping.

Z

EXY

Figure 2: Cross-linked layout

For more distantly related nodes an external link or elink
is used. This has the effect of drawing the cross !nked child
to a particular side of the cluster, b ut without breaking Uj)

the family structure. having this second type of link allows
emphasis to be given to the hierarchical structure of the locality
tree, but still to recognise connections across that hierarchy.

Two non-sibling nodes will be cross linked with a pair of
clinks. but further uni-directional elinks are used to express
that the family as a whole as represented by its parent is also
drawn towards the remotely cross linked node.

THE MAPPING ALGORITHM

A mapping algorithm has been developed which maps a logic
circuit simulation onto a grid of processors using a locality tree
to reduce communication costs. It uses the locality tree to
determine bounds on where to place the logic gates.

Using a divide and conquer approach, the locality tree is
divided into subtrees, likewise, the grid of processors is divided
into groups. Each subtree is then assigned to a group of pro- -

cessors and the algorithm is recursively invoked on each sub-

tree/processor group pair.

Since the minimum communications cost would be achieved
if all the nodes were assigned to a single processor, some concept
of load balancing is required. As a first approximation, it was
assumed that the execution load, as measured by the number
of events per gate, was constant. Therefore, each leaf node was
assigned an execution load of 1 and the weight of an internal
node was the number of leaves in its subtree. In the example
described later, it was found that by assigning equal numbers of
gates to each processor a very evenly loaded system is produced
thus showing that for this circuit, the assumption is valid.

The basic structure of the locality tree determines the over-
all assignment of nodes to processor groups, but within a sub-
tree and its processor group the relative weights of its children
determine into what size subgroups the group is divided and
how the children are collected together to match that division.
The ilinks and elinks are used to determine what is the actual
assignment to particular processors. They determine how the
subgroups are arranged, drawing those subtrees which are cross
linked into closer subgroups and thereby reducing communica-

tion costs.

The grid of processors is divided into thin slices which are
allocated to the children of a node in proportion to their w right.

Deciding how many slices a node should get is an extended form
of the bin packing problem and therefore is NP-complete. In
spite of the number of children per node often being small

it cannot. be guaranteed that it is always so and therefore a::

approximation algorithm is used.

All the children are placed in order of deci'eaitig weigL

180

and are allocated their share of the slices in turn. Due to the
rounding errors of integer arithmetic and the granularity of the
slices, it is quite likely that some nodes will receive more than
their share and some will receive less, possibly none.

After this initial allocation, those nodes which have not been
allocated any slices are joined with those with too many. All of
the poor nodes which have been associated with a wealthy node
are removed from their parent and adopted by a child minder
then the child minder and the wealthy node are merged under
a new node which is adopted by the original parent. This has
the effect of collecting together the small nodes into a larger
family which can better compete for slices against its benefac-
tor's children. In addition, it keeps them separate so as not to
upset the locality structure.

The result of the slicing is to regroup the children of a node
and reserve them an appropriate number of slices. It remains
to decide which slices they actually get, ie. in what order the
children are to be placed within their parent's slice.

This is determined by the cross links of the locality tree. A
simple initial placement is calculated which is then iteratively
improved by pair swapping. A pair is swapped if it reduces the
number of slices across which their ilinks are spread The effect
of a node's elinks is taken as a whole, drawing the node towards
a particular slice. This is included in the swapping test.

The slicing and arranging of nodes is continued down through
the tree until only leaf nodes remain or until every slice consists
of just one processor.

A digital logic simulator was implemented to study the ef-
fects of various mappings. It is a 3-value, gate level discrete
event simulator based on the Chandy and Misra conservative
simulation mechanism (Chandy and Misra 1979; Misra 19S6).
It has been implemented on a grid of 64 T8 Transputers over a
simple network layer which allows a processor to send messages
to any other processor. The test circuit being simulated was
a 1060 gate 8 bit serial multiplier designed to be implemented
in custom \'LSI. Though the various mapping techniques were
considered in the context of a conservative simulation mech-
anism, we believe that the techniques and results would be
equally applicable to an optimistic simulation mechanism such
as Time Warp (Jefferson and Sowizral 1985).

An important feature of a gate level description is that it is
quite natural to restrict gates to a single output. This allows
the basic mechanism of Chandv and Misra to be used without
fear of deadlock. As an output message will always be sched-
uled as a delayed response to an incoming event, the clock value

of the sole output-channel will always be greater than the clod
value of the Ip. The condition which guarantees the extendec
mechanism (Misra 1986) to be deadlock free is satisfied with
out the need for null messages. Therefore, if the simulation i
properly initialised, it will never deadlock.

In addition to the simulator, a mapping algorithm was de
veloped which took the output of a CAD system and produce
a mapping of gates to processors. The CAD system's ouspu
included the design hierarchy from which a locality tree wa
built. The locality tree was extended by a cross link for cad

wire in the circuit.

0 	 16 	 32 	 48 	 64

Number oP Processors (N)

Figure 3: Communication levels for different mappings

Fig. 3 shows the average number of inter-processor evei
sent, tIPES, for different numbers of processors. N. The
des show the behaviour of the system using the new mappil
the crosses are for a mapping which resulted in a very eve
spread load. A third mapping, randoTJy generated, was a
attempted, but the results were so poor that It was abandon

It can be seen that new approach definitely reduces the n
her of inter-processor events sent in comparison with the c
load approach. Furthiernlore. Fig. 4 shows that u; to a .-f'ri

point it reduces the overall completion time.

200.00

In
LU

160.00

:3-

(I)
C 120.00
0

.1

0

80.00

C
:3
E
E
o 40.00

I-)

0

0.00

181

42.00

CD
E

34.00
F-

0

26.00

U)

0
E
o 18.00

C-)

10.00

50.00

0 	 16 	 32 	 48 	 64

Number oP Processors (N)

It has been demonstrated that there is a principle of locality
in such circuits which is approximated by the design structure
and that this derign structure can be used to produce a map-
ping with reduced Inter-processor communication costs. Fur-
thermore, within certain limits of load imbalance, the overall
completion time is also reduced.

Initial results have been presented describing the effect of
varying the load imbalance on inter- processor communication
and on overall completion times.

FURTHER WORK

Further tests need to be made with other circuits to flesh
out the initial results presented here. It is not known how
dependent they are on the particular style of design found in
custom VLSI.

In addition, the effect p has on the overall completion time is
e 	poorly understood. Small changes in p can cause a major upset
ss 	to the locality tree resulting in significant changes in the results.

,.,, 	This is being studied in an attempt to find a way to predict a
value which will lead to the minimum completion time.

ACKNO\\TLEDC EMENTS

Figure 4: Completion times for different mappings

In an attempt to understand why the evenly loaded mapping
performed better at a higher number of processors, restrictions
on load imbalance were incorporated into the mapping algo-
rithm. If 13 is the global average of processes per processor then
any allocation which places more than an average of 13 + p/3 pro-
cesses per processoi onto a slice is rejected. If an allocation is
rejected then the biggest child of the node is broken up and the
child's children are adopted by the parent. With more nodes of
a smaller size to allocate, it is easier to allocate slices to nodes
within the set limit.

Reducing p was found to be an effective way to reduce the
load imbalance where load imbalance is defined to be the stan-
dard deviation of the number of events simulated per processor.
Reducing p also increased the average number of inter-processor
events sent. The effect of p on the new mapping for the cse of
64 processors is shown in Fig. 4.

A new approach for mapping processes to processors has
been presented which is especially useful in digital logic sintu-
lation where there is typically a large number of gates and a
hierarchical design structure.

The author wishes to thank R. Pooley for his invaluable
advice and support, R. lbbett his PhD supervisor and all the
people in the Edinburgh Concurrent Supercomputer Project for
their time and patience.

References

Chandy, K. M. and J. Misra. 1979. "Distributed simulation: A
case study in design and verification of distributed programs."
IEEE Trans. Softw. Eng., SE-5(9):440 - 452.

Gylys, V. B. and J. A. Edwards. 1976. "Optimal partitioning of
workload for distributed systems." In Digest of papers Corn peon
Fall, pages 353 - 357.

Jefferson, D. and H. Sowizral. 1985. "Fast concurrent simula-
tion using the time warp mechanism." In proc. SC'S distributed
simulation conference, pages 63 - 69.

Lee, S-Y. and J. K. Aggarval. 1987 "A mapping strategy
for parallel processing." IEEE Transactions on Computers. C-
36(4):433 - 442.

Misra, J. 1986. "Distributed discrcte.evcnt simulation." Corn-
puling Surreys, 18(l):39 - 65.

Stone, H. S. and S. H. Bokhari. 1978. "Control of distributed
processes." Computer, July, pages 97 - 106.

182

