49 research outputs found

    Advance reservation games

    Full text link
    Advance reservation (AR) services form a pillar of several branches of the economy, including transportation, lodging, dining, and, more recently, cloud computing. In this work, we use game theory to analyze a slotted AR system in which customers differ in their lead times. For each given time slot, the number of customers requesting service is a random variable following a general probability distribution. Based on statistical information, the customers decide whether or not to make an advance reservation of server resources in future slots for a fee. We prove that only two types of equilibria are possible: either none of the customers makes AR or only customers with lead time greater than some threshold make AR. Our analysis further shows that the fee that maximizes the provider’s profit may lead to other equilibria, one of which yields zero profit. In order to prevent ending up with no profit, the provider can elect to advertise a lower fee yielding a guaranteed but smaller profit. We refer to the ratio of the maximum possible profit to the maximum guaranteed profit as the price of conservatism. When the number of customers is a Poisson random variable, we prove that the price of conservatism is one in the single-server case, but can be arbitrarily high in a many-server system.CNS-1117160 - National Science Foundationhttp://people.bu.edu/staro/ACM_ToMPECS_AR.pdfAccepted manuscrip

    Cloud Resource Provisioning to Extend the Capacity of Local Resources in the Presence of Failures

    Full text link
    Abstract—In this paper, we investigate Cloud computing re-source provisioning to extend the computing capacity of local clusters in the presence of failures. We consider three steps in the resource provisioning including resource brokering, dispatch sequences, and scheduling. The proposed brokering strategy is based on the stochastic analysis of routing in distributed parallel queues and takes into account the response time of the Cloud provider and the local cluster while considering computing cost of both sides. Moreover, we propose dispatching with probabilistic and deterministic sequences to redirect requests to the resource providers. We also incorporate checkpointing in some well-known scheduling algorithms to provide a fault-tolerant environment. We propose two cost-aware and failure-aware provisioning poli-cies that can be utilized by an organization that operates a cluster managed by virtual machine technology and seeks to use resources from a public Cloud provider. Simulation results demonstrate that the proposed policies improve the response time of users ’ requests by a factor of 4.10 under a moderate load with a limited cost on a public Cloud

    Advance reservations and information sharing in queues with strategic customers

    Full text link
    In many branches of the economy, including transportation, lodging, and more recently cloud computing, users can reserve resources in advance. Although advance reservations are gaining popularity, little is known about the strategic behavior of customers facing the decision whether to reserve a resource in advance or not. Making an advance reservation can reduce the waiting time or the probability of not getting service, but it is usually associated with an additional cost. To evaluate this trade-off, we develop a game-theoretic framework, called advance reservation games, that helps in reasoning about the strategic behavior of customers in systems that allow advance reservations. Using this framework, we analyze several advance reservation models, in the context of slotted loss queues and waiting queues. The analysis of the economic equilibria, from the provider perspective, yields several key insights, including: (i) If customers have no a-priori information about the availability of servers, then only customers granted service should be charged a reservation fee; (ii) Informing customers about the exact number of available servers is less profitable than only informing them that servers are available; (iii) In many cases, the reservation fee that leads to the equilibrium with maximum possible profit leads to other equilibria, including one resulting with no profit; (iv) If the game repeats many times and customers update their strategy after observing actions of other customers at previous stage, then the system converges to an equilibrium where no one makes an advance reservation, if such an equilibrium exists. Else, the system cycles and yields positive profit to the provider Finally, we study the impact of information sharing in M/M/1 queues with strategic customers. We analyze the intuitive policy of sharing the queue length with customers when it is small and hiding it when it is large. We prove that, from the provider perspective, such a policy is never optimal. That is, either always sharing the queue length or always hiding it maximizes the average number of customers joining the queue

    Dynamics in Logistics

    Get PDF
    This open access book highlights the interdisciplinary aspects of logistics research. Featuring empirical, methodological, and practice-oriented articles, it addresses the modelling, planning, optimization and control of processes. Chiefly focusing on supply chains, logistics networks, production systems, and systems and facilities for material flows, the respective contributions combine research on classical supply chain management, digitalized business processes, production engineering, electrical engineering, computer science and mathematical optimization. To celebrate 25 years of interdisciplinary and collaborative research conducted at the Bremen Research Cluster for Dynamics in Logistics (LogDynamics), in this book hand-picked experts currently or formerly affiliated with the Cluster provide retrospectives, present cutting-edge research, and outline future research directions

    Optimal control of queueing systems with multiple heterogeneous facilities

    Get PDF
    This thesis discusses queueing systems in which decisions are made when customers arrive, either by individual customers themselves or by a central controller. Decisions are made concerning whether or not customers should be admitted to the system (admission control) and, if they are to be admitted, where they should go to receive service (routing control). An important objective is to compare the effects of "selfish" decision-making, in which customers make decisions aimed solely at optimising their own outcomes, with those of "socially optimal" control policies, which optimise the economic performance of the system as a whole. The problems considered are intended to be quite general in nature, and the resulting findings are therefore broad in scope. Initially, M/M/1 queueing systems are considered, and the results presented establish novel connections between two distinct areas of the literature. Subsequently, a more complicated problem is considered, involving routing control in a system which consists of heterogeneous, multiple-server facilities arranged in parallel. It is shown that the multiple-facility system can be formulated mathematically as a Markov Decision Process (MDP), and this enables a fundamental relationship to be proved between individually optimal and socially optimal policies which is of great theoretical and practical importance. Structural properties of socially optimal policies are analysed rigorously, and it is found that 'simple' characterisations of socially optimal policies are usually unattainable in systems with heterogeneous facilities. Finally, the feasibility of finding 'near-optimal' policies for large scale systems by using heuristics and simulation-based methods is considered
    corecore