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Chapter 1

Introduction

Traditional optimization deals with the efficient selection of an optimal solution
to a minimization or maximization problem. It is usually assumed that a central
planner has full access to the model and all the involved data. For example, he has
to schedule a number of tasks on several machines in a production process such that
the time needed to finish all the tasks is minimized. Or he has to determine the best
way to transport a number of goods from different locations to different destinations
along a road network. In contrast, in distributed settings, there are several agents,
possibly equipped with private information that is not publicly known, and these
agents need to interact in order to derive a solution to the problem. This happens
e.g. on the internet, where various selfish users send their data packages along the
different communication links in the network. Or in daily traffic, when each driver
tries to find the fastest route for himself and does not care about the other drivers.
In such settings, the agents have incentives for strategic behavior, possibly leading to
sub-optimal system performance. The analysis of such distributed settings requires
techniques from classical optimization as well as techniques from game theory and
economic theory.

Motivated by this insight, more and more researchers from the “classical opti-
mization communities” as computer science and operations research have recently
become interested in game theory and economic theory. In fact, numerous confer-
ences and publications are devoted to the intersection of the mentioned disciplines.
Contributions are in both directions. While the consideration of strategic behavior
of selfishly behaving agents has been introduced into classical optimization prob-
lems, notions as efficient computation or the price of anarchy have found their way
into game theory.

For illustration, consider the task scheduling model regarded in Nisan and Ronen
(2001). In the classical optimization setting, there are a number of machines that
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Introduction

have to process a set of tasks. The processing time of each of those tasks may differ
among the machines. The goal is to assign the tasks to the machines in order to
minimize the makespan, i.e., the completion time of the last task. A typical result
from computer science says that the problem is computationally hard, i.e., finding
an optimal schedule for the problem may cost a huge amount of computation time.
A traditional computer science answer to this challenge would be an approximation
algorithm, that is, an algorithm that efficiently finds a solution that is not too
far away from the optimum. In a distributed setting, machines might be selfish
agents who are privately informed about the processing time they need for each
task and they might be interested to get as few workload as possible. This gives rise
to incentives and strategic behavior, since machines can manipulate the resulting
schedule in their favor by misreporting about their private information. Mechanism
design deals with this kind of problems. Usually, strategic payments are introduced
that make it beneficial for the machines to truthfully report about their private
information. A question that comes up in the new research field at the border
between computer science and mechanism design is how close one can come to the
optimal makespan under the additional constraint that machines must not have
incentives to misreport about their private information. An answer given in Nisan
and Ronen (2001) is that there is no such truthful mechanism that can guarantee a
makespan that is at most twice the optimal makespan.

Another illustrative example can be found in the selfish routing model considered
in Koutsoupias and Papadimitriou (1999). Selfish agents have to route a particular
amount of traffic along parallel links in a congested network. The encountered delay
depends on the congestion of the used network links. In classical optimization, a
central planner would assign the traffic to the links, therefore obtaining the solution
with the least maximum delay. In game theory, however, selfish agents are often
assumed to behave according to a Nash equilibrium. In such a Nash equilibrium, the
resulting traffic might have a maximum delay that is larger than the one that the
central planner would have derived. A question that arises is how much one looses
due to the absence of central coordination. Koutsoupias and Papadimitriou (1999)
answer this question by introducing the price of anarchy, i.e., the ratio of the selfish
solution in the worst Nash equilibrium over the centrally coordinated optimum so-
lution. For the simplest model with two identical links, the price of anarchy can be
quantified as 3/2. The price of anarchy parallels e.g. the approximation ratio from
optimization: here the comparison is between the solution obtained by a certain
efficient algorithm to the optimal solution to the optimization problem.

This thesis contributes to the intersection of optimization and game theory/
economic theory in several ways. We address classical questions in mechanism design
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by means of graphs in Part I. Chapter 2 contains a new characterization of revenue
equivalence. In order to understand what revenue equivalence means, consider an
auction setting, where a single good has to be sold to one of several bidders. Each
bidder has private knowledge about how much the good is worth to him, but he
is uncertain about the other bidders’ valuations. Suppose, the goal was to allocate
the good to the bidder who values it most and at the same time to charge a price
that gives no bidder an incentive to bid anything else than his true valuation. In
such a setting, the expected revenue of the seller will always be the same, no matter
how the actual auction format looks like (Myerson 1981). This fact is referred to
as revenue equivalence. Revenue equivalence results can be considered for much
more general settings than auctions. We regard such a general setting and prove a
characterization of revenue equivalence via elementary graph theory. Our theorem
applies in settings where all previous revenue equivalence results fail to apply and
has the additional advantage of being simple and elementary.

In the next chapter, Chapter 3, we regard optimal mechanisms for a scheduling
setting. Let us again employ the auction example to get an idea of what an optimal
mechanism could be. In the single good auction described above, an optimal auction
mechanism is one that maximizes the revenue to the seller. According to the famous
result in Myerson (1981), the optimal auction does not always give the good to the
bidder who values it most, but the seller might e.g. keep the item if all bids are
below a certain reserve price. Again, optimal mechanisms are not only interesting
in auction settings, but in any game with payments. We regard a simple scheduling
application and derive optimal mechanisms. We also see that even the simplest of
all scheduling models is substantially more complicated with respect to determining
an optimal mechanism than the auction setting.

Part II of the thesis is devoted to the application of mechanism design and
game theoretic frameworks to multiple machine scheduling applications. In multiple
machine settings, many different models and questions can arise in the context of
game theoretic settings. Therefore, Chapter 4 contains an overview about the most
interesting and most recent topics in this field. It includes the price of anarchy as
well as approximation algorithms for optimization problems in distributed settings.

In the last chapter, Chapter 5, we regard an online scheduling model from a
mechanism design point of view. The additional complication in the online situa-
tion is that the tasks that have to be scheduled on machines become only known over
time. Decisions have to be made already before the entire set of tasks is known.
Additionally, we require a decentralized setting, i.e., we want the tasks to have
the power to select their machine themselves. We suggest a new equilibrium con-
cept appropriate for this situation and provide a mechanism for decentralized online
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scheduling. Moreover, our mechanism behaves well with respect to the approxima-
tion of a certain objective function.

In order to give a more precise description about the individual chapters of this
thesis, we have to define some of the necessary terms used throughout the thesis.
In the following two sections, we sketch the most important concepts in mechanism
design and machine scheduling, respectively. Thereafter, we give a more detailed
overview over the topics covered in the individual chapters of the thesis.

1.1 Mechanism Design

We start with the definition of mechanism design from Sandholm (2003).

Mechanism design is the art of designing the rules of the game so that
the desirable outcome is reached despite the fact that each agent acts in
his own self-interest.

Thus, mechanism design is about games, i.e., situations in which several agents
interact to obtain a common outcome. Agents have preferences over outcomes, which
are expressed by an agent’s valuation function. Agents can influence the outcome
by choosing one of several actions. A mechanism defines the rules of the game
and consists of two parts: an allocation rule and a payment scheme. Depending on
the chosen actions of all agents, the allocation rule chooses an outcome, while the
payment scheme determines a payment to or from every agent. The overall utility
of an agent depends on his valuation for the chosen outcome and the payment.
Throughout the thesis, we will assume quasi-linear utilities, meaning that the utility
of an agent is computed as his valuation minus the payment he has to make. Usually
in mechanism design, each agent has some piece of private information only known
to the agent himself. We refer to this information as the agent’s type. The valuation
of an agent depends on his type as well, therefore being a function of outcome and
type. We assume that agents are rational, i.e., that they strive to maximize their
utility.

A well-studied kind of mechanisms are direct revelation mechanisms. Here, the
only action of an agent is to announce his type. In many situations one can restrict
oneself to analyzing direct revelation mechanisms without loss of generality. The
justification for that is the revelation principle by Myerson (1981). However, in
Chapter 5, we regard a setting where the revelation principle is not applicable and
where we therefore model agents’ actions explicitly.

Given type reports of all agents, the efficient allocation rule chooses an outcome
that maximizes the total valuation of all agents. We also say that it maximizes the
social welfare.
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A strategy of an agent is a mapping that assigns an action to every possible type
of an agent. A dominant strategy is one that maximizes the utility of the agent for
every combination of actions of the other agents. We say that a direct revelation
mechanism is dominant strategy incentive compatible or truthful, if reporting the
true type is a dominant strategy for every agent. An allocation rule that can be
complemented by a payment scheme to a truthful mechanism is also called (dominant
strategy) implementable. The concept of dominant strategy incentive compatibility
is predominantly used in Chapters 2, 4 and 5. In Chapter 3 we regard a Bayes-
Nash setting, i.e., uncertainties with respect to other agents’ types are represented
by commonly known probability distributions. Here, agents aim to maximize their
expected utilities and a mechanism is called Bayes-Nash incentive compatible, if
truthful reporting maximizes the expected utility of every agent, given that all
other agents report truthfully.

Besides (dominant strategy or Bayes-Nash) incentive compatibility, we usually
require a mechanism to satisfy individual rationality. That is, a truth-telling agent
must not receive a negative (expected) utility. This makes sense in settings, where
agents have the choice not to participate in the mechanism and hence have an outside
option which gives them utility zero. On the other hand, there are settings, in which
such an outside option does not exist (see Chapter 5).

We conclude this section by sketching the probably most famous mechanism
design setting, the single item auction. Here, one indivisible good is for sale and
agents have a certain valuation for possessing the good. Their valuation is zero if
they do not get the good. In the direct revelation version, the sealed-bid auction,
agents submit their bids for the good e.g. in a sealed envelope. The highest bidder
receives the good. In a first price auction, the winner has to pay his own bid,
whereas he pays the second highest bid in the second price auction. The latter is
also known as the famous Vickrey auction.

The idea of the Vickrey auction can be generalized to other than auction settings.
Observe that the payment for the winner x in the second price auction is essentially
the “disutility imposed on the other agents”, i.e., the total welfare loss for the other
agents due to the presence of x. The generalized Vickrey-Clarke-Groves (VCG)
mechanism adopts this idea. The allocation rule in the VCG mechanism is the
efficient one and every agent pays the disutility he imposes on the other agents. In
Chapter 4, we restate the proof that the VCG mechanism is indeed truthful in more
general settings.

For a more extensive introduction to mechanism design, see Mas-Colell, Whin-
ston, and Green (1995).
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1.2 Machine Scheduling

Although we give a more detailed description of scheduling models in the introduc-
tion to Chapter 4, we sketch the most important concepts already at this point.
In the machine scheduling models considered in this thesis, a set of jobs has to be
processed on a set of machines. Each machine can handle one job at a time and
for the main part of the thesis, jobs may not be interrupted once started, i.e., we
regard non-preemptive scheduling. Jobs are characterized by a processing time and
a weight. The latter can be seen as the waiting cost per time unit incurred by the
job-owner.

A schedule is a plan that specifies which job is processed on what machine and
at which time. While in Chapter 3 a schedule on a single machine can be simply
identified with the permutation of jobs corresponding to the order in which they
are processed, a schedule in Chapters 4 and 5 refers to a specification of a time slot
and a machine for every job. The length of the time slot should equal the job’s
(reported) processing time. Each job has a start time and a completion time in a
specific schedule. The most important objective functions that we aim to minimize
in models considered in this thesis are

1. the weighted total completion time or start time of all jobs,

2. the makespan, i.e., the maximum completion time of any job.

Given a set of jobs with weights and processing times, the difference between the
weighted total completion time and the weighted total start time is constant over all
schedules. Therefore any schedule that minimizes one, also minimizes the other ob-
jective function. The difference becomes important, when we regard approximation
algorithms. Therefore we stick to the more standard objective to minimize the total
weighted completion time in Chapter 5, where we regard approximations, while it is
more convenient to use the total weighted start time as an objective in Chapter 3.

Most scheduling problems that we address in Part II of this thesis are NP-hard.
Generally speaking, that means that the regarded objective function cannot be op-
timized by an algorithm whose running time is polynomial in the input length of the
problem if P 6= NP - an assumption that among researchers is widely believed to be
true. One way to deal with this problem is the design of approximation algorithms.
An approximation algorithm with approximation factor % for a minimization prob-
lem is a polynomial time algorithm that guarantees the ratio of the obtained solution
and the optimal solution to be at most %. For a more comprehensive treatment of
complexity theory and approximation algorithms we refer to Garey and Johnson
(1979) and Papadimitriou (1994).
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In Chapter 5 and a part of Chapter 4, we regard online scheduling problems.
Here, jobs arrive over time, each job at his release date. An online algorithm has
to make decisions, before the entire set of jobs to be scheduled is known. In the
regarded settings, no online algorithm can guarantee to find an optimal solution to
the problem due to the online nature of the situation, i.e., regardless of the P = NP

question. An online algorithm for a minimization problem is said to be %-competitive
if the ratio of a solution obtained by the algorithm and the optimal solution is at
most %. For an overview about online scheduling problems, see Pruhs, Sgall, and
Torng (2004).

The wealth of different scheduling models can certainly not be covered in this
thesis. We briefly reflect on other scheduling models in the introduction to Chapter 4
and refer to Leung (2004) for further reading.

1.3 Outline of the Thesis

The chapters of this thesis are to a large extent self-contained. Necessary notation
and background are given in the respective introductions.

Part I deals with typical mechanism design questions. Important tools used in
this part are the type graph and the allocation graph of an allocation rule. Basic
theorems from graph theory enable us to view payment schemes implementing an
allocation rule as node potentials in the mentioned graphs.

In Chapter 2, we give a new characterization of revenue equivalence. Revenue
equivalence is the property of an allocation rule to be implementable by a uniquely
defined payment scheme. Via the analogy to node potentials in the graphs mentioned
above, we obtain our characterization in a simple and elementary way. In contrast
to most previous work about revenue equivalence, we do not have to assume any
differentiability conditions of the allocation rule or the valuation functions. Our
characterization implies many of the existing results and we demonstrate by means
of an economic application that it can be used to identify revenue equivalence where
known results fail to apply.

In Chapter 3, we regard optimal mechanism design for a scheduling setting on
a single machine. Our mechanisms are optimal in the sense that they minimize the
total payment made to job-agents in order to reimburse them for their waiting time.
The results are comparable to those in Myerson (1981) and Malakhov and Vohra
(2007) for auction settings. We derive optimal mechanisms for the one-dimensional
case, i.e., when only the weight of a job is private information. In contrast to
Myerson (1981), we regard discrete type spaces as well. The type graph mentioned
above is used to derive the optimal payment scheme for a given allocation rule. For
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the two-dimensional setting, i.e., when additionally the processing time is private,
we show that classical approaches must fail and that optimal mechanism design for
the scheduling setting must be more difficult than for the classical auction settings.

In Part II, we study applications of mechanism design to multiple machine
scheduling problems.

Chapter 4 contains a survey of recent literature about applications of mechanism
design on the one hand and the analysis of full information games arising in machine
scheduling problems on the other. The purpose of this chapter is to give an overview
and to illustrate techniques by giving alternative proofs for known results, rather
than obtaining new ones.

In Chapter 5, we study mechanism design for a decentralized online scheduling
model on parallel machines. Here, the type of each job agent consists of his weight,
processing time and release date. We define the concept of a decentralized online
scheduling mechanism, which accounts for the requirement that job-agents select a
machine themselves rather than being assigned by a central coordination authority.
Furthermore, we introduce the concept of a myopic best response equilibrium that
we find appropriate for online situations. The main contribution of this chapter
is a 3.28-competitive decentralized online scheduling mechanism, where truthful
reporting about private information is a myopic best response equilibrium.

1.4 Publications Underlying this Thesis

• B.Heydenreich, R.Müller, M.Uetz and R.Vohra, “Characterization of Revenue
Equivalence”, Econometrica 77 (1), p.307-316, 2009

• B.Heydenreich, D.Mishra, R.Müller and M.Uetz, “Optimal Mechanisms for
Single Machine Scheduling”, in Internet and Network Economics - WINE
2008, C. Papadimitriou and S. Zhang (eds.), Lecture Notes in Computer Sci-
ence 5385, p.414-425, 2008, Springer

• B.Heydenreich, R.Müller and M.Uetz, “Games and Mechanism Design in Ma-
chine Scheduling - An Introduction”, Production and Operations Management
16 (4), p.437-454, 2007

• B.Heydenreich, R.Müller and M.Uetz, “Mechanism Design for Decentralized
Online Machine Scheduling”, Operations Research, to appear
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Chapter 2

Characterization of Revenue

Equivalence

The property of an allocation rule to be implementable in dominant strategies by
a unique payment scheme is called revenue equivalence. In this chapter we give a
characterization of revenue equivalence based on a graph theoretic interpretation of
the incentive compatibility constraints. The characterization holds for any (possibly
infinite) outcome space and many of the known results are immediate consequences.
Moreover, revenue equivalence can be identified in cases where existing theorems
are silent.1

2.1 Introduction

One of the most important results of auction theory is the Revenue Equivalence
Theorem. Subject to certain reasonable assumptions, it concludes that a variety
of different auctions generate the same expected revenue for the seller. Klemperer
(1999) writes that “much of auction theory can be understood in terms of this the-
orem.....”. Hence the long line of papers that have attempted to relax the sufficient
conditions under which revenue equivalence holds. In this chapter, we provide nec-
essary and sufficient conditions on the underlying primitives for revenue equivalence
to hold.

We consider direct revelation mechanisms for agents with multidimensional types.
Such mechanisms consist of an allocation rule and a payment scheme. The alloca-
tion rule selects an outcome depending on the agents’ reported types, whereas the

1Part of the results of this chapter were published in Heydenreich, Müller, Uetz, and Vohra
(2009).
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Characterization of Revenue Equivalence

payment scheme assigns a payment to every agent. We focus attention on alloca-
tion rules that are implementable in dominant strategies. Hereafter we refer to such
rules as implementable. In this environment we characterize the uniqueness of the
relevant payment scheme in terms of conditions that are easily verified in potential
applications. The property of an allocation rule to be implementable in dominant
strategies by a unique payment scheme is called revenue equivalence. Our charac-
terization of revenue equivalence is based on a graph theoretic interpretation of the
incentive compatibility constraints. This interpretation has been used before by Ro-
chet (1987), Gui, Müller, and Vohra (2004), as well as Saks and Yu (2005) to identify
allocation rules that are implementable in dominant strategies. Müller, Perea, and
Wolf (2007) used it to identify Bayes-Nash implementable allocation rules. With this
graph theoretic interpretation, our characterizing condition for revenue equivalence
is almost self-evident and the proof writes itself. The characterization holds for any
(possibly infinite) outcome space. Many of the known results about revenue equiva-
lence are immediate consequences of our characterization. More importantly, with
this characterization revenue equivalence can be identified in cases where existing
theorems are silent.

Related Work. The bulk of prior work on revenue equivalence has been de-
voted to identifying sufficient conditions on the type space that ensure all allocation
rules from a given class satisfy revenue equivalence. The papers by Green and
Laffont (1977) and Holmström (1979) restrict attention to allocation rules called
‘utilitarian maximizers’, that is, allocation rules that maximize the sum of the valu-
ations of all agents. Holmström (1979), generalizing the paper by Green and Laffont
(1977), shows that when the type space is smoothly path connected then utilitarian
maximizers satisfy revenue equivalence.

Myerson (1981) shows that revenue equivalence holds for every implementable
rule in a single item auction setting where the type space is an interval of the real
line and an agents valuation for an outcome is linear in his type.

Krishna and Maenner (2001) derive revenue equivalence under two different hy-
potheses. In the first, agents’ type spaces must be convex and the valuation function
of an agent is a convex function of the type of the agent. Under these conditions
they show that every implementable rule satisfies revenue equivalence. The second
hypothesis requires the allocation rule to satisfy certain differentiability and con-
tinuity conditions and the outcome space to be a subset of the Euclidean space.
Furthermore, the valuation functions must be regular Lipschitzian and monotoni-
cally increasing in all arguments.

Milgrom and Segal (2002) show that revenue equivalence is a consequence of a
particular envelope theorem in a setting where the type spaces are one-dimensional
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2.1. Introduction

and the outcome space is arbitrary. An agent’s valuation function is assumed differ-
entiable and absolutely continuous in the type of the agent and the partial derivative
of the valuation function with respect to the type must satisfy a certain integrability
condition. Their result can be applied to multi-dimensional type spaces as well. In
this case the type spaces must be smoothly connected and the valuation functions
must be differentiable with bounded gradient.

We know of only two papers that identify necessary as well as sufficient con-
ditions – i.e. characterizing conditions – for revenue equivalence to hold. If the
outcome space is finite, Suijs (1996) characterizes type spaces and valuation func-
tions for which utilitarian maximizers satisfy revenue equivalence. Chung and Ol-
szewski (2007) characterize type spaces and valuation functions for which every
implementable allocation rule satisfies revenue equivalence, again under the assump-
tion of a finite outcome space. Furthermore, they derive sufficient conditions on the
type spaces and valuation functions that generalize known results when the out-
come space is countable or a probability distribution over a finite set of outcomes.
In particular, they can show that some of the previously known conditions can be
weakened for countable outcome spaces.

Our Contribution. Our characterization differs from prior work in an impor-
tant way. We identify a condition on the type spaces, the valuation functions and
the implementable allocation rule together that characterize revenue equivalence. In
other words, we prove that a particular allocation rule satisfies revenue equivalence
if and only if this condition is satisfied. Our characterization differs from the one by
Chung and Olszewski (2007) in three ways. First, ours holds for general outcome
spaces. Second, our result implies revenue equivalence in cases where their result
does not apply. In fact, given agents’ type spaces and valuation functions, several
allocation rules may be implementable in dominant strategies, some of which sat-
isfy revenue equivalence and some do not. In this case, the conditions on the type
space and valuation functions from their paper obviously cannot hold. However, our
characterization can be used to determine which of the allocation rules do satisfy
revenue equivalence. We give an example in Section 2.5.4. Third, the characteriza-
tion in Chung and Olszewski (2007) can be seen as a corollary of our result, in the
sense that their necessary and sufficient condition is naturally related to our graph
theoretic interpretation of revenue equivalence. We refer to Section 2.5.3 for details.
Moreover, our characterization yields elementary and direct alternative proofs for
their sufficient conditions for countable infinite outcome spaces.

As in Chung and Olszewski (2007), a sufficient condition derived from the char-
acterization yields a number of the earlier results as immediate consequences We
list some of them below.
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1. By restricting attention to countable outcome spaces we can relax the smooth
connectedness condition on the type space invoked in Holmström (1979) to
(topological) connectedness. In addition, our sufficient condition applies to
any allocation that can be implemented in dominant strategies rather than
just utilitarian maximizers.

2. The sufficient condition that Suijs (1996) derives from his characterization
follows as a special case.

3. The sufficient condition of Krishna and Maenner (2001) under their first hy-
pothesis when the outcome space is countable follows as a special case.

4. The sufficient condition of Milgrom and Segal (2002) when the outcome space
is countable follows as a special case.

Organization. The remainder of the chapter is organized as follows. In Section 2.2
we introduce notation and basic definitions. In Section 2.3, we prove some graph
theoretic results. In Section 2.4, we derive our graph-theoretic characterization of
revenue equivalence. In Section 2.5 we give four applications of the new charac-
terization. The first two are simple and elementary proofs for sufficient conditions
for revenue equivalence in settings with finite and countable outcome spaces, re-
spectively. Third, we show how the characterization from Chung and Olszewski
(2007) can be obtained as a consequence of ours. Finally, we give an example of an
economic setting where our characterization can be used to identify revenue equiv-
alence, whereas all known previous results are not applicable. We conclude with
extensions to other notions of incentive compatibility in Section 2.6.

2.2 Setting and Basic Concepts

Denote by {1, . . . , n} the set of agents and let A be the set of possible outcomes.
Outcome space A is allowed to have infinitely many, even uncountably many, ele-
ments. Denote the type of agent i ∈ {1, . . . , n} by ti. Let Ti be the type space of
agent i. Type spaces Ti can be arbitrary sets. Agent i’s preferences over outcomes
are modeled by the valuation function vi : A×Ti → R, where vi(a, ti) is the valuation
of agent i for outcome a when he has type ti.

A mechanism (f, π) consists of an allocation rule f and a payment scheme π.
In a direct revelation mechanism, the allocation rule f : Πn

i=1Ti → A chooses for a
vector t of aggregate type reports of all agents an outcome f(t), whereas the payment
scheme π : Πn

i=1Ti → Rn assigns a payment πi(t) to each agent i. Let the vector
(ti, t−i) denote the aggregate type report vector when i reports ti and the other
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2.3. Unique Node Potentials in Directed Graphs

agents’ reports are represented by t−i. We assume quasi-linear utilities, that is, the
utility of agent i when the aggregate report vector is (ti, t−i) is vi(f(ti, t−i), ti) −
πi(ti, t−i).

Definition 2.1. A direct revelation mechanism (f, π) is called dominant strategy

incentive compatible if for every agent i, every type ti ∈ Ti, all aggregate type

vectors t−i that the other agents could report and every type si ∈ Ti that i could

report instead of ti:

vi(f(ti, t−i), ti)− πi(ti, t−i) ≥ vi(f(si, t−i), ti)− πi(si, t−i).

If for allocation rule f there exists a payment scheme π such that (f, π) is a dom-

inant strategy incentive compatible mechanism, then f is called implementable in

dominant strategies, in short implementable.

In this chapter we assume that the allocation rule is implementable in dominant
strategies and study the uniqueness of the corresponding payment scheme. We refer
to the latter as revenue equivalence.2

Definition 2.2. An allocation rule f implementable in dominant strategies satisfies

the revenue equivalence property if for any two dominant strategy incentive compat-

ible mechanisms (f, π) and (f, π′) and any agent i there exists a function hi that

only depends on the reported types of the other agents t−i such that

∀ti ∈ Ti : πi(ti, t−i) = π′i(ti, t−i) + hi(t−i).

2.3 Unique Node Potentials in Directed Graphs

In this section, we prove two theorems about node potentials in directed graphs. The
first theorem yields a necessary and sufficient condition for a graph to have a node
potential that is uniquely defined up to a constant. The second theorem provides
another sufficient condition for uniqueness of the node potential up to a constant.
In the following sections we will make use of these results to obtain necessary and
sufficient conditions for revenue equivalence to hold.

2We choose the term revenue equivalence in accordance with Krishna (2002). In our setting it
is equivalent to payoff equivalence as used in Krishna and Maenner (2001). See Milgrom (2004),
Section 4.3.1. for settings where it is not equivalent.
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Let G = (V, E) be a directed graph with node set V and arc set E. V is allowed
to be infinite. By `ab we denote the (finite) length of the arc (a, b) from node a

to node b. A path from node a to node b in G, or short (a, b)-path, is defined as
p = (a = a0, a1, . . . , ak = b) such that (ai−1, ai) ∈ E for i = 1, . . . , k. Denote by
length(p) the length of this path. A cycle is a path with a = b. For any a, we
regard the path from a to a without any arcs as (a, a)-path as well and define its
length as 0. We assume that G is strongly connected, that is, between any two nodes
a, b ∈ V , there exists an (a, b)-path and a (b, a)-path. Define P(a, b) to be the set
of all (a, b)-paths.

If G does not contain a negative cycle, we say that it satisfies the nonnegative cy-
cle property. In the following assume that G satisfies the nonnegative cycle property.
Let

distG(a, b) = inf
p∈P(a,b)

length(p).

If V is a finite set, then distG(a, b) simply equals the length of a shortest path
from a to b in G. For infinite V , such a shortest path may not exist. Nevertheless,
distG(a, b) is finite, since we assume that G does not have any negative cycle. In fact,
fix some (b, a)-path pba, then length(p) ≥ −length(pba) holds for every (a, b)-path p

and the infimum is finite.

Definition 2.3. A node potential p is a function p : V → R such that for all arcs

(x, y) ∈ E, p(y) ≤ p(x) + `xy.

Lemma 2.4. A graph G has a node potential if and only if it has no cycle of negative

length.

Proof. Proofs can be found e.g. in Schrijver (2003) for finite V and in Rochet
(1987) for infinite V . For completeness, we give a simple proof. If G has no negative
cycle, then for any a ∈ V , distG(a, ·) is well-defined, i.e. takes only finite values. The
distances distG(a, ·) define a node potential, because distG(a, x) ≤ distG(a, y) + `yx

for all x, y ∈ V . On the other hand, given a node potential p, add up the inequalities
p(y)−p(x) ≤ `xy for all arcs (x, y) on a cycle to prove that the cycle has nonnegative
length. ¤

The next theorem is concerned with the uniqueness of a node potential in a
graph without negative cycles.

Theorem 2.5. Let G = (V,E) be a strongly connected directed graph that satisfies

the nonnegative cycle property. Then the following statements are equivalent.

1. Any two node potentials in G differ only by a constant.
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2.3. Unique Node Potentials in Directed Graphs

2. Distances are anti-symmetric, i.e., distG(a, b) = −distG(b, a) for all a, b ∈ V .

Proof. [1 ⇒ 2] As observed earlier, distG(a, ·) is a node potential in G. Similarly,
distG(b, ·) is a node potential. As any two node potentials differ only by a constant,
we have that distG(a, ·)−distG(b, ·) is a constant function. Especially, for a and b we
get that distG(a, a) − distG(b, a) = distG(a, b) − distG(b, b). Clearly, distG(a, a) =
distG(b, b) = 0 and hence distG(a, b) = −distG(b, a).

[2 ⇒ 1] Let a, b ∈ V . Let pab be an (a, b)-path with nodes a = a0, a1, . . . , ak = b.
For any node potential p we have that

p(a1)− p(a) ≤ `aa1

p(a2)− p(a1) ≤ `a1a2

...

p(b)− p(ak−1) ≤ `ak−1b

and consequently p(b)− p(a) ≤ length(pab). Therefore,

p(b)− p(a) ≤ inf
p∈P(a,b)

length(p) = distG(a, b).

Similarly, p(a) − p(b) ≤ distG(b, a). Therefore, −distG(b, a) ≤ p(b) − p(a) ≤
distG(a, b). Since distG(a, b) = −distG(b, a), p(b)− p(a) = distG(a, b) for any node
potential p. Hence, any potential is completely defined, once p(a) has been chosen
for some outcome a. Thus, any two node potentials can only differ by a constant.
¤

Next, we define a property of the graph G that is sufficient (though not necessary)
for uniqueness of node potentials up to a constant.

Definition 2.6. A graph with node set V and arc lengths ` is called two-cycle

connected if for every partition V1 ∪ V2 = V , V1 ∩ V2 = ∅, V1, V2 6= ∅, there are

a1 ∈ V1 and a2 ∈ V2 with `a1a2 + `a2a1 = 0.

Theorem 2.7. Let G be a directed graph that satisfies the nonnegative cycle prop-

erty. If G is two-cycle connected then its node potential is uniquely defined up to a

constant.

Proof. First, we show that if G is two-cycle connected, then any two nodes a, b ∈ V

are connected in G by a finite path with nodes a = a0, a1, . . . , ak = b such that
`aiai+1 + `ai+1ai = 0 for i = 0, . . . , k − 1. Call such a path a zero-path. Suppose to
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the contrary, that there is a node a ∈ V that is not connected to all nodes in G by
a zero-path. Define V1 to be the set containing all nodes b that can be reached from
a by a zero-path. Let V2 = V \ V1. By assumption V2 6= ∅. Then, as G is two-cycle
connected, there is an a1 ∈ V1 and a2 ∈ V2 with `a1a2 + `a2a1 = 0 contradicting the
assumption that a2 ∈ V2.

Consider a, b ∈ V and a zero-path pab = (a0, a1, . . . , ak). Then pab together
with the (b, a)-path pba = (ak, . . . , a1, a0) form a cycle of length 0. Note, that
between any two nodes c, d on a cycle of length 0, the path from c to d on the
cycle must be a shortest path, as otherwise, we could construct a negative cycle
by substituting this path by a shorter one. Therefore, distG(a, b) + distG(b, a) =
length(pab) + length(pba) = 0. Hence, any two node potentials in G differ only by a
constant due to Theorem 2.5. ¤

To see that two-cycle connectedness is not necessary for the uniqueness of the
node potential, consider the following example.

Example 2.8. Consider graph G in Figure 2.1. The graph satisfies the nonnega-

tive cycle property, and for every two nodes u, v ∈ V , distG(u, v) + distG(v, u) = 0.

Hence, the node potential is uniquely defined up to a constant according to The-

orem 2.5. Notice, however, that G is not two-cycle connected, as the partition

({a, c}, {b}) violates the condition of Definition 2.6.

a

c b

1
−2

3

−2

−1 3

Figure 2.1: Graph G satisfies anti-symmetric distances but not two-cycle connec-
tedness

2.4 Characterization of Revenue Equivalence

We give a necessary and sufficient condition for revenue equivalence with the aid of
a graph theoretic interpretation used to characterize implementable allocation rules
by Rochet (1987), Gui, Müller, and Vohra (2004) and Saks and Yu (2005). We also
adopt some of their notation.
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Fix agent i and the reports, t−i, of the other agents. For simplicity of notation
we write T and v instead of Ti and vi. Similarly, for any mechanism (f, π), we regard
f and π as functions of i’s type alone, i.e. f : T → A and π : T → R. If (f, π) is
dominant strategy incentive compatible, it is easy to see that for any pair of types
s, t ∈ T such that f(t) = f(s) = a for some a ∈ A, the payments must be equal,
i.e. π(t) = π(s) =: πa. Hence, the payment of agent i is completely defined if the
numbers πa are defined for all outcomes a ∈ A such that f−1(a) is nonempty. For
ease of notation, we let A denote the set of “achievable” outcomes, i.e., the set of
outcomes a such that there exists some type t ∈ T of agent i such that f(t) = a. For
an allocation rule f , let us define two different kinds of graphs. The type graph Tf

has node set T and contains an arc from any node s to any other node t of length3

`st = v(f(t), t)− v(f(s), t).

Here, `st represents the gain in valuation for agent i truthfully reporting type t

instead of lying type s. This could be positive or negative. The allocation graph
Gf has node set A. Between any two nodes a, b ∈ A, there is a directed arc with
length3

`ab = inf
t∈f−1(b)

(v(b, t)− v(a, t)).

The arc lengths `ab in the allocation graph represent the least gain in valuation for
agent i with any type t ∈ f−1(b) for reporting truthfully, instead of misreporting
so as to get outcome a (instead of b). The type graphs and allocation graphs are
complete, directed, and possibly infinite graphs4. Note that type and allocation
graphs are strongly connected, since they are complete graphs. We introduce our
main results in terms of allocation graphs. Analogous results hold for type graphs
as well.

Observation 2.9. Let f be an allocation rule. Payment schemes π such that (f, π)

is a dominant strategy incentive compatible mechanism, exactly correspond to node

potentials in each of the allocation graphs Gf that are obtained from a combination

of an agent and a report vector of the other agents.

Proof. Assume f is implementable. Fix agent i and the reports t−i of the other

3We assume that arc lengths are strictly larger than −∞. For allocation rules implementable in
dominant strategies this is no restriction, as the incentive compatibility constraints imply finiteness
of the arc lengths.

4Clearly, type and allocation graph depend on the agent i and reports t−i of the other agents.
In order to keep notation simple, we suppress the dependence on i and t−i and will simply write
Tf and Gf .
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agents. Consider the corresponding allocation graph Gf . For any pair of types
s, t ∈ T such that f(t) = f(s) = a for some a ∈ A, the payments must be equal, i.e.
π(t) = π(s) = πa. Therefore, π assigns a real number to every node in the graph.
Incentive compatibility implies for any two outcomes a, b ∈ A and all t ∈ f−1(b)
that v(b, t)− πb ≥ v(a, t)− πa, hence, πb ≤ πa + `ab.

For the other direction, define the payment π for agent i as follows. For any
report vector of the other agents t−i, consider the corresponding allocation graph
Gf and fix a node potential p. At aggregate report vector (ti, t−i) with outcome
a = f(ti, t−i), let the payment be πa := p(a). Incentive compatibility now follows
from the fact that p is a node potential in Gf , similarly to the above. ¤

Clearly, the allocation graphs can be defined for any allocation rule such that
all arc lengths are finite. Observation 2.9 together with Lemma 2.4 therefore yields
a characterization of allocation rules that are implementable in dominant strategies
(see also e.g. Rochet (1987)).

Observation 2.10. The allocation rule f is implementable in dominant strategies

if and only if all allocation graphs Gf obtained from a combination of an agent and

a report vector of the other agents satisfy the nonnegative cycle property.

From Lemma 2.4 and Observations 2.9 and 2.10 it follows that for any allocation
rule f implementable in dominant strategies, there exist node potentials in all allo-
cation graphs Gf . The allocation rule f satisfies revenue equivalence if and only if
in each allocation graph Gf , the node potential is uniquely defined up to a constant.
Combining this with Theorem 2.5 yields our main result.

Theorem 2.11. Let f be an allocation rule that is implementable in dominant

strategies. Then f satisfies revenue equivalence if and only if in all allocation graphs

Gf obtained from a combination of an agent and a report vector of the other agents,

distances are anti-symmetric, i.e., distGf
(a, b) = −distGf

(b, a) for all a, b ∈ A.

An analogous characterization holds for type graphs as well. One can check that
all previous arguments still apply when using type graphs. On the other hand, note
the following relation of node potentials in Gf and node potentials in Tf . Given
a node potential pG in Gf , we can define a node potential pT in Tf by letting
pT (t) := pG(f(t)) for any t ∈ T . In fact, let `G and `T denote the arc lengths in Gf

and Tf respectively and observe that `G
ab = inf{`T

st | s ∈ f−1(a), t ∈ f−1(b)}. Then,
for any s, t ∈ T ,

pT (t) = pG(f(t)) ≤ pG(f(s)) + `G
f(s)f(t) ≤ pT (s) + `T

st
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and pT is a node potential. On the other hand, given a node potential pT in Tf , let
pG(a) := pT (s) for any s ∈ f−1(a). Note that pG is well-defined as f(s) = f(t) = a

implies `T
st = 0 and hence pT (s) = pT (t). Furthermore, for any a, b ∈ A and any

s ∈ f−1(a), t ∈ f−1(b),

pG(a) = pT (s) ≤ pT (t) + `T
ts = pG(b) + `T

ts.

Hence, pG(a) ≤ pG(b) + `G
ba and pG is a node potential in Gf . Consequently, there

is a one-to-one relationship between node potentials in Gf and node potentials in
Tf . This insight yields the following corollary.

Corollary 2.12. Let f be an allocation rule that is implementable in dominant

strategies. Then f satisfies revenue equivalence if and only if in all type graphs Tf

obtained from a combination of an agent and a report vector of the other agents,

distances are anti-symmetric, i.e., distTf
(s, t) = −distTf

(t, s) for all s, t ∈ T .

2.5 Applications

In this section we give four applications of our main result. The first two results
show how Theorem 2.11 yields simple, transparent proofs that all implementable f

satisfy revenue equivalence in settings where the outcome space is finite or count-
ably infinite, respectively. The third shows that the characterization by Chung and
Olszewski (2007) can be derived from Theorem 2.11. The fourth describes an eco-
nomic environment with uncountable outcome space where Theorem 2.11 can be
used to identify revenue equivalence, but where the existing theorems are silent.

2.5.1 Finite Outcome Spaces

In this section, we prove revenue equivalence for finite outcome spaces when type
spaces and valuation functions satisfy very weak assumptions. From now on, we
assume that agents’ type spaces are (arbitrary) topological spaces. Recall that a
subset T of a topological space is connected if it cannot be covered non-trivially by
the disjoint union of two open sets. That is, there exist no open sets T1, T2 with
T ⊆ T1 ∪ T2, T1 ∩ T2 = ∅, T ∩ T1 6= ∅ and T ∩ T2 6= ∅. We prove the following.

Theorem 2.13. Let A be a finite outcome space. Let each agent i ∈ {1, . . . , n} have

types from the (topologically) connected type space Ti. Let each agent’s valuation

function vi(a, ·) be a continuous function in the type of the agent for every a ∈ A.
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Then, every allocation rule f : Πn
i=1Ti → A that is implementable in dominant strate-

gies satisfies revenue equivalence.

For the proof, we need the following fact from topology that can be found e.g.
in Munkres (2000).

Fact 2.14. Let T be a connected subset of a topological space. Then any partition

of T into subsets T1, T2 6= ∅, T1 ∪ T2 = T , T1 ∩ T2 = ∅ satisfies T 1 ∩ T 2 6= ∅, where

T i is the closure of Ti in T .

Now, we are able to prove the theorem.

Proof (Theorem 2.13). Consider a single agent with type space T and valuation
function v. Regard f as a function on T as before. Let A1 ∪A2 = A, A1 ∩A2 = ∅,
A1,A2 6= ∅ be a partition of A. Then, T = f−1(A1)∪f−1(A2), f−1(A1)∩f−1(A2) =
∅ is a partition of T and f−1(A1), f−1(A2) 6= ∅, since f is onto. According to
the fact above, there exists t ∈ f−1(A1) ∩ f−1(A2). Hence, there are sequences
(tn1 ) ⊆ f−1(A1) and (tn2 ) ⊆ f−1(A2) with limn→∞ tn1 = limn→∞ tn2 = t. As A is
finite, there must be a1 ∈ A1 and a2 ∈ A2 and subsequences (tnk

1 ) ⊆ (tn1 ) and
(tnm

2 ) ⊆ (tn2 ) with f(tnk
1 ) = a1 for all k and f(tnm

2 ) = a2 for all m. Since v is
continuous in the type,

0 = v(a2, t)− v(a1, t) + v(a1, t)− v(a2, t)

= lim
n→∞(v(a2, t

nm
2 )− v(a1, t

nm
2 ) + v(a1, t

nk
1 )− v(a2, t

nk
1 )).

According to the definition of the arc length in Gf , the latter can be bounded from
below as follows.

lim
n→∞(v(a2, t

nm
2 )− v(a1, t

nm
2 ) + v(a1, t

nk
1 )− v(a2, t

nk
1 )) ≥ `a1a2 + `a2a1 ≥ 0.

The last inequality is true, since Gf has no negative cycles. Hence, all inequalities
are equalities and `a1a2 + `a2a1 = 0. Consequently, Gf is two-cycle connected. The
claim follows from Theorem 2.7 and Observation 2.9. ¤

Notice that we cannot omit the continuity assumption, as the following example
demonstrates.

Example 2.15. Let there be one agent with type t ∈ [0, 1] and two outcomes A =

{a, b}. Let the agent’s valuation be v(a, t) = 1, if t < 1/2 and v(a, t) = 0, if t ≥ 1/2.

Let v(b, t) = 1/2 for all t. That is, v(a, ·) is discontinuous at t = 1/2. Let the
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allocation rule be the efficient one, i.e., f(t) = a for t < 1/2 and f(t) = b otherwise.

Then dominant strategy incentive compatibility is equivalent to 1 − πa ≥ 1/2 − πb

and 1/2 − πb ≥ −πa, which is satisfied whenever |πa − πb| ≤ 1/2. For instance,

πa = πb = 0 or π′a = 1/2, π′b = 0 are two payment schemes that make f truthful,

but π and π′ do not differ by a constant.

If the type space is not connected, there are examples of the same flavor as
Example 2.15, where the payment scheme is not unique. However, even if the
valuation function is not continuous everywhere, sufficient conditions for revenue
equivalence can be proven using Theorem 2.7. Indeed, if the valuation functions are
continuous at particular type vectors as they are constructed in the proof, two-cycle
connectedness of the graphs Gf follows. Also, if T is path connected and between
any two types there exists a path such that the valuation functions are continuous
along this path, we can make use of Theorem 2.7.

2.5.2 Countable Outcome Spaces

We investigate the case of countably infinite outcome spaces in this section. Theorem
2.11 yields an elementary proof for revenue equivalence under weak assumptions.
One of these assumptions is equicontinuity of the valuation functions.

Definition 2.16. The family of functions {v(a, ·)}a∈A is equicontinuous if for all

ε > 0 and t ∈ T ⊆ Rk there is δ > 0 such that for all outcomes a ∈ A and all s ∈ T

with ‖t − s‖ < δ it holds that |v(a, t) − v(a, s)| < ε. Especially, δ must not depend

on a. Here, ‖ · ‖ denotes the Euclidean norm on Rk.

Theorem 2.17. Let A be a countable outcome space. Let each agent i ∈ {1, . . . , n}
have types from the (topologically ) connected type space5 Ti ⊆ Rki. Let the family

of valuation functions {vi(a, ·)}a∈A be equicontinuous for every agent i. Then, ev-

ery allocation rule f : Πn
i=1Ti → A implementable in dominant strategies satisfies

revenue equivalence.

Note that Theorem 2.17 generalizes Theorem 2.13 if type spaces are subsets
of the Euclidian space, since equicontinuity of {v(a, ·)}a∈A for finite A is equiva-
lent to the requirement that vi(a, ·) be continuous for all a ∈ A. While the proof
of Theorem 2.13 follows easily from Theorem 2.7, this approach fails in the infinite

5It is not possible to formulate the theorem for general topological type spaces any more due to
the equicontinuity assumption. However, any metric space rather than the Euclidean space used
here would have been sufficient.
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case, and in fact, our proof of Theorem 2.17 is based on Theorem 2.5 rather than 2.7.

Proof. Assume an allocation rule f implementable in dominant strategies that
does not satisfy revenue equivalence. We show this implies that there is an agent i

whose type space is not connected. According to Theorem 2.11, there is an agent
i and a report vector of the other agents t−i with corresponding allocation graph
Gf and a∗, b∗ ∈ A such that distGf

(a∗, b∗) + distGf
(b∗, a∗) > 0. Let T be the type

space of i and regard f as a function on T as before. As A is countable, the set
{distGf

(a∗, x)+ distGf
(x, a∗) |x ∈ A} contains only countably many values. Hence,

there exists a z > 0 such that the sets A1 = {x | distGf
(a∗, x) + distGf

(x, a∗) < z}
and A2 = {x | distGf

(a∗, x) + distGf
(x, a∗) > z} are both non-empty and together

yield a partition of A. Clearly, a∗ ∈ A1. Then, the sets T1 = f−1(A1) and T2 =
f−1(A2) are non-empty and yield a partition of the type space T . T1 is a proper
subset of T . We show that T1 is open and closed, implying that T is not connected.

T1 is open: Let t ∈ T1. Let f(t) = x ∈ A1. Then, distGf
(a∗, x) + distGf

(x, a∗) =
z − ε for some ε = ε(x) > 0. As the v(a, ·), a ∈ A, are equicontinuous, there is a
δε/2 such that |v(a, t) − v(a, s)| < ε/2 for all a ∈ A and s ∈ T with ‖s − t‖ < δε/2.
Let s ∈ T such that ‖s− t‖ < δε/2 and let y = f(s). Then the following is true:

distGf
(a∗, y) + distGf

(y, a∗) ≤ distGf
(a∗, x) + `xy + `yx + distGf

(x, a∗)

= z − ε + `xy + `yx

≤ z − ε + |v(y, s)− v(y, t)|+ |v(x, t)− v(x, s)|
< z

Hence distGf
(a∗, y) + distGf

(y, a∗) < z. Thus y ∈ A1 and s ∈ T1 for any s in the
δε/2-ball around t. Consequently, T1 is open.

T1 is closed: Let (tn)n∈N be a sequence in T1 that converges to t ∈ T . Suppose for
contradiction that t ∈ T2. Let x = f(t). Then distGf

(a∗, x)+distGf
(x, a∗) = z+ε for

some ε = ε(x) > 0. By equicontinuity, there is a δε/2 such that |v(a, t)−v(a, s)| < ε/2
for all a ∈ A and s ∈ T with ‖s− t‖ < δε/2. Choose n0 such that ‖tn0 − t‖ < δε/2.
Let y = f(tn0). As tn0 ∈ T1, distGf

(a∗, y) + distGf
(y, a∗) < z. Then the following
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holds:

z + ε = distGf
(a∗, x) + distGf

(x, a∗)

≤ distGf
(a∗, y) + `yx + `xy + distGf

(y, a∗)

< z + `yx + `xy

≤ z + |v(x, t)− v(x, tn0)|+ |v(y, tn0)− v(y, t)|
< z + ε,

a contradiction. ¤
An example in Section 2.5.4 demonstrates that Theorem 2.17 cannot be gener-

alized to uncountable outcome spaces.
A different way of modeling valuations for countable outcome spaces is to identify

types with vectors in RA, such that vi(a, t) = ta. On RA we can define the sup-
topology by defining for ε > 0, and t ∈ RA the ε-ball around t as Bε(t) = {s ∈
RA | supa∈A |ta − sa| < ε}. Using almost the same proof as for Theorem 2.17, one
can show the following theorem, which can also be found in Chung and Olszewski
(2007).

Theorem 2.18. Let A be a countable outcome space. Let the type space Ti ⊆ RA
for every agent i be (topologically ) connected with respect to the sup-topology on

RA. Then, every allocation rule f : Πn
i=1Ti → A that is implementable also satisfies

revenue equivalence.

Note that if for every agent i there are no two different types that have the
same valuation for all outcomes a ∈ A, then Theorem 2.17 follows easily from The-
orem 2.18. That is because the function vi : Ti → RA with vi(t) := (ta1 , ta2 , . . . ),
where A = (a1, a2, . . . ), is one-to-one. Then an implementable allocation rule f

in the sense of Theorem 2.17 canonically translates into an implementable alloca-
tion rule f̃ in the sense of Theorem 2.18 by setting f̃(v(t1), . . . , v(tn)) = f(t1, . . . , tn).
Moreover, the vi(Ti) are connected for connected Ti and equicontinuous {vi(a, ·)}a∈A.
Revenue equivalence of f̃ then implies revenue equivalence of f .

On the other hand, if there are types s, t ∈ Ti for some agent i with vi(a, s) =
vi(a, t) for all a ∈ A, it is not clear, how to derive Theorem 2.17 from Theorem 2.18.

2.5.3 The Characterization by Chung and Olszewski

In this section, we show how the characterization by Chung and Olszewski (2007)
follows from our main result and comment briefly on the results in other literature on
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revenue equivalence. First, we introduce the notation used by Chung and Olszewski
(2007) and restate their characterization theorem.

Let A be countable. As before, regard everything from the perspective of a single
agent. Let A1,A2 be disjoint subsets of A and r : A1 ∪ A2 → R. For every ε > 0,
let

T1(ε) =
⋃

a1∈A1

{t ∈ T | ∀ a2 ∈ A2 : v(a1, t)− v(a2, t) > r(a1)− r(a2) + ε}

and

T2(ε) =
⋃

a2∈A2

{t ∈ T | ∀ a1 ∈ A1 : v(a1, t)− v(a2, t) < r(a1)− r(a2)− ε}.

Finally, let Ti = ∪ε>0Ti(ε), i = 1, 2. Observe that T1 ∩ T2 = ∅. Call the type space
T splittable if there are A1,A2 and r such that T = T1 ∪ T2 and Ti 6= ∅ for i = 1, 2.
Note that, if T is splittable, T is disconnected with respect to the sup-topology on
RA defined above, as T1 and T2 are open sets. T being topologically disconnected,
does not imply that T is splittable.

Theorem 2.19 (Chung and Olszewski 2007). If A is finite then the following two

statements are equivalent.

(i) All f that are implementable in dominant strategies satisfy revenue equiva-

lence.

(ii) For all agents, Ti is not splittable.

If A is not finite, but countable, (ii) implies (i).

Notice that in Theorem 2.11 no assumption on the cardinality of A is made,
whereas in Theorem 2.19, A is assumed finite or countable, respectively. On the
other hand, Theorem 2.11 imposes a condition on the allocation rule, whereas Theo-
rem 2.19 characterizes T and v such that all allocation rules that are implementable
in dominant strategies satisfy revenue equivalence. We elaborate on this difference
in Section 2.5.4.

In order to show that (ii) in Theorem 2.19 is a necessary condition for revenue
equivalence in the case of finite A, one can directly construct an allocation rule and
two payment schemes that do not differ by a constant from the assumption that
T is splittable. This is done in the paper by Chung and Olszewski. We give an
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alternative proof for the fact that (ii) is a sufficient condition for countable A. Our
proof establishes a connection to the allocation graph defined in Section 2.4.

Proof. [ii ⇒ i] Suppose an allocation rule f that is implementable in dominant
strategies but does not satisfy revenue equivalence. Since f is implementable, the
allocation graphs satisfy the non-negative cycle property. Since revenue equivalence
is violated, Theorem 2.11 implies that there is an agent i and reports of the other
agents t−i such that in the corresponding allocation graph Gf , distGf

(a∗, b∗) +
distGf

(b∗, a∗) > 0 for some a∗, b∗ ∈ A. Assume the perspective of agent i. In the
following, we write dist(·, ·) instead of distGf

(·, ·) and T instead of Ti for ease of
notation. We show the above assumptions imply that T is splittable.

Define d(a) = dist(a∗, a) + dist(a, a∗) for all a ∈ A. Since the function d takes
only countably many values, there exists z ∈ R such that the following sets form a
non-trivial partition of A: A1 = {a ∈ A | d(a) > z}, A2 = {a ∈ A | d(a) < z}.
Observe that for every a1 ∈ A1, there exists ε(a1) > 0 such that d(a1) > z + ε(a1).
Similarly, for every a2 ∈ A2, there exists ε(a2) > 0 such that d(a2) < z − ε(a2).

For a1 ∈ A1, let r(a1) = −dist(a1, a
∗). For a2 ∈ A2, let r(a2) = dist(a∗, a2)− z.

Now let t ∈ T such that f(t) = a1 ∈ A1. We claim that for all a2 ∈ A2 it holds
that v(a1, t) − v(a2, t) > r(a1) − r(a2) + ε(a1), which proves t ∈ T1(ε(a1)). Indeed,
v(a1, t)− v(a2, t) ≥ `(a2, a1). The claim then follows from:

dist(a∗, a2) + `(a2, a1) + dist(a1, a
∗) ≥ dist(a∗, a1) + dist(a1, a

∗)

> z + ε(a1).

Next, let t ∈ T such that f(t) = a2 ∈ A2. We claim that for all a1 ∈ A1 it holds
that v(a1, t) − v(a2, t) < r(a1) − r(a2) − ε(a2), which proves t ∈ T2(ε(a2)). Again,
v(a1, t)− v(a2, t) ≤ −`(a1, a2), and the claim follows from:

dist(a∗, a2) + dist(a1, a
∗)− `(a1, a2)

≤ dist(a∗, a2) + dist(a1, a
∗)− dist(a1, a

∗) + dist(a2, a
∗)

= dist(a∗, a2) + dist(a2, a
∗)

< z − ε(a2).

¤
Using Theorem 2.19, Chung and Olszewski derive Theorem 2.18 for the case

of countable outcome spaces and show how the results of prior work mentioned in
the introduction (Green and Laffont 1977, Holmström 1979, Krishna and Maen-
ner 2001, Milgrom and Segal 2002) follow from that theorem. In a similar way,
those results are implied by Theorem 2.17. We therefore refer to Chung and Ol-
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szewski (2007) for a detailed discussion of the mentioned literature. Furthermore,
the paper by Suijs (1996) is not mentioned in Chung and Olszewski (2007). Next
to proving a characterization theorem for revenue equivalence for the setting with a
finite outcome space and the allocation rule being the utilitarian maximizer, Suijs
relaxes the smooth path-connectedness condition from Holmström (1979) for this
setting. He shows that path-connectedness of type spaces is sufficient. This result
follows directly from Corollary 2.13 and the fact that path-connectedness implies
connectedness.

2.5.4 A Setting with an Uncountable Outcome Space

In this section, we give an example for an economic setting where Theorem 2.11 can
be used to identify revenue equivalence, while all previous results are not applicable.

Cachon and Lariviere (1999) consider demand rationing problems where agents
have to share a divisible good. We consider the following variant of the problem. A
supplier has one unit of a perfectly divisible good that has to be distributed among
n retailers (agents). The type of agent i is his demand ti ∈ (0, 1]. Given the reports
t ∈ (0, 1]n of all agents, an allocation rule f : (0, 1]n → [0, 1]n assigns a fraction of
the good to every agent such that

∑n
i=1 fi(t) ≤ 1. If an agent’s demand is met,

he incurs a disutility of 0, otherwise his disutility is linear in the amount of unmet
demand. More precisely, agent i’s valuation6 if he is assigned quantity qi is

vi(qi, ti) =

{
0, if qi ≥ ti,
qi − ti, if qi < ti.

In this context, payments are reimbursements by the supplier for unmet demand.
Let us call an allocation rule f dictatorial, if there is an agent i that always

gets precisely his demanded quantity, fi(ti, t−i) = ti for all t−i. We show that any
dictatorial rule violates revenue equivalence.

Theorem 2.20. For the above demand rationing problem, let f1(t) = t1 and fi(t) =

(1− t1)/(n− 1). Then f is implementable but does not satisfy revenue equivalence.

Theorem 2.20 is formulated for the allocation rule that splits the remaining
supply equally among agents 2 to n. However, from the proof it can be easily seen

6A similar valuation function appears in Holmström (1979) as an example to demonstrate that
his smooth path-connectedness assumption cannot be weakened. Likewise, the example can be used
to show that the convexity assumption of the valuation function in Krishna and Maenner (2001)
cannot be relaxed.
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that the conclusion of Theorem 2.20 holds for all other dictatorial rules that are
implementable.

Proof. Note that for agents 2, . . . , n their assigned quantity does not depend on
their report. Therefore, truthful reporting is a (weakly) dominant strategy for those
agents. Regard the type graph Tf for agent 1 and note that it does not depend on
the report of the other agents. For simplicity we use v, t and f instead of v1, t1 and
f1. Let s, t ∈ (0, 1] with s < t. We call (s, t) a forward arc and (t, s) a backward arc.
Then

`st = v(f(t), t)− v(f(s), t) = v(t, t)− v(s, t) = t− s > 0, and

`ts = v(f(s), s)− v(f(t), s) = v(s, s)− v(t, s) = 0.

As all arcs have non-negative length, there is no negative cycle and f is imple-
mentable. Furthermore, distTf

(t, s) = `ts = 0 for t > s. We claim that distTf
(s, t) =

t − s > 0. To that end, note that all paths from s to t that use only forward arcs
have the same length t − s. If a path from s to t contains a backward arc, the
forward arcs of that path have a total length more than t − s. Hence, for all s < t

we have distTf
(s, t) + distTf

(t, s) > 0. Therefore revenue equivalence does not hold
according to Theorem 2.11. In fact, π1(t) = 0 for all t ∈ (0, 1] and π1(t) = t− 1 for
all t ∈ (0, 1] are two payment schemes for agent 1 that make f dominant strategy
incentive compatible. (For the other agents, pick any constant payment scheme.)
¤

Theorem 2.20 implies that in this setting not all implementable f satisfy rev-
enue equivalence. A theorem describing sufficient conditions for all implementable
f to satisfy revenue equivalence is necessarily silent here. Nevertheless, we can use
Theorem 2.11 to identify properties of allocation rules that guarantee revenue equiv-
alence in this setting. We state such properties formally in Theorem 2.21 below, and
then show that for instance the proportional allocation rule with fi(t) = ti/

∑n
j=1 tj

satisfies these properties.

Theorem 2.21. Let f : (0, 1]n → [0, 1]n be an allocation rule. If for every agent i

and every report t−i of the other agents, f satisfies any of the conditions below, then

f is implementable and satisfies revenue equivalence.

(i) fi(ti, t−i) is continuous in ti and fi(ti, t−i) < ti for all ti ∈ (0, 1],

(ii) fi(ti, t−i) is continuous in ti and fi(ti, t−i) > ti for all ti ∈ (0, 1), fi(1, t−i) = 1,
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(iii) fi(ti, t−i) is continuous and increasing in ti and has exactly one fixed point

x ∈ (0, 1] with fi(x, t−i) = x, fi(ti, t−i) > ti for all ti ∈ (0, x), fi(ti, t−i) < ti

for all ti ∈ (x, 1].

Proof. Again, fix agent i, t−i and use v, t and f instead of vi, ti and fi. Further-
more, regard f as a function of i’s type only. For all three cases, assume that f is
continuous. Regard the corresponding type graph Tf .

(i) We have f(t) < t for t ∈ (0, 1]. Let s < t. Using f(s) < s < t, the arc lengths
in Tf are as follows:

`st = f(t)− f(s) and

`ts =

{
f(s)− f(t), if f(t) < s,
f(s)− s, if f(t) ≥ s.

To verify implementability, we prove that any cycle in the type graph has non-
negative length. Note that for s < t, `st = `sx + `xt for any s < x < t. We say
that we split arc (s, t) at x if we replace (s, t) by arcs (s, x) and (x, t) in a path
or cycle. Note that splitting forward arcs does not change the length of the path
or cycle. Consider any finite cycle c with nodes c1 to ck and rename the nodes
such that c1 < c2 < · · · < ck. Split every forward arc (cu, cv) with u < v at all
intermediate nodes cu+1, . . . , cv−1 and call the resulting cycle c′; the cycle length
remains the same. Consider some backward arc (cv, cu) with u < v. As c′ is a cycle,
it contains all forward arcs (cu, cu+1), . . . , (cv−1, cv). The length of the sub-cycle
(cu, cu+1, . . . , cv−1, cv, cu) is equal to

`cucu+1 + ... + `cv−1cv + `cvcu = `cucv + `cvcu =

{
f(cv)− cu, if f(cv) ≥ cu,
0, if cu > f(cv),

and hence is non-negative. Removing the arcs of the sub-cycle (cu, cu+1, . . . , cv, cu)
from c′ leaves a new cycle c′′ of smaller or equal length. As c′′ is still a cycle we can
repeat the argument finitely many times and finally arrive at the empty cycle with
length 0. Hence, c has non-negative length and f is implementable.

In order to verify that f satisfies revenue equivalence, we compute distances
distTf

(s, t) and distTf
(t, s) for s < t. Note that distTf

(s, t) ≤ `st = f(t) − f(s).
We claim that also distTf

(t, s) ≤ f(s) − f(t), so distTf
(s, t) + distTf

(t, s) ≤ 0.
Together with implementability we get distTf

(s, t) + distTf
(t, s) = 0, and revenue

equivalence holds by Corollary 2.12. To prove the claim we consider two cases. If
f(t) < s, distTf

(t, s) ≤ `ts = f(s) − f(t) and we are done. If f(t) ≥ s, consider
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the sequence (xn)∞n=0 = (t, f(t), f(f(t)), . . . ). It is monotonically decreasing and
bounded and so converges. The sequence (f(xn))∞n=0 = (f(t), f(f(t)), f3(t), . . . )
converges for the same reason and limn→∞ xn = limn→∞ f(xn) =: x. As f is
continuous, we have x = f(x) if x is in (0, 1]. As there is no fixed point in (0, 1], we
conclude x = 0. Therefore, there exists some smallest index K such that xK < s.
Now consider the path pK defined as (t = x0, . . . , xK , s). Path pK has length
f2(t)− f(t) + f3(t)− f2(t) + · · ·+ fK+1(t)− fK(t) + f(s)− fK+1(t) = f(s)− f(t).
We conclude distTf

(t, s) ≤ length(pK) = f(s)− f(t), and we are done.

(ii) We have f(t) > t for t ∈ (0, 1) and f(1) = 1. Let s < t. Using f(t) ≥ t > s,
the arc lengths in Tf can be computed as follows:

`st =

{
0, if f(s) ≥ t;
t− f(s), if f(s) < t

and

`ts = 0.

As all arc lengths are non-negative, all cycles have non-negative length and f is
implementable.

Since all paths have non-negative length, we know that distTf
(t, s) = `ts = 0. We

claim that also distTf
(s, t) = 0, hence revenue equivalence holds by Corollary 2.12.

If f(s) ≥ t, distTf
(s, t) = `st = 0 and we are done. If f(s) < t, regard the sequence

(xn)∞n=0 = (s, f(s), f(f(s)), . . . ). This sequence converges to fixed point x = 1 by the
same arguments as in (i). Let us regard paths pk defined as pk = (s = x0, . . . , xk, 1).
As `xi,f(xi) = 0 for i = 0, . . . , k−1 and `xk,1 = 1−f(xk), the length of pk is 1−f(xk),
which converges to 0 as k increases. Thus, distTf

(s, 1) = 0. With `1t = 0 it follows
that distTf

(s, t) = 0.

(iii) We have that f is increasing on (0, 1] and there is x ∈ (0, 1) such that
f(x) = x, f(t) > t for t ∈ (0, x), and f(t) < t for t ∈ (x, 1]. There are six types of
arcs, whose lengths are as follows.

If s < t ≤ x: `st =

{
0, if f(s) ≥ t;

t− f(s), if t > f(s);
`ts = 0;

If s ≤ x < t: `st = f(t)− f(s); `ts = 0;

If x < s < t: `st = f(t)− f(s); `ts =

{
f(s)− f(t), if f(t) < s;

f(s)− s, if s ≤ f(t).

Implementability can be verified in a manner similar to case (i). It can be checked
that splitting forward arcs can only decrease the cycle length. When removing sub-
cycles consisting of a backward arc (t, s), for s < t, together with the corresponding
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forward arcs, there are different cases. If x < s < t, the cycle length is non-negative
by arguments similar to case (i). If s < x < t or s < t < x, the length of the
backward arc is 0 and all forward arcs have non-negative length. Thus, such a
sub-cycle has non-negative length and the argument can be continued as in (i).

For revenue equivalence, we consider two cases. If s < t ≤ x or x < s < t, both
s and t lie on a 0-length cycle just like in cases (i) and (ii). Hence, distTf

(s, t) +
distTf

(t, s) = 0. If s ≤ x < t, an analogue argument as in (ii) yields distTf
(s, x) = 0.

With `xt = f(t) − f(x), we get distTf
(s, t) ≤ f(t) − f(x). Similarly as in (i), we

can show that distTf
(t, x) ≤ f(x)− f(t). Consequently, and since `xs = 0, we have

distTf
(t, s) ≤ distTf

(t, x) + `xs ≤ f(x) − f(t). Thus, distTf
(s, t) + distTf

(t, s) ≤ 0
and by implementability, distTf

(s, t) + distTf
(t, s) = 0. Hence revenue equivalence

holds. ¤

Corollary 2.22. For the demand rationing problem, the proportional allocation rule

f with fi(t) = ti/
∑n

j=1 tj for i = 1, . . . , n is implementable and satisfies revenue

equivalence.

Proof. For every agent i and every report of the other agents t−i, the function
fi(ti, t−i) = ti/

∑n
j=1 tj satisfies the assumptions of either case (i) or (iii) in Theo-

rem 2.21. ¤

The proportional allocation rule completely distributes the supply among the
retailers. In particular, a retailer can get more than his demanded quantity. In an
economy without free disposal this may not be desired. In this case, the proportional
allocation rule becomes fi(t) = min{ti, ti/

∑n
j=1 tj} for i = 1, . . . , n, and the supplier

keeps part of the good if the supply exceeds the total demand. We next show that
this allocation rule does not satisfy revenue equivalence. The result follows from the
following theorem.

Theorem 2.23. Suppose in the demand rationing problem, f is implementable and

there is one agent i and reports t−i with fi(·, t−i) increasing and continuous such

that there are x1, x2 ∈ [0, 1] with

fi(ti, t−i) > ti if ti < x1

fi(ti, t−i) = ti if x1 ≤ ti ≤ x2

fi(ti, t−i) < ti if x2 < ti.

Then f does not satisfy revenue equivalence.
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Proof. Fix agent i and report vector t−i of the other agents satisfying the assump-
tions of the Theorem. Regard the corresponding type graph Tf . There are six types
of arcs (s, t) with s < t depending on the position of s and t with respect to x1

and x2. Similarly, there are six types of arcs (t, s). It can be checked that the arc
lengths are as follows.

s < t ≤ x1: `st =

{
0, if f(s) ≥ t;

t− f(s), if t > f(s);
`ts = 0

x2 ≤ s < t: `st = f(t)− f(s) `ts =

{
f(s)− f(t), if f(t) < s;

f(s)− s, if s ≤ f(t).

all other cases: `st = f(t)− f(s) `ts = 0

Note that the only arcs with negative lengths are (t, s)-arcs for x2 ≤ s < t.
That f is implementable can be verified in a manner similar to the other cases.

Splitting forward arcs can only reduce the length of a cycle. In order to verify
that the total length of a sub-cycle consisting of a backward arc together with the
corresponding forward arcs is indeed non-negative, one can check the case x2 ≤ s < t

similar to case (i) of Theorem 2.21. In all other cases it is sufficient to note that the
lengths of all involved forward and backward arcs are non-negative.

We show that f violates revenue equivalence by proving the existence of types s

and t such that distTf
(s, t) + distTf

(t, s) > 0. In fact, this inequality holds for any
s, t ∈ [x1, x2]. Let s, t ∈ [x1, x2], s < t. Since `ts = 0, we get distTf

(t, s) ≤ 0. If
distTf

(t, s) was in fact smaller than 0, there would exist a path p of negative length
from t to s. Such a path must contain at least one (t′, s′)-arc with x2 ≤ s′ < t′. In
this case, the path must contain a sub-path from t to t′. Splitting forward arcs of this
sub-path at s′ (if necessary) yields a non-negative sub-cycle through s′ and t′. The
split does not increase the path length. Removing the sub-cycle can only reduce the
length of p. This way, all negative arcs can be removed from p without increasing
its length. That contradicts the length of p being negative. Hence, distTf

(t, s) = 0.
We claim that distTf

(s, t) = t − s > 0. To that end, note that any (s, t)-path
that contains a backward arc, can be turned into a path of smaller or equal length
without any backward arcs as follows. Suppose that backward arc (t′, s′) is contained
in p, s′ < t′. Because p is an (s, t)-path for t > s, it has to contain forward arcs
that completely “pass” the (t′, s′)-arc in forward direction. Splitting all forward
arcs passing s′ at s′ and splitting all forward arcs passing t′ at t′ does not increase
p’s length. Again, this splitting procedure results in a sub-cycle consisting of the
(t′, s′)-arc and a forward path from s′ to t′. This sub-cycle has non-negative length
and can be removed without increasing the length of p. Hence, we can without loss
of generality restrict our attention to (s, t)-paths that contain only forward arcs.
Such paths can only contain nodes from [s, t] ⊆ [x1, x2]. Therefore, the length of all
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such paths is equal to f(t)− f(s) = t− s > 0, which proves the claim. ¤

Corollary 2.24. For the demand rationing problem, the allocation rule f with

fi(t) = min{ti, ti/
∑n

j=1 tj} for i = 1, . . . , n is implementable, but does not satisfy

revenue equivalence.

Proof. For any agent i, and any t−i, let d−i =
∑

j 6=i tj be the total demand of the
other agents. If d−i > 1, fi satisfies the assumptions of case (i) of Theorem 2.21.
If d−i < 1, f satisfies the assumptions of Theorem 2.23 for x1 = 0 and x2 =
1 − d−i. Implementability follows from the mentioned theorems. However revenue
equivalence does not hold according to Theorem 2.23. ¤

2.6 Discussion

Our results can be extended to other notions of incentive compatibility. We briefly
discuss two of them.
Ex-post incentive compatibility with externalities. The notation used in this

chapter is appropriate to model allocational externalities in auction settings, as an
outcome a ∈ A can be used to represent the entire allocation of all the items to
the various agents. In order to account for informational externalities in the case of
ex-post incentive compatibility, the valuation function of agent i is also a function
of the true types of the other agents. An ex-post equilibrium is a Nash-equilibrium
where every agent knows the types of all other agents. Formally, truth-telling is an
ex-post equilibrium for allocation rule f and payment scheme π if for all agents i,
all types ti and si of i and all types t−i of the other agents

vi(f(ti, t−i), ti, t−i)− π(ti, t−i) ≥ vi(f(si, t−i), ti, t−i)− π(si, t−i).

Again, incentive compatible payment schemes can be associated with node po-
tentials in the allocation graphs. The arc lengths in Gf have to be defined as follows:

`ab = inf
ti∈f−1(b)

(vi(b, ti, t−i)− vi(a, ti, t−i)).

We get the following result.

Theorem 2.25. An ex-post implementable allocation rule f satisfies revenue equi-

valence if and only if in every allocation graph Gf , for every two allocations a, b,

distGf
(a, b) = −distGf

(b, a).
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Bayes-Nash incentive compatibility. Müller, Perea, and Wolf (2007) already

used type graphs for the case of Bayes-Nash incentive compatible allocation rules.
An allocation rule f is said to be Bayes-Nash incentive compatible if there is a
payment scheme π such that for all agents i and all types ti and si of i the following
is true

E−i[vi(f(ti, t−i), ti, t−i)− πi(ti, t−i)] ≥ E−i[vi(f(si, t−i), ti, t−i)− πi(si, t−i)],

where the expected value is taken with respect to the types of all agents other than
i. That is, truth-telling of every agent is a Nash equilibrium when agents try to
maximize expected utilities. We use the type graph with arc lengths defined as
follows:

`siti = E−i[vi(f(ti, t−i), ti, t−i)− vi(f(si, t−i), ti, t−i)].

Note that by taking expectations, there is a single type graph for every agent. Here,
we analyze expected payment schemes E−i(πi(·, t−i)), and an allocation rule satisfies
revenue equivalence if expected payments are unique up to a constant.

Theorem 2.26. A Bayes-Nash implementable allocation rule f satisfies revenue

equivalence with respect to expected payments if and only if in every type graph Tf

for all types s and t of this agent, distTf
(s, t) = −distTf

(t, s).

Incentive compatibility, monotonicity and potential functions. In settings

with multi-dimensional type spaces which are subsets of Rk, finite A, and valuation
functions that are linear in types, it was established by several authors that im-
plementability, and thus the non-negative cycle property, is sometimes implied by
a monotonicity property, termed weak monotonicity in Bikhchandani, Chatterjee,
Lavi, Mu’alem, Nisan, and Sen (2006). For dominant strategy incentive compati-
bility see Bikhchandani et al., Gui, Müller, and Vohra (2004), Saks and Yu (2005),
and Monderer (2007), for Bayes-Nash incentive compatibility see Müller, Perea, and
Wolf (2007). In these settings, implementability implies that the allocation rule f ,
viewed from a single agent perspective as a vector field that maps multi-dimensional
types on (lotteries over) outcomes, has a potential function F . One can easily verify
that this property has the following interpretation on type graphs: the length of a
shortest path in Tf from some type s to some type t is upper bounded by a path
integral of the vector field f , or equivalently F (t) − F (s). From this it follows ea-
sily that distTf

(s, t) = −distTf
(t, s), i.e., revenue equivalence holds. In particular,

distTf
(s, t) = F (t) − F (s) for any potential function F . This connection between

implementability, potential functions and revenue equivalence is also established in
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Jehiel, Moldovanu, and Stacchetti (1996), Jehiel, Moldovanu, and Stacchetti (1999),
Jehiel and Moldovanu (2001) and Krishna and Maenner (2001).
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Chapter 3

Optimal Mechanisms for Single

Machine Scheduling

We study the design of optimal mechanisms in a setting where job-agents compete
for being processed by a service provider that can handle one job at a time. Each job
has a processing time and incurs a waiting cost. Jobs need to be compensated for
waiting. We consider two models, one where only the waiting costs of jobs are private
information (1-d), and another where both waiting costs and processing times are
private (2-d). Probability distributions represent the public common belief about
private information. We consider discrete and continuous distributions. In this
setting, an optimal mechanism minimizes the total expected expenses to compensate
all jobs, while it has to be Bayes-Nash incentive compatible. We derive closed
formulae for the optimal mechanism in the 1-d case and show that it is efficient for
symmetric jobs. For non-symmetric jobs, we show that efficient mechanisms perform
arbitrarily bad. For the 2-d discrete case, we prove that the optimal mechanism
in general does not even satisfy IIA, the ‘independent of irrelevant alternatives’
condition. Hence any attempt along the lines of the classical auction setting is
doomed to fail. In the 2-d discrete case, we also show that the optimal mechanism
is not even efficient for symmetric agents.1

1Part of the results of this chapter were published in Heydenreich, Mishra, Müller, and Uetz
(2008).
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3.1 Introduction

The design of optimal auctions is recognized as an intriguing issue in auction theory;
first studied by Myerson (1981) for the case of single item auctions. In that setting,
the goal is to maximize the seller’s revenue. We study the design of optimal auctions
(or more precisely, mechanisms) in a setting where job-agents compete for being
processed by a service provider that can only handle one job at a time. No job
can be interrupted once started, and each job is characterized by service time and
weight, the latter representing its disutility for waiting per unit time. It is well known
that the total disutility of the jobs is minimized by a scheduling policy known as
Smith’s rule: schedule jobs in order of non-increasing ratios of weight over service
time (Smith 1956).

Our Contribution. We consider different cases. In the one-dimensional (1-d)
case, jobs’ processing times are public information and a job’s weight is only known
to the job itself. We further distinguish between the discrete and continuous case.
Publicly known probability distributions over a finite set of possible weights rep-
resent common beliefs about the weights in the discrete case. For the continuous
case, we regard continuous probability distributions. In the two-dimensional (2-d)
case, both weights and processing times are private information of the jobs. For all
different settings, we aim at finding Bayes-Nash incentive compatible mechanisms
that minimize the expected expenses of the service provider. Given jobs’ reports
about their private information, a mechanism determines both an order in which
jobs are served, and for each job a payment that the job receives. The payment
can be seen as a compensation for waiting. By a graph theoretic interpretation of
the incentive compatibility constraints - as used e.g. by Rochet (1987), Malakhov
and Vohra (2007) and in Chapter 2 of this thesis - we show how to derive optimal
mechanisms. For the one-dimensional discrete and continuous case, we obtain closed
formulae for modified job weights, and show that serving the jobs in the order of
non-increasing ratios of these modified weights over service times is optimal for the
service provider, as long as a certain regularity condition is fulfilled. It turns out
that the optimal mechanism is not necessarily efficient, i.e., in general it does not
maximize total utility. But it does so if e.g. all jobs have identical weight distribu-
tions and equal processing times. We call such jobs symmetric. For non-symmetric
jobs with discrete weights, we show by example that the cost can be arbitrarily far
from optimal if we insist on efficiency. We also compare our optimal mechanism to
the generalized VCG mechanism and see that for discrete weights, expected pay-
ments differ even for the case of symmetric jobs. For continuous weights, however,
revenue equivalence applies (see Chapter 2) and the generalized VCG mechanism is
an optimal mechanism for symmetric jobs. Furthermore, we analyze a mechanism
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3.1. Introduction

in the continuous setting that corresponds to the first price auction and we show
that this yields another optimal mechanism. For the two-dimensional discrete case,
our main result is that the optimal mechanism generally does not satisfy a property
called IIA, ‘independence of irrelevant alternatives’. From that we conclude that the
optimal mechanism cannot be expressed in terms of modified weights along the lines
of the 1-d case. In fact, any kind of priority based list scheduling algorithm where
the priorities of a job depend only on the characteristics of that job itself cannot
in general be an optimal mechanism. We conclude that optimal mechanism design
for the two-dimensional case is substantially more involved than two-dimensional
mechanism design for auction settings, as studied in Malakhov and Vohra (2007).
We also show that even for symmetric jobs, in the 2-d case the optimal mechanism
is not efficient.

Related Work. Optimal mechanism design goes back to Myerson (1981). He
studies optimal mechanisms for single item auctions and continuous 1-dimensional
type spaces. Here, optimal auctions are modifications of efficient auctions, more
specifically, modifications of the Vickrey auction. When regarding the seller as
additional agent who bids zero in the original auction, his modified bid might be
non-zero in the optimal auction yielding a reservation price. Malakhov and Vohra
(2007) regard optimal mechanisms for an auction setting with discrete 2-dimensional
type spaces. The derived optimal mechanisms again employ the efficient allocation
rule with modified bids. As Malakhov and Vohra (2007), we follow Myerson’s ap-
proach and analyze in how far it also works in a simple scheduling setting. We
observe similarities and differences, see Section 3.3. Especially, we show that for
2-dimensional type spaces the traditional approach must fail to determine an opti-
mal auction. The fact that multi-dimensional optimal mechanism design is harder
than that for 1-dimensional types, is well-known. For example, Armstrong (2000)
studies a multi-object auction model where valuations are additive and drawn from
a binary distribution (i.e., high or low). He gives optimal auctions under specific
conditions that reduce the type graph. From this paper it becomes evident that
optimal mechanism design with multi-dimensional discrete types is difficult. For
our model, we formalize this difficulty by showing that traditional approaches in-
evitably yield IIA-mechanisms and that in some cases none of these is optimal. For
details, we refer to Section 3.4. In Hartline and Karlin (2007), the authors give
an introduction to optimal mechanism design with 1-dimensional continuous types
under dominant strategy incentive compatibility. Both Myerson’s and our optimal
allocation rules turn out to be dominant strategy implementable as well, while they
yield optimal mechanisms in the larger class of Bayes-Nash incentive compatible
mechanisms. Other scheduling models have been looked at from a different angle
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in the economic literature. See, e.g., Mitra (2001) for efficient and budget-balanced
mechanism design in a 1-dimensional model and Moulin (2007) for mechanisms that
prevent merging and splitting of jobs.

Organization. In Section 3.2, we study the 1-d discrete case and derive closed
formulae for an optimal mechanism. We compare optimal to efficient mechanisms
in Section 3.3. In Section 3.4, we study the 2-d discrete case and show that known
approaches are doomed to fail here. The continuous case is studied in Section 3.5
and standard auction formats for the continuous scheduling model are analyzed in
Section 3.6. We conclude with Section 3.7.

3.2 Optimal Mechanisms for the 1-Dimensional Setting

3.2.1 Setting and Preliminaries

Consider a single machine which can handle one job at a time. Let J = {1, . . . , n}
denote the set of jobs. We regard jobs as selfish agents that act strategically. Each
job j has a processing time pj and a weight wj . While pj is publicly known, the
actual wj is private information to job j. We refer to the private information of
a job as its type. Jobs share common beliefs about other jobs’ types in terms
of probability distributions. We assume discrete distribution of weights, that is,
agent j’s weight wj follows a probability distribution over the discrete set Wj =
{w1

j , . . . , w
mj

j } ⊂ R, where w1
j < · · · < w

mj

j . Let φj be the probability distribution
of wj , that is, φj(wi

j) denotes the probability associated with wi
j for i = 1, . . . , mj .

Let Φj(wi
j) =

∑i
k=1 φj(wk

j ) be the cumulative probability up to wi
j . Both φj and Φj

are public information. We assume that jobs’ weights are independently distributed.
Let us denote by W = Πj∈JWj the set of all type profiles. For any job j, let
W−j = Πk 6=jWk. Let φ be the joint probability distribution of w = (w1, . . . , wn).
Then φ(w) = Πn

j=1φj(w
ij
j ) for w = (wi1

1 , . . . , win
n ) ∈ W . Let w−j and φ−j be defined

analogously. For wi
j ∈ Wj and w−j ∈ W−j , we denote by (wi

j , w−j) the type profile
where job j has type wi

j and the types of all other jobs are w−j .
A direct revelation mechanism consists of an allocation rule f and a payment

scheme π. Jobs have to report their weights and they might report untruthfully if it
suits them. Depending on those reports, the allocation rule selects a schedule, i.e.,
an order in which jobs are processed on the machine. The payment scheme assigns
a payment that is made to jobs in order to reimburse them for their waiting cost.

Let S = {σ |σ is a permutation of (1, . . . , n)} denote the set of all feasible sched-
ules. Then the allocation rule is a mapping f : W → S. For any schedule σ ∈ S, let
σj be the position of job j in the ordering of jobs in σ. Then, by Sj(σ) =

∑
σk<σj

pk,
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3.2. Optimal Mechanisms for the 1-Dimensional Setting

we denote the start time or waiting time of job j in σ. If job j has waiting time Sj

and actual weight wi
j , it encounters a valuation of −wi

jSj . If j additionally receives
payment πj , its total utility is πj −wi

jSj , i.e., we assume quasi-linear utilities. Let
us denote by ESj(f, wi

j) :=
∑

w−j∈W−j
Sj(f(wi

j , w−j))φ−j(w−j) the expected wait-
ing time of job j if it reports weight wi

j and allocation rule f is applied. Denote by
Eπj(wi

j) :=
∑

w−j∈W−j
πj(wi

j , w−j)φ−j(w−j) the expected payment to j. We assume
that jobs aim at maximizing their expected utility.

Definition 3.1. A mechanism (f, π) is Bayes-Nash incentive compatible if for every

agent j and every two types wi
j,w

k
j ∈ Wj

Eπj(wi
j)− wi

jESj(f, wi
j) ≥ Eπj(wk

j )− wi
jESj(f, wk

j ) (3.1)

under the assumption that all agents apart from j report truthfully. If for allocation

rule f there exists a payment scheme π such that (f, π) is Bayes-Nash incentive

compatible, then f is called Bayes-Nash implementable. The payment scheme π is

referred to as an incentive compatible payment scheme.

In order to account for individual rationality, we need to guarantee non-negative
utilities for all agents that report their true weight. It will be convenient to en-
sure individual rationality by introducing a so-called dummy weight w

mj+1
j , which

we add to the type space Wj for every agent j. We assume ESj(f, w
mj+1
j ) = 0

and Eπj(w
mj+1
j ) = 0 for all j ∈ J . Furthermore, we impose the incentive con-

straints Eπj(wi
j) − wi

jESj(f, wi
j) ≥ Eπj(w

mj+1
j ) − wi

jESj(f, w
mj+1
j ), which imply

that Eπj(wi
j) − wi

jESj(f, wi
j) ≥ 0 for any Bayes-Nash incentive compatible mech-

anism (f, π). Therefore, the dummy weights together with the mentioned assump-
tions guarantee that individual rationality is satisfied along with the incentive con-
straints. The dummy weight can be interpreted as an option for any job not to take
part in the mechanism.

We next define the notion of monotonicity w.r.t. weights, which is easily shown
to be a necessary condition for Bayes-Nash implementability. In our setting, it is
even a sufficient condition.

Definition 3.2. An allocation rule f satisfies monotonicity w.r.t. weights or short

monotonicity if for every agent j ∈ J , wi
j < wk

j implies that ESj(f, wi
j) ≥ ESj(f, wk

j ).

Theorem 3.3. An allocation rule f is Bayes-Nash incentive compatible if and only

if it satisfies monotonicity w.r.t. weights.
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Before we give a proof of Theorem 3.3, we introduce the type graph for the
Bayes-Nash setting. Tf has node set Wj and contains an arc from any node wi

j to
any other node wk

j of length

`ik = wi
j [ESj(f, wk

j )− ESj(f, wi
j)].

Here, `ik represents the gain in expected valuation for agent j by truthfully report-
ing type wi

j instead of lying type wk
j . The incentive constraints for a Bayes-Nash

incentive compatible mechanism (f, π) and job j can be read as

Eπj(wk
j ) ≤ Eπj(wi

j) + wi
j [ESj(f, wk

j )−ESj(f, wi
j)] = Eπj(wi

j) + `ik.

That is, the expected payments Eπj(·) constitute a node potential in Tf . According
to Müller, Perea, and Wolf (2007) and similarly as in Chapter 2, Bayes-Nash imple-
mentability of an allocation rule f is equivalent to the non-negative cycle property
of the type graph Tf for any agent j. Monotonicity is equivalent to the fact that
there is no negative cycle consisting of only two arcs in Tf . We call this property
the non-negative two-cycle property. It follows from

`ik + `ki = wi
j [ESj(f, wk

j )−ESj(f, wi
j)] + wk

j [ESj(f, wi
j)− ESj(f, wk

j )]

= (wi
j − wk

j )[ESj(f, wk
j )−ESj(f, wi

j)].

The last term is non-negative for all jobs j and any two types wi
j and wk

j if and only
if monotonicity holds.

Proof (Theorem 3.3). All that remains to show is that the non-negative two-cycle
property implies the non-negative cycle property. We first show that the arc lengths
satisfy a property called decomposition monotonicity, i.e., whenever i < k < l then
`ik + `kl ≤ `il and `lk + `ki ≤ `li. From that property follows that the length of any
cycle can be lower bounded by the lengths of a number of two cycles, which proves
the theorem.

Decomposition monotonicity follows from

`ik + `kl = wi
j [ESj(f, wk

j )−ESj(f, wi
j)] + wk

j [ESj(f, wl
j)− ESj(f, wk

j )]

≤ wi
j [ESj(f, wk

j )−ESj(f, wi
j)] + wi

j [ESj(f, wl
j)− ESj(f, wk

j )]

= wi
j [ESj(f, wl

j)−ESj(f, wi
j)]

= `il,

where the inequality follows from monotonicity. Note that everything remains true
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if the dummy type is involved, i.e., if l = mj + 1. The inequality `lk + `ki ≤ `li

follows similarly.
In order to prove the second claim, consider a finite cycle c with nodes c1 to ck

and rename the nodes such that c1 < c2 < · · · < ck. Replace every arc (cu, cv) with
u < v by arcs (cu, cu+1), (cu+1, cu+2), . . . , (cv−1, cv). Do the same for all arcs (cv, cu)
with u < v. Call the resulting cycle c′. The cycle length of c′ is less than or equal to
the length of c, due to decomposition monotonicity. The new cycle c′ consists only
of two-cycles. Due to monotonicity, those have non-negative length. Hence, c has
non-negative length as well. ¤

3.2.2 Optimal Mechanisms

Let us start by investigating the efficient allocation rule for the given setting, i.e.,
the allocation rule that maximizes the total valuation of agents. It is well known that
scheduling in order of non-increasing weight over processing time ratios minimizes
the sum of weighted start times

∑n
j=1 wjSj(f(w)) for any type profile w ∈ W , and

therefore maximizes the total valuation of all agents. This allocation rule is known
as Smith’s rule (Smith 1956). The optimal mechanism that we derive deploys a
slightly different allocation rule, namely Smith’s rule with respect to certain modified
weights.

Our goal is to set up a mechanism that is Bayes-Nash incentive compatible and
among all such mechanisms minimizes the expected total payment that has to be
made to the jobs. Given any Bayes-Nash incentive compatible mechanism (f, π),
one can obviously substitute the payment scheme by its expected payment scheme
yielding (f,Eπ(·)) without loosing Bayes-Nash incentive compatibility. Moreover,
the expected total payment to the agents remains unchanged under the substitution.
Therefore, we restrict focus to mechanisms in which agents always receive a payment
which is independent of the specific report of the other agents and of the actual
allocation.

Note that, unlike e.g. in Myerson (1981), in the discrete setting considered here,
revenue equivalence does not hold. Therefore, there are possibly multiple payment
schemes that make an allocation rule incentive compatible. Let f be an allocation
rule and let πf (·) be a payment scheme that minimizes expected expenses for the
machine among all payment schemes that make f Bayes-Nash incentive compatible.
More specifically, πf

j (wi
j) denotes the payment to agent j declaring weight wi

j un-

der this optimal payment scheme. Let Pmin(f) =
∑

j∈J

∑
wi

j∈Wj
φj(wi

j)π
f
j (wi

j) be
the minimum expected total expenses for allocation rule f . The following lemma
specifies the optimal payment scheme for a given allocation rule.
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Lemma 3.4. For a Bayes-Nash implementable allocation rule f , the payment scheme

defined by

πf
j (wmj+1

j ) = 0, πf
j (wi

j) =
mj∑

k=i

wk
j [ESj(f, wk

j )−ESj(f, wk+1
j )] for i = 1, . . . ,mj

is incentive compatible, individually rational and minimizes the expected total pay-

ment made to agents. The corresponding expected total payment is given by

Pmin(f) =
∑

j∈J

mj∑

i=1

φj(wi
j)w

i
jESj(f, wi

j),

where the modified weights wj are defined as follows

w1
j = w1

j , wi
j = wi

j + (wi
j − wi−1

j )
Φj(wi−1

j )

φj(wi
j)

for i = 2, . . . ,mj .

Proof. Let p = (wi
j = a0, a1, . . . , am = w

mj+1
j ) denote a path from wi

j to w
mj+1
j in

the type graph Tf for agent j. Denote by length(p) the sum of its arc lengths. Let
(f, π) be a Bayes-Nash incentive compatible mechanism. Adding up the incentive
constraints

Eπj(ai) ≤ Eπj(ai−1) + ai−1[ESj(f, ai)−ESj(f, ai−1)] = Eπj(ai−1) + `ai−1ai

for i = 1, . . . ,m yields

Eπj(w
mj+1
j ) ≤ Eπj(wi

j) + length(p).

Assuming Eπj(w
mj+1
j ) = 0, this is equivalent to −length(p) ≤ Eπj(wi

j). As f

is Bayes-Nash implementable, Tf satisfies the non-negative cycle property. Con-
sequently, we can compute shortest paths in Tf . With dist(wi

j , w
mj+1
j ) being the

length of a shortest path from wi
j to w

mj+1
j , the above yields −dist(wi

j , w
mj+1
j ) ≤

Eπj(wi
j). Therefore, −dist(wi

j , w
mj+1
j ) is a lower bound on the expected payment

for reporting wi
j . On the other hand, since we have

dist(wi
j , w

mj+1
j ) ≤ `ik + dist(wk

j , w
mj+1
j )
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for any two types wi
j and wk

j , it follows that

−dist(wk
j , w

mj+1
j ) ≤ −dist(wi

j , w
mj+1
j ) + `ik.

Consequently, −dist(·, wmj+1
j ) defines a node potential in Tf . Setting πf

j (wi
j) =

−dist(wi
j , w

mj+1
j ) therefore yields an incentive compatible payment scheme that

minimizes the expected payment to every agent for any reported type of the agent.
Consequently, this payment scheme also minimizes the expected total payment to
agents. Recall that individual rationality is satisfied along with the incentive con-
straints.

Since arc lengths in Tf satisfy decomposition monotonicity, a shortest path from
wi

j to w
mj+1
j is the path that includes all intermediate nodes wi+1

j , . . . , wmj . Observ-

ing that −dist(wmj+1
j , w

mj+1
j ) = 0 and −dist(wi

j , w
mj+1
j ) =

∑mj

k=i w
k
j [ESj(f, wk

j ) −
ESj(f, wk+1

j )]∀wi
j ∈ Wj \ {wmj+1

j } proves the first claim.

Next, we compute the minimum expected total payment for allocation rule f .

Pmin(f) =
∑

j∈J

mj∑

i=1

φj(wi
j)π

f
j (wi

j)

=
∑

j∈J

mj∑

i=1

φj(wi
j)

mj∑

k=i

wk
j [ESj(f, wk

j )− ESj(f, wk+1
j )]

=
∑

j∈J

mj∑

i=1

φj(wi
j)

( mj∑

k=i

wk
j ESj(f, wk

j )−
mj∑

k=i+1

wk−1
j ESj(f, wk

j )

)

=
∑

j∈J

mj∑

i=1

φj(wi
j)

(
wi

jESj(f, wi
j) +

mj∑

k=i+1

ESj(f, wk
j )(wk

j − wk−1
j )

)

=
∑

j∈J

ESj(f, w1
j )w

1
j φj(w1

j )

+
∑

j∈J

mj∑

i=2

ESj(f, wi
j)

(
φj(wi

j)w
i
j + (wi

j − wi−1
j )

i−1∑

k=1

φj(wk
j )

)

=
∑

j∈J

ESj(f, w1
j )w

1
j φj(w1

j )

+
∑

j∈J

mj∑

i=2

ESj(f, wi
j)

(
Φj(wi

j)w
i
j − Φj(wi−1

j )wi−1
j

)
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Let us define modified weights wj by setting w1
j = w1

j and for i = 2, . . . , mj

wi
j =

wi
jΦj(wi

j)− wi−1
j Φj(wi−1

j )

φj(wi
j)

=
wi

jφj(wi
j) + wi

jΦj(wi−1
j )− wi−1

j Φj(wi−1
j )

φj(wi
j)

= wi
j + (wi

j − wi−1
j )

Φj(wi−1
j )

φj(wi
j)

.

This yields

Pmin(f) =
∑

j∈J

mj∑

i=1

φj(wi
j)w

i
jESj(f, wi

j).

¤
Given the minimum payments per allocation rule, we want to specify the allo-

cation rule f which minimizes Pmin(f) among all Bayes-Nash implementable allo-
cation rules.

Definition 3.5. If f ∈ arg min{Pmin(f) | f : W→ S, f Bayes-Nash implementable},
then we call the mechanism (f, πf ) an optimal mechanism.

We will need the following regularity condition that ensures Bayes-Nash imple-
mentability of the allocation rule in our optimal mechanism.

Definition 3.6. We say that regularity is satisfied if for every agent j and i =

2, . . . , mj − 1

wi
j + (wi

j − wi−1
j )

Φj(wi−1
j )

φj(wi
j)

≤ wi+1
j + (wi+1

j − wi
j)

Φj(wi
j)

φj(wi+1
j )

.

This implies that wi
j < wk

j whenever wi
j < wk

j .

Note that regularity is satisfied e.g. if the differences wi
j−wi−1

j are constant and
the distribution has a non-increasing reverse hazard rate2.

Theorem 3.7. Let the modified weights be defined as in Lemma 3.4. Let f be

the allocation rule that schedules jobs in order of non-increasing ratios wj/pj. If

regularity holds, then (f, πf ) is an optimal mechanism.
2The reverse hazard rate of the distribution with pdf φ and cdf Φ is defined as φ(x)/Φ(x), see

e.g. Krishna (2002).
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Proof. We show that f is Bayes-Nash implementable and minimizes Pmin(f) among
all Bayes-Nash implementable allocation rules. For any allocation rule f , we can
rewrite Pmin(f) as follows, using independence of weight distributions. Let W ′

j =

Wj \ {wmj+1
j } and W ′ = Πj∈JW ′

j .

Pmin(f) =
∑

j∈J

∑

wi
j∈W ′

j

φj(wi
j)w

i
jESj(f, wi

j)

=
∑

j∈J

∑

wi
j∈W ′

j

φj(wi
j)w

i
j

∑

w−j∈W−j

Sj(f(wi
j , w−j))φ−j(w−j)

=
∑

j∈J

∑

(wi
j ,w−j)∈W ′

φ(wi
j , w−j)wi

jSj(f(wi
j , w−j))

=
∑

w∈W ′
φ(w)

∑

j∈J

wjSj(f(w)).

Thus, Pmin(f) can be minimized by minimizing
∑

j∈J wjSj(f(w)) for every reported
type profile w. This is achieved by using Smith’s rule with respect to modified
weights, i.e., scheduling in order of non-increasing ratios wj/pj . Under Smith’s rule,
the expected start time ESj(wj) is clearly non-increasing in the modified weight wj .
The regularity condition ensures that it is non-increasing in the original weights wj .
Therefore, Smith’s rule with respect to modified weights satisfies monotonicity and
is hence Bayes-Nash implementable by Theorem 3.3. This completes the proof. ¤

3.3 Optimality versus Efficiency

For agents with identical weight distributions and equal processing times, the opti-
mal and the efficient allocation coincide.

Corollary 3.8. If agents are symmetric, i.e., W1 = · · · = Wn, φ1 = · · · = φn and

p1 = · · · = pn and if distributions are such that regularity holds, then the optimal

mechanism is efficient.

Proof. If W1 = · · · = Wn = {w1, . . . , wm} and φ1 = · · · = φn, then for any two agents
j1 and j2, and i = 1, . . . , m, the modified weights are equal, i.e. wi

j1
= wi

j2
. Since

processing times are also equal and since regularity guarantees that modified weights
are increasing in the original weights, scheduling jobs in order of their non-increasing
ratios wj/pj is equivalent to scheduling them in order of their non-increasing ratios
wj/pj . That is, the efficient allocation rule and the allocation rule from the optimal
mechanism in Theorem 3.7 coincide. ¤
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If weight distributions differ among agents or if agents have different processing
times, then the optimal mechanism is in general not efficient. In fact, when restrict-
ing to efficient mechanisms, the total expected payment can be arbitrarily bad in
comparison to the optimal one. This is illustrated by the following two examples.

Example 3.9. Let there be two jobs 1 and 2 with W1 = {M +1} and W2 = {1,M}
for some constant M . Let φ2(1) = 1 − 1/M , φ2(M) = 1/M and p1 = p2 =

1. Let Eff be the efficient and Opt be the optimal allocation rule. Then the ratio

Pmin(Eff)/Pmin(Opt) goes to infinity as M goes to infinity.

Proof. The efficient allocation rule, Smith’s rule, always allocates job 1 first. So
the optimal payment for Smith’s rule is to pay 0 to job 1 and to pay M to job 2,
irrespective of its type. The minimum expected total payment is hence Pmin(Eff) =
M .

For the optimal allocation, we compute modified weights after Lemma 3.4: w1
1 =

w1
1 = M +1, w1

2 = w1
2 = 1 and w2

2 = M +(M − 1)(1− 1/M)/(1/M) = M2−M +1.
The latter is larger than M + 1 if M > 2. Therefore, job 2 is scheduled in front
of job 1 if it has weight M and behind if it has weight 1. The expected start
times for job 2 are ES2(Opt, 1) = 1 and ES2(Opt, M) = 0, respectively. Optimal
payments according to Lemma 3.4 are πOpt

2 (1) = 1 and πOpt
2 (M) = 0. For job

1, the expected start time is ES1(Opt,M + 1) = 1/M and the expected payment
πOpt

1 (M + 1) = 1 + 1/M . Hence, Pmin(Opt) = 1 + 1/M + 1 · (1− 1/M) = 2.
Consequently, Pmin(Eff)/Pmin(Opt) = M/2, which tends to infinity if M goes

to infinity. ¤

Remark 3.10. In the above, the ratio of the expected payments of the efficient

versus the optimal allocation rule is analyzed. Similarly, we can derive that the

expected ratio of the payments tends to infinity as M approaches infinity. The latter

is slightly more technical.

Example 3.11. Let there be two jobs 1 and 2 with the same weight distribution

W1 = W2 = {1,M}, φj(1) = 1 − 1/M , φj(M) = 1/M for j = 1, 2. Let p1 = 1/2

and p2 = M/2 + 1. Let Eff be the efficient and Opt be the optimal allocation rule.

Then the ratio Pmin(Eff)/Pmin(Opt) goes to infinity as M goes to infinity.

Proof. The efficient allocation rule always schedules job 1 first, since 1/(1/2) =
2 > 2M/(M + 2) = M/(M/2 + 1). Therefore, the expected start time of job
1 is 0 and that of job 2 is 1/2. Optimal payments according to Lemma 3.4 are
πEff

1 (1) = πEff
1 (M) = 0 and πEff

2 (1) = πEff
2 (1) = M/2. Hence, Pmin(Eff) = M/2.
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For the optimal mechanism, we compute modified weights as w1
1 = w1

2 = 1 and
w2

1 = w2
2 = M2 − M + 1. Job 1 is scheduled first, whenever both jobs have the

same weight or job 1 has a larger weight than job 2. In the case where job 1 has
(modified) weight 1 and job 2 has modified weight M2 −M + 1, job 2 is scheduled
first for M > 2, since 1/(1/2) < (M2 −M + 1)/(M/2 + 1). The resulting expected
start times and payments are given below:

ES1(Opt, 1) = 1/2 + 1/M

ES1(Opt,M) = 0

ES2(Opt, 1) = 1/2

ES2(Opt,M) = 1/(2M)

πOpt
1 (1) = 1/2 + 1/M

πOpt
1 (M) = 0

πOpt
2 (1) = 1− 1/(2M)

πOpt
2 (M) = 1/2.

Hence,

Pmin(Opt) = (
1
2

+
1
M

)(1− 1
M

) + (1− 1
2M

)(1− 1
M

) +
1
2
· 1
M

= (1− 1
M

)(
3
2

+
1

2M
) +

1
2
· 1
M

.

Thus, the ratio Pmin(Eff)/Pmin(Opt) tends to infinity if M tends to infinity. ¤

Remark 3.12. As in the first example, it can be shown that also the expected ratio

of the payments tends to infinity as M approaches infinity.

Comparison to Myerson’s result. For the single item auction and continuous
type spaces, Myerson (1981) has made similar observations: in his setting, the
Vickrey auction is an efficient auction. The optimal auction can be seen as a modified
Vickrey auction with the seller submitting a bit himself. In our setting also, the
allocation in the optimal mechanism is equivalent to the efficient allocation rule
with respect to modified data. Nevertheless, in Myerson (1981) the optimal and the
efficient mechanism may differ. For the single item auction this can be due to the
seller keeping the item (even in the symmetric case) or because a bidder that has not
submitted the highest bid can get the item in the asymmetric case. In our setting,
the optimal and the efficient mechanism can only differ if agents are asymmetric,
see Corollary 3.8 and Examples 3.9 and 3.11.

On the generalized VCG Mechanism. The VCG mechanism is due to
Vickrey (1961), Clarke (1971) and Groves (1973). The allocation rule is the efficient
one. In our setting this means scheduling in order of non-increasing ratios wj/pj .
The payment scheme pays to agent j an amount that is equal to an appropriate
constant (possibly depending on other agents’ types, but not on j’s type) minus

57



Optimal Mechanisms for Single Machine Scheduling

the total loss in valuation of the other agents due to j’s presence. For agent j with
processing time pj , the total loss in valuation of the other agents is equal to the
product of pj and the total weight of all agents processed after j. In order to ensure
individual rationality, we have to add pj times the total weight of all agents except
j. Therefore, the resulting payment to j for reported type profile w and efficient
schedule σ is equal to

πV CG
j (w) = pj

∑

k∈J
σk<σj

wk.

As illustrated by examples 3.9 and 3.11, the allocation of the VCG mechanism
can differ from the allocation of the optimal mechanism if agents are not symmetric.
Moreover, if agents are symmetric, the VCG mechanism still can be non-optimal in
terms of payments. This is illustrated by the following example.

Example 3.13. There are two symmetric agents with W1 = W2 = {w1, w2}, w1 <

w2, and φj(w1) = φj(w2) = 1/2 for j = 1, 2. Processing times are equal and without

loss of generality p1 = p2 = 1. Then the expected expenses of the VCG mechanism

are strictly higher than those of the optimal mechanism.

Proof. Regularity is trivially satisfied and therefore the allocation of the optimal
mechanism from Section 3.2 is efficient. There are four possible type profiles, each
occurring with probability 1/4: (w1, w1), (w1, w2), (w2, w1), (w2, w2). The resulting
schedules are the same for the VCG and the optimal mechanism and schedule the
job with the higher weight first or randomize uniformly in the case of equal weights,
respectively. Let us first compute the expected total payment for the VCG mecha-
nism. The VCG mechanism pays to the job that is scheduled last the weight of the
job that is scheduled before it. Thus, the VCG mechanism has to spend w1 in the
first case, and w2 in the second, third and fourth case, respectively. The total ex-
pected payment of the VCG mechanism is hence (3w2+w1)/4. Let (f, πf ) denote the
optimal mechanism from Section 3.2. In the optimal mechanism, the expected pay-
ment to a job with weight w1 is equal to Eπf

j (w1) = w1[ESj(f, w1)−ESj(f, w2)]+
w2ESj(f, w2) = w1[3/4− 1/4] + w2[1/4] = w1/2 + w2/4. The expected payment to
a job with weight w2 is Eπf

j (w2) = w2ESj(f, w2) = w2/4. The total expected pay-
ment for the optimal mechanism is thus 2 ·1/2 ·(w1/2+w2/4+w2/4) = (w1+w2)/2.
Since w2 > w1, the expected expenses of the VCG mechanism are strictly higher
than those of the optimal mechanism. Therefore, the VCG mechanism is not opti-
mal. ¤
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3.4 The 2-Dimensional Setting

3.4.1 Setting and Notation

In contrast to the 1-dimensional setting, both weight and processing time of a job are
now private information of the job. Hence j’s type is the tuple (wj , pj). We restrict
attention to discrete type spaces, i.e., (wj , pj) ∈ Wj×Pj , where Wj = {w1

j , . . . , w
mj

j }
with w1

j ≤ · · · ≤ w
mj

j and Pj = {p1
j , . . . , p

qj

j } with p1
j ≤ · · · ≤ p

qj

j . Let φj be
the probability distribution of j’s type, that is, φj(wi

j , p
k
j ) denotes the probability

associated with the type (wi
j , p

k
j ) for i = 1, . . . , mj and k = 1, . . . , qj . Both φj

and Φj are public. Distributions are independent between agents. Denote by T =
Πj∈J(Wj×Pj) the set of all type profiles. For any job j, let T−j = Πr 6=j(Wr×Pr) be
the set of type profiles of all jobs except j. Let φ be the joint probability distribution
of (w1, p1, . . . , wn, pn). Then for type profile t = (wi1

1 , pk1
1 , . . . , win

n , pkn
n ) ∈ T , φ(t) =

Πn
j=1φj(w

ij
j , p

kj

j ). Let t−j and φ−j be defined analogously. For (wi
j , p

k
j ) ∈ Wj ×

Pj and t−j ∈ T−j , we denote by ((wi
j , p

k
j ), t−j) the type profile where job j has

type (wi
j , p

k
j ) and the types of the other jobs are represented by t−j . Denote by

ESj(f, wi
j , p

k
j ) :=

∑
t−j∈T−j

Sj(f((wi
j , p

k
j ), t−j))φ−j(t−j) the expected waiting time

of job j if it reports type (wi
j , p

k
j ) and allocation rule f is applied. Denote by

Eπj(wi
j , p

k
j ) :=

∑
t−j∈T−j

πj((wi
j , p

k
j ), t−j)φ−j(t−j) the expected payment to j.

We assume that a job can only report a processing time that is not lower than its
true processing time and that a job is processed for its reported processing time. This
is a natural assumption, since a job can add unnecessary work to achieve a longer
processing time, but reporting a shorter processing time can easily be punished by
preempting the job after the declared processing time (before it is actually finished).

Note that by regarding the processing time as private information, we introduce
informational externalities: job j has a different valuation for a schedule if the
processing time (and hence the type) of a job scheduled before j changes. In this
regard, our model differs from the 2-dimensional auction model studied in Malakhov
and Vohra (2007).

3.4.2 Bayes-Nash Implementability and the Type Graph

Definition 3.14. A mechanism (f, π) is called Bayes-Nash incentive compatible

if for every agent j and every two types (wi1
j , pk1

j ) and (wi2
j , pk2

j ) with i1, i2 ∈
{1, . . . ,mj}, k1, k2 ∈ {1, . . . , qj}, k1 ≤ k2,

Eπj(wi1
j , pk1

j )− wi1
j ESj(f, wi1

j , pk1
j ) ≥ Eπj(wi2

j , pk2
j )− wi1

j ESj(f, wi2
j , pk2

j ) (3.2)
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under the assumption that all agents apart from j report truthfully.

Note that by defining the incentive constraints only for k1 ≤ k2, we account for
the fact that agents can only overstate their processing time, but cannot understate
it.

In order to ensure individual rationality, again add a dummy type tdj to the
type space for every agent j, and let ESj(f, tdj ) = 0 and Eπj(tdj ) = 0 for all j ∈ J .
As in the 1-dimensional case, the dummy types together with the mentioned extra
incentive constraints guarantee that individual rationality is satisfied along with the
incentive constraints. Sometimes, it will be convenient to write (wmj+1

j , pk
j ) for some

k ∈ {1, . . . , qj} instead of tdj .
In the 2-dimensional setting, the type graph Tf of agent j has node set Wj ×Pj

and contains an arc from any node (wi1
j , pk1

j ) to every other node (wi2
j , pk2

j ) with
i1 ∈ {1, . . . ,mj}, i2 ∈ {1, . . . , mj + 1}, k1, k2 ∈ {1, . . . , qj}, k1 ≤ k2 of length

`(i1k1)(i2k2) = wi1
j [ESj(f, wi2

j , pk2
j )− ESj(f, wi1

j , pk1
j )].

Note that we have arcs only in direction of increasing processing times, since agents
can only overstate their processing time. Furthermore, every node has an arc to the
dummy type, but there are no outgoing arcs from the dummy type.

Similar as in Malakhov and Vohra (2007), one can show that for monotonic allo-
cation rules some arcs in the type graph are not necessary, since the corresponding
incentive constraints are implied by others. We first give the definition of mono-
tonicity in the 2-dimensional setting and then formulate a lemma which reduces the
set of necessary incentive constraints.

Definition 3.15. An allocation rule f satisfies monotonicity w.r.t. weights if for

every agent j ∈ J and fixed pk
j ∈ Pj, wi1

j < wi2
j implies that ESj(f, wi1

j , pk
j ) ≥

ESj(f, wi2
j , pk

j ).

Lemma 3.16. Let f be an allocation rule satisfying monotonicity w.r.t. weights.
For any agent j, the following constraints imply all other incentive constraints:

Eπj(wi
j , p

k
j )− wi

jESj(f, wi
j , p

k
j ) ≥ Eπj(wi+1

j , pk
j )− wi

jESj(f, wi+1
j , pk

j ) (3.3)

for i ∈ {1, . . . , mj}, k ∈ {1, . . . , qj},
Eπj(wi+1

j , pk
j )− wi+1

j ESj(f, wi+1
j , pk

j ) ≥ Eπj(wi
j , p

k
j )− wi+1

j ESj(f, wi
j , p

k
j ) (3.4)

for i ∈ {1, . . . , mj − 1}, k ∈ {1, . . . , qj},
Eπj(wi

j , p
k
j )− wi

jESj(f, wi
j , p

k
j ) ≥ Eπj(wi

j , p
k+1
j )− wi

jESj(f, wi
j , p

k+1
j ) (3.5)

for i ∈ {1, . . . , mj}, k ∈ {1, . . . , qj − 1}.
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Proof. For any i1, i2, i3 ∈ {1, . . . , mj + 1},i1 < i2 < i3, and any k ∈ {1, . . . , qj} the
constraint

Eπj(wi1
j , pk

j )− wi1
j ESj(f, wi1

j , pk
j ) ≥ Eπj(wi3

j , pk
j )− wi1

j ESj(f, wi3
j , pk

j )

is implied by

Eπj(wi1
j , pk

j )− wi1
j ESj(f, wi1

j , pk
j ) ≥ Eπj(wi2

j , pk
j )− wi1

j ESj(f, wi2
j , pk

j )

and

Eπj(wi2
j , pk

j )− wi2
j ESj(f, wi2

j , pk
j ) ≥ Eπj(wi3

j , pk
j )− wi2

j ESj(f, wi3
j , pk

j ).

In fact, adding up the latter two constraints yields

Eπj(wi1
j , pk

j )− wi1
j ESj(f, wi1

j , pk
j )

≥ Eπj(wi3
j , pk

j ) + wi2
j (ESj(f, wi2

j , pk
j )− ESj(f, wi3

j , pk
j ))− wi1

j ESj(f, wi2
j , pk

j )

≥ Eπj(wi3
j , pk

j ) + wi1
j (ESj(f, wi2

j , pk
j )− ESj(f, wi3

j , pk
j ))− wi1

j ESj(f, wi2
j , pk

j )

= Eπj(wi3
j , pk

j )− wi1
j ESj(f, wi3

j , pk
j ),

where the second inequality follows from monotonicity and wi1
j < wi2

j . Note that ev-

erything remains true if the dummy type is involved, i.e., if (wi3
j , pk

j ) = (wmj+1
j , pk

j ) =
tdj . These arguments imply that all constraints of the type

Eπj(wi1
j , pk

j )− wi1
j ESj(f, wi1

j , pk
j ) ≥ Eπj(wi2

j , pk
j )− wi1

j ESj(f, wi2
j , pk

j ) (3.6)

are implied by the subset of constraints where i2 = i1 + 1.

A similar effect can be shown for the “reverse” incentive constraints, i.e., the
above constraints for i3 < i2 < i1, where i1, i2, i3 ∈ {1, . . . ,mj}. Again, out of all
constraints of the type

Eπj(wi1
j , pk

j )− wi1
j ESj(f, wi1

j , pk
j ) ≥ Eπj(wi2

j , pk
j )− wi1

j ESj(f, wi2
j , pk

j ), (3.7)

only those with i2 = i1 − 1 are necessary.

Similarly, out of all constraints of the type

Eπj(wi
j , p

k1
j )− wi

jESj(f, wi
j , p

k1
j ) ≥ Eπj(wi

j , p
k2
j )− wi

jESj(f, wi
j , p

k2
j ), (3.8)
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for i ∈ {1, . . . ,mj}, k1, k2 ∈ {1, . . . , qj}, k1 < k2 only those with k2 = k1 + 1 are
necessary.

For any types (wi1
j , pk1

j ),(wi2
j , pk2

j ) with i1 < i2 and k1 < k2 the corresponding
“diagonal” constraint

Eπj(wi1
j , pk1

j )− wi1
j ESj(f, wi1

j , pk1
j ) ≥ Eπj(wi2

j , pk2
j )− wi1

j ESj(f, wi2
j , pk2

j )

follows by adding up the corresponding constraints of type (3.8) and (3.6)

Eπj(wi1
j , pk1

j )− wi1
j ESj(f, wi1

j , pk1
j ) ≥ Eπj(wi1

j , pk2
j )− wi1

j ESj(f, wi1
j , pk2

j )

and

Eπj(wi1
j , pk2

j )− wi1
j ESj(f, wi1

j , pk2
j ) ≥ Eπj(wi2

j , pk2
j )− wi1

j ESj(f, wi2
j , pk2

j ).

For any (wi1
j , pk1

j ),(wi2
j , pk2

j ) with i2 < i1 and k1 < k2, the corresponding “diagonal”
constraint follows by adding up the appropriate constraints of type (3.8) and (3.7).
¤

Lemma 3.16 is in fact a generalization of decomposition monotonicity as dis-
cussed for the 1-dimensional case.

We define the reduced type graph of agent j, which contains only arcs that are
necessary in the sense of Lemma 3.16. These arcs are:

• an arc from type (wi
j , p

k
j ) to (wi+1

j , pk
j ) for all i ∈ {1, . . . ,mj} and k ∈ {1, . . . , qj}

• an arc from type (wi+1
j , pk

j ) to (wi
j , p

k
j ) for all i ∈ {1, . . . , mj − 1} and k ∈

{1, . . . , qj}

• an arc from type (wi
j , p

k
j ) to (wi

j , p
k+1
j ) for all i ∈ {1, . . . ,mj} and k ∈

{1, . . . , qj − 1}.
A sketch of the reduced type graph is given in Figure 3.1. Expected payments
correspond to node potentials in the reduced type graph. Whenever we refer to the
type graph Tf for a monotonic allocation rule f in the following, the reduced type
graph is meant. The reduced type graph comes handy particularly when considering
our (counter) examples in the next subsection.

We finally give the characterization of Bayes-Nash incentive compatible alloca-
tion rules for the 2-dimensional setting.

Theorem 3.17. An allocation rule f is Bayes-Nash incentive compatible in the

2-dimensional setting if and only if it satisfies monotonicity w.r.t. weights.
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w1

j , p
1

j
w

mj

j , p1

j

w
mj

j , p
qj

j
w1

j , p
qj

j

tdj

Figure 3.1: reduced type graph

Proof. Implementability implies monotonicity as before. The claim reduces to
showing that in the (reduced) type graph of any agent j the non-negative cycle
property is equivalent to the non-negative two-cycle property. After the reduction,
every cycle in Tf consists of a finite number of two-cycles. Hence the non-negative
cycle property is equivalent to the non-negative two-cycle property.

¤

3.4.3 On Optimal Mechanisms

We start by reviewing an approach to two-dimensional optimal mechanism design
studied in Malakhov and Vohra (2007). Here, the authors regard a multi-item
auction, where each agent’s type (i, j) is given by a marginal valuation i per item and
a capacity j. Above that capacity, the agent has zero valuation for each additional
item. Agents can only overstate their capacity. The goal is revenue maximization.
Bayes-Nash implementability is equivalent to the expected amount of items allocated
to an agent being monotone in his reported value for i. Malakhov and Vohra (2007)
use the type graph approach as follows.

First, they regard a subset of all allocation rules - namely those that are mono-
tone in j as well. It turns out that all those rules have the same shortest path tree,
namely the “up-first-then-right” tree (see Figure 3.2 for a 3× 3 example).

Second, the path lengths in this tree yield optimal payments to every job for every
type. From that, the optimal revenue for a particular allocation rule is obtained as
closed formula in terms of modified marginal valuations.

Third, the obtained expression for the revenue is maximized over all allocation
rules. The resulting allocation rule is a modification of the efficient allocation rule.
In addition, this rule turns out to be monotone in j, similar as in the proof of
Theorem 3.7. Hence, its shortest path tree is the up-first-then-right tree.

In the last step, the monotonicity assumption in j is relaxed as follows. For
any allocation rule – not necessarily monotone in j – the up-first-then-right tree
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Figure 3.2: up-first-then-right tree

yields an individual upper bound on the revenue for that specific allocation rule.
By maximizing the individual upper bounds over all allocation rules, a global upper
bound for the revenue is achieved. But this upper bound is assumed by the modified
efficient allocation rule derived before, which yields hence an optimal mechanism.

It turns out that the described approach is doomed to fail in our setting. Espe-
cially, one cannot find any tree B ⊆ Tf – as e.g. the up-first-then-right tree above
– such that the allocation rule optimizing the expected total payment computed
on the basis of B in turn has B as a shortest path tree. Note that the approach
described above and also our approach for the 1-dimensional setting focus on one
agent and the corresponding type graph. Hence any allocation rule derived by the
described approach is necessarily a modified Smith’s rule with modified weights that
can be computed from the characteristics (type report and distribution) of the agent
itself similar as in Lemma 3.4. Such an allocation rule satisfies the following IIA
property.

Definition 3.18. We say that an allocation rule f satisfies independence of irrele-

vant alternatives (IIA) if the relative order of any two jobs j1 and j2 is the same in

the schedules f(t1) and f(t2) for any two type profiles t1, t2 ∈ T that differ only in

the types of agents from J \ {j1, j2}.
In other words, the relative order of two jobs is independent of all other jobs.

For the 2-d setting, this is not necessarily the case for optimal mechanisms.

Theorem 3.19. The optimal allocation rule for the 2-dimensional setting does in

general not satisfy IIA.

Proof. Consider the following instance with three jobs. Job 1 has type (1, 1), job 2
has type (2, 2) and job 3 has type space {1.9, 2}×{1, 2}. The probabilities for job 3’s
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types are φ3(1.9, 1) = 0.8, φ3(2, 2) = 0.2 and φ3(1.9, 2) = φ3(2, 1) = 0, respectively.
We will show that the best allocation rule that satisfies IIA achieves a minimum
expected total payment of at least 5.6, whereas there exists an allocation rule –
violating IIA – with an expected total payment of 4.88. The following argumentation
would still work if we assumed small positive probabilities for types (1.9, 2) and (2, 1)
as well, but everything would become much more technical.

There are six possible schedules for three jobs, where we denote e.g. by 312 the
schedule where job 3 comes first and job 2 last. There are only two cases that occur
with positive probability: job 3 has type (1.9, 1), which we refer to as case a, and
job 3 has type (2, 2), which we refer to as case b. An allocation rule that satisfies IIA
must schedule job 1 and 2 in the same relative order in case a and b. Therefore, any
such rule must either choose a schedule from {123, 132, 312} for case a and case b or
it must choose a schedule from {213, 231, 321} in case a and b. As an example, we
compute a lower bound on the optimal payment Pmin(f) for the case where f chooses
schedule 123 in case a and schedule 132 in case b. Since there is only one possible
type for job 1 and 2, only individual rationality matters for the optimal payments
to those jobs and hence πf

1 (1, 1) = 0 and πf
2 (2, 2) = 2(0.8 ·1+0.2 ·(1+2)) = 2.8. For

job 3, we take individual rationality into account as well as the incentive constraint
πf

3 (1.9, 1)−1.9 ·ES3(1.9, 1) ≥ πf
3 (2, 2)−1.9 ·ES3(2, 2). While individual rationality

requires πf
3 (1.9, 1) ≥ 1.9 · 3 = 5.7 and πf

3 (2, 2) ≥ 2, the latter is equivalent to
πf

3 (1.9, 1) ≥ πf
3 (2, 2) + 3.8. Therefore, πf

3 (2, 2) ≥ 2 and πf
3 (1.9, 1) ≥ 5.8. Hence

Pmin(f) ≥ 2.8+0.8·5.8+0.2·2 = 7.84. Note that this is only a lower bound, since for
the exact value of Pmin(f), we must additionally consider the incentive constraints
that result from the two types (1.9, 2) and (2, 1), which have zero probability, but
are in the type space of job 3.

In total, there are 18 allocation rules that satisfy IIA. We list the corresponding
lower bounds (LB) on Pmin(f) in the following table.

f(a) f(b) πf
1 πf

2 LB πf
3 (1.9, 1) LB πf

3 (2, 2) LB Pmin(f)

123 123 0 2 6 6 8

123 132 0 2.8 5.8 2 7.84

123 312 0.4 2.8 5.7 0 7.76

132 123 0 3.6 2.2 6 6.56

132 132 0 4.4 2 2 6.4

132 312 0.4 4.4 1.9 0 6.32

312 123 0.8 3.6 0.3 6 5.84

312 132 0.8 4.4 0.1 2 5.68

312 312 1.2 4.4 0 0 5.6

65



Optimal Mechanisms for Single Machine Scheduling

213 213 2 0 6 6 8

213 231 2.4 0 5.9 4 7.92

213 321 2.4 0.8 5.7 0 7.76

231 213 2.8 0 4.1 6 7.28

231 231 3.2 0 4 4 7.2

231 321 3.2 0.8 3.8 0 7.04

321 213 2.8 1.6 0.3 6 5.84

321 231 3.2 1.6 0.2 4 5.76

321 321 3.2 2.4 0 0 5.6

Hence, 5.6 is a lower bound for the expected total payment made by any IIA
mechanism. On the other hand, regard the allocation rule that chooses schedule
132 in case a and schedule 231 in case b. We extend the allocation rule to the zero
probability type such that it chooses schedule 132 for type (2, 1) and schedule 231
for type (1.9, 2). Clearly, this allocation rule violates IIA. The optimal payments
to job 1 and 2 are πf

1 (1, 1) = 0.8 and πf
2 (2, 2) = 1.6 respectively. For the optimal

payment to job 3, we depict the type graph with associated arc lengths in Figure 3.3.
The shortest path lengths from (1.9, 1) and (2, 2) to the dummy node are −2.1
and −4, respectively. Hence, πf

3 (1.9, 1) = 2.1 and πf
3 (2, 2) = 4. Consequently,

Pmin(f) = 0.8 + 1.6 + 0.8 · 2.1 + 0.2 · 4 = 4.88. This proves the claim. ¤

0

0

0

0

1.9 2

−2

−4

1.9, 1 2, 1

1.9, 2 2, 2

td
3

Figure 3.3: type graph job 3

Theorem 3.19 shows that any kind of priority based algorithm or list scheduling
algorithm where the priority of a job can be computed from the characteristics of
the job itself cannot be optimal in general. Moreover, the type graph approach
must fail, since it focusses on a single agent. Hence, optimal mechanism design
for our 2-dimensional setting is considerably more complicated than for the 1-
dimensional setting and for traditional auction settings as described in Myerson
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(1981) and Malakhov and Vohra (2007). One explanation for this complication
may lie in the fact that the 2-d setting considered here in fact entails informa-
tional externalities, as opposed to the auction setting in (Malakhov and Vohra
2007). On the other hand, the informational externalities introduced by private
processing times are not the only cause for complications in the 2-dimensional
setting: Consider the 1-dimensional setting, where only the processing times are
private, but the weights are public information. It turns out that all allocation
rules are implementable, even when we allow that jobs understate their processing
times. The optimal payment to a job j that reports processing time pk

j is equal to
wjESj(f, pk

j ), and therefore the total payment to jobs for allocation rule f is equal
to Pmin(f) =

∑
j∈J

∑qj

k=1 φj(pk
j )wjESj(f, pk

j ). This is minimized by Smith’s rule.

When there are only two agents present, then IIA is trivially satisfied. Recall
that in the 1-dimensional case the optimal mechanism is efficient for symmetric
agents and regular distributions and that the uniform distribution is regular. This
is contrasted by the following theorem.

Theorem 3.20. Even for two symmetric agents, 2 × 2-type spaces and uniform

probability distributions, the optimal mechanism is not efficient.

Proof. Consider the following example with two jobs, W1 = W2 = {1, 2} and
P1 = P2 = {1, 2}. We assume that φ1(i, k) = φ2(i, k) = 1

4 for i, k ∈ {1, 2}. On one
hand, consider the efficient allocation rule fe, which schedules the job with higher
weight over processing time ratio first. On the other hand, regard the so-called
w-rule, fw, that schedules the job with the higher weight first. In case of ties, both
rules schedule job 1 first. The expected start times are listed below.

ES1(fw, 1, 1) = ES1(fw, 1, 2) = 3/4

ES1(fw, 2, 1) = ES1(fw, 2, 2) = 0

ES1(fe, 1, 1) = ES1(fe, 2, 2) = 1/4,

ES1(fe, 1, 2) = 1,

ES1(fe, 2, 1) = 0,

ES2(fw, 1, 1) = ES2(fw, 1, 2) = 3/2

ES2(fw, 2, 1) = ES2(fw, 2, 2) = 3/4

ES2(fe, 1, 1) = ES2(fe, 2, 2) = 1,

ES2(fe, 1, 2) = 3/2,

ES2(fe, 2, 1) = 1/4.

The type graphs corresponding to fw for job 1 and 2 respectively are shown in Fi-
gure 3.4. From this, the optimal payments can be computed as:
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Figure 3.4: type graphs for the w-rule for jobs 1 and 2
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Figure 3.5: type graphs for the efficient rule for job 1 and 2

πfw
1 (2, 1) = πfw

1 (2, 2) = 0,

πfw
1 (1, 1) = πfw

1 (1, 2) = 3/4,

πfw
2 (2, 1) = πfw

2 (2, 2) = 3/2,

πfw
2 (1, 1) = πfw

2 (1, 2) = 9/4.

Hence the (minimum) total expected payment for the w-rule is:

Pmin(fw) =
1
4

∑

j

∑

(i,k)

πfw

j (i, k) = 9/4.

The type graphs corresponding to fe for agent 1 and 2 respectively are shown in
Figure 3.5.
From this, the node potentials that minimize payment can be computed as:

πfe
1 (1, 1) = πfe

1 (2, 2) = 1/2,

πfe
1 (2, 1) = 0

πfe
1 (1, 2) = 5/4,

πfe
2 (1, 1) = πfe

2 (2, 2) = 2,

πfe
2 (2, 1) = 1/2,

πfe
2 (1, 2) = 5/2.
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Hence the (minimum) total expected payment in the efficient rule is:

Pmin(fe) =
1
4

∑

j

∑

(i,k)

πj(i, k) = 37/16.

Hence, Pmin(fe) > Pmin(fw). This is even true if we break ties randomly. Thus,
the efficient allocation is for some instances dominated by at least the w-rule and
consequently is not part of an optimal mechanism even in the most symmetric case
possible in this setting. ¤

3.5 Optimal Mechanisms for the Continuous Setting

For this section, we impose the following changes on the discrete setting described
in the previous sections. For every job j, let the weight wj be a continuous ran-
dom variable with publicly known support [mj ,Mj ], probability density function
φj , and cumulative distribution function Φj . Probability distributions are assumed
to be independent between jobs. We will prove some results for general proba-
bility distributions and others for uniform distribution of weights. The latter has
Φj(x) = (x−mj)/(Mj−mj) and φj(x) = 1/(Mj−mj) for all j ∈ J and x ∈ [mj ,Mj ].
As in the 1-dimensional discrete case, the actual weight is private information of a
job, whereas the processing time pj of job j is fixed and common knowledge. We
will refer to the definitions of Section 3.2, unless we give a new definition here.

In the following, we show that the characterization of Bayes-Nash implementable
allocation rules from the previous section also applies to the continuous case. In
addition, revenue equivalence holds. We show that Smith’s rule with respect to
certain modified weights and payments computed from the network approach is
again an optimal mechanism under regularity. If the regularity condition is satisfied
and agents are symmetric, then this mechanism is efficient, as before. The regularity
condition is satisfied for instance by the uniform distribution. If mj = 0 for j =
1, . . . , n and if the weights of all agents are distributed uniformly over their respective
(not necessarily equal) intervals [0,Mj ], then this optimal mechanism is even efficient
if the processing times differ among agents.

Hartline and Karlin (2007) discuss optimal mechanism design for a similar setting
as the continuous setting at hand. They derive optimal mechanisms subject to
dominant strategy implementability and thus mechanisms that are optimal in a more
restricted class of mechanisms. The allocation rule of the optimal mechanism that
we derive turns out to be dominant strategy implementable as well, but is optimal
within the larger class of Bayes-Nash incentive compatible mechanisms. Strictly
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speaking, our results are therefore not implied by the results in Hartline and Karlin
(2007). On the other hand, looking at the techniques described in their paper, our
optimal mechanism could be derived using these techniques, too. Although our
optimal payments and regularity conditions differ from those in Hartline and Karlin
(2007), these differences are completely due to the fact that in our case agents are
paid by the mechanism and therefore individual rationality requires adding different
constants.

3.5.1 Bayes-Nash Implementability and Revenue Equivalence

We make use of the type graph as before. Note that for continuous distribution
of weights, the type graph has uncountably many nodes. We do not introduce an
extra dummy node here, but we will account for individual rationality explicitly
when deriving optimal mechanisms. In the continuous case, the following holds:

Theorem 3.21. An allocation rule f is Bayes-Nash incentive compatible in the

continuous setting if and only if it satisfies monotonicity.

The proof of Theorem3.21 is almost identical to the proof of Theorem3.3. Note
that even in an infinite type graph we only need to consider finite cycles. We do not
repeat the proof here.

Theorem 3.22. In the continuous setting, every Bayes-Nash implementable allo-

cation rule f satisfies revenue equivalence.

Proof. We use the characterization of revenue equivalence given in Chapter 2. Fix
a Bayes-Nash implementable allocation rule f and agent j and consider the type
graph Tf . Let w, z ∈ [mj ,Mj ] be two types of agent j. Using the same notation as
before, we derive the following distance from w to z.

dist(w, z) = inf
(w=a0,...,akp=z)∈P(w,z)

kp−1∑

i=0

`aiai+1

= inf
(w=a0<···<akp=z)∈P(w,z)

kp−1∑

i=0

`aiai+1

= inf
(w=a0<···<akp=z)∈P(w,z)

kp−1∑

i=0

ai[ESj(f, ai+1)−ESj(f, ai)]
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= inf
(w=a0<···<akp=z)∈P(w,z)


−wESj(f, w) + zESj(f, z) +

kp∑

i=2

(ai−1 − ai)ESj(f, ai)




= −wESj(f, w) + zESj(f, z)−
∫ z

w
ESj(f, x)dx.

Here, we use decomposition monotonicity and the nonnegative two-cycle property for
the second equality. The last equality follows from decomposition monotonicity and
the fact that ESj(f, ·) is a non-increasing function and therefore Riemann integrable.
Similarly, we get

dist(z, w) = wESj(f, w)− zESj(f, z)−
∫ w

z
ESj(f, x)dx,

and therefore dist(w, z) = −dist(z, w). According to Theorem 2.11, f satisfies
revenue equivalence. ¤

3.5.2 Optimal Mechanisms

As in the discrete case, we design a mechanism which assigns the payments to agents
only on the basis of their reports, no matter what the announced types of the other
agents are and no matter how therefore the actual allocation looks like. The goal is
to minimize the expected total payment made to jobs.

The following lemma gives payments that minimize the expected total payment
made to jobs for a given allocation rule.

Lemma 3.23. For a Bayes-Nash implementable allocation rule f , the payment

scheme

πf
j (wj) = wjESj(f, wj) +

∫ Mj

wj

ESj(f, x) dx for j ∈ J, wj ∈ [mj , Mj ]

is incentive compatible, individual rational and minimizes the expected total payment

made to agents. The expected total payment is then given by

Pmin(f) =
∑

j∈J

∫

W
Sj(f(w))wjφ(w)dw,
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where the modified weights wj are defined as

wj := wj +
Φj(wj)
φj(wj)

for wj ∈ [mj ,Mj ].

Proof. The given payment scheme is equal to

πf
j (wj) = −dist(wj ,Mj) + MjESj(f, Mj) for j ∈ J, wj ∈ [mj ,Mj ].

Similar to the previous section, it can easily be checked that this payment scheme
satisfies the incentive constraints. For any allocation rule f , the expected pay-
ment to any agent j ∈ J is fixed up to a constant due to Theorem 3.22. The
constant must be chosen high enough such that individual rationality is satisfied,
but also low enough, such that the total expected payment is minimized. Observe
that the expected utility for type Mj is equal to −MjES(f,Mj) + Eπf

j (Mj) = 0,
therefore adding a negative constant would violate individual rationality at type
Mj . On the other hand, for any type wj ∈ [mj , Mj ], the expected utility is equal
to −wjES(f, wj) + Eπf

j (wj) =
∫ Mj

wj
ESj(f, x) dx ≥ 0, thus individual rationality

is satisfied. Hence, adding a positive constant would make the expected payment
non-minimum. Consequently, the above payment scheme is incentive compatible,
individual rational and minimizes the expected payment for every type of every job.
Hence, it also minimizes the expected total payment to agents.

Next, we derive an expression for the expected total payment.

Pmin(f) =
∑

j∈J

∫ Mj

mj

φj(wj)π
f
j (wj) dwj

=
∑

j∈J

∫ Mj

mj

φj(wj)

(
wjESj(f, wj) +

∫ Mj

wj

ESj(f, x) dx

)
dwj

=
∑

j∈J

∫ Mj

mj

wjESj(f, wj)φj(wj) dwj +
∑

j∈J

∫ Mj

mj

∫ Mj

wj

ESj(f, x)φj(wj) dx dwj

Recall that Sj(f(wj , w−j)) denotes the start time of job j, when other jobs report
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w−j and that W = Πn
i=1[mj ,Mj ]. The summands of the first sum can be written as

∫ Mj

mj

wjESj(f, wj)φj(wj) dwj

=
∫

W
wjSj(f(wj , w−j))φ1(w1) . . . φj(wj) . . . φn(wn)dw1 . . . dwj . . . dwn

=
∫

W
wjSj(f(w))φ(w)dw,

where φ(·) is the joint distribution function of all agents. The summands in the
second sum can be rewritten as follows

∫ Mj

mj

∫ Mj

wj

ESj(f, x)φj(wj) dx dwj

=
∫ Mj

mj

∫ x

mj

ESj(f, x)φj(wj) dwj dx

=
∫ Mj

mj

ESj(f, x)Φj(x)dx

=
∫ Mj

mj

ESj(f, wj)Φj(wj)dwj

=
∫

W
Sj(f(wj , w−j))Φj(wj)φ1(w1)...φj−1(wj−1)φj+1(wj+1)...φn(wn)dw1...dwj ...dwn

=
∫

W
Sj(f(w))

Φj(wj)
φj(wj)

φ(w)dw.

Hence, we get for the total payment

Pmin(f) =
∑

j∈J

∫

W
Sj(f(w))

(
wj +

Φj(wj)
φj(wj)

)
φ(w)dw

=
∑

j∈J

∫

W
Sj(f(w))wjφ(w)dw,

where wj := wj + Φj(wj)/φj(wj) defines the modified weight for job j. ¤
As in the discrete case, Pmin(f) can be minimized for arbitrary distributions of

weights by applying Smith’s rule with respect to the modified weights. The result-
ing mechanism will be Bayes-Nash incentive compatible if the following regularity
condition holds.

Definition 3.24. The regularity condition holds in the continuous case if for j ∈ J

73



Optimal Mechanisms for Single Machine Scheduling

and w, z ∈ [mj ,Mj ], w < z:

w +
Φj(w)
φj(w)

≤ z +
Φj(z)
φj(z)

.

We get the following result.

Theorem 3.25. Let the modified weights and the payment scheme πf be defined

as in Lemma 3.23. Let f be the allocation rule that schedules jobs in order of non-

increasing ratios wj/pj. If regularity holds, then (f, πf ) is an optimal mechanism.

Proof. As mentioned above, Smith’s rule minimizes
∑

j∈J Sj(f(w))wj for every
type profile w ∈ W . Therefore, it also minimizes the total expected payment. As
in the discrete case, the regularity condition ensures that modified weights be non-
decreasing in the original weights. As ESj(wj) is non-increasing in the modified
weight wj under Smith’s rule with respect to modified weights, it is non-increasing
in the original weight wj for every j ∈ J if regularity holds. Hence, under regularity
weak monotonicity and consequently Bayes-Nash implementability is satisfied. ¤

The following theorem gives two important cases, when this optimal mechanism
is efficient.

Theorem 3.26. The optimal mechanism is efficient in the following two cases.

1) Agents are symmetric, i.e., have identically distributed weights and equal process-

ing times and the regularity condition holds for the distribution functions.

2) Agents’ weights are distributed uniformly over [0,Mj ] for j = 1, ..., n. Processing

times can be arbitrary.

Proof. 1) Smith’s rule with respect to modified weights is equivalent to Smith’s rule
with respect to the original weights as in the discrete case. Regularity ensures weak
monotonicity and hence Bayes-Nash incentive compatibility.

2) For the uniform distribution, we get for the virtual weights

w +
Φj(w)
φj(w)

= w +
w/Mj

1/Mj
= 2w,

which is increasing and linear in w and the linear relationship does not depend
on the agent. Hence, Smith’s rule with respect to virtual weights is equivalent to
Smith’s rule with respect to original weights, no matter what the processing times
are. ¤
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3.6 Optimal Mechanisms via Standard Auction Formats

After having derived an optimal mechanism for the continuous case, we are in-
terested, whether standard auction formats also yield optimal mechanisms for our
scheduling setting. We study the VCG mechanism and a mechanism that corre-
sponds to the first price auction.

3.6.1 The Generalized VCG Mechanism

Recall that for the discrete setting, the generalized VCG mechanism was not optimal,
even in cases when the optimal mechanism allocates efficiently. In the continuous
setting, however, revenue equivalence implies that the expected payments to agent j

in all Bayes-Nash incentive compatible mechanisms that allocate efficiently are the
same up to a constant. As the optimal mechanism proposed in Section 3.5 allocates
efficiently in the case of symmetric agents and regularity, also the VCG mechanism
can be used in this case to derive an optimal mechanism by adding an appropriate
constant to the payments of every agent.

Theorem 3.27. For symmetric agents under regularity, the VCG mechanism with

payments

πV CG
j (w) = pj

∑

k∈J
σk<σj

wk.

is optimal. Here, σ denotes the efficient schedule.

Proof. Assume symmetric agents with weights identically distributed over [m,M ]
according to density function φ1 and cumulative distribution function Φ1. The
distributions are assumed to satisfy regularity. Without loss of generality, let the
processing times be equal to one. The result already follows from revenue equiva-
lence and the fact that under the VCG mechanism, any job with type equal to its
maximum possible type M has expected start time equal to zero and hence zero
expected utility, just as in the optimal mechanism from Section 3.5.

Nevertheless, we check the equality of the expected payments under the VCG
and the optimal mechanism explicitly for illustrative purposes. Since jobs have equal
processing times, the VCG mechanism allocates in order of non-increasing weights.
The payment made to an agent j under the VCG mechanism is the sum of the
weights of all agents processed before j. To derive the expected payment to agent
j announcing type wj , we notice that any other agent k is scheduled before j if k’s
weight x is larger than wj . In this case, x is paid to j. The expected payment at
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type wj is therefore

EπV CG
j (wj) = (n− 1)

∫ M

wj

xφ1(x)dx.

In the optimal mechanism proposed in Section3.5, the payment for type wj and any
w−j is equal to

πf
j (wj , w−j) = Eπf

j (wj) = wjESj(f, wj) +
∫ M

wj

ESj(f, x)dx.

The start time when announcing type wj is a binomially distributed random variable
with parameters n − 1 and 1 − Φ1(wj), as the placement of any of the n − 1 other
jobs in front of j can be seen as a binomial trial with success probability 1−Φ1(wj).
The start time counts the number of ”successes”. Therefore, ESj(f, wj) = (n −
1)(1− Φ1(wj)). We get for the payments

Eπf
j (wj)

= wj(n− 1)(1− Φ1(wj)) + (n− 1)
∫ M

wj

(1− Φ1(x))dx

= wj(n− 1)(1− Φ1(wj)) + (n− 1)
∫ M

wj

∫ M

x
φ1(y) dy dx

= wj(n− 1)(1− Φ1(wj)) + (n− 1)
∫ M

wj

∫ y

wj

φ1(y) dx dy

= wj(n− 1)(1− Φ1(wj)) + (n− 1)
∫ M

wj

φ1(y)(y − wj) dy

= wj(n− 1)(1− Φ1(wj))− (n− 1)wj(1− Φ1(wj)) + (n− 1)
∫ M

wj

yφ1(y) dy

= (n− 1)
∫ M

wj

xφ1(x) dx

= EπV CG
j (wj).

Hence, Eπf
j (wj) = EπV CG

j (wj) for all j ∈ J and all types wj . Therefore, the total
expected payments of the optimal and the VCG mechanism are equal, too. Hence,
the VCG mechanism is optimal. ¤

Remarkably, the payment under πf depends only on the reported type of an
agent and is constant over all reports of the other agents’ and therefore over all
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allocations. In contrast, πV CG depends only on the allocation and not on the specific
report of the agent. Nevertheless, both yield the same expected payments.

3.6.2 The First-Price Equivalent

In the first price auction, the highest bidder wins the object and has to pay the
amount of his bid. In this auction, truthful reporting does not necessarily maximize
a bidder’s expected utility. On the other hand, there is a strictly increasing and
differentiable bidding function β such that bidding according to β for all agents is a
Bayes-Nash equilibrium. This result can e.g. be found in Myerson (1991). Especially,
for uniformly distributed valuations for the object, the bidding function β scales the
true valuation down by a factor of (n− 1)/n.

We do a similar analysis for the continuous case of our scheduling problem.
For symmetric agents, we derive a strictly increasing and differentiable function β

yielding a symmetric Bayes-Nash equilibrium in which all agents report according to
β. From that, it is easy to construct another optimal mechanism for the continuous
case. We furthermore show that for two agents with different processing times, there
is no such function β.

The Mechanism for the Symmetric Case. Suppose, the jobs in J are sym-
metric and their weights are drawn independently and identically distributed from
the interval [0, M ] with probability density function φ1 and cumulative distribution
function Φ1. Suppose φ1(·) > 0 on [0,M ]. Processing times are all equal to one.
The proposed mechanism (f, π) works as follows. Schedule jobs in order of non-
increasing weights and pay to each job an amount equal to its actual start time
times its announced weight. A bidding function β is a function β : [0,M ] → R+.
Recall the definition of a Bayes-Nash equilibrium.

Definition 3.28. Reporting according to β : [0,M ] → R+ is a Bayes-Nash equilib-

rium if any job j with weight wj maximizes its expected utility by reporting β(wj)

given that all other jobs report according to β, too.

Let us assume that there is a symmetric Bayes-Nash equilibrium in which agents
report according to the same strictly increasing and differentiable bidding function
β. We will first derive a functional form for β and then show that reporting according
to β is a Bayes-Nash equilibrium.

Fix agent j with actual weight wj and suppose that every other agent k with
true weight wk reports β(wk). Suppose, j reports some weight bj . Then its expected
utility is (bj −wj) times its expected start time. If j bids bj ≤ β(0) then it will get
the last position with probability one and therefore has utility (n − 1)(bj − wj) ≤
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(n − 1)(β(0) − wj). This utility is maximized at β(0) and j will never bid strictly
less than β(0). Reporting more than β(M) leads to an expected start time of 0 for
agent j and hence to an expected utility of 0. Reporting any wj ≤ bj ≤ β(M) leads
to a non-negative expected utility. Hence we can assume bj ≤ β(M) without loss
of generality. Consequently, β(0) ≤ bj ≤ β(M). As β is continuous and strictly
increasing, we can compute β−1(bj) =: w̃j . Scheduling in order of non-increasing
reports β(wk) is equivalent to scheduling in order of non-increasing reports wk, as
β is increasing. Therefore, j’s start time when reporting bj = β(w̃j) is again a
binomially distributed random variable with parameters n− 1 and 1− Φ1(w̃j) and
expected value

ESj(f, bj) = (n− 1)(1− Φ1(w̃j)).

Job j’s expected utility is then equal to

(bj − wj)(n− 1)(1− Φ1(w̃j)) = (bj − wj)(n− 1)(1− Φ1(β−1(bj))).

Differentiating with respect to bj yields

(n− 1)(1− Φ1(β−1(bj)))− (n− 1)(bj − wj)
φ1(β−1(bj))
β′(β−1(bj))

.

The expected utility should be maximized at bj = β(wj). We apply the first order
condition.

(1− Φ1(wj))− (β(wj)− wj)
φ1(wj)
β′(wj)

= 0

⇔ β′(wj)(1− Φ1(wj))− β(wj)φ1(wj) = −wjφ1(wj).

This should be true for any true weight x ∈ [0,M ]. Hence, we can write for x ∈ [0, M ]

d

dx
(β(x)(1− Φ1(x))) = −xφ1(x).

Integrating both sides from wj to M yields

β(M)(1− Φ1(M))− β(wj)(1− Φ1(wj)) = −
∫ M

wj

xφ1(x)dx

⇔ β(wj) =
1

1− Φ1(wj)

∫ M

wj

xφ1(x)dx.
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The report β(M) is obtained by taking the limit limx→M β(x). Note that β is
differentiable and strictly increasing if φ is strictly positive on [0,M ]. Unlike in the
first price auction, the bidding function is independent of the number of agents.

Next, we show that agents indeed maximize their expected utility by reporting
according to β.

Theorem 3.29. Let f be the allocation rule that schedules in order of non-increasing

reported weights. Let π be such, that every agent gets a payment equal to its an-

nounced weight times its actual start time. Then, in the mechanism (f, π), reporting

according to β : [0,M ] → R+, with

β(wj) =
1

1− Φ1(wj)

∫ M

wj

xφ1(x)dx.

is a Bayes-Nash equilibrium.

Proof. Fix agent j with true weight wj and suppose that all other agents report
according to β. We show that reporting β(wj) indeed maximizes j’s expected utility.
Suppose, j reports bj . Let Euj(bj , wj) be the expected utility for j when reporting
bj while having actual weight wj . As we already have seen, there is no loss of
generality in assuming β(0) ≤ bj ≤ β(M). Hence, β(w̃j) = bj for some w̃j ∈ [0,M ].
The expected utility from reporting β(w̃j) is equal to

Euj(bj , wj) = (β(w̃j)− wj)(n− 1)(1− Φ1(w̃j))

⇔ 1
n− 1

Euj(bj , wj) =
∫ M

w̃j

xφ1(x)dx− wj(1− Φ1(w̃j))

= [xΦ1(x)]Mw̃j
−

∫ M

w̃j

Φ1(x)dx− wj(1− Φ1(w̃j))

= M − w̃jΦ1(w̃j)−
∫ M

w̃j

Φ1(x)dx− wj(1− Φ1(w̃j))

= (M − wj) + (wj − w̃j)Φ1(w̃j)−
∫ M

w̃j

Φ1(x)dx.

Hence,

1
n− 1

[Euj(β(wj), wj)−Euj(β(w̃j), wj)] =
∫ wj

w̃j

Φ1(x)dx− (wj − w̃j)Φ1(w̃j) ≥ 0.

This completes the proof. ¤
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We give two examples of explicit bidding functions for the exponential and the
uniform distribution.

Example 3.30 (Exponential distribution). Let Φ1(w) = 1− e−λw for some λ > 0.

The interval is [0,∞). Then

β(w) =
1

e−λw
λ

∫ ∞

w
xe−λxdx

=
1

e−λw

(
[−xe−λx]∞w +

∫ ∞

w
e−λxdx

)

=
1

e−λw

(
we−λw +

[
−e−λx

λ

]∞

w

)

= w +
1
λ

.

Thus, if weights are exponentially distributed, an agent has to add the mean
weight 1/λ to its actual weight in the equilibrium.

Example 3.31 (Uniform distribution). Let agents’ weights be uniformly distributed

over [0,M ]. That is φ1(w) = 1/M and Φ1(w) = w/M . Thus,

β(w) =
1

1− w
M

∫ M

w

x

M
dx =

1
M − w

[
x2

2

]M

w

=
M + w

2
.

Taking the limit w → M yields additionally β(M) = M .

Hence, for uniform distributions, an agent reports the mean of its true weight
and the maximum weight M .

From the above analysis, we get the following Bayes-Nash incentive compatible
and optimal mechanism.

Theorem 3.32. Allocating jobs in order of non-increasing reported weights and

paying to job j with report wj and realized start time Sj the payment Sjβ(wj) is a

Bayes-Nash incentive compatible and optimal mechanism.

Proof. As β is increasing, scheduling jobs in order of non-increasing β(wj) is equiv-
alent to scheduling in order of non-increasing wj . If bidding according to β is a
Bayes-Nash equilibrium in the mechanism where a job j bidding wj is paid Sjwj ,
then truthful bidding is a Bayes-Nash equilibrium in the mechanism where j is paid
Sjβ(wj). Therefore, the mechanism proposed in the theorem is Bayes-Nash incen-
tive compatible. As the allocation is again efficient, expected payments for each
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type coincide up to a constant with the expected payments of the VCG mechanism
and with those of the optimal mechanism described in the previous two sections.
The constant is zero, as also in this mechanism, a job with maximum weight M has
zero expected start time, zero payment and hence zero utility, just as in the VCG
mechanism and the optimal mechanism from Section 3.5. ¤

A Negative Result for Unequal Processing Times. In the case with two
agents that have unequal processing times, there is no bidding function β according
to which both agents report in a Bayes-Nash equilibrium.

Theorem 3.33. Suppose, there are two agents, whose weights are continuous ran-

dom variables with equal support [0,M ]. If p1 6= p2, then there is no continuous,

non-decreasing bidding function β : [0,M ] → R+ according to which both agents

report in a Bayes-Nash equilibrium. That is, there is no symmetric Bayes-Nash

equilibrium.

Note that the theorem holds for arbitrary continuous random weights with sup-
port [0,M ]. Especially, we do not need to assume that weights are identically
distributed.

Proof. Without loss of generality let p2 < p1. Assume β is a continuous, non-
decreasing equilibrium bidding function. Let agent 2 bid according to β and look
at agent 1. Let

b1 = min
{(

1
2

+
p1

2p2

)
β(0), β(M)

}
,

then b1 ∈ [β(0), β(M)]. There exists w1 ∈ [0,M ] with β(w1) = b1, as β is continuous.
Then

β(w1) = b1 ≤
(

1
2

+
p1

2p2

)
β(0)

⇔ p2β(w1) ≤
(p2

2
+

p1

2

)
β(0) < p1β(0)

⇔ β(w1)
p1

<
β(0)
p2

.

Bidding any b with b/p1 ≤ β(0)/p2 results in an expected start time of p2

for agent 1. The expected utility is then (b − w1)p2 which is strictly larger at
b = (p1/p2)β(0) than at b = β(w1) < (p1/p2)β(0). Thus, β does not maximize the
expected utility at w1. ¤
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3.7 Discussion

We have seen that the graph theoretic approach is an intuitive tool for optimal
mechanism design and yields a closed formula for the optimal mechanism in the
1-dimensional case. The results parallel Myerson’s results for single item auctions;
although there are differences. It is not hard to see that the optimal allocation
rule – Smith’s rule with respect to modified weights – is even dominant strategy
implementable, with the same total expected payment for the mechanism. In order
to obtain a dominant strategy incentive compatible mechanism, only the payment
scheme has to be defined appropriately for each reported type profile.

In the discrete case, efficient mechanisms can be arbitrarily bad with respect
to the total payment made to agents. For symmetric agents, however, the optimal
mechanism is efficient. Even so, the payments of the generalized VCG mechanism
can still be non-optimal. In the continuous case, revenue equivalence holds and the
generalized VCG mechanism as well as a mechanism derived from the first price
auction are optimal in those cases where the derived optimal mechanism allocates
efficiently.

Moreover, we have seen that in the two-dimensional case the canonical approach
does not work and that optimal mechanism design seems to be considerably more
complicated than in the traditional auction models. We leave it as an open prob-
lem to identify (closed formulae for) optimal mechanisms for the 2-d case. It is
conceivable, however, that closed formulae don’t exist.
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Chapter 4

Overview of Problems and

Models

While the focus in the first part of this thesis was on classical mechanism design
questions and applications to a simple single machine scheduling model, we study
(mostly) multiple machine models in this second part. In the presence of more than
one machine, various models are conceivable. First of all, there is the issue whether
the machines are identical, have different speeds or have completely independent
processing times for each job. On the other hand, also the machines can be regarded
as agents and they can have different kinds of private information, for example the
speed.

In this chapter, we give an introduction to the literature that seems us suitable
to illustrate some of the most interesting models and some of the techniques to
tackle machine scheduling problems within a distributed setting. We introduce the
most important of the underlying concepts, and give a selection of typical research
questions and recent results. This includes the study of the so-called price of anar-
chy for settings where the agents do not possess private information, as well as the
design and analysis of (truthful) mechanisms in settings where the agents do possess
private information. Whenever it seems us appropriate, we give alternative proofs
instead of the original ones. Therefor, we make use of the concepts and techniques
introduced in the first part of this thesis. For example, we use monotonicity as intro-
duced in Chapter 3 in order to give an alternative proof for the meanwhile famous
result by Nisan and Ronen (2001) on the lower bound for the approximation ratio
for a scheduling problem with machine agents. Moreover, we show how the type
graph approach can be used to derive the payment scheme for a model considered
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by Archer and Tardos (2001).1

4.1 Introduction

This chapter contains an – admittedly subjective – introduction into typical research
questions that have recently been addressed in the literature on multiple machine
scheduling in a distributed setting. From the application perspective, we focus on
simple and classical scheduling and sequencing problems. In that perspective, the
focus is not so much on actual applications in practice, but rather on the underlying
game theoretic models and methodologies. We are aware that this focus is quite
narrow, yet it serves well to exemplify the most important research questions that
arise when addressing optimization problems from a distributed perspective. In
particular, by keeping the focus narrow from the applications point of view, we
think that we are able to better highlight the most important underlying theoretical
challenges. For a more practical view point, we refer to the paper by Kreipl and
Pinedo (2004).

In distributed settings, central coordination of a system is partially replaced by
decisions and actions taken by agents that are assumed to act rationally on behalf
of their own interest. It is generally assumed that their selfish behavior results in
a situation that can be characterized by some sort of system equilibrium. From a
global perspective, such an equilibrium may of course lead to suboptimal system
performance. The following two issues arise in such settings and will be addressed
in this chapter.

• Given a fixed distributed setting in which agents selfishly act on behalf of
their own interest, try to characterize and analyze the quality of the resulting
system equilibria from the perspective of the overall system performance.

• Try to design the distributed setting in such a way that selfish agents are
induced to behavior that results in system equilibria that nevertheless exhibit
a good overall system performance.

Moreover, both issues can be studied in settings where the individual agents do or
do not have private information. The distinction between settings with or without
private information leads to different challenges and related research questions. In
fact, the chapter is structured along this distinction.

1The content of this chapter was first presented in Heydenreich, Müller, and Uetz (2007). Since
then, the field has rapidly developed and there are plenty of new results. While we updated the
results already contained in the mentioned paper, we did not extend its scope.
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In settings without private information, also called complete information set-
tings, the wealth of the literature is of a descriptive nature and addresses the issue
to characterize and analyze equilibria of given systems. Only to a lesser extent the
actual design of such settings is addressed. The analysis of system equilibria leads
to the definition of the so-called price of anarchy or coordination ratio: Caused
by selfish behavior of agents, by how much does the overall system performance
deteriorate due to a lack of central coordination? In the literature on the price of
anarchy, it is generally assumed that all data that describes the problem is publicly
known. The ‘only’ complication is caused by the fact that agents act on their own
behalf. The agents thus need to take into account the (strategic) behavior of other
agents. The underlying equilibrium concept is the Nash equilibrium. Settings with-
out private information and the analysis of the price of anarchy will be addressed
in Section 4.3. The models and results discussed in Section 4.3 are mainly from
the work of Koutsoupias and Papadimitriou (1999), Czumaj and Vöcking (2007),
Christodoulou, Koutsoupias, and Nanavati (2004), Immorlica, Li, Mirrokni, and
Schulz (2008) and Azar, Jain, and Mirrokni (2008). When it comes to the design of
complete information settings, one is concerned with defining the rules within which
the agents may interact. We give several examples of system designs for machine
scheduling problems, and discuss the resulting price of anarchy.

In order to improve the quality of resulting equilibria in complete information
settings, one can augment the system by introducing payments. In the context of a
network routing problem, the issues that might arise with introducing payments have
been addressed, for example, by Cole, Dodis, and Roughgarden (2006). Another
option to improve the quality of system equilibria is to centrally control a certain
fraction of the agents, leading to so-called Stackelberg games. Such a model was
analyzed for example by Roughgarden (2004) in the context of scheduling. We refer
to those papers for an introduction into these and related issues. In this chapter,
we will not further elaborate on such extensions of complete information settings.

In settings with private information, we deal with algorithmic mechanism design;
a term that was coined by Nisan and Ronen (2000). In these settings, the additional
complication is that the agents own some piece of private information. In order to
be able to run and evaluate the system, the agents need to reveal this private infor-
mation to the system. Hence, as part of their (strategic) behavior within the system,
agents might be tempted to falsely report their private information if it is beneficial
for their own objectives. One important part of the design of such systems is there-
fore to induce the agents to truthfully report their private information; sometimes
also called the design of truthful mechanisms. Notice that the equilibrium concepts
in models with private information are more complex, because each agent is faced
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with the additional uncertainty about the private information of the other agents.
Algorithmic mechanism design problems are addressed in Section 4.4. The specific
models and results discussed in Section 4.4 are based on the work of Archer and
Tardos (2001), Nisan and Ronen (2000), and Porter (2004).

As mentioned before, the scope of this chapter is not to give an exhaustive
overview of the field, but to highlight some typical research questions. Hence, we
have chosen to discuss only a subjective selection of recent papers. Another reference
from computer science not explicitly discussed here is, for example, Angel, Bampis,
and Pascual (2005). Related problems are also studied in the literature on economic
theory, addressing questions on the efficient organization of queues. There are, for
example, papers on the existence of mechanisms with more properties than only
truthfulness (Mitra 2001, 2005), or where queue disciplines are organized with the
help of auctions (Kittsteiner and Moldovanu 2005).

The chapter is structured as follows. In Section 4.2.1, we introduce basic notation
and terminology for the scheduling models that will be addressed. In Section 4.2.2
we give a survey of the most basic concepts and terminology in game theory and
mechanism design that will be used throughout the chapter. Section 4.3 then ad-
dresses the analysis of the price of anarchy in settings without private information,
and Section 4.4 addresses the design and analysis of (truthful) mechanisms in dif-
ferent settings with private information.

4.2 Concepts and Notation

4.2.1 Multiple Machine Scheduling Models

We consider machine scheduling problems with the following characteristics. There
is a set of jobs J = {1, . . . , n}, and each job has to be scheduled on any machine
out of a set of machines M = {1, . . . , m}. Unless explicitly stated otherwise, jobs
must be scheduled non-preemptively, meaning that once the processing of a job has
started, it cannot be interrupted until the job is completed. Regarding the machines
we distinguish between three different models:

• In parallel machine scheduling, each job j ∈ J has processing time pj > 0,
independent of the machine that processes the job.

• In related (or uniform) machine scheduling, each job j has processing time pj

(on a unit speed machine), each machine i ∈ M has a speed si > 0, and the
processing time of job j on machine i equals pj/si.
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• In unrelated machine scheduling, each job j ∈ J has processing time pij > 0
when scheduled on machine i ∈ M .

In addition, jobs may have different characteristics depending on the specific
model that is addressed. We only mention the two most important characteristics
here. A release date rj ≥ 0 of job j is the time when job j comes into existence or
is released for processing. In models with deadlines, each job j should be completed
by its deadline dj , and a job which is completed before or at its deadline is called
early, otherwise a job is called late.

A feasible schedule is an assignment of jobs to machines, together with the
specification of the time interval(s) when the job is processed. In non-preemptive
settings, this reduces to specifying the machine and start time Sj for any job j.
The precise definition of feasibility clearly depends on the particular model, but
always comprises the requirement that each job must be completely processed and
no machine can process more than one job at a time. If jobs have release dates, for
example, no job must be started before its release date rj .

With respect to the objective of scheduling, we address several classical objec-
tives. Given a schedule, denote by Sj and Cj the start time and completion time
of job j, respectively. Then the makespan of a schedule is the latest job comple-
tion time, denoted by Cmax := maxj Cj . Jobs also might have weights wj ≥ 0,
denoting a priority for being processed early. Then the total weighted completion
time is

∑
j∈J wj Cj . These job weights wj could, for example, be deducted from an

inventory value, and they can be interpreted as opportunity costs for delaying job j

one unit of time.
Most models that we address represent NP-hard combinatorial optimization

problems; for a survey and references, see, for example, the paper by Lawler, Lenstra,
Rinnooy Kan, and Shmoys (1993). In addition, we address scheduling models that
are online, thus the complete problem instance is not given at the outset, but only
revealed gradually over time. For example, the existence of jobs might only become
known upon their release dates rj . For an introduction to online scheduling problems
and models, see, for example, the paper by Pruhs, Sgall, and Torng (2004).

It should be mentioned that research in scheduling has addressed many more
features and models than discussed here. For example, there might be precedence
constraints between jobs, saying that the processing of job j may only start after
another job k has been finished. Or the processing of jobs might need multiple
resources, rather than one machine, and resources may be non-renewable. Also,
there are other objectives than those considered here. We have decided to leave
these models out of consideration, because – to the best of our knowledge – the
combination of optimization and game theory has only been applied to machine
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scheduling models.

4.2.2 Game Theory and Mechanism Design for Multiple Machine

Scheduling Models

We next define some basic notation for game theoretic concepts used throughout
this chapter. In addition, we introduce problem specific notation and concepts when
needed, and indicate when we deviate from the game theoretic notation introduced
here.

In the scheduling models we address, the agents will either be the set of jobs J

or the set of machines M . Let us say we have l agents, then either l = n or l = m.
In some settings, an agent k ∈ {1, . . . , l} may own a piece of information that is
not publicly known, its type tk. Typical types are, for example, the speed si of a
machine-agent i ∈ M , or the weight wj of a job-agent j ∈ J . The possible types
for agent k are denoted by Tk. Furthermore, let T = T1 × · · · × Tl denote the type
space of all agents. Next to the private information of agents, there is usually public
information, as for example the number of machines or the type spaces of the agents
(though not their actual types).

In a game, agents have to choose between several possible actions. An action
could be that jobs have to select a machine on which they want to be processed,
or that machines have to report their actual speed. We denote by Ak the possible
actions of agent k and by A = A1 × · · · × Al the action space of all agents. The
outcome of the game depends on the actions of all agents. In the games we consider,
the outcome will always be a (feasible) schedule. Therefore, by S we denote all
(feasible) schedules.

Some care is required in order to translate ‘problem instances’ and ‘algorithms’
to a game theoretic setting. First, the term ‘problem instance’ that is used in
optimization refers to both the public and the private information of a game. Let us
denote by I the public information of a game. Then the equivalent of an algorithm
is usually called an allocation algorithm, denoted by f ; it computes an outcome (a
schedule) on the basis of the public information I together with the actions of all
agents. More precisely, f : I × A → S. Since there is hardly danger of ambiguity,
we usually omit the public information I and write f : A → S. To give an example,
suppose that the jobs are agents and that their action is to select a machine. Then,
A = Mn is the action space, and the public information I consists of m, the number
of machines, n, the number of jobs, as well as the set of processing times of all jobs
{pj | j ∈ J}. Assume that the allocation of jobs to time slots is defined by the Local
SPT rule: Each machine processes its jobs in the order of non-decreasing processing
times (SPT, shortest processing time first). For given actions a = (a1, . . . , an) of
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all n jobs, the allocation algorithm f thus assigns job k to machine ak, in such a
way that k is processed after all jobs j with aj = ak and with pj < pk. (To make
the game unambiguous, a tie breaking rule would be required for jobs with equal
processing times assigned to the same machine. We assume that ties are broken in
favor of jobs with smaller index j.) Notice that jobs are informed about the public
information I, such as the number of available machines and the processing times
of other jobs.

By vk(σ, tk), we will denote agent k’s valuation for a schedule σ ∈ S when it
has type tk. The schedule σ = f(a) depends on the actions a of all agents. If
the allocation algorithm f is clear from the context, we also write vk(a, tk), for
convenience. A typical valuation of a job-agent j for a certain schedule might be
−Cj , meaning that the job-agent wants to be finished as early as possible.

Given the public information, an agent’s choice of an action depends on its type.
Therefore, we need to define the strategy xk of an agent k as a mapping from the
agent’s type space into its action space. Let Xk = {xk |xk : Tk → Ak} denote the
strategy space of agent k and let X = X1× · · · ×Xl be the possible strategies of all
agents. For example, suppose a job j has to choose for being processed on one of
two machines with different speeds, say machine 1 with speed s1 = 1 and machine 2
with speed s2 = 2. Suppose further that the job could be processed immediately on
the slow machine 1, whereas it has to wait one time unit until the fast machine 2
becomes available. Assume that the type tj of job j is just its processing time pj

(on a unit speed machine), and its valuation for an outcome (a schedule) is −Cj .
Then the job’s preferred strategy would be to choose the slow machine 1 if pj ≤ 2,
but to wait for the fast machine 2 if pj > 2.

As a central authority, we evaluate the overall quality of a schedule by the
objective value that it achieves. In order to induce agents to choose their actions
in a way that is favorable for the overall quality of a schedule, it is common to
manipulate the agents by introducing payments. The payments depend on the
actions of all agents and specify for each agent how much (money) is to be payed
(or received) by that agent. Given the actions a of all agents, let πk(a) denote the
required payment for agent k. This could be both positive or negative. The overall
payment scheme π is then a mapping from the action space A to the space of all
possible payments. Assuming we have l agents, we thus have π : A → Rl. (More
precisely, we should write π : I ×A → Rl.)

In the models we address, we express the relation of valuations to payments
by so-called quasi-linear utilities. That means that the utility uk that an agent k

receives from a schedule is just the valuation minus the payment. More precisely,
if a schedule σ = f(a) is computed by some allocation algorithm f on the basis
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of actions a of all agents, with associated payments π(a), then the utility of agent
k (being of type tk) is given by uk(f(a), tk) = vk(f(a), tk) − πk(a). Finally, notice
that we assume that agents are rational ; meaning that they aim at maximizing their
utilities.

4.3 Models with Complete Information

When agents do not have any private information, we talk about games with com-
plete information. In these settings, a strategy of an agent is simply the choice of
an action, and it does not depend on any private information. Therefore, we can
identify strategies Xk with actions Ak for every agent. (Recall that in models where
agents have private types tk, a strategy xk ∈ Xk maps possible types from Tk to
actions in Ak.) As it is common practice in game theory, we will adopt the term
strategy for the actions of agents, and we will use Xk instead of Ak. A game is then
simply a mapping from the set of strategies of the agents to the set of schedules,
coinciding with the allocation algorithm f defined earlier. An agent k’s valuation
for a schedule σ ∈ S can be written simply as vk(σ), because it does not depend on
a potential type tk of that agent. Since the schedule σ only depends on the agent’s
strategies, the valuation can also be expressed as the valuation vk(x) for a certain
strategy vector x ∈ X.

In a game with payments, we can compute the utility of an agent k from its
valuation for a certain strategy vector x and its payment given that strategy vector
x as uk(x) = vk(x)− πk(x). In a game without payments, an agent’s utility equals
its valuation; we use the term utility also in that case.

In general, agents are also allowed to play mixed strategies. A mixed strategy of
an agent k is a probability distribution over the set of its pure strategies Xk. We
denote the set of probability distributions over the pure strategy set Xk by ∆(Xk).
For a given vector of mixed strategies, the utilities for the individual agents as well
as the objective function value become random variables. A Nash equilibrium is
then defined as follows.

Definition 4.1. A strategy vector x = (x1, . . . , xl) ∈ ∆(X1)× · · · ×∆(Xl) is called

Nash equilibrium if for every agent k = 1, . . . , l

E[uk(x)] ≥ E[uk(x1, . . . , xk−1, x
′
k, xk+1, . . . , xl)] ∀x′k ∈ ∆(Xk).

Here, E[ · ] denotes the expectation. In a model where only pure strategies are
allowed, this definition reduces to the following.
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Definition 4.2. A strategy vector x = (x1, . . . , xl) ∈ X1 × · · · × Xl is called pure

strategy Nash equilibrium if for every agent k = 1, . . . , l

uk(x) ≥ uk(x1, . . . , xk−1, x
′
k, xk+1, . . . , xl) ∀x′k ∈ Xk.

In general, Nash equilibria in pure strategies do not necessarily exist. Existence
of Nash equilibria is only guaranteed if agents are allowed to play mixed strategies.
Therefore, an interesting question is the existence of pure strategy Nash equilibria
for a given problem. Moreover, one is interested in algorithms to compute pure or
mixed strategy Nash equilibria (efficiently).

A third issue that is addressed in the literature that is specific to games with
complete information is the following question. How does the objective value that
results from a Nash equilibrium – thus a solution induced by utility maximizing
selfish agents – compare to the optimal objective value. The latter might just
be computed by some central authority. The extent to which the objective value
deteriorates due to the lack of central coordination is called the price of anarchy. It
can be defined for pure as well as for mixed strategy settings.

Definition 4.3. For a minimization problem, let VOPT be the optimal objective value

and let VNE be the worst possible objective value achieved by any (pure-strategy) Nash

equilibrium. Then the price of anarchy (of pure Nash equilibria) is defined as

POA =
VNE

VOPT
.

Accordingly, one defines the price of anarchy as VOPT /VNE in a maximization
problem. The study of the price of anarchy as the worst case ratio between the
objective value of a Nash equilibrium and that of the overall system optimum was
initiated by Koutsoupias and Papadimitriou (1999). They were motivated by the
fact that Nash equilibria in general do not optimize the overall performance of
the system, the most prominent example being the Prisoner’s Dilemma, see e.g.
Owen (1995). In a part of the literature, the price of anarchy is also referred to as
coordination ratio.

The following sections highlight a sample of different scheduling settings, their
Nash equilibria, and the corresponding prices of anarchy.
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4.3.1 The Price of Anarchy in Congestion Models

We first define the model as described and analyzed by Koutsoupias and Papadim-
itriou (1999). Consider n job-agents j ∈ J = {1, . . . , n} with processing times pj

that have to be processed on m machines i ∈ M = {1, . . . , m} with possibly different
speeds si > 0. This is the related machine scheduling model, and if all speeds si

are equal, the parallel machine scheduling model. Each pure strategy of an agent
corresponds to the deterministic selection of one of the machines. A mixed strategy
of agent j assigns a probability qj

i to every machine i, such that
∑m

i=1 qj
i = 1 for all

j.
We call the model congestion model due to the following assumption. It is

assumed that the valuation of any job for a given schedule is determined by the
total processing time of the jobs assigned to the same machine. Stated otherwise,
jobs are released from a machine only when the machine has finished all the jobs
assigned to it. We therefore define the utility of job j with strategy i ∈ M as follows.
For any vector of pure strategies (i, i−j),

uj(i, i−j) = − 1
si

∑

k:ik=i

pk.

The expected utility of agent j when the mixed strategy vector (q1, . . . , qn) is played
is then

E[uj(q1, . . . , qn)] = −
m∑

i=1

qj
i

si


pj +

∑

k 6=j

qk
i pk


 .

The objective of the central authority is to minimize the makespan of the overall
schedule, i.e.,

VOPT = min
i1,...,in

max
i

1
si

∑

j:ij=i

pj .

The model was originally motivated by regarding the machines as network links and
the jobs as traffic that has to be routed via the links. The utility of each agent is
then defined by the delay it experiences when being routed via a specific link, caused
by the corresponding total congestion of that link. The utilities as defined above
are therefore also called linear cost functions, as the congestion depends linearly on
the total load assigned to that link.

For the case with two identical machines, i.e., machines with equal speeds, it
was shown that the price of anarchy (for mixed strategies) is equal to 3/2 (Kout-
soupias and Papadimitriou 1999). We present their example showing why the price
of anarchy is at least 3/2.
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Example 4.4. Consider two jobs with p1 = p2 = 1 and two machines with unit

speed. Then a mixed Nash equilibrium is the choice qj
i = 1/2 for i, j = 1, 2. In that

Nash equilibrium, both jobs choose the same machine with probability 1/2, resulting

in makespan 2. With probability 1/2, the jobs are processed by different machines,

which gives a makespan of 1. Therefore, the expected objective value is 3/2. The

optimum is to assign both jobs to different machines, yielding an objective value

of 1. Therefore the price of anarchy for minimizing the schedule makespan in the

congestion model is at least 3/2.

A matching upper bound of 3/2 for the price of anarchy can be derived as well.

Theorem 4.5 (Koutsoupias and Papadimitriou 1999). For m = 2 identical ma-

chines, the price of anarchy for minimizing the makespan in the congestion model

is 3/2.

Let us briefly summarize further (and more general) results by Koutsoupias and
Papadimitriou (1999) and Czumaj and Vöcking (2007).

For an arbitrary number m of identical machines, Koutsoupias and Papadim-
itriou (1999) show that the POA is at least Ω(log m/(log log m)). This result goes
back to the classical bins-and-balls result: When throwing m balls into m bins
uniformly at random, then the expected maximum number of balls in any bin is
Θ(log m/(log log m)). To translate this into the given setting, consider the case
with m machines and m jobs with unit processing times. One can check that
there is a Nash equilibrium where every job randomizes uniformly over all ma-
chines. In this Nash equilibrium, the expected makespan is Θ(log m/(log log m)),
due to the bins-and-balls result. In the optimal solution, however, each machine
processes exactly one job, yielding a makespan of 1. The claimed lower bound on
the POA follows. Czumaj and Vöcking (2007) establish a matching upper bound of
O(log m/(log log m)) for the POA on m machines; they even give an exact expression
for the price of anarchy for that case.

For the case with two related machines (two machines with different speeds), the
POA is equal to the golden ratio ϕ ≈ 1.618 (for the lower bound see Koutsoupias
and Papadimitriou 1999, the upper bound follows from Cho and Sahni 1980 and
Schuurman and Vredeveld 2007 as described in Feldmann, Gairing, Lücking, Monien,
and Rode 2003). For the more general case with m related machines, Czumaj and
Vöcking (2007) show that the price of anarchy is in Θ(log m/(log log log m)). This
completes the picture for models with linear cost functions and identical or related
machines. For other extensions (e.g., non-linear congestion models), we refer to the
survey by Czumaj (2004).
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Clearly, the price of anarchy when mixed strategies are allowed is at least as
large as the price of anarchy when only pure Nash equilibria are considered. Pure
strategy Nash equilibria are not analyzed by Koutsoupias and Papadimitriou (1999).
We shortly elaborate here on the price of anarchy for pure Nash equilibria for the
identical machine setting.

Theorem 4.6. For m = 2 identical machines, the price of anarchy of pure Nash

equilibria for minimizing the schedule makespan in the congestion model is 4/3.

Proof. To see that the POA is at least 4/3, consider the following example. There

are four jobs with p1 = p2 = 1 and p3 = p4 = 2. In an optimal solution, every

machine processes one job of length 1 and one of length 2, yielding a makespan of 3.

One pure Nash equilibrium is the strategy vector (1, 1, 2, 2), i.e., the two short jobs

go on the first machine, whereas the two long jobs go on the second machine. In

that situation none of the jobs has an incentive to change the machine unilaterally.

The makespan of this Nash equilibrium is 4, which proves that 4/3 is a lower bound

on the price of anarchy of pure Nash equilibria.

To prove that the POA is at most 4/3, consider any schedule in (pure) Nash

equilibrium. Denote by L1 and L2 the total loads of machines 1 and 2, respectively,

and assume w.l.o.g. L2 ≥ L1. Let δ = L2−L1 ≥ 0. The makespan of the schedule in

Nash equilibrium is hence VNE = L2 = L1 + δ. If there is only one job on machine

2, then no schedule can have a smaller makespan, and the schedule is optimal.

Therefore, we assume that there are at least two jobs on machine 2. Any job on

machine 2 must have a processing time at least δ, as any job with smaller processing

time would have an incentive to change to machine 1. Therefore, L1 + δ ≥ 2δ and

thus L1 ≥ δ. Since no schedule can do better than distributing the total processing

time equally over both machines, VOPT ≥ L1 + δ/2. Thus we have

POA =
VNE

VOPT
≤ L1 + δ

L1 + δ
2

.

This expression is maximized when L1 is small. Using L1 ≥ δ, we therefore get

POA ≤ 2δ
3
2δ

=
4
3
.
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In fact, the same proof technique works for an arbitrary number of machines m.
One derives that the price of anarchy is at most 2− 2/(m + 1) (Finn and Horowitz
1979). A matching lower bound was given by Schuurman and Vredeveld (2007).

Theorem 4.7 (Finn and Horowitz 1979, Schuurman and Vredeveld 2007). For an

arbitrary number of identical machines, the price of anarchy of pure Nash equilibria

for minimizing the makespan in the congestion model is 2− 2/(m + 1).

4.3.2 The Price of Anarchy in Sequencing Models

In the models of the previous section, the utility of any job assigned to a certain
machine does only depend on the total load of that machine, but not on the sequence
of the jobs on that machine. Next we discuss models where each job j’s utility
depends only on its own completion time Cj , and is independent of the processing
that might occur later than Cj on the same machine.

Clearly, different local sequencing policies on the machines will yield different
Nash equilibria, and the price of anarchy will depend on the employed local se-
quencing policies. The analysis of local sequencing policies in such settings was
termed coordination mechanisms in the paper by Christodoulou, Koutsoupias, and
Nanavati (2004). However, we prefer to not use this term in this context, as we
reserve the term “mechanism” for problems where agents have private (type) infor-
mation; this is not the case here.

In the following, we examine the price of anarchy in different scheduling models
and with different local sequencing policies. As in the preceding section, the central
authority objective is to minimize the makespan Cmax of the overall schedule. Our
aim is to only highlight a few phenomena and proof techniques rather than to give a
complete survey of the known results. For a more comprehensive overview, we refer
to the paper by Immorlica, Li, Mirrokni, and Schulz (2008).

Consider again the setting where n job-agents have to choose one out of m

machines to be processed on, thus the jobs’ actions are again (i1, . . . , in) ∈ Mn.
Each job seeks to minimize its own completion time Cj , thus

uj(i1, . . . , in) = −Cj(i1, . . . , in) ,

where Cj(i1, . . . , in) is the completion time of job j in dependence on the jobs’
actions and the sequencing of the jobs per machine.

We will use the term local sequencing policy to denote the sequencing policies
implemented locally by the machines. As it turns out, for some local sequencing poli-
cies, the schedules resulting from (pure strategy) Nash equilibria coincide with the
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outcome of well-known, classical scheduling algorithms. In such cases, for analyzing
the price of anarchy, we can just exploit well known results on the performance of
those scheduling algorithms. To avoid confusion, note that we use the term ‘pol-
icy’ only for local sequencing policies, while we use the term ‘algorithm’ only for
(centrally coordinated) scheduling algorithms.

We consider the most general of the three scheduling models, namely unrelated
machine scheduling; thus if job j is scheduled on machine i, its processing time is pij .
In the Local SPT policy, every machine processes the jobs that have selected that
machine in order of non-decreasing processing times. As it turns out (Immorlica,
Li, Mirrokni, and Schulz 2008), the pure strategy Nash equilibria of the Local SPT
policy coincide with the schedules that result from the Ibarra-Kim algorithm (Ibarra
and Kim 1977). Notice that we assume in both cases that ties between jobs with
equal processing times on one machine are broken in favor of the job with smaller
index.

Ibarra-Kim algorithm. In each of the iterations τ = 1, . . . , n of the
algorithm, select a pair (j, i) where j is an unscheduled job and i is a
machine. If Cτ

j (i) denotes the completion time of job j when scheduled
after all jobs already assigned to machine i in iterations 1, . . . ,τ − 1, we
select (j, i) as argmini,jC

τ
j (i). We break ties by choosing a minimal j.

In iteration τ , job j is then scheduled on machine i after all jobs already
scheduled on i.

Theorem 4.8. For unrelated (related, parallel ) machines, the set of pure Nash

equilibria for the Local SPT policy is precisely the set of solutions of the Ibarra-Kim

algorithm.

A proof of this result can be found in Immorlica, Li, Mirrokni, and Schulz (2008).
However, when the paper corresponding to this chapter was published, this proof
was not available yet. We present here our independent proof from Heydenreich,
Müller, and Uetz (2007).

Proof. Consider any job j, and consider the iteration when the Ibarra-Kim algorithm

places job j on a machine minimizing j’s completion time. At that iteration, for all

machines i, and all jobs k already scheduled on machine i, it holds that pik < pij (or

such job k has the same processing time but a smaller index than j). Thus, in the

final schedule, assuming that machines implement the Local SPT policy, j cannot

be processed before any of those jobs k either. Given this constraint, however, j is

already sitting on a machine that minimizes its completion time. Thus, j cannot

98



4.3. Models with Complete Information

improve its completion time by unilaterally changing to another machine. That

means that the Ibarra-Kim schedule is a Nash equilibrium for the Local SPT policy.

Conversely, consider any schedule that is a pure strategy Nash equilibrium for

the Local SPT policy. In that schedule, for any job j, denote by ij the machine that

hosts job j and let CN
j be the completion time of job j (N for Nash equilibrium).

Sort the jobs in order of non-decreasing completion times CN
j . Note that jobs with

equal completion times must be scheduled on different machines; let their respective

order be chosen with respect to their index. We now schedule the jobs in this order

on their respective machines ij , and claim that this coincides with a run of the

Ibarra-Kim algorithm. We need to show that whenever the τth job, say job j, is

scheduled on its machine ij , the combination (j, ij) minimizes the completion time

Cτ
k (i) among all combinations of unscheduled jobs k and machines i, where ties

are broken by job index k. Suppose this is not the case and let (j, ij) be the first

job-machine pair for which the claim does not hold, j being the τth job in the

given order. Then in iteration τ , there is a different job-machine pair (k, i) with

Cτ
k (i) < Cτ

j (ij) or Cτ
k (i) = Cτ

j (ij) and k < j. Choose (k, i) such that Cτ
k (i) is

minimum, and break ties according to smallest job index.

First, we argue that Cτ
k (i) < CN

k . Indeed, since

Cτ
k (i) ≤ Cτ

j (ij) = CN
j ≤ CN

k , (4.1)

we have Cτ
k (i) ≤ CN

k . Assume that Cτ
k (i) = CN

k . Then we conclude from (4.1) that

Cτ
k (i) = Cτ

j (ij), thus by the choice of k we must have k < j. But by (4.1) we also

have that CN
j = CN

k . This, together with k < j, is a contradiction to the definition

of our procedure, since we break ties according to smaller job index. Hence we must

have Cτ
k (i) < CN

k .

Next, we claim that all jobs l that are hosted by machine i in the Nash-

equilibrium, and that would precede k according to the Local SPT-policy if k chose

machine i, are already present on machine i at iteration τ . To prove this claim, let

l be a such a job. Since l would precede k, either pil < pik, or pil = pik, but l < k.

In both cases, if l is not yet scheduled at iteration τ , its existence contradicts the

choice of k.

This claim implies that in the Nash equilibrium, job k could improve its com-

99



Overview of Problems and Models

pletion time CN
k to Cτ

k (i) < CN
k by choosing machine i, a contradiction.

Utilizing this result, the price of anarchy of pure Nash equilibria for the Local
SPT policy can be derived from known results on the performance of the Ibarra-Kim
algorithm. Using such results by Graham (1966) for parallel machines, by Aspnes,
Azar, Fiat, Plotkin, and Waarts (1997) and Immorlica, Li, Mirrokni, and Schulz
(2008) for related machines, and by Ibarra and Kim (1977) and Azar, Jain, and
Mirrokni (2008) for unrelated machines, one gets the following.

Theorem 4.9. The price of anarchy for minimizing the makespan in the sequencing

model, when using the Local SPT policy on each machine, is

• 2− 1/m on parallel machines,

• Θ(log m) on related machines, and

• Θ(m) on unrelated machines.

For the sake of completeness, we mention that for the case of unrelated machines,
the lower bound Ω(m) is not obtained by analyzing the Ibarra-Kim algorithm; the
proof by Azar, Jain, and Mirrokni (2008) is based on other techniques. But due to
Theorem 4.8, the authors simultaneously obtain a lower bound for the Ibarra-Kim
algorithm as well, answering a question that has been open for a long time. In
fact, they prove the more general result that every strongly local sequencing policy
satisfying IIA results in a price of anarchy of Ω(m). Here, strongly local means
that every machine uses only information on the processing times of the jobs on
that machine to sequence the jobs. IIA is defined in a slightly different way than
in Chapter 3, meaning that the relative order of two jobs must not depend on the
existence of some other job.

For the case of parallel machines, the Ibarra-Kim algorithm is in fact equivalent
to the classical greedy SPT algorithm.

Greedy SPT algorithm. Whenever a machine becomes idle, start a
job with the shortest processing time among all remaining unscheduled
jobs.

Theorem 4.9 states that this algorithm yields a schedule with makespan no more
than 2− 1/m times the optimal makespan. However, for the parallel machine case,
the LPT algorithm yields an even better performance bound of 4/3− 1/(3m) (Gra-
ham 1969).
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Greedy LPT algorithm. Whenever a machine becomes idle, start a
job with the longest processing time among all remaining unscheduled
jobs.

This motivates the analysis of the Local LPT policy on parallel machines. Again,
it can be shown that pure strategy Nash equilibria correspond to the output of the
greedy LPT algorithm (Christodoulou, Koutsoupias, and Nanavati 2004). The well
known analysis of the LPT-algorithm by Graham (1969) now yields the following.

Theorem 4.10 (Christodoulou, Koutsoupias, and Nanavati 2004). For the parallel

machine setting, the price of anarchy for minimizing the makespan in the sequencing

model when using the Local LPT policy on each machine, is 4/3− 1/(3m).

Clearly, from the above result it follows that the price of anarchy is at least
4/3 − 1/(3m) also for related (or unrelated machines). Immorlica, Li, Mirrokni,
and Schulz (2008) obtain even constant bounds following from the work of Dobson
(1984) and Friesen (1987). We mention the following result without a proof.

Theorem 4.11 (Immorlica, Li, Mirrokni, and Schulz 2008, Dobson 1984, Friesen

1987). For the related machine setting, the price of anarchy for minimizing the

makespan in the sequencing model, when using the Local LPT policy on each ma-

chine, is bounded as follows: 1.52 ≤ POA ≤ 1.59.

Consider now the case of unrelated machines. In contrast to the price of anarchy
of the Local SPT policy, which is in Θ(m) by Theorem 4.9, it is unbounded for the
Local LPT policy. To that end, consider the following example.

Example 4.12. Consider two machines 1 and 2 and two jobs 1 and 2. Let p11 =

p22 = 1 and p12 = p21 = K for some constant K > 0. Then in one Nash equilibrium,

job 1 is processed by machine 1 and job 2 by machine 2. The makespan of the

resulting schedule is 1. In the other Nash equilibrium, job 1 is processed on machine

2 and job 2 on machine 1. Because longer jobs are processed before shorter ones

on every machine, unilaterally changing the machine is not beneficial for either job.

The makespan is K in this case. Therefore, the price of anarchy is equal to K and

is hence unbounded.

The question of the existence of pure strategy Nash equilibria in the above
mentioned settings is often answered by showing that a certain local sequencing
policy constitutes a so-called potential game. This method is used by Immorlica,
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Li, Mirrokni, and Schulz (2008) for analyzing the Local SPT policy for the case
of related machines. Potential games have a potential function mapping strategy
vectors to real numbers such that the potential function decreases whenever an
agent unilaterally changes its strategy in such a way that its own utility increases.
Minima of the potential function then correspond to pure strategy Nash equilibria
of the game. Potential functions where first used by Rosenthal (1973) and formally
introduced by Monderer and Shapley (1996). We refer to those references for further
reading.

Notice that the link to potential games also establishes a close relationship to
local search algorithms in optimization. One can define a local search neighborhood
of a given strategy vector by considering all strategy vectors where only one agent
has changed its strategy to the best response against the given strategies of the other
agents. The potential function takes the role of the objective function of the local
search. Local optima of those neighborhoods then correspond to pure strategy Nash
equilibria. The analysis of the quality of local optima is therefore closely related to
the analysis of (pure strategy) Nash equilibria. The quality of local optima of several
neighborhoods in machine scheduling was analyzed, for example, by Schuurman and
Vredeveld (2007).

In other settings, pure strategy Nash equilibria might not even exist. Azar,
Jain, and Mirrokni (2008) illustrate this by giving the example of a local sequencing
policy for unrelated machine scheduling where jobs are scheduled on each machine
in order of their non-decreasing inefficiencies on that machine. The inefficiency of
a job on a machine is defined as the ratio of the processing time on that machine
over the smallest possible processing time on any other machine. This local policy
is clearly not strongly local in the sense defined above, but it satisfies IIA and it is
proved that the price of anarchy when using this policy is in Θ(log m) beating the
lower bound for strongly local policies. On the other hand, the authors construct an
input instance such that the game resulting from using the inefficiency based local
sequencing policy has no pure strategy Nash equilibrium.

4.3.3 The Price of Anarchy for Other Objective Functions

To our knowledge, the price of anarchy in scheduling has almost exclusively been
studied with respect to the makespan objective. However, the strategic behavior
of a job-agent that seeks to minimize its own completion time is not affected by
the objective function of the central authority. Therefore, the Nash equilibria for
the different models discussed in the previous section remain Nash equilibria if the
central authorities’ objective function is modified.

As an example, we consider a model that differs only slightly from the models
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in the previous section. Each job-agent now has a weight wj additionally to its
processing time pj , and as before, seeks to be finished as early as possible. The
weight can be regarded as disutility per unit waiting time. Then, a job j’s disutility
for a schedule which gives it completion time Cj is wjCj . The strategy of each job
remains the choice of a machine. As central objective, we consider the minimization
of the total weighted completion time

∑
j∈J wj Cj . This corresponds to maximizing

the total social welfare, similarly as in Chapters 3 and 5.
The most natural (because optimal) local sequencing policy on the machines is

then the well known Local WSPT policy, also known as Smith’s rule: each machine
processes its jobs in the order of non-increasing ratios wj/pj . For each machine
individually, this yields the minimum total weighted completion time

∑
j∈J wj Cj

(Smith 1956). Consider now the following algorithm.

(Ibarra-Kim version of) WSPT algorithm. Sort the jobs in order
of their weight over processing time ratios wj/pj , largest first. In that
order, schedule each job on the machine that minimizes its completion
time when scheduled after all jobs already scheduled on that machine.

Notice that for parallel machines, this algorithm reduces to the classical WSPT
algorithm that just schedules the jobs during execution greedily in order of non-
increasing ratios wj/pj . The worst case behavior of this algorithm has been analyzed
by Kawaguchi and Kyan (1986). Similar to the proof of Theorem 4.8, one can show
that the set of Nash equilibria of the Local WSPT policy is equal to the set of all
possible outputs of this WSPT algorithm.

Theorem 4.13. For related (parallel ) machines, the set of pure Nash equilibria for

the Local WSPT policy is precisely the set of solutions of the above WSPT algorithm.

Consequently, the price of anarchy of the Local WSPT policy follows from the
analysis of that algorithm. For parallel machines, the work of Kawaguchi and Kyan
(1986) thus yields the following.

Theorem 4.14. For parallel machines, the price of anarchy of the Local WSPT

policy for minimizing
∑

wjCj in the sequencing model is (
√

2 + 1)/2 ≈ 1.207.

For the case of related machines, we are not aware of non-trivial bounds on the
price of anarchy. For the unrelated machine case, it is not even clear whether or not
a pure strategy Nash equilibrium exists. However, if all jobs have the same weights,
then the Local WSPT policy is equivalent to the Local SPT policy. The existence
of pure strategy Nash equilibria then follows from Theorem 4.8. Also for this case,
however, we are not aware of any non-trivial bound on the price of anarchy.
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4.4 Models with Private Information

In the previous section, we addressed the question what happens if in a scheduling
application a part of the decisions is left to selfish job agents. Given various policies
that determine how jobs are scheduled on the selected machines, we compared the
objective in equilibrium with the objective of the optimal solution. In this section,
we additionally assume that the agents own some private information, namely their
types, and these are not publicly known. For any given agent, its type will influence
its action in the game. Since agents do not know other agents’ types, they do
not know which actions are beneficial for the other agents and therefore which
actions other agents are likely to chose. This additional uncertainty results in more
complicated equilibrium concepts than in the previous section. We start with some
general notation, then discuss general techniques and key results, and finally review
a couple of interesting models related to scheduling.

4.4.1 Mechanism Design

Let us denote a mechanism with allocation algorithm f and payment scheme π

by µ = (f, π). We will present several examples for mechanisms in the following
sections. Next, we introduce the equilibrium that is most robust towards the infor-
mation uncertainty described above and that is at the same time the one that is
best studied in the algorithmically oriented literature in mechanism design.

Recall that for agent k, a strategy xk is a mapping from types tk to actions
ak. We denote by t−k, x−k and a−k the vectors of types, strategies and actions
respectively of all agents other than k. For the type, strategy and action vector of
all the agents, we then write (tk, t−k), (xk, x−k), and (ak, a−k).

Definition 4.15. Let µ = (f, π) be a mechanism. A strategy vector x ∈ X is called

a dominant strategy equilibrium, if for all agents k, for all types tk of agent k, for

all actions a−k of the other agents and all alternative actions ak of agent k it holds

that

vk(f(xk(tk), a−k), tk)− πk(xk(tk), a−k) ≥ vk(f(ak, a−k), tk)− πk(ak, a−k).

Remarkably, this means that independent of which actions the other agents take,
it never pays off for any agent k, to deviate from its strategy xk.

In most cases, the revelation principle as mentioned in the introduction applies
and we can restrict ourselves to the design of direct revelation mechanisms. Hence,
this class of mechanisms receives great attention in the literature (Briest, Krysta,
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and Vöcking 2005; Gui, Müller, and Vohra 2004; Bikhchandani, Chatterjee, Lavi,
Mu’alem, Nisan, and Sen 2006; Saks and Yu 2005). In a direct revelation mecha-
nism, the only action that an agent is required to take is reporting its type, thus
xk : Tk → Tk. Assume we have a scheduling problem where part of the instance is
private information of the agents. Given reports about that private information, we
can define the allocation algorithm that merely chooses an optimal solution. (For
the time being, we are not addressing the question how this optimal solution is
derived.) Let us denote it by the exact allocation algorithm. Without payments,
utility maximizing agents might misreport their private information in such settings
in order to achieve a more favorable outcome. With well-designed payments, how-
ever, agents may get incentives to report their private information truthfully in the
following sense.

Definition 4.16. A direct revelation mechanism is called dominant strategy incen-

tive compatible, or truthful, if the strategy vector x in which each agent truthfully

reports its type, that is, xk = id for all k, is a dominant strategy equilibrium. An al-

location algorithm f is said to be truthfully implementable, if we can find a payment

rule π such that the mechanism µ = (f, π) is truthful.

Given some optimization problem, if the exact allocation algorithm is truthfully
implementable, there is of course still the issue whether the algorithm runs in poly-
nomial time, and whether the payments can be computed in polynomial time. If we
leave this algorithmic problem out of consideration, however, it is often surprisingly
easy to provide a truthful implementation, because many optimization problems are
special cases of the setting in which we can apply so-called Vickrey-Clarke-Groves
(VCG) payments. In what follows we use the notation by Roberts (1979).

Definition 4.17. Given l agents, their types t1, . . . , tl, valuation functions v1, . . . , vl,

strictly positive weights γ1, . . . , γl, and constants βy for every σ ∈ S, an allocation

algorithm f is called an affine maximizer, if it chooses a schedule σ ∈ S that maxi-

mizes βσ +
∑l

k=1 γkvk(σ, tk).

The following theorem is in this generality due to Roberts (1979). For all weights
equal to 1, it has been proven by Clarke (1971) and Groves (1973), while for the
special case of single-item auctions it has been proven by Vickrey (1961).

Theorem 4.18. Let an allocation algorithm f be an affine maximizer, and let for

every agent k, hk be an arbitrary function mapping type reports t−k of the other
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agents to real numbers. Then the mechanism µ = (f, π) is truthful if the payments

are defined as follows.

πk(t) = hk(t−k)− 1
γk

βf(t) −
∑

k′ 6=k

γk′

γk
vk′(f(t), tk′) .

It is intuitive to give the very short proof of this important theorem.

Proof. Let us assume that agent k reports t̂k instead of its true type tk, and let

t̂ = (t̂k, t−k). Since f is an affine maximizer we have:

βf(t) +
∑

k

γkvk(f(t), tk) ≥ βf(t̂) +
∑

k

γkvk(f(t̂), tk),

which implies:

vk(f(t), tk) +
1
γk

βf(t) +
∑

k′ 6=k

γk′

γk
vk′(f(t), tk′)

≥ vk(f(t̂), tk) +
1
γk

βf(t̂) +
∑

k′ 6=k

γk′

γk
vk′(f(t̂), tk′).

If we subtract hk(t−k) on both sides of this inequality, we get on the left hand side

the utility of agent k for truth-telling, and on the right hand side its utility when

reporting t̂k.

Note that the generality of the functions hk gives some flexibility to define pay-
ments. In auctions, for example, one uses this flexibility to adjust prices such that
agents who do not win any object pay 0. Note further that, for fixed type report
t−k, agent k pays a price that depends only on the allocation that is selected by the
affine maximizer, and not on its particular type report by which this allocation is
achieved. It is easy to see that this so-called taxation principle does not only hold
for affine maximizers and their VCG payments, but it must hold for any truthful
mechanism.

Let us provide an example application of VCG payments in the context of
scheduling.

Example 4.19. Suppose there is a single machine, and there are job-agents whose

characteristics – weights wj and processing times pj – are private information. The

valuation of an agent is the negative of its weighted completion time (in order to
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make the agents utility maximizers). Let f be the exact allocation algorithm, i.e., f

chooses a schedule minimizing the weighted sum of completion times. Note that this

is an affine maximizer, since it maximizes the sum of agent valuations. Let us use

the notation Ck(t) for the completion time of agent k in the optimal solution of the

instance with all agents, and Ck(t−j) as the completion of agent k in the optimal

solution of the instance in which j is not present. Now choose hj(t−j) as the negative

of the optimal weighted sum of completion times if agent j is not present. We get

the following VCG payments.

πj(t) = −
∑

k 6=j

wkCk(t−j) +
∑

k 6=j

wkCk(t)

=
∑

k 6=j

wk(Ck(t)− Ck(t−j)) =
∑

k delayed by j

wkpj .

Here, the last sum is restricted to those jobs that are delayed due to the presence

of j. In other words, job j pays for the decrease in utility of other agents. By

Theorem 4.18, with these payments, agents maximize their utility by reporting their

types truthfully.

Notice that the scheduling problem of Example 4.19 does not only allow for a
truthful implementation, but at the same time is the allocation algorithm a polyno-
mial time algorithm: The exact allocation algorithm f just schedules the jobs in the
order of non-increasing ratios wj/pj (Smith 1956). Given the reports of all agents,
also the payments can be computed efficiently.

It is often the case, however, that an exact allocation algorithm is not that easily
obtainable, for example because the underlying optimization problem is NP-hard.
If instead of an exponential time exact allocation algorithm, we use an allocation
algorithm that is a (suboptimal) heuristic, this algorithm is generally not an affine
maximizer, and computing payments with the VCG formula on the basis of the
solutions computed by the heuristic does not necessarily yield a truthful mecha-
nism (Nisan and Ronen 2000; Ronen 2006).

On the other hand, even if an allocation algorithm is not an affine maximizer,
it might be truthfully implementable. In order to verify whether a given alloca-
tion algorithm is truthfully implementable, and in order to determine the required
payments, a characterization of truthfully implementable allocation algorithms is
of great importance. Such characterizations have been given by Monderer (2007)
and Saks and Yu (2005), generalizing earlier results by Bikhchandani, Chatterjee,
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Lavi, Mu’alem, Nisan, and Sen (2006), Gui, Müller, and Vohra (2004), and Roberts
(1979). We review the definition of monotonicity, which has been stated in Chap-
ter 3 for more specific valuation functions. Often, monotonicity is also referred to
as weak monotonicity.

Definition 4.20. An allocation algorithm f is said to satisfy monotonicity if for

all agents k, for all types tk, t̂k of agent k, and for all types t−k of other agents:

v(f(tk, t−k), tk)− v(f(tk, t−k), t̂k) ≥ v(f(t̂k, t−k), tk)− v(f(t̂k, t−k), t̂k).

Monotonicity is a necessary condition for a truthful implementation of an allo-
cation algorithm. Indeed, using the types as given in the definition, and assuming
that truthful payments exist, we get the following two inequalities, from which
monotonicity follows:

v(f(tk, t−k), tk)− π(tk, t−k) ≥ v(f(t̂k, t−k), tk)− π(t̂k, t−k)

v(f(t̂k, t−k), t̂k)− π(t̂k, t−k) ≥ v(f(tk, t−k), t̂k)− π(tk, t−k).

For some settings, monotonicity of an allocation rule is even a sufficient condition
for truthful implementability, see Theorem 4.24 below. Saks and Yu have shown the
more general result that monotonicity is sufficient for convex domains:

Theorem 4.21 (Saks and Yu 2005). Let the set of outcomes S be finite, and let for

all agents k the type be represented as a valuation vector with a valuation for every

possible outcome σ ∈ S. That is, Tk ⊆ RS and vk(σ, tk) = tkσ, σ ∈ S. Furthermore,

assume that all Tk are convex. Then an allocation algorithm f : A → S is truthfully

implementable if and only if f satisfies monotonicity.

The proof of Theorem 4.21 is based on the link between the implementability of
an allocation algorithm and the absence of negative cycles in the allocation graphs
obtained for any agent and any fixed report of the other agents, as introduced in
Chapter 2. In fact, in many settings, the constructed allocation graphs have no
negative cycle if and only if they have no negative 2-cycle. Theorem 4.21 provides
an example of such a setting. In Section 4.4.2 we show how allocation graphs can
be used to provide an alternative proof for a result given originally by Archer and
Tardos (2001).

Monderer (2007) generalizes Theorem 4.21 to domains with convex closure and
provides a simpler proof than Saks and Yu (2005).
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4.4.2 Performance of Truthful Mechanisms in Machine Scheduling

In this section, we regard specific scheduling models from a mechanism design per-
spective and show how the techniques described in the previous section can be used
to analyze them. We investigate the trade-off between mechanism design goals
(truthfulness) and optimization objectives, such as exact optimization, approxima-
tion and competitiveness (in the case of online algorithms). The first two models
studied in the following refer to off-line situations where the machines are the agents.
The model regarded thereafter is an online scheduling model with job-agents. An-
other online scheduling model is studied in Chapter 5.

By the performance guarantee of an (off-line) allocation algorithm for a min-
imization problem, we refer to an upper bound on the ratio between the worst
possible objective value that can be achieved by the allocation algorithm and the
optimal objective value. For a mechanism, the performance guarantee is defined
with respect to the worst possible objective value that can occur when all agents re-
port their types truthfully. Note that we do not demand any performance guarantee
for non-truthful agents.

In an online optimization problem, the instance is not known entirely before-
hand, but part of it is only revealed over time. Therefore, any online algorithm has
to make decisions on the basis of incomplete information. In our strategic mecha-
nism design setting, the incompleteness of information is due to two sources – the
online setting and the fact that agents have private information. The goal is to
design online mechanisms that have good properties with respect to truthfulness
and performance. In the online model we describe in this chapter, the objective is
equivalent to affine maximization. However, the problem does not allow for an exact
allocation algorithm due to the online situation. We say that an online algorithm
with minimization objective has performance guarantee % for % ≥ 1 if the schedule
resulting from the online algorithm has an objective value no more than % times the
optimal off-line objective value. That is, we compare the online algorithm to the
best solution that could have been achieved if the entire instance had been known
in advance. For an online mechanism, we demand the performance guarantee only
with respect to truthful agents.

Unrelated Machine Scheduling with Machine Agents

In this section, we illustrate the conflict between optimizing the objective function
of a given problem and obtaining a truthful mechanism. In the setting that we
discuss, it turns out to be impossible to design a mechanism that is at the same
time truthful and optimizing the objective function. This section is based on the
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work of Nisan and Ronen (2001).
Consider the following strategic version of unrelated machine scheduling. The

agents are the m machines, on which n jobs have to be scheduled. The type of each
machine i is the vector ti = (ti1, . . . , tin), where tij denotes the time that machine i

needs to process job j. Hence, the type spaces are n-dimensional. The valuation of a
machine for a certain schedule is the negative of the total time it needs to process all
the jobs assigned to it. The objective of the optimization problem is to minimize the
makespan. Obviously, the allocation algorithm that chooses the optimal schedule
for every instance does not belong to the class of affine maximizers.

Nisan and Ronen (2001) show that no truthful mechanism for the regarded
problem can approximate the optimal solution with an approximation factor better
than 2. We give here an alternative proof for their result using monotonicity.

Theorem 4.22 (Nisan and Ronen 2001). There does not exist a truthful mechanism

for the strategic version of the unrelated machine scheduling problem that has a

performance guarantee better than 2.

Proof. Suppose, there is a truthful mechanism µ = (f, π) with performance guar-

antee % < 2. Let there be n jobs 1, . . . , n, where n > 2%/(2 − %). Let there be two

machines 1 and 2 with types t1 = t2 = (1, . . . , 1). Let n1 be the number of jobs

assigned by f to machine 1 and let n2 be the number of jobs assigned to machine 2.

Without loss of generality, we assume that jobs 1, . . . , n1 are assigned to machine 1

and jobs n1 + 1, . . . , n are assigned to machine 2. We also assume n1 < n2 without

loss of generality, i.e., the resulting makespan is n2. The optimal makespan is dn/2e.
We first claim that n1 > 0. In fact, if n1 = 0, then the makespan in the schedule

produced by f is n and

n >
%

2− %
⇔ n > % · n + 1

2
≥ %

⌈n

2

⌉
,

which contradicts that µ is a %-approximation.

Let us now change type t1 to t′1 = (ε, . . . , ε, 1 + ε, . . . , 1 + ε), such that the

processing time of machine 1 is ε for the first n1 jobs and 1+ε for jobs n1 +1, . . . , n.

We assume that ε is positive but very close to 0. Type t2 remains unchanged. We

claim that in the new situation, f has to reassign at least one of the jobs n1+1, . . . , n

to machine 1.

Case 1. Let n2 be even. Then the new optimal makespan is at most (n2/2)(1 +
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ε) + n1ε. If all the jobs n1 + 1, . . . , n remained on machine 2, the new makespan

would be at least n2. But

n2 > %
(n2

2
(1 + ε) + n1ε

)

for sufficiently small ε, contradicting that µ is a %-approximation.

Case 2. Let n2 be odd. For sufficiently small ε, the optimal makespan is achieved

by assigning dn2/2e of the jobs n1 + 1 . . . , n to machine 2 and all the other jobs to

machine 1. The optimal makespan is then dn2/2e = (n2 + 1)/2 for ε small enough.

If all the jobs n1 + 1, . . . , n remained on machine 2, then the new makespan would

be at least n2. But

2n2 ≥ n >
2%

2− %
⇒ n2 >

%

2− %
⇒ n2 > % · n2 + 1

2
.

That contradicts that µ is a %-approximation.

Therefore, one of the jobs n1 + 1, . . . , n must move from machine 1 to machine

2. We now show that monotonicity is violated. Let T be the set of jobs initially

assigned to machine 1 for type t1 and let T ′ be the set of jobs assigned to machine

1 for type t′1. Monotonicity for machine 1 implies

∑

j∈T\T ′
(t′1j − t1j) +

∑

j∈T ′\T
(t1j − t′1j) ≥ 0.

The left hand side is equal to |T \ T ′|(ε− 1) + |T ′ \ T |(1− (1 + ε)), where the first

term is at most 0 and the second term is strictly negative, since |T ′ \T | is at least 1.

Therefore, the left hand side is strictly smaller than 0 and monotonicity is violated.

The example can easily be modified to show the result for any larger number of

jobs and machines.

In view of this negative result, the question arises which performance guarantee
a truthful mechanism can achieve. Nisan and Ronen (2001) suggest the following
MinWork mechanism, which can be viewed as auctioning each task separately in a
Vickrey auction.

MinWork mechanism.
Allocation algorithm: After each machine has declared its type, assign
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each job to the machine that has declared the lowest processing time for
that job. Ties are broken arbitrarily. For a vector t = (t1, . . . , tm) ∈ Tm

of machine declarations, the set of jobs allocated to machine i is denoted
by fi(t).
Payment scheme: For a vector t = (t1, . . . , tm) ∈ Tm of machine declara-
tions, the payment for machine i is defined as πi(t)=−

∑
j∈fi(t)

mini′ 6=i ti′j .
That is, each machine receives for each job that it processes a payment
that equals the second lowest declaration of any machine for that job.

Theorem 4.23 (Nisan and Ronen 2001). MinWork is truthful and an m-approxi-

mation.

Proof. The MinWork mechanism minimizes the total work done and therefore max-

imizes the sum of the valuations of all machine-agents. Therefore, the allocation al-

gorithm of the mechanism is an affine maximizer. Set hi(t−i) := −∑n
j=1 mini′ 6=i ti′j

to see that the payment scheme of MinWork is a VCG payment scheme. Therefore,

MinWork is truthful according to Theorem 4.18.

For the performance guarantee with respect to the makespan objective, note

that the optimum makespan VOPT is lower bounded by

VOPT ≥ 1
m

n∑

j=1

min
i=1,...,m

tij .

The makespan VMW resulting from the allocation algorithm of the MinWork mech-

anism is upper bounded by

VMW ≤
n∑

j=1

min
i=1,...,m

tij ,

i.e., VMW ≤ mVOPT , assuming that all agents report their true types.

In fact, Nisan and Ronen prove that the mechanism is strongly truthful, i.e.,
truthtelling is the only dominant strategy for every agent.

As mentioned before, no truthful mechanism for the regarded problem can ap-
proximate the optimal solution better than a factor of 2. Therefore, MinWork is
best possible for two machines. Moreover, the authors conjecture that also for the
general case with m machines, the upper bound of m is tight, yet this remains an
open question.
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The scheduling problem regarded in this section and variants thereof have be-
come important and well studied problems exemplifying the conflict between ap-
proximation goals and mechanism design goals. Since the seminal work of Nisan
and Ronen (2001), improvements on the lower bound for the approximation ratio of
the strategic unrelated machine scheduling problem have been obtained. To the best
of our knowledge, the currently best known lower bound is 1 + ϕ ≈ 2.618 proven
by Koutsoupias and Vidali (2007). That means that no truthful mechanism can
achieve an approximation ratio better than 1 + ϕ for every number m of machines.

Related Machine Scheduling with Machine Agents

Archer and Tardos (2001) consider a similar model for related machine scheduling.
Again, the agents are the machines. In contrast to the model from the previous
section, the processing times of different jobs on one machine are not independent
and the type spaces of the machine-agents are one-dimensional. More precisely,
each machine i has a speed si and the type is defined to be the inverse of this speed
ti := 1/si. Each job j has a (unit-speed) processing time pj . The time that is needed
to process job j on machine i is tipj = pj/si. The action of each machine is to declare
its type. If machine i is assigned the set of jobs fi(t) ⊆ J for a vector of declarations
of all machines t = (t1, . . . , tm) ∈ Tm, then its valuation is vi(t, ti) = −∑

j∈fi(t)
tipj .

The objective is again to minimize the makespan.
For this setting, Archer and Tardos derive a necessary and sufficient condition for

an allocation algorithm to be truthfully implementable. For an allocation algorithm,
denote by Li(t) = Li(ti, t−i) the total workload assigned to machine i. Then an
agent’s valuation can be written as vi(t, ti) = −ti · Li(ti, t−i).

Theorem 4.24 (Archer and Tardos 2001). An allocation algorithm is truthfully im-

plementable if and only if for all agents i and all t−i ∈ Tm−1 the function Li(ti, t−i)

is a decreasing function of ti. If this is the case, then the appropriate payments take

the following form

πi(ti, t−i) = −
(

hi(t−i) + tiLi(ti, t−i)−
∫ ti

0
Li(u, t−i)du

)
.

Here, hi are arbitrary functions that depend on the declarations of all agents except

i.

Instead of giving the original proof by Archer and Tardos (2001), we show how
Theorem 4.24 is implied by the results of Saks and Yu (2005) and Gui, Müller, and
Vohra (2004).
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Proof. Convexity of the type spaces in the sense of Theorem 4.21 can be easily

verified. It is due to the fact that the speed and therefore its inverse can be an

arbitrary positive real number and the valuation of an agent for a certain schedule

depends linearly on the inverse of the speed.

From Theorem 4.21, we know that monotonicity is a necessary and sufficient

condition for the allocation algorithm to be truthfully implementable. To verify

monotonicity, let ti and t̂i be different types of an agent i with ti < t̂i, and let the

reports of the other agents be fixed as t−i. Then monotonicity is equivalent to

vi((ti, t−i), ti)− vi((ti, t−i), t̂i) ≥ vi((t̂i, t−i), ti)− vi((t̂i, t−i), t̂i)

⇔ −tiLi(ti, t−i) + t̂iLi(ti, t−i) ≥ −tiLi(t̂i, t−i) + t̂iLi(t̂i, t−i)

⇔ (t̂i − ti)(Li(ti, t−i)− Li(t̂i, t−i)) ≥ 0.

This condition is satisfied whenever Li(ti, t−i) − Li(t̂i, t−i) ≥ 0, i.e., if and only if

the function Li is decreasing in the report of agent i.

For the second part of the theorem, we will use the results of Gui, Müller, and

Vohra (2004) to derive the payment scheme given above. Let f be an allocation

algorithm that satisfies the decreasing work curves condition, let agent i and the

report of the other agents t−i be fixed and let for simplicity of notation L(ti) :=

Li(ti, t−i) denote the workload assigned by f to i when reporting ti. First, we observe

that there are only finitely many possible schedules that can yield only finitely many

different values of L(ti). We denote those values by Lmax =
∑

j∈J pj > · · · > L1 >

L0 = 0. Using that f satisfies the decreasing work curve condition, we get the

picture in Figure 4.1 for the graph of L(ti). In order to determine the payments

Lmax

L2

L1

L0

L(ti)

ti

...

Figure 4.1: decreasing work curve

according to the method of Gui, Müller, and Vohra (2004), we have to determine
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shortest paths in the allocation graph as described in Chapter 2. Let πr denote the

payment that machine i has to make if it is assigned workload Lr by the allocation

algorithm. We define π0 = 0 and determine the shortest path from the node L0 to

node Lr. It can easily be shown that if Lr3 > Lr2 > Lr1 then the arc lengths satisfy

`(Lr1 , Lr3) ≥ `(Lr1 , Lr2) + `(Lr2 , Lr3). Therefore, [L0, L1, . . . , Lr] is a shortest path

from L0 to Lr. Hence, the payments can be written as:

πr =
r∑

i=1

`(Li−1, Li) =
r∑

i=1

inf
ti:L(ti)=Li

(−tiLi + tiLi−1)

= −
r∑

i=1

(
sup

ti:L(ti)=Li

ti

)
(Li − Li−1).

Thus, if machine i is assigned a total workload of Lr, it receives a payment that is

equal to the area under the graph of min(L(ti), Lr), as depicted in Figure 4.2. Thus,

Lmax

Lr

L0

L(ti)

ti

...

...

Figure 4.2: payment for workload Lr

the payment to machine i is tiL(ti)+
∫∞
ti

L(u)du. If we now let hi(t−i) =
∫∞
0 L(u)du,

then the payment that machine i receives equals tiL(ti) +
∫∞
ti

L(u)du = hi(t−i) +

tiL(ti)−
∫ ti
0 L(u)du, which proves the claim.

To see that every payment scheme in a truthful mechanism takes the form ob-

tained above, notice that revenue equivalence holds according to Corollary 2.13.

Therefore, the payments are uniquely defined up to hi(t−i), which completes the

proof.

Archer and Tardos (2001) give a randomized polynomial time allocation algo-
rithm, which is based on bin-packing and rounding fractional assignments of jobs
to bins in a random fashion. The allocation algorithm fulfills the decreasing work
curves condition with respect to the expected utilities of the agents. The following
result is obtained.
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Theorem 4.25 (Archer and Tardos 2001). For the strategic version of related ma-

chine scheduling with machine agents whose private information is their speed, there

exists a mechanism with the following properties:

• the mechanism is truthful when agents maximize expected utilities,

• it yields a 3-approximation for the makespan of the schedule independent of

the random choices,

• the payments can be computed in polynomial time.

There also exists a deterministic allocation algorithm that fulfills the monotonic-
ity condition of Theorem 4.24 due to Kovacs (2005). The allocation algorithm given
by Kovacs (2005) runs in polynomial time and yields a 3-approximation as well.
Thus, the existence of a truthful payment scheme is guaranteed by Theorem 4.24.
However, it is not clear whether the associated payments can be computed in poly-
nomial time. Other papers that have improved some of the results of Archer and
Tardos (2001) are by Auletta, De Prisco, Penna, and Persiano (2004), Ambrosio
and Auletta (2005), and Andelman, Azar, and Sorani (2005).

Online Scheduling with Job Agents

We now turn to an online scheduling model with job agents. The following single
machine model was analyzed by Porter (2004). There is one machine that has to
process n jobs, where n is not known beforehand. Preemption of jobs is allowed.
Each job j has a release date rj , a processing time pj , a deadline dj and a weight
wj . Those four values are private information. The type of agent j is thus tj =
(rj , pj , dj , wj). The aim is to design a direct revelation mechanism, that is, jobs
have to report their types to the mechanism. We assume that a job can declare a
release date r̂j ≥ rj and a processing time p̂j ≥ pj , while it can declare an arbitrary
deadline d̂j and an arbitrary weight ŵj . The reason that we do not admit declaring
a shorter processing time is that this could be easily detected and punished by
the mechanism. If job j is completed before its deadline, then its valuation is wj ,
otherwise its valuation is zero. Jobs have to pay for being processed. The payments
have to be determined online as well, i.e., the payment for a job must be determined
at the latest when the job leaves the system. The central objective is to maximize
the sum of the weights of all jobs that are completed by their deadline, i.e., the goal
is affine maximization. However, an exact allocation algorithm does not exist due
to the online nature of the problem. Lower bounds on the performance guarantee
of any online algorithm for the problem are given by Baruah, Koren, Mao, Mishra,

116



4.4. Models with Private Information

Raghunathan, Rosier, Shasha, and Wang (1992). Those bounds imply in particular
that there is no exact allocation algorithm. Porter (2004) shows the following.

Theorem 4.26 (Porter 2004). For the described single machine model, there exists

a truthful mechanism with performance guarantee (1+
√

k)2 +1, where k is an upper

bound on maxj,l(wlpj)/(plwj) which is known to the mechanism.

Notice that the mechanism is assumed to know an upper bound k on the maxi-
mum ratio maxj,l(wlpj)/(plwj). In addition, the mechanism needs to know a lower
bound δmin on the possible ratios wj/pj for all jobs j. The single machine processes
at any point in time a job that is chosen among the available jobs that still have a
chance to be completed before their declared deadline. The choice depends on the
declared weights of the jobs, the time already spent processing each job, on k and
on δmin. Jobs are only returned at their declared deadlines. The payment that a
job has to make is zero if it is not completed before its declared deadline. Otherwise
it is equal to the minimum weight that the job could have declared such that it still
would have been finished in time, given the declarations of the other jobs and given
its own declarations on release date, deadline and processing time.

The proof of the truthfulness of the mechanism given by Porter (2004) is quite
technical. Intuitively, the payments can be seen as VCG-payments and are chosen
such that the mechanism is truthful with respect to the weights. By returning the
job not until the declared deadline it is achieved that a job has no incentive to
declare a larger deadline than the true one. Therefore, no job has an incentive to
declare a “better” type. It can be shown that also declaring a “worse” type does
not pay off.

Interestingly, Porters mechanism is essentially best possible.

Theorem 4.27 (Porter 2004). Under a number of (weak) conditions and assuming

that k > 1, no deterministic truthful online mechanism can have a performance

guarantee better than (1 +
√

k)2 + 1 for the described single machine model.

This is of special interest in view of the existence of an algorithm with perfor-
mance guarantee (1 +

√
k)2 for the non-strategic online setting, due to Koren and

Shasha (1995).
In Chapter 5, we analyze another online machine scheduling model on parallel

machines. There, unlike in Porter’s model, jobs have to be processed without pre-
emption and the central objective is to minimize the total weighted completion time.
Furthermore, we introduce the concept of decentralization, which reflects the lack of
coordination in distributed settings. Thereby, a link between techniques from this

117



Overview of Problems and Models

Section and Section 4.3.2 is established: the mechanism has to account for both,
the strategic behavior of agents with respect to reporting their private information
as well as their strategic behavior with respect to the selection of a machine.

Another reference, which we do not discuss here is Hajiaghayi, Kleinberg, Mah-
dian, and Parkes (2005). They derive mechanisms for an online single machine
model with job agents, where jobs are available only within certain time windows.

4.5 Discussion

In this chapter, we have given an introduction to the application of game theory
and mechanism design to (mostly) multiple machine scheduling models. Thereby
we have chosen to limit the scope of models and techniques in order to be able to
present the most important techniques in detail. We see several avenues of research
departing from here.

Within the narrow scope of this chapter, the most promising research questions
seem to us related to mechanism design in the presence of multi-dimensional types,
exemplified by the conjecture by Nisan and Ronen mentioned above. Roberts (1979)
has shown that in cases where the type space is completely unrestricted, meaning
that every agent can have any valuation for each of the outcomes, only affine max-
imizers are truthfully implementable. For more restrictive type spaces, Bikhchan-
dani, Chatterjee, Lavi, Mu’alem, Nisan, and Sen (2006) could show a similar char-
acterization only for allocation algorithms that satisfy some additional properties.
If the conjecture by Nisan and Ronen is true, it would show that in this particular
case we cannot do better than using an affine maximizer, if we want to guarantee
truthfulness. This would indicate that also in this case affine maximizers are the
only truthfully implementable algorithms.

Moreover, we want to emphasize that the area of game theory and mechanism
design has established theoretical models that cover many more issues than those
treated in this chapter. For example, game theory knows a plentitude of refinements
of equilibrium notions, which might be of practical relevance, and mechanism design
is also interested in other criteria than only efficiency and truthfulness. For example,
various definitions of fairness can be found in the literature. As a point of reference
we mention here the literature on matching markets, e.g., Roth, Sotomayor, and
Chesher (1990).

Finally, it is likely that also in scheduling, we can benefit from the wealth of
results that have recently been derived in the context of combinatorial auctions. We
recommend the book edited by Cramton, Shoham, and Steinberg (2006) for refer-
ence. While from an optimization point of view, combinatorial auctions deal “only”
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with a set packing problem, many of the game theoretic issues in their design are
also relevant when the allocation rule is of a different nature, like assigning jobs to
machines, and determining their start time on the machines. In combinatorial auc-
tions, those issues are, for example, revenue for the seller, collusion, bidding under
multiple identities (false-name bidding), information revelation, and communication
complexity. It turns out that a mechanism like the VCG mechanism, when applied
to combinatorial auctions, performs badly in terms of such additional criteria, un-
less rather restrictive assumptions on the bidders valuations are fulfilled (Ausubel
and Milgrom 2006). Also in scheduling, such considerations may yield interesting
insights and may be of practical importance.
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Chapter 5

Mechanism Design for

Decentralized Online Machine

Scheduling

In Chapter 4, we have highlighted some techniques and phenomena from the recent
literature about machine scheduling models that have been analyzed from a game
theoretic or mechanism design point of view. This chapter is devoted to the analysis
of mechanism design for a parallel machine scheduling model where jobs arrive on-
line over time. As in the settings described in Chapter 4, there is no central decision
maker and problem data is distributed among job agents who take autonomous de-
cisions. Instead of centrally assigning jobs to machines, each machine implements a
local sequencing policy and jobs decide for machines themselves. In this context, we
introduce the concept of a myopic best response equilibrium, a concept weaker than
the classical dominant strategy equilibrium, but appropriate for online problems.
Our main result is a polynomial time, online mechanism that – assuming rational
behavior of jobs – results in an equilibrium schedule that is 3.281-competitive with
respect to the maximal social welfare. This is only slightly worse than state-of-the-
art algorithms with central coordination.1

1The results of this chapter were first presented in Heydenreich, Müller, and Uetz (2009).
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5.1 Introduction

Scheduling arriving jobs online on a set of parallel machines is a key issue both in
business and engineering applications. Examples can be found in service operations
management and distributed computing. The problem has been well studied in
the traditional setting, where a central decision maker strives to optimize a global
system performance measure and is assumed to have access to all relevant data.
However, in the environments mentioned above, data is usually not centrally avail-
able, but is distributed among selfish job owners or agents. As already observed
for the models surveyed in Chapter 4, this gives incentives for strategic behavior of
agents, possibly leading to sub-optimal system performance. This challenge calls for
mechanism design to align the individual goals of selfish agents with overall system
performance. On the other hand, in dynamic environments like distributed com-
puting, machines are locally dispersed and administratively independent and may
be dynamically added to or removed from the system. A typical example are web
servers, where content and/or computational resources are nowadays distributed
over the whole world and service requests need to be allocated online. In such set-
tings, it is indispensable to keep communication complexity low and to design local
protocols that machines have to adopt rather than centrally coordinating the distri-
bution of jobs over machines. This has been observed, for example, in the context
of analyzing the price of anarchy e.g. by Christodoulou, Koutsoupias, and Nanavati
(2004), Immorlica, Li, Mirrokni, and Schulz (2008) and Azar, Jain, and Mirrokni
(2008). A description of these models has been given in Chapter 4, as well. In this
chapter, we define decentralized online mechanisms that account for all mentioned
requirements.

More specifically, we study the online version of the classical parallel machine
scheduling problem to minimize the total weighted completion time – P | rj |

∑
wj Cj

in the notation of Graham, Lawler, Lenstra, and Rinnooy Kan (1979) – from a game
theoretic, or strategic perspective. In the online version, jobs j with processing times
pj and weights wj arrive online over time at release times rj , and at any given time
the scheduler does not know if, or what type of jobs are still to appear in the future.
The classical goal in online optimization is to design online algorithms that are
competitive, that is, even though faced with an online situation, such algorithms
compare reasonably well to the optimal offline solution. An online algorithm is
called %-competitive if it always achieves a solution that is not more than a factor %

away from the optimum offline solution. We assume that each job is a selfish agent,
and a job’s release time rj , its processing time pj and its weight wj is only known
to the job itself, but not to the system or any other job. Any job j is interested in
being finished as early as possible, and the weight wj represents j’s cost per unit

122



5.1. Introduction

waiting time. While jobs may strategically report false values (r̃j , p̃j , w̃j) in order
to be scheduled earlier, the total social welfare is maximized whenever the weighted
sum of completion times

∑
wj Cj is minimized.

Next to the game theoretic challenge due to selfishly behaving jobs, distributed
systems ask for low communication complexity and local protocols that machines
have to commit to rather than centralized coordination. Our goal is to meet the
following requirements, which we refer to as decentralization: Jobs may communicate
with machines, but neither do jobs communicate with each other, nor do machines
communicate with each other. In particular, there is no central scheduling unit
hosting all the data of the problem. This leads to a setting where the jobs themselves
must select the machine to be processed on, and any machine sequences the jobs
according to a (known) local sequencing policy. Such models have already been
discussed in Chapter 4, Section 4.3.2.

Our goal is to set up an online mechanism that copes with the strategic and de-
centralized setting while yielding a reasonable overall performance with respect to
the total social welfare, that is, minimize

∑
wj Cj . The mechanism should motivate

the jobs to reveal their private information truthfully. In addition, as we require
decentralization, each machine needs to be equipped with a local sequencing policy,
and jobs must be induced to select the machines in such a way that the objective∑

wj Cj does not deteriorate. The online algorithm with the currently best known
competitive ratio by Correa and Wagner (2005) crucially requires central coordi-
nation to distribute jobs over machines. Instead, we build upon an approach by
Megow, Uetz, and Vredeveld (2006), developed for a setting with stochastic job du-
rations, which turns out to be appropriate for the decentralized setting that we aim
at.

Related Work. As computational complexity is concerned, the scheduling
problem P | rj |

∑
wj Cj is well-understood in the non-strategic setting with central-

ized coordination. First, scheduling to minimize the weighted sum of completion
times with release dates is NP-hard, even in the off-line case on a single machine.
For more than one machine, the problem is NP-hard even if all release dates are
zero (Lenstra, Rinnooy Kan, and Brucker 1977). In the online setting, it is well
known that no online algorithm for the single machine problem can be better than
2-competitive (Hoogeveen and Vestjens 1996) regardless of the question whether or
not P=NP. On parallel machines, no online algorithm can be better than 1.309-
competitive, and this bound can be improved for a specific number of machines
(Vestjens 1997). The best possible algorithm for the single machine case is 2-
competitive and thus matches the lower bound (Anderson and Potts 2004). For
the parallel machine setting, the currently best known online algorithm is 2.62-
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competitive (Correa and Wagner 2005), improving upon an earlier algorithm by
Megow and Schulz (2004). The algorithm by Megow et al. (2006) is a modification
of the latter. Here, jobs are locally sequenced according to an online variant of the
well known WSPT rule (Smith 1956), and arriving jobs are assigned to machines
in order to minimize an expression that approximates the (expected) increase of
the objective value. The algorithms by Megow and Schulz (2004) and Megow et al.
(2006) both achieve a competitive ratio of 3.281.

For related literature on mechanism design in combination with the design of
approximation algorithms for scheduling problems we refer to Chapter 4, Section
4.4.2.

Decentralization for scheduling models with job agents is regarded in the papers
discussed in Chapter 4, Section 4.3.2.

Our Contribution. We present a polynomial time, decentralized online mech-
anism, called Decentralized Local Greedy Mechanism. Thereby we provide
also a new algorithm for the non-strategic, centralized setting, inspired by the Min-

Increase Algorithm of Megow et al. (2006), but improving upon the latter in
terms of simplicity. The Decentralized Local Greedy Mechanism is easy to
implement and we show that it is 3.281-competitive. This coincides with the per-
formance bound achieved by Megow and Schulz (2004) for the non-strategic, cen-
tralized setting. The currently best known bound for this setting, however, is 2.62
(Correa and Wagner 2005). Giving up on decentralization, it is possible to design
a 2.62-competitive mechanism on the basis of the Correa-Wagner algorithm with a
dominant strategy equilibrium in which all agents report truthfully. We discuss the
resulting mechanism in Section 5.6.2.

As usual in mechanism design, the Decentralized Local Greedy Mechanism
defines payments that have to be made by the jobs for being processed. Naturally,
we require from an online mechanism that also the payments are computed online.
Hence, they can be completely settled by the time at which a job leaves the system.
We also show that the payments result in a balanced budget. The payments induce
rational jobs to truthfully report about their private data. With respect to release
dates and processing times, we can show that truthfulness is a dominant strategy
equilibrium. With respect to the weights, however, we can only show that truthful
reports are myopic best responses (in a sense to be made precise later). Most
importantly, the payments induce the jobs to select ‘the right’ machines, that is,
the machines which a centralized mechanism would select in order to achieve a
good competitive ratio. Intuitively, the mechanism uses the payments to mimic
a corresponding Local Greedy online algorithm in the classical (non-strategic,
centralized) parallel machine setting P | rj |

∑
wj Cj . In addition, we show that there
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does not exist a payment scheme leading to the same selection of machines where
truthful reporting of all private information is a dominant strategy equilibrium.
This is even true, when only the weight wj is considered private information and
pj and rj are publicly known. Hence, for the decentralized online setting that we
consider, it is not clear if a constant competitive ratio can be achieved by means of
a dominant strategy equilibrium of some mechanism – even if weights are the only
private information.

Organization. The chapter is structured as follow. We formalize the model and
introduce notation in Section5.2. Especially, we define the notion of a decentralized
online scheduling mechanism and the myopic best response equilibrium in that sec-
tion. In Section 5.3 the Local Greedy Algorithm is defined. In Section 5.4, this
algorithm is adapted to the strategic setting and extended by a payment scheme
yielding the Decentralized Local Greedy Mechanism. Moreover, our main
results are presented in that section. We analyze the performance of the resulting
mechanism in Section 5.5. In Section 5.6, we prove the mentioned negative result
and reflect on mechanisms that have dominant strategy equilibria, giving up on
decentralization. We conclude with a short discussion in Section 5.7.

5.2 Model and Notation

The considered problem is online parallel machine scheduling with non-trivial re-
lease dates, with the objective to minimize the weighted sum of completion times,
P | rj |

∑
wj Cj . We are given a set of jobs J = {1, . . . , n}, where each job needs to

be processed on any of the parallel, identical machines from the set M = {1, . . . , m}.
The processing of each job must not be preempted, and each machine can process
at most one job at a time. Each job j is viewed as a selfish agent and has the fol-
lowing private information: a release date rj ≥ 0, a processing time pj > 0, and an
indifference cost, or weight, denoted by wj ≥ 0. The release date denotes the time
when the job comes into existence, whereas the weight represents the cost to a job
for one additional unit of time spent waiting. Without loss of generality, we assume
that the jobs are numbered in order of their release dates, i.e., j < k ⇒ rj ≤ rk.
The triple (rj , pj , wj) is also denoted as the type of a job, and we use the shortcut
notation tj = (rj , pj , wj). By T = R+

0 × R+ × R+
0 we denote the space of possible

types of each job. In the model we analyze, a job j can report an arbitrary weight
w̃j 6= wj , an elongated processing time p̃j ≥ pj (e.g. by adding unnecessary work),
and it can artificially delay its true release time rj to r̃j ≥ rj . We do not allow a job
to report a processing time shorter than the true pj , as this can easily be discovered
and punished by the system, for example by preempting the job after the declared
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processing time p̃j before it is actually finished. Furthermore, we assume that any
job j comes into existence only at its release time rj , thus it does not make sense
that a job reports a release time smaller than the true value rj .

We next introduce the concept of a decentralized online scheduling mechanism.
It accounts for the various challenges mentioned in the introduction: It takes into
account that necessary information is not centrally available, but has to be communi-
cated from jobs to machines, while keeping the resulting communication complexity
down to a minimum. It does not use central coordination, but rather defines a
protocol according to which machines process jobs and compute payments that jobs
have to make. Our goal will be to find such a mechanism where rational job behavior
results in an equilibrium in which the social welfare is not too far from optimum.

Definition 5.1. A decentralized online scheduling mechanism is a procedure that

works as follows.

1. Each job j has a release time rj, but may pretend to come into existence at

any time r̃j ≥ rj. At r̃j, the job communicates to every machine reports w̃j

and p̃j.2

2. Machines communicate on the basis of that information a tentative completion

time Ĉj and a tentative payment π̂j.

3. Based on the responses of all machines at time r̃j, the job chooses a machine

to be processed on.

4. There is no communication between machines or between jobs.

5. Machines may revise Ĉj and π̂j only if later another job chooses the same

machine, leading to an ex-post completion time Cj and an ex-post payment

πj.

Hereby, we assume that jobs with equal reported release times arrive in some given
order and communicate to machines in that order. Next, we define two important
properties of the payment scheme.

Definition 5.2. If for every job j payments to and from j are only made between

time r̃j and time Cj, then we call the payment scheme an online payment scheme.

2A job could even report different values to different machines. However, we prove existence of
equilibria where the jobs do not make use of that option.
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Definition 5.3. A payment scheme satisfies the balanced budget condition if the

payments made by all jobs sum up to zero, i.e.,
∑

j∈J πj = 0.

One of our goals is to design competitive online mechanisms, which are defined
as follows.

Definition 5.4. Let A be an online mechanism that seeks to minimize a certain

objective function. Let VA(I) be the objective value computed by A for a problem

instance I and let VOPT (I) be the offline optimal objective value for I. Then A is

called %-competitive if for all instances I of the problem,

VA(I) ≤ % · VOPT (I) .

The factor % is also called performance ratio of the mechanism.

We assume that the valuation equals vj(Cj , tj) = −wjCj , such that smaller
completion times are preferred. We furthermore assume quasi-linear utilities, that
is, the utility of job j equals uj(Cj , πj , tj) = vj(Cj , tj) − πj , which is equal to
−wjCj−πj . Unlike in other mechanism design settings, where jobs always have the
option not to participate in the mechanism and to obtain zero utility, we assume
that the jobs have no such option and they have to be processed on one of the
machines.

The communication with machines, and the decision for a particular machine
are called actions of the jobs; they constitute the strategic actions jobs can take
in the non-cooperative game induced by the mechanism. A strategy xj of a job j

maps a type tj to an action for every possible state of the system in which the job is
required to take some action. A strategy profile is a vector (x1, . . . , xn) of strategies,
one for each job. Given a mechanism, a strategy profile, and a realization of types t,
we denote by uj(x, t) the (ex-post) utility that agent j receives. Recall the definition
of a dominant strategy equilibrium.

Definition 5.5. A strategy profile x = (x1, . . . , xn) is called a dominant strategy

equilibrium if for all jobs j ∈ J , all types t of the jobs, all strategies x̃−j of the other

jobs, and all strategies x̃j that j could play instead of xj,

uj((xj , x̃−j), t) ≥ uj((x̃j , x̃−j), t) .

The dominant strategy equilibrium is a very sound, yet strong concept, and
in many cases dominant strategy equilibria do not exist; see for example the dis-
cussion by Nisan (2007). Several alternatives have been studied in the literature
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that weaken the definition of rational agent behavior, e.g. ex-post Nash equilibria,
Bayes-Nash equilibria or myopic best responses. The latter has for instance been
used in auction theory in the context of combinatorial auctions, see e.g. Parkes
(1999) and Parkes and Ungar (2000). There, the VCG mechanism (where truthful
revelation of private information is a dominant strategy equilibrium) suffers from
severe computational difficulties. Instead, an iterative auction with several rounds
is proposed that results in a welfare maximizing allocation of goods if bidders are
myopic. Myopic bidders aim to maximize their utility with respect to current price
and allocation information, rather than taking game theoretic look-ahead to future
rounds. Similarly myopic bidders are assumed by Demange, Gale, and Sotomayor
(1986) for multi-item auctions, Bein and Wein (2003) and Gallien and Wein (2005)
for procurement auctions and by Wellman, Walsh, Wurman, and MacKie-Mason
(2001) for the allocation of time slots. We find this concept appropriate and nat-
ural also for our setting. We assume that rational agents maximize their tentative
utility, that is, the utility that a job is communicated upon arrival at the system.
Note that the concept shares with the dominant strategy equilibrium the property
that it does not require any reasoning about other agents’ valuations. In that sense
it is prior-free, which is a desirable property.

Definition 5.6. Given a decentralized, online scheduling mechanism as in Def-

inition 5.1, a strategy profile x, and type profile t. Let Ĉj and π̂j denote the

tentative completion time and the tentative payment of job j at time r̃j. Then

ûj(x, t) := −Ĉwj − π̂j denotes j’s tentative utility at time r̃j.

If x and t are clear from the context, we will use ûj as short notation.

Definition 5.7. A strategy profile (x1, . . . , xn) is called a myopic best response

equilibrium, if for all jobs j ∈ J , all types t of the jobs, all strategies x̃−j of the

other jobs and all strategies x̃j that j could play instead of xj,

ûj((xj , x̃−j), t) ≥ ûj((x̃j , x̃−j), t).

Notice that the only difference in the definitions of the two equilibria is the
utility that agents are concerned with: In the dominant strategy equilibrium, it is
the ex-post utility that drives an agent, while in the weaker myopic best response
equilibrium, it is the immediate utility that is observable at the moment in time
where the agent chooses an action.

Proposition 5.8. For any decentralized online scheduling mechanism with online
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payment scheme, every dominant strategy equilibrium is a myopic best response

equilibrium.

Proof. In a dominant strategy equilibrium, job j’s strategy maximizes j’s ex-post

utility for all possible strategies of the other jobs. In a decentralized online schedul-

ing mechanism with online payment scheme, there is always a strategy of the other

jobs x−j such that j’s tentative utility equals j’s ex-post utility (e.g., jobs arriving

later than j can choose to delay their arrival behind j’s completion time). Then

none of these jobs can change j’s completion time, and if the payment scheme is

online, neither can they influence j’s payment3. Consequently, j’s tentative utility

must be maximized in any dominant strategy equilibrium, too.

Hence, the class of myopic best response equilibria is a larger class of equilibria
than dominant strategy equilibria, and we will see later that it is indeed a strictly
larger class.

Finally, notice that jobs will also have to select a machine according to Defini-
tion 5.1. This additional action of jobs has been introduced to distinguish between
decentralized and centralized scheduling mechanisms. One might argue that one
can nevertheless make use of the revelation principle, which asserts that an arbi-
trary mechanism that has an equilibrium, for example a dominant strategy equi-
librium, always induces a direct revelation mechanism with an equilibrium of the
same strength. Thus questions with respect to the existence of mechanisms with
a particular equilibrium can be answered by restricting to direct revelation mech-
anisms. However, not all direct revelation mechanisms can be decentralized in the
sense of Definition 5.1. For example, we cannot decentralize the algorithm in Cor-
rea and Wagner (2005), because it crucially requires a central queue for the jobs.
Hence, given that we aim at decentralized mechanisms, we cannot make use of the
revelation principle. Equilibria of decentralized online scheduling mechanisms, how-
ever, give rise to a particular form of revelation mechanisms, namely mechanisms in
which jobs report their types to so-called proxy agents, each of them representing
exactly one job, and behaving on behalf of the jobs as prescribed by the equilibrium
strategy. But introducing proxy agents requires a trustworthy mediator, which can
be seen as a hidden form of centralization.

3If m > 1 it is not necessary to require the payment scheme to be online. The tentative utility
equals the ex-post utility, e.g., if later jobs choose a different machine than j.
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5.2.1 Critical jobs

For convenience of presentation, we make the following assumption for the main
part of the chapter. Fix some constant 0 < α ≤ 1 (α will be discussed later). Let
us call job j critical if rj < αpj . Intuitively, a job is critical if it is long and appears
comparably early in the system. The assumption we make is that such critical jobs
do not exist, that is

rj ≥ α pj for all jobs j ∈ J .

This assumption is a tribute to the desired performance guarantee, and in fact, it
is well known that critical jobs must not be scheduled early to achieve constant
performance ratios (see Anderson and Potts 2004 and Megow and Schulz 2004).
However, the assumption is only made due to cosmetic reasons. In the following, we
first define an algorithm and a mechanism on the refined type space, where all jobs
are non-critical. In Section 5.5.1, we extend the type space and slightly adapt the
mechanism. The adapted mechanism can handle critical jobs without sacrificing the
performance bound, while all desired properties concerning the strategic behavior
of the jobs are preserved.

5.3 The Local Greedy Algorithm

For the time being, we assume that the job characteristics, namely release date rj ,
processing time pj and indifference cost wj , are given.

The idea of the MinIncrease algorithm of Megow et al. (2006) is that each
machine uses (the online version of) the well known WSPT rule (Smith 1956) locally;
an idea that we adopt also here. More precisely, each machine implements a priority
queue containing the not yet scheduled jobs that have been assigned to the machine.
The queue is organized according to WSPT, that is, jobs with higher ratio wj/pj

have higher priority. In case of ties, jobs with lower index have higher priority. As
soon as the machine falls idle, the currently first job from this priority queue is
scheduled (if any). Given this local scheduling policy on each of the machines, any
arriving job is assigned to that machine where the increase in the objective

∑
wj Cj

is minimal.
In the formulation of the algorithm, we utilize some shortcut notation. We let

j → i denote the fact that job j is assigned to machine i. Let Sj be the time when job
j eventually starts being processed. For any job j, H(j) denotes the set of jobs that
have higher priority than j, H(j) = {k ∈ J |wkpj > wjpk} ∪ {k ≤ j |wkpj = wjpk}.
Note that H(j) includes j, too. Similarly, L(j) = J \H(j) denotes the set of jobs
with lower priority. At a given point τ in time, machine i might be busy processing
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a job. We let bi(τ) denote the remaining processing time of that job at time τ ,
i.e., at time τ machine i will be blocked during bi(τ) units of time for new jobs. If
machine i is idle at time τ , we let bi(τ) = 0. With these definitions, if job j arrives
at time rj and is assigned to machine i, the increase of the objective

∑
wj Cj is

z(j, i) := wj

[
rj + bi(rj) +

∑

k∈H(j)
k→i
k<j

Sk≥rj

pk + pj

]
+ pj

∑

k∈L(j)
k→i
k<j

Sk>rj

wk .

Algorithm 1: Local Greedy algorithm

Local Sequencing Policy:
When a machine falls idle, it processes the job with highest (WSPT) priority among
all jobs assigned to it.

Assignment:
If job j arrives at time rj , it is assigned to machine ij ∈ argmini∈M z(j, i) with
minimum index.

Clearly, the Local Greedy algorithm still makes use of central coordination.
On the other hand, the WSPT rule can be run locally on every machine and does
not require communication between the machines. Therefore, the Local Greedy

algorithm qualifies for decentralization, which will be done in the next Section.

5.4 Payments for Myopic Rational Jobs

The payments we introduce can be motivated as follows: A job j pays at the mo-
ment of its placement on one of the machines an amount that compensates the
decrease in utility of the other jobs. The final payment of each job j resulting from
this mechanism will then consist of the immediate payment j has to make when
selecting a machine and of the payments j gets when being displaced by other jobs.
Furthermore, the WSPT rule is run locally on every machine and jobs select a ma-
chine themselves. We will prove that utility maximizing jobs have an incentive to
report truthfully and to choose the machine that the Local Greedy Algorithm
would have selected, too. We will see in the next section that this yields a constant
competitive ratio, given that the jobs behave rationally. The algorithm including
the payments is displayed below. Let here the indices of the jobs be defined ac-
cording to the reported release dates, i.e., j < k ⇒ r̃j ≤ r̃k. Let H̃(j) and L̃(j)
be defined analogously to H(j) and L(j) on the basis of the reported weights and
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processing times. Then for job j, arriving at time r̃j , the tentative completion time
and payment, respectively, at machine i are

Ĉj(i) = r̃j + bi(r̃j) +
∑

k∈H̃(j)
k→i
k<j

Sk≥r̃j

p̃k + p̃j and π̂j(i) = p̃j

∑

k∈L̃(j)
k→i
k<j

Sk>r̃j

w̃k .

Algorithm 2: DecentralizedLocal Greedy Mechanism

Local Sequencing Policy: When a machine falls idle, it processes the job with
highest (WSPT) priority among all available jobs queuing at this machine.

Assignment:

1. At time r̃j job j arrives and reports weight w̃j and processing time p̃j to all
machines.

2. Every machine i informs j about both Ĉj(i) and π̂j(i).

3. Job j chooses a machine ij ∈ M . Its tentative utility for being queued at
machine i is ûj(i) := −wjĈj(i)− π̂j(i).

4. The job is queued at ij according to WSPT among all currently available jobs
on ij whose processing has not started yet. The payment π̂j(ij) has to be paid
by j.

5. The (tentative) completion time for every job k ∈ L̃(j), k → ij , k < j, Sk > r̃j

increases by p̃j due to j ’s presence. As compensation, k receives a payment of
w̃kp̃j .

Notice that the payments result in a balanced budget for the scheduler. That
is, the payments paid and received by the jobs sum up to zero, since every arriving
job immediately makes its payment to the jobs that are displaced by it. Also notice
that the payments are online in the sense of Definition 5.2.

Theorem 5.9. Regard any type vector t, any strategy profile x and any job j with re-

port (r̃j , p̃j , w̃j), and machine choice ĩ ∈ M . Then changing the report to (r̃j , p̃j , wj)

and choosing a machine that maximizes tentative utility at time r̃j does not decrease

j’s tentative utility.

Proof. We first regard the single machine case, i.e., m = 1. Suppose, at the arrival

time r̃j of job j, jobs k1, k2, . . . , kr with corresponding reported processing times

p̃1, p̃2, . . . , p̃r and reported weights w̃1, w̃2, . . . , w̃r are queueing to be processed on

the machine, but none of them has started being processed yet. Without loss of
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generality let w̃1/p̃1 ≥ w̃2/p̃2 ≥ · · · ≥ w̃r/p̃r. Given the reported processing time p̃j ,

job j could receive any position in front of, between or behind the already present

jobs in the priority queue by choosing its weight appropriately. Therefore, it has to

decide for every job ks, s ∈ {1, . . . , r}, whether it wants to be placed in front of ks

or not. Displacing ks would increase π̂j(1) by w̃sp̃j , whereas Ĉj(1) is decreased by

p̃s. Thus, j ’s tentative utility changes by wj p̃s − w̃sp̃j if j displaces ks compared

to not displacing ks. Therefore, it is rational for j to displace ks if and only if

wj p̃s − w̃sp̃j > 0, which is equivalent to wj/p̃j > w̃s/p̃s. As the machine schedules

according to WSPT, j is placed at the position that maximizes its tentative utility

when reporting wj .

For m > 1, recall that j can select a machine itself. As reporting the truth

maximizes its tentative utility on every single machine, and as j can then choose

the machine that maximizes its tentative utility among all machines, truth-telling

and choosing a machine maximizing ûj will maximize j ’s tentative utility.

Lemma 5.10. Consider any job j ∈ J . Then for all reports of all other agents as

well as all choices of machines of the other agents, the following is true:

(a ) If j reports w̃j = wj, then the tentative utility when queued at any of the ma-

chines will be preserved over time, i.e., it equals j’s ex-post utility.

(b ) If j reports w̃j = wj, then selecting the machine that the Local Greedy

Algorithm would have selected maximizes j’s ex-post utility.

Proof. To see (a), note that whenever j’s tentative completion time changes, j is

immediately compensated for that by a payment. If w̃j = wj then the payment

exactly equals the loss in utility. Claim (b) follows from (a) and the fact that the

machine chosen by the Local Greedy Algorithm maximizes j’s tentative utility.

Theorem 5.9 implies that a myopic agent should report its true weight. Lemma 5.10
implies that such an agent is guaranteed to receive an ex-post utility as high as
its tentative utility. The alternative is gambling: Recall that we have defined a re-
stricted communication paradigm where jobs, upon arrival, are only informed about
(tentative) completion times and (tentative) payments. In particular, jobs do not
get to know which jobs are already queuing at the machines and what reports the
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already present jobs have made. One can construct simple examples that demon-
strate that overstating or understating the weight bears the risk of arbitrarily high
utility losses in comparison to truthful reporting. More specifically, if a job j over-
states its weight, this can result in a position in front of a job already present on
the chosen machine whose weight over processing time ratio is smaller than j’s true
ratio. The payment j has to make in this case can be arbitrarily higher than the
valuation j gains. Understating the weight can lead to a later job displacing j, but
paying to j arbitrarily less than j’s actual loss in valuation. On the other hand, one
can similarly show that agents also have the chance of arbitrary high utility gains
by overstating their weight. In this light, reporting truthfully becomes particularly
attractive for risk-averse agents.

Theorem 5.11. Consider the restricted strategy space where all j ∈ J report w̃j =

wj. Then the strategy profile where all jobs j truthfully report r̃j = rj, p̃j = pj and

choose a machine that maximizes ûj is a dominant strategy equilibrium.

Proof. Let us start with m = 1. Suppose w̃j = wj , fix any r̃j and regard any p̃j > pj .

Let uj denote j’s (ex-post) utility when reporting pj truthfully and let ũj be its (ex-

post) utility for reporting p̃j . As w̃j = wj , the ex-post utility equals in both cases the

tentative utility at decision point r̃j according to Lemma 5.10(a). Let us therefore

regard the latter utilities. Clearly, according to the WSPT-priorities, j’s position in

the queue at the machine for report pj will not be behind its position for report p̃j .

Let us divide the jobs already queuing at the machine upon j’s arrival into three

sets: Let J1 = {k ∈ J | k < j, Sk > r̃j , w̃k/p̃k ≥ wj/pj}, J2 = {k ∈ J | k < j, Sk >

r̃j , wj/pj > w̃k/p̃k ≥ wj/p̃j} and J3 = {k ∈ J | k < j, Sk > r̃j , wj/p̃j > w̃k/p̃k}.
That is, J1 comprises the jobs that are in front of j in the queue for both reports,

J2 consists of the jobs that are only in front of j when reporting p̃j and J3 includes

only jobs that queue behind j for both reports. Therefore, ũj − uj equals

−
∑

k∈J1∪J2

wj p̃k −
∑

k∈J3

p̃jw̃k − wj p̃j −

−

∑

k∈J1

wj p̃k −
∑

k∈J2∪J3

pjw̃k − wjpj




=
∑

k∈J2

(pjw̃k − wj p̃k)−
∑

k∈J3

(p̃j − pj)w̃k − wj(p̃j − pj).

According to the definition of J2, the first term is smaller than or equal to zero. As

p̃j > pj , the whole right hand side becomes non-positive. Therefore ũj ≤ uj , i.e.,
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truthfully reporting pj maximizes j’s ex-post utility on a single machine.

Let us now fix w̃j = wj and any p̃j ≥ pj and regard any r̃j > rj . There are

two effects that can occur when arriving later than rj . Firstly, jobs queued at the

machine already at time rj may have been processed or may have started receiving

service by time r̃j . But either j would have had to wait for those jobs anyway

or it would have increased its utility at decision point rj by displacing a job and

paying the compensation. So, j cannot gain from this effect by lying. The second

effect is that new jobs have arrived at the machine between rj and r̃j . Those jobs

either delay j’s completion time and j looses the payment it could have received by

arriving earlier. Or the jobs do not delay j’s completion time, but j has to pay the

jobs for displacing them when arriving at r̃j . If j arrived at time rj , it would not

have to pay for displacing such a job. Hence, j cannot gain from this effect either.

Thus the tentative utility at time rj will be at least as large as the one at time r̃j .

Therefore, j maximizes its tentative utility by choosing r̃j = rj . As w̃j = wj , it

follows from Lemma 5.10(a) that choosing r̃j = rj also maximizes the job’s ex-post

utility on a single machine.

For m > 1, note that on every machine, the tentative utility of job j at decision

point r̃j is equal to its ex-post utility and that j can select a machine itself that

maximizes its tentative utility and therefore its ex-post utility. Therefore, given

that w̃j = wj , a job’s ex-post utility is maximized by choosing r̃j = rj , p̃j = pj and,

according to Lemma 5.10(b), by choosing the machine that the Local Greedy

Algorithm would have chosen.

Theorem 5.12. Given the types of all jobs, the strategy profile where each job j

reports (r̃j , p̃j , w̃j) = (rj , pj , wj) and chooses a machine maximizing its tentative

utility ûj is a myopic best response equilibrium.

Proof. Regard job j. According to the proof of Theorem 5.9, ûj on any machine

is maximized by reporting w̃j = wj for any r̃j and p̃j . According to Theorem 5.11

and Lemma 5.10(b), p̃j = pj , r̃j = rj and choosing a machine that maximizes

j’s tentative utility at time r̃j maximize j’s ex-post utility if j truthfully reports

w̃j = wj . According to Lemma 5.10(a) this ex-post utility is equal to ûj if j reports

w̃j = wj . Therefore, any job j maximizes ûj by truthful reports and choosing the

machine as claimed.

135



Mechanism Design for Decentralized Online Machine Scheduling

In order to obtain the myopic best response equilibrium, payments paid by an
arriving job j need not necessarily be given to the jobs delayed by j. We formulate
this fact as a Corollary.4

Corollary 5.13. If the Decentralized Local Greedy Mechanism is modified

such that payments are collected from jobs, but not given to the other jobs, then

truth-telling and choosing a machine that maximizes the tentative utility ûj is a

myopic best response equilibrium.

Proof. According to Theorem 5.9, truthfully reporting wj maximizes j’s tentative

utility for any p̃j and r̃j . Furthermore, similar to the proof of Theorem 5.11 it

can be shown that truthfully reporting the processing time maximizes j’s tentative

utility for any r̃j and truthful w̃j = wj . Concerning the release date, arriving late at

time r̃j instead of rj does not increase the tentative utility for the following reasons.

Jobs that were present at rj are already finished or have started receiving service

or are still waiting at time r̃j . For those jobs, j either would have had to wait

anyway or j could have increased its utility by displacing such a job and paying

the compensation. Jobs that have arrived between time rj and r̃j can only delay

j or increase the amount that j has to pay. In any case, j cannot benefit from

arriving late. Therefore, arriving at rj maximizes j’s tentative utility. This proves

the claim.

Although paying jobs when being displaced is not necessary to obtain the equi-
librium, it is desirable for other reasons. First of all, the resulting ex-post payments
yield a balanced budget and in equilibrium, the tentative utility at arrival is pre-
served and equals the ex-post utility of every job (Lemma 5.9). Furthermore, paying
jobs for their delay results in a dominant strategy equilibrium in a restricted type
space (Theorem 5.11).

5.5 Performance of the Mechanism

As shown in Section 5.4, jobs have a motivation to report truthfully about their
data. Therefore we will call a job rational if it truthfully reports wj , pj and rj and
chooses a machine maximizing its tentative utility ûj . In this section, we will show

4We add an extra proof, since the proof of Theorem 5.12 uses the detour via ex-post utilities,
which is not possible if jobs are not compensated for delays.
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that if all jobs are rational, then the Decentralized Local Greedy Mechanism
is 3.281-competitive.

5.5.1 Handling Critical Jobs

Recall that from Section 5.2.1 on, we assumed that no critical jobs exist, as we
defined the Decentralized Local Greedy Mechanism only for jobs j with rj ≥
α pj . We will now relax this assumption and allow jobs to have types from the more
general type space {(rj , pj , wj)|rj ≥ 0, pj ≥ 0, wj ∈ R}. Without the assumption,
the DecentralizedLocal Greedy Mechanism as stated above does not yet yield
a constant performance ratio; simple examples can be constructed in the same flavor
as by Megow and Schulz (2004). In fact, it is well known that early arriving jobs with
large processing times have to be delayed (Anderson and Potts 2004; Megow and
Schulz 2004; Megow et al. 2006). In order to achieve a constant performance ratio,
we also adopt this idea and use modified release dates as Megow and Schulz (2004)
and Megow et al. (2006). To this end, we define the modified release date of every job
j ∈ J as r′j = max{rj , αpj}, where α ∈ (0, 1] will later be chosen appropriately. For
our decentralized setting, this means that a machine will not admit any job j to its
priority queue before time max{r̃j , αp̃j} if j arrives at time r̃j and reports processing
time p̃j . Moreover, machines refuse to provide information about the tentative
completion time and payment to a job before its modified release date (with respect
to the job’s reported data). Note that this modification is part of the local scheduling
policy of every machine and therefore does not restrict the required decentralization.
Note further that any myopic rational job j still reports w̃j = wj according to
Theorem 5.9 and that a rational job reports p̃j = pj as well as communicates to
machines at the earliest opportunity, i.e., at time max{rj , αpj}, according to the
arguments in the proof of Theorem 5.11. Moreover, the aforementioned properties
concerning the balanced budget, the conservation of utility in the case of a truthfully
reported weight, and the online property of the payments still apply to the algorithm
with modified release dates.

5.5.2 Proof of the Competitive Ratio

It is not a goal in itself to have a truthful mechanism, but to use the truthfulness
in order to achieve a reasonable overall performance in terms of the social welfare∑

wj Cj .

Theorem 5.14. Suppose every job is rational in the sense that it reports rj, pj,

wj and selects a machine that maximizes its tentative utility at arrival. Then the
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Decentralized Local Greedy Mechanism is %-competitive, with % = 3.281.

The proof of the theorem partly follows the lines of the corresponding proof by
Megow et al. (2006). But the distribution of jobs over machines in their algorithm
differs. Therefore, our result is not implied by the result by Megow et al. (2006)
and it is necessary to give a proof here.

Proof. A rational job communicates to the machines at time max{rj , αpj} and

chooses a machine ij that maximizes its utility upon arrival ûj(ij). That is, it

selects a machine i that minimizes

−ûj(i) = wjĈj(i) + π̂j(i) = wj

[
r′j + bi(r′j) +

∑

k∈H(j)
k→i
k<j

Sk≥r′j

pk + pj

]
+ pj

∑

k∈L(j)
k→i
k<j

Sk>r′j

wk.

This, however, exactly equals the immediate increase of the objective value
∑

wj Cj

that is due to the addition of job j to the schedule. We now claim that we can

express the objective value Z of the resulting schedule as

Z =
∑

j∈J

−ûj(ij) ,

where ij is the machine selected by job j. Here, it is important to note that −ûj(ij)

does not express the total (ex-post) contribution of job j to
∑

wj Cj , but only the

increase upon arrival of j on machine ij . However, further contributions of job j to
∑

wj Cj only appear when job j is displaced by some later arriving job with higher

priority, say k. This contribution by job j to
∑

wj Cj , however, will be accounted

for when adding −ûk(ik).

Next, since we assume that any job maximizes its utility upon arrival, or equiv-

alently minimizes −ûj(i) when selecting a machine i, we can apply an averaging

argument over the number of machines, like in Megow et al. (2006), to obtain:

Z ≤
∑

j∈J

1
m

m∑

i=1

−ûj(i) .

Next, recall that upon arrival of job j on any of the machines i (at time r′j), machine
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i is blocked for time bi(r′j) ≤ r′j/α. Therefore, we get for any j,

1
m

m∑

i=1

−ûj(i) = wjr
′
j + wj

m∑

i=1

bi(r′j)
m

+ wj

m∑

i=1

∑

k∈H(j)
k→i
k<j

Sk≥r′j

pk

m
+ wjpj + pj

m∑

i=1

∑

k∈L(j)
k→i
k<j

Sk>r′j

wk

m

= wjr
′
j + wj

m∑

i=1

bi(r′j)
m

+ wj

∑

k∈H(j)
k<j

Sk≥r′j

pk

m
+ wjpj + pj

∑

k∈L(j)
k<j

Sk>r′j

wk

m

≤ wjr
′
j + wj

m∑

i=1

bi(r′j)
m

+ wj

∑

k∈H(j)
k<j

pk

m
+ wjpj + pj

∑

k∈L(j)
k<j

wk

m

≤ wjr
′
j + wj

r′j
α

+ wj

∑

k∈H(j)
k<j

pk

m
+ wjpj + pj

∑

k∈L(j)
k<j

wk

m
.

Thus,

Z ≤
∑

j∈J

wj(1 +
1
α

)r′j +
∑

j∈J

wj

∑

k∈H(j)
k<j

pk

m
+

∑

j∈J

wjpj +
∑

j∈J

pj

∑

k∈L(j)
k<j

wk

m
.

The last term can be rewritten as follows:

∑

j∈J

pj

∑

k∈L(j)
k<j

wk

m
=

∑

(j,k):
j∈H(k)

k<j

pj
wk

m
=

∑

(j,k):
k∈H(j)

j<k

pk
wj

m
=

∑

j∈J

wj

∑

k∈H(j)
k>j

pk

m
.

Therefore,

Z ≤
∑

j∈J

wj(1 +
1
α

)r′j +
∑

j∈J

wj

∑

k∈H(j)
k<j

pk

m
+

∑

j∈J

wjpj +
∑

j∈J

wj

∑

k∈H(j)
k>j

pk

m

=
∑

j∈J

wj(1 +
1
α

)r′j +
∑

j∈J

wj

∑

k∈H(j)

pk

m
+

m− 1
m

∑

j∈J

wjpj .

Now, we apply a lower bound on the optimal off-line schedule by Eastman, Even,
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and Isaacs (1964, Thm. 1), namely

ZOPT ≥
∑

j∈J

wj

∑

k∈H(j)

pk

m
+

m− 1
2m

∑

j∈J

wjpj ,

yielding:

Z ≤ ZOPT +
∑

j∈J

wj(1 +
1
α

)r′j +
m− 1
2m

∑

j∈J

wjpj

≤ ZOPT +
∑

j∈J

wj(1 +
1
α

)(rj + αpj) +
m− 1
2m

∑

j∈J

wjpj

= ZOPT +
∑

j∈J

wj

[
(1 +

1
α

)rj + (1 + α +
m− 1
2m

)pj

]
,

where in the second inequality rj + αpj is used as an upper bound on r′j . Applying

the trivial lower bound
∑

j∈J wj(rj + pj) ≤ ZOPT , we get:

Z ≤ ZOPT + max
{

1 +
1
α

, 1 + α +
m− 1
2m

}
ZOPT

= 2ZOPT + max
{

1
α

, α +
m− 1
2m

}
ZOPT .

Therefore, we get the performance bound

% = 2 + max
{

1
α

, α +
m− 1
2m

}
.

This can now be optimized for α, which was already done in Megow and Schulz

(2004). There it was shown that % < 3.281 for α = (
√

17m2 − 2m + 1 − m +

1)/(4m).

5.6 On Dominant Strategy Equilibria

We show that any mechanism that has a dominant strategy equilibrium with truthful
reports must necessarily differ from the Decentralized Local Greedy Mecha-
nism in the allocation of jobs to machines and time slots; so it remains unclear what
the performance of such a mechanism might be. Giving up on decentralization,
however, we show that it is possible to define a constant competitive mechanism on
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the basis of the algorithm by Correa and Wagner (2005) such that truthtelling is
a dominant strategy equilibrium. Finally, notice that for the single machine case,
decentralization is not an issue. We comment on the Correa-Wagner Algorithm
for the single machine case and show that also the Local Greedy Algorithm can
be made truthful with respect to the stronger dominant strategy equilibrium. The
payment scheme required to achieve that, however, is different from the payment
scheme of the Decentralized Local Greedy Mechanism.

5.6.1 A Negative Result

Recall that in the Local Greedy algorithm, jobs are centrally assigned to machines
such as to minimize the increase in the global objective function

∑
wjCj . We can

see this algorithm as the allocation algorithm of a mechanism where the only action
of any job is to report its type. Recall that such mechanisms are known as direct
revelation mechanisms. In that context, a truthful (direct revelation) mechanism
denotes a mechanism where truthtelling is a dominant strategy equilibrium. The
question arises if the Local Greedy algorithm can be augmented by some payment
scheme to a truthful mechanism. For the case of parallel machines, however, we have
the following negative result.

Theorem 5.15. There does not exist a payment scheme that extends the Local

Greedy algorithm to a truthful mechanism.

Proof. We first derive a necessary condition for making truthful reports a dominant

strategy equilibrium, and then show that it is violated by the Local Greedy

Algorithm. Suppose there is a payment scheme π such that truthful reporting is a

dominant strategy for each job. Fix job j and the reports of all other jobs. Let also

j’s report about processing time and release date be fixed. Consider two weights of

j, w(1) and w(2), and denote by C(1) and C(2) the resulting completion times and by

π(1) and π(2) the resulting payments when j reports w(1) and w(2), respectively. As

truthful reporting is a dominant strategy, reporting w(1) must maximize j’s ex-post

utility when j has true weight w(1), especially, −w(1)C(1)− π(1) ≥ −w(1)C(2)− π(2).

Similarly, −w(2)C(2) − π(2) ≥ −w(2)C(1) − π(1). Adding up these two inequalities
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yields5

(w(2) − w(1))(C(1) − C(2)) ≥ 0. (5.1)

Especially, if w(1) < w(2) we must have C(1) ≥ C(2).

Consider now the following example. Let [w̃/p̃] denote a job with (reported )

weight w̃ and (reported ) processing time p̃. Suppose that we have to schedule the

following four jobs on two machines: [6/3], [5/4], j = [w̃/1
7 ], [20/4], where w̃ is a

parameter. Let all jobs have a common release date large enough such that no job

has to be delayed according to the modified release dates (say r > 4α, with α as in

Section 5.5.1), but assume that they arrive in the given order.

The first job [6/3] increases the objective value on both machines by the same

amount and is therefore scheduled on the first machine. The second job [5/4] is then

assigned to the second machine. We consider two values for the weight of j, namely

w(1) = 1
14 and w(2) = 1

2 . In the first case the weight over processing time ratio is
1
2 and therefore smaller than the respective ratios of the two jobs already assigned

to machines. Thus, j would be scheduled last on each of the machines according to

the WSPT rule. It would cause the following increases:

z(j, 1) = (r +
1
7

+ 3)w(1)

z(j, 2) = (r +
1
7

+ 4)w(1).

Therefore, j is assigned to the end of machine 1.

The second case for w(2) = 1
2 yields a ratio of 7

2 , which would place j first on

both machines. The respective increases are:

z(j, 1) = (r +
1
7
)w(2) + 6 · 1

7

z(j, 2) = (r +
1
7
)w(2) + 5 · 1

7
.

Job j would be scheduled on machine 2.

5Condition (5.1) corresponds to the notion of monotonicity as introduced by Bikhchandani,
Chatterjee, Lavi, Mu’alem, Nisan, and Sen (2006). Furthermore, in the single parameter setting
where only the weights are private information, it is equivalent to the decreasing work curves
condition by Archer and Tardos (2001). Cf. Chapters 3 and 4.
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The last job [20/4] has a ratio larger than all the ratios of the present jobs.

Therefore it would be scheduled first on both machines. In both cases, the total

weight of jobs on the first machine is larger than the total weight of jobs on the

second machine. Therefore, the increase in the objective value caused by the last

job is in both cases smaller on the second machine. Thus the job is scheduled on

the second machine, which increases j ’s completion time only in the second case.

Thus, j is completed at time r+3+ 1
7 when reporting 1

14 and at time r+4+ 1
7 when

reporting 1
2 . Hence, condition (5.1) is violated.

Remark 5.16. Theorem 5.15 does not depend on the fact that pj and rj are private

information. Hence, even if only the weights are private and the other job charac-

teristics are public, the LocalGreedy Algorithm cannot be augmented to a truthful

mechanism.

5.6.2 On the Correa–Wagner Algorithm

As mentioned in the introduction, the currently best known performance guaran-
tee for the regarded online scheduling problem is 2.62 due to Correa and Wagner
(2005). In this section, we show how this algorithm can be used to obtain a central-
ized mechanism that admits a dominant strategy equilibrium where all jobs report
truthfully.

The Correa-Wagner algorithm maintains a virtual single machine that can pro-
cess jobs m times faster than the original machines. The virtual machine preemp-
tively processes at any point in time the available job with the highest wj/pj ratio.
For α ∈ [0, 1], the α-point of a job is defined as the point in time, when for the
first time an α-fraction of the job is processed on the virtual machine. Jobs enter a
FIFO-queue in the order of their α-points. Whenever one of the m ’real’ machines
becomes idle, it starts processing the next job from the FIFO-queue. The mentioned
performance bound is achieved by choosing α = (

√
5− 1)/2.

Theorem 5.17. For the parallel machine problem, consider a fixed job j and let the

reports of the other jobs be fixed as well. For given reports p̃j and r̃j, let C0 ≤ · · · ≤
Ck ≤ · · · ≤ CMAX be the (finitely many ) possible values for j’s completion time

when j varies its report w̃j. Let furthermore %ξ = inf{w | report w leads to Cξ−1}
and define

θk
j =

MAX∑

ξ=k+1

[%ξ (Cξ − Cξ−1)]
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to be the payment that j has to pay if j’s completion time is Ck. Then the Correa–

Wagner Algorithm together with the payment scheme θ has a dominant strategy

equilibrium in which all jobs are truthful.

The payment scheme θ is under certain conditions related to the VCG-payment
scheme. But especially in an online setting, this relationship does not hold; see
Section 5.6.3.

For the induced single parameter problem, where only weights are private infor-
mation, the result in Archer and Tardos (2001) implies that a sufficient condition
for the existence of a truthful payment scheme is that the completion time of each
job depends non-increasingly on the job’s reported weight. For the Correa–Wagner
Algorithm, indeed a higher report for the weight can only improve a job’s priority on
the virtual machine and therefore can only decrease the completion time of the job.
Therefore, the existence of a payment scheme that makes truth-telling wj a domi-
nant strategy (for fixed processing time and release date) is guaranteed by the result
of Archer and Tardos (2001). The above defined payments can be obtained using the
methods by Gui, Müller, and Vohra (2004) or by Archer and Tardos (2001). Here,
we only show that the payments θk

j indeed make truth-telling a dominant strategy
with respect to all three job characteristics.

Proof of Theorem 5.17. Fix a job j and the reports of the other jobs. For given

reports p̃j and r̃j of job j, let C(wj) denote j’s completion time as a function of

the reported weight wj . As mentioned above, C(wj) is a non-increasing function; in

fact, it is a non-increasing step function. With that insight, it can be easily verified

that if j achieves Ck under report wj , then the payment satisfies

θk
j =

∫ wj

0
(C(x)− C(wj)) dx.

Suppose that j has true weight wj and let w̃j > wj be some untruthful report. Then

the corresponding incentive constraint reads as

−wjC(wj)−
∫ wj

0
(C(x)− C(wj)) dx ≥ −wjC(w̃j)−

∫ w̃j

0
(C(x)− C(w̃j)) dx,

which is equivalent to ∫ w̃j

wj

(C(x)− C(w̃j)) dx ≥ 0.

The latter is true, since C(·) is non-increasing and thus the integrand is non-negative.
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For w̃j < wj , the corresponding incentive constraint can be verified similarly.6

From the above analysis follows that truthfully reporting the weight is a domi-

nant strategy for job j, no matter what reports j makes about its processing time

and release date. Let us now turn to j’s processing time. For the true processing

time pj and fixed release date, let C(wj), wj ≥ 0, be the completion time for weight

report wj . Define C̃(wj) analogously for some untruthful processing time p̃j > pj .

Clearly, C̃(wj) ≥ C(wj) for all wj . The corresponding incentive constraint with

respect to processing times reads as

−wjC(wj)−
∫ wj

0
(C(x)− C(wj)) dx ≥ −wjC̃(wj)−

∫ wj

0

(
C̃(x)− C̃(wj)

)
dx

⇔
∫ wj

0

(
C̃(x)− C(x)

)
dx ≥ 0.

The latter is implied by C̃(x) ≥ C(x) for all x > 0.

It remains to show that arriving no later than the true release date is a weakly

dominant strategy, too. Assume j’s report is truthful in wj and pj . For fixed

processing time pj and fixed release date rj , let C(wj), wj ≥ 0, be the completion

time for weight report wj . Define C̃(wj) analogously for release date r̃j . Clearly,

C̃(wj) ≥ C(wj) for all wj . This implies the incentive constraints with respect to the

release date similar to the above.

The payments θk
j can be computed in polynomial time, which can be seen as

follows. For every job j, given the actual reports of the other jobs and j’s report
about processing time and release date, it is sufficient to know j’s completion time
as a function of the reported weight in order to determine the payments. It can
be easily verified that this function is a non-increasing step function whose points
of discontinuity are a subset of the set of reported ratios w`/p` for the n − 1 jobs
` 6= j. Therefore, it is sufficient to determine j’s completion time for n values of j’s
weight. Determining the completion time for one of these values requires running
the Correa-Wagner algorithm once again and thus takes polynomial time. Hence,
determining the payments for all n jobs can be done in polynomial time, too.

However, the payment scheme θ is not an online payment scheme and it does
not satisfy the balanced budget condition. The described mechanism is heavily

6For a similar, but more intuitive proof for the induced single parameter problem we refer to Lavi
(2007).
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dependent on centralization in maintaining the fast virtual machine and the FIFO-
queue. Therefore, we hardly see a chance to turn the mechanism into a decentralized
one.

5.6.3 The Single Machine Case

For a single machine, the decentralization requirement is redundant. In this case, the
Correa-Wagner algorithm is equivalent to the algorithm by Goemans, Queyranne,
Schulz, Skutella, and Wang (2002), which yields a performance guarantee of 2.42.
This way, we get a truthful mechanism with performance guarantee 2.42.

Although this is better than the performance guarantee of 3 for the Local

Greedy Algorithm on a single machine (see Megow and Schulz 2004), we briefly
comment on the latter, too. Even for a single machine, the Decentralized Local

Greedy Mechanism does in general not have a dominant strategy equilibrium where
all jobs report truthfully: Consider a job j with wj = pj = 1 arriving first and a
job k with wk = 2 and pk = 1 arriving second. Suppose that both jobs report
truthfully. Job j is displaced by k and receives a payment of wjpk = 1. But with
any report 1 < w̃j < 2, job j would still be displaced by k, receiving a higher
payment w̃jpk > 1. Even when we give up on a balanced budget and j does not
receive the payment when being displaced by k, j would be better off lying w̃j = 3
and not being displaced at all.

However, the Local Greedy Algorithm together with payment scheme θ from
Section 5.6.2 yields a mechanism in which truth-telling becomes a dominant strategy
equilibrium. This can be proven analogously to Theorem 5.17. Again, in contrast
to the payment scheme of the Decentralized Local Greedy mechanism, the
payment scheme θ does not satisfy the balanced budget condition and is not an
online payment scheme.

In the offline case with trivial release dates, i.e., when rj = 0 for all j ∈ J , the
WSPT rule minimizes

∑
j∈J wjCj and therefore maximizes the total social welfare.

In this case, the WSPT rule together with payments given by θ coincide with the
VCG mechanism, see also Example 4.19. It can be verified that the payment that
job j has to make according to θ equals the product of j’s processing time and the
total weight of the jobs that are processed behind j. This is exactly the externality
that j imposes on the other jobs and therefore equals the VCG-payment. For the
online case with nontrivial release dates, however, an exact algorithm does not
exist (Hoogeveen and Vestjens 1996). Hence, it is not possible to set up the VCG
mechanism. As a consequence, neither of the previously discussed mechanisms is
the VCG mechanism.
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5.7 Discussion

We leave it as an open problem to find a decentralized, constant competitive online
mechanism where it is a dominant strategy equilibrium to report truthfully. A decen-
tralized algorithm that mimics the Local Greedy Algorithm is not a candidate,
as the latter cannot be augmented by any payment scheme to a mechanism with a
dominant strategy equilibrium.

We have shown that the algorithm with the currently best performance bound for
the non-strategic, centralized setting can be turned into a truthful mechanism with
competitive ratio 2.62. But, the resulting mechanism is not decentralized and the
given payment scheme is not online. Thus, an intriguing open question remains: Is
the decentralized setting actually harder than the setting with central coordination?

Finally, we believe that it would be interesting to identify general rules that
allow for a transformation of centralized algorithms to decentralized mechanisms –
our work can be seen as one instance of such a result.
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N. Nisan, T. Roughgarden, É. Tardos, and V. Vazirani (Eds.), Algorithmic
Game Theory. Cambridge University Press.

Nisan, N. and A. Ronen (2000). Computationally feasible VCG mechanisms. In
Proc. 2nd ACM Conference on Electronic Commerce, pp. 242–252.

Nisan, N. and A. Ronen (2001). Algorithmic mechanism design. Games and Eco-
nomic Behavior 35, 166–196.

Owen, G. (1995). Game theory (Third ed.). San Diego, CA: Academic Press Inc.

Papadimitriou, C. (1994). Computational Complexity. Reading(MA): Addison-
Wesley.

Parkes, D. C. (1999). iBundle: An efficient ascending price bundle auction. In
Proc. 1st ACM Conf. on Electronic Commerce (EC-99), pp. 148–157.

Parkes, D. C. and L. H. Ungar (2000). Iterative combinatorial auctions: The-
ory and practice. In Proc. 17th National Conference on Artificial Intelligence
(AAAI-00), pp. 74–81.

Porter, R. (2004). Mechanism design for online real-time scheduling. In J. S.
Breese, J. Feigenbaum, and M. I. Seltzer (Eds.), Proc. 5th ACM Conference
on Electronic Commerce, pp. 61–70. ACM.

Pruhs, K., J. Sgall, and E. Torng (2004). Online scheduling. In J. Y.-T. Leung
(Ed.), Handbook of Scheduling, Chapter 15. CRC Press LLC.

Roberts, K. (1979). The characterization of implementable choice rules. In J.-
J. Laffont (Ed.), Aggregation and Revelation of Preferences. North Holland
Publishing Company.

155



Bibliography

Rochet, J.-C. (1987). A necessary and sufficient condition for rationalizability in
a quasi-linear context. Journal of Mathematical Economics 16 (2), 191–200.

Ronen, A. (2006). Incentive compatibility in computationally feasible combinato-
rial auctions. In P. Cramton, Y. Shoham, and R. Steinberg (Eds.), Combina-
torial Auctions, pp. 369–394. MIT Press.

Rosenthal, R. W. (1973). A class of games possessing pure-strategy Nash equilib-
ria. International Journal of Game Theory 2 (1), 65–67.

Roth, A., M. A. O. Sotomayor, and A. Chesher (Eds.) (1990). Two-Sided Match-
ing: A Study in Game-Theoretic Modeling and Analysis. Cambridge University
Press.

Roughgarden, T. (2004). Stackelberg scheduling strategies. SIAM Journal on
Computing 33 (2), 332–350.

Saks, M. and L. Yu (2005). Weak monotonicity suffices for truthfulness on convex
domains. In Proc. 6th ACM conference on Electronic Commerce, pp. 286 –
293.

Sandholm, T. (2003). Automated mechanism design: A new application area for
search algorithms. In Proceedings of the International Conference on Princi-
ples and Practice of Constraint Programming (CP), pp. 19–36.

Schrijver, A. (2003). Combinatorial Optimization, Volume A. Springer.

Schuurman, P. and T. Vredeveld (2007). Performance guarantees of local search
for multiprocessor scheduling. Informs Journal on Computing 19 (1), 52–63.

Smith, W. (1956). Various optimizers for single stage production. Naval Research
Logistics Quarterly 3, 59–66.

Suijs, J. (1996). On incentive compatibility and budget balancedness in public
decision making. Economic Design 2, 193–209.

Vestjens, A. P. A. (1997). On-line Machine Scheduling. Ph. D. thesis, Eindhoven
University of Technology, Eindhoven, The Netherlands.

Vickrey, W. (1961). Counterspeculation, auctions and competitive sealed tenders.
Journal of Finance 16, 8–37.

Wellman, M. P., W. E. Walsh, P. R. Wurman, and J. K. MacKie-Mason (2001).
Auction protocols for decentralized scheduling. Games and Economic Behav-
ior 35 (1-2), 271–303.

156



Subject Index

affine maximizer, 105

balanced budget, 127
Bayes-Nash equilibrium, 77
Bayes-Nash implementable, 49
Bayes-Nash incentive compatible, 49,

59

competitive, 127

decentralized online scheduling mech-
anism, 126

dominant strategy equilibrium, 104, 127
dominant strategy incentive compati-

ble, 23, 105

IIA, 64
implementable, 23, 105
independence of irrelevant alternatives,

64

monotonicity, 49, 60, 108
myopic best response equilibrium, 128

Nash equilibrium, 92
node potential, 24

online payment scheme, 126
optimal mechanism, 54

price of anarchy, 93

pure strategy Nash equilibrium, 93

regularity, 54, 73
revenue equivalence, 23

tentative utility, 128
truthful mechanism, 105
truthfully implementable, 105
two-cycle connected, 25

weak monotonicity, 108

157





Nederlandse samenvatting

Grafen, Mechanismen en Roostering. Traditionele optimalisatie houdt zich
bezig met de efficiënte selectie van een optimale oplossing voor een minimalisatie-
of maximalisatieprobleem. Normaliter wordt er aangenomen dat er een centrale
planner is, die volledige toegang heeft tot het model en de daarvoor relevante data.
Bijvoorbeeld, deze planner moet in een productieproces een aantal taken aan ver-
schillende machines toewijzen, op een dusdanige manier dat de in totaal benodigde
tijd om alle opgaven af te ronden geminimaliseerd wordt. Of hij moet de beste
manier bepalen om een aantal goederen van verschillende locaties naar verschil-
lende eindbestemmingen in een stratennetwerk te vervoeren. In tegenstelling tot
de centrale planning zijn er in de realiteit meestal verschillende agenten, die mo-
gelijk over privé informatie beschikken, en deze agenten moeten samenwerken om
een oplossing voor het probleem te bereiken. Dat gebeurt bijvoorbeeld op het inter-
net, waar verschillende onafhankelijke en egöıstische gebruikers hun datapakketten
over de communicatieverbindingen van het netwerk verzenden. Of in het dagelijkse
verkeer, als een bestuurder probeert om de snelste route voor zichzelf te vinden en
geen rekening houdt met het effect op de andere bestuurders. In zulke situaties zijn
agenten gestimuleerd om zich strategisch te gedragen. Dit strategische gedrag kan
tot niet-optimale oplossingen leiden. De analyse van dit soort situaties vraagt niet
alleen om technieken uit de klassieke optimalisatie maar ook om technieken uit de
speltheorie en de economische theorie.

Dit proefschrift levert verscheidene bijdragen aan het onderzoeksgebied in de
overlapping van optimalisatie en speltheorie / economische theorie. In deel I bestud-
eren we klassieke vraagstukken in mechanism design door gebruik te maken van
grafen. Hoofdstuk 2 bevat een nieuwe karakterisering van revenue equivalence. Om
duidelijk te maken wat revenue equivalence is, bekijken we een veiling-situatie, waar
één enkel goed moet worden verkocht aan één persoon van een groep van bieders.
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Elke bieder heeft persoonlijke informatie over hoeveel waarde hijzelf aan het goed
hecht, maar is onzeker over de waardering van de andere bieders voor het goed.
Laten we aannemen dat het doel is om het goed te verkopen aan de bieder die het
het meeste waardeert, maar tegelijkertijd een prijs te eisen, die voor geen bieder mo-
tivatie geeft om iets anders dan zijn ware waardering voor het goed te bieden. Dan
is de verwachte opbrengst voor de veilingmeester altijd hetzelfde, onafhankelijk van
de precieze opzet van de veiling (Myerson 1981). Dit feit wordt revenue equivalence
genoemd. Resultaten over revenue equivalence kunnen in veel algemenere situaties
worden bekeken. We bekijken zo’n algemene situatie en bewijzen een karakteriser-
ing van revenue equivalence met behulp van elementaire grafentheorie. Onze stelling
kan worden toegepast in situaties waar alle bekende stellingen niet van toepassing
zijn, en heeft het voordeel dat deze eenvoudig en elementair is.

In het volgende hoofdstuk, Hoofdstuk 3, bestuderen we optimale mechanismen
voor een roosteringsprobleem. Laten we weer naar de veiling-situatie kijken om
een idee te krijgen wat een optimaal mechanisme zou kunnen zijn. In de al eerder
beschreven veiling van een enkel goed is een optimaal mechanisme één, dat de op-
brengst voor de veilingmeester maximaliseert. Volgens Myerson (1981) geeft het
optimale mechanisme het goed niet altijd aan de bieder met de hoogste waarde
ervoor, maar de veilingmeester kan het bijvoorbeeld zelf houden als alle biedingen
minder zijn dan een bepaalde gedefinieerde prijs. Ook optimale mechanismen zijn
niet alleen interessant in veiling-situaties, maar in elk spel met prijzen. We beki-
jken een eenvoudig roosteringsprobleem en bepalen optimale mechanismen. We zien
ook, dat zelfs het eenvoudigste roosteringsprobleem wezenlijk ingewikkelder is met
betrekking tot het bepalen van optimale mechanismen dan het veiling-probleem.

Deel II gaat over de toepassing van mechanism design en speltheoretische con-
cepten op roosteringsproblemen met meerdere machines. Hoofdstuk 4 bevat een
overzicht van de meest interessante en meest recente onderwerpen op dit gebied.
Het omvat de zogenoemde prijs van anarchie dan wel approximatie algoritmen voor
optimalisatieproblemen in situaties met agenten.

In het laatste hoofdstuk, Hoofdstuk 5, bekijken we een online roosteringspro-
bleem vanuit het mechanism design oogpunt. De aanvullende complicatie in een
online situatie is dat de taken, die op de machines moeten worden toegewezen,
alleen te zijner tijd bekend worden. Beslissingen moeten al worden genomen voor-
dat alle taken bekend zijn. Bovendien eisen we een gedecentraliseerde opzet. Dat
betekent dat de taken hun machine zelf kunnen kiezen. We stellen een nieuw even-
wichtsconcept voor, dat geschikt is voor deze situatie. Daarnaast presenteren we
een mechanisme voor het gedecentraliseerde online roosteringsprobleem. Ons me-
chanisme levert een goede approximatie op voor een bepaalde doelfunctie.
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