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ABSTRACT

This thesis presents a computational investigation of traffic equilibrium models on synthetic
networks that represent stylised street maps. Borrowing from statistical physics and complexity
science, a network ensemble approach is used to examine the relationship between network
structure and traffic equilibria. The network family constructed (αβ-networks) capture node
distributions that range from square grids to networks with uniformly randomly distributed nodes.
Cost-function parameters for roads are defined according to an endogenous supply provision
heuristic that incorporates local network structure, and the static traffic assignment problem
(STAP) is solved for ensembles of αβ-networks with a range of morphologies. How the networks’
griddedness and road density affect the performance of traffic equilibria is explored. A key
finding is that traditional network theory statistics do not correlate well with transportation
efficiency. Also, less grid-like networks are more sensitive to the choice of demand structure. For
mixtures of selfish and altruistic vehicles, the road density and network size are found to be key
features determining the pathway to optimal performance. Finally, the αβ-networks are used to
investigate how to recover a network fundamental diagram (NFD). It is found that combining the
STAP with an ensemble approach is enough to determine how the uncongested branch of the
NFD depends on network morphology. Finally, a method is proposed for recovering the congested
branch of the NFD by using projected dynamical systems and Filippov systems, in order to
capture dynamics of congestion that that lie beyond the STAP’s scope.
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INTRODUCTION

We live in an urbanised world that depends heavily on transportation. Already in 2018, 55% of

the world’s population were urban dwellers [11], and the UK is the most urbanised of OECD

countries [12]. In the UK 80% of person-miles travelled in a year are road miles, similarly over

80% of domestic freight is transported on roads and motorways [13]. In Mexico City, the world’s

fourth largest megacity, it is estimated that a commuter can spend, in aggregate, 45 days of

each year stuck in traffic [14]. Transportation issues filter through to all aspects of daily life,

with congestion being an increasingly prominent concern. The European Environment Agency

estimates that time losses in urban areas due to congestion have a cost equivalent to 2% of

GDP [15]. Arguably, of even greater concern are the health and environmental effects caused

by vehicular exhaust emissions, which are getting worse due to congestion [16]. This has led to

policy interventions, such as the London and Antwerp low emission zones.

Understanding transport, and the ways in which we study and research mobility and trans-

portation, has societal importance. There is ample evidence that altering the physical road

network (or ‘improving’ infrastructure) fails to address congestion issues (see section 1.1 below).

This thesis suggests that what is needed instead is a complete re-think of how the modelling of

transport systems is approached: we focus on traffic equilibria from the point of view of complexity

science. As the title implies, we will adopt an experimental approach in which well-understood

models are used to explore features of emergent network effects on urban road systems.

Complexity science is the study of systems that are composed of many interacting components,

and in which interactions between the components are the main determinant of system wide

behaviour. As such, complexity science has much to offer to transport research. Overall, complexity

science is defined more by the objects it studies than its mode of investigation. Indeed, there

is no clear consensus on what makes a system complex [17], however there are systems that

are considered poster examples of complexity. One such system is the human brain, for which
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Chapter 1. Introduction

consciousness can be thought of as an emerging trait. Another is the collective motion of living

creatures [18,19]. Waldrop [20] introduces complexity science through different kinds of emergent

phenomena, ranging from the collapse of the Soviet Union to the evolution of the eye. An in-depth

discussion about complexity and what constitutes a complex system, as well as the much-used

term ‘emergent behaviour’ is presented by Ladyman et al. in [17], where they attempt to pin

down what are the traits shared by systems that are accepted to be complex. These systems tend

to have been long studied in other fields, such as trophic webs and reaction diffusion equations,

making the methods of study of complexity an eclectic set of techniques and tools borrowed from

their originating areas; from dynamical systems to experimental biology. For example, the brain

has long been studied from a medical or biological perspective [21], however the use of network

theory is a more recent development which is now standard in computational neuroscience [22].

Complex phenomena tend to be identified as adaptive and emergent, which means that the

structure and evolution of complex systems are driven by the components of the system itself.

For example, in a transportation context, all road network users interact by affecting each other’s

travel times indirectly through the state of the traffic network. Yet the traffic patterns that

determine these costs are, in turn, formed by the users’ actions. Feedback loops such as these are

an extremely useful concept in electronics and control theory, and they have now made their way

even to the study of gene-regulation networks, to which they are central.

Complexity science, then, can be described as the science of learning systems [23], where

learning is understood in terms of the adaptive behaviours of phenomena that arise in the

interactions of multiple agents. This shifts the focus from the components themselves to the main

features of their interactions, that give rise to patterns in the system’s behaviour that would

seem unexpected when considering the components in an isolated way. In other words, the core

assumption of complexity science is that complexity emerges from simple rules, which however

do not predict the outcome of every situation, but enable agents to adapt to their environment

through feedback and learning over time.

1.1 Networks, Cities, Traffic, and Complexity

Cities fit all the characteristics of complex systems. They are made up of different components:

physical infrastructures, different sectors of society, industry, government and so on. They are

also primarily a collection of living creatures, namely humans. In terms of dynamics, transport

and mobility clearly show emergent patterns, such as traffic jams that arise from the interactions

of agents. In the last couple of decades, with the increasing recognition for the need for multidis-

ciplinary research to solve the challenges of modernity [24], there have been many important

developments in the study of cities. Bettencourt et al. [25] exploit the non-linear scaling relations

that cities follow (for example see [26, 27]) to define metrics that capture phenomena local to

particular cities. They also find that negative traits scale in similar ways. The inspiration for
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this type of analysis is mainly the scaling in ‘metabolic rates’ exhibited by [28, 29], and the

acceptance that even though there is central planning in the evolution of a city, it is ultimately

self-organisation, an aggregate phenomenon, that drives the evolution of a system as complex

as a metropolitan area [30]. As a consequence (and made explicit in the title of [29]: Cities as

organisms: Allometric scaling of urban road networks), cities are now widely thought of more as

living organisms than as containers for human life.

These scaling ideas have also influenced studies on the road networks of cities, for example

[31], where the natural abstraction of a road network to a mathematical graph has led to new

ways of approaching the study of urban networks. The use of network theory has led to new

insights into the structure of cities and their evolution (a few interesting studies [32–34]).

Increasingly, it has been found that the evolution of networks in nature, of which road

networks are no exception, follow similar underlying principles [35]. It is also important to

note that while there are a large number of complex network models in use for a large array of

applications, spatial networks that are planar are ubiquitous in nature, and while they might

appear overly simplistic as models, they are far richer than might be expected.

What has emerged is an understanding of the myriad of ways in which complex systems are

‘active’ and have agency to modify themselves. This also offers new ways of conceptualising what

cities are and how they behave [36], which in turn has led to a much better understanding of the

problems urban areas now face, and offers ways to find solutions to these problems. One of the

more important problems that cities face is increasing congestion. As a temporary measure (and

in the USA the main policy [37], as cited by [1]), the strategy used to solve congestion problems

has been to increase supply, however building more roads simply provides more road miles to

suffer from congestion. Figure 1.1 (reproduced from [1]) shows the vicious cycle of congestion that

is tied to the dependence on automobiles as the main method of transportation.

For the examination of the interactions amongst agents, borrowing ideas from game theory

has proven to be essential for transport research. For example, Wardrop user equilibria [38],

where users choose their paths through a network in order to minimise their travel time, are

actually Nash equilibria for congestion games on networks (first identified by Charnes and Cooper

in [39]). Therefore techniques used for analysing the inefficiency of equilibria, namely the price of

anarchy, have made their way to the study of flows on networks, where they have been extremely

useful in the context of internet routing [40,41] and in the context of transport networks [2]. The

price of anarchy is the ratio between the system costs at equilibrium to the costs of the system at

optimal performance. It therefore measures the factor by which a system underperforms.

Roughgarden [42] shows that the upper bound for the price of anarchy in transportation

networks, and commodity flow networks in general, depends on the choice of cost (or disutility)

functions for the individual roads rather than on the structure of the networks themselves.

His provocatively titled paper The price of anarchy is independent of the network topology [43]

has inspired much research into the applications of the price of anarchy. However, the title is
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Figure 1.1 Vicious cycle of congestion. Reproduced from Toth, 2007 [1] (where it is figure 8-2)

Figure 1.2 Price of anarchy as a function of demand shown for Boston, New York and London.
Reproduced from Youn et al., 2008 [2]

deceptive. The actual price of anarchy observable in networks depends heavily on the network

and on the distribution of journeys that are made. As an example, in figure 1.2 we reproduce a

figure from [2] showing the price of anarchy for different road networks. The price of anarchy will

play a prominent role in this thesis, and in fact we will address the extent to which it actually

depends on network structure in chapter 3. One of our key findings is that, even with significant

variance when averaged over networks of similar morphology, mean values of the price of anarchy

across network ensembles of similar structure (yet with high intra-ensemble variability) are

consistently sensitive to even slight variations in network structure.

There is a need for more research on the behaviour of the price of anarchy and network

structure, and this thesis answers to that need. The literature is mostly concerned with bounds
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(a)
(b)

Figure 1.3 Examples of macroscopic fundamental diagrams. (a) Data for Yokohama, San
Francisco and Nairobi (reproduced from [3], where data from [4–6] is used). (b) Macroscopic
fundamental diagrams of three (homogeneous) partitions for San Francisco, a heterogeneous
network (reproduced from Abdoulas et al., 2013 [7]).

that are not tight and can be deceptive when compared to actual achieved values of the price

of anarchy on real-world, as well as synthetic networks. O’Hare [44] observes that low price-of-

anarchy values might seem to indicate that the equilibrium reached by selfish users is quite

efficient, however if total system costs are high, it can under-account for inefficiencies due to

delays on important roads.

There are also few systematic studies on how complex network structure affects the price of

anarchy. For example a paper by Rose et al. [45], in similar spirit to [46] and the present work, is

interested in how network structure affects the price of anarchy. They, however, approach the

construction of a heterogeneous network by manipulating the travel cost functions of some links,

as the networks they use are lattices. They do this, in part, because they aim to find exact values

for changes in the price of anarchy, which, however, quickly becomes problematic when networks

increase in complexity. The authors remark that even with simple networks, the consideration of

all possible paths becomes analytically intractable.

Another work that studies the relationship between price of anarchy and network structure

is [47] by Smith et al., where they investigate the influence of equilibrium efficiency as affected

by the properties of the nodes in the network. Here, the difficulty of dealing with causal effects of

network properties on the price of anarchy is also highlighted.

With regards to the role of local network structure in emergent large-scale traffic patterns, the

observation of the so-called macroscopic fundamental diagram by Geroliminis and Daganzo [5],

has been very influential. Figure 1.3 (reproduced from [3] and [7]) shows some macroscopic fun-

damental diagrams. Apart from a good theoretical understanding in how it emerges, and how to

approximate it using standard traffic flow theory (for example [48]), this work has also facilitated

the observation that under favourable circumstances, the partitioning of road networks can

lead to sub-networks exhibiting different, yet well-defined, macroscopic fundamental diagrams
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(see [49], for example). From a complexity science point of view, the most striking observation is

that the resulting partitions tend to have uniform structure. That is, the macroscopic relation-

ships fundamentally depend on the underlying network structure. In this thesis, we argue that

the structure, in conjunction with the induced routing options, are more important than actual

traffic dynamics for the emergence of the macroscopic patterns of the aggregated traffic variables;

at least up to the critical point (where flow and occupancy become anti-correlated). The realisation

that network structure is more important than what is implied by the theoretical bounds of the

price of anarchy has led to studies that aim to be applicable in future traffic management. For

example, in [3], the authors use both approximations of the macroscopic fundamental diagram,

together with mathematical expressions for Wardropian equilibria, to propose a dynamic-tolling

scheme strategy. More generally, the effect of partitioning a large network into individual com-

ponents with independent behaviour has given rise to the possibility of cordoning strategies

inspired by the success of congestion charging. Some examples of these studies are [7,50,51].

Bringing back network theory into the discussion, recently Kirkley et al. [52] identify be-

tweenness centrality as an ‘invariant’ of planar graphs. Betweenness is a measure from network

theory that measures how many shortest paths a particular node or edge in a network belongs

to. It has been used to approximate the volume of traffic flow on roads of street networks (for

example in [31]) under the assumption that human drivers choose shortest paths, thus edges

that belong to many of the shortest paths will suffer more congestion.

While betweenness may serve as a proxy for when assignment calculations are deemed too

cumbersome to carry out, the result from Kirkley et al., that planar networks show similar

distributions of betweenness, actually suggests that it is not a good proxy for traffic volumes on

streets. Street networks have a mostly planar structure [53, 54], yet even networks with very

similar structures have widely varying behaviour in terms of price of anarchy. This has been

observed by O’Hare [46], and we obtain similar results in chapter 3.

Another link between network performance and network structure is captured by the Braess

paradox [55], where the addition of a link, and a new route through a network, can cause a

deterioration in the performance of the user equilibrium traffic pattern. While the Braess paradox

is well understood [56], and its prevalence in complex (realistic) networks is estimated to be high

(Steinberg and Zangwill [57] estimate its occurrence in large networks at a rate of 50%), it is

not currently known to what extent it is responsible for unwanted performance issues of actual

real-world systems.

There has been much research into classes of networks for which the Braess paradox can be

eliminated altogether. Milchtaich [58] shows that in a class of networks (series-parallel networks),

composed by adding links in series with networks made up of parallel bundles of edges, the

paradox does not occur. This result, while not necessarily helpful in the design of road networks,

highlights the claim that there is much to be discovered with regards to network structure and

its influence on network performance.
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In view of the discussion in this section, we identify that there is a gap in the literature in

understanding the subtleties of the effects of network structure on emerging traffic patterns.

Furthermore, it is accepted that in many situations an analytical treatment of paths is not always

possible. Therefore there is a need to develop a deeper experimental intuition of the connection

between network structure and network performance, in order to drive further theoretical

progress. In the following sections we narrow down to the technical subject matter of this thesis

and lay out our contribution to the field of transport networks.

1.2 Research Questions

Our main interest lies with equilibrium traffic patterns, their efficiency, and how these change

with increasing demand on the one hand, and with changes in user behaviour on the other.

At the heart of this thesis sits the development of a network model for which morphological

characteristics can serve as independent experimental variables. Therefore, the model seeks to

be useful in a variety of transport research applications.

The first application is in studying to what extent the price of anarchy is sensitive to network

structure and to the origins and destinations of journeys in the network. The second is to explore

how network morphology, and therefore the underlying route structure of a network, affects the

gains in efficiency that could be leveraged by using autonomous vehicles as altruistic users of the

network. Lastly, network structure and the emergence of a macroscopic fundamental diagram

are shown to be intimately linked [5]. Therefore, we aim that our network model is of use in

understanding what is the most basic connection between these two things.

In order to address these overarching concerns this thesis addresses the following research

questions:

RQ1 How simple can a network model be, and still remain useful in understanding real-world

transport properties?

RQ2 What insights can a highly-stylised routing model, such as the static traffic assignment

problem, provide into the role played by network morphology in the traffic patterns (and

their efficiency) that arise on these networks?

RQ3 Given that autonomous vehicles can provide a mechanism for achieving optimal network

performance, is the transition to optimality provided by them, across networks with differ-

ent morphologies, a good one?

RQ4 In the context of understanding global (network-wide) behaviour of networks, what ‘mini-

mal’ modifications can be made to the static traffic assignment problem to build a network

fundamental diagram from the bottom up?
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To answer these research questions, we construct a family of random networks that capture

different types of network structure and morphology. These networks are then equipped with

travel-time cost functions, that allows us to find equilibrium traffic patterns on them and examine

how network structure affects the efficiency of these networks. We not only study traffic patterns

that solve the classic static traffic assignment problem (RQ2), but also traffic equilibria of mixed

user classes (RQ3), where one class behaves altruistically, as could be plausibly implemented

with autonomous vehicles.

Research question RQ4 brings us back to the central motivation of complexity science, the

emergence of structure from underlying interaction. The structure we aim to recover is the

relationship between network-wide aggregated traffic variables. The interactions among users of

the networks are captured through each other’s influence on the cost functions of the edges.

We base our method of inquiry on the doctoral work of O’Hare [44], in which he studies the

efficiency of synthetic road networks, how it is affected by different levels of travel demand, and

finally how is affected by the structure of the networks. He shows how fluctuations in the price of

anarchy come about from the differences in active links and routes between the optimal traffic

assignment and the so-called user equilibrium assignment [53].

O’Hare remarks that the price of anarchy is much lower than the theoretical bounds and

further, that it is very sensitive to variation in individual network structure. His results indeed

show that the spread of performance metrics in general vary significantly across networks of

similar types (that is, drawn from the same experimental ensemble).

We depart from O’Hare’s methodology in two important ways. The first is the way we develop

our network model. We focus on constructing networks that are plausible proxies for real world

networks. We take care to avoid introducing arbitrary choices of variables, for example, by

implicitly defining the travel-time functions of the streets according to the local network topology.

We also normalise the parameters of the networks to ensure a fair comparison of networks with

different number of edges. The second difference, is that we use potential applications (described

in section 1.3 below), beyond the study of price of anarchy, to guide the network design. The

networks that we construct aim to model homogeneous ‘patches’ of network, and by giving them

periodic boundary conditions, single origin-destination pairs give rise to traffic patterns that

would otherwise require more complex journey structures to generate them.

The style of analysis in this thesis is based on ideas from complexity science. We will touch

upon equilibrium, network structure, and collective behaviour. In terms of model types, we

will traverse different scales in different parts of the thesis. At the microscopic end of the

scale spectrum, we have the geometrical construction of a family of synthetic road networks.

At the macroscopic end, we explore the emergence of collective patterns such as the network

fundamental diagram.

Inspired by computational statistical physics, we use ensembles of networks of different

morphologies, in combination with classic models from transport theory, to probe new ways in
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which we can qualitatively recover traffic behaviour that is more usually the concern of much

more sophisticated (or complicated) models. We build mainly on Wardropian equilibria [38], and

make experimental use of the static traffic assignment problem [53,59]. We view the simplicity

of the model as an advantage, and we use it to show how the structure and morphology of road

networks plays a fundamental role in determining their transport properties.

1.3 Structure of this Thesis

To address the research questions stated above, this thesis has been structured as follows.

Chapters 2 and 3 are concerned with answering the first two research questions RQ1 and RQ2,

while chapters 4 and 5 are devoted to the third and fourth research questions (RQ3 and RQ4),

respectively.

In chapter 2, a family of random planar graphs, which we will call ‘αβ-networks’ is developed.

These networks are based on β-skeletons [60], and we have designed them to capture a smooth

transition from a perfect grid structure to a network whose nodes are uniformly randomly

distributed. We examine the spatial and structural properties of these networks, and show that

they are a suitable model for experimentally controlling network morphology.

The aim of chapter 3 is to explore the extent to which particularities in network structure

determine network performance in a routing context. We use the static traffic assignment problem

with affine cost functions as a transport equilibrium model. We develop a heuristic for allocating

cost-function parameters in a way that makes networks with different morphologies and numbers

of edges directly comparable in terms of their provision of supply. To measure efficiency of the

traffic patterns across networks of different morphologies and with different choices of origin

and destination patterns, we use the price of anarchy, to show that the spatial distributions

of intersections and their clustering is more important for network efficiency than topological

features. We also find that the price of anarchy as a function of demand is sensitive to variations

in network morphology across ensembles of networks.

In chapter 4, we use the αβ-networks to explore the transition to optimality that might

be realised with the introduction of autonomous vehicles as a routing-control mechanism. We

use a simple mixed equilibrium model such as the ones used to study the uptake of route

guidance [61, 62]. We apply it to ensembles of road networks to see how efficiency increases

with the penetration rate of altruistic autonomous vehicles. Significant space is devoted to

understanding the mechanism in the reduction of costs on small networks before applying the

model to our αβ-networks. We find that, as the networks become more complex, the curves that

trace the decrease in costs towards optimal smoothen out as the discrete effects observed in small

networks overlap. We also discuss what types of network structures are better suited to this type

of amelioration of congestion.

In chapter 5, we focus on a topical area in the fields of transport and mobility: the network

9



Chapter 1. Introduction

fundamental diagram. Once again, the starting point is static traffic assignment, from which

we derive network-wide relationships between aggregated traffic variables. By necessity, static

assignment is not enough to capture the dynamic nature of a true macroscopic fundamental

diagram. Thus, we show that slight modifications to it are enough to recover, at least qualitatively,

behaviour observed empirically and in more sophisticated traffic flow simulations reported in

the literature. By examining a specific application in depth, namely the network fundamental

diagram, we return to the broader subject of complexity: how simple rules lead to emergent global

patterns. In this case, by considering aspects of dynamical systems that have found applications in

transport theory [63,64], a novel way of approaching the time-dependent behaviour of congested

traffics networks is proposed: network traffic dynamics interpreted as a Filippov system [65].

Finally, chapter 6 presents our conclusions and describes possibilities for future work.
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SYNTHETIC NETWORKS

The methodological backbone of this thesis is the use of computational experiments as a way of

probing what role network morphology plays in the emergence of traffic patterns. We begin by

constructing a network model which is used to generate the experimental ensembles of networks

used throughout this thesis. The purpose of this chapter is to identify appropriate variables which

will be used to describe important network structures, and to set up the experiments that will be

discussed in this work.

Since graphs and networks are applied in diverse transportation problems, the context of

the modelling problem heavily influences what is considered relevant to the network structure.

We aim to model homogeneous ‘patches’ of road networks that can be thought of as embedded

in a larger network. In this chapter we lay out the key features of the road networks that are

captured by the model which we construct and which we will use in our discussion throughout

the the rest of the thesis.

In section 2.1, the context in which the model sits is introduced, and the motivations behind

the design choices are highlighted. The network construction method is described in detail in

section 2.2, which involves sampling the locations of the nodes, the method by which the edges

of the network are wired up, and the boundary conditions of the networks. Properties of the

generated networks are explored in section 2.3. Finally in section 2.4, an alternative view and

variation upon the model is presented, where the geometric correspondence of nodes with grid

points is relaxed; the nodes can then be obtained from a non-homogeneous point process. The

purpose is to show that the network model can be generalised and cast as a random point process,

which is common practice in modelling network infrastructure. Finally section 2.5 summarises

our contributions.

A condensed overview of the network model constructed in this chapter can be found in the

proceedings of the Traffic and Granular Flow conference of 2017 [66]; this chapter is far more
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comprehensive. It is worth noting that this model has already been found useful in the wider

transportation research community, for example, in the context of intersection signalling and

controllability of traffic networks [67].

2.1 Background

In the transport modelling literature, equilibration algorithms and optimisation routines tend

to be tested on benchmark networks; the canonical example being Sioux Falls. Alternatively,

bespoke test-networks appropriate for the authors’ needs are used.

The need for testing algorithms and models on networks with different structure is a conse-

quence of the importance of the connectivity of the networks. Networks with different structures

can have drastically different behaviour. A key example of this is the Watts-Strogatz small-world

network model [68]. While it is not a spatial model, it shows that rewiring a small proportion

of edges in a network can drastically change global properties. The way spatial networks are

wired is intimately related to their embedding in space. Therefore, development of appropriate

network models with specific domain applications, which consider this embedding as well as

additional restrictions like planarity are necessary. The abstraction from the physical street map

of a city to a network is initially straightforward; streets are edges, and intersections are nodes.

This is called the primal representation [69] (for an example in an application where different

representations are discussed, see [70]).

The structure of road networks is not only important in terms of their statistical and topo-

logical properties, but also in the efficiency of traffic routing itself through the networks. For

example, in [2], Youn et al. use the price of anarchy (PoA) as an efficiency measure. Using the

PoA, they show that network structure (both of individual networks and of samples from random

families of graphs) perform differently in terms of transport efficiency. Overall, these kinds of

systematic studies of the dependency of traffic performance on network morphology are, however,

rare (both [32] and [44] touch upon this point). The principal reason for this is the difficulty

involved in comparing different networks (with possibly vastly different characteristics) to each

other. In a way, networks having different numbers of nodes and edges to each other already

means they are fundamentally different.

Additionally, the number of existing cities is small compared to the numerosity of possible

networks that can be constructed. On the one hand, real cities do not present the variability

needed for a systematic study of morphology; there are too few cities of similar types. On

the other hand, cities are too irregular; their shapes are constrained by geographical features

such as rivers and topography. The solution to this, apparently contradictory problem, is to

use synthetic networks. In the field of network science, random graph models are used to

approximate or simulate real-world systems. Some models are particularly useful for their

mathematical properties, and have allowed for the understanding of underlying mechanisms
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for the emergence of statistical properties of networks [68, 71]. An example of such models

are preferential attachment models, yielding degree distributions that follow power laws (so-

called, scale-free networks). While it is possible to find traffic equilibria on these networks, their

usefulness for understanding the routing behaviour in cities is limited. Many of these networks

have no spatial description whatsoever.

Another approach for network construction is to generate or grow them according to some

prescribed rules, for example (resource) minimisation principles informed by the system to be

modelled. Network growth models can be used to study the dynamics of network evolution.

Additionally, they can be used to validate models that attempt to describe how the road network

configuration evolves, such as in [32]. Many types of physical networks lend themselves to be

studied in similar ways, and not necessarily in a time dependent way. For example, infrastructure

networks [72], leaf venation patterns [73], and even slime moulds [74,75].

Investigations that take the network science approach, including some of the ones discussed

above, tend to take a purely empirical approach in measuring transport variables of known

networks, or are concerned mostly with the structure of the infrastructure itself. In other cases,

due to how recent this way of studying cities and collective human behaviour is, studies are

more of the ‘proof-of-concept’ type. This means that the focus often is on the insights offered by

network-theoretic measures into the network structure; for example, betweenness centrality has

been identified as important in [31] and [70] and even used as a proxy for traffic flow.

Initial interest in how network structure can lead to counter-intuitive effects (exemplified by

the Braess paradox [55] and discussed in detail in [56]), helped solidify the concept that in large

complex networks, effects like the Braess paradox are actually commonplace [57]. In this last

paper by Steinberg and Zangwill [57], the arguments are quite involved, and as has been pointed

out in the literature as well [76], the equations are quite opaque, relying on applying Cramer’s

rule to a very large system of equations. Perhaps due to the difficulty in obtaining analytical

results, as well as the difficulty in empirical observation, counter-intuitive effects due to routing

and availability of paths remain under-studied.

The purpose of constructing our network model is to contribute in clarifying the connections

between network measures and the transport properties of road networks. In this way, we

also wish to build upon ways of theorising about transportation problems, and traffic pattern

formation, from a complex systems perspective. In practice, this means we will use instances

of road networks generated with identical morphological parameters to create experimental

ensembles of networks. In the rest of the thesis we will talk about the response of these networks

when subjected to different (computational) experimental treatments.

We adopt a statistical ensemble approach, since is appropriate to the task at hand, in fact in

the course of this research, other authors have also found it suitable for tackling similar questions

to ours [45, 47]. In this light, honing models that are useful in identifying important network

features is central to the wider field of transportation.
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O’Hare [44] constructs his network ensembles by pruning triangulations of random nodes.

The pruning of the edges is done randomly with the (uniform) probability of edge removal serving

as a model parameter. In order to guarantee that the resulting networks remain connected when

pruned in this way, a minimum spanning tree for the network is found, and edges on this tree

are protected from the pruning. This means that O’Hare’s network model captures a transition

where the networks change from being mesh-like to tree-like.

A common starting point in network analysis is the examination of how tree-like networks are;

trees can be conceptualised as an ‘extreme’ or boundary-case type of network structure. Watanabe,

in [77], identifies the tree structure as important to road networks, and tries to quantify networks

generated by proximity graphs depending on how tree-like or grid-like they are, primarily by

looking at a metric he introduces as the grid-tree proportion.

In general, the models used for studying physical networks can be roughly split into two

types. The first type we will call sampling models, which include the traditional random network

models used in network science such as Erdős-Renyi [78], Barabási-Albert [71], and small-world

networks [68]. These tend to be described and characterised statistically, while the construction

method for these types of networks is usually probabilistic in nature (often trying to satisfy some

constraints). As an example, the configuration model (a standard model for complex networks,

see for example [69]) and its variants can be used to generate random networks with a given

degree sequence. The second type of models are generative, in which the networks are grown or

generated according to some heuristic, which is usually abstracted from physical or physical-like

processes. Examples of these are cellular automata models of urban growth [79,80], and growth of

leaf patterns and infrastructure networks following some optimality principle [32]. These models

tend to emulate or capture an underlying process of how the system under study behaves, as well

as to test whether the models proposed to construct such networks agree with experimental or

real-world observations.

The model developed in this chapter has aspects of both approaches and draws from the

method developed by O’Hare in [44] (and used as an analysis method in [46]) for studying the

performance of networks with different structures. Key requirements for a model suitable for

investigating these kinds of networks include:

• That the networks be (strongly) connected, so that for randomly chosen origins and destina-

tions, the journeys can actually be made.

• That the networks’ morphology parameters capture aspects of real-world road networks, or

at least of networks widely used to benchmark algorithms and models.

2.1.1 Some definitions

So far we have discussed approaches to studying networks in general, and road networks,

more specifically. Before going into more technical detail it is appropriate to define the basic
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mathematical concepts that we will be using. Since we will be abstracting road networks as

graphs, we give use the following (standard) definition [81,82].

Definition 2.1.1 (Graph/Network). A graph or network, G, consists of the pair

(2.1) G = (V , E ),

where V is a (non-empty) vertex set, and E is a (possibly empty) set of edges. An edge, e ∈ E , is

composed of a pair vertices (e = (η, ν) for η and ν ∈ E ).

This is a very general definition that allows for any vertex set V , which is what makes graph-

based models so widely applicable. The edges represent relations between nodes. As described in

the, edges are given as pairs of nodes. A directed network has the additional requirement that

the vertices (or nodes) composing the edges are ordered; the standard way to depict directed

edges is as arrows pointing from the source node to the target node.

Definition 2.1.2 (Directed network). A network, G = (V , E ), is directed if the vertex pairs that

make up the edges are ordered. That is, edges with the same vertices but inverted order are distinct,

(2.2) (η, ν) 6= (ν, η),

for ν, η ∈ V .

An edge e ∈ E is said to be incident from νi and incident to ν j. Edges will also be referred to

simply by their indices, i ∼ j where the convention will be that i is the source or tail of the edge

and j the target or head.

2.2 Assembling Random Networks

We construct the networks that we use in this thesis in two stages. The first stage is the

arrangement of the nodes on the plane (section 2.2.1); the second stage is the wiring of the

network by forming the β-skeleton of the set of nodes. This is covered in section 2.2.2.

The construction method aims to provide parameters that can be changed to study the

properties of the networks’ structure. For example, in chapter 3 it will be used to find correlations

between the traffic-routing properties of the networks and their morphology. Since the possible

variations in morphology are quite numerous due to the combinatorial nature of graphs, the

construction method presented here aims to capture two characteristics of networks that have

been shown to have an impact in terms of transport properties: on one hand, how ordered the

nodes are and, on the other, the redundancy of edges. Thus, a two-parameter family of random

planar graphs is obtained, with the geometric parameters providing a quantification of these

properties.

The first parameter of the model, α, measures the griddedness of the networks or how regular

the positioning of the nodes is. This way, α gives a measure of how far along the spectrum
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Figure 2.1 The four main steps of the network construction method are shown. The randomi-
sation of the lattice and the edge wiring are parametrised by α and β, respectively. This yields a
two-parameter family of random graphs.

between a perfect grid and perfectly random the nodes are positioned. The second parameter is

the construction parameter of the β-skeleton [60], a graph model that can be used to reconstruct

‘shapes’ of sets of points. There is evidence for β-skeletons being useful for re-constructing

networks from their node-sets, as is shown in [8]. The generation process has two steps:

1. Generating the node-set V .

2. Wiring the network (constructing the edge set E ).

The construction of the node-set is covered in section 2.2.1 and the wiring of the nodes in

section 2.2.2. A visual summary of the network construction method is shown in figure 2.1:

the stages where the morphology parameters of the αβ-networks are introduced are explicitly

identified.

2.2.1 Scrambling the grid

The position of the network nodes on the plane, or more specifically in the unit square, are

determined by starting with a primitive square lattice, which is then perturbed according to the

procedure described as follows.

The parameter that captures how lattice-like the nodes are arranged, α, will be referred to

occasionally as the griddedness of the network. The griddedness is defined in the unit interval

(α ∈ [0,1]) such that the distribution of nodes changes from a regular square grid (for α= 0) to a

uniformly random distribution of points, when α= 1. In order to determine the positions of the

nodes, we start with a primitive regular square lattice with N points arranged in n rows and n

columns (i.e., a n×n grid). The lattice is centred inside the unit square [0,1]2 (as shown in figure

2.2). The gap, or shortest distance, between the exterior points of the grid and the boundary

of [0,1]2 is 1/2n and the spacing between the points, or lattice constant, is 1/n. We associate

a node with each lattice point to obtain the randomised position of the actual nodes. For each
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K1 K2

K3K4

K ′
1 K ′

2

K ′
3K ′

4

Pi j

Figure 2.2 Primitive lattice for node-set construction (for this example n = 8). The lattice
constant is determined by the n as well as the gap between the exterior nodes and the unit
square’s boundary. The construction of the re-sampling boxes is shown, as is the separation
between nodes and the gap between the exterior nodes and the boundaries. The purple square
shows the cell associated to a particular node. Its size is determined by the node density.

point P in the lattice we define a re-sampling box from which the actual position of the node will

be drawn. The size of the re-sampling box is determined by α which we now use to define its

corners K ′
1, K ′

2, K ′
3, K ′

4. Each K ′
i for i = 1, . . . ,4, is defined as the point on the line segment PK i

that divides it into proportions with ratio α in the form

(2.3) α= PK ′
i

PK i
.

The distance of corner K ′
i from the lattice point P is a proportion α of the distance to K i, the

corresponding corner of [0,1]2. So as α increases, K ′
i slides along the line segment PK i between

the point P itself (α= 0) to the corner of the unit square K i. Figure 2.2 illustrates both the lattice

itself and the construction of the re-sampling box.

The re-sampling boxes are square: the two corners of a side of the re-sampling box (say, the

top) are displaced by the same amount (upwards) towards the unit square boundary. This can

be verified by calculating the length of one of the edges. Due to the construction technique, the

re-sampling boxes are not centred around their corresponding lattice points except for α = 0.
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Rather, with increasing α, the re-sampling boxes are displaced towards the centre of [0,1]2. Using

the sub-index notation pi j for the point on the primitive lattice in the i-th row and j-th column,

(2.4) pi j =


1

2n
+ j−1

n

1
2n

+ i−1
n

 ;

more compactly,

pi j · ê1 = 2 j+1
2n

,

pi j · ê2 = 2i+1
2n

.

Each corner Kr of the re-sampling boxes is given by

pi j −Kr =pi j +α(Kr −pi j).

The position of the left boundary of the j-th box in a row is given by

l j = 1
n

(1−α)
(

j− 1
2

)
.

Similarly, the position of the right boundary is

r j =α+ 1
n

(1−α)
(

j+ 1
2

)
.

As α increases the trajectory followed by the centre of the box traces the line segment between

pi j and (1/2, 1/2), the centre of [0,1]2 . For the particular case when n is odd, the sampling box

corresponding to the lattice point at (1/2, 1/2) remains centred. This ‘bunching up’ of the boxes

towards the centre as α grows results in higher densities of points where the re-sampling boxes

overlap.

Similarly, as α increases and the re-sampling boxes cover a larger area of [0,1]2, the nodes

diffuse out to the edges of the unit square. The distribution achieves uniformity when all the

re-sampling boxes coincide with the unit square at α= 1; the nodes also become identically and

independently distributed. The separation between adjacent sampling boxes is the same for

all consecutive interior pairs of boxes, either row-wise or column-wise. Take the horizontal gap

between consecutive boxes in a row, S j and S j+1, the distance between the right boundary of box

S j and the left boundary of box S j+1, is independent of the index:

(2.5) l j+1 − r j = 1
n

(1−α)−α.

In particular, the shrinking gap between the right boundary ∂Si j of box Si j and incoming left

boundary ∂Si( j+1) of box Si( j+1) vanishes at

(2.6) α=αcrit =
1

n+1
.
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K1 K2

K3K4

(a)
K1 K2

K3K4

(b)
K1 K2

K3K4

(c)

Figure 2.3 As α increases, α→ 1, the re-sampling boxes expand and slide towards the centre of
the unit square, [0, 1]2. The panels show three of the re-sampling boxes: the bottom left-most box
and its neighbouring (column- and row-wise) boxes for three different values of α. (a) α= 1

2αcrit, for
α≤αcrit the boxes are disjoint. (b) At α=αcrit (for n = 3, we haveαcrit = 1

4 ). (c) For α≥αcrit (here
α= 2crit) there are multiple overlaps, including with boxes corresponding to further neighbours.

The right hand side of equation 2.5 does not depend on the labelling of the boxes, therefore all the

boxes begin overlapping at αcrit. Figure 2.3 shows how the re-sampling boxes grow as α increases.

Initially for small α the boxes are disjoint; they keep growing until at αcrit all boxes overlap with

their neighbours. We can also see the way the boxes are pushed towards the centre as α increases.

The centre of each box is also displaced from its corresponding lattice point towards the centre of

the square.

When α=αcrit, the re-sampling boxes tile the central region of the square. There is still a gap

between the outermost boundary of
⋃

i Si, and the boundary of the unit square; there is always a

gap for α≤ 1.

However, despite the detailed discussion of α→ 1, the main empirical regime of interest for α

is before the re-sampling boxes begin to overlap. When this happens, the lattice ordering of the

nodes begins to completely break down and nodes can land arbitrarily close together. To make

this more explicit, and for notational convenience we define the normalised griddedness, α̂, for

sets of nodes (with the same number of nodes N) by

(2.7) α̂= α

αcrit
.

2.2.2 Skeletonising the points

In order to wire together the nodes from the scrambled lattice, the β-skeleton of the node-set is

constructed. Introduced by Kirkpatrick and Radke [60], β-skeletons provide a way to determine

the ‘shape’ of a set of points. They are a type of proximity graph model that, due to its generality

and straight-forward geometric construction, has found widespread application, from stochastic

and computational geometry, to analysing the distribution of mass in the universe [83]. Jaromczyk

and Toussaint review different types of proximity graphs, and their properties and algorithms for

constructing them in [84]. The β-skeleton is a type of proximity graph called an empty region
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p q
β= 1

r = |q−p|
2

p q
β= 1.5

r = 3|q−p|
4

p q
β= 2

r = |q−p|

Figure 2.4 The construction of the exclusion (or template) region for the lune-based β-skeleton
as the intersection of two disks with radius r = β|q−p|

2 . When (a) β= 1, the skeleton recovers the
Gabriel graph. In (b) the lune for an intermediate value β = 1.5 is shown. For β = 2.0 (b), the
skeleton coincides with the relative neighbourhood graph. Note that the scale is different for each
of the diagrams, which highlights how much more elongated the lune is at (c), that even when
scaled down it is still taller than in (b).

graph [85]. In empty region graphs an exclusion region is defined for every pair of nodes p, q ∈ V .

Two points are deemed to be neighbours if the exclusion region is empty of any other nodes, that

is if V \{p, q}
⋂

R =;. Neighbouring points are then connected with an edge.

The type of β-skeleton we use is the the lune-based β-skeleton, named after the lens-shaped

region, the lune, that plays the role of the exclusion region. For every pair of points p,q ∈V , the

lune is the intersection of two disks of radius r =β|q−p|/2. Each disk is associated to one of the

points p or q which it contains in its interior, with the other point lying on its boundary. The

centres of the disks lie on the line defined by p and q. Figure 2.4(a) illustrates the construction of

a lune corresponding to a pair of points for β= 1, 1.5, and 2.

Intuitively, the β-skeleton is a generalisation of a Delaunay triangulation, or more accurately

the Delaunay triangulation can be seen as the limit of the β-skeleton as β→ 0. In the limit, the

exclusion region gets ‘pushed out’ from between pairs of points to triplets of points.

Figure 2.5 shows several β-skeletons constructed from the same set of nodes but with different

values of β. From the figure, it can be seen that this definition of the exclusion region is only valid

for β≥ 1. When β= 1, the β-skeleton and the Gabriel graph of V coincide. The nodes straddle

opposite sides of a diameter of each of the disks, meaning further displacement along the axis

defined by them would make the nodes not contained in their corresponding disks.

Note that there are alternative definitions for the β-skeleton [84,86], including for β< 1, as

well as the circle-based skeleton. We will, however, restrict our discussions to the lune-based

skeletons. For β> 2, the resulting skeleton can be disconnected, therefore we restrict the range by

considering only β< 2. Note that for β< 1, the lune-based skeletons have to be defined differently

(in which case they coincide with circle-based β-skeletons) so we shall set β = 1 as the lower

bound for our constructions. Examples of the networks produced, with the model are shown in

figure 2.6.

In term of road networks, β-skeletons can be useful for reconstructing street networks of
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(a) β= 1.0 (b) β= 1.25 (c) β= 1.75 (d) β= 2.0

Figure 2.5 The β-skeleton for the same uniformly distributed node-set of 100 nodes (α= 1): (a)
β= 1; (b) β= 1.25; (c) β= 1.75; and (d) β= 2. The β-skeleton coincides with the Gabriel graph at
β= 1 and the Relative Neighbourhood graph (RNG) at β= 2. Observe the monotonicity (equation
2.8) of the β-skeleton: for β1 < β2 then Gβ2 ⊆Gβ1 , so that edges are successively removed (and
never added) as we move to the right across the figure panels.

real cities. Osaragi and Hiraga in [8] show that in some cases, the topology of a road network

can be reconstructed with high accuracy by constructing the β-skeleton, taking the actual street

intersections as the node-set. The authors show that agreement between the reconstructed

skeleton and the original network can be as high as ∼ 80% for sections of the Tokyo road network.

Disagreement between the original network and the reconstructed one tends to happen where

there are prominent geographical features, such as rivers or abrupt changes in topography. In

the case of such obstructions, the β-skeleton over-connects the node-set, instead there should be

gaps due to the limited connectivity.

In fact, Osaragi and Hiraga [8] show that a range of cities have good agreement with β-

skeletons for 1 ≤ β ≤ 2. They show that for 1.15 ≤ β ≤ 1.45, the agreement rate between the

original network and the reconstruction is maximised. In a related study, Maniadakis and

Varoutas [87] examine the similarity of a much richer set of real-world networks and compare

them to β-skeletons. In particular, they look at the same networks as [88–91], as well as 100

samples chosen from Greek cities. Among the features they compute are network length, average

node degree, node density, and the number of edges. In concord with Osaragi and Hiraga, they

find that for 1≤β≤ 2, the error between the properties of the β-skeletons and the city networks

can be as low as 10%, they find the best agreement for β ∈ [1.2,1.4].

Based on the reasoning above, we shall only consider β in the interval [1,2]. This range

encompasses the region in which β-skeletons are known to represent some road networks

morphology well. In addition, the end-points of the interval correspond to values of β for which

the β-skeletons coincide with well-known graph models: the Gabriel graph (GG) (when β= 1),

and the relative neighbourhood graph (RNG) (β = 2). For a given node-set V , the edges of it’s

corresponding β-skeletons are ‘monotonic’ with respect to β, that is, given β1 > β2, Gβ2 , is a
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Figure 2.6 Examples of network structures for different values of α̂ and β. Networks are
sampled from ensembles based on the 15×15 grid (N = 225).
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2.2. Assembling Random Networks

Figure 2.7 The Tokyo (a) road network sections used in [8] by Osaragi and Hiraga for recon-
struction by β-skeletons. Reproduced from Osaragi and Hiraga, 2014 [8].

subgraph of Gβ1 . Thus for β ∈ (1,2), the following nested structure of the skeletons holds,

(2.8) GG(V )⊆Gβ(V )⊆RNG(V ).

In order to represent road networks, the β-skeletons of the node-sets are transformed into

directed networks by replacing each of the skeleton’s edges with two directed edges with opposite

orientations. Cities, however, often have one-way streets, which would mean that not all edges

would appear with their corresponding partner in the opposite direction. To simplify matters, we

will model all streets as two-way.

2.2.3 Boundary conditions and scaling

The synthetic networks that we construct will be used to model patches of a homogeneous road

network of a specific morphological type. In order to represent a patch embedded in the network,

periodic boundary conditions are imposed on the unit square where the nodes are defined by

associating parallel sides with each other, essentially removing any ‘hard’ boundary to the region

(i.e., [0,1]2) in which the network is defined in. The motivation for using periodic boundaries

is two-fold: firstly it reduces hard-boundary effects (for example, macroscopically, flow cannot

cross a hard boundary but rather must be tangential to it), as will be examined in more detail in

section 2.3. Secondly, when we use the networks for traffic experiments, we may load them quite

evenly with very simple origin-destination demand structures. From the point of view of a single

node, the network is more isotropic, as travel demand from any other node can reach it without a

drastic change of travel direction.

To achieve periodic boundary conditions, copies of the node-set are tiled around the unit

square, and the β-skeleton for the super-set of nodes is constructed. Image nodes from across the

boundaries are associated with their counterpart node in E , the original node-set. The length of

the cross-boundary edges is then modelled as the Euclidean distance between the image node

and the real node. That is, for p ∈ [0,1]2 points shifted an integer number of times laterally or
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(a) Tiling for periodicity
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(b) Embedding in torus T2

Figure 2.8 Periodic boundary conditions induce an embedding in a torus T2. (a) Images of the
original node-set are tiles around a 9 node network (i.e., a Moor neighbourhood). Connecting nodes
across boundaries imposes toroidal periodic boundary conditions. Edges that cross boundaries
are coloured orange. (b) The torus showing the boundaries of the unit square as well as where
the origin and the centre of the square are located in the embedding.

vertically

p=p+z,

are equivalent for any z ∈Z2. The tiling and edge association is depicted in figure 2.8.

The construction of the β-skeleton requires that all triplets of nodes are compared; each node

is checked for containment in the exclusion region corresponding to all other node pairs. This

means that the complexity of the (brute-force) construction of the skeleton is ∼O(n3). However

since not all the nodes of the image tiles are effectively reachable, the number of operations can

be reduced by considering only the nodes a few lattice-lengths from the boundaries.

Introducing periodic boundary conditions changes the topology of the space in which the

network is embedded. Effectively the network has been mapped onto the unit torus T2. The

main consequence of this is to effectively reduce the scale of the networks, since nodes that

are initially far away (on opposite sides of the square) become close by the corresponding unit

square boundaries being associated. Therefore embedding the graphs in the torus (T2) reduces

the diameter of the graph. The farthest that two points can get from each other is by being at a

corner and in the centre: this means that the diameter scales with the diagonal of the square, in

the form D(G)∼ 1/
p

2.

In the following section we look at how increasing the order of the networks reduces the

boundary effects, by examining the impact of network size on some centrality measures.
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2.3 Properties of the αβ-networks

In this section we explore how the network structure of the αβ-network ensembles change as

the morphological parameters α and β change. We vary α̂= α/αcrit over the range [0,2] and β

between 1.2 and 1.8, and generate 100 random instances. We then consider how various ensemble

statistics depend on α̂ and β. The α̂ range is chosen to capture the transition from an ordered

lattice to a more uniform distribution, centred around αcrit. The range of β was chosen based on

the observations of Osaragi and Hiraga [8], that real-world networks can be fit well with β= 1.4,

as well as from visual inspection of the structure of the αβ-networks.

As β increases, triangles become less abundant. This is a consequence of the shape of the

lunes: lunes of different β are not similar (in the geometric sense). The apices of lunes with

larger β extend farther laterally in relation to the length of the axis joining the node pair.

Therefore, a larger β means that nodes that are farther away (in the lateral directions) have

a higher probability of being clipped by the lune and thus breaking potential triangles. This

effect, of scaling the exclusion region via β, has comparable effects on the αβ-networks to

existing constructive methods in the literature for generating complex planar networks that use

resource minimisation procedures: in particular, models which limit growth to minimise resource

consumption [32].

However, in our case this clipping is achieved in a much simpler manner: by the elongated

shape of the lunes that extend transversely to the axis joining a given pair of nodes. The presence

of additional nodes (which for larger lunes can be farther away in a perpendicular direction) in

the lunes, prevents nodes that might otherwise be close from connecting: thus, preventing the

formation of triangles (which in the resource-optimising models are a redundant use of resources).

To visualise the effect of morphological parameters on the number of edges, we plot histograms

of the distribution of number of edges for 20 ensembles (sampled from 100 networks with N = 225)

in figure 2.9. The most notable effect is the global reduction in edges as the griddedness of the

networks is lost. The variable β simply spreads the distributions of the ensembles. From figure

2.9, we can see how selecting β= 1.2, 1.4, 1.6 and 1.8, in turn ensures that the distributions of

the number of edges have minimal overlaps (so that they form a good range for experiments).

The relationship between the number of nodes and the total network length is shown in figure

2.10. We can see that the total network length scales LG according to LG ∼ N1/2. This is coincides

with Barthélemy’s [73] findings for real-world road networks.

We now turn to the morphological characteristics of our network model. First we focus on

the geometrical properties of the network and then we examine various centrality measures and

network statistics.
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Figure 2.9 Histograms of the number of edges for 20 ensembles of networks for 225 nodes.
The morphological parameters are α̂= 0.5, 0.75, 1, 1.25, and 1.75 (with αcrit = 0.0625) and β=
1.2, 1.4, 1.6, and 1.8.
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Figure 2.10 Mean total network length, LG, for eight αβ-network ensembles as a function of
the number of nodes. Here β= 1.2. Note LG scales like N1/2.

Geometrical properties

The distribution of edge lengths is governed by two factors: the distribution of the nodes, and

the skeleton parameter β. The distribution of nodes determines the inter-nodal distances. It

also influences how likely it is for there to be nodes in the exclusion regions of the β-skeleton.

For example, in regions with high node density, long edges will be less likely to connect due

to a higher probability of finding intervening nodes in the exclusion regions (the lunes). The

parameter β determines the scale of the exclusion lunes relative to the distance between node

pairs, with the area scaling as ∼β2. In figure 2.11, the distributions of edge-lengths are shown

for 20 ensembles (based on a 15×15 grid, i.e., N = 225). These distributions show the effects of

both increasing α̂ as well as changing β. The most notable effect is the broadening (as well as

flattening) of the distributions as α̂ increases. The effects of the overlapping boxes are seen in the

vanishing of the short-edge tail as α approaches αcrit (i.e., when α̂= 1). This is a consequence of

how, as the re-sampling boxes expand, the total area of multiple-box overlaps grows as well. As

regions with increasing numbers of overlapping boxes appear, the number of nodes per cluster

can increase as well. Thus, there are more nodes that can land in the small lunes, which reduces

the relative frequency of the short edges.

The key observation drawn from the edge-length distributions is that griddedness has a

significantly larger effect on the distribution of edge lengths of αβ-network ensembles than the β.

Higher β values do slightly lower the mean edge-length of an ensemble, as is expected when the

β-skeleton lunes are larger, and can thus capture more distant nodes, to prevent long edges from
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wiring. However this effect is overshadowed by the increasing size of the overlapping boxes, as

can be seen by the leftward shift in the distributions of figure 2.11.

Figure 2.12 shows the ensemble mean of edge lengths for 36 ensembles with different values

of α̂ and β (N = 225). It can be seen that for small α̂, β first has a lengthening effect on the roads.

This can be understood by examining figure 2.6, where increasing β yields a larger proportion of

roads diagonal to the original lattice structure. From the contour plot for the standard deviation

of the mean road length (figure 2.12(b)), we once again observe the effect captured in figure 2.11:

α̂ is more important in modifying the distribution of edge lengths, clearly shown by the increase

in the standard deviation as α̂ increases.

Degree distribution

The degree distribution of bounded networks is heavily restricted, mainly because the networks

obtained from beta skeletons are planar [84]. This means that the mean degree of the nodes is

bounded, since for planar graphs we have that the mean degree satisfies

(2.9) 〈k〉 ≤ 6.

For toroidal graphs — when periodicity at the boundaries of [0,1]2 — there is an equivalent

bound [92],

(2.10)
E
V

≤ 3,

which also gives 〈k〉 ≤ 6 since

(2.11) 〈k〉 = 2E
V

.

In contrast, for commonly used types of network models, such as Erdős-Renyi networks,

Barabasi-Albert, and other non-spatial networks [68, 71, 78], the degree distribution is not as

useful or as informative of network structure. Therefore, to characterise the effect of varying the

construction parameters α and β, other network statistics are required: for example centrality

measures or clusterng coefficients.

Centrality measures and the clustering coefficients

The definition of a vast battery of network statistics and centrality measures, that capture

different aspects of network structure, has been among the important contributions of network

science. For example, centrality measures try to capture the importance of the edges and nodes in

a graph according to their relationship with the other nodes and edges. Depending on what is of

interest, some centrality measures might be more useful than others. Masucci et al. [54], propose

that when families of networks are studied, taking into account several centrality measures

simultaneously can yield insights into differences in structure in what the authors call multiple
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Figure 2.11 Histograms of the edge lengths for 20 ensembles of networks for 225 nodes.
The morphological parameters of these ensembles are α̂ = 0.5, 0.75, 1, 1.25, and 1.75 (with
αcrit = 0.0625) and β= 1.2, 1.4, 1.6, and 1.8. From the overlap of the distributions, it can be seen
that the normalised griddedness α̂ is much more important than β in determining edge length
statistics.
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Figure 2.12 (a) Ensemble mean edge lengths and (b) the standard deviation of edge lengths
(b) is shown for ensembles with different values of α and β. The networks used for these figures
have N = 225.

centrality analysis or MCA. Therefore, we examine several measures related to the networks

properties that are most affected by α and β to select the most appropriate ones for describing

the changing structure of the αβ-networks.

Crucitti et al. [70] identify betweenness centrality, closeness centrality and information cen-

trality amongst useful measures in studying city networks. For example, they find that the

information centrality distribution of city networks can be used to distinguish between planned

and self-organised cities. Masucci et al. [54] use the closeness centrality in combination with the

clustering coefficients to quantify higher order correlations, that is, correlations between nodes

that are more than one hop away, for the London road network.

The betweenness centrality of a node is a measure that captures the proportion of shortest

paths in a network that pass through that node, written in the form

(2.12) Cb(ν)= ∑
i 6= j

σ(i, j|ν)
σ(i, j)

,

where σ(i, j|ν) is the number of shortest paths between nodes i and j that contain node ν. Here,

σ(i, j) is the total number of shortest paths between i and j. In a similar way, the edge betweenness

centrality of edge e is given by

(2.13) Cb(e)= ∑
i 6= j

σ(i, j|e)
σ(i, j)

,

where σ(i, j|e) is the number of paths that contain edge e.

Closeness centrality is a measure of how close a node is to the rest of the network,

Cc(i)= N −1∑
j 6=i d( j, i)

,
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where d( j, i) is the shortest-path distance between nodes j and i. Closeness centrality is of special

interest since it is a (transformed) version of the index of integration [93] concept from the space

syntax discipline. This implies that closeness centrality can potentially serve as a methodological

tool to bridge the conceptual gaps between the transport, and urban and architectural fields,

although we will not pursue this line of enquiry further.

Information centrality ( [94] includes a discussion in relation to other centrality measures)

captures the decrease in network efficiency if the edges incident at node ν are removed. It can be

defined as follows,

(2.14) Ci(ν)= ∆E
E

= E(G)−E(G′)
E(G)

.

Here E(G) is the network efficiency of graph G, and G′ is the subgraph obtained by removing

node ν along with the edges incident to it. The network efficiency itself is given by

(2.15) E(G)= 1
n(n−1)

∑
i 6= j

1
d(i, j)

,

where d(i, j) is the length of the shortest path between nodes i and j. The efficiency is the average

of the reciprocal shortest path, with high efficiencies obtained for short path lengths.

The information centrality of a node captures the increase of the length of shortest paths by

having to avoid using that node. Nodes with high betweenness centrality have high information

centrality as well. However, the converse is not necessarily true, since the efficiency also depends

on the lengths of the paths. Thus if the removal of a node causes the next best paths to be much

larger for G′ than for G, it can also have a large information centrality.

As mentioned above, a limiting case of the β-skeleton is a Delaunay triangulation (as β→ 0),

and increasing β has the effect of removing edges in general from a given network. This means

that β also influences the amount of triangles in a network. The clustering coefficient of a node

measures how many triangles the node belongs to, in proportion to the maximum number of

triangles it could form with its neighbours, in the form [69]

(2.16) CC(ν)= 2τν
kν(kν−1)

.

Here, τν is the number of subgraphs of G with three edges and three nodes (i.e., triangles), where

one of the nodes of the subgraph is ν and the other two are its neighbours. The denominator counts

the maximum number of triangles that these nodes can form. To characterise the prevalence of

triangles across a whole network, we will use the network average clustering coefficient,

(2.17) 〈CC〉N = 1
n

∑
ν∈V

CC(ν).

In figure 2.13, heat maps of the ensemble means of edge and node betweenness, and closeness

as well as information centralities are shown for ensembles of αβ-networks with N = 100.
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(a) Mean node betweenness
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(d) Mean information betweenness

Figure 2.13 Mean topological statistics are shown for ensembles with N = 225 and different
values of α̂ (from 0 to 2 in steps of size 0.25) and β (1.2, 1.4, 1.6, and 1.8). That is the contour
interpolation is done for 36 ensemble means, where 100 networks per ensemble were sampled.
(a) betweenness, (b) edge betweenness, (c) closeness, and (d) the information betweenness.

In terms of the dependency on α̂, it is clear that the sharp decrease in the node distance

around α̂= 0.5 (see figure 2.12(a) above) also affects these centrality measures across all values

of β. The edge and node betweenness increases with α̂ for α̂> 0.5, as can be seen in the figure by

the transition to lighter colours. The closeness and the information betweenness experience the

opposite effect as the networks achieve more complex structures, as can be seen in the exemplar

networks of figure 2.6 above. For example, a feature that directly affects the closeness and the

information betweenness is the higher abundance of nodes of degree one for larger α̂ and β.

For networks with periodic boundary conditions, the distribution of node degree is fairly

homogeneous. Since there are no peripheral nodes, there is more uniformity in the adjacency

properties of the nodes. In contrast, for the bounded case, the nodes at the boundaries of the unit

square have less neighbours; they are farther away from the bulk of the network.
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Figure 2.14 The information centrality for ensembles of three different networks sizes are
shown. The different markers represent the type of boundary condition: circles for periodic
(toroidal) boundaries and crosses for bounded networks. As the ensemble size grows it is clear
how the difference between the centrality diminishes for both different periodic conditions as
well as amongst themselves. As the ensembles grow from N = 100 to N = 400, there is a drop of
about an order of magnitude in the spread of information centrality.

Information centrality is sensitive to boundary effects. Thus, we can use the information

centrality to determine appropriate experimental sizes for networks, so that boundary effects are

small. In figure 2.14 we see that as the ensemble size increases, the difference in information

centrality — both in magnitude as well as in relative terms — becomes small quickly. From the

decrease in the order of magnitude in the spread of the information centrality, we can conclude

that ensembles of N = 225 are large enough for boundary effects to have decayed to a large extent.

In figure 2.15, we display the clustering coefficient (CC) as a function of α̂ and β. For α̂= 0

the network is a square grid and therefore there are no triangles. This means that the clustering

coefficient is also zero. As α̂ increases to 0.75 there is a nonlinear increase in the CC which

peaks around 0.75 ≤ α̂ ≤ 1.0. Ensembles with low β achieve higher CC values, and then as α̂

keeps increasing, the CC appears to decay towards a constant value. For lower β there are more

triangles as the β-skeleton Gβ(V ) becomes a larger subgraph of the Delaunay triangulation since,

(2.18) DT(V )⊆GG(V )⊆Gβ(V ).

We can see from figure 2.15(b), that the CC variation with respect to β, although always

quadratic, depends heavily on α̂. The (decreasing) quadratic dependence on β can be understood

with simple scaling arguments: β parametrises a linear variable of the lune of the β-skeleton

(which grows with β), therefore the probability of it being empty (approximating the density of

nodes as uniform) varies like −β2.

In figure 2.16 we visualise the landscape of the clustering coefficient (CC) above the α̂β-plane.

The CC goes through a transition as the boxes overlap. Compared to the other network metrics

above, the CC clearly captures the overlapping of the re-sampling boxes in terms of network

properties: there is a clear transition point (captured by the peak) at α̂= 1. The CC, therefore,
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(a) (b)

Figure 2.15 The clustering coefficient as a function of (a) α̂ and (b) β. Network size is N = 400
with periodic boundary conditions, 100 networks were sampled per ensemble. Observe quadratic
curves of fit for the ensembles (grouped and coloured according α̂).

Figure 2.16 Approximation of the mean clustering coefficient surface for network size N = 400
ensemble, calculated by taking ensemble means for 100 network samples per ensemble. Shading
of surface is according to clustering coefficient value.

tracks the break-down of the lattice order structure. Furthermore, it also captures the subsequent

change in node distribution as it approaches uniformity.
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2.4 Point Processes, Intensities, and Entropy

So far we have approached the construction of the node-set as a perturbed lattice, where the

noise is modulated by α. We now re-examine the construction process, comparing it with a spatial

point processes. The comparison will highlight the resulting distributions of the nodes inside the

unit square.

There are two reasons why the comparison with point processes is important in its own

right. Firstly, the use of stochastic processes (such as point processes and line processes [95])

is widespread in the field of wireless communications, so it is useful to have comparisons with

standard models from similar application fields. Secondly, stochastic point processes are used as

flexible ways of generating point distributions, which has made them important in theoretical

studies of spatially embedded graphs (see for example, Penrose’s work on random geometric

graphs [96]).

We begin by approximating our re-sampling model with a Poisson point process. The construc-

tion of the equivalent point-process model will not be stationary (except perhaps in the large n

limit, which also implies an area scaling).

The expected number of points in a region A ⊆ [0,1]2 can be written as the sum of the indicator

function for each of the re-sampling boxes, in the form

(2.19) E(|V ∩ A|)= 1
α2

∫
A

n∑
k=1

1Sk dxdy.

Here E(|V ∩ A|) is the expected number of nodes found in region A, for an instance of an αβ-

network. Essentially, this is the expected number of boxes that each point in A belongs to (given

by the sum of indicator function 1Sk ), multiplied by the probability density of each box (which is a

function of α, since it is uniform over each Sk).

The indicator function for each Sk is a square step function in 2D, which can be expressed in

terms of of the Heaviside function Θ, in the form

(2.20) 1Sk (x)= [Θ(x− lk)−Θ(x− rk)][Θ(y−bk)−Θ(y− tk)].

here the Heaviside function is given by

Θ(x)=
{

0, if x < 0,

1, otherwise.

Figure 2.17 shows how this changes as α grows. Substituting expression 2.20 in the sum of

equation 2.19 yields

(2.21) E(|V ∩ A|)= 1
α2

∫
A

n∑
k=1

[Θ(x− lk)−Θ(x− rk)][Θ(y−bk)−Θ(y− tk)]dxdy.

The expected value of the number of points can be used as an intensity measure of the Poisson

point process, which means that equation 2.21 can be used as an intensity to approximate the
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Figure 2.17 The sum of densities
∑

k 1Sk (x) function of points for different values of α. In (b),
when α= αcrit the re-sampling boxes begin to overlap and while the distribution looks it, it is
not a uniform distribution over the central square since each node has to be contained inside
its α-box. The probability density functions are reminiscent of the diffraction pattern due to a
square grating.

point sets of our model with an inhomogeneous Poisson process. While this can be useful, it

means that only the average number of nodes, µ(A)= E(|A∩V |) ,on a network can be specified,

In effect, equation 2.21 integrates to E(|A∩V |)= N, which is the number of nodes specified

by the original lattice. In summary, a set of points obtained from an inhomogeneous Poisson

process will have the same average number of nodes as the αβ-networks. The difference between

the two approaches is that there are no constraints on how many points can belong to each box,

allowing for greater clustering of the points, which in turn is important for the construction of

the β-skeletons.

In order to recover an equivalent formulation to our method for constructing the αβ-networks,

we have to condition the process on there being a single point for each re-sampling box, which

would yield a binomial point process.
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2.4. Point Processes, Intensities, and Entropy

We can take equation 2.21 as a probability density function,

(2.22) ρ(x, y)= 1
Nα2

N∑
k=1

[Θ(x− lk)−Θ(x− rk)][Θ(y−bk)−Θ(y− tk)],

that approximates the distribution of nodes. For a given node-set V , we can calculate the entropy

of the spatial distribution of the nodes as

(2.23) H(V )=− ∑
ν∈V

pν log pν,

where the probabilities pν are given by pν = ρ(νx,νy). This way, for α = 0, when there are no

overlaps of the re-sampling boxes, all the pν’s are the same, that is, pν = 1/N. This leads to an

entropy of

(2.24) H
∣∣
α=0 = log N.

At the other extreme of griddedness α= 1, we also have the pν = 1/N; we recover the uniform

density of nodes. The entropy of the set of nodes also yields H
∣∣
α=1 = log N.

The entropy of the node distributions measures how ‘surprised’ we should be of a particular

distribution. In the case of the perfect grid, the positions of the nodes are prescribed and therefore

there is only one configuration, leading to a baseline value of entropy for when none of the

re-sampling boxes overlap. For the uniform distribution of nodes, any position is as likely as any

other, so no distribution is any more surprising than any other. For uniform probabilities then,

the entropy takes the minimum value of log N.

For intermediate values of α, because of the overlaps of the re-sampling boxes (the Heaviside

functions), the entropy of the node-sets can take different values than H = logn. For example,

if we do not get many points in the overlaps, it means that there are more terms with low pν,

which increases the entropy of the distribution. Occurrences of events with low pν, which are

‘surprising’, increase the entropy. These behaviours can be seen in figure 2.18.
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Figure 2.18 Mean entropy estimate H̄ = log N+〈H(N )〉e for increasing α. The different curves
are approximations of the ensemble entropy for different numbers of sampled node-sets; the
purple (smoothest) curve is for 500 samples. The order transitions as the re-sampling boxes
overlap with each other can be clearly seen starting with the first at αcrit, the subsequent humps
are due to overlaps at higher order (e.g., when boxes overlap with second neighbours).

2.5 Discussion

In this chapter we have discussed the construction of a random planar network model that is

used for generating experimental ensembles of networks throughout the rest of this thesis. We

have discussed where the model is situated in terms of existing models in the literature and what

has motivated its design choices.

The network measure, that will be used as a descriptive variable for the structure of the

networks, is the clustering coefficient, as we have shown it to capture the break-down of the lattice

order and the subsequent transition as the node distribution approaches uniformity. We have

also identified, that in order to compare networks of different sizes, the normalised griddedness

α̂=α/αcrit is most appropriate.

In the literature there is a clear, and sometimes explicit, call for more network models that

can serve as “toy models of road networks” (Aldous and Shun, [97]). The evidence is also clear

that the effects of network structure on transport performance need to be better understood.

Rather than single toy network models, what is needed are a variety of models that each account

for specific important properties of networks. The model presented here is designed to investigate

the role of spatial order and edge redundancy in transportation networks, as well as to answer
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2.5. Discussion

the call to develop detailed, purposeful ‘toy’ models. In the following chapters layers, will be added

to the model to allow for several computational experiments revolving around traffic assignment.

In summary, the key contributions of this chapter can be captured in the following statements:

C2.1 The development of a network model, in the way set out by O’Hare [44], for the experi-

mental treatment of traffic assignment in complex networks, with a focus on the effects of

morphology on transportation.

C2.2 The network model recovers broad statistical similarities with mid-size networks used

commonly in the literature, as well as picking up on qualitative similarities (for example

the relative proportions of quadrangles to triangles).

C2.3 We have identified the clustering coefficient (CC) as one of the main attributes of morphology

for spatially embedded ‘planar’ networks, with the model capturing a transition in the CC

due to a smooth transition to stochasticity.
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TRAFFIC ASSIGNMENT ON NETWORK ENSEMBLES

This chapter consists of two main parts. The first part — section 3.1 up to section 3.4 — consists of

preparing the αβ-networks that we developed in chapter 2 for solving the static traffic assignment

problem (STAP) on them. We discuss parameters that define the cost functions of the network

edges, the choice of origin-destination (OD) pairs, and the demand range for numerical experi-

ments. We also explain how to associate units of length (i.e., the scale) and traffic volumes to the

αβ-networks, to enable quantitative comparisons with other (even real-world) network models.

The overall aim is to prepare the αβ-networks for use in as broad a range of traffic applications as

possible (exemplified in chapters 4 and 5). The second part of this chapter (section 3.5) presents a

numerical investigation of the Wardropian equilibria that emerge on the αβ-networks through

the solution of the STAP on them. This investigation focuses on the price of anarchy (PoA) as a

function of the travel demand on the networks. The aim is to determine the sensitivity of the PoA

to classes of network structure by carrying out numerical experiments on ensembles of a selected

range of α̂=α/αcrit and β.

We begin by introducing the context of the STAP in section 3.1, touching on concepts of

Wardropian equilibrium, commodity flows, congestion games, and optimisation. Section 3.2 gives

the STAP’s mathematical formulation, following Patriksson [59].

Section 3.3 details the link-cost functions for the αβ-networks and discusses units, dimen-

sions and scale of the networks. The allocation of network supply that we develop takes into

account the local network structure at intersections. By considering a finite amount of road

resource, it guarantees that each road’s sensitivity to congestion depends on the capacity of the

intersection it feeds. This ‘resource allocation’ heuristic also guarantees that αβ-networks within

an ensemble (which may have different numbers of edges), as well as across different ensembles,

are comparable in terms of their infrastructure supply.

41



Chapter 3. Traffic Assignment on Network Ensembles

Section 3.4 discusses the appropriate choice of origin-destination (OD) pairs. We show how

the OD pairs are selected so that the flows ‘explore’ the network fully. Since in the experiments

that follow we will make heavy use of the PoA as a signal for studying morphological effects, it is

important for the traffic flows to load the networks as evenly as possible.

Section 3.5 presents the results of the computational experiments prepared in the previous

sections. We first compare the effects of the resource allocation heuristic of section 3.3 with the

existing methodology from the literature for assigning cost-function parameters. We also touch

upon the distributions of vehicles on the roads and the delays due to congestion as travel demand

on the networks increases. Finally, in section 3.6 the contributions stemming from this chapter

are discussed.

3.1 Background

The STAP provides a simple way of approaching traffic routing on networks. Due to its general

formulation, it applies also to commodity flow settings [59]. It is a well-understood model that is

easy to implement and has high explicative power. In the context of road traffic, it is ultimately

based on intuitive behavioural and optimisation principles (see Wardrop’s criteria p42). In this

regard, it embodies the key ideas of complexity science: simple interactions (of the road users

with each other via the roads they share) give rise to pattern formation, which in this case is

the equilibrium traffic state of the network (to which each user contributes, due to the roads

being sensitive to congestion). In contrast to stochastic user equilibrium approaches (SUE) [98]

(another well-known traffic equilibrium paradigm), the STAP does not need to compute routes

through the network explicitly, but rather can be computed in terms of link flows alone — this is

a significant simplification that makes STAP most suitable for our parsimonious approach.

The STAP models ‘users’ that need to get from their node of origin to their destination, and

that try do so by choosing a minimal-cost route through the road network. Each user’s choice of

route depends on how congested the network is, as this has a direct impact on their travel time.

In its simplest formulations, like the one we use here, the STAP assumes that users have perfect

knowledge of the network’s current traffic state and that the travel costs that users experience

are only affected by the traffic volumes on links that lie on their chosen route. The word static

makes explicit that the STAP takes a steady-state view of journeys being made per-unit time on

the network. This, in turn, makes the traffic flows akin to stationary currents: traffic flows and

costs that we consider are costs and flows per-unit time in a time-invariant world (see [99], for a

detailed discussion).

Perhaps the best way of thinking of equilibrium in transport networks is to appeal to intuition

and common sense. After all, agents that compose real transport networks are human. This is

what Wardrop’s two principles of traffic equilibrium [38] try to capture:

1. All used routes between an origin and a destination cost the same, while all unused routes
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3.1. Background

have equal or greater cost.

2. The average costs for users in the network are minimised.

Each principle (or criterion) yields a different traffic assignment. The first describes user equilib-

rium (UE) where users are selfishly driven to minimise their personal travel times. As such, with

perfect information or after learning the network, all users originating and terminating their

journeys at the same nodes experience the same travel times. The rationale is that if they were

aware of a lower cost route, users would switch to it, thus, equilibrating the costs of the high-cost

and low-cost routes. The second principle describes a system optimal (SO) equilibrium, where

minimal average costs per user also implies minimal total system cost. The difference between

UE and SO assignments is at the core of the concept of PoA as we discuss below, and it will also

be central to our work in chapter 4.

We now define the stylised concept of road network which we use in the remainder of this

thesis. We take road networks to be composed of a graph (chosen from the αβ-network family)

together with a vector of cost functions, having as elements the cost function on each edge of the

network.

Definition 3.1.1 (Road network). A road network, N , is the pair

(3.1) N = (G, c).

The graph G (defined as in 2.1.1 of chapter 2, G(V ,E )) represents the structure. The components of

the cost-function vector c are the travel-cost functions associated to each link.

In general the cost function ci :R|E | →R of each link can depend on the flows on every other

link and is therefore a function of the traffic pattern, or flow vector x ∈R|E |. We can now give a

more explicit statement of the STAP.

Definition 3.1.2 (Static traffic assignment problem: STAP). We are given a road network N ,

a set of origin-destination pairs Ω, and specified travel demands dω for each ω ∈Ω. The STAP

consists of finding a traffic pattern x? that satisfies one of Wardrop’s principles, and meets the trip

demands.

Among the first to interpret the traffic assignment problem in game theoretic terms were

Charnes and Cooper [39], where players are OD pairs (we will revisit similar ideas in chapter 4).

In contrast, Rosenthal [100] considers a finite number of discrete players that are the users of the

network themselves, their strategies being the routes they take. In the limit of an infinite number

of players, congestion games are known to coincide with Wardropian equilibria. Patriksson gives

a comprehensive review of the development of congestion games and traffic assignment in [59],

highlighting parallels between Kirchhoff ’s circuit laws and commodity flows. The correspondence

between congestion and potential games, where a potential function to be minimised captures the

players’ interactions, is dealt with in detail by Rosenthal and by Monderer and Shapley in [101].
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When thinking of users’ transport route choice as a congestion game, the natural interpreta-

tion we adopt is to consider the network users as the players. Each user’s chosen strategy induces

a choice of resources: the streets of the network along their chosen route. In turn, the cost of a

particular strategy depends on the congestion (which is simply the flow volume) on the network,

which in turn is determined by the aggregate strategies of all the players on the network. The

costs incurred by players can be obtained from a single function, the Beckmann functional, which

also makes this formulation of the STAP a potential game.

In summary, the result of the collective interactions of the players have to be specified: this

is done via flow-dependent cost functions associated to travelling down a street (edge). Each

(infinitesimal) player’s cost is affected by the strategy (or route choice) of the others. The cost

(or disutility) to each player is their individual travel time. The way in which the strategies of

the players interact is reflected in the edge costs, due to their sensitivity to congestion. Before

turning to to the choice of cost functions and OD pairs for the αβ-networks, we briefly go over the

basics of the STAP formulation.

3.2 Static Traffic Assignment

The STAP can be expressed as an optimisation problem with linear constraints [53]. A comprehen-

sive treatment of models and methods related to static assignment is presented by Patriksson [59],

of which, we are interested in the most simple way of setting the problem for the αβ-networks.

We now express the solution of the STAP as an optimisation problem.

The SO assignment, which corresponds to Wardrop’s second criterion, is achieved when the

function minimised is the total cost

(3.2) ΦSO(x)=∑
i

ci(xi)xi.

For user equilibrium (UE), in which the users are assumed to minimise their personal travel

costs, the objective function is the Beckmann functional [102]

(3.3) ΦUE(x)=∑
i

∫ xi

0
ci(ξi)dξi.

In the Beckmann functional, integration of the cost functions, up to the level of flow they carry,

accounts for cost incurred by a user that arrives at the link that already carries xi units of flow.

The area under the curve does not take into account the cost imposed on other users already

on the link. This contrasts with the objective function for SO which considers the full cost to all

users.

For affine cost functions ci of the form

(3.4) ci(xi)= ai +bixi,

which we use exclusively in this thesis, the total cost function can be expressed compactly in

terms of the cost-function parameters, ai and bi, by first assembling parameter vectors a and b
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that have for the i-th element the corresponding parameter of the cost function for edge i. We

can then write the total cost function of the system in the form

(3.5) ΦSO(x)=
m∑

i=1
xi ci(xi)= x ·a+x ·Db x,

where Db is the square matrix with diagonal elements matching those of b and all off-diagonal

entries set to zero, in the form

(3.6) Db =


b1 . . . 0
...

. . .
...

0 . . . bm

 .

In the case of UE (when the cost functions are affine), then the Beckmann functional can be

expressed (from equation 3.3) as

(3.7) ΦUE(x)= x ·a+ 1
2

x ·Db x,

which does not incorporate the marginal cost caused to others by choosing a particular path. The

coefficient of 1/2 in the quadratic term reflects the smaller contributions (compared to SO) that

users contribute to the objective function. As introduced above, the cost inflicted by any user on

the others ‘already’ on the same link is not considered (see Roughgarden [43] for a full treatment

of the relationship between UE and SO assignments).

Now that we have defined the objective functions, we consider the constraints. We start by

considering the case for a single OD pair. For the flow variables to be physically meaningful we

require that xi ≥ 0 for all edges (i = 1, . . . , m). The other requirement is that flow is conserved

at intersections. That is, the incoming and outgoing flows at the intersections have to cancel

out, once trips that originate or terminate at the intersection nodes have been accounted for.

The conservation constraints can be written compactly in terms of the incidence matrix S of the

network and a demand vector, d, defined as

(3.8) di =


−d, if node i is the origin,

d, if node i is the destination,

0, otherwise,

,

where d is the magnitude of demand associated to the OD pair. The directed incidence matrix

(also known as the node-link incidence matrix), S, encodes the structure of the road network and

can be defined as

Si j =


−1, if edge j is outgoing at node i,

1, if edge j is incoming at node i,

0, otherwise.

.

Ensuring that the incoming flow at each node equilibrates the outgoing flow can be expressed

as the matrix equation

(3.9) S x=d.
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Figure 3.1 The sum of incoming and outgoing flows to each intersection node equal the total
demand that originates and terminates there. The conservation equation shown for the central
node is assembled with that for other nodes to give equation 3.9.

The left hand side of each row is the difference of incoming and outgoing flows, where Ik is the

set of links incoming to node k and Ok is the set of outgoing links for node k. The right hand side

of equation 3.9, is zero except at the origin and destination, where the sign of the right hand

side ensures that d units of flow either originate or terminate at node k accordingly. Thus, more

explicitly, equation 3.9 is equivalent to the N equations,

(3.10)
∑

j∈Ik

x j −
∑

j∈Ok

x j =


−d, if k is the origin,

d, if k is the destination,

0, otherwise,

for the index k = 1, . . . , N, running over all nodes.

Figure 3.1 depicts the constraints at an exemplar node. We use the convention of demand

originating at the node (dout in the figure) as negative and the terminating demand (din) as

positive to match the definition of S.

We can now specify the STAP (for a single OD) as a quadratic optimisation programme by

replacing the objective function Φ(x) with ΦUE(x) or ΦSO(x), depending on whether we solve for

UE or SO,

Minimise
x

Φ(x)

Subject to S x=d(3.11)

x≥ 0.

The use of affine cost functions that simplifies the STAP into a quadratic optimisation problem.

Added to that, the constraints are captured by a linear matrix equation. Thus, the STAP, as
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expressed by the minimisation problem 3.11, is a quadratic optimisation program with affine

constraints.

For multiple OD pair, more care must be taken. In this case, for each OD pair ω in a given

set Ω of OD pairs, we can consider the total flow on each link to be composed of the flows

corresponding to all OD pairs, that is

(3.12) xi =
∑
ω∈Ω

xiω, ∀ω ∈Ω,

where xiω corresponds to the flow on link i due to OD pair ω. Thus, ensuring flow conservation at

the nodes requires an equation equivalent to equation 3.9 for each OD pair, which results in |Ω|
matrix equations

(3.13) S xω =dω, ∀ω ∈Ω.

Here, xω is the vector of flows on the network associated to OD pair ω, and the demand vectors

dω are defined as in equation 3.8, but now corresponding to each ω. Therefore, for multiple OD

pairs the STAP can be expressed as,

Minimise
x

Φ(x)

Subject to S x=dω, ∀ω ∈Ω(3.14)

xω ≥ 0, ∀ω ∈Ω
x= ∑

ω∈Ω
xω, .

The relationship between the link-flow formulation of the STAP and and a formulation based

on route flows is presented in detail by Patriksson in [59], as well as as an extensive discussion

on algorithms and general methods. As mentioned previously, by using affine cost functions the

STAP becomes a quadratic optimisation problem, for which there are a number of general-purpose

industry-standard numerical solvers (we use Gurobi [103], which for quadratic optimisation

problems uses a barrier algorithm, see for example [104]). In the implementation of multiple ODs

(see chapter 5), we restrict ourselves to having the nodes being at most an origin and destination

to a single flow.

Price of Anarchy

The price of anarchy (discussed extensively in [43]) is a measure for quantifying how far away a

user equilibrium traffic assignment is from system optimal.

Definition 3.2.1 (Price of anarchy). The price of anarchy (PoA) for a given transport network, N ,

under a particular demand d and OD set Ω is the ratio of the total system costs under UE flows
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compared to the optimal cost at SO, and can be expressed in the following ways

PoA=
∑m

i=1 ci(xUE
i )xUE

i∑m
i=1 ci(xSO

i )xSO
i

,

= xUE · ∇ΦSO(xUE)
xSO · ∇ΦSO(xSO)

,

= xUE · c(xUE)
xSO · c(xSO)

.(3.15)

As we discuss below, the PoA is useful to set a scale for the global demand multiplier on a

network for a particular demand pattern. Since PoA is only greater than one when the SO and

the UE (the Nash equilibrium) of the system do not coincide, it can be used to identify the demand

interval in which a network strays from optimal performance.

For a traffic model with no hard capacities on the edges — for example, when affine cost

functions are used — the PoA, when viewed as a function of demand (for a fixed OD pattern)

can be broadly characterised by curves that fit within a uni-modal envelope. For example, in [2],

this is shown by using averaged PoA profiles calculated for networks with different types of

structures.

Roughgarden [43] has shown that for a wide class of cost functions, the PoA achieved an

arbitrary networks is bounded and that the upper bound of the PoA depends on the type of cost

functions used. Initially, Roughgarden and Tardos [42] had proven that for affine cost functions

PoA ≤ 4/3. This might initially suggest that the inefficiency of UE is not particularly large,

however for less idealised functions the situation gets worse. In [43] proofs for more general

functions are provided, for example, for general polynomial functions of degree less than or equal

to p, the corresponding bound is

(3.16) PoA≤ 1
1− p(p+ q)−(p+1)/p .

For link cost functions that have a hard capacity (i.e., the cost diverges for finite flow level si),

for example ci(xi)= 1/(si − xi) the situation gets worse, since the PoA becomes unbounded, with

an upper bound existing only in the case where the minimum capacity of any edge exceeds the

total demand on the network.

The PoA is a useful probe, not only in measuring the inefficiency of a congestion game played

on a network, but also into the interaction between network structure, routes, costs and OD

structure. It is most revealing when used as a function of the demand on a network.

For small demand values when the contribution to travel times is mostly due to the free-flow

travel time, the PoA is close to unity: the UE and SO costs are similar due to drivers mostly

taking the shortest free-flowing routes in both cases.
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For very high demand values, the situation is slightly more complicated. In numerical

experiments [2, 44] and in this thesis, it is eventually seen to decay to one as demand on the

network keeps increasing. The argument offered by Youn et al. [2] (for affine cost functions) is

that the ratio of objective functions for SO and UE tends to a constant since the quadratic terms

in the sums dominate, thus ΦSO/ΦUE → 2. Since the ratio of the objective functions tends to a

constant, both objectives are minimised by the same asymptotic flow pattern.

O’Hare [44] offers more insight as to what happens as demand increases. He shows that

the behaviour of the PoA as a function of demand depends on the set routes that are used at

the corresponding demand level for the UE and SO assignment. This intuitively makes sense

since the differences in cost will stem from the differences in the link flows. Furthermore, O’Hare

proves that for cost functions of the form ci(xi)= ai +bix
β

i the UE and SO link flows (expressed

as a function of demand d) are related to each other by the relation,

(3.17) xSO
i (d/ β

√
β+1)= 1

β
√
β+1

xUE
i (d).

This relation between UE and SO allows relates demands at which changes in the used-link sets

between UE and SO assignments, namely, ηSO = 1
β
√
β+1

ηUE.

Essentially this means that the same links are added or removed to the used-link set at

different values, with the changes for SO occurring earlier. When the number of used routes

for SO increase the PoA increases, when the number of used routes increases for UE, the PoA

decreases. Considering SO first, for large demand levels, eventually all routes are used with no

possibility of further changes, eventually the UE assignment ‘catches’ up and has the same route-

set, yet there is a discrepancy between the link flows. O’Hare conjectures (based on analytical

calculations for simple networks, and on numerical evidence for larger examples) that once this

happens the decay to one follows a power law relation PoA∼ d−2β. In short, at high demands, the

PoA is low because routing options are bad even for SO routing.

In contrast, the PoA is high when there is a large gap between the costs of the UE and SO

assignments, which happens when the contribution to costs due to congestion are comparable

to the free-flow cost [2]. In terms of network utilisation, this is where for SO, some users take

uncongested routes with large free-flow travel times, which helps to decongest the routes with a

large delay.

In figure 3.2, we reproduce the graph from [2] that shows average PoA curves for ensembles

of networks as functions of demand. The main finding of Youn et al. [2] is that different network

structures have similar 〈PoA〉ens curves: they are roughly unimodal in their form. Note further

that for lattice networks, the form of PoA is quite robust to the number of OD pairs that are

chosen: a theme we return to in section 3.4.
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Figure 3.2 Reproduced from [2]: the averaged PoA as a function of demand for ensembles of
different network types. The three types of non-planar graph models used by Youn et al. are
canonical models from complex network theory; Barabási-Albert, Erdös-Rényi, and Small World.
Note how the decay in PoA profile for the regular lattice (a planar graph) is different than for
the other networks: it is slower and in the large demand limit approximates the behaviour of
small-world networks. The inlay shows the 〈PoA〉 for a regular square lattice, where the curves
are averages over ensembles with different numbers of OD pairs.

3.3 Equipping Skeletons for Traffic Assignment

In order to use the αβ-networks of chapter 2 as transport networks, we need to equip them with

cost functions c (see definition 3.1.1) that capture the time it takes to travel down each link of

the network. Depending on the application, different cost functions can be used, for example,

polynomial functions like the widely used BPR functions [53] for roads, or functions for mean

waiting-times for queues (such as M/M/1) when solving Wardropian equilibrium for assigning

jobs to networks of machines [99].

Since we are using affine cost functions (equation 3.4), we need to specify two parameters

for each edge: ai, which is the free-flow travel time, and bi, which captures the sensitivity to

congestion. In order to construct useful ensembles of transportation networks from the αβ-

network family of graphs, we need to systematically allocate the parameters for each edge in

a way that is not arbitrary. An important consideration is that we need to be able to compare

networks that have different numbers of edges. Recall, from chapter 2, that the distributions of

the number edges across the same network ensemble are broad. Moreover, ensembles need to be

comparable amongst each other and networks of different ensembles differ even more in terms of

the number of edges that they have.

The natural approach is to set the ai parameters, which model the free-flow travel time,

as proportional to the length of the corresponding street. In fact, since we are working in
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dimensionless units, we simply prescribe the ai equal to the Euclidean length of each edge. In

contrast, the bi, which are the coefficients that capture the delay due to congestion, require more

care.

The goal is that the cost functions ensure that the STAP incorporates features from the

network structure in a ‘natural’ way (from the complexity science point of view), from the bottom

up. Below we develop a method, endogenous to the network model, that can be interpreted

intuitively as fixing the amount of ‘road infrastructure supply’. This method of allocating cost

functions also has a satisfying interpretation as equivalent to fixing an ‘intersection capacity’ as

we will discuss further.

Infrastructure supply

As stated above, the free-flow travel time of each edge, parameter ai, is chosen as the length of

the edge:

(3.18) ai = `i.

To specify the cost functions fully, we still need to define one more parameter for each edge.

Recalling the affine cost functions, equation 3.4, the gradient of the congestibilty term, bi, seems

to be a kind of inverse capacity or sensitivity to congestion of the link. A naïve interpretation is

that it is inversely related to the width of the road (or the number of lanes).

Our guiding principle is to strive for parsimony. In this spirit, we seek a simple heuristic that

assigns the bi in an endogenous way for each network, and that is consistent across all networks

and ensembles. We also want to avoid modifying the elegant optimisation formulation of the

STAP: we want the local network structure in the vicinity of an edge to define the cost functions.

To start, we will take the naïve interpretation to heart. If we associate the length and the

width of street i to ai and 1/bi respectively, then we can set the following sum equal to constant,

(3.19)
m∑

i=1

ai

bi
= s,

where s is a constant across network ensembles, capturing that all networks are supplied with

the same amount of total ‘road area’. Furthermore, we may take s = 1 without loss of generality,

by jointly re-scaling the demands, consequent flows, and bi parameters — further details follow

below.

There is still an excess of degrees of freedom; to fully define each bi we need another m−1

equations. In order to bring in the local topological structure of the network, we jump to a node-

centric view of the network, and focus on the intersections. We assume that each intersection has

a constant ‘intersection capacity’, λ, that is split evenly amongst all incoming edges. Thus the

inverse of bi is the same for all edges that are incident to the same node,

(3.20)
1
bi

= λ

kν
,
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where kν is the in-degree of node ν to which edge e i is incident to. Or more succinctly,

(3.21) bi = kν
λ

.

From a transportation perspective this is also a satisfying view; we suppose that incident streets

at the same node share the intersection capacity (green time) — we do not consider the re-

allocation of green time as part of the STAP — this would be a significant complication, as

explained by Smith [105].

By making λ constant across all the intersections, we can write it out explicitly (by re-

arranging equation 3.19, and substituting into equation 3.21) in terms of a sum over the nodes,

in the form

(3.22) λ= s∑
ν∈V

1
kν

∑
i∈Iν

ai

.

Here Iν is the set of edges that are incident into node ν.

The denominator of equation 3.22 is the average length of incoming edges of each node

summed over all nodes, which is the total network length LG (introduced in section 2.3), so that

(3.23) λ= s
LG

.

We now make the following two observations. Firstly, it is easy to verify that λ depends on the

network morphology; as we saw in chapter 2, LG depends heavily on the griddedness α. Secondly,

we have arrived at this relation by making simple assumptions that are natural due to the

model’s structure.

In summary, the parameters ai and bi for the affine cost functions (equation 3.4) are defined

as follows:

• ai is set as the non-dimensional Euclidean length of the corresponding edge.

• bi is set by dividing the intersection capacity, λ (from equation 3.22), equally between roads

incoming at each node.

The limitation of this method is that all roads in-bound at an intersection have the same

congestibility parameter, failing to capture some of the natural heterogeneity in real-world road

networks. However, choosing a more detailed way of distributing the intersection capacity implies

introducing additional parameters or heuristics, inconsistent with our parsimonious approach.

However, note that assigning the bi based on the node at which the edge terminates means that

the corresponding edge in the opposite direction has a different delay term in its cost function.
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Scaling and units

So far, the variables and parameters of the model such as traffic flows, costs, the ai and bi, and

even demand, have been treated as purely mathematical, dimensionless, quantities. We now

discuss their units in order to see how the networks scale, and to bring our analysis closer to the

network models used by practitioners.

Under the conditions laid out by the STAP, there is a fixed travel demand that has to be

satisfied per unit time. The arising equilibrium traffic patterns on a network are therefore

stationary flows. The way travel demand is specified, as trips that have to be satisfied per

unit time, means that the total number of trips aggregated across all OD pairs have units of

vehicles/time, or we might say

(3.24) [d]= V
T

,

where V are vehicle units (perhaps PCUs) and T represents units of time. The flow on a given

link, xi, can be thought of as the number of vehicles that pass trough a cross-section of the link.

The flows are also given in vehicles per unit time,

(3.25) [xi]= V
T

.

By construction we have assigned the numerical value of ai as the Euclidean length of the

link, yet we have referred to it as the free-flow travel time. Given that our networks are always

embedded in the unit square, regardless of the number of nodes they have, choosing units for ai

implicitly determines both the scale of the network as well as the density of the nodes: because in

the STAP set-up we are using, ai is the free-flow travel time of the links

(3.26) [ai]=T.

It is perhaps more intuitive to fix the scale of the network by scaling the unit square, since it

allows the network to be shrunk or enlarged to match a desired or reasonable value of ai: for

example, such that a characteristic speed (such as the speed limit) is involved in the form

(3.27) ai = `i

vmax
,

where the Euclidean length of the road is `i as above, and vmax is the characteristic highest

speed (note that under STAP all vehicles on a link travel at the same speed in order to satisfy the

stationary flow conditions).

To understand the scaling of bi, recall that the cost functions take the affine form of equation

3.4, and as is standard, we take the cost (or dis-utility) to be the travel time on link i. The bi

represent an impedance to flow, so their reciprocal is a type of conductance, with units

(3.28)
[

1
bi

]
= T2

V
.
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Figure 3.3 Diagram to aid visualisation of the units in the model. A link (road) can be repre-
sented in three-dimensional space by a cylinder with length ai and areal section 1/bi. Due to
the static nature of the assignment, Edie flows and cross-sectional flows are the same. This 3D
representation makes the units of the length of link (ai) and the area 1/bi congruent.

To visualise the relationships between the units of the free-flow term and the delay (conges-

tion) term, in figure 3.3 a link is depicted as a tube in three-dimensional space. In this space,

lengths are time (if we consider all vehicles to be identical and discrete, then V is dimensionless),

and 1/bi is the cross-sectional area of the tube.

3.4 Choice of ODs

We now focus on the design of the origin-destination (OD) demand structure and the implications

it has for the numerical experiments that we develop in the remainder of this thesis. The general

setting is the αβ-networks with periodic boundary conditions as developed in chapter 2 — as a

model of a homogeneous ‘patch’ of a city. Traditional STAP analyses load their networks with

a very large number of OD flows. In contrast, we show how the periodic boundary conditions

enable an even loading when there are very few OD pairs. The introduction of periodic boundaries

ensures that the otherwise peripheral nodes, close to the edges of the unit square, potentially can

connect to nodes across the boundary: thus significantly reducing the magnitude of boundary

effects, making the ‘peripheral’ nodes more like the rest of the network’s nodes in terms of

adjacency properties.

The first OD pair we will consider defines its origin to be the node closest to the bottom left

corner of the unit square and its destination to be the node closest to the centre of the square.

Figure 3.4 shows UE traffic patterns for this OD pair and for both a periodic and a non-periodic

network. For low demand values, vehicles can take the direct routes from the origin to the

destination, in as straight a manner as allowed by the links. As congestion increases, and with it,

the cost of these ‘direct’ routes, it is clear how the periodic conditions ensure a more even loading

54



3.4. Choice of ODs

0

50

100

·10−3

F
lo
w

(a)

0

20

40

60

·10−3

F
lo
w

(b)

Figure 3.4 The filling of a network (a) without periodic boundary conditions, and (b) with
periodic boundary conditions, as demand is increased. There is a single OD pair (origin:blue,
destination: green). The demand increases from left to right across the figure. Note flow
scales differ between (a) and (b): the busiest links are significantly less congested under
periodic boundary conditions, due to a more even spreading of demand. Here N = 225 nodes,
α̂= 3/4, and β= 1.4. Links with flow computed < 10−6 are not shown.

of the network. Thus, with just a single OD pair and periodic conditions, the network already

behaves a bit like a network ‘patch’ embedded in a larger network. At a more fundamental level,

the set of used paths to which each edge belongs are more uniform for the periodic networks.

In order to test how the periodic conditions allow us to approximate a true multi-OD structure,

in section 3.5.2 we will use two OD pairs set up so that they both make ample use of the whole

network, and so that their flows ‘cross’ each other. The first OD pair will be the same as described

above. The second pair is generated by shifting the first laterally by 1/2 on the unit square. That

is, the origin is the node closest to the midpoint of the lower boundary of the unit square (1/2,0);

for the destination, we choose the node closest to the midpoint of the left boundary (0,1/2). Figure

3.5 shows the two OD pairs, and how the image origins and destinations across the periodic

boundaries yield flows in multiple directions on the network. Henceforth we refer to the OD pairs

as ω1 and ω2 respectively.
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Figure 3.5 Two OD pairs, ω1 (with origin O1 and destination D1) and ω2, with origin and
destination labelled O2 and D2 respectively. Here α̂ = 1.25, β = 1.5, and N = 225. Introducing
periodic boundary conditions makes each OD pair load the network more like four ODs with a
common destination node. For simplicity, only arrows within the unit square are drawn for ω2.
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Figure 3.6 UE traffic patterns for a network (α̂= 1.25, β= 1.4, and N = 225) associated
to the flow of (a) OD pair ω1, and (b) ω2. Note that in terms of coverage of the network, the
flows from both OD pairs (marked in black) complement each other, giving rise to broadly
isotropic loading.

Figure 3.6 shows the filling of a network with the UE flow patterns for the two ODs ω1 and

ω2. Note that the traffic patterns reflect the way the OD pairs are related by a lateral translation

of 1/2; the gap in the used links of the pattern occurs at the edges of the unit square for OD pair

ω1, and at the centre of the square for ω2.

Individually, each OD pair ω1 and ω2 makes ample use of the network. The periodic conditions

simulate demand that originates beyond the boundaries of the unit square that have a common

destination inside it, making the arising flows more ‘isotropic’. Both ω1 and ω2 have their origin

and destination separated by approximately the diameter of the network, which means that the

users have to cross as much of the network as possible. Note that the diagonal crossing of the

flows also ensures that many of the same links are used by the flows of each OD pair. All this

guarantees that the network is more akin to a sub-network embedded in a larger network, yet

avoids prescribing incoming flows from external nodes or centroids.

In section 3.5.2 we will compare the average PoA curves of αβ-network ensembles loaded

under a single OD pair with those arising from solving the STAP for a two-OD regime where

the global demand is split equally between the OD pairs. The way that the networks are loaded

57



Chapter 3. Traffic Assignment on Network Ensembles

guarantees that flows from both OD pairs share as many links as possible, compared to, for

example, would happen by taking ω1 together with the OD pair where ω1’s origin and destination

are interchanged.

By simulating a larger number of OD pairs by introducing the periodic conditions on the

networks, the achieved effect is a more even loading of the networks. The effects an even loading

of the network has in terms of the PoA, is that as more links of the networks are used, there

are less routes that remain unused through more of the demand range. As O’Hare [44] explains,

the changes in PoA with demand, the peaks and troughs occur when the used routes under SO

and UE assignments change. The rule of thumb being that when the set of used routes for SO

increases PoA increases, and when the set of used routes for UE increases, PoA decreases. This

effect can be understood by considering that when the SO used-route set increases and the UE

does not (UE route changes tend to lag behind SO ones) the difference in flows (which is optimal

under SO) is greater, creating a larger difference between the costs of both assignments. In terms

of the evenness of loading the networks, having a more even loading that permeates the network,

ensures that the active-route set is larger at lower demands. This reduces the demand range

needed to be covered in order to capture the peak and decay of PoA. As far as the ensemble

view is concerned, a more even loading reduces the intra-ensemble variability of the PoA of the

different networks. This happens since the whole network structure is sampled, thus reducing the

instances in which only specific local structures are sampled in the initial region of the demand

range which leads to more particular PoA profiles.

3.5 Numerical Results

In this section we present results from numerical experiments of static assignment on αβ-

networks. We begin by comparing our endogenous method of defining parameters with the

random selection of Youn et al. in [2] in section 3.5.1. Then we proceed with comparing the

behaviour of the averaged PoA curves for two different OD demand structures: a single OD, and

two ODs (ω1 and ω2 from section 3.4), set up so that the flows connecting each OD cross each

other.

The way in which we select the demand range for solving the STAP on ensembles of αβ-

networks is designed to capture high PoA values and enough of the decay, so that the different

ensembles become distinguishable. For example, figure 3.7, below, shows how different parameter

choices scale the demand range, and with it, the peak region for the PoA curves for the same

networks.
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Figure 3.7 PoA traces for 30 networks sampled from the ensemble with N = 225, α̂ = 1.5
(α= 0.09375) and β= 1.6. (a) Cost-function parameters are assigned as in [2]. (b) Parameters are
assigned according to the method from section 3.3. In each case the same networks are used with
the same OD pair (ω1) for each network.

3.5.1 Comparison of Youn et al.’s parameter allocation method with the
endogenous method

In order to compare the implicit (endogenous) method of allocating cost-function parameters

(as described in section 3.3) with the random choice of Youn et al., we carried out the following

experiment.

We sampled 30 graphs from the αβ-network ensemble with parameters N = 225, α̂= 1.5, and

β= 1.6. Two sets of road networks were created from the same graphs. The first had cost function

parameters assigned according to Youn et al.’s [2] method: edge lengths were assigned uniform

random integers between 1 and 3, while the bi were assigned uniform random integers between

1 and 100; corresponding edges with opposite orientations are given the same parameters. The

second set of road networks were assigned cost functions in the manner laid out in section 3.3.

The STAP was solved for both sets of networks for 60 demand values. To calculate the PoA

both UE and SO assignments were calculated. The networks with Youn et al.’s parameter choice

required a demand range starting at d = 0.001 and ending at d = 0.85, with a demand step

of ∆d ' 0.0144. For the set of networks with cost-function parameters chosen according to our

methodology, the demand range starts at d = 0.0001, finishes at d = 0.016, and has a demand

step of ∆d ' 0.000279. Figure 3.7 displays the PoA curves for all of the networks.

For the random choice of parameters (Youn et al.’s method), the peak PoA values appear to be

higher (note the difference in scales), sharper, and the PoA curves seem to decay with a more

pronounced concavity. That is, after a sharp rise, due to the initial large discrepancy between

UE and SO assignments, further increase in demand causes the UE assignment to approximate

SO at a faster rate. These qualitative observations are confirmed in figure 3.8, which shows the
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Figure 3.8 Average PoA for the same networks as figure 3.7. In total, 60 values of demand
were calculated for an approximately equivalent range for both parameter choices. The full width
at half-maximum (FWHM) is shown: note that the baseline is taken as one rather than zero.
The bottom figure shows the 〈PoA〉 for both cost-parameter choices, with the demand range
normalised by the FWHM.

average PoA curves from the individual traces from figure 3.7. The bottom plot of figure 3.8 shows

〈PoA〉 vs demand normalised by the FWHM.

As the PoA decays, the (sample) standard deviation behaves differently in each case, although

this is hard to see due to the large error bar size. So, to better appreciate the dispersion around

the mean, figure 3.9 displays the coefficient of variation as a function of demand.

Comparing the coefficients of variation highlights the importance of taking a transport-centric

approach to network design. The uniformly random assignment of integers yields a broader

distribution of cost-function parameters. In turn, this causes a persistently larger standard

deviation of the PoA throughout the demand range. Even though the decrease in the coefficient
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Figure 3.9 The coefficient of variation (σ(PoAi)/〈PoA〉i) for both cost-function parameter choices.
The coefficient of variation is consistently lower for the networks with endogenously defined
parameters.

of variation is faster after the PoA peak, it eventually settles into a more gradual decrease

as demand increases further. In contrast, for the endogenous choice of parameters, the fall in

variation accelerates in the decaying tails of the 〈PoA〉 curve. This is a crucial observation for the

usefulness of PoA as an experimental tool, since it is in the tails where clear distinctions can be

made between the different ensembles.

Figure 3.10 compares both mean PoA curves on the same scale by normalising the 〈PoA〉
of both ensembles by each of their maximum values. Once again, as in figure 3.8, the demand

is scaled by the FWHM. Our observations made about the PoA traces of individual networks

are now more concrete. The shape of the peak is more pronounced for Youn’s parameters; the

magnitude of the error bars also reflects this. The curve for the endogenous parameters rises

faster but then tapers off slower, the error bars tightening much quickly around the mean value.

Compare this to the behaviour of Youn et al.’s regular lattice (the black curve) from figure 3.2.

We conclude that allocating cost-function parameters with our implicit method is a successful

way in reducing the intra-ensemble variability than what is obtained when assigning them in

a uniformly random way. From the results of Youn et al., the clearest behavioural difference

between the 〈PoA〉 curves for the different ensembles is between the lattice and the non-spatial

network models. The curve peaks sooner and decays slower than the other ensembles, cutting

across the curves of the other ensembles.
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Figure 3.10 The normalised 〈PoA〉, with respect to peak PoA value, for the same data as in
figures 3.7 and 3.8. The error bars (one standard deviation on either side) have also been scaled
accordingly.

3.5.2 Comparison of assignments on ensembles: one OD vs two ODs

We now compare the averaged PoA curves between network ensembles that are subjected to

different OD demand structures: two maximally separated OD pairs (ω1 and ω2) where the total

demand is equally split between them (see section 3.4 above), and the averaged PoA curves for a

single OD pair: ω1. The morphology parameters for the ensembles are the combinations of β= 1.2

and 1.4, and α̂= 0.75, 1, and 1.25. The STAP is solved for the demand range 0.00001≤ d ≤ 0.01,

in steps of size 0.0003.

Figures 3.11 and 3.12 show the averaged PoA curves for the six ensembles, for the two-OD

case, compared with one OD. The single OD used was ω1. The first feature of note (figure 3.11) is

that there is little variation between the PoA curves, although some fine details can be picked

out.

For α̂= 0.75 (relatively grid-like networks), both OD set-ups yield rather similar PoA curves.

In contrast to Youn et al.’s results for the lattice, we observe that grid-like αβ-networks with

periodic boundary conditions are robust to changes in OD structure. Apparently, the periodic

αβ-network ensures that small numbers of OD pairs make ample use of the network, more

characteristic of multiple OD pairs. This result is further supported by the comparatively low

standard deviation.

Still focusing on the differences between the PoA curves, we note that the largest differences

are seen for critical griddedness α̂= 1. For the more ‘realistic’ values of β (e.g., of 1.4, as found by

Osaragi and Hiraga [8]), the demands at which the PoA curves peak, as well as the maximum
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Figure 3.11 Average PoA profiles are shown for six ensembles (45 networks each) with α̂ =
0.75, 1, 1.25; β= 1.2 and 1.4; and N = 225. The STAP was solved for these ensembles under two
different OD regimes: a single OD pair ( ω1), and for two OD pairs (ω1 and ω2), assigned half the
total travel demand each. Error bars are one standard deviation to either side of the mean.

63



Chapter 3. Traffic Assignment on Network Ensembles

0.000 0.002 0.004 0.006 0.008
Demand (d)

1.000

1.002

1.004

1.006

1.008

1.010

1.012

 P
oA

 
= 1.2

2 ODs; = 0.75
1 OD; = 0.75
2 ODs; = 1.0
1 OD; = 1.0
2 ODs; = 1.25
1 OD; = 1.25

0.000 0.002 0.004 0.006 0.008
Demand (d)

1.000

1.002

1.004

1.006

1.008

1.010

1.012

 P
oA

 

= 1.4

2 ODs; = 0.75
1 OD; = 0.75
2 ODs; = 1.0
1 OD; = 1.0
2 ODs; = 1.25
1 OD; = 1.25

Figure 3.12 Average PoA profiles are shown for six ensembles (45 networks each, with α̂ =
0.75, 1, 1.25; β= 1.2 and 1.4; and N = 225) under single and two OD pair regimes (same 〈PoA〉
curves as in figure 3.11). Curves are grouped according to β. Error bars are one standard deviation
to either side of the mean.

PoA reached are closer than for β= 1.2.

As the griddedness increases further to α̂ = 1.25, the PoA curves once again come closer

together. However, the dependence on OD structure begins to show in the way the curves for the

same number of OD pairs follow each other very closely.

When examining the PoA curves grouped according to β, the robustness to OD structure for
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low α̂ is starker. The single-OD and double-OD case are the most similar amongst the curves.

Interestingly, for β= 1.5, the PoA ensembles with α̂> 0.75 show that the OD structure is more

important than the griddedness of the networks. This suggests that for more realistic networks,

the interactions between vehicles belonging to different OD pairs is more important than the

underlying network structure, once the grid structure breaks down.

Overall, the more regular networks — with lower α̂ and β — show the least sensitivity to OD

structure, at least when the loading is even, and the interactions between OD pairs is important.

3.5.3 Discussion of results

When using the PoA as a measure of network performance, we have seen that the main limitation

is the large variance observed within the ensembles. The large variation is a testament to the

sensitivity of the PoA to network structure. In fact, for larger α̂ (lower griddedness) and higher β

(lower road density), the spread around the mean is larger, and therefore the 〈PoA〉 less smooth.

From the numerical experiments of section 3.5.2, we can conclude that implementing periodic

boundary conditions is a robust way of simulating multiple OD flows while solving the STAP for

a single OD pair, when the griddedness of the networks is high. Another finding is that past the

critical griddedness (α̂≥ 1), as the roads become less dense (β= 1), the OD structure has a greater

effect on the 〈PoA〉 than the griddedness. This can be seen by the overlap, especially within the

decaying tails of the average PoA curves for the two-OD scenario, irrespective of whether α̂ is 1.0

or 1.25.

3.6 Discussion

In this chapter we have discussed how the αβ-network family is assigned cost functions to

solve the STAP on ensembles of these networks. Special care was taken to avoid introducing

artefacts by way of our boundary conditions, and in ensuring that our sampled networks remain

comparable for different parameter values. With the attention to detail regarding the boundary

conditions introduced in chapter 2, different types of OD pairs were studied, allowing us to

explore the sensitivity of averaged PoA curves to morphological variation and to changes in OD

demand structure.

From our numerical experiments in section 3.5, we have found that the griddedness parameter

α can modulate how sensitive the traffic performance is to changes in the density of edges

(determined by β) and to the OD structure.

To bring the discussion back to the relationship between network measures and traffic

performance on networks, we reproduce a figure from [66] (where the αβ-networks were originally

presented). The figure compares the integrated average PoA curves (IPoA, for integrated price

of anarchy), the algebraic connectivity, the mean street length and the mean degree of twenty

αβ-network ensembles. The ensembles take all combinations of β= 1,1.2,1.4,1.6,1.8, and 2 with
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Figure 3.13 The averaged integrated price of anarchy, 〈IPoA〉, is shown as a way of capturing
the total inefficiency of the ensembles across the demand range studied. It is compared to the
mean degree and the algebraic connectivity (two of the standard network-theoretic measures
discussed in chapter 2). We also compare it to the mean street length, which as discussed is
slightly better correlated with the IPoA.

α̂= 0.88,1.1,0.32, and 1.54. In this case the networks are based on a 10×10 grid (N = 100) to

reduce computation time, due to the larger number of demand steps and the larger number of

networks sampled from the ensembles. The numerical integration of the IPoA was done as a

Riemann sum with the value of the PoA as the height of the columns, over the demand range

with 100 demand values, starting at d = 0.001, ending at d = 0.3, and with a demand step-size of

d = 0.003.

Due to the fact that each mean PoA point is calculated for an average of 100 networks, over

100 demand values, the 〈IPoA〉 is quite a coarse measure, as well as computationally expensive

relative to the statistical certainty it provides. However, as we have seen (like with figures 3.11

and 3.12), even with the large variation, this type of aggregated measure is informative of the

bulk behaviour.
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It is clear from inspection of figure 3.13 that there is little correlation between network theory

statistics and the performance of road networks. The better correlation is with the physical

property of mean road length (and therefore LG), however it is also not great. We propose that if

theoretical explanations for the behaviour of the PoA that stem from network properties are to

be found, they need to be found in more than just network theory statistics.

On a more general level, the maximum value that the PoA reaches is far from the theoretical

upper bound of 4/3 for affine cost functions. More realistic cost functions such as BPR functions or

other polynomials can yield larger PoA values, yet they are also simplified functions. A possible

extension that could be more revealing, would be to include capacity constraints on the links

in the networks. This can be done in two types of ways, the first is by explicitly including hard

capacities as constraints into the optimisation problem. The second, is to include it via the

cost functions themselves. For example, as mentioned in section 3.2, cost functions of the form

ci(xi)= 1/(si−xi), that arise as average delay functions from queuing systems, have an asymptote

at xi = si, naturally representing a flow capacity. Depending on the demand levels in relation to

the link capacities si, if dmax>min isi the PoA can be unbounded [43]. These cost functions, could

represent delays due to queues at intersections due to traffic signal control. In this case, the PoA

might more realistically capture the inefficiency of a network’s state due to selfish routing. Studies

such as the ones presented in this chapter, but include capacities, or diverging cost functions,

might yield much richer and detailed results that the ones presented here that more accurately

reflect the effects of network and demand structure on the efficiency of traffic equilibria.

From the results in this chapter and from existing studies in the literature (for example [2,44])

the PoA has strengths as well as weaknesses in comparing network ensembles. Among it’s

strengths, is that due to the unimodal behaviour, ensembles of vastly different morphologies can

be compared. The way the PoA decays one it has reached its peak value, gives some information

as to the morphological structure of the networks. For example, in figure 3.2 from [2] the PoA

curve for the regular lattice (black curve) has its peak close to the Erdös-Rényi and Barabási-

Albert ensembles, yet the tail resembles the small-world networks more. In our numerical

experiments, the early peaking of PoA and its slower decay when using morphology-aware

parameters compared more random networks is also observed (see figure 3.8). Unfortunately, the

PoA only captures the inefficiency ratio of networks in the aggregate. The distribution of flows

and costs amongst different links in the networks is ignored by the PoA. A possible measure to

capture how effective different network structures are evenly distributing flows and costs could

be the Gini coefficient of the flow and cost distributions. This metric would capture how efficient

the networks are at spreading the traffic flows and more effectively utilising the infrastructure

supply. Alternatively, to reflect the large intra-ensemble variability clustering of the PoA profiles

(using functional distance measures, for example) could yield further insights as to different

types of network features that play a role in effecting specific types of PoA profiles, thus enabling

a more detailed study into local network structure and routing inefficiency.
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In a very recent paper, Alonso et al. [106] numerically examine the eigenvalue spectrum of

β-skeletons to show that these graphs have interesting spectral properties, and they suggest

different ways of analysing β-skeletons. This suggests possible avenues forward for future studies,

like the one in this chapter, can benefit by taking a spectral approach. We propose, for example, to

decompose patterns and link costs in terms of network eigenvectors. This would help re-examine

whether abstracting road networks directly to graphs, although the most direct approach, is the

best approach for future transport research.

One of the main goals of this thesis is to bring transportation and network modelling closer

together. By building on O’Hare’s methodology [44], a direct application has been provided for

extending the use of the PoA from a quantity of theoretical interest, to an experimental tool for

understanding the relationship between network structure and traffic equilibria performance.

The key contributions of this chapter are the following:

C3.1 The endogenous method for allocating cost functions for investigating the effects of infras-

tructure supply on networks makes the αβ-network family a general-purpose synthetic

network model that avoids arbitrary parameter choices.

C3.2 The average PoA curves for single and multiple ODs show that implementing periodic

boundary conditions is a robust way of achieving traffic patterns that are similar to those

arising from more complex demand structures.

C3.3 More random networks exhibit stronger sensitivity to OD demand structure, across large

demand ranges, than the more robust grid-like networks.

C3.4 Traditional network theory statistics fail to correlate with transportation efficiency as mea-

sured through the PoA. Actual links between network theory and transportation efficiency

are more subtle and deeper than what network-theoretic narratives would suggest.
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MIXED WARDROPIAN EQUILIBRIA

In this chapter, we use the STAP on the αβ-networks family as an experimental method to study

transitions in traffic equilibria. The discussion is embedded within the context of multi-class

equilibrium, where the user classes differ with respect to their routing behaviour or strategy. We

split the network users into two classes: selfish or altruistic. The mixed traffic assignment is then

studied for different proportions of the penetration rate of the altruistic class. We also discuss

the behaviour of the mixed equilibria in general terms by building up from examples of simple

networks.

The interest in mixed equilibria as a network control mechanism stems from the apparent

advent of the autonomous vehicle (AV). One can picture a setting in which a benevolent dictator

assigns routes to the altruistic user class in an attempt to drive the system towards optimal —

thus using the flow of the altruistic user class as an indirect control mechanism on the costs

experienced by the selfish users. We approach this problem from the context of route guidance

systems, mainly developed as a response to the then-increasing use of satnavs [61], where multi-

class equilibria can be modelled as variants of Stackelberg games. One of the aims of this chapter

is to redirect the discussion onto AVs, and the possible gains in efficiency, from a focus on the

removal of the human driver as a potential source of increased efficiency (by forming platoons

and negotiating intersections, for example), to the behaviour of the system as a whole by focusing

on routing.

We leverage well-understood and simple models as experimental tools. This allows the focus to

be on the effects of the shifts in traffic patterns themselves and on the role of network morphology.

Some of the material in this chapter was presented at the MFTS symposium held in Ispra, Italy,

in 2018. The chapter is structured as follows.

Section 4.1 describes the context of the mixed equilibrium (ME) models that we base our

numerical investigations on. These are models that were developed in the 1990s [62,107] for the
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purpose of considering the effects that the uptake of route guidance could have on the equilib-

rium efficiency of traffic networks. This is still a relevant discussion that now revolves around

autonomous vehicles, since automation could provide a way of enforcing altruistic behaviour in a

proportion of the vehicles on the roads.

In section 4.2 we provide the details of the implementation of the algorithm that we use in

this chapter for the numerical solution of the ME STAP. It is a variant of the models described in

section 4.1, which means it inherits the stability properties of the equilibrium.

The transition to optimality of small networks, and how the equilibrium traffic patterns

change by introducing an altruistic class of vehicles, are discussed in section 4.3. The aim is

to explain the mechanism by which the system costs are reduced when a proportion of the

legacy self-optimising vehicles are replaced by altruistically-routed AVs that seek to optimise the

total-system cost.

The change in costs due to the increasing penetration rate, γ, of the AVs in the user fleet is

then explored in section 4.4. Finally section 4.5 discusses our contributions in the round.

4.1 Background

We begin this section by re-visiting the mixed equilibrium (ME) model of van Vuren and Watling

[61]. The literature on route guidance (for example see [62]) gives insight to the changes in traffic

patterns that autonomous vehicles (AVs) and widespread mobility as a service (MaaS) might

cause.

Route guidance and routing games

In [61], van Vuren and Watling prove the existence of a static equilibrium assignment for a

two-class model, where one class behaves according to Wardrop’s UE criterion, and the other

class seeks to minimise the total system cost. The resulting traffic pattern is a mixed Wardropian

equilibrium where the human-driven vehicles, which we call selfish vehicles (SVs), self-optimise,

whilst the AVs (also a suitable abbreviation for altruistic vehicles) collectively try to optimise for

the whole system. For cost functions of the form

(4.1) ci(xi)= ai +bix
p
i ,

where ai ≥ 0, bi > 0 and p > 1, van Vuren et al. [107] show that an equilibrium exists that is unique

in terms of aggregate link-flows. Our affine cost functions are a simple case of this functional

form, with p = 1. Even for a simple network, however, [107] finds that a large proportion of guided

vehicles might be needed before the ME and SO coincide. For BPR-type functions

c1(x1)= 10.8+197x4
1

c2(x2)= 3149x4
2(4.2)
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on a Pigou network and demand d = 2800, SO costs are not achieved until the system optimising

vehicles are at ∼ 64% of the total demand.

In the mixed equilibrium (ME), the altruistic class of vehicles manages to reduce the total

network costs by incurring extra costs themselves, which highlights that even though UE

is inefficient (in terms of the cost incurred by each user travelling between the same origin-

destination pair) it is still a fair assignment in the sense that for a single OD pair, the paths

taken by all users have equal costs. The converse to UE being fair is that not all the altruistic

vehicles’ costs are equal; some take longer routes to minimise congestion along links used by

the selfish users. Therefore the different classes can share at most one route (when edges have

distinct cost functions). This concept of fairness only works for a single OD case, since if more

OD pairs were to be considered, the way vehicles one OD pair utilise the networks can have an

important impact on the flows associated to the other ODs. For example, a long-range OD pair

with high demand, where vehicles traverse large sections of the network, can significantly affect

the costs of other OD pairs that have smaller flows associated with them by congesting the links

of their best routes. In a case like this, fairness would have to be evaluated across different OD

pairs and with respect to the magnitudes of demand associated with each one.

The idea of ME can be further generalised to more complex types depending on the vehicle

classes and their objective function, that is, the potential function of the congestion game. However,

from a more applied point of view, changing the type of game might also be of interest. For example,

in an economically inspired set-up [108], Yang et al. study an extension of van Vuren and Watling’s

mixed equilibria for more complex routing classes that correspond to strategies borrowed from

economic competition scenarios (namely, Cournot-Nash competition). They prove the existence

of the mixed equilibrium for a mixture of three classes: a system optimising class following

SO routing, one self-optimising class following UE routing, and a finite number of separate

players belonging to a Cournot-Nash class where each player tries to optimise their own class’s

average cost. In the application of their model to exemplar networks, they use (like us) affine

cost functions. A noteworthy result is that for a mix of only Cournot-Nash and UE players, SO is

not achieved unless the Cournot-Nash class controls all of the flow. In the autonomous vehicle

context, this type of ME could arise with a mixture of selfish users and providers of AVs that

optimise for aggregated costs of their own class.

Yang et al. then compare their multi-class equilibrium with a different model obtained by

treating the classes as players that take turns in a leader-follower Stackelberg congestion game

(as in [109]). The models and algorithm seem to differ in small values of flow volumes, but

otherwise their results are consistent with Van Vuren and Watling; system costs can indeed be

driven to optimal, but it can require a large proportion of the flow to be controlled by the SO class.

In a more recent paper by Sharon et al. [110], the ME is solved on six exemplar networks

taken from [111]. The observed behaviour confirms observations in the examples of [61,107,108]

on the proportion of vehicles needed to reach SO: between 13% to 53% of altruistic vehicles are
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needed to achieve SO costs. The trend in Sharon et al.’s results shows that, generally, networks

that are larger and with more complex structure require higher proportions of SO vehicles in

order to reach optimal performance. Therefore, extending the basic ME model of van Vuren et al.,

or even changing the types of interactions (for example, setting up the ME as a Stackelberg game

or multi-objective optimisation problem), yields qualitatively the same results. Furthermore, as

we shall see in this chapter, our use of affine cost functions does not qualitatively change the

behaviour of the ME systems (a contribution to the field in its own right).

As discussed in chapter 3, the concept of PoA has been studied from both the transport

perspective and as a scheduling optimisation problem for assigning jobs to machines. In [99],

Roughgarden studies multi-class strategies in a setting equivalent to a network with a single OD

pair and m parallel links. In Roughgarden’s proposed strategies, however, the simple structure of

the implicit network is exploited to prove rigorous theory, which means that this type of approach

is not directly applicable to our αβ-networks. Other approaches include control theory: Nilsson et

al. [112] cast the mixed equilibrium STAP as a control problem with the class-split proportion as

a control variable.

4.2 Equilibration Algorithm

The mixed assignment model we use is equivalent to the one in [107], where the SVs’ objective is

to minimise the total system cost. The AVs are thus modelled by a modified Beckmann functional

(see section 3.2) that takes into account the flow split. The contribution to the selfish vehicles’

(SV) cost due to the AV flow can be included in the objective function by being incorporated into

the free-flow cost term that is seen by the selfish class. The functional for the SV cost is therefore

ΦSV
(
xAV, xSV

)
= xSV ·

(
a+ Db xAV

)
+ 1

2
xSV ·Db xSV

= xSV ·a+xSV · Db xAV + 1
2

xSV ·Db xSV .(4.3)

Here the flow vectors xAV and xSV are the link flows of the altruistic and selfish vehicles respec-

tively. In contrast, for the AVs, their objective function is the total system cost. However, they

only represent a fraction of the flow so the aggregated flow of SVs and AVs is used in the form

ΦAV(xAV, xSV)=ΦSO(xAV +xSV)

= (xAV +xSV) ·a+ (xAV + xSV) ·Db (xAV +xSV).(4.4)

Each class can be seen as a player controlling a proportion of the flow. If we continue with the

idea of using centrally-routed autonomous vehicles to reduce total network costs, the SO player

can be thought of as a benevolent dictator that controls the AVs’ routes. The penetration rate of

the AVs in the fleet, γ (with 0≤ γ≤ 1), is the proportion of vehicles routed by the altruistic player.

Compare equations 4.3 and 4.4. The objective function of the SVs consists of adding to the

standard Beckmann functional (see equation 3.7) a bi-linear form that captures the contribution
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of the AVs to the SVs costs: xSV · Db xAV. That is,

(4.5) ΦSV
(
xAV, xSV

)
=ΦUE(xSV)+xAV · Db xSV.

The AV objective involves more terms, since the congestion term is a quadratic form of the

aggregate flows for clarity, equation 4.4 can be re-written as,

(4.6) ΦAV(xAV, xSV)=ΦSO(xAV)+ΦSO(xSV)+2xAV ·Db xSV

The last term captures the costs to each class caused by the presence of the other, hence the factor

of two.

Inspired by Yang et al., and the practical approach of market economic models, we take a

Stackelberg approach in the implementation of our numerical schemes. We can choose, say the UE

(xSV) class, as the leader, and for a particular loading of the network we let them re-equilibrate;

meanwhile keeping the SO flows (xAV) fixed. The shift in flows as the SVs reach equilibrium

changes the cost that the AVs experience. The additional cost to the AVs, due to the SV’ presence

can be thought of as modifying the free flow costs by the addition of DbxSV.

The solution is therefore arrived at by iterating over the user classes, for each, minimising its

objective function (ΦSV or ΦAV, accordingly) while keeping the flow of the other one fixed. This

approach is also known as diagonalisation.

Figure 4.1 shows a flow chart of the equilibration procedure. The sub-problems of solving for

UE or SO are described in chapter 3. The alternating iteration, between shifts in SV and AV

flows, is also guaranteed to converge for convex cost functions as established by van Vuren et

al. [107] and discussed above.

Separating optimisation routines into sub-problems is a standard way of approaching trans-

port equilibria due to their complexity (again we refer to Patriksson, [59], for a comprehensive

treatment of traffic assignment). In our case, the sub-problems correspond to the alternating

iteration between solving for UE for the SVs and for SO in the AV case. Further, in our work,

we use the UE assignment as a simple approach to generate the initial condition, x0, when

calculating ME on αβ-networks.

In terms of convergence, the alternating routine in practice, is fast. Typically, it converges to

the ME within a few iterations to the desired tolerance (10−7), the magnitude of flow changes

as the algorithm converges is shown in figure 4.2, which shows how flows are re-arranged after

each class has rearranged itself on the network. It should not be surprising that this part of the

routine is quick, since Roughgarden’s bound of PoA≤ 4/3 (for affine cost functions) also bounds

the magnitude of the flow-shift.
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Figure 4.1 Flow chart of the equilibration procedure for the mixed equilibrium (from section
4.2). The inputs are an initial guess for link flows (for example the UE assignment can be used) as
well as the traffic network and travel demand. The resulting assignment is the ME assignment.
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Figure 4.2 Changes in the assignment with consecutive iterations of the alternating routine of
a 400 node αβ-network with α̂= 1.5 (corresponding to α' 0.0714). The total demand is d = 0.001
with penetration rate γ= 0.5. Within a few iterations, the changes to the ME assignment are
small. The tolerance for convergence of the cost function was 10−7.

4.3 Transition to Optimality (Small Networks)

In this section we look at some simple networks (where the small number of links is comparable

to the number of routes) in order to understand the effects of substituting some of the travel

demand by AVs; that is, by increasing the penetration rate, γ, of (altruistically routed) AVs in

the vehicle fleet. As has been mentioned above, when the penetration rate γ approaches one,

the system approaches optimal costs. However, as we shall see, this is not necessarily a smooth

transition due to the discrete structure of networks and the constraints they impose on the

possible route sets. The networks that we examine are the Pigou parallel link network and the

symmetric Braess network, where the symmetry allows for a treatment equivalent to a two-route

network.

We begin with the simplest example, that is a Pigou network, where one of the links is

completely insensitive to congestion (i.e., bi = 0). We choose two demand levels, d = 1 and d = 1.4

(see figure 4.3), that lie on either side of the higher-cost link’s activation demand value under UE

(which we call the switching demand). This way we can show the effects of crossing the switching

demand of the higher-cost link (for the UE assignment) with the SVs, as their volume on the

network decreases with increasing γ. The ME transitions to optimality are shown in figure 4.4.
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Figure 4.3 The total cost and the PoA for the Pigou network are shown. As shown in the inlay,
the cost parameters for this example are a= (1, 0)> and b= (0, 1)>. The activation demands of
link 1 are shown by the dashed lines; orange for UE and blue for SO. The black arrows show the
demand values that we use in figure 4.4: d = 1 and d = 1.4.

The Pigou network once again demonstrates its explicative power. It exhibits the underlying

mechanism through which vehicles are replaced as the proportion of vehicles attempting to solve

for SO (the AVs).

For total demand chosen above the switching value, there is no decrease at all in system cost

for small γ. This results in a plateau in the cost curve until γ = 0.4/1.4 ' 0.29, which is when

the AVs take over the vacancy left by the SVs. The cost does not start to decrease until the

proportion of AVs fully covers the original flow of SVs. Then, additional AVs still take the (now

more) expensive route, which lets the SVs use the low cost link (link 2) by themselves. What

this means is that as γ keeps increasing, this route becomes less utilised until the SO traffic

assignment is reached.

For the Braess network, the cost and the PoA as a function of demand are shown in figure

4.5. The demand values at which there are expansions or contractions in the active link set are

marked with vertical dashed lines. Thus, for d = 1 (which is above the deactivation demand), as

SVs are replaced with AVs, the switching threshold for SO (orange dashed line) will be crossed,

since at γ= 1, the SO flow is recovered. This is shown in figure 4.6, along with the flow volumes for

both classes along the inner and outer routes. As there is slack between d = 1 and the switching
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Figure 4.4 ME transitions to optimality for the Pigou network as penetration rate γ increases
for two values of demand: (a) d = 1 and (b) d = 1.4. We can see from the cost plateau on (a) that
for demands where both classes share links (above the UE activation threshold), introducing AVs
does not immediately result in cost reductions. As the AVs take the congestion-sensitive link, the
SVs swap to the other road. In aggregate there is no change in assignment until the proportion of
AVs is high enough (in this case γ' 0.29) so that the travel demand for SVs actually falls below
the UE activation threshold of d = 1.

demand, similar to the Pigou network example of figure 4.4, there is an initial plateau because

the flow corresponding to the SVs is initially replaced by the AVs with no redistribution across

the network. In figure 4.6(b), this effect is seen in the cross-over region of the green and blue

curves corresponding to the flows on the outer routes. In contrast with the Pigou example, the

Braess network does not reach optimal costs until γ= 1.

If we fix the penetration rate and increase the demand on the networks, we can see how the

traffic pattern shifts from SO to UE at different demands. This is because the switching demands

for SO are smaller than for UE (in fact, for affine cost functions, the switching demands are twice

those of SO [99]). Therefore, the potential efficiency gain that might result from the introduction

of AVs is contingent on the congestion level of the network; if the network is so congested that

the UE and SO assignments coincide, there is no gain to be made. Clearly, how this might play

out in larger networks might be very complicated indeed — see section 4.4.

In figure 4.7, we show the flows on the Pigou and Braess network under ME as a function

of total demand. For the Pigou network, this is a simple picture since the flow space has only

two coordinates. For the Braess network, since we have chosen a and b so that the outer-route

costs are the same, we sum their flows and show them on the y-axis. The blue curves are the SO

costs and the red are the UE ones. The ME (dashed lines) follow the SO at low demands, before

crossing to the UE assignment. For higher γ, there is more slack since it takes a higher demand

to reach the switching threshold when the volume of the SVs is lower.
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Figure 4.5 Total cost and PoA for the Braess network with parameters: a =
(0.1, 1.0, 0.05, 1.0, 0.1)> and b = (1.0 0.1 0.05 0.1 1.0)>. The vertical dashed lines show the
activation demand of the outer links (2 and 4) as well as the deactivation demand for the link
3. The blue lines correspond to SO and the orange lines to UE. For each pair of lines, the first
corresponds to the activation of the outer routes and the second to deactivating the inner route.
The arrow on the axis marks the demand to be used in the ME example, see figure 4.7.
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Figure 4.6 Transition to optimality under ME with increasing penetration rate for the Braess
network. (a) Total cost relative to the UE and SO costs. (b) Flows for the inner route and one of
the (symmetric) outer routes for both AV and SV classes. Compare with the transition for the
Pigou network in figure 4.4. For the Braess network, the system does not reach SO cost until
γ= 1. The reason can be seen in (b): there is non-zero SV flow on the inner route that congests
the outer routes which the AVs take exclusively.

(a) Parallel 2-link network (b) Braess network

Figure 4.7 The variation in equilibria for the Pigou network (a) and the Braess network (b), as
demand increases. Mixed equilibria for different values of γ are denoted by the dashed lines. The
blue and red curves correspond to SO and UE respectively. These curves in the flow space are
parametrised by demand. The UE assignment follows the SO assignment (vertical line along the
ordinate axis) until the first activation is reached.
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4.4 Transition to Optimality (Large Network Ensembles)

The transitions to optimality for larger and more complex networks are messier than for the

simple examples developed above. This is because of the great variety of potential flow shifts

that happen as more vehicles chose altruistic paths, due to the explosion in the number of paths

causing many more cross-overs between cost functions. This in turn causes many plateaus in the

costs due to the reservoir effect discussed in section 4.3 above.

In section 4.4.1 we examine the transition to optimal for a single αβ-network. We show that the

typical behaviour of class-costs of a single αβ-network is representative of the ensemble behaviour,

with AVs incurring higher costs than the original average UE costs until the penetration rate γ

is high (γ' 0.8). The networks studied are based on a 10×10 grid (i.e, N = 100). In section 4.4.2

we increase N to N = 225 to seek size dependent effects.

4.4.1 Preliminary observations for αβ-networks

Figures 4.8 and 4.9 show the transition from UE to SO through the increase in γ of a ME for

an αβ-network with N = 100 nodes, α̂' 0.09 (α= 0.61), and β= 1.4.The ME was calculated for

one OD pair, corresponding to ω1 of chapter 3. Figure 4.8(a) shows the PoA profile and the cost

difference between the UE and SO assignments. The value for the aggregate demand (d = 0.01)

was selected so that the travel demand for the SV class traverses most of the PoA peak as γ

increases. The cost transition is shown in figure 4.8(b). The total cost of the assignment (ΦSO(x))

is normalised so that the UE cost baseline is zero and the UE cost is one, that is

(4.7) Φ̂(x)= ΦSO(x)−ΦSO(xSO)
ΦSO(xUE)−ΦSO(xSO)

.

Compare figure 4.8 and figure 4.4. The form of the cost transition clearly takes a quite

different qualitative form the small scale examples of section 4.3. In figure 4.9 we show the

difference in costs ‘per-vehicle’ of the SVs and AVs. Since we have a continuous demand model,

this cost-per-vehicle becomes the cost-density per unit of traffic flow. In general, the αβ-networks

show a transition in accordance with the literature (namely, [61] and [113]); the total cost for the

SV class (as well as the aggregated cost) begins to decrease as soon as AVs are introduced, yet it

is not until around 30-40 % of the vehicles are altruistic, that there is a sharp decrease in the

normalised total cost.

Observe (figure 4.9(b)) for a single αβ-network, that the sharp reduction in total cost at γ' 0.3

is a result of the steady decrease of the SV cost in conjunction with the start of the decrease in the

AV cost after its initial rise. On closer inspection, we can observe rather the complex structure

in the cost reduction. Note that the peak in AV costs mirrors a dip in the SV cost. Note that the

exemplar network reaches SO costs before γ= 1. This finding is consistent with Yang et al.’s [108]

results for their multiclass equilibria, where SO costs are reached before the whole user fleet are
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Figure 4.8 Demand range and transition to optimality of network of an αβ-network drawn
from an ensemble with parameters N = 100, α= 0.61, and β= 1.4. (a) The PoA and difference
between UE and SO costs is shown. (b) Transition from UE to SO for the ME as a function of the
penetration rate γ, as captured by the total cost of the system. The total cost shown is normalised
according to equation 4.7.

AVs, however, the exemplar network we have used is a much more complex network than either

of their examples.

The averaged per-vehicle costs of the ME for four different ensembles are shown in figure 4.10.

The ensemble parameters are α̂= 1/3 and 1/2 and β= 1.4 and 1.6. The PoA curves are averages

for 10 networks in each ensemble for 20 values of γ which are uniformly spaced between γ= 0

and γ= 1 inclusive. A single OD demand was prescribed according to section 3.4. The range α̂< 1

(where re-sampling boxes do not overlap) highlights the effect of numerosity of paths, as the

number of edges, and hence the number of paths, is higher for lower α̂.

In a similar way to the per-vehicle class-costs of our exemplar network, see figure 4.10, the

cost density of the AVs does not go below the initial cost of the UE assignment until around

γ= 0.8 or higher. This is an important finding because at that stage the majority of users incur

higher costs than at the initially ‘inefficient’ UE assignment. However, in the bulk of the system,

the benefits to the small SV class are so large that at first glance, it seems that the whole system

operates ‘better’.

4.4.2 UE to SO transitions as the network size is increased

In terms of the total costs, it is useful for us to have a simple model to use as a yardstick for the

transitions. For our model to be meaningful, it has to capture a ‘reasonable’ way of displacing

the equilibrium in link flow space: the space whose coordinates are given by x (⊆ Rm+ ). Due to

the model’s simplicity, we start with a UE to SO transition that follows a straight line in the
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Chapter 4. Mixed Wardropian Equilibria

Figure 4.9 The cost-per-vehicle as a function of γ for both classes is shown for the same network
as used for figure 4.8). The reduction in costs for the SVs starts as soon as the AV class appears.
We can see how the AVs carry more of the system costs, and at first their costs can even go up.
Eventually the reservoir is exhausted, and as the AVs become more influential in the network,
the cost for AVs decreases as well (at around γ= 0.3).

flow space, and we refer to is as the linear transition. We parametrise this transition by γ ∈ [0,1].

Therefore, we define the linear transition, xLT(γ), by

(4.8) xLT(γ)= (1−γ)xUE +γxSO.

Since networks from ensembles with different parameters have different network lengths,

LN , in order to compare assignment costs between them, the curves will be normalised with

respect to the UE cost as was done in figure 4.8(b) by using equation 4.7.

In figure 4.11, we show transitions of individual networks drawn from a single ensemble

(N = 100, α̂= 2 and β= 1.6) together with the mean ensemble transitions costs for six different

ensembles (all with N = 100). Figure 4.11(a) illustrates the intra-ensemble variation. It is clear

that the behaviour of individual networks is very diverse, which is strong evidence that local

structure has global consequences. The main difference between the networks of the same
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Figure 4.10 Class breakdown of the costs-per-vehicle for four αβ-ensembles (N = 100). Costs
are averaged over 10 networks. Here α̂' 1/3 corresponds to α= 0.03, and α̂' 2/3 to α= 0.06. The
box line shows the γ value (γ' 0.8) at which the costs for the AVs drop to the original UE costs
for the ensemble with α̂= 2/3 and β= 1.4. Of the four ensembles shown here, γ' 0.8 is the lowest
value for which AVs experience costs lower than the original UE costs.

ensemble is the shape and location of empty islands determined by the way the intersections

cluster (refer back to figure 2.6, page 22).

Compared to the cost curve for the linear transition, the variation is high. However, as we

increase the sample size (the number of networks per ensemble) the mean transition curves for

all ensembles display a collapse, apparently onto the linear transition.

In terms of the linear transition itself, it is indeed different for all the networks. However, in

terms of normalised costs the difference is smaller than the thickness of the line itself. In fact the

averaged linear transition converges to the curve (γ−1)2. It is also interesting, yet not surprising,

that for 30 networks, the mean costs fall slightly below the transition. This is easily understood

by recalling that due to the set-up of the problem, shifts in equilibria due to ME can only lower

the total cost, whereas the linear transition only guarantees that the flows are feasible.

As the networks increase in size, the effects of the multiplicity of routes are expected to domi-

nate the behaviour of the networks. Therefore, in figure 4.12, we show the mean transition costs

for four ensembles. The first important observation is that the cost transitions fall consistently
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(a) (b)

Figure 4.11 Comparison of transitions of ensembles compared to the linear transition. (a) Cost
transitions for 10 networks for the ensemble with N = 100, d = 0.01, α̂ = 2 (corresponding to
α' 0.18), and β= 1.6; the linear transition for the ensemble is the grey line. The thin black line
is the curve (γ−1)2. (b) Mean (of 30 networks) transitions for six different ensembles. For each
α, two ensembles are used with different β: for α̂= 1/4 (α' 0.023), β= 1.2 and 1.8; for α̂= 2/3
(α' 0.06) β= 1.4 and 1.6; and for α̂= 1.75 (α' 0.16) β= 1.2 and 1.8. The values of β were chosen
to have a larger range of road densities for some of the ensembles.

below the linear-transition curve, except towards the γ= 1 end of the ME. We can also see, that

for higher β, the effects of α are much more significant in discriminating between the ensembles.

Changing the triangulation of the networks reveals their underlying randomness or griddedness.

Surprisingly, the larger networks show more variation, meaning that global properties arise from

the underlying clustering of the nodes (recall section 2.3, page 11).

As the networks are scaled up in size, statistical patterns start to emerge. In terms of the

best type of structure that the αβ-networks can have, the lower the β is, the faster the ME

reaches SO. The number of triangles in the networks reflect the number of possible short-cuts

(dependent on cost-function parameters, of course), therefore the results show that increasing

the number of routes in the networks increases the efficiency of ME, across almost all values of γ.

Contrary to the widespread belief that grids are inherently efficient, in this application it is not

the griddedness of the network that matters the most.
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Figure 4.12 Cost transitions of four ensembles based on 15×15 primitive lattices are displayed
(N = 225). The grey curve indicates the costs of the linear transition xLT. The samples from each
ensemble consist of 10 networks. Compared to figure 4.11(b): the effect of β is more pronounced.
Note the spacing between the red and turquoise curves of both α = αcrit = 0.0625 ( α̂ = 1), in
contrast with overlap of the green and turquoise curves. The overlapping curves correspond to
ensembles with β= 1.8, regardless of the griddedness of the networks.

4.5 Discussion

For small αβ-networks (100 nodes), as well as for demand levels where the cost gap between UE

and SO total costs are small, the averaged cost transitions follow the linear transition closely. As

route diversity increases by increasing the size of the networks and thus the node density, better

efficiencies than the linear transition can be achieved.

On average, as can be seen from the concavity of the transition curves in figures 4.11 and 4.12,

most of the cost reduction occurs in the range of 0< γ< 0.4. The pathways followed by individual

networks show that, the intra-ensemble variation is high and individual networks can vary from

the mean considerably.

For small networks (N = 100) Ensembles of different morphology (as well as total network

length), behave like the linear transition between a UE and an SO assignment. As the networks

increase in size, and thus so do the available routes, the ME transition to optimality improves

85



Chapter 4. Mixed Wardropian Equilibria

relative to the costs of the linear transition. As the routes increase, the structural features of

the networks become more significant, as is shown in figure 4.12. The ensembles with higher β

(β= 1.8) respond better to the introduction of AVs, with consistently lower costs across all values

of the penetration rate γ than either of the ensembles with β= 1.2. As discussed in chapter 2, the

effect of low β is that the density of edges is higher, which reinforces the effect of the number of

available routes: with a larger number of edges there are more routes available to the users. This

means that the AVs can spread themselves out more, allowing them to not interfere with each

other’s costs as much as for the less densely connected networks.

We remark that an issue that deserves further study is the ‘fairness’ in the ME assignment.

Even when AVs are in the majority (0.5 ≤ γ. 0.8), they can still experience costs higher than

the original costs of the UE assignment. The model we have used, is perhaps to stringent in the

requirement of having the AVs achieve SO costs. For one, at low penetration rates, the effect they

can potentially have on the network is expected to be small regardless of the network topology;

requiring the AVs to minimise some other function (for example the total cost to the AV user

class) might cause the cost of the AV class under ME to not be as high.

This chapter serves as a proof-of-concept of how simple, perhaps even overly-artificial models,

can be used for the understanding of the efficiency (and inefficiency) of traffic equilibria in a

mixed user-class situation.

By using the canonical exemplar networks, Braess and Pigou, we have shown that the

demands at which links (and routes) switch on and off determine for which intervals of the

penetration rate, γ, there is a cost reduction under ME. We have also shown, by means of

numerical experiments, that for more complex networks, the ME presents the same reduction

mechanism as for smaller networks with plateaus and quadratic decreases in costs with γ.

We find that under the right demand levels, AVs can indeed drive the system to optimal.

There are already significant improvements for γ between 0.2 and 0.4: typically the equilibrium

reaches the mid-point between the UE and the SO cost in this interval. This reduction, however,

can be deceiving, since depending on the demand and the network, the UE and SO assignments

can be very close together. The contributions from the present chapter can be condensed into the

following statements.

C4.1 The reduction in costs for small networks happens in a piecewise way that is governed by

the switching demands of the active link set. Complex networks, with more overlaps in the

switching demands, thus exhibit smoother cost transition curves. Cost reduction occurs

mainly due to AVs being displaced to higher cost routes, rather than by encouraging SVs to

take better ones.

C4.2 Larger scale networks — that better sample local structure in a single graph — show that

route diversity is more important than local network-structure patterns. Larger networks

experience larger improvement to aggregate costs than smaller ones, under ME assignment.
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4.5. Discussion

C4.3 In this route assignment application, the density of roads (and the number of triangles)

matters more than the griddedness of the networks, contrasting with the view that grid

networks are inherently efficient.

C4.4 The use of AVs is ultimately a good way of improving system costs. However, it is not until

very high penetration rates that the AVs (which at that point are in the majority) experience

lower costs than the original UE assignment. The pathway to widespread adoption of AVs

thus seems extremely challenging, at least from the point of view of route assignment.
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5
AN EMERGENT FUNDAMENTAL DIAGRAM

This chapter is concerned with the emergence of macroscopic relationships between traffic

variables. We use the αβ-networks as an experimental tool to explore how routing and structure

determine aggregate behaviours. The ultimate aim of this line of research is to explain the

emergence of a network fundamental diagram (NFD [114], or macroscopic fundamental diagram

MFD [5,48]) from morphological structures of a road network.

The technical challenge faced in this chapter is to maintain the simplicity of Wardropian

routing — and the advantages of its static nature — while being able to experimentally ‘sample’

a phenomenon that is dynamical. For the ‘free-flowing’ branch (beginning in section 5.2), we

exploit the ensemble approach we have been using in this thesis so far. The randomness of the

αβ-networks and intra-ensemble differences in road length can be used in our favour, because a

large diversity of routing situations are thus realised for any given ensemble. For a morphological

network type (measured by α̂ and β) the different networks themselves serve as microscopic

experimental observations from which we extract macroscopic flows.

The congested branch [115] is harder to obtain, because the analogy to congestion from

previous chapters is inadequate in this new context. In an MFD setting, congestion is due

to dynamic effects and queuing, not to distributions of the uniformly moving traffic that is

considered in the STAP. To address this challenge (in section 5.3), we make use of the blurry

boundary between the steps of an optimisation algorithm and their interpretation as a dynamical

system. We do this by considering the STAP as a projected dynamical system [64]. We lay out

the foundations for making the jump to a quasi-static assignment. The novelty here, is in the

application of projected dynamical systems [64] (primarily developed in the context of economic

equilibria) on small networks, as an experimental method for sampling congested (which we will

now understand as sub-optimal) assignments.
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5.1 Background

The macroscopic fundamental diagram (MFD) attempts to describe, in a similar manner to the

fundamental diagram of traffic flow theory, how relationships between observed traffic variables

are related to each other. The traditional fundamental diagram for a road, or motorway, captures

the relationship between traffic flow, speed, and density. In a similar manner, the MFD attempts

to capture relationships between aggregated traffic variables in more complex systems, e.g., city

road networks.

Determining how network structure gives rise to traffic patterns has been of interest for many

decades. For example, Mahmassani et al. [116] show that clear relationships between macroscopic

traffic variables can be observed in simulations on gridded networks. The widespread availability

of sensors to make large scale quality measurements of traffic has more recently led to empirical

evidence for the existence of an MFD ( [5] by Geroliminis et. al.) in Yokohama. This success has

spurred the study of conditions for the emergence of an MFD [48,117] and into ways of deriving

MFDs (like in [118]) and approximating them, for example, [119] by Leclercq and Geroliminis.

These studies have shown that a given network may be partitioned into ‘homogeneous-enough’

sub-regions, each of which has its own MFD. In order to identify MFDs, networks are partitioned

using procedures that deliberately minimise data scatter. The resulting subdivided networks

tend to be structurally uniform, yet present qualitatively different morphologies for the different

sub-networks. Thus, from a traffic management point of view, it shows that network traffic may

be modelled by a set of reservoirs that exchange flows [120], which in turn has increased the

interest in research on cordoning strategies.

The main result of interest, from the morphological point of view, that we have been building

in this thesis, is that ‘homogeneous enough’ networks can give rise to well defined, unique

MFDs. Thus, the αβ-network family is an appropriate tool to to examine how sensitive is the

MFD to slight statistical variations in network structure. Using the STAP (see chapter 3) as

a foundation, we also, a priori, evade the common oversimplification (as discussed in [121]) of

considering trip lengths of all vehicles to be the same. Wardropian equilibria (whether UE or SO)

naturally yield distributions of lengths of trips, even for flows belonging to the same OD pair.

This avoids introducing additional considerations about user classes based on trip length (as is

done in [122] by Batista et al.). Even when the partitioning is good, the partition boundaries

may fluctuate depending on the demand and traffic state of the network (see, for example [49]

by Ji and Gerolimins). To fit the reservoir description of a network, the sub-networks need to be

manipulated (sometimes heavily), and in a way that depends on demand and the traffic state.

In a recent study [9] by Mariotte et al., the authors calibrate and validate a multi-reservoir

MFD model for the city of Lyon (we reproduce two different partitions that they obtain in figure

5.1). They note the importance of the path length diversity and the usefulness of considering

Wardropian equilibria in estimating path flows from induction loop data. They conclude that

while methodologically useful in some cases, Wardropian equilibrium routing is a naïve and can
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Figure 5.1 The Lyon road network partitioned into five and ten reservoirs respectively. Repro-
duced from [9], by Mariotte et al. (corresponding figure 4 in their paper).

fail to describe real-world flows. The simplicity inherent in the STAP, however, will be useful to

us as a conceptual starting point.

Our focus is on the emergence of equilibrium patterns from collective behaviour as a con-

sequence of morphological properties of the networks themselves. Conceptually, this differs

from the normative approach [49, 117]. We adopt the lesser-used term network fundamental

diagram (NFD), to highlight that the aggregation we consider is over the network. In fact, the

unaggregated traffic variables are already macroscopic. The coarse graining done to obtain the

MFD reflects a scaling-up of the system in terms of the complexity (and variation) of a transport

system’s routing options. As a starting point we ask the question: does starting with homogeneous

network regions, or patches, lead to the emergence of a macroscopic fundamental diagram for the

network?

The NFD consists of two regimes formed by a congested and an uncongested branch. The

uncongested branch is the most understood, partly because it is the easier branch to observe

empirically, it exhibits the behaviour of the network under steady flows. The congested branch

can be understood in terms of queuing and spill-back effects, however, the transient nature

of traffic jams reduces the frequency of empirical observations with the scatter-minimising

partitioning approach. Therefore, in section 5.2 we show how, even with high intra-ensemble

variation, uniform networks yield distinct uncongested NFDs. In the subsequent sections we

change gears and focus on how to take advantage of Wardropian parsimony and incorporate a

type of time-dynamic that will yield feasible, yet sub-optimal assignments. From the point of
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view of uncapacitated static assignment, congested network states and sub-optimal ones are

synonymous.

5.2 Uncongested Branch of the NFD

The static nature of the STAP allows us to easily draw the correspondence between free-flowing

traffic and the time invariant flows of equilibrium traffic patterns. The subtlety is the instant

propagation of traffic conditions through the network due to the simplicity of the STAP model.

We also note that, as in the previous chapters, the choice of OD pattern is crucial. To study

the emergence of an NFD in a morphology-centric way, simplifications of OD patterns, and

simulations of different traffic states of the network, must be suitably made. Due to the dynamic

nature of the MFD, when it exists, it persists even when the data points are not causally correlated

amongst themselves. As a proxy for multiple observations at uncorrelated time intervals, we

make use of the ensemble formulation. The (macroscopic) traffic state of a single network plays

the role of an observation point of the traffic states accessible to an ‘ideal network’, abstracted in

terms of its morphological parameters α and β.

In order to avoid building a trivial model, we need to ensure that even across networks of the

same morphology type and equal demand levels, there is diversity in the realised traffic states.

The way we achieve this is by setting up an open system, where vehicles in transit through the

sub-network do not necessarily have their origins or destinations within it. The sub-networks we

consider are composed of the nodes and edges completely contained within the central quadrant

of each αβ-network. We refer to these sub-networks as the region of study, A, for which the NFD

will be studied. Figure 5.2 illustrates the way we partition the networks, and how the central

quadrant satisfies the desired ‘openness’ of the region in terms of having incoming and outgoing

traffic as well as having journeys originate or terminate within A.

The general idea of our method is as follows. For a given ensemble (determined by α, β and N),

networks are sampled and the STAP is solved for multiple OD pairs and for different demands.

To avoid overloading OD pairs that are close to each other, for a given global demand dΩ, the

demand corresponding to each individual OD pair, dωi , is proportional to the Euclidean distance

between the origin and destination nodes. That is,

(5.1) dωi = dΩ
|ωi|∑
ω∈Ω |ω| ,

where |ωi| is the euclidean distance (modulo the periodic metric introduced by the toroidal

boundary conditions) between the origin and destination nodes of OD pair ωi.

Macroscopic traffic quantities are then aggregated over the central quadrant of each of the

networks. The traffic quantities for each quadrant, and for each demand value are taken as a

traffic state ‘observed’ on the particular ensemble: thus, allowing for many different traffic states

that are representative of the ensemble, rather than of a particular individual network.
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Figure 5.2 An αβ-network (with N = 100 nodes) with the central quadrant, region A, shown
with the blue square. The traffic pattern is the UE pattern corresponding to ten randomly chosen
origins and destinations. In our scheme, a single node can belong to at most two OD pairs, but
cannot be the origin (or destination) of both.

5.2.1 Experimental set-up

In this section we describe the set-up for the numerical experiments. The key feature is the way

demand is increased on the networks. To approximate a realistic loading, the demand is increased

in fixed steps. To simulate that time is elapsing and that vehicles are reaching their destinations

(which has to be externally imposed on the stationary flows given by the STAP), for each demand

value some of the cost of each edge is incorporated in to the free-flow travel-time. For demand at

time-step t, dt, we modify the free-flow travel time of each edge as follows,

(5.2) ai, t = ai + 1
2

bi xUE
i, t−1.

This is similar to modelling many time-slices, where at slice t, users are influenced by the traffic

state at t−1. Only half of the delay term is incorporated to the ai to represent some users from

time slice t−1 having reached their destinations by time-slice t. Even though we talk about time

slices, the stationarity of the traffic patterns mean that from xUE
t to xUE

t+1, the difference is not that

a fixed ∆t has elapsed, but that the network has reached an equilibrium under the new conditions.

Keeping the changes in demand small enough (therefore maintaining ∆xUE small as well) is what

gives the illusion of time passing, without the need to consider more sophisticated interventions

to make the STAP into a dynamic (or quasi-dynamic) assignment model (see for example [123],
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although we are deliberately avoiding the type of sophistication needed to make the routing

match observational data). A comprehensive discussion of how different traffic assignment models

are related to each other is presented by Bliemer et al. in [124].

The macroscopic traffic variables we calculate correspond to the well-known microscopic ones

involved in the relationships referred to as the (classical, i.e., link-based) fundamental diagram.

The network level definitions of variables that we use are trip production PA and region density

ρA. The production is calculated by

(5.3) PA =
∑

i∈A vixi

LA
,

where LA is the total road length of all roads fully contained in A and vi is the speed of vehicles

on edge i. Trip production is the total veh ·km travelled in region A per unit time. The region

density is given by

(5.4) ρA =
∑

i∈A xi ci(xi)
LA

= kA

LA
,

where kA is the number of vehicles in the region, or more specifically, the aggregated vehicle

occupation of all the links completely contained in A.

Figure 5.3(a) schematically shows how a hypothetical loading and unloading of demand is

done. As a sense check of our experimental approach, in figure 5.3 we show the production NFD

observed during loading and unloading of a single network with our method. We note the different

path taken during the loading phase and the unloading phase. In our model, this is a consequence

of the perceived costs to users at step t, since the observed free-flow costs incorporate some of the

demand from the previous step. Thus, in the unloading phase there is a significant reduction in

production. Note, however, that qualitatively this behaviour is the same as the hysteresis effects

that are observed in fully dynamical simulations [125] as well as observationally [10]. Encouraged

by this finding, that with the quasi-dynamic modification to the STAP we can qualitatively recover

the same type of network behaviour that is observed under fully dynamic conditions, we continue

with the ensemble approach.

The networks we use have N = 225 nodes each (generated from a 15×15 grid). The ranges

chosen for the morphological parameters are α ∈ {0.2, 0.4, 0.6, 0.8, 1} and β ∈ {1.2, 1.4, 1.6, 1.8}.

For each (α,β) pair an experimental ensemble of 100 networks is used. A random OD pattern

of 20 origins and destinations is used for each network (∼ 10% of the nodes). The total network

demand is varied in a range that explores the demand region with the largest cost gap between

the UE assignment and optimal costs. The demand for each OD pair is scaled to be proportional

to the Euclidean distance between each OD pair (equation 5.1). This way, we avoid overloading

links incident to origins and destinations. The total demand of the networks was increased from

0.2 to 4 in steps of 0.1. From each demand value to the next, the free-flow costs are modified

according to equation 5.2.

Figure 5.4 shows the speed-density relationship for four different ensembles. The data points

corresponding to each ensemble form striations that are clearly separated from each other,
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(a)
(b)

Figure 5.3 (a) Increase and decrease of demand used with the scheme expressed in equation 5.2
and (b) the response of a network of N = 225 (α= 0.06 and β= 1.4) nodes for demand increasing
from dΩ = 0.2 to dΩ = 4 in steps of ∆dΩ = 0.1 and subsequently decreasing to dΩ = 1.6 in steps of
size ∆dΩ =−0.4. Note the difference in loading and unloading, which is similar to the hysteresis
shown in [10].

showing the formation of well-behaved relationships between the network traffic variables. In

figure 5.5 the trip production (PA) vs density (ρA) is shown for 20 ensembles. Each data point is

an average of the density and production over a whole ensemble subjected to the same global

demand. The curves of fit are of the form PA = Cp
ρA, with fit coefficient C. They are coloured

according to the mean observation region length LA to show the trend of the family of PA vs ρA

curves with network length. Each data point in figure 5.5 corresponds to the ensemble average of

PA over 100 networks.

There is a near-monotonic relationship between region length and performance, which is a

sense-check on the results: as infrastructure supply increases so does trip production. However,

the effects of network topology can be seen more clearly in figure 5.6. For mid-α values the

spread of the NFD curves due to β means ensembles with similar α can be hard to distinguish by

performance alone. Near the turning point α' 0.5, the coefficient lines are parallel and close. As

α increases the production curves for ensembles with very different griddedness (see lines for

α= 0.2 and α= 0.8 in figure 5.6) yield similar production curves but can be distinguished due to

their values of β.

For α= 1, the linear trend of the fit coefficient is not as good. In these ensembles, due to the

interplay between clustering of nodes and the edge density, the networks show more diversity,

thus exhibiting more complex behaviour.
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Chapter 5. An Emergent Fundamental Diagram

Figure 5.4 The (vehicle) mean speed against density is shown for four ensembles (N = 225)
that cover a large range of α for β= 1.6. Each data point corresponds to a particular demand
value for one of the networks sampled for each ensemble.
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Figure 5.5 The increase of trip production PA with respect to vehicle density ρA. The marker
colours blue, green, red, cyan, grey correspond to α= 0.2, 0.4, 0.6, 0.8, and 1, respectively. The
different shapes correspond to different values of β. The fitted curves are coloured according to
the region length LA and are of the form PA = Cp

ρA. In general LA is larger for networks that
perform better, however the trend is not smooth.
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Figure 5.6 The fit coefficient C is plotted against the LA. The coefficients depend linearly on
the region length which is strongly modulated by α. Note the cross-over of the α= 0.2 (blue) and
α= 0.8 (violet) lines reflects the staggering of the production curves in figure 5.5.
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5.3 Towards the Congested Branch

Building up the congested branch from the STAP is considerably more complicated than the

uncongested section of the NFD. This is mainly because the type of congestion is dynamic in

nature. In more realistic (or detailed) traffic settings, delays and congestion are mostly due to

queuing at intersections. For examplethe two-fluid theory of Herman and Prigogine [126] is built

precisely on this idea.

As mentioned at the beginning of the present chapter, we are concerned with how to equip

the STAP so as to obtain different congested states in a dynamic way. Central to the existence

of the NFD is its time invariance, that is, the persistence of the structure over long periods of

observation. Also, in the congested branch of the NFD, many traffic jams are expected to share a

common structure regardless of their microscopic details. This is reminiscent of orbits converging

to strange attractors in chaotic dynamical systems. In the limit where an orbit converges onto

the attractor, a large part of the phase space is explored as an effect of topological transitivity

(a standard result from dynamical systems theory, for example refer to [127] or [128]). Modern

dynamical systems theory has shown the usefulness of piecewise-smooth dynamical systems,

in both applications ( [129]) and in new methodological techniques to deal with hard classical

problems dealing with friction and compliance (e.g., [130,131]).

In what follows, instead of extending the STAP model to move closer towards the dynamical

regime, we revisit models showing convergence to Wardropian equilibria and relate them with

so-called Projected Dynamical Systems (PDS). A detailed monograph of these systems is [64]

by Nagurney and Zhang. These dynamical systems are a type of non-smooth system inspired

by ideas from variational inequalites from optimisation theory and projected gradient descent

algorithms. The main idea is that for some variational inequality problems, a corresponding

constrained dynamical system can be constructed so that its stationary states coincide with

solution sets to the variational inequality formulation.

5.3.1 A dynamical twist: projections and flow-swaps

In contrast to the optimisation formulation, in which equilibrium states are found as the (global)

optimal of an objective function within a constraint set, one can consider a dynamical system in

‘flow-space’ that has the Wardropian user equilibrium flow pattern as a stable steady state. The

equations of motion would then describe how users of a transport network react (in subsequent

journeys) to the costs of routes (of their current journey). The way the flows move around in

this flow-space represent how users shift between routes to reach equilibrium from an initial

state. The time evolution of the system tracks the traffic pattern throughout the equilibration

procedure until no better costs can be achieved by any user.

The structure of the flow space is governed by the network structure. In order to understand

the effects of route and link conservation constraints on the flow space, after defining the
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dynamical systems we examine, we will give three examples of different networks that capture

different situations: the Pigou network, where the links coincide with the routes; the Braess

network to generalise to higher dimensions; and lastly, the lollipop network with three links and

two routes, to explicitly show the structure of the flow space when the systems are cast in terms

of link flows as opposed to route flows.

The constraints of the STAP define a convex feasibility region. In fact, they define a polyhedron

in flow-space. If we imagine a flow swapping mechanism that pushes the route flows in the

direction where the costs decrease, then when the flow vector is in the interior of the constraint

set, the change is in the direction opposite to the cost vector C(y). If the flow vector lies on the

boundary, then the trajectory of the flow vector evolves parallel to the projection of the vector −C.

If we call the convex constraint set K , then the projected dynamical system

(5.5) ẋ=ΠK (x,−F(x)),

captures the behaviour of the equilibrating network when the vector field F=C. The operator

ΠK (p,v) is the projection of vector v at p onto the convex set K . That is,

(5.6) ΠK (p,v)= lim
δ→0

PK (p+δv)−x
δ

.

Since K is a convex polyhedron defined by the demand conditions for each OD pair (
∑

p∈Pω yp =
dω), the projection Pk is well defined. Figure 5.7 shows the general behaviour of the projection

onto K . Points in the exterior are projected onto the bounding faces, possibly more than one, in

which case the resulting PK (v) will lie on an edge or vertex of the constraint polyhedron rather

than just on a face.

For the case where the closest point of K to the vector v being projected is a vertex (like p2 in

figure 5.7) the normal vector to K is not well defined. For each face of K that the vertex belongs

to there is a normal vector defined. We show the direction of the normals at the top vertex with

the dashed red lines. At the vertices, the possible vectors that can be thought of as normal to

K are contained in the normal cone at the vertex. The normal cone is comprised of the conic

combinations of the normals of all the faces to which the corner (or edge) in question belongs.

To show that the right hand side of equation 5.5 is not a smooth function, we observe what

happens to the projection of a vector as the point where it is being applied to approaches a corner

of K . In figure 5.8 we show a vector field F and the projections of F at two points p and q along a

face of K . If we consider displacing p along the face towards q in the direction of the projection

Π(p,F(p)) (shown as red arrows), then when the top vertex q is reached, the projection of the field,

now Π(q,F(q)), points tangential to the left face; the projected vector suffers a jump discontinuity

as the top vertex is reached.

For vectors in the interior of the constraint set, x ∈ K◦, the projection map is,

(5.7) ΠK (x,v)= v.
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Figure 5.7 For the triangle K projections of two points p1, p2 are shown. PK (p1) lies on the
corner since it is contained in the normal cone to K at the top corner. For projections that lie on
one face only are like that shown for p2, with PK (p2) being the point that minimises the distance
to the closest plane that defines the faces of K .

Figure 5.8 The projection of a field F is shown for two points on the boundary of a convex
polyhedral set K . The projection of the field at point p, Π(p,F(p)), has a jump discontinuity at
the vertex: visualised as following the displacement of point p as it slides towards q along the
boundary of K .

In terms of a projected dynamical system following equation 5.5, if x is in the interior of K then

its velocity is just given by the unconstrained vector field (in this case v).

For vectors in the boundary of K , x ∈ ∂K , the projection can be obtained by subtracting from

v, its component normal to K . If the projection lies on a face of K then the normal is the normal

vector to the plane that defines the face. If, like at point q, the normal has to be chosen with more

care, its projection can be written as

(5.8) ΠK (x,v)= v+γ(x)n?(x),

where the appropriate (inward) normal vector n? is the one that aligns the most with v,

(5.9) n?(x)= arg max
n∈n(x)

(−n ·v).

The set of possible normal vectors to K at x is the set of all vectors n(x) which define planes of

support of K at x.
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Given the linear constraints we will be dealing with, care must be taken at corners of K .

Going back to figure 5.7, any vector contained within the dotted red lines at the top vertex (for

instance p1) belongs to this set of normals. The scalar γ in equation 5.8 is the distance from K to

v. And we only need to project it if points outwards to the set, so it can be written as,

(5.10) γ(x)=max{0, −n ·v}.

This way of expressing ΠK is given in [64]. Here we give it to make it clear that while the projected

dynamical view might seem cumbersome, the actual projection mechanism can be understood

geometrically in a simple way: if the vector v points outwards of K at some x on the boundary,

then project it back onto ∂K along the ‘best’ tangent. If the point x is either an interior point or if

it is a boundary point but v points inwards, then ΠK (x,v)= v.

The main reason for giving the form for ΠK as in equations 5.8-5.10, is to show the similarity

with the flow swapping mechanism of Smith [63]. Equation 5.10 essentially generalises the ( · )+
operation used by Smith to keep flows positive. The difference is that the constraint set K in

general can arise due to different constraints.

In general, the projected dynamical system described by,

(5.11) ẋ=ΠK (x,−F(x)),

when compared to the corresponding unconstrained dynamical system that evolves according to

(5.12) ẋ=−F(x)

will have different fixed points (to start off, they have to be contained in K). And even when the

projected system has fixed points arising from the projected dynamics, the type of stability does

not have to correspond to that of the unconstrained system.

To give an example (inspired by example 2.1 in [64]), the phase portrait of the following

projected dynamical system is shown in figure 5.9,

(5.13) ẋ=ΠK1(x,−H(x)),

where x ∈R2, and the constraint set K1 is the triangle defined by

x1 ≥ 0,

x2 ≥ 0,(5.14)

x1 + x2 ≤ 1,

and the vector field H is given by

(5.15) H(x)=H1(x−c),

102



5.3. Towards the Congested Branch

with

(5.16) H1(x1, x2)=
(
−x2

−4x1

)
,

and

(5.17) c= 1p
2

(
1

1

)
.

The vector field H rotates around c, and for the unconstrained system, the trajectories would be

ellipses around c. That is, c is a centre. However all trajectories starting in K1 converge to the

top-left vertex at (0, 1).
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Figure 5.9 The phase portrait for the system defined by equation 5.15 is shown. The boundary
of the feasibility region K is shown in green, several trajectories are shown and one trajectory
with initial condition in the interior of K that converges to a fixed point of the projected system
is shown in magenta, with initial condition shown in red. The fixed point for the unconstrained
system (the yellow dot) is not asymptotically stable; it is a centre, whereas the fixed point for the
projected dynamical system is asymptotically stable.

The main point of this example is to show that the equilibrium properties of the projected

system in general can be very different to the unconstrained system.
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In [64], conditions for the existence and uniqueness of an asymptotic steady state are given

for projected dynamical systems which are equivalent to equilibrium states of variations of the

STAP. The dynamics reflect the flow equilibration dynamics that can be thought of as a dynamical

process through which the users swap to ‘better’ routes over time and while doing so converge to

a user equilibrium pattern.

For a network with a fixed demand, the route equilibration process defined by

(5.18) ẏ=ΠKN
(y,−CN (y)),

where ΠK is defined as above and KN is the polytope defined by the demand constraints of the

transport network N . These constraints consist of the standard non-negativity of flows,

(5.19) yp ≥ 0, ∀p ∈ Pω,

for all routes in the network (i.e., for all ω OD pairs) along with the conservation of flows for each

OD pair,

(5.20)
∑

p∈Pω

yp = dω, ∀ω ∈ΩN .

The cost vector has been labelled CN , to highlight that the route costs depend fundamentally on

the network structure,

(5.21) CN (y)=C(R x),

with R being the the route-link incidence matrix of N .

Example 1: two parallel links (Pigou’s example)

To place the projected dynamical systems back into the transport context we return to the famous

example of Pigou [132], also widely used illustratively by Roughgarden [43] for its simplicity.

Consider a network consisting of only two parallel links, as is shown in figure 5.10.

The number of routes is the same as the number of links. Mathematically, this means that

the route-link incidence matrix reduces to the identity matrix in two dimensions (R, in equation

5.21, is the 2×2 identity matrix), so we have

(5.22) yi = xi, i = 1,2.

We will use cost functions

C1(y)= 1,(5.23)

C2(y)= y2,

so that the first route has constant costs and the second route’s cost is proportional to the route

flow. For simplicity we are assuming that the free-flow cost vanishes for zero flow.
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5.3. Towards the Congested Branch

Figure 5.10 Pigou’s example: (a) Parallel 2-link network. (b) The 2-simplex that makes up the
constraint set K for this network is the the intersection of the line y1 + y2 = d with the positive
quadrant R2+.

The corresponding projected equation for the Pigou network for a demand level d = 1 is given

by

(5.24) ẏ=ΠK (y,−C(y)),

for C defined according to equations 5.23, and K is the line segment defined by the line y1+ y2 = 1

for y1, y2 ≥ 0.

The phase portrait of the system along with the trajectory for an initial condition y0 converging

to the user equilibrium flow yUE is shown in figure 5.11 (a). At the equilibrium flow,

(5.25) y= yUE =
(
0

1

)
,

the field

(5.26) −C
(
yUE

)
=−

(
1

1

)

is normal to the constraint set K and we have the asymptotic steady state of the system.

Given the expression of the projection from equation 5.8, the parameter γ is the magnitude of

C itself and n? is the normal to y1 + y2 = 1,

(5.27) n? =− 1p
2

(
1

1

)
.
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Figure 5.11 (a) Phase portrait for the two-link parallel (Pigou) network defined by equation
5.18 with cost functions 5.23. This dynamical system is equivalent to solving for UE. The initial
condition y0 = (1/2,1/2) is shown in red, the trajectory towards yUE in orange. (b) Phase portrait
for the two-link parallel network. The lines x1 = 0 and x2 = 0 are shown in grey. The convex set
KN to which the dynamical system is restricted is x1 + x2 = 1, given by route-flow conservation
shown in green. The orange line shows the trajectory for initial condition x0 = (0.1, 0.9) (shown in
red) as it converges to the user equilibrium pattern xSO = (1/2, 1/2) (shown in black). At xSO, the
field is orthogonal to K and its projection vanishes.

An equivalent system can be defined that has the SO flow pattern as its asymptotic steady

state. Thanks to the equivalence noted by Dafermos and Sparrow [133], the system with trans-

formed cost functions has for its user equilibrium the system optimal of the original set-up. For

the example that we are using, the transformed cost functions are,

C̃1(y)= 1(5.28)

C̃2(y)= 2x2.(5.29)

A phase space portrait for UE is shown in 5.11(a), with a trajectory for an initial condition

showing the convergence towards

(5.30) ySO =
(
1/2

1/2

)
.

The phase portrait of the system, along with the trajectory for an initial condition y0 converg-

ing to the system optimal flow ySO, is shown in figure 5.11(b). At ySO = (1/2,1/2) the projected

field onto K vanishes which makes it a stationary point, since C̄(xSO)= (1,1), which is parallel to

n̂K1 = 1p
2
(1,1).

The dimensionality of the projected dynamical system corresponding to a network grows

with the number of routes between its OD pairs. This makes the visualisation of the dynamical
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system challenging, but it is possible to get some intuition from looking at a slightly more complex

network than the parallel two-link network.

In general, the constraint set for the number of routes is a simplex of dimension |Pω| −1

defined by the flow conservation equation

(5.31)
∑

p∈Pω

yp = dω,

along with the non-negativity requirement that yi ≥ 0, for i = 1, . . . , |Pω|. To visualise this we turn

to the Braess network.

Example 2: symmetric Braess network

The Braess network allows us to see how networks behave when link and flow variables are not

the same. The virtue of the Braess network is that it has a small number of routes. It has two

disjoint routes that interact only via a third route that shares a link with each of the them. This is

a type of second order interaction since the route-flows of the disjoint routes do not appear in each

other’s cost functions. However, their interaction can result in the famous Braess paradox [55]

The Braess network and the corresponding flow-space, the (two-dimensional) simplex as defined

by equation 5.31, are displayed in figure 5.15.

The Braess network has five links and three routes, so it is an exception in terms of the

numerosity of routes. For the edge and node numbering as is shown in figure 5.15, the Braess

network has the adjacency matrix

(5.32) A =


0 1 1 0

0 0 1 1

0 0 0 1

0 0 0 0

 .

Figure 5.12 (a) The Braess network along with the (b) 2-simplex that is the constraint set K of
the route flows, K ⊂R3.
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We label the routes in the following way,

r1 = {e1, e4},(5.33)

r2 = {e1, e2, e5},(5.34)

r3 = {e2, e5},(5.35)

which means that r1 and r3 are the outer routes and r3 uses the cross-town link e3.

We can express the composition of the link flows in terms of the route flows through the

route-link incidence matrix R, which for our current example we have (from equations 5.33-5.35)

(5.36) R =


1 0 0 1 0

1 0 1 0 1

0 1 0 0 1

 .

The relationship between the route and the link variables can be expressed as

(5.37) x= R>y,

which yields the following compositions of the link flows, which can be verified by inspection of

the routes and figure 5.15 (a),

x1 = y1 + y2,

x2 = y3,

x3 = y2,

x4 = y1,

x5 = y2 + y3.

The corresponding flow conservation equations can be written in terms of the route variables by

using expression 5.36,

S R>y=d.

This yields the constraints

−y1 − y2 − y3 =−d,

(y1 − y1)+ (y2 − y2)= 0,

(y3 − y3)+ (y2 − y2)= 0,

y1 + y2 + y3 = d,(5.38)

where the first and last expression reduce to the definition of the simplex and the middle two

expressions are trivial.

We now write out the ODE of the projected dynamical system in the form

(5.39) ẏ=ΠKN
(y,−CN (y)),
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where KN is the simplex defined by equation 5.38 and the cost vector is given by

CN (y)= R c(R>y),

= R a+R Db R>y,(5.40)

where R is the same as in equation 5.36. For the current example we use affine cost functions of

the form ci(xi)= ai +bixi, with parameters

a1 = 1/2, b1 = 1,

a2 = 1, b2 = 1/2,

a3 = 1/10, b3 = 1/10,

a4 = 1/2, b4 = 1,

a5 = 1, b5 = 1/2.(5.41)

Figure 5.13 shows the phase portrait of the projected Braess system for a demand of d = 1. These

parameters and demand value were selected to ensure that the Braess network is in a regime,

where all three routes are used and where interesting behaviour from the assignment point of

view, namely the Braess paradox exists (for a thorough discussion of the Braess networks refer

to [56]).

Since there are three variables that are restricted to a plane triangle, we can transform the

trajectories into barycentric coordinates. This effectively is like looking at the triangle resting in

the corner of the positive orthant from an orthogonal perspective. The orbits of different initial

conditions are shown converging to the UE equilibrium flow of

(5.42) yUE =


0.412

0.176

0.412

 .

The orange orbit corresponds to the initial condition y0 = (1, 0, 0).

An example of the use of PDS to find equilibria at different demands is shown in figure

5.14, where the simplex has been scaled according to demand to trace the trajectory of the UE

equilibrium across it. The PDS for the Braess network (as in figure 5.13) was integrated for

demand values in the interval (0,2] and the stationary equilibria (UE) found.

Nagurney and Zhang [64] prove the equivalence of the steady state of this kind of dynamical

system with the user equilibrium that is found by the convex optimisation problem of equation

3.11 (p46). After all, they both satisfy Wardrop’s criterion. The point is that from a purely

optimisation point of view, it is inconsequential how one gets to the equilibrium, unless it

exploitable in the implementation of an algorithm. From a dynamical systems point of view, how

one approaches equilibrium is perhaps the central focus. An aspect of this can be seen in the

usefulness of Lyapunov functions for proving the existence of a Wardropian equilibria.
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Figure 5.13 Trajectory converging to UE for the Braess network is shown. The yi axes are
shown in light grey. Cost function parameters are from equation 5.41 and demand, d = 1. Trajec-
tories converge to the UE traffic pattern yUE = (0.412, 0.176, 0.412), additional orbits are drawn
with their initial conditions marked with black dots. All initial conditions converge to yUE, albeit
slowly.

Example 3: lollipop network

A useful example for visualising the type of feasibility sets that arise when considering the STAP

in link-flow variables, is the so-called lollipop network. The geometry of the flow space changes in

the case of link variables. As opposed to route variables, the feasible region is no longer composed

of the simplex obtained from slicing the positive orthant with the total demand plane. The lollipop

network (shown on the left pane of figure 5.15) is a converse example to the Braess network.

It has one more link than the number of routes, and its flow-space can be visualised in three

dimensions. It consists of two parallel links in series with another edge.

The link flow-space defined by the flow conservation equation at each of the nodes is

x1 = d,(5.43)

x1 − (x2 + x3)= 0,

x2 + x3 = d.
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Figure 5.14 The user equilibrium for the Braess network is shown with the same set-up as in
figure 5.13, but with increasing demand, d ∈ (0,2]. The path that the equilibrium point traces
across the simplex as demand is increased is shown by the coloured dots, starting with only the
cross-town route r2 being used at (0, d ,0), for low demands, and ending with the flow split evenly
between the outer routes r1 and r3. Flows are normalised according to demand to make the
simplices at all demand levels congruent. One can imagine the simplex as growing with demand
from the origin, being displaced away from the vertex of the orthant, with the points marking the
relative displacement of the equilibrium.

By virtue of being the only edge connected to the origin, e1 is forced to carry all the demand,

imposing the first flow conservation constraint from equations 5.43.

The geometry of these flow-spaces (whether in route or link variables), whilst important from

the perspective of efficient algorithms, is not something widely visualised in the literature. By

taking a constructivist tack, and showing the increasing complexity of the flow spaces for these

small networks, we highlight that the feasibility sets for multiple ODs are simplicial complexes.

Thus Nagurney’s PDS take a simple form, since the convex sets in which the systems have an

equilibrium have a lower dimension than the flow space they are embedded into.

An encompassed case

In [63], Smith takes a dynamical systems approach to prove that a simple system, following a

dynamical route-flow equilibration mechanism, converges to a Wardropian equilibrium. We now

discuss Smith’s model in detail, so as to relate it to the PDS treatment described above. Smith

takes Wardrop’s criteria as a starting point, yet follows through with the behavioural explanation
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Figure 5.15 (a) The lollipop network consisting of two routes that share edge e1. (b) The link-
flow space of the lollipop network for a travel demand of d. The feasible set K (a straight-line
segment) is defined by the flow conservation constraints equations 5.43, corresponding to each
node; in this case, the intersection of two planes. The constraint planes are: x1 = d (the blue
shaded plane) and x2 + x3 = d. This structure is the equivalent to the Pigou simplex in route
variables. In fact, for affine constraints, the lollipop network is equivalent to Pigou’s network if
the travel-time of e1 is added to the free-flow costs of e2 and e3.

of users learning the system by changing to better routes until the system equilibrates. In Smith’s

model, for any given two routes that connect the same OD pair, for example r and s, users will

swap from route r to route s at a rate proportional to the difference in route costs, and will only

swap to routes with lower costs. For notational convenience, Smith defines the operator ( · )+ as

(5.44) x+ =max{0, x},

to keep track of positive and negative cost differences. This is used to determine the direction of

swapping between routes with the help of vectors ∆rs, which represent the flow swap directions

from r to s in the form

(5.45) (∆rs)i =


−1, if i = r,

1, if i = s,

0, otherwise.

These ∆rs vectors point in the direction of changes to y that satisfy the demand conservation

constraints. The flow equilibration mechanism is expressed as

(5.46) ẏ= ∑
r,s∈Pω

yr[Cr(y)−Cs(y)]+∆rs;
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5.3. Towards the Congested Branch

Figure 5.16 Visualisation of the route-flow simplex for a hypothetical network for OD pair ω,
along with some of the swap vectors ∆rs which span the (extended) simplex.

Explicitly writing out the double sum yields

(5.47) ẏ= ∑
r∈Pω

yr
∑

s∈Pω

[Cr(y)−Cs(y)]+∆rs.

It is easier to see that the terms of the second sum, the [Cr(y)−Cs(y)]+∆rs, are the projections

of the truncated cost difference, [Cr(y)−Cs(y)]+, onto the vectors ∆rs. These vectors span the

affine space in which the simplex of route flows is contained. Each ∆rs lies on a hyperplane and

is parallel to the line ys − yr = constant. The following anti-symmetric relation ∆rs =−∆rs holds,

however in equations (5.46) and (5.47), only one of these terms will survive due to the truncation

operation ( · )+; Ct(y)> Ck(y) means that the term containing ∆tk vanishes.

Given the preceding observations, the inner sum in equation 5.47 is the projection onto the

simplex; the product with the appropriate ∆rs is taken care of by the truncation of the cost

difference [Cr(y)−Cs(y)]+, which simply projects the difference inside the brackets onto the

positive octant R3+.

Each row yr in equation 5.47 is composed of the incoming flows due to swapping onto route r

minus the ones swapping to other cost routes. The rate of swapping is also proportional to the

flow on the higher cost route, which is where the yr factor appears. The possible directions of

flows shift are the ∆rs vectors, which lie on (and span) the simplex of route flows defined by the

flow conservation constraints
∑

p∈Pω
yp = dω, see figure 5.16. The clipping operation ( · )+ acts as a

valve only allowing flow swaps that improve (reduce) travel time.

The term Cr(y)−Cs(y) can be constructed from a graph Laplacian matrix where the graph

represents the routes as nodes and routes that join the same OD pair are connected. In this way,

routes that connect the same ω form cliques. For a single OD, the route graph is the |Pω|-complete

graph and we can re-write equation 5.46 as

(5.48) ẏ=−LR C(y)+
∑

r,s∈Pω

∆rs yr.
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where LR is the Laplacian of the route graph.

This approach is coherent with Wardrop’s principle of user equilibrium. It also brings us back

conceptually to the territory of dynamical systems. Static traffic assignment assumes steady

state traffic. The existence proof by Smith [63] conceptualises the equilibrium traffic pattern x as

an asymptotic steady state of a dynamical process in which users swap to routes that are less

costly than the ones they are on. Visualising an equilibrium traffic pattern as an attractive set of

a dynamical system that evolves in flow-space helps with the intuitive understanding of different

algorithms

The jump from a static view to a dynamical one can also be seen in [64], where a class of

discontinuous dynamical systems are studied (inspired in part by the flow-swapping dynamics

of Smith) whose stable stationary points coincide with the solution set of the corresponding

optimisation problem with equilibrium constraints. In the following section, we take our cue

from Smith and use the truncation operator ( · )+ to connect the PDS of Nagurney et al. to

piecewise-smooth dynamical systems.

5.4 A Filippov System

In this short section we bring together the observations on PDS and traffic networks above and

propose that they can be cast as Filippov dynamical systems [134]. Filippov systems are a class

of non-smooth dynamical systems for which the state space can be partitioned into sub-regions

for which the equations of motion can be defined in a piecewise way. That is, for the sub-regions

Si into which the phase space of the system is split, we can write

(5.49) ẋ=Fi(x), for x ∈ Si.

If we consider the Braess network in terms of route variables as above (figure 5.16), we can

reduce the phase space to the plane that contains the feasible simplex. This plane can be split

into four regions: the simplex, and the regions of the plane that lie outside the positive orthant.

What we are trying to achieve is to recover the trajectories of the PDS without having to use the

projection operator KN , and recover the sliding along the boundary from the combined effect of

the Fi piecewise fields. That is, we want sliding modes (see chapter 2 of [135] by di Bernardo et

al.) that are equivalent to the sliding portions of the PDS trajectories.

Since we do not want the trajectories to escape the simplex, the Fi that lie outside of the

it simply need to cancel any component that is parallel to the outwards normal n? at the

corresponding boundary of the simplex. At each point of the boundary, we can then define the

field as

(5.50) F(x)|∂K =F(x)+n?(n? ·F(x))+ .

Note that the terms are added due to the definition of the PDS with a negative sign (see equation

5.12).
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The main reason why we propose taking this approach is that the method, of dividing the

phase space into regions where the vector fields are individually defined, is more general and

simpler than characterising the projection operator once the feasibility regions become more

exotic: which happens when multiple OD pairs are involved as well as for larger networks with

many more constraints than the lollipop network described above. Furthermore, piecewise-smooth

dynamical systems are now a well-developed area [136] for which efficient numerical algorithms

have been specially developed, for example [137].

5.5 Discussion

In this chapter we have looked at how to use the STAP and related methods to construct the

NFD from the bottom up. Via computational experiments on network ensembles, we confirm

that the key factor that determines the NFD relationship (for the uncongested branch) between

trip production and density is the infrastructure supply. This is captured in our model, mainly

through the total road-length of the network region under observation.

We have thus found that the bulk physical properties of the network play a more important

role than structural features of the networks in the emergence of the NFD. As a first approxi-

mation, the morphological properties are important in the way they indirectly affect the total

road length. This is seen in how the fit coefficients of the NFD depend on the clustering coeffi-

cient (captured by our β). We note that our method begins with networks that are structurally

homogeneous, since that is the way the αβ-network ensembles have been constructed. Even with

affine cost functions, the different ensembles show distinct behaviour. This is slightly surprising

considering the nuanced qualitative change in morphologies presented by the different ensembles.

A detailed understanding of the effects of morphology on the NFD is crucial to understand

the routing properties of individual cities. This is especially true in a context where the NFD

is to be leveraged as tool for traffic control strategies. However, unpicking these macroscopic

relationships is challenging due to the complexity of defining appropriate experimental and

theoretical frameworks for investigation. We have seen that the αβ-network family lends itself

well to modelling networks with homogeneous structure.

In terms of the traffic model, the STAP is conceptually rich and can be used directly for

capturing uncongested traffic states of networks. For the uncongested states, the simplified STAP,

as used in this thesis, proves to be more problematic, and in fact inappropriate. A modification

that would be appropriate to the STAP that could lead to a naturally emerging MFD would be to

modify the model to incorporate exit-flow capacity constraints for the network links and queue

storage constraints at nodes. Static and quasi-static models such as these have proven useful

in obtaining more realistic flow estimates in road networks [138] than the standard STAP, and

have been shown to be easily extended to incorporate sophisticated modelling techniques as

well [139]. For our purposes, including queuing (even without spillback) and capacities, along
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with our ensemble approach would provide access to congested network states. The queues would

contribute to the link occupation, and reduce trip production rates, allowing us to ‘observe’ a

congested state of a network. Obtaining equilibrium solutions with queues for different networks

in an ensemble, would provide a data point for each network (as in figure 5.4) might allow for an

ensemble NFD to emerge.

Additionally, we have begun to show how the Wardropian PDS might be used to build the

congested branch of the NFD from numerical simulations. For different initial conditions, the

transient trajectories, as the orbits converge to equilibrium, would provide the congested (in

STAP parlance: sub-optimal) traffic states of the network. Since such dynamical systems are

deterministic, this approach would also allow additional investigation into the hysteresis effects

observed in simulations as well as from observational data.

In view of the above, the key contributions from this chapter are summarised as follows.

C5.1 The dominating factor in determining the uncongested branch of the NFD is the infrastruc-

ture supply (region length).

C5.2 Quantitatively, coefficients of fit of the square-root NFDs (for a fixed griddedness) depend

linearly on β, that is, triangles are of key importance.

C5.3 The (quasi-dynamic) PDS that converges to Wardropian equilibria is equivalent to a Filippov

system. By treating the STAP in such a way, sub-optimal assignments and their orbits in

flow-space can potentially be used to ‘observe’ different network traffic states.

In terms of next steps in this work, viewing traffic assignment as a Filippov system (a type of

non-smooth dynamical system), opens up several new lines of research. A particularly interesting

idea is the potential understanding of types of chaos (such as chaotic attractors) that can present

themselves in non-smooth systems even for a small number of variables. The identification

of traffic models and dynamical systems carried out in the second part of this chapter (from

section 5.3 onwards) naturally leads to further associations. For example, the sliding along

the boundaries, due to the projection, can be replaced with collision maps (such as is done in

dynamical billiards, [140]). This could potentially lead to insights into unintended effects of traffic

control. For example, at the boundary of a feasible region, where the flow on some links is zero,

replacing the sliding mechanism with an instant collision (also a non-smooth map) could be

interpreted as traffic being forcefully redirected, a common situation when traffic accidents occur.

The theoretical motivation behind this would be the chaotic behaviour exhibited by inelastic

billiards, possibly leading to a better understanding of the nature of chaos in traffic systems.

The emergence of NFDs for the synthetic αβ-networks highlights an important question

regarding what can be learned from idealised experiments, and how applicable to real-world

networks findings from them actually are. For the most part, the importance of the results, in our

case, are qualitative in nature. One of the main findings is that for the congested branch of the

NFD (see fig 5.5) the fit parameters of the squared-root NFDs, even though strongly dominated
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5.5. Discussion

by the region length, they still depend on the morphological parameters; the griddedness and

the road density are important. Quantitatively, however, our model is still fairly removed from

real-world networks. Thus, the specific functional dependence cannot be directly applied to real

urban networks. Our abstracted model, though, allows us to explore the features that might

be important to keep in mind when understanding real-world NFDs and partitioned networks.

Future studies can be guided by observations from bottom-up reconstructions such as the one

presented in this chapter, and thus hopefully allow the conceptual simplification of a fully dynamic

theory of MFD emergence.

Balancing abstraction and applicability in mathematical modelling is a delicate matter, and in

the search for generality, realism can be lost. In our aim to keep the equilibrium models as simple

as possible, fine details, such as the functional forms obtained for the NFDs are not directly

applicable or comparable to existing models or networks. However, some of the relationships

between morphology and routing performance are able to be discovered.
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CONCLUSIONS

In this thesis we have set out to investigate traffic equilibria through a complexity science lens.

From this viewpoint, we have designed experiments that investigate how simple a network

traffic model can be, yet preserve explicative power. We have revisited the classic static traffic

assignment (STAP) and used it in conjunction with a random-network model designed for

parsimony, that captures stylised features of road networks. Our goal has been to draw general

conclusions about how the structure of road networks effects performance metrics (such as price

of anarchy, and total system cost) and network-aggregated traffic variables (like the network

fundamental diagram).

We have developed the αβ-network model (chapter 2), and an implicit heuristic for defining

cost-function parameters, for use with the STAP (chapter 3). Considerable attention was devoted

to setting up the networks for numerical experiments. For example, periodic boundary conditions

were exploited to enable small numbers of origin-destination (OD) pairs to yield traffic patterns

similar to those due to much more complex set-ups. A key finding is that network statistics, such

as betweenness centrality, even though often used as proxies for traffic flow, do not correlate with

network performance in a meaningful way. Then, in chapter 4, we applied the αβ-networks to

investigate how networks with different structures might benefit from replacing a proportion

of their vehicle fleet with altruistically-routed (autonomous) vehicles. We have shown that the

transition to optimal costs depends on network size and complexity. Surprisingly, larger and

more complex networks enhance the effectiveness of the intervention, which goes against the

commonly-held belief that grid networks are inherently efficient. In chapter 5 we applied the

αβ-network model to study the emergence of a network fundamental diagram (NFD). We used

the STAP to understand the relationships between network-wide aggregated traffic statistics and

their dependence on network morphology. By analysing projected dynamical systems (PDS) [64],
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the structure of the flow-space induced by the STAP, and a simple dynamical system from

Smith [63] that converges to a Wardropian equilibrium, we proposed that a method to recover

the congested branch of the NFD is to cast a flow equilibration system as a piecewise-smooth

Filippov dynamical system. Filippov systems are naturally equipped to handle hard boundaries

in their phase space, and also exhibit rich bifurcation structures that do not occur in classical

dynamical systems.

We now re-state the research questions that were framed at the beginning of the thesis and

examine how and to what extent we have addressed them. The questions are:

RQ1 How simple can a network model be, and still remain useful in understanding real-world

transport properties?

RQ2 What insights can a highly-stylised routing model, such as the static traffic assignment

problem, provide into the role played by network morphology in the traffic patterns (and

their efficiency) that arise on these networks?

RQ3 Given that autonomous vehicles can provide a mechanism for achieving optimal network

performance, is the transition to optimality provided by them, across networks with differ-

ent morphologies, a good one?

RQ4 In the context of understanding global (network-wide) behaviour of networks, what ‘mini-

mal’ modifications can be made to the static traffic assignment problem to build a network

fundamental diagram from the bottom up?

RQ1. Drawing from chapter 3 and the existing transportation research literature, it is clear

that the STAP is a highly idealised model that does not capture the full richness of real-world

traffic flow patterns. However, we have shown that simple network models allow us to explore

the factors — such as network structure, and OD choice — that affect the efficiency of traffic

equilibria. Indeed, a very simple choice of OD pairs on the αβ-network model has allowed us

to distinguish performance features, such as the PoA, a measure that is known to behave in

very similar ways for networks with vastly different structures. As such, while we do not explore

features of real-world networks, we have shown that our αβ-networks are indeed a useful tool for

deepening the understanding of Wardropian UE performance.

There are two points that benefit from further discussion, the first is to what extent does this

model allow insights to be transferred to more realistic settings, and the second is how would

this potentially be evaluated. To address the first point, the ideal solution would be to compare

the behaviour of different networks models, and then these models with real city networks. One

potential example would be networks generated according to some growth model that resemble

urban growth, for example the model from [35] where networks are grown according to a resource

optimisation principle and result in networks with features shared by urban networks. Other

random network models, such as the one in [141] are fitted to resemble specific road networks
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and could be a step in bridging the gap towards more realism. However, in order to verify

how our findings can translate directly to real-world networks, while still using morphologically

homogeneous networks, an avenue forward could be to use sub-networks as they are partitioned in

MFD studies in the literature. One possible example is the Lyon sub-networks from [9] discussed

in chapter 5. Where the different reservoirs have their particular structure. The challenge,

however, becomes the parameters choice for measuring morphological characteristics, and the

diversity of networks. In terms of parameter choice, based on the findings of this thesis, road

density, node distribution statistics and the clustering coefficient of the networks are proposed. In

terms of diversifying test samples to use real-world networks within an ensemble framework, a

possibility is to make ensembles according to OD structure in order to sample network structure

in different combinations.

RQ2. Consider our achievements in chapter 3. We have demonstrated the importance of

ensuring that the cost-function parametrisation has a measurable impact on the ensemble-wide

performance of transport networks. We have shown, as captured by contributions C2.2 and

C3.3 (page 68), that the griddedness of networks plays an important role in determining their

sensitivity to OD structure, and that more complex networks shift the onset of peak PoA to higher

demand values.

RQ3 can be answered directly. From chapter 4, we have found that altruistically-routed AVs

can indeed provide system-wide benefits in terms of reductions in total system cost. However

the benefits might only be realised when a high proportion of vehicles are altruistically routed.

Also, our analysis has shown that the costs incurred by the AVs, in ameliorating the costs for the

other users, would make this mode of transport highly undesirable at first, suggesting that the

pathway to the adoption of AVs is very challenging.

RQ4. In chapter 5 we have shown that with an ensemble approach, the STAP is suitable

as-is for explaining the uncongested branch of the NFD. Furthermore, we conjectured that a

dynamical approach like [63], cast as a Filippov system, is suitable for accessing sub-optimal,

and thus more congested network states. Viewed from the perspective of Nagurney’s PDS, the

static optimisation and dynamical approaches are closer than they might seem. The orbits of such

dynamical systems, before they converge to equilibrium, can be thought of as congested states of

the networks, which aggregated with our ensembling approach might yield the congested branch

of the NFD: however, the details remain to be addressed. Filippov systems also exhibit different

types of bifurcations, and thus, this approach could potentially lead to further understanding of

the complex behaviour, and perhaps routes to chaos, of transportation systems.

In conclusion, this thesis shows that simple models, both for networks and for traffic, are

still relevant in deepening the understanding of transportation issues. We have validated the

world-view of complexity science, that simple interactions between ‘agents’ are fundamental

in pattern formation. Furthermore, planar networks, often ignored because of the restrictions

on their degree distributions, can give rise to complex pattern formation just as much as more
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common models from network science. As we go forward, we suggest that the transportation

research field would benefit from drawing more explicitly from complexity science than even we

have done.
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LIST OF ABBREVIATIONS

STAP Static traffic assignment problem

OD Origin-destination

UE User equilibrium

SO System optimal

PoA Price of anarchy

MFD Macroscopic fundamental diagram

NFD Network fundamental diagram

PDS Projected dynamical systems
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