265 research outputs found

    Optimal Parameter Estimation in Heterogeneous Clutter for High Resolution Polarimetric SAR Data

    No full text
    International audienceThis letter presents a new estimation scheme for optimally deriving clutter parameters with high-resolution polarimetric synthetic aperture radar (POLSAR) data. The heterogeneous clutter in POLSAR data is described by the spherically invariant random vector model. Three parameters are introduced for the high-resolution POLSAR data clutter: the span, the normalized texture, and the speckle normalized covariance matrix. The asymptotic distribution of the novel span estimator is investigated. A novel heterogeneity test for the POLSAR clutter is also discussed. The proposed method is tested with airborne POLSAR images provided by the Office National d'Études et de Recherches Aerospatiales Radar Aéroporté Multi-spectral d'Etude des Signatures system

    Statistical Modeling of SAR Images: A Survey

    Get PDF
    Statistical modeling is essential to SAR (Synthetic Aperture Radar) image interpretation. It aims to describe SAR images through statistical methods and reveal the characteristics of these images. Moreover, statistical modeling can provide a technical support for a comprehensive understanding of terrain scattering mechanism, which helps to develop algorithms for effective image interpretation and creditable image simulation. Numerous statistical models have been developed to describe SAR image data, and the purpose of this paper is to categorize and evaluate these models. We first summarize the development history and the current researching state of statistical modeling, then different SAR image models developed from the product model are mainly discussed in detail. Relevant issues are also discussed. Several promising directions for future research are concluded at last

    Hierarchical Segmentation of Polarimetric SAR Images Using Heterogeneous Clutter Models

    Get PDF
    International audienceIn this paper, heterogeneous clutter models are used to describe polarimetric synthetic aperture radar (PolSAR) data. The KummerU distribution is introduced to model the PolSAR clutter. Then, a detailed analysis is carried out to evaluate the potential of this new multivariate distribution. It is implemented in a hierarchical maximum likelihood segmentation algorithm. The segmentation results are shown on both synthetic and high-resolution PolSAR data at the X- and L-bands. Finally, some methods are examined to determine automatically the "optimal" number of segments in the final partition

    Heterogeneous Clutter Model for High-Resolution Polarimetric SAR Data Processing

    No full text
    International audienceThis paper presents a new estimation scheme for optimally deriving clutter parameters with high resolution POLSAR data. The heterogeneous clutter in POLSAR data is described by the Spherically Invariant Random Vectors model. Three parameters are introduced for the high resolution POLSAR data clutter: the span, the normalized texture and the speckle normalized covariance matrix. The asymptotic distribution of the novel span estimator is investigated. A novel heterogeneity test for the POLSAR clutter is also discussed. The proposed method is tested with airborne POLSAR images provided by the ONERA RAMSES system

    Statistical Classification for Heterogeneous Polarimetric SAR Images

    No full text
    International audienceThis paper presents a general approach for high-resolution polarimetric SAR data classification in heterogeneous clutter, based on a statistical test of equality of covariance matrices. The Spherically Invariant Random Vector (SIRV) model is used to describe the clutter. Several distance measures, including classical ones used in standard classification methods, can be derived from the general test. The new approach provide a threshold over which pixels are rejected from the image, meaning they are not sufficiently "close" from any existing class. A distance measure using this general approach is derived and tested on a high-resolution polarimetric data set acquired by the ONERA RAMSES system. It is compared to the results of the classical decomposition and Wishart classifier under Gaussian and SIRV assumption. Results show that the new approach rejects all pixels from heterogeneous parts of the scene and classifies its Gaussian parts

    Estimation of the normalized coherency matrix through the SIRV model. Application to high resolution POLSAR data

    Get PDF
    8 pagesInternational audienceIn the context of non-Gaussian polarimetric clutter models, this paper presents an application of the recent advances in the field of Spherically Invariant Random Vectors (SIRV) modelling for coherency matrix estimation in heterogeneous clutter. The complete description of the POLSAR data set is achieved by estimating the span and the normalized coherency independently. The normalized coherency describes the polarimetric diversity, while the span indicates the total received power. The main advantages of the proposed Fixed Point estimator are that it does not require any "a priori" information about the probability density function of the texture (or span) and it can be directly applied on adaptive neighbourhoods. Interesting results are obtained when coupling this Fixed Point estimator with an adaptive spatial support based on the scalar span information. Based on the SIRV model, a new maximum likelihood distance measure is introduced for unsupervised POLSAR classification. The proposed method is tested with airborne POLSAR images provided by the RAMSES system. Results of entropy/alpha/anisotropy decomposition, followed by unsupervised classification, allow discussing the use of the normalized coherency and the span as two separate descriptors of POLSAR data sets

    Robust CFAR Detector Based on Truncated Statistics for Polarimetric Synthetic Aperture Radar

    Get PDF
    Constant false alarm rate (CFAR) algorithms using a local training window are widely used for ship detection with synthetic aperture radar (SAR) imagery. However, when the density of the targets is high, such as in busy shipping lines and crowded harbors, the background statistics may be contaminated by the presence of nearby targets in the training window. Recently, a robust CFAR detector based on truncated statistics (TS) was proposed. However, the truncation of data in the format of polarimetric covariance matrices is much more complicated with respect to the truncation of intensity (single polarization) data. In this article, a polarimetric whitening filter TS CFAR (PWF-TS-CFAR) is proposed to estimate the background parameters accurately in the contaminated sea clutter for PolSAR imagery. The CFAR detector uses a polarimetric whitening filter (PWF) to turn the multidimensional problem to a 1-D case. It uses truncation to exclude possible statistically interfering outliers and uses TS to model the remaining background samples. The algorithm does not require prior knowledge of the interfering targets, and it is performed iteratively and adaptively to derive better estimates of the polarimetric covariance matrix (although this is computationally expensive). The PWF-TS-CFAR detector provides accurate background clutter modeling, a stable false alarm property, and improves the detection performance in high-target-density situations. RadarSat2 data are used to verify our derivations, and the results are in line with the theory

    Blind Source Separation in Polarimetric SAR Interferometry

    No full text
    International audiencePolarimetric incoherent target decomposition aims in access-ing physical parameters of illuminated scatters through the analysis of target coherence or covariance matrix. In this framework, Independent Component Analysis (ICA) was recently proposed as an alternative method to Eigenvector decomposition to better interpret non-Gaussian heterogeneous clutter (inherent to high resolution SAR systems). Until now, the two main drawbacks reported of the aforementioned method are the greater number of samples required for an unbiased estimation, when compared to classical Eigenvector decomposition and the inability to be employed in scenarios under Gaussian clutter assumption. First, a Monte Carlo approach is performed in order to investigate the bias in estimating the Touzi Target Scattering Vector Model (TSVM) parameters when ICA is employed. A RAMSES X-band image acquired over Brétigny, France is taken into consideration to investigate the bias estimation under different scenarios. Finally, some results in terms of POLinSAR coherence optimization [1] in the context of ICA are proposed

    Displacement Estimation by Maximum Likelihood Texture Tracking

    No full text
    International audienceThis paper presents a novel method to estimate displacement by maximum-likelihood (ML) texture tracking. The observed polarimetric synthetic aperture radar (PolSAR) data-set is composed by two terms: the scalar texture parameter and the speckle component. Based on the Spherically Invariant Random Vectors (SIRV) theory, the ML estimator of the texture is computed. A generalization of the ML texture tracking based on the Fisher probability density function (pdf) modeling is introduced. For random variables with Fisher distributions, the ratio distribution is established. The proposed method is tested with both simulated PolSAR data and spaceborne PolSAR images provided by the TerraSAR-X (TSX) and the RADARSAT-2 (RS-2) sensors

    Segmentation and Classification of Polarimetric SAR Data based on the KummerU Distribution

    Get PDF
    International audienceThinner spatial features can be observed from the high resolution of newly available spaceborne and airborne SAR images. Heterogeneous clutter models should be used to model the covariance matrix because each resolution cell contains only a small number of scatterers. In this paper, we focus on the use of a Fisher probability density function (pdf) to model the SAR clutter. First, the benefit of using such a pdf is exposed. Covariance matrix statistics are then analyzed in details. For a Fisher distributed texture, the covariance matrix follows a KummerU pdf. Asymptotic cases of this pdf are presented. Finally, the KummerU pdf is implemented in both hierarchical segmentation and classification algorithms. Segmentation and classification results are shown on both synthetic and real data
    corecore