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Abstract— Constant false alarm rate (CFAR) algorithms using 
local training window are widely used for ship detection with 
synthetic aperture radar (SAR) imagery. However, when the 
density of targets is high, such as in busy shipping lines and 
crowded harbors, the background statistics may be contaminated 
by the presence of nearby targets in the training window. Recently 
a robust CFAR detector based on truncated statistics (TS) was 
proposed. However, the truncation of data in the format of 
polarimetric covariance matrices is much more complicated with 
respect to the truncation of intensity (single polarization) data. In 
this paper a polarimetric truncated statistic CFAR 
(PWF-TS-CFAR) is proposed to estimate the background 
parameters accurately in the contaminated sea clutter for Pol 
SAR imagery. The CFAR detector uses polarimetric whitening 
filter (PWF) to turn the multidimensional problem to a one 
dimensional case. It uses the truncation to exclude possible 
statistically interfering outliers and uses TS to model the 
remaining background samples. The algorithm does not require a 
prior knowledge of the interfering targets and it is performed 
iteratively and adaptively to derive better estimates of the 
polarimetric covariance matrix (although this is computationally 
expensive). The PWF-TS-CFAR detector provides accurate 
background clutter modeling, a stable false alarm property, and 
improves detection performance in high-target-density situations. 
RadarSat2 data are used to verify our derivations and the results 
are in line with the theory. 

Index Terms—Constant false alarm rate (CFAR), Sea clutter, 
Statistical modeling, Synthetic aperture radar (SAR), Ship 
detection, Truncated statistics (TS), Polarimetric Whitening Filter 
(PWF) 
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I. INTRODUCTION

OLARIMETRIC Synthetic Aperture Radar (PolSAR) is 
a multi-dimension remote sensing system which has been 
largely used for marine surveillance, including ship 

detection [1]. The current challenges in ship detection mostly 
lie in two aspects: the first is to detect small ships densely 
packed in inshore regions while the second is to detect ships 
during the medium or high sea states. This manuscript is 
concerned with the first challenge.  

A. Review of Ship Detection in PolSAR Imagery
In SAR images, a common feature of ships is a relatively

large backscattering signal, which is usually brighter than the 
sea background. This led to designing algorithms that detect 
vessels using a statistical test on the intensity of the sea clutter 
[1]. If the statistical distributions of clutter and targets are 
known, an optimal detector can be designed via the likelihood 
ratio test (LRT). The optimal polarimetric detector (OPD) was 
proposed by Novak et al. [2]. Polarimetric decompositions and 
other physical based models [3] have also been adopted for ship 
detection in PolSAR imagery. Ringrose used the Cameron 
decomposition method to detect ships from SIR-C data [4]. 
Chen et al. proposed a polarization cross entropy for detecting 
ships [5]. Zhang et al. used the space relation characteristics of 
ships to detection targets [6]. It has been shown that ship wakes 
can help detect ships and also provide useful information about 
heading and velocity [7]-[10]. However, ship wake detection is 
influenced by various factors, such as radar frequency, angle of 
view and angle of incidence and sea state.  

The statistical distribution or characteristics of ship 
backscattering is difficult to obtain, since this depends highly 
on the physical characteristics of the vessels themselves. 
Recently, a Polarimetric Notch Filter (PNF) was proposed that 
tries to separate ships and vessels based on their polarimetric 
behavior [11]-[12]. It does not assume a prior information 
about the ships and can provide good performance by 
minimizing the sea clutter power [1][13]-[14]. Another filter 
working in the absence of ship prior information is the 
Polarimetric Whitening Filter (PWF) proposed by Novak 
[15][16]. The PWF utilizes the polarimetric information to 
minimize the statistical variation due to speckle. In early 
experiments, its performance has been proved to be the closest 
to that of the OPD [15][16]. The PWF combines all scattering 
vector correlation information into a single quantity, the 
scattering matrix. This matrix is not adequate for representation 
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of the filtered scene received wave, which should be partially 
polarized because of the spatial scene signal variations within 
the processing window. The Novak’s PWF filter might be used 
to facilitate image interpretation, but results obtained should be 
considered with caution because of the eventual loss of 
polarimetric information [17].The PWF was further extended 
to Multi-look Polarimetric Whitening Filter (MPWF) in terms 
of a polarimetric covariance matrix by Liu and Lopes et al. 
[18]-[19], which makes it consistent with the principle of 
speckle filtering introduced by Touzi et al.[17]. Since the 
MPWF and the PWF share the same theoretical background in 
this paper when we refer to PWF we consider both of them 
depending if we perform or not averaging. 

Both the PNF and PWF are based on the polarimetric 
covariance matrix, but Touzi et al. showed that the covariance 
matrix and the tools based on it such as PNF and PWF detectors 
cannot cover the full polarimetric information required for 
enhanced ship detection [20]. Touzi et al. also showed that 
excursion of the degree of polarization provide important 
information that is not exploited by the covariance matrix as 
well as the Marino detector [21]. The degree of polarization 
provides very important information that is not covered by 
conventional covariance matrix optimization tools such as the 
Notch detector. 

Since we do not have priori information about ships, the test 
is set on the clutter distribution and therefore it considers the 
probability of false alarms (PFA). The constant false alarm rate 
(CFAR) tries to keep PFA constant by selecting a suitable 
threshold that adapts with the background clutter [1]. To adapt 
the threshold an accurate modeling and estimation of the 
statistical distribution of local background clutter is generally 
done using a sliding window [1][13]-[14]. Different statistical 
models are used to fit heterogeneous sea clutter [22]. In practice, 
in high-target-density situations such as busy shipping lines and 
crowded harbors the training area used to estimate clutter 
characteristics are generally contaminated by the presence of 
other targets [23]. This problem was already solved in single 
polarization case [23], but there is still no solution when using 
PolSAR data. The aim of this paper is to derive a PolSAR 
CFAR algorithm which is robust against statistical 
contamination in the training window. After the target 
contamination is removed, a statistically robust methodology is 
presented to model the remaining sea clutter pixels. The PWF is 
used to produce the image that is truncated. In the following, a 
brief review of CFAR detectors in contaminated background is 
presented. 

B.  Survey of CFAR detectors in the Contaminated 
Surroundings 

1) Single polarization case 
The benchmark of CFAR algorithms is the traditional 

cell-averaging CFAR (CA-CFAR) which averages each pixel 
inside the reference window [24]. This is appropriate for 
homogeneous clutter but it is affected by contamination.  

Data ranking or censoring with different restrictions can be 
used to remove outliers. The greatest-of CFAR (GO-CFAR) 
[25] and the smallest-of CFAR (SO-CFAR) [26] detectors are 
both variations of CA-CFAR, which split the reference window 
in spatial subset before averaging. The GO-CFAR trains on the 
clutter in the greatest subset while the SO-CFAR uses the 

smallest. On the other hand, the variability index CFAR 
(VI-CFAR) [27] chooses the particular group of reference 
pixels adaptively to estimate background statistics. VI-CFAR is 
expected to degrade performance when the distribution of the 
clutter is complicated and it cannot be modeled by a simple 
spatial division. Another well-known CFAR algorithm is the 
ordered statistic CFAR (OS-CFAR) which deals with outliers 
within the reference window [28]. The OS-CFAR keeps a 
significantly higher detection rate and low false alarm rate [29]. 
The OS-CFAR disadvantages are generating a small loss in 
detection rate in homogeneous clutter compared with the 
CA-CFAR and a high computational cost. As a generalization 
of the OS-CFAR detector, the trimmed mean CFAR 
(TM-CFAR) [30] estimates distribution parameters by the 
mean of a set of rank-ordered values. In addition, the censored 
mean-level detector (CMLD) [31] is designed to obtain 
acceptable performance in the presence of interfering targets, 
which is adaptive to several clutter environments. Both ranking 
and censoring techniques are employed in the CMLD. However, 
the CMLD may lose its robustness and degrade its CFAR 
properties when a prior knowledge of the interfering targets is 
absent [32].  

The last proposed algorithm is the truncated statistic CFAR 
(TS-CFAR) detector, which is also the base of this work. If the 
pixel intensity is higher than a specified threshold, the pixel will 
be excluded from the training samples and truncated data are 
used to estimate the clutter parameters. This involves using 
different probability density function (PDF) when modeling the 
truncated data. The difference between truncation and 
censoring is whether the number of the removed pixels is 
recorded or not. The number of truncated data points remains 
unknown, while the number of censored data points is stored. 
When it comes to model the background in a statistically 
rigorous manner, the distinction turns to be important [23]. In 
particular, the truncated data can be represented by truncated 
versions of the gamma distribution in the single polarization 
case, which was revealed to be robust for single polarization 
images [23]. 

2) Full polarization case 
Commonly that the problem of contamination for PolSAR 

data was addressed using two steps. A) We select a clean patch 
close to the detection region and use this to estimate clutter 
parameters; B) We perform a CFAR using those parameters. 
This does not assure us the absence of ships in the training 
region. However, if ships are few and the region large, the 
effect of contamination on the statistical model can be ignored 
as seen in Gao et al. [14]. This procedure requires supervision. 
Additionally, if the number of outliers is large or if the sea 
clutter is too heterogeneous, this procedure may fail.  

For polarimetric data, the problem of removing 
contamination in local window is still open, since the truncation 
can only be applied to a 1D array and not a 3D one. A humble 
idea is to process the different polarimetric SAR channels 
independently and combine them at the end. This will result in 
losing polarimetric information since the complex correlation 
between channels will be ignored.  

In this paper, we propose a solution based on the PWF. The 
PWF is transforming a matrix into an intensity [15][16] which 
is formally equivalent to using a single channel.  
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C. Contributions of this study 
The statistics of the PWF in Wishart case have already been 

derived [22][33]. Here we will extend this to the truncated 
expression. The more challenging issue is to accurately 
estimate the original polarimetric covariance matrix starting 
from the truncated data. In other words, we need to find a 
relationship between the covariance matrix after truncation and 
the true covariance matrix. The starting point is the relation 
between the second moments of a truncated vector and the true 
covariance matrix derived by G. M. Tallis [35]. Unfortunately 
this relation assumes the vector should be real. In this work we 
have extended the theorem to the complex case and multilook 
case. The proof is presented in the Appendix.  

In details, the truncated gamma distribution and the 
elliptically truncated Wishart distribution are proposed to 
model the truncated PWF samples. A statistically rigorous 
approach is adopted to handle the truncated data in the 
PWF-TS-CFAR. We use the assumption that the speckle is 
fully developed and that the radar cross section is locally 
constant, which makes the problem mathematically tractable. It 
is well known that this assumption may not be sustained as the 
SAR resolution increases and the sea state roughens. 
Fortunately, this assumption should cover the most of the 
high-target-density situations, which mostly happen in 
sheltered areas (e.g. harbors). In addition, a mixture of several 
gamma distributions can also be used to model large scale 
heterogeneity [36]. Finally, since the PWF distribution was 
found out to be a gamma and this is a special case of the 
generalized gamma distribution ( G D ), we decide to improve 
the robustness of the statistical model by add an expression 
which considers the G D . 

 This paper is organized as follows. Section II presents the 
statistical of PolSAR data involving the MPWF. Section III 
provides an introduction to TS for a matrix and derives the 
proposed TS-CFAR detectors for Pol-SAR measurements. In 
addition, the performance of parameter estimation and the false 
alarm regulation property and the receiver operating 
characteristic (ROC) of the CFAR detector are examined based 
on simulated measurements of sea clutter drawn from the 
truncated Wishart distribution. In section IV, an adaptive 
truncated threshold is presented, and the PWF-TS-CFAR 
detector is compared among different parameter estimators via 
real Radarsat-2 SAR measurements. Finally, Section V 
presents the main conclusions and perspectives. 

II. STATISTICAL MODEL OF POL-SAR DATA 

A. Description of Pol-SAR Data 
Under far-field hypothesis, the scattering characteristics of a 

target is represented by a polarimetric scattering matrix, 
expressed in Eq. (1) when a Horizontal-Vertical linear basis is 
used [1][15] 
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where xyS represents the complex scattering coefficient with 
x standing for the transmitting polarization, and y for the 
receiving polarization (H-horizontal polarization, V-vertical 
polarization). When the system is mono-static and the 

reciprocity limitation is satisfied, we have =HV VHS S . Then the 
scattering vector can be defined as  
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To reduce speckle in a SAR image, filtering or multi-look 
processing can be used. We can therefore obtain the covariance 
matrix as [15][19] 

†

1

1 L

i i
iL 

 C k k
                               

(3) 

where L is the number of averaged looks. The superscript 
† denotes conjugate transpose. The multilook covariance 
matrix C is a random variable and therefore it can be modeled 
using a PDF.  EΣ C  is the covariance matrix of the speckle 
in the Gaussian case, Σ is the statistical mean of the multilook 
covariance matrix C , and E( )  represents the expectation 
operator. 

One part of the SAR pixel variation is due to the interference 
between scatterers within a resolution cell, which is also 
referred to as speckle. The other part of the variation is due to 
the fluctuation of the radar cross section (RCS), which is also 
referred to as texture [14]. The variation generated by texture is 
slower than the one generated by speckle. In another word, 
though the texture is modulated, it can only be observed on a 
large amount of pixels. The PDF of a covariance matrix without 
texture is a Wishart distribution based on multivariate complex 
Gaussian distribution, which models pure and fully developed 
speckle [37][38] 

exp( Tr( ))
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L dLd
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where L  is the number of looks, d is the dimension of C , 
 Tr  is the trace operator, ( )   is the gamma function and 
( )d L  is: 

1 ( 1)
2( ) ( ) ( 1)

d d

d L L L d
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B. Statistics of the MPWF 
The different polarimetric channels can be processed 

together to reduce speckle [19]. Novak and Burl [15] proposed 
the polarimetric whitening filter (PWF) which is an 
optimization aimed at maximally reducing speckle. Novak et al. 
[16] later showed that the PWF can improve the target detection 
performance. The PWF was further enhanced into a multi-look 
polarimetric whitening filter (MPWF) by Lopes and Liu et al. 
[18]-[19]. PWF can be seen as a generalization of the MPWF.  

The expression of the MPWF for L looks is [15]: 
† -1 -1

1

1= tr( )
L

i i
i

z
L 

k Σ k Σ C
                   

(6) 

where  tr   is the trace operator and L  as the number of looks. 
When speckle is fully developed as mentioned in section A, 

z obeys a Gamma distribution after a series of mathematical 
deduction [33][34]: 
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1~ ( , )Ldz
L


                                    

(7) 

where ( , )   denotes a Gamma distribution with shape 
parameter  and scale parameter  . ( , )   can be 
represented as follows [39] 
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where  1

0
( ) a ya y e dy


     is the gamma function. 

III. POLARIMETRIC TRUNCATED STATISTICS CFAR DETECTOR 

A. Truncated Statistics 
Clutter parameter estimation in areas contaminated by 

outliers (or interfering targets) is challenging. In this work we 
will use truncation since it allows deriving a rigorous statistical 
model.  

The PDF of the truncated data can be calculated starting from 
the PDF of the untruncated data.  

Let’s assume the random variable z  can be modeled by the 
probability density function (PDF) ( )zf z and a cumulative 
distribution function (CDF) ( )zF z . Suppose z be the truncated 
version of z after the truncation by a threshold  . The 
right-truncated distribution can be defined as 
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The division by ( )zF  ensures that the integral of ( ; )zf z 


is 
unitary. The truncation threshold is also refereed to truncation 
depth. Since the priori knowledge about outliers is unknown, it 
is difficult to estimate the optimal truncation depth. A lower 
threshold   returns a higher probability to exclude all outliers; 
however, if the truncation threshold is too excessive, inaccurate 
parameter estimation may occur. 
      There are several studies that deal with the one dimensional 
case [40][41]. The first results on truncated moments 
considered a linear truncated multivariate normal (MVN) 
distribution [42]. Tallis later extended his results of linear 
truncations to the case of elliptical and radial truncation [35]. 
Tallis [43] built on previous results to compute the moments of 
a normal distribution with a plane truncation. For a review of 
truncated moments for different continuous distributions, see 
[29][45]. The constraint on the elliptical and radial truncation is 
as follows [35]: 

10 = 'z x x  Σ                            (10) 
where  x  is a multivariate vector, '  is the transpose operator, 
and , ,z Σ are all real. 

Interestingly, this constraint is also the form of the PWF (Eq 
(6)) when the number of look is =1L . This further motivated 
our work. 

B. PWF-TS-CFAR Detector 
In this section, CFAR detectors based on TS are derived for 

SLC and MLC SAR measurements, which are modeled by the 
gamma and Wishart distributions. We consider the MLC case 

first, since the SLC can be seen as a special case of MLC. The 
intensity of PWF pixels is positive and assumed to be 
independent and identically distributed. 

1) Estimation of the Polarimetric covariance matrix 
The complete and truncated distributions (Eq (7) and (9)) 

model the PWF properly only in the assumption that the 
polarimetric covariance matrix is estimated accurately. The 
problem of estimating the polarimetric covariance matrix from 
the truncated data is of paramount importance.  

A mentioned previously the MPWF is an elliptical and radial 
truncation. For fully developed speckle (i.e. Wishart 
distribution), the true covariance matrix can be derived using 
the second truncated moments. From Tallis’ paper, it turns out 
that [35] 
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with  vF  denoting the cumulative distribution of a 
2 variable with d degrees of freedom. Inverting (18) so as to 

express Σ as a function of S is trivial, since ( )Tc   is a scalar 
damping factor independent of Σ . This result is only valid for 
Gaussian distributed vectors or covariance matrices.  

According to the methods in [35][48], and the relations 
between the 2  cumulative distribution  vF   and the 
incomplete gamma function ( , )a b [39], we can extended the 
real number results to the complex and multilook case 
(Appendix A) 
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with 1

0

1( , )=
( )

b
a ya b y e dy

a
 

  .Thus we can estimate the true 

polarimetric covariance matrix of the clutter from the second 
moments of the truncated data. This makes the PDF in Eq (12) 
more accurate. 

2) Estimation of the Equivalent Number of Looks  
From Eq (12) we can see that the difference between the 

covariance matrix of the truncated data and the true covariance 
matrix is just a coefficient. The polarimetric behavior of the 
clutter is unchanged between the complete and truncated set 
after the elliptical and radial truncation (PWF).  It is clear that if 
we don’t adjust the covariance matrix with the correct 
coefficient ( )T  , the output of the MPWF will be different in 
scale. This difference only affects the mean of the MPWF 
distribution. Therefore there are two parameters that need to be 
estimated, the equivalent number of looks (ENL) and the mean 
of the MPWF. The distribution of the MPWF without 
covariance truncation is 

~ ( , )1Ldz
L

                               (13) 

Its cumulative distribution function (CDF) is 
 ( ; , ) ,zF z L d Ld Lz                           (14) 

The PDF of z , the truncated data is 
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The other estimator is based on the moments. The n-th order 
moments of the truncated MPWF in Eq (15) is 
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Then we can use the first moments of the truncated data 
to estimate the ENL: 

   1 =x x x                         (17) 
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ˆ ˆ1,
ˆ ˆ,

d Ld L
z

Ld L





 



                          (18) 

A maximum likelihood (ML) estimator for the ENL can be 
also obtained from the likelihood function 
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where 1{ }n
i iz   is a size n  sample of truncated MPWF outputs. 

The log-likelihood function is derived as 
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where 
1

(1 ) n
ii

n z
   and 

1
(1 ) log( )n

ii
n z

   are statistical 
means (SMs) of the original and logarithmic truncated MLC 
measurements. Thus, we can get the MLE estimate of the ENL 

arg max{log ( )}
L

L L z L                      (21) 

which must be solved numerically. Thus both the ENL and the 
polarimetric covariance matrix are well estimated. 

To summarize, there are two parameters that need to be 
estimated, the equivalent number of looks (ENL) and the mean 
of MPWF.  

The distribution of the MPWF without the calibration of 
polarimetric covariance matrix is 

~ ( , )( )TLdz
L

 
                            (22)  

Here we can denote = ( )T    to simplify the notation. The PDF 
of z , the truncated data is 

 

1 exp( )
,  0

( ; , ) ,

0,                    .

Ld
Ld

z

Lzz
L z

Lf z L d Ld Ld

z




 




                     



(23) 

A maximum likelihood (ML) estimator can be obtained from 
the likelihood function 
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(24) 
We can solve the maximization numerically to obtain the best 
estimations of , L . 

There are several methodologies that can estimate the ENL 
in polarimetric data, e.g. Anfinsen et al.. Once the ENL is 
estimated it can be considered as an image constant.  

We are therefore left with the estimation of the mean value  . 
If the ENL is known to us, / log ( , )=0L z     can be used 
to derive the derivative of the log-likelihood function as  

                     
 

   
exp

( ) 0
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Ldt t ztf t L d
Ld Ld t L
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where Lt 


 .  

We can obtain accurate estimations of ENL by the iterative 
censoring (IC) scheme. In this case, the truncated radial is fixed, 
and the pixels of the truncated data are updated with the 
truncated polarimetric covariance matrix until the difference 
between the numbers of the truncated pixels in the IC scheme is 
small enough.   

Although the iterative detection procedure may need several 
cycles and require long calculation time, the IC scheme has 
shown robust performance in the dense target situation and can 
be integrated with the CFAR algorithm. 

The specified false alarm rate FAP  can be related to the CDF, 
parameterized with the estimated mean value, as 

1 ( ; , ) 1 ,FA z
LTP F T L d Ld


        
             (26) 

where T  is the detection threshold that needs to be solved: 

 1 ,1 FAT Ld P
L
                            (27) 

3) Generalized model of the TS  
Since Eq (13) and Eq (21) represent gamma distribution 

which is a special case of the generalized gamma distribution 
( G D ), it is possible to make this expression more robust if we 
use the G D  instead as 

 , = ( ; ,1, )f x                     (28) 
where f is the G D  as follows: 

1

( ; , , )= exp
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kv vkv k z zf z k v k
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, ,k v  are the shape, power and scale parameters, respectively.  
k Ld , d  . 
Its cumulative density function (CDF) is 
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where vk  . The PDF of z , the truncated data is 
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Via the definition of the incomplete gamma function, we can 
get the n-th moments of the truncated data after MPWF 
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The ML estimator is used.  
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By differentiating the log-likelihood function with respect to           
, ,k v  and setting them to zero, we obtain the following three 

equations (34-36) 
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where ( ) ( ) (3, , )v vK k k T k     , vk  ,and in [49]: 
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MeijerG function is defined as  
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The PFA/PD can be rewritten as  
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where vk  . It can also be seen that the calculation of the 
threshold is also easier to obtain compared with the gamma 
distribution.  
In the following we will use both the truncated gamma 
distribution and the truncated G D  to fit simulated and real 
PolSAR data. 

C. Performance of Parameter Estimation  
This section presents empirical results that a) show the 

correctness of our derived distributions after truncation; b) 
evaluates the performance of ENL estimator for truncated data, 
and compare with the conventional ML estimator for 
uncontaminated data. 

 Firstly, we evaluate the correctness of the distribution of the 
truncated data. Monte Carlo simulations are used to produce 
simulated SAR data. We used simulation to control exactly the 
statistics of clutter and contaminating targets. We generated the 
Wishart distribution covariance matrices and the textual 
variables. The Wishart part of the synthetic data set consists of 
N =1,000,000 covariance matrix samples drawn from a 
complex, circular, and zero-mean Wishart distribution. The 
distribution was colored by a matrix that is computed by 
averaging a homogeneous region of see in real SAR data. The 
number of looks in the simulation was set to L = 10. From 
N=1,000,000 samples, we drew M = [1000 10000 100000]) 
bootstrap samples to evaluate the correctness of the truncated 
distribution, which are presented in Fig 1 for Eq (15). It can be 
seen that the theoretical PDF is quite in accordance with the 
simulated data, especially when the sample size is large enough. 
We can get the same results of the other expressions of the 
truncated PDFs in Eq (23) and Eq (31). 
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(b) Sample size 10000 

0 1 2 3 4

z-MPWF(truncated data)

0

0.1

0.2

0.3

0.4

0.5

0.6

PD
F

Simulated Results

Theoretical Results

 
(c) Sample size 100000 

Fig 1 The validation of the truncated statistics 
 
 Secondly we assess the performance of different ENL 

estimators by the mean square error (MSE), which is defined as 

 2 2

2 2 2

ˆ ˆBias( ) E( ) /

ˆ ˆ ˆVar( ) E E( ) /

ˆ ˆ ˆ ˆMSE( ) E ( ) / Bias( ) Var( )

   

   

     

 

    

      

 (41) 

where  is the true value, ̂ is the estimation of  . To 
describe i) the simulation of contaminated data and ii) the depth 
of PWF truncation, we define two parameters. The 
contamination ratio cR  is defined as the proportion of 
contaminated data points relative to the total samples size, and 
the truncation ratio tR  as the fraction of truncated samples over 
the total samples size. Here we set the contamination ratios as 

0%cR   and 20%cR  , respectively. And the target to clutter 
ratio (TCR) is defined as TCR tr( ) / tr( )T C C Σ Σ Σ , where 

TΣ  is the polarimetric covariance matrix of target and CΣ  is 
the polarimetric covariance matrix of sea clutter. The 
contamination samples are drawn from a gamma distribution 

TCR=2. Unfortunately both the estimators based on PWF-TS 
should solve the complicated transcendental equations 
numerically. We found a group of ENL estimators based on the 
sub-matrix and logcumulants [50], which may be used in both 
the untruncated and truncated data perfectly and cost little time.  
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(a) Sample size 1000 
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(b) Sample size 5000 
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(c) Sample size 10000 

Fig 2 Performances of different ENL estimators with 
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Rc=0 and TCR=2 
The results in Fig 2 are in the case of the uncontaminated data, 
and the results for the contaminated data are listed in Fig 2. 
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(a)Sample size 1000 
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(b)Sample size 5000 
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(c)Sample size 10000 

Fig 3 Performances of different ENL estimators with 
Rc=20% and TCR=2 

In both Fig 2 and Fig 3, d1d2, d2d3, d1d3 d1d2d3-1 and 
d1d2d3-2 are all estimators based on the sub-matrices in [50]. 
From the results we can see the performances of the sub-matrix 
estimators give the best results and each of them gives similar 
performance. Therefore we can take one as the ENL-SM 
method. The ML method is proposed by S N Anfinsen, which is 
used for the untruncated data and can be named as ENL-SN. 
The ML-Truncated method is our method suitable for truncated 
data, which is named as ENL-ML. It can be seen when the 
truncated ratio almost equals the contaminated ratio, the ML 
and the ML-truncated methods may give a good performance.   

If the ENL has been obtained, the ( )T   can be obtained 
easily via Eq (12) or the ML estimator in Eq (25). We also 
found the solutions via Eq (24) and (33) are almost the same as 
the above, which has also been verified by the measured data in 
section IV. Therefore we can choose suitable methods for 
parameter estimations considering both the accuracy and the 
efficiency. 

D. Assessment of the PWF-TS-CFAR Detector  
In this section, we use two CFAR indexes to assess the 

performance of the PWF-TS-CFAR detector:1) the false alarm 
rate maintenance and 2) the Receiver Operating Characteristic 
(ROC). We calculate these indexes from the simulated gamma 
distributed clutter. The proposed PWF-TS-CFAR detector is 
compared with the conventional TS-CFAR detectors based on 
intensity only. 

1) False Alarm Rate Maintenance: The observed false alarm 
rate is defined as 

fa
fa

n
P

n
                                 (42) 

where fan  is the number of false alarms and n  is the total 
number of samples. The specified false alarm rate is denoted 
as FAP . A constant faP  can be approached to FAP in theory if the 
statistical model of clutter satisfies the assumed model and the 
corresponding parameter estimates are accurate. Therefore we 
define the False Alarm Rate Maintenance  

10 log fa
L

FA

P
C

P

      
                              (43) 

This is a fundamental parameter to assess the CFAR 
maintenance.  

2) ROC: The detection rate is measured as 
d

d
t

n
P

n
                                         (44) 

where dn  is the number of the detected targets and tn  is the 
total number of targets. dP  is usually evaluated at different 
values of FAP to assess detection performance, where FAP  is 
chosen that produces a faP  that meets the practical 
requirements. This forms the ROC curve and it is always used 
to assess different detector performance. We use Monte Carlo 
simulations to draw the ROC curve. Here the sample size is set 
1000, which simulates the samples in a reference window. The 
contamination rate is set as 20%cR  , and the truncation ratio  

20%tR  . The total number of simulations is 10000, which 
can make faP and dP  almost the same as the true values. 
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(a) Bias of the Pfa from the true value PFA 
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(b)ROC curves when TCR=2 

Fig 4 Assessment of the Pol-TS-CFAR 
The results are presented in Fig 4. The faP  almost equals the 

PFA, which means that the truncated parameter estimation is 
correct and efficient. The biases of faP  for all truncated data in 
Fig 4 (a) is near to each other and gives the similar maintenance 
of the CFAR for values of PFA larger than 2e-5. In Fig 4 (b) it 
shows the full polarimetric detection gives the best 
performance since all polarimetric information is used. It also 
can be seen that the HV polarization channel is the best one for 
detection in all the three single polarization. The phenomenon 
that the VV polarization gives the worst result shows that the 
VV intensity from the targets is similar to that from the clutter, 
leading to the worst detection performance. 

IV. DETECTION PERFORMANCE WITH REAL DATA 
The workflow of the PWF-TS-CFAR detector proposed in 

this paper is presented in Fig. 5. There are three important 
processors, including the local detection design, the data 
truncation processor, and the CFAR processor. These are 
described in this section. The more challenging issues are the 
iterative censoring (IC) scheme and the adaptive setting of the 
truncation threshold. The workflow is indicated by the solid 

arrow lines. The solid parallelograms represent the main input 
and output. The rectangular boxes within gray background 
regions show the operation and procedure, and the diamond is 
the decision of the termination of the iterative estimation. 

 

 
Fig 5 Workflow of the Pol-TS-CFAR detector 

A. Local detection Design 
To accelerate the speed of image processing, a local block 

detection is proposed, which consists in dividing the whole 
image into blocks [36][53].  

As an initial step in our processing chain we choose the local 
block threshold algorithm in the region of interest (ROI), where 
the ROI is small enough to be an adequate approximation for 
complicated large background as well. Based on the block 
design and suitable estimated parameters, the local CFAR 
threshold for each segmented ROI can be obtained using Eq. 
(27) or Eq. (40).  In our experiments, only one image block is 
presented for the sake of brevity. 

B. Iterative Censoring (IC) Scheme 
The iterative censoring (IC) scheme was proposed by Barboy 

et al to solve the parameter estimation problem in the 
multiple-target situation [54]. The threshold is iteratively 
updated based on the censored and remained reference samples. 
Samples get excluded from the censored reference samples 
when the specific samples exceed the adaptive threshold. This 
is repeated until there are no changes in both the threshold and 
the number of the reference samples [55][56].  It is no doubt 
that multistep adaptive detection procedures may require many 
cycles and cost long calculation time. In spite of this drawback, 
the IC scheme has shown robust performance in the multi target 
situation and has been integrated within CFAR algorithms. 
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In our truncation processor, we first use all the pixels in the 
ROI to estimate the parameters and the polarimetric covariance 
matrix, followed by the MPWF. Then we use the fixed or the 
adaptive setting of truncation threshold in section C. Then we 
estimate the polarimetric covariance matrix and the other 
parameters by the remained pixels after truncation. Then we 
use the new parameters to repeat the MPWF and the following 
steps until the truncated number is stable.  

C.  Determination of truncated threshold 
The most important thing for the truncated processor is to 

separate the targets from sea clutter accurately after the 
truncation of the MPWF. We need to set the truncated threshold 
suitably. Note the fact that the PDF may be bimodal. One 
methodology to set the truncation is by smoothing the PDF an 
analyzing the saddle point. In this version, we do this manually. 
However we will investigate automatic methodologies 
exploiting multimporal data for the future. 

Here we evaluate the difference of PDF and fit a smoother 
curve. We then look for the first minimum point.  Simulations 
are performed to validate this methodology, as shown in Fig 6. 
In the simulations, we first generate the sample sizes of the sea 
clutter (10000) and the target (2000) with the designed 
polarimetric covariance matrices. Then we plot the histogram 
of all these data after the MPWF as shown in Fig 6 (a). The first 
order difference of the PDF is derived, and the poly function is 
used to fit a curve. Generally the Polynomial order is difficult to 
determine, which is set 12 manually in our simulation, and 
therefore the truncation threshold is 6.5. The truncated result is 
shown in Fig 6(c). If we change the sample sizes of sea clutter 
and targets to be 1000 and 200 respectively, the performance is 
still excellent.  
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(b) the First Order Difference of the PDF 
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(c) the truncated result (sample size 10000) 
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(d) the truncated result (sample size 1000) 

Fig 6 Adaptive Determinant of truncated threshold 

D. Test with real data 
In this section, we test the goodness-of-fit of the statistical 

model for real data. Key methodologies presented in section A , 
B and C are applied here. Here two dataset from different 
satellites are used here. We first use a C-band RADARSAT-2 



 11 

polarimetric single-look complex (SLC) SAR image acquired 
over the Singapore Strait area [57]. The image size is 1227 
(slant range) × 2070 (azimuth) pixels. The nominal spatial 
resolution is 5.2 m (slant range) × 7.6 m (azimuth), and the 
pixel spacing is 4.7 m (slant range) × 4.8 m (azimuth). The 
incidence angle is about 47◦. To perform validation, we use 
polarization information to assist in visually identifying small 
ships and remove azimuth ambiguities [58]. The final ground 
reference of ships marked with boxes is shown in [57], 
including 184. From counting the number of visible pixels of 
the ships, it appears that the vessels should approximately have 
lengths between 25m and 360m. We choose ROI A and B 
randomly in Fig 7 to test our methodologies. Therefore there is 
no special reason for A and B are partially stacked. We use the 
multilook to reduce speckle, and the nominal number of looks 
is 4 (The multilook processing is to suppress the speckle, while 
it will reduce the resolution of the SAR image. Generally it is 
taken as 4 or 9. Here we take it as 4.). Since the single look 
detector is a special case of the multilook one, we only discuss 
the multilook case in our experiments. 

 

 
Fig 7 C-band HH polarized SLC RADARSAT-2 SAR 

image acquired over the Singapore Strait area.  
After the multilook, the size of ROI A is 150*200. The IC 

scheme is performed and the results of the truncation are 
presented in Fig 8. The truncated threshold is 6.5, which is 
derived by the minimum in Fig 8(b). 
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(a) PDF in ROI A 
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(b) the First Order Difference of the PDF in ROI A 

Fig 8 Calculation of the truncation threshold in ROI A 
 
The results of the parameter estimation are listed in Table 1. 

The PDF of the truncated clutter is shown in Fig 9. ENL-ML is 
estimated using the ML criterion, and the results derived from 
Eq (20),(24), (25) are almost the same after the IC scheme. 
Therefore, we use ENL-ML to describe all the three ML 
estimators. ENL-SN is the estimator proposed by S N Anfinsen 
for the untruncated data, while processing the truncated data. 
Since the estimators based on the sub-matrices obtain almost 
the same results, we use ENL-SM to describe the sub-matrices 
estimators. ENL– G D  is solved by Eq (34-36). ENL-UT is the 
estimator proposed by S N Anfinsen processing the untruncated 
data (not doing the preprocessing of target truncation). 

 
Table 1 The comparisons of the estimations of the ENL(A) 
 ENL-ML ENL-SN ENL-SM ENL- G D  ENL_UT 

L 2.2390 3.2732 3.3781 3.3086 2.1561 
miu 1.0201 1.0067 1.0060 1.0182 1.0000 
  

The PDFs of different parameters estimated in table 1 are 
presented in Fig 9. It can be seen that the ENL- G D  gives the 
best performance, followed by the ENL-ML method.  
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Fig 9  PDFs of the truncated data after MPWF 

 
In Table 2, the KL distance [59] is used to measure the 

goodness-of-fit. The results in table 2 show the same 
conclusion as that from Fig 9. We can also see the ENL-ML 
give a good fit, whose ENL is 2.239. If we estimate the ENL by 
a pure sea clutter area, the ENL should be 3.2. This means the 
ENL estimated by the ENL-ML is to make the distribution of 
the clutter closest to the gamma model, while the ENL 
estimated here may not be the global one.  

 
Table 2 The KL distance of the different parameters (A) 

 ENL_ML ENL_SN ENL_SM ENL_ G D  ENL_UT 
KL  0.0065 0.0413 0.0478 0.0016 0.0081 

 
We repeat the experiments in ROI B. The results are 

presented in Fig 10 ,Fig 11, Table 3 and Table 4. The size of 
ROI B is 200*150. 
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(a) PDF in ROI B 
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(b) the First Order Difference of the PDF in ROI B 

Fig 10 Calculation of the truncation threshold in ROI B 
 

Table 3 The comparisons of the estimations of the ENL (B) 
 ENL_ML ENL_SN ENL_SM ENL_ G D  ENL_UT 

L 2.3085 3.2630 3.3618 3.3080 2.1546 
miu 1.0185 1.0068 1.0061 1.0160 1.0000 
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Fig 11 PDFs of the truncated data after MPWF 

 
Table 4 The KL distance of the of different parameters (B) 

 ENL_ML ENL_SN ENL_SM ENL_ G D  ENL_UT 
KL  0.0059 0.0341 0.0397 0.0013 0.0078 

 
The conclusion in ROI B is the same as in ROI A.  The 

results show that ENL- G D  estimator and ENL-ML estimator 
give better performance than the other estimators. In this 
dataset, we can conclude that these two estimators give better 
detection performance than the others we tested. 

The second dataset is from the platform of GF-3, which is 
also works in C band. The scene id is 3180124 and the image 
mode is QPSI. The nominal number of looks is 4.The final 
ground truth is obtained by the same way addressed in the 
RadarSat-2 dataset. Five objects are obtained in the ROI C. The 
biggest are oil platforms, and the others are ships.  The ROI C is 
presented in Fig 12. 
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Fig 12 C-band HH polarized SLC GF-3 SAR image 

acquired in South China sea.  
The results of the statistics and parameter estimations are 

listed in Fig 13-14 and Table 5-6. 
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(a) PDF in ROI C 
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(b) the First Order Difference of the PDF in ROI C 

Fig 13 Calculation of the truncation threshold in ROI C 
The truncation threshold is determined as 6.8 in ROI C. 
Table 5 The comparisons of the estimations of the ENL (B) 

 ENL_ML ENL_SN ENL_SM ENL_ G D  ENL_UT 
L 1.5595 2.7696 2.9024 2.7989 2.1248 

miu 1.0301 1.0038 1.0032 1.0039 1.0000 
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Fig 14 PDFs of the truncated data after MPWF (ROI C) 

 
Table 6 The KL distance of the of different parameters (C) 

 ENL_ML ENL_SN ENL_SM ENL_ G D  ENL_UT 
KL  0.0080 0.0947 0.1117 0.0017 0.0304 

 
The conclusion about different estimators is the same as that 

in ROI A and ROI B. 
 

E. Detection Performance Analysis 
To check the performance of the CFAR, we use the 

density-based clustering method named Density-Based Spatial 
Clustering of Applications with Noise (DBSCAN) [60]. We 
can validate that the single pixel detected in this image frame 
can be associated to false alarms. Please note this is not true in 
every dataset where the size of ships can be smaller. Based on 
the previous visual inspection, we set the circle radial eps=25 
and minimum points MinPt=2, which means 2 points in a circle 
with radius of 25m can be seen as a ship. This applies a second 
layer of false alarm rejections. It should be noted that we use 
this clustering filter only to find points that can be associated to 
false alarms. 

In addition, a figure of merit (FOM) is used to evaluate the 
detection performance [61] 

 
td

fa gt

N
FoM =

N + N
                    

（45） 

where tdN is the number of detected ships, faN is the number of 
false ships, gtN is the number of real ships in the ROI. In the 
following figures a red rectangle means an omitted target, a 
yellow rectangle means a false target, and a green rectangle 
means one true ship. 
   We use the parameters estimated in Section IV.D to solve the 
threshold of the CFAR detection via Eq (27) and (40). And the 
detection performances are presented as follows. The 
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MPWF-   means the different estimators after MPWF, 
according to the ENL-  methods. The MPWF-UT means the 
output of MPWF without data truncation. The ground truth is 
presented in the Pauli-RGB image. 

  
MPWF- G D  MPWF-ML 

  
MPWF_SN MPWF_SM 
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Fig 15 Detection Results of the CFAR detector based on 
MPWF (ROI A) 
 The PFA is set 0.0001. The results are presented as follows. 
The Pfa and the FoM in ROI A are listed in table 5. 
 

TABLE 7 
PERFORMANCES OF ALL DETECTORS IN ROI A 

Area Method ˆ
faP  tdN  faN  %FoM（ ） 

A 

ENL-UT 0.0001 55 0 100.00 
ENL_ML 0.0005 55 5 91.67 
ENL_SN 0.0014 55 8 87.30 
ENL_SM 0.0014 55 8 87.30 

ENL_ G D  0.0002 55 5 91.67 
 

The experiments are repeated in ROI B. The results are 
presented in Fig as follows. 
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Fig 16 Detection Results of the CFAR detector based on 
MPWF (ROI B) 

 
The Pfa and the FoM in ROI B are listed in table 6. 
 

TABLE 8 
 PERFORMANCES OF ALL DETECTORS IN K CASE 

Area Method ˆ
faP  tdN  faN  %FoM（ ） 

B 

ENL_UT 0.0002 35 0 97.22 
ENL_ML 0.0010 36 13 73.47 
ENL_SN 0.0017 36 19 65.45 
ENL_SM 0.0017 36 19 65.45 

ENL_ G D  0.0002 36 7 83.72 
 
From the results show that the two parameters ML (ENL-ML) 

has the same performance compared with the three parameters 
G D  (ENL- G D ).  However, we can expect that if the sea 
clutter turns to be complicated the ENL- G D  may provide 
better performance than the ENL-ML. Though the ENL_UT 
gives the best FOM, it omitted one target, and from all the 
figures we can see it omitted many pixels of each ship.  

Moreover, in Fig. 12 and Fig. 13 some of the detected false 
alarms are very small compared to the real targets, and they are 
close to the real targets. In other words, these false alarms are 
phenomena generated by ship sidelobes, or ship wakes; 
additionally other false alarms may be generated by azimuth 
ambiguities.  

To validate the robustness to different satellites, the GF3 data 
are also tested. The experiments are repeated in ROI C. The 
results are presented in Fig 17 and Table 9 as follows. 
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Fig 17 Detection Results of the CFAR detector based on 
MPWF( ROI C) 

 
The Pfa and the FoM in ROI C are listed in table 9. 
 

TABLE 9 PERFORMANCES OF ALL DETECTORS IN K CASE 

Area Method ˆ
faP  tdN  faN  %FoM（ ） 

C 

ENL_UT 0.0001 2 0 40.00 
ENL_ML 0.0004 5 3 62.50 
ENL_SN 0.0014 5 7 41.67 
ENL_SM 0.0012 5 7 41.67 

ENL_ G D  0.0002 5 0 100.00 
 
Here we can see the MPWF- G D  gives the best 

performance, but the MPWF-UT with no truncation omitted all 
the small ships, which has a weak ability to detect small targets. 

V. CONCLUSION 
In this paper the PWF-TS-CFAR detector is proposed to 

improve the accuracy of estimated parameters for the clutter 
statistics in multiple-target situations. The PWF is a very good 
method for ship detection when the a priori information of 
targets is absent. The PWF is applied to perform the truncation 
of PolSAR data.  The estimation of the covariance matrix after 
truncation is derived in appendix. PWF-TS-CFAR does not 
require guard window since the targets within the reference 
region is truncated before the clutter estimation. Therefore, it 
can also be used by a segmentation method [36] where there are 
no guard cells.  

Since the degree of polarization, which has been reviewed in 
the introduction, provides very important information that is 
not covered by conventional covariance matrix optimization 
tools such as the PWF detector, it would be good to compare 
the results we have obtained in this study with a new 
investigation that used the minimum degree of polarization in 
future. 

APPENDIX  
In the appendix, we will derive the relation between the 

covariance matrix of the truncated data and that of the 

untruncated data following Tallis’ method in [35]. From Tallis’ 
paper, it turns out that [35] 
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               (A.1) 

with  vF  denoting the CDF of a 2 variable with d degrees 
of freedom. It is trivial to invert (18) so as to express Σ as a 
function of S . This is because ( )Tc   is a scalar damping 
factor independent of Σ .This result is only suitable for real 
Gaussian distributed vectors or covariance matrices.  

The zero mean d-variate complex Gaussian under elliptical 
truncation is  

  11( ) exp( )H
dp


 x x Σ x

Σ
            (A.2) 

According to the methods in [35][48], and the relations 
between the 2  cumulative distribution  vF   and the 
incomplete gamma function ( , )a b [39], we can extended the 
real number results to the complex case  
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The joint PDF of L  independent samples based on (A.2) 
should be 

1
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where Σ  is positive semi- definite Hermitian, H is the 
conjunction transpose operator and define a set D  as the 
limitation space as follows 

 1 1

1

{ 0 tr }
L

H
i i

i

L L 



   x x Σ x Σ CD            (A.5) 

where tr() is the trace operator,  is the truncation radius and 
the 5 multilook polarimetric covariance matrix is 

H

1

1 L

i i
iL 

 C x x .  

   (A.4) can be seen as a general form of (A.2), and the only 
differences are the dimension of the vector and the polarimetric 
covariance matrix. We can denote 1 2( , ,..., )Ly x x x , and then 
Eq (A.2) turns to be 

11( ) exp( )H
i iLLd

p


 y x Ξ x
Σ

      (A.6) 

where 

0 ... 0
0 0

0 0

 
 
 
   
 
   

Σ
Σ

Ξ

Σ



   



 is the Ld dimension covariance 

matrix. 
 Obviously, (A.6) is the same form as (A.2). The difference 
between them is the dimension. Therefore we get the second 
moments of the truncated matrix  ; Σ  as  
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Observing the form of the Ld dimension polarimetric 
covariance matrix is a block diagonal matrix,  we can get the 
second moments of the truncated matrix  ; ΣS  as 
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