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Hierarchical Segmentation of Polarimetric SAR
Images Using Heterogeneous Clutter Models

Lionel Bombrun, Member, IEEE, Gabriel Vasile, Member, IEEE, Michel Gay, Member, IEEE, and Felix Totir

Abstract—In this paper, heterogeneous clutter models are used
to describe polarimetric synthetic aperture radar (PolSAR) data.
The KummerU distribution is introduced to model the PolSAR
clutter. Then, a detailed analysis is carried out to evaluate the
potential of this new multivariate distribution. It is implemented
in a hierarchical maximum likelihood segmentation algorithm.
The segmentation results are shown on both synthetic and high-
resolution PolSAR data at the X- and L-bands. Finally, some
methods are examined to determine automatically the “optimal”
number of segments in the final partition.

Index Terms—Fisher probability density function (PDF),
KummerU PDF, polarimetric synthetic aperture radar (PolSAR)
data, segmentation, spherically invariant random vectors (SIRV).

I. INTRODUCTION

B ECAUSE of its all-weather and all-day monitoring capa-
bilities, synthetic aperture radar (SAR) imagery has been

widely used for global Earth monitoring. Such systems offer a
number of advantages for Earth-surface and feature observation
compared to optical sensors. With the new generation of high-
resolution SAR sensors, the high-quality images of the Earth’s
surface are acquired. They offer the opportunity to observe
thinner spatial features from space. Nevertheless, with such
sensors, only a small number of scatterers are present in each
resolution cell. The xlassical statistical models can therefore be
reconsidered. Many works have been recently dedicated to this
problem. For example, Delignon et al. [1] have proposed to use
the Pearson system KUBW for the statistical modeling of ocean
SAR images. Other works have proposed to model agricultural
fields and urban areas in high-resolution SAR images by means
of the Fisher probability density functions (PDFs) [2], [3].

Polarimetric SAR (PolSAR) data describe the interactions
between the electromagnetic wave and the scatterers present
in each resolution cell. By means of the Sinclair matrix, the
polarimetric diversity has been widely studied to retrieve the
physical properties of the media [4]–[6]. For low-resolution
images, the classical Wishart distribution has been used in the
classification and segmentation of PolSAR data [7], [8]. With
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the new PolSAR sensors, the number of scatterers present in
each resolution cell decreases considerably. The homogeneous
hypothesis of the PolSAR clutter can be reconsidered. To
overcome this difficulty, Anfinsen et al. [9] have introduced
the relaxed Wishart distribution, which has shown promising
results in modeling the forested scenes. Other heterogeneous
clutter models have been proposed in the literature by means of
the scalar product model. In this model, the spatial nonhomo-
geneity is incorporated by modeling the clutter as the product
between the square root of a scalar random variable (texture)
and an independent zero-mean complex circular Gaussian ran-
dom vector (speckle). If the texture random variable is Gamma
distributed, the target scattering vector follows the well-known
K distribution [10]–[12]. Another class of multivariate distribu-
tion has been introduced : the G0 polarimetric distribution [13].
It assumes an inverse Gamma distributed texture. This model is
able to fit an extremely heterogeneous clutter compared to the K
distribution. Recently, some works have proposed to generalize
those two classes with the multivariate KummerU distribution
which implies a Fisher distributed texture [14], [15].

This paper is organized as follows. In Section II, the multi-
variate KummerU distribution is introduced. Some benefits of
this model are discussed. Then, in Section III, the KummerU
is implemented in a hierarchical maximum-likelihood (ML)
segmentation algorithm. The segmentation results are next an-
alyzed in both synthetic and high-resolution PolSAR images.
Section IV presents some results to determine automatically the
number of segments in the final partition. Finally, some conclu-
sion and perspectives of this paper are discussed in Section V.

II. KUMMERU HETEROGENEOUS CLUTTER

With the new generation of airborne and spaceborne SAR
sensors, the number of scatterers present in each resolution cell
decreases considerably. In certain applications such as segmen-
tation or detection, the central limit theorem cannot be directly
used to support the Gaussianity hypothesis of the backscattered
clutter. The homogeneous hypothesis of the PolSAR clutter
must then be reconsidered. Heterogeneous clutter models have
therefore recently been studied. The generalizations of the
Gaussian distribution are appealing since they allow to retrieve
the basic Gaussian model under particular assumptions. Spher-
ically invariant random processes (SIRPs) or vectors (SIRVs)
are such a generalization. The SIRV has first been introduced
by Yao [16] for the estimation/detection in the information
theory. In the PolSAR, the target vector k is a complex vector of
length three or four and could be written under the SIRV model
hypothesis [17]. It is defined as the product of a square root

0196-2892/$26.00 © 2010 IEEE
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TABLE I
KUMMERU PDF AND PARTICULAR CASES

of a positive random variable τ (representing the texture) with
an independent circular complex Gaussian vector z with zero
mean and covariance matrix [M ] = E{zzH} (representing the
speckle)

k =
√

τ z (1)

where the superscript H denotes the complex conjugate trans-
position and E{·} denotes the mathematical expectation.

The SIRV representation is not unique, so a normalization
condition is necessary. Indeed, if [M1] and [M2] are two co-
variance matrices such that [M1] = α[M2] with α ∈ R

+∗, then
{τ1, [M1]} and {τ2 = τ1/α, [M2]} describe the same SIRV. In
this paper, the trace of the covariance matrix is normalized to
p, the dimension of the target scattering vector (p = 3 for the
reciprocal case) [17], [18].

For a given covariance matrix [M ], the ML estimator of the
texture for the pixel i (τi) is given by

τ̂i =
k

H
i [M ]−1

ki

p
. (2)

The ML estimator of the normalized covariance matrix under
the deterministic texture case is the solution of the following
recursive equation

[M̂ ]FP = f
(

[M̂ ]FP

)

=
p

N

N
∑

i=1

kik
H
i

kH
i [M̂ ]−1

FP ki

,

with Tr
(

[M̂ ]FP

)

= p. (3)

Pascal et al. have established the existence and the unique-
ness, up to a scalar factor, of the fixed point estimator of the
normalized covariance matrix, as well as the convergence of
the recursive algorithm, whatever the initialization [18], [19].

When the texture is assumed to be deterministic, the ML
estimator of the normalized covariance matrix is given by M̂FP

in (3). However, when the texture is a random variable, M̂FP

is not the ML estimator, it is an “approximate” ML estimator.
The ML estimator of the normalized covariance matrix depends
on the texture PDF pτ (τ), and its expression is linked with the
density generator function hp(x) by

[M̂ML] =
1

N

N
∑

i=1

hp+1

(

k
H
i [M̂ML]

−1
ki

)

hp

(

kH
i [M̂ML]

−1
ki

) kik
H
i (4)

where the expression of the density generator function is given
by [20], [21]

hp(x) =

+∞
∫

0

1

τp
exp

(

−x

τ

)

pτ (τ) dτ. (5)

Chitour and Pascal have proven that (4) admits a unique
solution and that its corresponding iterative algorithm
converges to the fixed point solution for every admissible initial
condition [22].

When the texture is a random variable with a given PDF, the
expression of the density generator function hp(·) given by (5)
can be computed. If hp(·) has an analytical expression, the ML
estimator can be computed according to (4). When the texture is
a random variable with an unknown PDF, the density generator
function cannot be computed numerically. The ML estimator
M̂ML cannot be found, and the approximate ML estimator
M̂FP should be used instead.

It is important to notice that, in the SIRV definition, the PDF
of the texture random variable is not explicitly specified. As a
consequence, the SIRVs describe a whole class of stochastic
processes. This class includes the conventional clutter models
having Gaussian, K-distributed, Rayleigh, or Weibull PDFs.
Some of those distributions are shown in Table I.

According to the SIRV estimation scheme, the scalar texture
parameter can be extracted from a PolSAR data set [17]. In the
next sections, the analysis of this parameter is carried out, and a
statistical model is proposed. Then, a new target scattering PDF
is derived, and some properties are exposed.

A. Scalar Texture Modeling

1) Fisher PDF: Fisher PDFs are known as the type VI so-
lution of the Pearson system. They are introduced as the Mellin
convolution (denoted as ⋆̂) of a Gamma PDF by an inverse
Gamma PDF. Their PDF is defined by three parameters as [23]

F [τ |m,L,M] =G[m,L] ⋆̂ GI [1,M]

=
Γ(L + M)

Γ(L)Γ(M)

L
Mm

( Lτ
Mm

)L−1

(

1 + Lτ
Mm

)L+M (6)

with L > 0 and M > 0. m is a shape parameter. L and M are
two shape parameters which control the behavior of the Fisher
PDF between the heavy head and heavy tail distributions. The
low values of the shape parameters lead to a significant texture.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BOMBRUN et al.: HIERARCHICAL SEGMENTATION OF POLSAR IMAGES 3

Fig. 1. κ2/κ3 plan for different bands and test sites. (a) X-band, Radar
Aéroporté Multi-Spectral d’Etude des Signatures (RAMSES), Brétigny, France.
(b) C-band, Convair, Ottawa, Canada. (c) L-band, Experimental SAR (ESAR),
Oberpfaffenhofen, Germany. (d) P-band, RAMSES, Nezer, France.

2) Fisher PDF Parameter Estimation: Recent works have
proposed to estimate the parameters of the Fisher PDF with
the log-cumulants method, defined in the special framework of
second kind statistics (where statistics—such as the second kind
characteristic function—are defined using the Mellin transform
instead of the Fourier transform) [23]. Nevertheless, these
estimators are not ML estimators. The latter benefits from very
desirable mathematical properties (asymptotic efficiency) and
will be used through this paper. A description of the ML Fisher
parameter estimation can be found in Appendix B.

3) Benefit of Fisher PDF: To evaluate the potential and
limits of the Fisher PDFs to model the texture of PolSAR
images, four data sets at the X-, C-, L-, and P-bands are
analyzed. From those data sets, the covariance matrix [M ]FP

and texture parameter τ are estimated on a sliding 7 × 7
window according to (2) and (3). Then, the second (κ2) and
third (κ3) log-cumulants of the texture parameter are computed.
Next, the κ2/κ3 plan is plotted. In this plan, the Gamma and
inverse Gamma PDFs are represented by the blue and red lines,
respectively. The Fisher PDFs cover all the space between the
blue and red lines [2], [24]. Fig. 1 shows the κ2/κ3 plan for the
different bands and test sites (fields, forest, urban area, etc.). It
shows that the Fisher PDFs can be suitable to model the scalar
texture parameter of PolSAR data.

Table II shows the percentage of points pnot Fisher which are
outside the Fisher PDF domain definition. This percentage can
be divided into two categories: the points which belong to the
Beta model, denoted by pBeta, (i.e., the points located under
the blue Gamma line) and those which satisfy the inverse Beta
PDF, denoted by pInverse Beta, (i.e., the points located under the
red inverse Gamma line). It yields that, for the four studied data
sets, at least 75% of the data belong to the Fisher κ2/κ3 domain.
The other amount of points which does not satisfy the Fisher
model is due to both the estimation errors (log-cumulants κ2

and κ3 are computed on a sliding 7 × 7 square window) and

TABLE II
PERCENTAGE OF POINTS OUTSIDE THE

FISHER PDFS DOMAIN DEFINITION

real data properties. For the RAMSES P-band data set over the
Nezer Forest [see Fig. 1(d)], a trend in the κ2/κ3 plan can be
observed around the blue line (Gamma model).

B. Target Scattering PDF

For a given texture PDF pτ (τ), the expression of the target
scattering vector PDF is given by

pk(k) =
1

πp |[M ]|

+∞
∫

0

1

τp
exp

(

−k
H [M ]−1

k

τ

)

pτ (τ) dτ

=
1

πp |[M ]|hp

(

k
H [M ]−1

k
)

. (7)

1) KummerU PDF: For a Fisher distributed texture, the tar-
get scattering vector PDF has been mathematically established
[14], [15]

pk(k|[M ],m,L,M) =
1

πp |[M ]|
Γ(L + M)

Γ(L)Γ(M)

( L
Mm

)p

× Γ(p + M) U (a; b; z) (8)

with a = p + M, b = 1 + p − L, and z =
(L/Mm)kH [M ]−1

k. | · | and U(·; ·; ·) denote the determinant
operator and the confluent hypergeometric function of the
second kind (KummerU), respectively. Hereinafter, this
multivariate distribution is named the KummerU PDF.

Consequently, the expression of the density generator func-
tion is given by

hp

(

k
H [M ]−1

k
)

=
Γ(L+M)

Γ(L)Γ(M)

( L
Mm

)p

Γ(p+M)U (a; b; z) .

(9)

2) Asymptotic Cases: As Fisher distributions are a general-
ization of the Gamma and inverse Gamma PDFs, the asymptotic
cases of the KummerU PDF can be studied.

1) For large M, the Fisher PDFs have the same behavior
as the Gamma PDFs. In Appendix A, a proof of the
convergence of the KummerU PDF toward the well-
known K PDF is achieved.

2) A similar approach can be done if L tends toward infinity.
The Fisher PDFs have, therefore, the same behavior as
the inverse Gamma PDFs. It yields that the KummerU
PDF tends toward the multivariate Student distribution,
also known as the G0 PDF [9], [13].

3) For the high values of L and M, the texture parameter
becomes less and less significant. Consequently, for the
high values of the shape parameters, the KummerU PDF
tends toward the Gaussian distribution.
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Fig. 2. Convergence of the KummerU PDF toward (a) the K distribution and
(b) the G0 distribution as a function of the shape parameters M and L.

Fig. 2 shows the convergence of the KummerU distribution
toward the K and G0 distributions as a function of the shape
parameters M and L. The KummerU PDFs can be viewed as
an extension of the classical multivariate K and G0 PolSAR
models (see Table I for the analytical expressions).

C. ML Parameter Estimation

For a KummerU distributed clutter, one can replace in (4)
the density generator function by its expression given in (9)
to derive the expression of the ML estimator of the covariance
matrix. It yields [15]

[M̂ML] =
p+M

N

( L
Mm

)

×
N

∑

i=1

U
(

p+1+M2+p−L L
Mm

k
H
i [M̂ML]

−1
ki

)

U
(

p+M1+p−L L
Mm

kH
i [M̂ML]

−1
ki

)

× kik
H
i . (10)

III. HIERARCHICAL SEGMENTATION

In this section, a segmentation application of the new multi-
variate KummerU PolSAR model is proposed. The hierarchical
segmentation algorithm proposed by Beaulieu and Touzi [12]
is adapted to the KummerU distributed target scattering vec-
tor. The segmentation algorithm is a classical iterative merge
algorithm. At each iteration, the two four-connex segments (re-
gions) which minimize the stepwise criterion (SC) are merged.

Fig. 3. (a) Four-connex segment pair. (b) Non-four-connex segment pair.

A four-connex segment pair is a group of two segments where
at least one pixel of the first segment is in the neighborhood of
one pixel of the second segment with the four-connexity sense.
For illustrative purpose, a four-connex segment pair is shown
in Fig. 3(a), and a non-four-connex segment pair is shown in
Fig. 3(b).

The basic principle of the hierarchical segmentation algo-
rithm can be divided into three steps.

1) Definition of an initial partition.
2) For each four-connex segment (regions) pair, the SC is

computed. Then, the two segments which minimize the
criterion are found and merged.

3) Stop if the maximum number of merges is reached;
otherwise, go to Step 2.

A. Similarity Measure

At each iteration, merging two segments yields a decrease
in the log-likelihood function. The SC is based on this con-
sideration. The hierarchical segmentation algorithm merges the
two adjacent segments Si and Sj which minimizes the loss
of likelihood of the partition (which is defined as the sum of
likelihoods of the partition’s segments). The SC (SCi,j) can be
expressed as [12]

SCi,j = MLL(Si) + MLL(Sj) − MLL(Si ∪ Sj) (11)

where MLL(·) denotes the segment Maximum Log-Likelihood
function (MLL). It is the log-likelihood of the segment (pixels
in the segment are considered independent realizations) with
respect to the assumed PDF (for example, the KummerU distri-
bution) whose parameters are estimated in the ML (hence, the
name) sense. Its expression is given by

MLL(S) =
∑

i∈S

ln (pk(ki|θS)) (12)

where θS represents the set of distribution parameters.
1) GMLL: In general, the covariance matrix and the texture

parameters are unknown. One solution consists in replacing the
SIRV parameters by their estimates. After replacing the covari-
ance matrix [M ] and texture parameters (m, L, and M for the
Fisher PDF) by their respective ML estimators, the SC becomes

SCi,j = GMLL(Si) + GMLL(Sj) − GMLL(Si ∪ Sj) (13)

where GMLL(S) is the generalized maximum log-likelihood
(GMLL) function for segment S.
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Fig. 4. Standard deviation of the normalized KummerU SC as a function of
the window size N .

2) For the KummerU PDF: The GMLL function for seg-
ment S is derived from (9). It can be rewritten as

GMLL(S)

=− pN ln(π)−N ln
{∣

∣

∣
[M̂ML]

∣

∣

∣

}

+N ln

{

Γ(L̂+M̂)Γ(p+M̂)

Γ(L̂)Γ(M̂)

}

+pN ln

{

L̂
M̂m̂

}

+
∑

i∈S

ln

{

U

(

p+M̂; 1+p − L̂ ;
L̂

M̂m̂
k

H
i [M̂ML]

−1
ki

)}

(14)

where L̂, M̂, and m̂ are the ML estimators of the Fisher
parameters L, M, and m, respectively. [M̂ML] is the ML
estimator of [MML] for segment S [see (4)].

It can be noticed that the second term of (14) corresponds
to the Wishart criterion [12]. All other terms can be viewed
as correction terms introduced by the texture modeling of the
PolSAR data.

B. Segmentation Results

To evaluate the potential and limits of the method, the hierar-
chical segmentation algorithm proposed by Beaulieu and Touzi
[12] has been implemented. Fig. 4 shows the standard deviation
for the normalized KummerU criterion (SC/N) as a function
of the window size N . This curve has been plotted for the two
regions containing KummerU realizations with two different
sets of parameters. As observed in Fig. 4, the standard devia-
tion is stable for a sufficiently large region. For the segments
containing less than 50 pixels, the standard deviation increases,
probably due to a poor parameter estimation. It yields that
a reasonable “minimum window” for the KummerU criterion
should contain at least 50 pixels. In the following sections,
the Gaussian and KummerU segmentation are tested with both
synthetic and high-resolution single-look-complex images.

1) On a Synthetic Image: The synthetic data set consists
of an image of 140 × 140 pixels. It is composed of six
areas. Five of them contain the independent realizations of the

TABLE III
COVARIANCE MATRICES OF THE SPECKLE (PER AREA)

TABLE IV
TEXTURE PDF (PER AREA)

multivariate KummerU distribution [see (9)]. The parameters of
the KummerU PDF are different for each of the areas and are
given in Tables III and IV. The outer area (class 1) is a special
case since its texture is deterministic and constant (equals 1). It
follows that the pixels in this area are drawn from a multivariate
Gaussian PDF. It can also be viewed as a KummerU PDF with
infinite shape parameters L and M.

Note that the covariance matrices of the speckle satisfy
the normalization condition Tr([M ]) = 3. In order to test the
segmentation algorithm thoroughly, only a limited set of param-
eters changes values between two neighboring regions. Thus,
the successful segmentations show the ability of the underlying
method to distinguish between similar areas.

The Gaussian distribution can be viewed as a particular case
of the KummerU distribution (for large shape parameters L and
M). It is expected that, asymptotically (for a large number of
samples N ), the KummerU segmentation gives at least the same
performances as the Gaussian criterion.

The hierarchical segmentation algorithm is initialized with a
partition where each segment is a bloc of 10 × 10 pixels. The
initial partition is composed of 196 segments. The segmentation
results based on the Gaussian and KummerU criteria are respec-
tively shown in Fig. 5(c) and (d) with the partitions containing
six segments. This example clearly shows that the segmentation
based on the KummerU criterion gives the best segmentation
results. This is quite logical because the six segments can be
viewed as six different KummerU clutter models.

Nevertheless, for purely Gaussian distributed regions, some
problems with the KummerU criterion can occur. A syn-
thetic data set composed by three Gaussian distributed
regions (S1, S2, and S3) has been generated. S1 and
S2 follow a Gaussian distribution with covariance matrix
[M1] (N (0, [M1])), whereas S3 has a covariance matrix
[M2] (N (0, [M2])). Note that the Gaussian regions are very
similar as observed on the Frobenius norm between [M1] and
[M2] (0.0012). Table V shows the SC for the Gaussian and
KummerU criteria between S1 and S2 (d(S1, S2)) and between
S1 and S3 (d(S1, S3)). It can be seen that, for a finite number
of samples N , the KummerU segmentation may fail due to the
higher dimensionality of the parameter space.
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Fig. 5. Segmentation results of a simulated data set (140 × 140 pixels). (a) Areas of the matrix. (b) Colored composition of the target vector in the Pauli basis
[k]1 − [k]3 − [k]2. Partitions containing six segments: (c) Gaussian criterion and (d) KummerU criterion.

TABLE V
SC FOR GAUSSIAN REGIONS

2) On High-Resolution L-Band Data: In this part, a forested
area (500 × 400 pixels) over the Oberpfaffenhofen test site
(ESAR, L-band) has been segmented. The initial partition is
composed of 2000 segments where each segment is a bloc of
10 × 10 pixels. The segmentation results with the Gaussian and
KummerU criteria are shown in Fig. 6(a) and (b), respectively.

For the Gaussian criterion, only the determinant of the sam-
ple covariance matrix is taken into account. Both the structure
of the covariance matrix and the power (texture) of the clutter
are ignored. Consequently, the Gaussian criterion cannot dis-
tinguish between two regions having different texture values
and/or covariance matrices whose determinants are equal but
which have different structures. The KummerU criterion uses
information about the texture and full information about the

Fig. 6. Segmentation results for the L-band ESAR data over the Oberpfaffen-
hofen test site (500 × 400 pixels). Partitions containing 30 segments over a
colored composition of the target vector in the Pauli basis [k]1 − [k]3 − [k]2:
(a) Gaussian criterion and (b) KummerU criterion.

covariance matrix and is able to give a better segmentation
of heterogeneous scenes, such as forested areas, as observed
in Fig. 6(b).
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Fig. 7. Segmentation results for the X-band RAMSES data over the Salon de Provence test site (1050 × 1050 pixels). Partitions containing 55 segments over
a colored composition of the target vector in the Pauli basis [k]1 − [k]3 − [k]2: (a) Optical image Centre National d’Etudes Spatiales/spot image, (b) Gaussian
criterion, and (c) KummerU criterion.

3) On Very High Resolution X-Band Data: In this section, a
very high resolution data set acquired by the X-band RAMSES
sensor over the Salon de Provence test site with a resolution
of 10 cm is analyzed. Fig. 7(a) shows an optical image of
the test site. The segmentation results with the Gaussian and
KummerU criteria are shown in Fig. 7(b) and (c), respectively.
The segmentation algorithm is initialized with a partition where
each segment is a bloc of 7 × 7 pixels.

From this data set, it can be noticed that more features are
segmented in the traffic circle with the KummerU criterion than
with the Gaussian criterion. Moreover, the artifact in the water
(on the northeast of the image) is better retrieved with the Kum-
merU segmentation. Concerning the water itself, the Gaussian
criterion leads to an oversegmented partition, particularly near
the bridge.

IV. DETERMINING THE NUMBER OF

CLUSTERS AUTOMATICALLY

A. General Context

Based on the initial partition, the hierarchical segmentation
iteratively merges the segments that are both statistically similar
(MLL criterion) and spatially close (neighboring condition).
The procedure may continue until a partition with a single
segment, comprising the whole image, is obtained.

Note that the hierarchical segmentation algorithm is gen-
erally suboptimal since neither the initial partition nor the
iterative merging of the segments is guaranteed to be optimal in
the general sense (i.e., with respect to maximizing the sum of
the segments’ log-likelihood), although the iterative merging is
still the optimal processing for the imposed initial partitioning
and a segment neighboring condition.

Summarily, it is useful to describe the hierarchical segmen-
tation method as an iterative transition from the oversegmented
partitioning to an undersegmented one. Each iteration results in
an intermediate partition, and thus, a sequence of partitions is
created. It would be valuable to determine the most appropriate
partition in this sequence, with respect to some optimality
criterion.

It is, however, difficult to decide between over- and un-
dersegmentation, except for the carefully chosen images [25],

[26]. As stated in [27], the ideal segmentation maximizes the
homogeneity of the retained data clusters while ensuring that
they are as dissimilar as possible. Such a perfect tradeoff is,
however, difficult to obtain since, during the region merging
(as what happens in the hierarchical segmentation algorithms),
both the homogeneity of the clusters and the dissimilarity
between them become weaker.

This problem is encountered in most of the data clustering
and image segmentation algorithms, and a number of tech-
niques have been applied (a comprehensive review is found
in [28]). However, some of the techniques are not applicable
for many SAR images. For example, the solution retained
in [27] is to incorporate the boundary curvature ratio, region
homogeneity, and boundary smoothness into a single merging
criterion, which is also used to estimate and to threshold the
intervariance of the obtained data clusters. This is not appro-
priate for the SAR images for two reasons: First, many regions
of interest in the SAR images have irregular shapes (forests,
lakes, buildings, etc.), and second, the textured characteristic of
the SAR images makes both the boundary smoothness and the
region homogeneity unreliable information. The latter remark
is in line with preferring stochastic approaches over contour
approaches in the SAR image segmentation.

B. Between-Cluster Entropy

The use of the information theory framework, closely related
to the retained statistical description of the SAR images, has
been attempted first. The cluster evaluation function, defined
in [29], is used in [30] as a measure for the between-cluster
entropy (intervariance). Formally, for all pairs of pixels (vec-
tors) xi and xj in a partitioned image, a membership function
M(xi,xj) is defined, which equals one if xi and xj belong to
different clusters (referred as segments under the terminology
used in this paper) and zero if they belong to the same cluster.
Thus, the between-cluster entropy is defined as

H = − log(V )

V =
1

2
∏K

k=1
Nk

N
∑

i=1

N
∑

j=1

M(xi,xj)G(xi − xj, 2σ2
I). (15)
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Fig. 8. Between-cluster entropy for the iterative hierarchical KummerU
segmentation.

In the aforementioned equations, σ is a positive parameter,
namely, the width of the centered Gaussian kernel G(·) used
in computing the nonparametric Parzen estimate of the PDF
and, consequently, the estimate of Renyi’s quadratic (obtained
for α = 2) entropy. The between-cluster entropy is defined, by
analogy, on the basis of this estimate.

Note that the between-cluster entropy equals +∞ for the
ending one-segment partition (indeed, the membership function
M(xi,xj) is always zero in that case and so is V ). On the
other hand, if many segments tend to be very close such that the
(norm of the) difference xi − xj is rather small (consequently,
the value of G(xi − xj, 2σ2

I) is large) while M(xi,xj) equals
one, the value of the between-cluster entropy is small. The latter
occurs in oversegmented images, for example, in the initial
partition of the considered hierarchical segmentation method.
Consequently, it is expected for the between-cluster entropy to
start with small values and, as the segments are hierarchically
merged, to progressively increase.

Jenssen et al. use the variation of the between-cluster entropy
quantity (during an iterative clustering process) to automat-
ically find the true number of clusters [30]. Specifically, a
sudden increase is observed in the between-cluster entropy
when the number of clusters is reduced to a value less than
the true number of the clusters (i.e., the partitioning goes into
undersegmentation). A similar behavior was expected for the
PolSAR hierarchical segmentation problem.

To this end, the between-cluster entropy has been computed
for each partitioning issued during the iterative hierarchical
segmentation proposed in this paper. A value of 0.1 has been
considered for σ. The obtained values for the hierarchical
segmentation of the considered synthetic PolSAR image [see
Fig. 5(a)] are presented in Fig. 8.

While the between-cluster entropy is constantly increasing,
as expected, unfortunately, no sudden change seems to occur in
the vicinity of the desired number of segments (namely, six).

Several justifications may be advanced for this behavior.
First, unlike the data clusters considered in [30], which are
well separated geometrically (belonging to disjoint geometrical
regions), the data in the six areas of the considered synthetic

PolSAR image are not. Specifically, while the vectors are drawn
from different PDFs for each area, their ranges superpose.

C. L-Method

Another approach has been then considered, namely, the use
of the L-method [28]. This method uses the very error (quality)
function that is used to perform the cluster merging during
the hierarchical segmentation algorithm, specifically the Log-
Likelihood Function (LLF) of the partition (i.e., the sum of
the MLL values for all the segments of the partition). As this
is readily computed during the proposed method, no further
computational effort is required. The knee of this error function
is identified, and the optimal number of clusters is chosen at
that point. The knee of a curve is somewhat similar to the point
of the maximum curvature.

The interest for the particular knee point comes from the fact
that it separates the two linearlike parts of the error function
graph. For example, the proposed hierarchical segmentation
algorithm starts by merging the relatively similar clusters and
the trend; thus, the error (quality) function slowly increases.
This remains almost unchanged during the oversegmentation.
Anyway, after the correct number of segments is reached and
the undersegmentation begins, the dissimilar segments begin to
be merged. As such, the homogeneity of the newly obtained
segments drops fast, and the quality function of the partition de-
grades rapidly. Obviously, the optimal tradeoff lies somewhere
between the over- and undersegmented partitions.

The L-method divides the graph of the error (quality) func-
tion into two parts and approximates each part with a straight
line. The pair of lines that most closely fit the error function
curve is retained, and their junction point is the looked-for knee.
The best pair of lines is that which minimizes the weighted sum
of approximation errors for the two parts of the error function
graph.

For many images, the hierarchical segmentation algorithms
spend many iterations in the oversegmentation since it usually
starts from an overrefined, sometimes even pixel level, partition
of the image. As this tends to unbalance the error contributions
of the over- and undersegmented parts in determining the
knee of the error curve, it is reasonable to do both of the fol-
lowing: 1) Drop some of the initial iterations of the hierarchical
segmentation algorithms, and 2) use an iterative procedure in
searching for the knee. The first step relocates the searching
of the knee toward the final steps of the algorithm (toward
the undersegmented region) while the second step refines the
found knee by considering a converging procedure toward a
stable procedure. Specifically, after a knee is found, the search
is performed again, the focus region being adjusted so that
the previously found knee is in the middle. The procedure is
described in [28].

1) On Synthetic Image: First, we present the results ob-
tained with the L-method for the synthetic six-area image. The
quality functions during the hierarchical segmentation algo-
rithm are shown in Fig. 9.

While the number of the optimal number of segments
[see (6)] for the considered image is not accurately retrieved
by the L-method, the estimate is quite close [see (5)]. This
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Fig. 9. Determination of the final partition for the KummerU segmentation on the synthetic image. (a) LLF. (b) LLF and global fitting error for the last
50 iterations.

Fig. 10. Determination of the final partition for the KummerU segmentation over the Oberpfaffenhofen test site. (a) LLF. (b) LLF and global fitting error for the
last 50 iterations.

number has been determined using the noniterative version of
the L-method, applied to a focus region containing the last
50 iterations of the hierarchical segmentation algorithm [mean-
ing, the leftmost 50 points of the graphs in Fig. 9(a)].

The application of the L-method under these conditions is
illustrated in Fig. 9(b). The upper graphs show the dual-line
approximation of the quality function in the optimal position
while the lower graphs present the variation of the global
(weighted) fitting error.

2) On High-Resolution L-Band Data: Using the L-method
for automatically determining the optimal number of segments
for the real images has been also assessed. The results are
presented for the Oberpfaffenhofen image, as shown in Fig. 10.
Note that the identified optimal number of segments is around
ten. The noniterative L-method has been applied to a focus
region containing the last 50 iterations of the hierarchical

segmentation algorithm [meaning, the leftmost 50 points of the
graphs in Fig. 10(a)]. The application of the L-method under
these conditions is illustrated in Fig. 10(b).

Finally, the iterative version of the L-method has been ap-
plied on the same data set (the Oberpfaffenhofen image) in
order to test the convergence properties of this procedure. We
found a relatively fast convergence. Indeed, for the KummerU
segmentation, the optimal number of segments was found to
be through the series [508 → 191 → 65 → 22 → 9]. The final
value is quite close to that obtained in the previous case, when
the noniterative L-method has been applied.

Note, however, that the optimal segmentation is still a very
subjective notion and that the L-method is not completely
objective since the notion of the knee is quite loose and, more, is
not necessarily the most appropriate from the user point of view
(the same concerns the hierarchical segmentation algorithm).
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Fig. 11. Segmentation results with the KummerU criterion for the L-band
ESAR data over the Oberpfaffenhofen test site (500 × 400 pixels). Partition
containing ten segments over a colored composition of the target vector [k]1 −

[k]3 − [k]2.

Fig. 12. Segmentation results with the KummerU criterion for the X-band
RAMSES data over the Salon de Provence test site (1050 × 1050 pixels).
Partition containing 19 segments over a colored composition of the target vector
[k]1 − [k]3 − [k]2.

For illustrative purposes, the partition of the Oberpfaffen-
hofen image with ten segments (in the range of those obtained
using the L-method) is presented in Fig. 11.

3) On Very High Resolution X-Band Data: In this part, the
iterative version of the L-method has been applied on the
X-band RAMSES data set over the Salon de Provence test
site. For the KummerU segmentation, the optimal number of
segments was found to be through the series [7298 → 3889 →
1472 → 457 → 147 → 52 → 21]. The partition containing the
optimal estimated number of segments is shown in Fig. 12.

It has been shown that the L-method provides an objective
and pertinent criterion for automatically identifying the optimal
number of segments in the hierarchical segmentation proce-
dure. A more in-depth analysis is given in [28].

V. CONCLUSION

In this paper, the authors have proposed to apply the SIRV
estimation scheme to derive the covariance matrix and the
texture parameter. By rewriting the texture variable as the
product of a mean backscattered power μ with a normalized
texture component ξ, the Beta prime PDF has been introduced
to characterize the ξ variable. In this case, the texture parameter
τ is Fisher distributed, and the target scattering vector follows
a KummerU PDF. The asymptotic cases of this multivariate
distribution have been studied. It generalizes the well-known
K and G0 distributions. Some experiments at the X-, C-, L-,
and P-bands have shown that this new statistical model is well
adapted to fit a wide range of PolSAR clutters.

Based on those considerations, the multivariate KummerU
distribution has been implemented in an ML hierarchical seg-
mentation algorithm. The segmentation results on the synthetic
and real PolSAR data have shown that the SIRV estimation
scheme combined with the KummerU PDF provides the best
performances compared to the classical Gaussian criterion.
Next, a method based on the knee of the LLF has been im-
plemented to determine automatically the “optimal” number of
segments in the final partition.

Further works will deal with the use of texture and polari-
metric informations for the ML texture tracking with high-
resolution PolSAR data.

APPENDIX A
CONVERGENCE OF THE KUMMERU

PDF TOWARD THE K PDF

For large M, the Fisher PDF tends toward the Gamma
PDF. This appendix shows a proof of the convergence of the
KummerU PDF toward the K PDF as M tends toward infinity.
Abramowitz and Stegun have shown the following relation
[see 31, Eq. 13.3.3] which links an asymptotic case of the
KummerU function with the modified Bessel function of the
second kind (denoted by BesselK).

lim
a→∞

{Γ(1+a−b)U(a, b, z/a)}=2 z
1
2−b

2 BesselKb−1

(

2
√

z
)

(16)

Let a = p + M, b = 1 + p − L, and z = (p +
M/Mm)Lk

H [M ]−1
k. By injecting the expression of a,

b, and z in (16) and taking the limit when M tends toward
infinity, it yields

lim
M→∞

{

Γ(L + M) U

(

p + M, 1 + p − L,
k

H [M ]−1
kL

Mm

)}

= 2

[L k
H [M ]−1

k

m

]

1
2−

(1+p−L)
2

× BesselKp−L

(

2

√

LkH [M ]−1k

m

)

. (17)

Moreover, one can easily prove that

lim
M→∞

Γ(p + M)

Γ(M)Mp
= 1. (18)
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By combining (17) and (18) in (9), we retrieve the expression
of the K distribution

pk(k|[M ],L,m)=
2

πpΓ(L) |[M ]|

( L
m

)(L+p

2 )

×
[

k
H [M ]−1

k
](L−p

2 )

×BesselKp−L

(

2

√

L kH [M ]−1k

m

)

. (19)

APPENDIX B
ML FISHER PARAMETER ESTIMATION

The scalar texture parameter τ is the random power of
the clutter; it characterizes the randomness induced by the
variations in the radar backscattering over different realizations
(pixels). This scalar texture parameter is assumed to be inde-
pendent from the polarization channel. For pixel i, it can be
rewritten as the product of a normalized texture parameter ξi

with the mean backscattered power μ by

τi = μ ξi (20)

where μ is assumed as a deterministic quantity (parameter).
Note that the current sample i is excluded from the computation
of μ. Its expression is given by

μ =
1

N − 1

N
∑

j=1
j �=i

τj . (21)

By inserting (2) and (21) in (20), one can express ξi as the
following ratio:

ξi =
τi

μ
=

τi

1

N−1

N
∑

j=1
j �=i

τj

=
k

H
i [M ]−1

ki

1

N−1

N
∑

j=1
j �=i

kH
j [M ]−1kj

. (22)

If τ follows a Fisher PDF, denoted by F [·], one can
prove that

F
[

τ

∣

∣

∣

∣

m =
μL
M ,L,M

]

= μ BP[ξ|L,M]. (23)

It yields that ξ follows a Beta prime PDF, denoted by BP[·].
The ML estimators of the Beta prime PDF parameters do not
have an analytical expression. They are the solution of the
following two equations, which contain the digamma function
Ψ(·) by

Ψ(L̂) − Ψ(L̂ + M̂) =
1

N

N
∑

i=1

ln

(

ξi

1 + ξi

)

(24)

Ψ(M̂) − Ψ(L̂ + M̂) =
1

N

N
∑

i=1

ln

(

1

1 + ξi

)

. (25)

Next, the transformation A = ξ/(1 + ξ) is applied on the
data. Indeed, if ξ ∼ BP(L,M), then A ∼ B(L,M) where
B(·) is the Beta PDF. The Beta shape parameters (L and M)
are then numerically estimated by solving the ML equations
[32]. Finally, the scale parameter m is estimated by the relation
m = μL/M.
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