21 research outputs found

    Optimal dimensional synthesis of a symmetrical five-bar planar upper-extremity neuromotor device

    Get PDF
    Individuals with hemiplegia suffer from impaired arm movements that appear as a marked change in arm stiffness. A quantitative measure of arm stiffness would characterize rehabilitation therapy effectively, while little mechanism is designed to implement the function. A symmetrical five-bar linkage consisting of two revolute joints and three prismatic joints is presented. Inverse kinematics and forward kinematics are obtained first. Then inverse singularities and direct singularities of the mechanism are gained. Based on the results of kinematics analysis, the global stiffness index is defined. Finally, optimal dimensional synthesis of the mechanism in terms of maximum stiffness is conducted by genetic algorithms. The calculation results shows that when length of both the two linkage a=830 mm, interacting angle of the two guides 2d=4.48 radian, and maximum range of displacement of the two carriers dmax=940 mm, the mechanism achieves highest rigidity and its workspace is singularity-free, which covers the human left and right arm range of motion. The proposed novel mechanism featuring high rigidity and a singularity-free workspace can provides rehabilitation training, but also solves the problem of quantitative measure of arm stiffness

    MUSME 2011 4 th International Symposium on Multibody Systems and Mechatronics

    Full text link
    El libro de actas recoge las aportaciones de los autores a través de los correspondientes artículos a la Dinámica de Sistemas Multicuerpo y la Mecatrónica (Musme). Estas disciplinas se han convertido en una importante herramienta para diseñar máquinas, analizar prototipos virtuales y realizar análisis CAD sobre complejos sistemas mecánicos articulados multicuerpo. La dinámica de sistemas multicuerpo comprende un gran número de aspectos que incluyen la mecánica, dinámica estructural, matemáticas aplicadas, métodos de control, ciencia de los ordenadores y mecatrónica. Los artículos recogidos en el libro de actas están relacionados con alguno de los siguientes tópicos del congreso: Análisis y síntesis de mecanismos ; Diseño de algoritmos para sistemas mecatrónicos ; Procedimientos de simulación y resultados ; Prototipos y rendimiento ; Robots y micromáquinas ; Validaciones experimentales ; Teoría de simulación mecatrónica ; Sistemas mecatrónicos ; Control de sistemas mecatrónicosUniversitat Politècnica de València (2011). MUSME 2011 4 th International Symposium on Multibody Systems and Mechatronics. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/13224Archivo delegad

    Kinematic Analysis and Dimensional Synthesis of Exechon Parallel Kinematic Machine for Large Volume Machining

    Get PDF
    A parallel kinematic machine (PKM) topology can only give its best performance when its geometrical parameters are optimized. In this paper, dimensional synthesis of a newly developed PKM is presented for the first time. An optimization method is developed with the objective to maximize both workspace volume and global dexterity of the PKM. Results show that the method can effectively identify design parameter changes under different weighted objectives. The PKM with optimized dimensions has a large workspace to footprint ratio and a large well-conditioned workspace, hence justifies its suitability for large volume machining.</jats:p

    multiobjective optimization of an agile machining type linear delta structure

    Get PDF
    The innovative architectures design of agile machines dedicated to the machining at high speed requires the implementation of analytical and numerical models for the optimization of the kinematic, static and dynamic behavior of the machine, taking into account the elastic deformations and their compensation at level of machine control. In the context of multi-objective optimization, the first part is to identify the parameters and variables inherent to each constituent element of a DELTA robot type machine, the purpose is to optimize the essential elements of its structure. This requires a formulation of the multi-objective problem by expressing the objective functions, the constraints and the corresponding search spaces, as well as the resolution of the problem by the use of high-performance mathematical methods and tools (genetic algorithms, etc.)

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world

    Randomized Optimal Design of Parallel Manipulators

    Get PDF
    This work intends to deal with the optimal kinematic synthesis problem of parallel manipulators under a unified framework. Observing that regular (e.g., hyper-rectangular) workspaces are desirable for most machines, we propose the concept of effective regular workspace, which reflects simultaneously requirements on the workspace shape and quality. The effectiveness of a workspace is characterized by the dexterity of the mechanism over every point in the workspace. Other performance indices, such as manipulability and stiffness, provide alternatives of dexterity characterization of workspace effectiveness. An optimal design problem, including constraints on actuated/passive joint limits and link interference, is then formulated to find the manipulator geometry that maximizes the effective regular workspace. This problem is a constrained nonlinear optimization problem without explicitly analytical expression. Traditional gradient based approaches may have difficulty in searching the global optimum. The controlled random search technique, as reported robust and reliable, is used to obtain an numerical solution. The design procedure is demonstrated through examples of a Delta robot and a Gough-Stewart platform. Note to Practitioners-The kinematic/dynamic performance of a parallel manipulator highly depends on its geometry, e.g., link lengths, positions of fixed actuator, shape and size of end-effector. In designing a parallel manipulator, it is a crucial step to determine the best geometry that satisfies practical design requirements. For a general parallel manipulator, this paper provides a unified framework to formulate the optimal design problem by considering some key kinematic criteria, regularity and volume of workspace and dexterity. The latter one is closely related to stiffness and control accuracy. Since the optimal design problem is a nonlinear optimization problem without analytic expression, traditional gradient based search algorithms have difficulty to solve the problem. The controlled random search technique is used to search the global optimum. The design procedure is applicable for general parallel manipulators. Other design criteria, such as stiffness and accuracy, can be readily included in the design formulation

    Structural and kinematic synthesis of overconstrained mechanisms

    Get PDF
    Thesis (Doctoral)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2012Includes bibliographical references (leaves: 133-140)Text in English; Abstract: Turkish and Englishxiii, 140 leavesInvestigation on overconstrained mechanisms needs attention especially in the structural synthesis. Knowing overconstrained conditions and including them in the design process will help creating manipulators with less degree of freedom (DoF) and more rigidity. Also this knowledge of overconstrained conditions will clarify concept of mobility of the parallel manipulators. Another subject, kinematic synthesis of overconstrained mechanisms, is important because it will allow describing a function, path, or motion with less DoF less number of joints. The aim of this thesis is to describe a generalized approach for structural synthesis and creation of new overconstrained manipulators and to describe a potentially generalizable approach for function and motion generation synthesis of overconstrained mechanism. Moreover, screw theory is investigated as a mathematical base for defining kinematics of overconstrained mechanisms. Also, overconstrained mechanisms are investigated and generation of new mechanisms is introduced with examples. Some mathematical models for the subspace geometries are given. A method for defining overconstrained simple structural groups is introduced and extended to design of manipulators with examples and solid drawings. Linear approximation and least squares approximation methods are used for the function generation and motion generation of overconstrained 6R mechanisms. A gap of describing overconstrained manipulators is filled in the area of structural synthesis. A general methodology is described for structural synthesis, mobility and motion calculations of overconstrained manipulators using simple structural groups. A potentially generalizable method for the kinematic synthesis of overconstrained manipulators is described both for function and motion generation

    Error Modeling and Design Optimization of Parallel Manipulators

    Get PDF
    corecore