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ABSTRACT
A parallel kinematic machine (PKM) topology can only give its best performance when its geometrical parame-

ters are optimized. In this paper, dimensional synthesis of a newly developed PKM is presented for the first time. An
optimization method is developed with the objective to maximize both workspace volume and global dexterity of the
PKM. Results show that the method can effectively identify design parameter changes under different weighted ob-
jectives. The PKM with optimized dimensions has a large workspace to footprint ratio and a large well-conditioned
workspace, hence justifies its suitability for large volume machining.

1 Introduction
Large volume manufacturing companies, e.g., aerospace manufacturers, are looking for cost effective flexible solutions

to meet the ever increasing customer demands towards high speed and high quality [1]. Parallel kinematic machines (PKMs)
show the huge potential to meet these requirements [2], and they have attracted much attention from universities to indus-
tries over the last three decades. Numerous types of PKMs have been proposed in literature, but few of them have been
successfully commercialized and utilized in production [3]. The major reason for that is the small workspace and the limited
flexibility. To overcome these drawbacks while maintaining the merits of high stiffness, speed and accuracy, the current
trend in large volume manufacturing is to utilize hybrid parallel kinematic machines (HPKM) for 5-axis machining [4–9].
Research has shown that HPKMs can offer competitive advantages over conventional CNC machines [6],though there is
still a long way to go before putting them into productive work, such as large volume high precision manufacturing. The
Tricept machine is by far the most successful machine for high stiffness manufacturing, with more than 300 currently in
production. Motivated by reducing the number of passive joints and effective utilization of actuator stiffness, the inventor
of Tricept, Neumann [6] patented a novel HPKM named Exechon. Queen’s University Belfast (QUB) is a research partner
with Exechon Corporation to investigate the further design and application of the new machine. The prototyping system
has been developed and its improved performance has been demonstrated through our primary experiments [10]. As shown
in Fig. 1(a), an integrated HPKM Exechon system has been designed and implemented, and it is constructed by a parallel
kinematic architecture connected by a two-DOF (degree of freedom) head at the end. Fig. 1(b) shows a zoomed view of
the actual physical model with some joints depicted. The herein paper addresses dimension synthesis of the Exechon PKM
(without accounting the 2-DOF wrist), which has one translation DOF and two rotational DOF [11]. This approach not only
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(a) (b)

Fig. 1. Physical model of a 5-DOF hybrid Exechon machine in QUB

help improve existing design and dimensioning of the new series of the machine, but also can be generalized and applied to
other PKMs.

PKM design usually involves two steps, i.e., topology synthesis and dimension synthesis (optimization), both of which
are important for designing PKMs to achieve specific performance. A good topology can only provide good performance
when its geometrical parameters are optimized. The existing methods of dimension synthesis can be classified into two cat-
egories, i.e., objective-function based optimal design [12–17]and performance-chart based design [18,19]. Defining suitable
performance indices, reducing the number of design variables, as well as employing proper optimization algorithms, are still
challenging issues [20, 21]. Gosselin and Angeles proposed the global conditioning index (GCI) for measuring the global
dexterity of manipulators over their entire workspace in design optimization. Liu and Gao [22] studied optimum design of 3-
DOF spherical parallel manipulators with respect to the conditioning and stiffness indices. Chablat and Wenger [23] studied
architecture optimization of the Orthoglide with prescribed kinetostatic performances in a prescribed workspace. Huang et
al. [24] introduced dimension optimization for the TriVariant with two performance indices, i.e., global and comprehensive
conditioning indices. Li and Xu [25] introduced a new optimization approach which utilized both the global dexterity index
and space utility ratio for design a 3-PUU translational parallel mechanism. Pierrot et al. [26] introduced optimal design
of a 4-DOF parallel manipulator with the cost of links as an objective while keeping machine cycle time and dexterity as
optimization constraints. Liu et al. [27] designed a HPKM with large workspace/limb-stroke ratio, and a global conditioning
index based on the minimum singular value of Jacobian is defined for dimension optimization. Ottaviano and Ceccarelli [28]
used specified workspace volume as the design objective for synthesizing the design parameters of the CaPaMan. Jiang and
Gosselin [29,30] addressed geometric optimization for achieving maximal singularity-free workspace of several types of par-
allel mechanisms. Altuzarra et al. [31] studied dimensional synthesis using Pareto-optimization with three design objectives,
including workspace volume, dexterity and energy consumption. Wang et al. [32] recently proposed a frame-free index
which can effectively evaluate robot transmission capabilities. Although many performance indices have been proposed,
construction of the optimization function with suitable indices as well as design variables is not fully addressed [20,21,24].

Most literature focuses on design of PKMs with symmetrical architectures associated with pure translation or pure
rotational DOF, which makes ease of analysis and dimensional optimization as the Jacobian matrix is homogeneous provided
that all actuators are of the same type. This paper deals with the Exechon-PKM which has an asymmetrical architecture and
mixed translation/rotational DOF. Therefore a special treatment is proposed in this work to annihilate the non-homogeneity
of the Jacobian matrix. An optimization approach is introduced for synthesizing link dimensions of the PKM taking into
account of joints motion constraints. Results show that the newly developed method is very useful for identifying the effects
of design parameter changes on the PKM performance. The results also show that the Exechon PKM has a large workspace
to footprint ratio, and very good conditioning over the whole workspace. This makes it a suitable machine tool for large
volume machining, e.g., milling in aircraft assembly.

This paper is organized as follows. Section 2 describes the architecture of the Exechon PKM. Section 3 presents the
kinematics of the PKM. Section 4 formulates the generalized Jacobian of the PKM. Sections 5 and 6 give details of the
workspace analysis and dimension optimization respectively. Section 7 concludes this paper.
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Fig. 2. Schematic diagram of Exechon-PKM

2 Description of the PKM
Figure 2 shows the parallel architecture of the Exechon in which the end-effecter platform is supported by three legs

denoted as Leg1, Leg2, and Leg3, respectively. Leg1 and Leg3 have an identical architecture in which a universal joint is
mounted on the base, linked by a linear actuator and an revolute joint connecting to the moving platform. Leg2 is slightly
different from Leg1 and Leg3 as it has one more rotary DOF about the actuator axis. Kinematically, Leg2 can be regarded as
being constructed by an spherical joint on the base, linked by the linear actuator and a revolute joint connecting to the moving
platform. At home position, Leg1 and Leg3 are symmetrical with respect to Leg2. Assume points Ai and Bi (i = 1,2,3)
denote the attachment points at the corresponding joint centers to the base and the moving platform respectively. The base
coordinate system O− xyz is defined as shown in Fig. 2. Point O is the central point of A1A3, x-axis points from A1 to A3.
y-axis is perpendicular to A1A3 and towards A2, z-axis is obtained by right-hand rule. Similarly, the platform coordinate
system Oe − xeyeze is also defined as shown in Fig. 2. Point Oe is the central point of B1B3, xe-axis points from B1 to B3.
ye-axis is perpendicular to B1B3 and towards B2, ze-axis can then be obtained by right-hand rule. Let $̂i j (si j) represent a unit
screw (vector) along the jth joint of the ith leg, the geometrical constraints of the architecture can be described as follows.

- s12, s14, s34 and s32 are parallel to each other;
- s11 and s31 are coincident;
- Actuator axes si3 (i = 1,3) are perpendicular to both si4 and si2;
- Actuator axis s24 is perpendicular to both s25 and s22;

Mobility analysis [11] showed that both Leg1 and Leg3 provide one moment wrench Ti(i = 1,2) along Z-axis and one
force wrench fi(i = 1,2) along the second axis of each leg respectively, as shown in Fig. 2. Because of f1 ∥ f2, T1 ∥ T2 and
fi ⊥ Ti,(i = 1,2), the four wrenches form a 2-system composed of the two force wrenches. Therefore, only one constraint,
which is independent to the existing two resulted from Leg1 and Leg3, is required to obtain three DOFs on the end-effector.
In the Exechon PKM, Leg2 provides a force constraint f3 which passes through point A2 and is parallel to $̂25 as shown in
Fig. 2. Hence the platform is constrained by three forces which are parallel to the platform plane. As a result, the end-effector
will have three DOFs including one translation along z direction and two rotations about x and y axes, respectively.

3 Kinematics
Both the inverse and forward kinematics of this Exechon-PKM have been studied by Bi and Jin [7, 11]. The inverse

kinematics of the Exechon hybrid parallel-serial architecture was also recently studied by Zoppi et al. [33]. It is found that
only one unique solution exists for the inverse kinematics of the Exechon PKM. This makes ease of control and is regarded
as one advantage of this PKM architecture as most PKMs have multiple inverse kinematic solutions.

4 Dimensionally Homogeneous Jacobian
The conventional Jacobian matrix was formulated as a 3× 6 matrix by Jin et al. [11]. The analysis shows that no

singular configuration exists when the physical constraints of the PKM are taken into account. Zlatanov et al. [34] conducted
a thorough analysis of the Exechon-PKM without any physical constraint, and found that several singular configurations
may occur. As the Jacobian matrix is used to transform both the velocity and the force systems from the actuator input to
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moving platform output, its condition is of great interest in design. The condition index CI of a Jacobian matrix is often
used to evaluate the kinetostatic performance of a manipulator. It can represent not only the occurrence of the singular point,
but also represents the uniformity of the force distribution with the homogeneous actuator input. The larger the condition
index, the better the kinetostatic performance. However, care must be taken when applying the condition index in design,
because the elements of Jacobin matrix will have inhomogeneous units when the moving platform motion includes both
rotation and translation (no physical unit for orientation but physical unit for position such as meter). To tackle this problem,
Tandirci et al. [35] proposed the concept of characteristic length, in which the entries of the Jacobian matrix are divided
to render it dimensionless and of a minimum condition number at a posture found by an optimization procedure. This
approach was later generalized by Stocco et al. [36] by using two scaling matrices to normalize the Jacobian matrix and
balancing the nonuniform capabilities of actuators for task-based design. Liu et al. [37] also formulated a dimensionally
homogenous Jacobian in a square matrix of order f (number of DOFs of the PKM) based on generalized Jacobian [38].
As the Exechon-PKM have two rotational DOFs about x- and y- axes respectively, and one translational DOF along z-
axis, the conventional Jacobian cannot be used directly to evaluate its conditioning. Since the PKM is used to provide
positioning, the kinematic performance at the reference point Oe is of great interest, since the point is directly related to the
machining task and understanding its performance will be useful for trajectory planning and control. A special treatment is
conducted for formulating the dimensionally homogenous Jacobian as follows. Note that all twists will be represented in the

platform coordinate system Oe − xeyeze, so that v of the instantaneous twist $t =

[
w
v

]
of the moving platform represents the

instantaneous linear velocity of the point Oe.
$t can be expressed for legs 1 and 3 as

$t = Σ4
j=1δρa,i, ja sta,i, jc +Σ2

j=1δρc,i, jcstc,i, j i=1,3; (1)

and for leg 2 as

$t = Σ5
ja=1δρa,2, jasta,2, ja +δρc,2,1stc,2,1 (2)

where sta,i, ja and δρa,i, ja (stc,i, jc and δρc,i, jc) represent the jath ( jcth) unit screw of permissions (restrictions) and its intensity
within the ith limb. The four unit joint screws of permissions in legs 1 and 3 can be written as:

$̂ta,i,1 =

[
si1

OeAi × si1

]
, $̂ta,i,2 =

[
si2

OeAi × si2

]
,

$̂ta,i,3 =

[
0

si3

]
, $̂ta,i,4 =

[
si2

OeBi × si2

]
, i=1, 3.

The unit wrench of constraints associated with legs 1 and 3 can be obtained as follows.

$̂wc,i,1 =

[
0

ni1

]
, $̂wc,i,2 =

[
si2

OeAi × si2

]
, i=1, 3.

where ni1 = si1 × si2. Let the actuated joint in leg i be locked, $̂wa,i,3, which is orthogonal to $̂ta,i, ja ( ja = 1,2,4 and dual to
$̂ta, j,3, can be identified as

$̂wa,i,3 =

[
si3

OeBi × si3

]
, i = 1,3.

With the constraint provided by $̂wc,i,1 and $̂wc,i,2 being released, the unit screw of restrictions, $̂tc,i,1 and $̂tc,i,2, which
are orthogonal to $̂wa,i,3 and duel to $̂wc,i,1 and $̂wc,i,2 respectively, can be identified as follows.

$̂tc,i,1 =

[
ni1

OeAi ×ni1

]
, $̂tc,i,2 =

[
0

si2

]
, i=1, 3.
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For leg 2, the unit screws of permissions can be generated as

$̂ta,2,1 =

[
s21

OeA2 × s21

]
, $̂ta,2,2 =

[
s22

OeA2 × s22

]
, $̂ta,2,3 =

[
s24

OeA2 × s24

]
,

$̂ta,2,4 =

[
0

s24

]
, $̂ta,2,5 =

[
s25

OeB2 × s25

]
.

The unit wrench of constraints can be obtained as follows.

$̂wc,2,1 =

[
s25

OeA2 × s25

]
. (3)

Let the actuated joint in leg 2 be locked: the unit wrench, $̂wa,2,4,which is orthogonal to $̂ta,2, ja ( ja = 1,2,3,5) and dual
to $̂ta,2,3 can be identified as

$̂wa,2,4 =

[
s24

OeB2 × s24

]
. (4)

When the constraint provided by $̂wc,2,1 is released, the unit screw of restrictions, $̂tc,2,1 which is orthogonal to $̂wa,2,4

and dual to $̂wc,2,1, can be identified as follows.

$̂tc,2,1 =

[
0

s25

]
(5)

For legs 1 and 3, taking orthogonal product on both sides of (1) and (2) by $̂wa,i,3 and $̂wc,i, jc ( jc = 1,2) respectively, the
following equations are obtained.

$̂wa,i,3 ◦$t = δρa,i,3, ia=1, 3. (6)

$̂wc,i, jc ◦$t = δρc,i, jc , ia=1, 3; jc=1,2. (7)

Similarly for leg 2, we have

$̂wa,2,4 ◦$t = δρa,2,4, (8)

$̂wc,2,1 ◦$t = δρc,2,1. (9)

As a result, eight equations are obtained from equations (6-9). As only two wrench constraints are resulted from legs 1
and 3, only two equations are needed from (7). Rewriting equations (6)-(9) in matrix form leads to

J$t = δρ, (10)

where

J =

[
Ja
Jc

]
, Ja =

 [OeB1 × s13 ]
T sT

13
[OeB2 × s24 ]

T sT
24

[OeB3 × s33 ]
T sT

33

 ,
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Jc =

 [OeA1 × s12 ]
T sT

12
[OeA2 × s25 ]

T sT
25

[OeA3 × s32 ]
T sT

32

 ,δρ =


δρa,1,3
δρa,2,4
δρa,3,3
δρc,1,2
δρc,2,1
δρc,3,2

 .

In velocity analysis where only the ideal motions of the platform are considered, it reduces to $t =

[
w
v

]
, δρa,i, ja = q̇a,i, ja ,

which represents the joint rate of the actuator, and δρc, jc,i = 0. Therefore, by writing J in a partitioned form, equation (10)
can be reformulated as

[
Jww Jwv
Jvw Jvv

][
w
v

]
=

[
q̇a
0

]
, (11)

where q̇a = [ q̇a,1,3 q̇a,2,4 q̇a,3,3 ]
T . Then taking the linear velocity of point Oe as the independent coordinates, one can

obtain

Jpav = q̇a,Jpa = Jwv − JwwJ−1
vw Jvv, (12)

where Jpa is the dimensionally homogeneous Jacobian of the mechanism. Although the Jacobian matrix Jpa is not frame
free, the condition number is a feasible and suitable performance indicator of the PKM at any instantaneous reference point.
Therefore, it will be used for dimension optimization in Section 6.

5 Workspace Analysis
The mechanism herein holds a three leg architecture, hence the reachable workspace of the moving platform is formed

by intersections of the three reachable workspaces of the three legs. As $̂11 and $̂31 are aligned to each other and points
A1, B1, Oe, B3 and A3 share one common plane, the reachable workspace of point Oe resulted from legs 1 and 3 can be
obtained as follows.

rotating one round about joint axis $̂i2 (i = 1, 3) with the maximum and minimum leg length from point Ai to point Oe
to form two annular areas as shown on the left of Fig. 3.
The interaction area in gray on the left of Fig. 3 is then rotated one round about joint axis $̂11 to form a solid convex,
which forms the reachable workspace of point Oe.

Obviously, the maximum and minimum length from point Ai to point Oe can be obtained with the leg fully stretched or
retracted as follows.

|AiOe|max = |AiBi|max + |BiOe|,
|AiOe|min = |AiBi|min −|BiOe|.

Note that if the result of |AiBi|min −|BiOe| is negative, |AiOe|min should be regarded as zero. As |AiOe|min (i = 1,3) is far
smaller than |AiOe|max, the overlapping area is formed by the two big circles in Fig. 3. The two circles can be represented
mathematically by:

(x− xAi)
2 +(z− zAi)

2 = |AiOe|2max (i = 1,3). (13)

Point coordinates Ei(xEi ,yEi ,zEi) (i = 1,2) can then be calculated based on (13). For any point (x1,z1) on curve E1F1E2, we
have

z1 =±
√
|A1Oe|2max − (x− xA1)

2 + zA1 , f or xE1 ≤ x ≤ xF1 . (14)
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Fig. 3. Reachable workspace of legs 1 and 3 in x−o− z plane

Due to the limits of the second passive rotary joints of both limbs, the negative value of z1 can be removed. So

z1 =
√
|A1Oe|2max − (x− xA1)

2 + zA1 , f or xE1 ≤ x ≤ xF1 . (15)

Therefore, the workspace boundary of E1F1E2 after rotation about axis $̂i1 can be described as

y2 + z2 = z2
1, f or xE1 ≤ x ≤ xF1 . (16)

Similarly, the workspace boundary of E1F2E2 after rotation about axis $̂i1 can be described as

y2 + z2 = z2
3, f or xF2 ≤ x ≤ xE2 , (17)

where z3 =
√
|A3Oe|2max − (x− xA3)

2 + zA3 .
The maximum axial length |F1F2| of the reachable workspace associated with legs 1 and 2 can be represented by

|F1F2|= 2∗ (|A1Oe|max −|A1A3|/2)
= 2∗ (|A1B1|max + |B1Oe|− |A1A3|/2). (18)

The maximum radial length |E1E2| of the reachable workspace associated with legs 1 and 2 can be represented by

|E1E2|=
√
|A1Oe|2max − (|A1A3|/2)2. (19)

The reachable workspace of point Oe resulted from leg 2 can be represented by a solid spherical shell, which can be
described mathematically as

|A2Oe|2min ≤ (x− xA2)
2 +(y− yA2)

2 +(z− zA2)
2 ≤ |A2Oe|2max, (20)

where |A2Oe|max = |A2B2|max + |OeB2| and |A2Oe|min = |A2B2|min −|OeB2|. Therefore, the boundary of the shadowed area,
i.e. the reachable workspace envelope can be obtained by solving the equation arrays (20) and (16), and (20) and (17),
respectively. Figure 4 shows the reachable workspace of the PKM in x−o− y and y−o− z planes, respectively.

To calculate the workspace volume, the reachable workspace can be sliced from top down along z direction, so that the
workspace volume of each workspace slice can be integrated along the boundary. The workspace volume can be computed
by

V =
∫

z

∫
x
[y( ˜G1F1D1)+ y( ˜G1F2D2)− y( ˜D1G3D2)]dxdz. (21)

where y( ˜G1F1D1),y( ˜G1F2D2) and y( ˜D1G3D2) are functions of the three boundary curves in the horizontal plane.
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Fig. 4. Reachable workspace of the three legs

6 Dimensional Synthesis
This section will introduce the dimensional synthesis to ensure a good kinematic performance of the PKM.

6.1 Design Parameters
To determine the geometry of the PKM, the following parameters need to be considered.

l1: the distance between points A1 and A3 on the base;
l2: the distance between the center point of A1A3 and point A2;
l3: the distance between points B1 and B3 on the moving platform;
l4: the distance between the center point of B1B3 and point B2;
ls: the stroke of each actuator (assuming all three actuators have the same stroke);
[lmin, lmax]: the motion range of actuators, i.e., the magnitude of AiBi, (i = 1,2,3), where lmax = lmin + ls.

According to the workspace analysis in Section 5, the larger the maximum leg length, the larger the workspace volume.
To achieve a good leg stiffness, the lmin to ls ratio should not be larger than 1.5 [9]. Thus it is reasonable to assume herein
lmin/ls = 1.0. It is also assumed that the ratio of OeB2 and B1B3 is l4/l3 = 0.75 for allowing the three attachment points Bi
(i = 1,2,3) form a relatively symmetrical triangle. The three normalized variables to be optimized are defined as:

λ1 = 0.5∗ l1/ls, (22)
λ2 = l2/l1, (23)

λ3 = 2∗ l3/l1. (24)

The numerical coefficients in the above equations are applied for making the three variables λ1, λ2 and λ3 the same magnitude
for ease of optimization. To maintain a highly stiff and compact structure, the size of the moving platform is defined
smaller than that of the base, and the leg motion range should have a similar magnitude as the longest lateral of the base
triangle A1A2A3. Based on these considerations, the range of the three variables are defined as follows: 0.5 ≤ λ1 ≤ 0.8,
0.5≤ λ2 ≤ 1, 0.5≤ λ3 ≤ 1. For passive revolute joint axes si2,(i= 1,2,3), their physical constraints are within [−70◦,+70◦].
Mathematically, they can be expressed as:

−70◦ ≤ acos(si1 ·ui)≤+70◦. (25)

6.2 Objective Function
One disadvantage of PKMs compared with serial robots is their limited workspace. Therefore workspace volume is

often taken as the performance measure for dimension optimization of PKMs [28, 31]. Another key performance metric is
the global condition index, which is a good indicator of the dexterity of the end-effector in its entire workspace [12–14, 19].
For large volume machining, it is crucial to have a large workspace as well as good conditioning in the entire workspace.
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Table 1. Optimization results of the PKM

w1 λ1 λ2 λ3 V GCI

1.0 0.5000 0.6397 0.9997 1.3071 0.1500

0.75 0.5000 0.7595 0.9965 1.2619 0.1767

0.5 0.5417 0.9004 0.9704 1.0596 0.2248

0.25 0.7999 0.9742 0.9325 0.5088 0.3560

0 0.8000 0.9902 0.9277 0.4969 0.3572

Therefore the design objective herein is to maximize both the workspace volume V and the global conditioning index GCI,
which is defined as follows.

Max : F(λ1,λ2,λ3) = w1 ·V +(1−w1) ·GCI, (26)

subject to

0.5 ≤ λ1 ≤ 0.8, (27)
0.5 ≤ λ2 ≤ 1.0, (28)
0.5 ≤ λ3 ≤ 1.0. (29)

where w1 is weight coefficient. The global condition index [12] is defined as

GCI =
∫

V CIdV∫
V dV

, (30)

where CI = 1/(∥Jpa∥∥J−1
pa ∥) denotes the local condition index, where ∥ · ∥ is referred to as the Euclidean norm of its matrix

argument.

6.3 Optimization algorithm and results
The complex optimization [39] is employed to search for the solution in MATLAB environment. The optimization

procedure is shown in Fig. 5. For each set of (λ1,λ2,λ3), the objective function is evaluated. The 3-D reachable workspace
is divided into a number of layers along z-axis with a resolution of ∆z = 0.05. A number of grids are then generated in each
layer with a resolution of ∆x = ∆y = 0.05. The center point of each grid is then taken as the feature point of the workspace.
During the optimization process, all feature points within the workspace resulted from the analytical method in Section 5
will be generated as global known data. In computing the objective function, each of these points is assessed by the inverse
kinematic model of the PKM to check if the resulted joint (both active and passive) displacements are within their mechanical
limits. If any constraint is violated or the Jacobian matrix is numerically singular (CI < 0.1), the point will be excluded from
the workspace. In this way, the effective workspace as well as the GCI can be calculated. After a number of repetitions, the
optimal set of (λ1,λ2,λ3) can be obtained. The convergence tolerance is set at 1e−4 for all design variables and the object
function.

Table 1 and Fig. 6 show the optimization results associated with various sets of weights in the objective function. In
this case, ls is set at 0.7. Note that normalized workspace volume V ∗ = V/3 is used for Fig. 6(a), so that it has a similar
scale as the GCI values. It is clearly shown in Fig. 6(a) that V decreases when GCI increases. In other words, the two
metrics cannot achieve their maximum simultaneously. When the optimization is for maximum V only, i.e. w1 = 1, the
largest workspace volume 1.3017 and the lowest GCI value 0.1500 are achieved. When the optimization is for maximizing
GCI only, i.e., w1 = 0, the largest GCI value 0.3572 as well as the lowest workspace volume 0.4969 are returned. When
the weight coefficient takes intermediate values, both V and GCI are resulted into intermediate values. Figures 6(b) and
6(c) show the trend of λi against V and GCI respectively. It clearly shows that with decrease of V or increase of GCI, λ1
and λ2 increases while λ3 decreases. It is also observed maximum V can be achieved by taking minimum λ1 and λ2 and
maximum λ3. This leads to a large moving platform associated with a poor dexterity GCI = 0.1500. The deviation in GCI
values for different weights is within 0.1500 and 0.3572. Depending on the specific application and design constraints,
a certain set of optimal design parameters can be selected. The corresponding workspace shape and global conditioning

⋆ JMR-13-1150, Jin 9



Fig. 5. Optimization procedure of Exechon-PKM

distribution can then be easily obtained. It is worth noting in Fig. 6(a) that the GCI curve has its maximum gradient when w1
is between [0.5,0.25], where the V curve has also a maximum absolute gradient. Therefore, to achieve a good compromise
between V and GCI, these values obtained around w1 = 0.5 are recommended. Taking the set of parameters at w1 = 0.5
as an example, its workspace and conditioning atlas relative to the base coordinate frame are shown in Fig. 7 and Fig. 8
respectively. It can be observed that the workspace is in a wedge-like shape with a peach-like section area. The ratio of
workspace volume to footprint area is about 4.8 (= 1.0596/(0.5∗0.7∗0.7∗0.9004), ls = 0.7 in this case), which denotes a
rather good space utilization. The distribution of condition index is symmetrical about Y -axis, and a large part of the central
area in the workspace (X ∈ [−0.4,0.4],Y ∈ [−0.4,0.6]) has a rather good uniform conditioning, i.e. CI > 0.25.

7 Conclusions
This paper is the first study of the dimensional optimization of a PKM that has a non-symmetrical architecture with

mixed rotational and translational DOF. An optimization approach is developed for dimension synthesis of the Exechon-
PKM with the objective to maximize its workspace volume and global conditioning taking into consideration of the physical
joints’ limits. The dimensionally homogeneous Jacobian is formulated. Workspace envelope of the PKM is obtained by a
geometrical approach, and the reachable workspace volume is modeled by an analytical method. Optimization results show
that the optimization algorithm is valid in design with various sets of weights in the performance function. Results also
show that the PKM has a large workspace to footprint ratio. The workspace has a rather good uniform conditioning which
is suitable for large volume machining tasks. The presented research shows this PKM has great potential for the industrial
demands today and future.
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Fig. 6. Optimization results of Exechon PKM
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