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ABSTRACT  

 
STRUCTURAL AND KINEMATIC SYNTHESIS OF  

OVERCONSTRAINED MECHANISMS 

 

Investigation on overconstrained mechanisms needs attention especially in the 

structural synthesis. Knowing overconstrained conditions and including them in the 

design process will help creating manipulators with less degree of freedom (DoF) and 

more rigidity. Also this knowledge of overconstrained conditions will clarify concept of 

mobility of the parallel manipulators. Another subject, kinematic synthesis of 

overconstrained mechanisms, is important because it will allow describing a function, 

path, or motion with less DoF less number of joints. The aim of this thesis is to describe 

a generalized approach for structural synthesis and creation of new overconstrained 

manipulators and to describe a potentially generalizable approach for function and 

motion generation synthesis of overconstrained mechanism. 

Moreover, screw theory is investigated as a mathematical base for defining 

kinematics of overconstrained mechanisms. Also, overconstrained mechanisms are 

investigated and generation of new mechanisms is introduced with examples. Some 

mathematical models for the subspace geometries are given. A method for defining 

overconstrained simple structural groups is introduced and extended to design of 

manipulators with examples and solid drawings. Linear approximation and least squares 

approximation methods are used for the function generation and motion generation of 

overconstrained 6R mechanisms. 

A gap of describing overconstrained manipulators is filled in the area of 

structural synthesis. A general methodology is described for structural synthesis, 

mobility and motion calculations of overconstrained manipulators using simple 

structural groups. A potentially generalizable method for the kinematic synthesis of 

overconstrained manipulators is described both for function and motion generation. 
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ÖZET  

 
KISITLI MEKAN İZMALARIN YAPISAL VE K İNEMATİK SENTEZİ 

 

Kısıtlı mekanizmaların özellikle yapısal sentezi için incelenme gerekliliği vardır. 

Kısıtlı mekanizmaların kısıtlılık koşullarını bilinmesi ve bu koşulları tasarım 

aşamasında kullanılması daha az serbestlikli ve daha dayanıklı manipülatörlerin 

tasarlanmasını sağlar. Ayrıca bu kısıtlı koşul bilgisi paralel manipulatörlerin mobilite 

konusunu da aydınlatacaktır. Kısıtlı mekanizmaların kinematik sentezi bu 

mekanizmalarla yani daha az mafsal sayısına sahip olan mekanizmalarla bir fonksiyon, 

yol yada hareket yaratımının sağlanabilmesine yardımcı olur. 

Bu tezin amacı, kısıtlı manipulatörlerin tasarlanabilmesi için gereken genel bir 

yöntem tanımlamak ve ayrıca kısıtlı mekanizmalar için genelleştirilebilecek bir 

foksiyon ve hareket sentezi yöntemi tanımlamaktır. Bu amaca yönelik olarak kısıtlı 

mekanizmaların kinematik olarak incelenmesi için vida teorisi kullanılmış ve birim vida 

dönüşüm matriksi yöntemi geliştirilmi ştir. Ayrıca bilinen kısıtlı mekanizmalar 

incelenmiş ve bu mekanizmalar kullanılarak yeni kısıtlı mekanizmalar yaratmak için bir 

yöntem verilmiş ve uygulanmıştır. Kısıtlı manipülatörlerin yapısal sentezi için gereken 

basit yapısal grupların tanımlanması için gerekli formüller verilmiş ve 

örneklendirilmiştir. Kinematik sentez için ise interpolasyon yaklaşımı ve en küçük 

karaler yaklaşımı altı mafsallı kısıtlı mekanizmaların fonksiyon ve hareket sentezlerine 

uygulanmıştır. 

  Böylelikle kısıtlı mekanizmaların yapısal sentezi, mobilite ve hareket hesapları 

için vida teorisi ve basit yapısal gruplar kullanılarak genel bir metodologi anlatılmıştır. 

Ayrıca kısıtlı mekanizmalar için hem fonksiyon yaratım sentezi hem de hareket yaratım 

sentezi üzerine genellenebilecek bir kinematik sentez yöntemi açıklanmıştır. 
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CHAPTER 1 

 

INTRODUCTION 

 

A robotic system can be defined as a re-programmable multi-functional 

manipulator that is designed to move materials, parts, tools or devices through variable 

programmed motions for desired tasks. Similar to machines, a robotic system is an 

assembly of one or more mechanisms with other electrical, hydraulic or pneumatic 

components. Mechanisms, which are vital parts of machines, are the combination of 

gears, cams, linkages, springs etc. Linkage systems are elementary subject in design of 

manipulators and can be defined as a collection of links that are connected with actuated 

free joints.  

When a constraint is imposed in a space then movements of rigid body in this 

space are restricted and this new restricted space of rigid body is called its subspace of. 

Knowing constraints imposed by the linkages subspace and the motion of mechanisms 

can be described easily. A mechanism is called as overconstrained when it belongs to a 

subspace. Noting that the sum of subspace number and constraint number for a 

mechanism is always being equal to motions in spatial environment definition of 

structural mobility can be defined as the difference between total mobility of joints and 

the total of subspace numbers of independent loops in the system. A mechanism must 

always transmit mechanical motion. If mobility of a linkage system is zero then it will 

be defined as a structural group. Structural groups can be divided into simple structural 

groups. Simple structural groups are kinematic chains with zero degree of freedom and 

cannot be divided into other simple structural groups. 

Investigation on overconstrained mechanisms needs attention especially in the 

structural synthesis. Knowing overconstrained conditions and including them in the 

design process will help creating manipulators with less DoF and more rigidity. Also 

this knowledge of overconstrained conditions will clarify the concept of mobility of the 

parallel manipulators. Another subject kinematic synthesis of overconstrained 

mechanisms is important because it will allow describing a function, path, or motion 

with less DoF and with overconstrained mechanisms less number of joints. The aim of 

this thesis is to describe a generalized approach for the structural synthesis and creation 



2 
 

of new overconstrained manipulators and to describe a potentially generalizable 

approach for the function and motion generation synthesis of overconstrained 

mechanism. 

 

1.1. Literature Survey of Structural Synthesis of Parallel Manipulators 

 

Studies of lower mobility parallel manipulators draw attention of both industry 

and academia in last two decades due to the fact that six motions in space are not always 

needed. Overconstrained manipulators have fewer links and joints and reduced 

complexity with higher stiffness properties. Because of overconstrained parallel 

manipulators’ having lower mobility and being in lower subspaces task orientated 

design must be utilized which requires structural design. 

Structural design of a parallel manipulator can be defined by determination of 

the specifications of the manipulator (number and type of joints, link and joint 

parameters and, mobility), intended to acquire end-effector motions, in space or 

subspaces and by using a synthesis method, fulfilling the conversion of input actuator 

motions to desired end-effector motions with least-singularity, sufficient workspace and 

minimum number of joints that supply with constraints of design as productibility, 

assemblability, redundancy and placement of actuators. 

 In the last decades, synthesis methods for structural design are interpreted such 

as screw theory, group theory, velocity loop equations, linear transformations theory 

and theory of structural groups. Screw theory uses six dimensional vector to describe 

the motion of a rigid body. In their researches Huang and Li (2002a, 2002b, 2003a, 

2003b, 2003c) introduced a screw theory based method for the type synthesis of parallel 

manipulators. The proposed method can be summarized as finding constraints that are 

given to the end effector from limbs by using reciprocal screws. Lower mobility non-

constrained and overconstrained manipulators are also revealed. Fang and Tsai (2002, 

2004a, 2004b, 2004c) investigated 4 and 5 DoF parallel manipulators with identical 

limb structures and 3 DoF translational and rotational non-constrained and 

overconstrained manipulators by using theory of reciprocal screws. Kong and Gosselin 

(2001, 2004, 2006) proposed a way for the type synthesis of parallel manipulators using 

virtual chain approach with screw theory. In their investigations parallel manipulators 

with different type of motions are introduced. Jin et al. (2004) examined the structural 
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synthesis of parallel manipulators based on selective actuation by using screw algebra. 

As a result of their research, parallel manipulators with 3 DoF spherical motions, 3 DoF 

translational motions, 3DoF hybrid motions and 6 DoF spatial motions depending on 

the types of actuation are found. In the work of Frisoli et al.(2000), the results of 

examination of the end effector accelerations of the serial chains by means of screw 

algebra are applied to the synthesis of translating in-parallel actuation mechanisms. 

Carricato (2005) introduced a methodology that uses screw theory tools to synthesize 

desired forms for the direct and inverse Jacobian matrices of parallel manipulators and 

presented a novel family of fully isotropic parallel mechanisms with Schoenflies motion 

at the end effector. Glazunov (2010) described an approach for the synthesis of 6 DoF 

decoupled parallel manipulators based on closed screw groups which also avoid 

complicated equations by synthesis and singularity analysis of these mechanisms. At the 

end of their research decoupled manipulators with three, four and six DoF are obtained. 

Zhao et al. (2002a) investigated the type synthesis of spatial parallel mechanism with 

lower DoF based on the screw theory. Motions and constraints of mechanisms are also 

included in the design by the use of screw groups described in their research. 

 A non-empty set with a closed product operation is called a group where product 

operation satisfies conditions such as existence of one identity element and one inverse 

for any element and associativity. According to Lie’s theory of continuous groups the 

set of rigid body motions is a six dimensional group of transformations which is 

represented by an operator acting on points of the three dimensional affine space. Group 

theory is also used by many authors for the structural design of parallel manipulators. 

Hervé and Sparacino (1991, 1993) investigated the type synthesis of parallel robots that 

generate translations by using the kinematic principle of displacement subgroups 

intersection of the group theory. In their study motion of the ends of the legs are 

assigned to same displacement groups and intersection of these sub-groups result in the 

end effector motion as a main displacement group. In the studies of Hervé (1999), group 

theory is used to define the method of composition and intersection of mechanical 

bonds and exemplified with 3 DoF parallel manipulators where platform has three 

translations and each leg is a subgroup of Schoenflies motions. Hervé (2003 2004) 

defined planar-spherical bond generators using these generators as legs using lie groups 

parallel manipulators are designed which depends on the relative positions of planes and 

sphere centers. Using group theory Karouia and Herve (2004a, 2004b) introduced 

structural synthesis of 3 DoF spherical parallel mechanisms with un-identical legs. Lee 
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and Hervé (2009) investigated the type synthesis of Schoenflies motion generators for 

future structural synthesis of parallel manipulators by using Lie groups. Also Lee and 

Hervé (2006) apply Lie group algebraic properties for the type synthesis of non-

constrained translational parallel manipulators with limps which generates Lie subgroup 

of three translations and two rotations. Refaat et al. (2006) examined one rotational two 

translational and one translational two rotational 3 DoF overconstrained parallel 

mechanisms using Lie group theory. Angeles (2002) applied the group theory algebra to 

the qualitative synthesis of parallel manipulators. In the research not only well known 

planar spherical subgroups but also cylindrical, two and three dimensional translation 

and Schoenflies subgroups are investigated. P, P2 and P3 type joints are utilized for the 

type synthesis. A geometric theory used with group theory is proposed by Meng et al. 

(2005) for the analysis and synthesis of sub 6 DoF parallel manipulators and a 

procedure is given for the structural synthesis of parallel manipulators where desired 

end effector motions are in the form of Lie subgroup. In the study of Gao et al. (2002) 

methodology in the design of parallel manipulators based on Plücker coordinates is 

proposed. Rico et al. (2006) introduces a theory based on the analysis of the subsets and 

subgroups of the Euclidean group for type synthesis of 6 DoF and lower mobility 

platform manipulators. 

 Another method for structural synthesis of parallel manipulators is velocity loop 

equations. Using velocity that occurs in the loops of system and Jacobian, the mobility 

and singularities are defined and these are used in the synthesis of the structure of the 

manipulator. Gregorio and Parenti-Castelli (1999, 2002) applied this method for the 

analysis and synthesis of 3 DoF translational parallel manipulators. Theory of linear 

transformations is another method proposed by Gogu (2008). For the Structural 

synthesis, evolutional morphology is used to design limbs, and platforms are designed 

by intersection of these limbs. The only investigations known to authors so far about 

structural synthesis of overconstrained parallel manipulators are done by Zhao et al. 

[2002b], Gogu (2008), and Kong and Gosselin (2007), Alizade et al. (2007a, 2010). An 

analytical method of using equivalent screw groups is proposed in the study of Zhao 

3RRC, 3CPR, 3UPU/SPS and 4UPU mechanisms are exposed. The method proposed 

by Gogu is also applied to design overconstrained manipulators. Virtual chain approach 

based on screw theory is utilized in the work of Kong and Gosselin (2006).  

 Theory of structural groups is also a method for structural synthesis of parallel 

manipulators. A simple structural group is kinematic chain with zero degree of freedom 
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and cannot be divided into other simple structural groups. Manipulators are designed by 

adding actuated joints to these simple structural groups. Theory of simple structural 

groups is applied in the studies of Alizade et al. (2007a, 2007b, 2010). In the work of 

Alizade et al. (2007a, 2007b) new and revised methods for structural synthesis of serial 

platform manipulators, parallel Cartesian platform manipulators and Euclidean parallel 

manipulators are illustrated along with examples. By using simple structural groups of 

overconstrained subspace with general constraint one Alizade et al. (2010) researched 

structural design of parallel manipulators with general constraint one regarding angular 

and linear-angular conditions. 

 

1.2. Literature Survey for Kinematic Synthesis of Parallel Mechanisms 

 

During design of mechanisms for generation of a motion or obtaining a function 

by the input output relation kinematic synthesis problem has an important place. After a 

specific task is attached to a mechanism, type of the joints and geometry for the 

mechanism should be decided.  

In the kinematic synthesis, construction parameters of the mechanism are used to 

define an objective such as a function or motion generation. In the function generation 

synthesis construction parameters builds a bridge between input and output of the 

mechanism. 

The problem of function generation synthesis can be described as determination 

of construction parameters of a mechanism for a given input output relation. In 

literature, several methods such as algebraic complex numbers vector quaternion, bi-

quaternion, matrix, screw and Cad based methods were developed for planar spherical 

and spatial four-bar mechanisms. 

Levitskii (1946) introduced a polynomial equation which includes design 

parameters and input output variables. Design parameters are calculated using 

interpolation, least-square and Chebsyhev approximation methods. Freudenstein (1954) 

presented the function generation of planar four-fourbar linkage by 3,4,5 points of exact 

approximation and higher order approximation. Zimmerman  (1967) proposed an 

algorithm for the analytical function generation synthesis of spherical four-bar 

mechanisms for given four precision positions. Linear approximation is applied to 

polynomial functions for three, four and five precision positions on the spherical four-
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bar mechanism in the works of Alizade (1994), Alizade and Kilit (2005), Alizade and 

Gezgin (2011), Farhang et al. (1988, 1999), Rao et al.(1973), Murray and McCarthy 

(1995). 

Alizade and Kilit (2005) also developed a new methodology satisfying a specific 

constraint. This methodology, which has been called by the authors “MDA (minimum 

deviation area)” is a method for selection of the precision points on given function such 

that the deviation area between given and generated functions will be minimum. 

Alizade and Gezgin (2011) introduced a new function generation synthesis method for 

spherical four bar mechanism with six independent parameters. Interpolation, 

Chebyshev and least square approximation were used and error differences were 

compared with graphs. A synthesis method that uses a dimensional synthesis technique 

and local optimization was introduced by Sancibrian et al. (2007) and a new approach 

for three and four precision points exact synthesis was proposed by Cervantes-Sanchez 

et al. (2009) along with examples of spherical four-bar mechanism. Also Kazerounian 

and Solecki (1993) and Gupta and Beloiu (1998) presented additional conditions as 

rotability, branch and circuit defect elimination that can be controlled after the synthesis 

problem.Function generation of spatial mechanisms are investigated in the works of 

Rao et al. (1973), Wu and Chen (1997), Hartenberg  and Denavit ( 1964), Dukkipati ( 

2001), Sancibrian et al.(2007) and Cervantes-Sánchez  et al. (2011). 

Motion generation is the determination of construction parameters of a 

mechanism for a given link motion. Bottema and Roth (1979) used kinematic mappings 

to derive the kinematic constraint equations of the dyad using the components of dual 

quaternion. Bodduluri and McCarthy (1992) and Ravani and Roth (1983) investigated 

the constraint manifold of spherical RR dyad fitting for an arbitrary number of location. 

The branching problem in finite position synthesis of spherical four-bar mechanism was 

presented by McCarthy and Bodduluri (2000). On the other hand, method for 

approximating finite set of spatial locations with spherical orientations for spherical 

linkage was presented by Tse and Larochelle (2000). Additionally in this study, a new 

technique for approximate motion synthesis of spherical RR dyad and spherical 4R 

closed chains was presented.  Larochelle et al. (1993) developed A CAD program, 

named SPHINX, for motion synthesis of spherical linkage. Larochelle (2003) 

investigated approximate motion synthesis for planar RR, spherical RR and spatial CC 

dyads and dual quaternion was used in the formulation of synthesis problem. A robust 

analytical solution for rigid body guidance synthesis of spherical mechanism is 
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presented by Al-Widyan and Angeles (2003). The motion synthesis of spherical 4R 

linkages for specified rigid body positions was studied by Ruth and McCarthy (1999) 

where spherical 4R linkage is designed by using SPHINXPC CAD program. In the 

study of Lee et al. (2009)  the least-square method was used to solve the synthesis 

problem for not limited prescribed rigid-body positions for the motion generation of an 

adjustable spherical four-bar. The synthesis of two-phase adjustable spherical 

mechanism was illustrated along with a numerical example.  

 

1.3. Representation of Joints and Kinematic Bonding 

 

 For the simplicity joint types and their relations are described as shown in Table 

(1.1). For example a planar four bar with prismatic joints (Figure 1.1.a) can be 

described by kinematic bonding as RRRR. Or a RRRRRRR 7R mechanism (Figure 

1.1.b) describes that four of the revolute joints are parallel to each other and the rest 

three is also parallel but in different direction with the first group. Moreover, if there are 

some intersections in the system (Figure 1.1.c), it is shown with a dot on the top or 

below. In a mechanism with bonding RRRRRRRɺ ɺ ɺ ɺ  have the same properties with 

RRRRRRR mechanism but two of the recurrent revolute joints in the middle are 

intersecting. 

  

Table 1.1. Representation of joints and their connections. 

 

Symbol Definition Symbol Definition Symbol Definition 

R Revolute 
joint 

R  R joints with parallel 
axes 

R R⊥  Perpendicular 
axes 

P Prismatic 
Joint 

R  R joints with parallel 
axes 

R//P Parallel axes 

H Helical Joint P P joints with parallel 
normal axes 

R R=  Coincident axes 

C Cylindrical 
Joint 

P P joints with parallel 
normal axes 

R R•  Intersecting axes 

U Universal 
Joint 

Rɺ  R joints with 
intersecting axes 

( )E  
Planar subspace 

S Spherical 
Joint 

R
ɺ

 R joints with 
intersecting axes 

( )S
 Spherical 

subspace 

E Planar Joint R
⌢

 Actuated joints ( )E-S
 Planar-Spherical 

subspace 
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RRRR 

a) 

 

RRRRRRR 

b) 

 

RRRRRRRɺ ɺ ɺ ɺ  

c) 

 

Figure 1.1. Kinematic bonding for mechanisms.  

 
1.4. Research on Structural and Kinematic Synthesis of Parallel   
       Mechanisms 
 

During the investigations of this thesis, which is based on the structural and 

kinematic synthesis of overconstrained mechanisms, subject of structural synthesis of 

parallel manipulators and kinematic synthesis of mechanisms are examined. It is seen 

that research on structural synthesis of parallel mechanisms usually neglects 

overconstraint conditions of the loops of the manipulators. Including overconstrained 

conditions of the loops in the structural design of parallel manipulators is vital and also 

constraint conditions should be the basis for structural synthesis of overconstrained 

manipulators. For the kinematic synthesis side of the story, it is seen that in literature 

mostly planar, spherical or some kind of spatial mechanisms are used. To show the 

capabilities of overconstrained mechanism, kinematic synthesis is applied to some 6R 

mechanisms.  

In the introduction part of this thesis, a literature survey for both structural and 

kinematic synthesis of mechanisms is given. Kinematic bonding of the joints, joint 

types and connection of links are tabulated with examples for simplicity and 

consistency along the thesis. 

To apply kinematics and derive needed mathematical models, a tool is needed 

such as unit vector algebra, theory of screws, transformation matrices, quaternion, bi 

quaternion etc. Each method has its advantages and disadvantages. Because of the 
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simplicity, applicability, adaptability and improvability properties of the theory of 

screws is selected for kinematic calculations. 

In the second Chapter of this thesis, definitions of the theory of screws are given 

such as twist, wrench, pitch etc. The screw and screw coordinates are defined in 

Cartesian space. A new method called method of unit transformation screw matrix for 

the calculation of recurrent screws is described. The use of this method for the position, 

velocity and acceleration analyses of mechanisms is shown. Also robot actuator force 

analysis is described. Explaining reciprocity and virtual work allowed describing  screw 

systems. Describing operations on screw systems lead to structural analysis of parallel 

mechanisms using theory of screws.  

After defining the rigid body motions in subspaces and their geometric relations 

in the third chapter, not only an intuitional method for generation of new 

overconstrained mechanisms in lower subspaces but also all possible mechanisms are 

listed. For defining the subspaces mathematically, the method to describe mathematical 

models of overconstrained subspaces is presented with examples. 

Subsequent to the definition of all mathematical models of kinematic pairs and 

degree of screw, in the fourth Chapter novel mobility equation for mechanisms is given. 

Moreover, derivation of simple structural groups is shown with method for general 

constraint one and two with possible geometries. After the method for the structural 

synthesis of overconstrained parallel manipulators is presented along with examples for 

the calculation of mobility and motion of robot manipulators new formulations are 

given. 

In Chapter five, kinematic synthesis of overconstrained mechanisms are shown 

for function generation of double spherical and planar spherical 6R linkages and motion 

generation for planar spherical 6R linkage for three positions. Also a synthesis method 

for a multi loop platform mechanism is shown with numerical example. 

In the final section of this thesis, an experimental work on parallel manipulators 

is presented. Effects of earthquake disturbance on working of mechanisms are 

investigated by the help of a parallel robot. 
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CHAPTER 2 

 

THEORY OF SCREWS 

 

Three dimensional Euclidean space admits six motions for a rigid body with 

three translations and three rotations. Thus, displacement of a rigid body should be 

described by six independent parameters. Whatever the motion of the rigid body is 

according to the theorem of Chasles “any given displacement of a rigid body can be 

conceived by a rotation about an axis combined with a translation parallel to that axis”. 

Similarly, in the theorem by Poinsot, any system of forces and moments applied to a 

rigid body can be uniquely replaced by a single force and couple in such a way that the 

single force is parallel to the axis of the couple. These two theorems form the basis of 

the theory of screws. 

 In the theory of screws, a screw is defined as a straight line in this rigid body 

whose points are displaced relative to a reference frame, and this screw will be coaxial 

with the line itself in any time. We denote the screw by a symbol $ which is not an 

ordinary algebraic quantity; to specify it, five quantities are needed. Four of them are 

required to determine the position of the line and the fifth quantity is the pitch denoted 

by µ. The pitch of the screw is the ratio of the rotation to the translation during the 

displacement between two positions of the rigid body. 

 During an infinitesimally small displacement of the rigid body the screw remains 

the same as properties, but it is now referred as the instantaneous screw axis. Finite and 

infinitesimal displacements of rigid body are both called as twists about a screw. As the 

displacement of rigid body must be described by six independent parameters twist about 

a screw $ is defined by five parameters from the definition of screw and a six quantity 

which is called the amplitude of the twist (α), which expresses the angle of the rotation 

around the line. 

 The definition wrench comes from the statement of Poinsot. A wrench is used to 

describe the force and moment couple acting on the rigid body which is the 

simplification of all forces on the rigid body. The pitch of the wrench is taken as the 

ratio of the moment to the force applied to rigid body. To describe a wrench on screw $ 

six parameters are needed. Five of which are required to describe the screw and sixth 
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quantity which is called the intensity of the wrench. It is denoted by f expressing the 

magnitude of that force which united with a couple and constitutes the entire wrench. 

 Pitch of a twist or wrench can be finite or infinite. If the pitch of the twist is zero 

it only defines a pure rotation around $. If the pitch of the twist is infinite, the amplitude 

must be zero for the twist to be finite, which is used to define a pure translation parallel 

to $. When pitch of the wrench is zero it reduces to a pure force along $. If it is infinite 

intensity must be zero for the wrench to be finite which defines only a couple in a plane 

that is perpendicular to axis of $. 

 

2.1. Screw Coordinates 

 

 Displacement of a rigid body in space is described with six parameters and as 

shown in Figure 2.1 translation is described with unit vector [ ]T
l m n=s  and 

moment [ ]T
P l Q m R nµ µ µ= + + +0s . 

 

 

 

Figure 2.1. Line coordinates of a screw.  

 

 Unit screws can be defined as a dual vector using unit vector s and moment 0s  as 

 

0$ ω= +s s ,      (2.1) 
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where ω is the Clifford operator with property 2ω 0= . 

Writing the screw in dual form, we get  

 

0

$
µ

   
= =   × +  

s s

s r s s
.    (2.2) 

 

The pitch can be calculated from the parameters of the dual vector as 

 

0µ ⋅=
⋅

s s
s s

.     (2.3) 

 

According to this definition expanding Equation (2.2) with the components of vectors s 

and u gives the screw as   

 

[ ]$ * * *l m n P Q R= ,   (2.4) 

 

where  1 1 1 1* , * , * , ,P P l Q Q m R R n P mz ny Q lz nxµ µ µ= + = + = + = − + = −  and 

1 1R ly mx= − + . 

The values for the direction cosines as seen in Figure 2.1 will be 2 1l x x= − , 

2 1m y y= −  and 2 1n z z= − . The moments P*, Q*, R* can be described in the form of 

parameters 1 1 1, ,x y z  and µ  with respect to direction cosines as  

 

1 1

1 1

1 1

*

*

*

P z y l

Q z x m

R y x n

µ
µ

µ

−     
     = −     
     −     

.    (2.5) 

 

2.2 Method of Unit Transformation Matrix for the Ca lculations of 
      Recurrent Screws 

 

In this section, a new method called method of unit transformation screw matrix 

for the calculation of recurrent screws is described.  The description of the method starts 
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with the description of recurrent unit vectors in space. Recurrent unit vectors should be 

90 degrees and consequent to each other. 

 

2.2.1. Recurrent Unit Vectors 

 

 Three recurrent unit vectors are defined in space as shown in Figure 2.2. 

 

 

 

Figure 2.2. Three recurrent unit vectors in space. 

 

Vector equations of three recurrent unit vectors si , sj , sk  (Figure 2.2) can be 

described as 

 

ikSinαi k js ×s = s ,         (2.6) 

ikCosα⋅i ks s = ,         (2.7) 

0⋅j ks s = .            (2.8) 

 

Multiplying both sides of Equation (2.6) with sj we get 

 

( ) ikSinα⋅ ⋅j i k j js s ×s = s s ,    (2.9) 

 

applying the rule of triple scalar product it becomes  

 

( ) ikSinα⋅j i ks ×s s = .          (2.10) 
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If we define normal vector ( ) =j i ijs ×s s , where ( ), ,ij ij ijl m n=ijs  and 

ij j i j il m n n m= −  ,  ij j i j im n l l n= − , ij j i j in l m m l= −  Equation  (2.10) will be 

 

ikSinα⋅ij ks s = .        (2.11) 

 

Solving Equation (2.11) and Equation (2.7) with Equation (2.8) to describe vector sk we 

can find 

ik ikCos Sinα α= +k i ijs s s .    (2.12) 

 

Equation (2.12) is the general equation to find the unit vector sk  with given 

recurrent vectors si and sj. We can write the conditions in equations (2.6-2.8) for sjk as 

Sinαij jk j ij, jks ×s = s , Cosα⋅ij jk ij, jks s = , 0⋅j jks s =  and write a general equation for 

transformation of unit vector system we can write an equation for sjk similar to Equation  

(2.12). 

 

Cos Sinα α= +jk ij ij, jk ij, j ij, jks s s    (2.13) 

 

The parameter α α=ij, jk ik   and vector ij, j is = -s  so Equation (2.13) will be 

 

Cos Sinα α= −jk ij ik i iks s s .           (2.14)  

 

Writing Equation (2.14) and Equation (2.12) with condition =j js s in matrix form we 

get the transformation matrix equation for recurrent unit vectors as 

 

0 1 0

0

0

Cos Sin

Sin Cos

α α
α α

    
    = ⋅    
    −    

j i

k ik ik j

jk ik ik ij

s s

s s

s s

.         (2.15) 
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2.2.2. Transformation of Screw Systems in Space 

 

Because of the analogue of vector systems to screw systems Equation (2.15) can 

be applied to screw systems by using dual angle formulations 

 

ω0$ = s + s  and α ωik ik ikA = + a , 

,Cos Cos Sin Sin Sin Cosα ω α α ω α− +ik ik ik ik ik ik ik ikA = a A = a ,  (2.16) 

 

 where 2 0ω =  . 

 

 

 

Figure 2.3. Four recurrent unit screws in space. 

 

The screw transformation matrix equation for the unit screws as shown in Figure 2.3 is 

found as 

 

$ 0 1 0 $

$ 0 $

$ 0 $

Cos Sin

Sin Cos

    
    = ⋅    
    −    

j i

k ik ik j

jk ik ik ij

A A

A A

.   (2.17) 

 

Applying the same matrix equation for $h with respect to $j and $k we get 

 

$ 0 1 0 $

$ 0 $

$ 0 $

Cos Sin

Sin Cos

    
     = ⋅    
     −     

k j

h jh jh k

kh jh jh jk

A A

A A

.   (2.18) 
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Describing $ $ $
T

  = i j ij iE ,  $ $ $
T

  = j k jk jE  and [ ]$ $ $
T =k h kh kE  and 

matrices for the screws as 

 

0 1 0

0

0

Cos Sin

Sin Cos

 
 =  
 − 

ij ik ik

ik ik

T A A

A A

 and  

0 1 0

0

0

Cos Sin

Sin Cos

 
 =  
 − 

jk jh jh

jh jh

T A A

A A

. 

 

The method for the calculations of screws can be defined recurrently 

 


⇒



j ij i
k jk ij i k ik i

k jk j

E = T E
E = T T E E = T E

E = T E
.   (2.19) 

 

Operation shown in equations (2.18) defines the method of successive multiplications of 

matrices and application to screw transformations. 

 

2.2.3. Transformation Matrix of Screw Systems  

 

Substituting parameters of $’s and A’s from Equation (2.16) to Equation (2.17) 

will give us the vector matrix with parameters { }$ l m n P Q Rk k k k k k k  as 

 

( )( ) ( )( )0 0

0 0 0

0 0

,

,

( ) ,

,

Cos Sin

Cos a Sin Sin a Cos

Cos Sin Cos a Sin a Cos Sin

Cos Sin Cos a Sin

α ω α ω α ω α ω

ω α α α α α α ω

α α α α

= − + +

= + + − + +

= − = −

k i ik ij ik

k ik ik ik i i ik ik ik ij ij

k k i ik ij ik i ik i ik ik ij ik ik ij ik

k i ik ij ik k i ik i ik ik

$ = $ A + $ A

$ s + s s + s

s + s s s s s s s

s s s s s s 0 .a Cos Sinα α+ +ij ik ik ij iks s

 

 

Applying the same rules for jk$  gives 

Sin Cos−jk i ik ij ik$ = $ A + $ A , 

( )( ) ( )( )0 0Sin a Cos Cos a Sinα ω α ω α ω α ω= − + + +jk ik ik ik i i ik ik ik ij ij$ s + s s + s ,

0 0 0(- )Sin Cos Sin a Cos a Sin Cosω α α α α α α ω= − + + − − +jk jk i ik ij ik i ik i ik ik ij ik ik ij iks + s s s s s s s , 

Sin Cosα α= − +jk i ik ij iks s s , 0 0Sin a Cos a Sin Cosα α α α= − − − +jk i ik i ik ik ij ik ik ij iks s s s s . 
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Substituting parameters for $j, $k and $jk in to Equation (2.17) gives us 

 

00

00

0 0

0 00 01 0

0 00 00 1

0 00 0
.

0 0

0 0 0 0

0 0

C S

a S C a C S

S C

S Ca C a S

α α
α α α α

α α
α αα α

                   =     −     −       −− −        

j i

ij

jk ik ik

jik ik ik ik ik ikk

ik ikjk ij

ik ikik ik ik ik
jk ij

s s

ss
ss

ss

s s

s s

,   (2.20) 

 

where  ( )C Cosα α=ik ik  and ( )S Sinα α=ik ik . 

 

2.2.4. Transformation Screw Matrix Position Analysis 

 

Using transformation screw matrix equations, transformations between 

successive screw systems can be written in a standard matrix form which includes just 

screw parameters. If we know the position coordinates and orientation of a screw 

system, i+1E  then we can find position coordinates and orientation of the same system 

in the previous coordinate system iE  by using a transformation screw matrix , 1+i iT  as 

 

, 1 1+ +i i i iE = T E ,    (2.21) 

 

where  

 

, 2 , 2

, 1
, 2 , 2 , 2 , 2 , 2 , 2

, 2 , 2

, 2 , 2, 2 , 2 , 2 , 2

0 00 01 0
0 00 00 1

0 00 0

0 0

0 0 0 0

0 0

C S

a S C a C S

S C

S Ca C a S

α α
α α α α

α α
α αα α

+ +

+
+ + + + + +

+ +

+ ++ + + +

 
 
 
 
 = − 
 −
 
 − − − 

i i i i

i i
i i i i i i i i i i i i

i i i i

i i i ii i i i i i i i

T .  (2.22) 

 

Furthermore, each screw vector is given by 
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T0 0 0 =  i i j j ij ijE s s s s s s .    (2.23) 

 

Now by applying Equation (2.21) recursively from one link to the other we can write 

for an n-link single loop mechanism 

 

1 1,2 2

1 1,2 2,3 3

1 1,2 2,3 3,4 1,

,

,

........................

... .n n n−

E = T E

E = T T E

E = T T T T E

    (2.24) 

 

and in general 

 

1 1,2 2,3 1,... i i i−E = T T T E .          (2.25) 

 

These T matrices can be denoted as a T matrix as 

 

1, 1,2 2,3 1,...i i i−T = T T T .        (2.26) 

 

Then Equation (2.25) becomes 

 

1 1,i iE = T E .              (2.27) 

 

Because it is a close loop link 1 follows link i at the end of the loop 

 

1 1,2 2,3 ,1 1... iE = T T T E .        (2.28) 

 

From Equation (2.28) no matter which screw system is chosen, it is seen that 

 

1,2 2,3 1, ,1... i i i−I = T T T T ,        (2.29) 

 

where, I is the 6x6 identity transformation screw matrix. 
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Equation (2.29) defines the loop-closure equation of mechanism in 

transformation screw matrix form and states that the product of transformation screw 

matrices around a kinematic loop must equal the identity transformation screw matrix.   

 

2.2.5. Screw Matrix Velocity and Acceleration Analyses 

 

 

 

Figure 2.4. Link and joint parameters. 

 

The link and joint parameters two of which describe the joint (Figure 2.4.a) and 

other two describing the link (Figure 2.4.b) are applied to the screw system (Equation 

2.22) gives. 

 

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0

0 0

0 0 0 0

0 0

Cos Sin

d Sin Cos d Cos Sin

Sin Cos

d Cos Sin d Sin Cos

θ θ
θ θ θ θ

θ θ
θ θ θ θ

 
 
 
 

=  − 
 −
 
− − − 

jointT ,        (2.30) 

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0

0 0

0 0 0 0

0 0

Cos Sin

a Sin Cos aCos Sin

Sin Cos

aCos Sin a Sin Cos

α α
α α α α

α α
α α α α

 
 
 
 

=  − 
 −
 
− − − 

linkT .        (2.31) 
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Therefore, using equations (2.20) and (2.25) the transformation screw matrix of 

a link and joint can be found by multiplying the link and joint transformation screw 

matrices jointT  and linkT  . 

 

0 0 0 0

0 0

0 0 0

0 0 0

l j

C S

a S C aC S

S S C C S

d C S aC S S S d S C d C C a S S C S

C S S C C

aC C d S S C S d C S aC S d C S C C

α α
α α α α

α θ θ α θ
θ α α θ α θ θ θ α θ α θ α θ

θ α θ α θ
α θ α θ θ α θ θ θ α α θ α θ

 
 − 
 −

= =  − − − − − 
 − −
 
− + − − − − − 

T TT
. (2.32) 

 

When the joint variable is the angle θ and the derivative of T with respect to this 

variable is  

 

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0

0 0 0

C S S C Cd

d S S aC C S C d C S d C S a S S C Cd

S S C C S

aC S d S C S S d S C a S S d C C C S

θ α θ α θ
θ α α θ α θ θ θ α θ α θ α θθ

θ α θ α θ
α θ α θ θ α θ θ θ α α θ α θ

 
 
 
 − −

=  − − − − − − 
 − −
 

+ − − − 

T .   (2.33) 

 

On the other hand, if the joint is prismatic and joint variable is d, then the derivative will 

be 

 

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0d

0 0 0 0 0 0

0 0 0

d

C S S C Cd

S S C C S

θ α θ α θ

α θ θ α θ

 
 
 
 

=  − − 
 
 

− − 

T .    (2.34) 

 

These both derivatives can be described by one formula using a derivative operator Q 

 

, 1
, 1

i i
i i i

i

d
QT

dφ
+

+=
T

.    (2.35) 
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Where when joint i is a revolute joint we use 

 

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

iQ

 
 
 
 

=  
 
 −
 

− 

     (2.36) 

 

and when that joint is a prismatic pair we use  

 

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

iQ

 
 
 
 

=  
 
 −
 
 

 .    (2.37) 

 

To make velocity analysis we need derivatives with respect to time instead of the joint 

variables. Thus, using Equation (2.35) we can find 

 

, 1
, 1t

i i
i i i i

d
QT

d
φ+

+=
T

ɺ .          (2.38) 

 

We start velocity analysis by differentiating the loop-closure conditions (Equation 2.29) 

with respect to time. Using the chain rule with Equation (2.38) to differentiate each 

factor we get 

 

1,2 2,3 1, , 1 ,1... ... 0i i i i i n iQ φ− +∑T T T T T =ɺ .        (2.39) 

 

Arranging Equation (2.39) in a more compact form 

 

1, ,1 0i i i iQ φ∑T T =ɺ          (2.40) 
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If we define the symbol D as, 

 

1, ,1i i i iD Q= T T ,      (2.41) 

 

and take into account 1
,1 1,i i

−=T T  Equation  (2.41) can be written as 

 

1
1, 1,i i i iD Q −= T T  .     (2.42) 

 

Then Equation (2.40) becomes 

 

1

0
n

i i
i

Dφ
=

=∑ ɺ .              (2.43) 

 

 

 

Figure 2.5. 7R spatial linkage. 

 

To describe the concept of Jacobian Equation (2.43) will be expanded for a one 

degree of freedom close loop system. Let n= 7 as shown in Figure 2.5. Thus, Equation 

(2.42) can be written for seven joints as 
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1 1 1 1
1 1,1 1 1,1 2 1,2 2 1,2 3 1,3 3 1,3 4 1,4 4 1,4

1 1 1
5 1,5 5 1,5 6 1,6 6 1,6 7 1,7 7 1,7

, , , ,

, , .

D Q D Q D Q D Q

D Q D Q D Q

− − − −

− − −

= = = =

= = =

T T T T T T T T

T T T T T T
      (2.44) 

 

Matrices iD  has the form as shown in Equation  (2.45) 

 

0 0 0 0

0 0

0 0 0 0

0 0

0 0 0 0

0 0

i

b a

e b d a

b c
D

c b f c

a c

d a f c

 
 
 
 −

=  − − 
 − −
 
− − − − 

.        (2.45) 

 

Furthermore, using this symmetry iD  matrix can be described as vector form 

 

[ ]T

i a b c d e f=D .     (2.46) 

 

Expanding Equation (2.43) and calculating the values of iD  from Equation (2.44) we 

get 

 

1 1 2 2 3 3 4 4 5 5 6 6 7 7 0φ φ φ φ φ φ φ+ + + + + + =D D D D D D Dɺ ɺ ɺ ɺ ɺ ɺ ɺ ,  (2.47) 

 

where [ ]1 1 1 1 1 1 1

T
D a b c d e f= , [ ]2 2 2 2 2 2 2

T
D a b c d e f= ,  

[ ]3 3 3 3 3 3 3

T
D a b c d e f= , [ ]4 4 4 4 4 4 4

T
D a b c d e f= , 

[ ]5 5 5 5 5 5 5

T
D a b c d e f= , [ ]6 6 6 6 6 6 6

T
D a b c d e f= , 

[ ]7 7 7 7 7 7 7

T
D a b c d e f= . 

Taking the elements of vector Equation (2.47) as functions of input parameters 

( iφɺ ), and knowing the input velocities iφɺ  and equation the sum of corresponding matrix 

element we can write the equations in matrix vector form as 

 

J ⋅ =φ Vɺ ,     (2.48) 
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where 

2 3 4 5 6 7 2 1 1

2 3 4 5 6 7 3 1 1

2 3 4 5 6 7 4 1 1

2 3 4 5 6 7 5 1 1

2 3 4 5 6 7 6 1 1

2 3 4 5 6 7 7 1 1

, ,

a a a a a a a

b b b b b b b

c c c c c c c
J

d d d d d d d

e e e e e e e

f f f f f f f

φ φ
φ φ
φ φ
φ φ
φ φ
φ φ

   − 
     −    
     −

= = =    
−    

     −
    

−        

φ V

ɺ ɺ

ɺ ɺ

ɺ ɺ

ɺ
ɺ ɺ

ɺ ɺ

ɺ ɺ

. 

 

J describes the Jacobian of the mechanism and for the inverse task of velocity analysis 

where the end velocities of the mechanism is given joint velocities can be found as 

 

1J −= ⋅φ Vɺ .      (2.49) 

 

If the Jacobian is not a square matrix, then either there are less than six joint variables, 

other solution methods must be used or there are more than six joint variables, the 

problem has no unique solution.  

Joint variable accelerations can be found analogously, 

 

1

n

i i
i

Dφ
=

=∑ Aɺɺ       (2.50) 

 

and in the matrix vector form 

 

J ⋅ =φ Aɺɺ .              (2.51) 

 

By inverting the Jacobian in Equation (2.51) joint variable accelerations can be found. 

 

1J −= ⋅φ Aɺɺ .               (2.52) 

 

2.2.6. Robot Actuator Force Analysis 

 

To perform a given task of the manipulator, it is important to know the forces 

and torques must be applied by the actuators. Contrarily, force that can be produced at 



25 
 

the end effector by the actuators must be known. End effector forces and moments are 

shown in Equation (2.53). 

 

Tx y z x y z
i i i i i i iM M M F F F =  F     (2.53) 

 

If the torques of the actuators are described in a vector as 

 

[ ]1 2 .. .. ..
T

nτ τ τ=τ .     (2.54) 

 

Then we define a small displacement of the tool by a six component vector 

 

Tx y z x y z
i i i i i i iR R Rδ δθ δθ δθ δ δ δ =  R ,    (2.55) 

 

 and define the displacement of joint variables during this small displacement 

 

[ ]1 2 ... ... ...
T

i nδ δφ δφ δφ=φ .       (2.56) 

 

The work done at the end effector is calculated by multiplication of the forces 

acting and displacement, meanwhile work done at the joints are multiplication of 

torques of joints with joint variable displacements and the work must be same for the 

conservation of energy as described in Equation  (2.57). 

 

Tδ δ=TF R τ φ        (2.57) 

 

Writing Equation (2.48) in time derivative form, 

  

d d
J

dt dt
⋅ =φ R

,                 (2.58) 

 

and we can write it for a short time interval tδ  Equation  (2.58) can be written in the 

form 
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Jδ δ=R φ .     (2.59) 

 

Substituting Equation (2.59) in Equation (2.57) and rearranging we get 

 

( ) 0T J δ− =Tτ F φ .             (2.60) 

 

The small displacement cannot be zero thus torques of the actuators can be described as 

 

TJ=τ F .      (2.61) 

 

2.3. Reciprocity and Virtual Work  

 

 Principle of virtual work can be used to reduce a problem of kinetics at a chosen 

instant to one of statics. This method allows screws to be applied to a wide range of 

problems in kinetostatics. In kinetostatics of rigid bodies two dual vector quantities are 

characterized: infinitesimal displacements (twists) and force with a couple acting on 

rigid body (wrench). As a matter of fact twists for the rigid body defines the motion and 

wrench defines action, these screws are called as moment and vector or shortly motor 

screws. 

In Figure 2.6 two screws on a rigid body of points A and B are depicted. The 

pitches of the screws are “pa” and “pb” meters/radian respectively. Minimum distance 

between the screws is defined with “a” meters and angular displacement as “α” radians. 

At point A a wrench is applied to rigid body along screw A where it is defined as  

[ ]W F
Tτ=  and at point B a twist [ ]T ω v

T= . The rate of work dω/dt of wrench 

acting on a rigid body while the body is going under an infinitesimal twist is the mutual 

moment of this wrench and twist which is 

 

( ) ( )( )a bW T F v+ ω Fω p p a Cos Sinτ α α= ⋅ ⋅ = + −� .      (2.62) 
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Figure 2.6. Wrench and twist acting on a rigid body. 

 

When the wrench is unable to do any work on the body then W and T are called as 

reciprocal. So from Equation (2.62) it is resulted that the condition of reciprocity of a 

wrench and a twist is  

 

( )a bp p a 0Cos Sinα α+ − = .    (2.63) 

 

2.4. Screw Systems 

 

It is necessary to establish all the screws that the constraints will permit the body 

to be twisted to define the freedom of the rigid body. If there is linearly independent n 

screws $1, $2 …$n that the rigid body can receive a twist on each to define the freedom. 

So all these screws $1, $2 …$n said to form a screw system S of the nth order. For the 

Euclidean space limits of n will be 0 ≤ n≤ 6. 

For any screw system S of order n there is a reciprocal screw system Sr of order 

(6-n). Every screw of S must be reciprocal to all screws of screw system Sr and vice 

versa. Reciprocity of this two screw systems can be described by above equation 
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0=rS S� .     (2.64) 

 

Where “� ” denotes the mutual moment or reciprocal product of two systems. This 

equation can be written in matrix vector form as 

 

T rS S 0=∆  or T [ ] 0NullSpace =S S ,   (2.65) 

where 3 3

3 3 6 6

0 I

I 0
×

× ×

 
=  
 

∆ . 

Equation (2.65) shows us that the null space of screw system S is equal to r∆S  and the 

relation of the dimensions of the screw system and its reciprocal is 

 

( ) ( )dim +dim =6rS S .           (2.66) 

 

2.4.1. Operation on Screw Systems 

 

 The union and intersection of two screw systems are written as 1 2∪S S  and 

1 2∩S S  respectively. The dimension of union of two screw system can be given as 

 

( ) ( ) ( ) ( )1 2 1 2 1 2dim =dim +dim dim∪ − ∩S S S S S S .            (2.67) 

 

Screw systems also follow the conditions 

 

( ) ( )r r r r
1 2 1 2 n.......... = .........n∪ ∪ ∩ ∩S S S S S S  ,    (2.68) 

 

( ) ( )r r r r
1 2 1 2 n........ = ........n∩ ∩ ∪ ∪S S S S S S .   (2.69) 

 

2.5. Structural Analysis of Parallel Mechanisms with Theory of Screws 

 

 A parallel manipulator is composed of l serial kinematic chains connected 

between ground and a common moving platform. The dimension of the output twist 
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system of the manipulator will give us the mobility of the platform. As a first step the 

screws on joints in the legs are must be calculated. 

 In the beginning A base screw is defined for the coordinate axis on the base as 

$ {0 0 1 0 0 0}Oz = , $ {0 1 0 0 0 0}Oy =  and $ {1 0 0 0 0 0}Ox =  then the screw 

parameters of each joint must be calculated using recurrent screw equations that are 

described before. From the screws of the joints the twists of the joint screws will be 

defined with respect to their joint types. If  [ ]$
T

i µ= × +i i is r s s  for a joint screw twist 

for the revolute joint will be [ ]$
T

R i= ×i is r s  and for the prismatic joint [ ]$ 0
T

P = is . 

 

 

 

Figure 2.7. Twist system for one leg of a parallel manipulator. 

 

 After enumerating all twist for all the joints on the leg shown in Figure 2.7 the 

twist system of the leg must be calculated which is the union of each joint twists on that 

leg. If there are n joints on the leg equation of the twist of the leg will be; 

 

1 2........mi i i i n= ∪ ∪S S S S   where, i=1,2…,l .  (2.70) 

 

After describing the motion system Smi of the ith leg the constraint screw system of the 

i th leg Sci which is the reciprocal of motion system Smi can be found from Equation 

(2.71) 

 

∆ 0=mi ciS S    i=1, 2…, l .      (2.71)  
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Figure 2.8. Screw systems of a manipulator. 

 

Using equation ∆ [ ]NullSpace=c mS S , Equation (2.71) can be written in the form as 

 

 [ ]NullSpace= ∆ci miS S .            (2.72) 

 

After finding all constraints imposed on the platform from all legs, the constraint 

system (Scp) of platform that is shown in Figure 2.8 can be found by the union of all 

constraints effecting the platform by Equation (2.73). 

 

1 2........c c cl= ∪ ∪cpS S S S             (2.73) 

 

The reciprocal of platform constraint system will give us the platform motion system 

(Sp) which we can interpret the motion of the platform as shown in Equation (2.74). 

 

[ ]NullSpace= ∆p cpS S          (2.74) 

 

The dimension of Sp will give us the mobility of the platform, 

 

( )M dim= pS .      (2.75) 
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CHAPTER 3 

 

GEOMETRY ANALYSIS OF SUBSPACES 

 

A rigid body in space has six motions. The general constraint for a rigid body 

can be defined as the restrictions that are imposed by external elements. If a constraint 

is applied to a rigid body it can be defined that this rigid body is restricted to a subspace 

where the motion is less than the space. Formulation for the relation of general 

constraint of a rigid body can be given as 

 

6d λ= − ,     (3.1) 

 

where d stands for the general constraint of the system, λ is the space or subspace 

number and 6 comes from the general degrees of freedom of rigid body in space. 

For a manipulator, general constraint is the restrictions applied by the 

geometrical conditions of the linkages and joints. Thus, general constraint of a 

manipulator is the difference of the maximum possible motions of the end-effector in 

space and the maximum possible motions of the end-effector in its subspace. Six 

independent motions of rigid body in space consist of three translations and three 

rotations (PPPRRR) in Cartesian coordinate system. 

The constrained motions of λ=5 can be described with the relation of two rigid 

body surfaces that are defined in Table 3.1. The rigid body motion PPP-RR is described 

by the motion of a planar surface with respect to a planar surface or a hyperbolic 

surface. PP-RRR motion can be described by the contact motion of a spherical surface 

or and elliptic toroidal surface on a planar surface. P-RRRR motion is shown by the 

respective motions of elliptic cylinder surface on spherical surface, hyperbolic surface 

on spherical surface or hyperbolic surface on elliptic toroidal surface. Finally RRRRR 

motion is described by the motions of a spherical surface on spherical surface or on 

elliptic toroidal surface and motion of elliptic toroidal surface on elliptic toroidal 

surface. Note that although there are more that 3 rotational motions in some examples, 

the excessive ones can be represented by translational motions (Table 3.1). 
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Table 3.1. Summary of rigid body motions in subspace λ=5. 

 

# Structure Motion 

1 Planar Surface - Planar Surface PPP-RR 

2 Hyperbolic Surface – Planar Surface PPP-RR 

3 Planar Surface - Spherical Surface PP-RRR 

4 Elliptic Toroidal Surface - Planar Surface PP-RRR 

5 Elliptic Cylindrical Surface - Spherical Surface P-RRRR 

6 Hyperboloid Surface - Spherical Surface P-RRRR 

7 Hyperbolic Surface - Elliptic Toroidal Surface P-RRRR 

8 Spherical Surface - Spherical Surface RRRRR 

9 Elliptic Toroidal Surface - Spherical Surface RRRRR 

10 
Elliptic Toroidal Surface - Elliptic Toroidal 

Surface 
RRRRR 

 

 

The constrained motions of λ=4 can be described with the relation of one rigid 

body surface and a line positioned with respect to that surface. The rigid body motion 

PPP-R is described by the motion of a planar surface with respect to a skew line or a 

perpendicular line. PP-RR motion can be described by the contact motion of a Line on a 

planar surface. P-RRR motion is shown by the respective motions of a spherical surface 

with a line intersecting with the center of the sphere (Table 3.2). 

 

Table 3.2. Summary of rigid body motions in subspace λ=4. 

 

# Structure Motion 

1 Planar Surface - Skew Line PPP-R 

2 Planar Surface - Perpendicular Line PPP-R 

3 Planar Surface - Parallel Line PP-RR 

4 Spherical Surface – Line P-RRR 
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Motions in subspace λ=3 can be described by direct definition of surfaces. In 

Table 3.3 rigid body motions in subspace λ=3 are shown within four categories. In the 

planar motion two translations and one rotation occurs on a planar surface (Table 3.3-1). 

In Table 3.3-2 spherical motion is described with three rotations. In Table 3.3-3 toroidal 

motion is shown with also three rotations. Finally hyperbolical motion is shown with 

one translation and two rotations. 

 
Table 3.3. Summary of rigid body motions in subspace λ=3. 

 

 Structure Motion 

1 Planar  PP-R 

2 Spherical RRR 

3 Toroidal RRR 

4 Hyperbolic P-RR 

 
 

In subspace λ=2 there is only two kinds of motion. First one is as shown in Table 

3.4-1, a planar motion without a rotation and second one is a cylindrical motion with 

one translation and one rotation (PR). 

 
Table 3.4. Summary of rigid body motions in subspace λ=2 

 

 Structure Motion 

1 Planar  PP 

2 Cylindrical P-R 

 

3.1. Generation of Overconstrained Mechanisms by Using Mechanisms     
       in Lower Subspaces 

 

Describing all subspace conditions for overconstrained mechanisms and 

manipulators is an important and challenging step in the design of overconstrained and 

non-constrained mechanical systems. In the very beginning of the design of 

overconstrained mechanism design integration of subspace mechanisms is used by 
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many designers. First time Sarrus (1853) introduced an overconstrained mechanism 

which is a special case of planar-hybrid linkage that has six axes intersecting by pairs of 

three distinct points (Figure 3.1.a). Bennett (1905) introduced spherical-hybrid linkage 

and plano-spherical hybrid linkage with the criteria of intersecting six axes by pairs in 

two different points (Figure 3.1.b). 

 

 

 

Figure 3.1. Combined six-bar mechanisms; a) Planar-planar, b) Planar-spherical. 

 

As shown in Figure 3.1.a two slider crank mechanisms that have subspace λ=3 

are used to create a six bar linkage in subspace λ=5. In Figure 3.1.b a planar and a 

spherical four-bar are integrated to create a six bar linkage with general constraint one. 

Before describing the method to create these type of subspaces in λ=3, 4, 5 the 

mechanisms in λ=2, 3, 4 must be listed with respect to their subspace numbers and 

motion types. 

 

3.1.1. Overconstrained Mechanisms in Subspace λ=2 

 

 In subspace λ=2 there is two groups of linkages with respect to their motion 

types. One is a planar mechanism with only prismatic pairs where three prismatic joints 

connected and all three axes of joints are parallel to one plane and neither of them are 

parallel to each other (Table 3.5-1) and the second group of motion consist of H, P, and 

R pairs that are in line so that the motion of this group can be described as cylindrical. 

Four different types of linkage can be achieved as shown in Table 3.5-2. 
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Table 3.5. Overconstrained mechanisms in λ=2. 

 

# Motion Bonding Figure 

1 Planar ( )E
PPP  

 

H=H=H  

 

H//P//H  

 

H=R=H  

 

2 Cylindrical 

H=R//P 
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3.1.2. Overconstrained Mechanisms in Subspace λ=3 

 

 There is four groups of linkages in subspace λ=3. Mechanisms in planar motion 

shown in Table 3.6-1. There is only R and P joints where all axes of R joints are parallel 

and all axes of P joints are perpendicular to axes of R joints. Second motion group of 

subspaces in λ=3 is spherical where only R joints are used and all axes of R joints are 

intersecting in one point (Table 3.6-2). Third motion group of subspace λ=3 is Toroidal 

motion group (Table 3.6-3) which is well known Bennett mechanism. Last motion 

group of subspace λ=3 is Hyperbolical which consists of 2 R and 2P joints as shown in 

Table 3.6-4. 

 

Table 3.6. Overconstrained mechanisms in λ=3. 

 

# Motion Bonding Figure 

( )E
RPRP  

 

( )E
RRPP  

 

( )E
RRRP  

 

1 Planar 

( )E
RRRR  

 
 

(cont. on next page) 
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Table 3.6. (cont.) 

 

2 Spherical ( )S
RRRR  

 

3 Toroidal ( )T
RRRR  

 

4 Hyperbolical ( )H
RRRR  

 

 

 

3.1.3. Overconstrained Mechanisms in Subspace λ=4 

 

 Two groups of mechanisms in subspace λ=4 can be defined. First one is the 

linkage consist of 5 parallel H pairs where pitches of helical joints are different (Table 

3.7-1) which describes a special type of motion called as Schoenflies that can be defined 

as a motion of plane along a line. Second group is similar to first one with a skew line 

with respect to plane. It consists of prismatic and revolute pairs only (Table 3.7-2) 

where revolute joints are parallel and prismatic joints are arbitrary. 
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Table 3.7. Overconstrained mechanisms in λ=4. 

 

# Motion Bonding Figure 

1 
Plane along a 

line 
H//H/H//H//H  

 

PRPPR 

 2 
Plane along a 

skew line 

PRPRR 

 

 

 

3.2. Combination of Subspaces 

 

 The idea of creating new subspaces by combining lower order subspaces is to 

intersect one of the joints and connect the links of those joints to each other and remove 

the joint as shown schematically in Figure 3.2. These combinations of mechanisms 

create new mechanisms in different subspaces and these mechanisms give a topological 

basis for the creation of overconstrained mechanisms. 

The formula for calculating the subspace number for the integration of two 

subspaces can be given as 

 

combined 1 2λ λ λ 1= + − .            (3.2) 
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Figure 3.2. Combination of two spherical four bar mechanism. 

 

In the case of combination of three subspaces the formula for calculating new 

subspace number will be 

 

combined 1 2 2λ λ λ +λ 2= + − .              (3.3) 

 

If we write a general equation from Equation (3.2) and Equation (3.3) as shown 

in Equation (3.4). 

 

 i combined
1

λ =λ 1
n

i

n
=

+ −∑ ,            (3.4) 

 

where n is the number of subspaces to be combined. 

 

3.2.1. Combined Overconstrained Mechanisms in Subspace λ=3 

 

 Using Equation (3.4) only one condition for mechanisms in λ=3 subspace is 

possible where there is two subspaces λ1 and λ2 and they both are equal to two. As 

shown in Table 3.5 there is only two groups of motion in λ=2 is possible and in λ=3 

only the combination of this two group can be accomplished as new mechanisms. The 

integration of this two subspaces with λ=2 gives us four types of mechanisms with 2 

different motion groups (Table 3.8). 
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Table 3.8. Combined overconstrained mechanisms in λ=3. 

 

# 

Number of 

subspaces 

to combine 

Motions of 

combined 

subspaces 

Bonding Figure 

1 H=HPP 

 

2 

2, 2 
Plane around 

cylinder 

H=HPR 

 

3 H=HPPɺ ɺ
ɺ ɺ

 

 

4 

2, 2 
Cylinder on 

plane  

H=RPPɺ ɺ
ɺ ɺ

 

 

 

 



41 
 

3.2.2. Combined Overconstrained Mechanisms in Subspace λ=4 

 

 If Equation (3.4) is solved for λcombined=4 then the combination of the 

mechanisms in λ=4 must be λ1=3 with λ2=2 or the combination of three λ=2 subspaces. 

To construct the conditions (Table 3.5 (1-8)) for the first case λ=3 mechanisms from 

Table 3.6 are added to mechanisms listed in Table 3.1 and Table 3.2. For the second 

case where three λ=2 mechanisms are integrated together (Table 3.9), λ=2 mechanisms 

from Table 3.9(2) are combined with the pre-combined linkages listed in Table 3.8. 

Four types of mechanisms are listed in Table 3.9 (9-12). 

 

Table 3.9. Combined overconstrained mechanisms in λ=4. 

 

# 
Combined 

Subspaces 

Motions 

of 

combined 

subspaces 

Bonding Figure 

1 2, 3 HHRRR 

 

2 2, 3 

Cylinder 

and plane 

HPRRR 

 

 

(cont. on next page) 
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Table 3.9. (cont.) 

 

3 2, 3 H=H RRR⊥  

 

4 2, 3 

Plane 

around 

cylinder 

H=P RRR⊥  

 

5 2, 3 H=HRRR
ɺ ɺ ɺ ɺ

 

 

6 2, 3  

Cylinder 

and 

sphere 

HPRRR
ɺ ɺ ɺ ɺ

 

 

7 2, 3 
Torus and 

Cylinder 
H=HRRR 

 

 

(cont. on next page) 
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Table 3.9. (cont.) 

 

8 2, 3 
Torus and 

Cylinder 
( )

T
H PRRR  

 

 

 

9 2, 2, 2 H=HH=R P⋅  

 

 

 

10 2, 2, 2 H=HH=R P⋅ɺ ɺ

ɺ ɺ
 

 

 

 

11 2, 2, 2 

Plane 

with 

Double 

Cylinder 

 

H=RH=R P⋅ɺ ɺ

ɺ ɺ
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3.2.3. Combined Overconstrained Mechanisms in Subspace λ=5 

 

 For the enumeration of combined mechanisms in λ=5 using Equation (3.4) we 

get three kinds of combinations. First is the connection of two λ=3 mechanisms as listed 

in Table 3.10 (1-21). Another type of combination is integration of λ=4 mechanisms 

with a λ=2 mechanism is listed in Table 3.10 (22-24) and from the combination of a λ=3 

and two λ=2 mechanisms resulted in six mechanisms with three groups of motion as 

shown in Table 3.10 (25-31) 

Overconstrained mechanisms are moving in lower subspaces such as spherical, 

planar, hyperbolical, toroidal and combinations of these. In this section these spaces and 

intersections are investigated. 

 

Table 3.10. Combined overconstrained mechanisms in λ=5. 

 

# 

Number of 

subspaces 

to 

combine 

Motions of 

combined 

subspaces 

Bonding Figure 

1 2 H E(RPR) (RPR)  

 

2 2 

Hyperboloid 

and Plane 

H E(RPR) (RRR)  

 

 

(cont. on next page) 
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Table 3.10. (cont) 

 

3 2 E E(PPR) (RRP) 

 

4 2 
PRRPRP 

E E(PRR) (PRP) 

 

5 2 

Plane and 

Plane 

E E(RRR) (RPP) 

 

6 2 E E(RRR) (RRP)  

 

7 2 

Plane and 

Plane 

E E(RRR) (RRR)  

 

 

(cont. on next page) 
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Table 3.10. (cont) 

 

8 2 E T(RPP) (RRR) 

 

9 2 E T(RPR) (RRR)  

 

10 2 

Plane and 

Torus 

E T(RRP) (RRR)  

 

11 2 
Plane and 

Torus 
E T(RRR) (RRR)  

 

12 2 H S(PRP) (RRR) 

 

13 2 

Spherical 

and 

Hyperboloid 

H S(RPR) (RRR) 

 

 

(cont. on next page) 
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Table 3.10. (cont) 

 

14 2 E S(PPR) (RRR) 

 

15 2 E S(PRR) (RRR)  

 

16 2 E S(RPR) (RRR)  

 

17 2 

Spherical 

and Planar 

 

E S(RRR) (RRR)  

 

18 2 
Double 

Spherical 
S S(RRR) (RRR)  

 

 

(cont. on next page) 
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Table 3.10. (cont) 

 

19 2 

Spherical 

and 

Toroidal 

S T(RRR) (RRR)  

 

20 2 

Toroidal 

and 

hyperboloid 

H T(PRP) (RRR)  

 

21 2 

Toroidal 

and 

Toroidal 

T T(RRR) (RRR)  

 

22 2 PRRPPH 

 

23 2 

Hyperboloid 

cylindrical 

and planar 

 

H(PRP) RR=H 

 

24 2 

Double 

Planar and 

cylindrical  

HHHHPPɺ ɺ  

 

 

(cont. on next page) 
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Table 3.10. (cont) 

 

25 3 H=H RPHR⊥  

 

26 3 

Planar and 

double 

cylindrical 

H=R RPHR⊥  

 

27 3 H=HRP=HRɺ ɺ ɺ ɺ  

 

28 3 

Spherical 

and double 

cylindrical 

H//PRP=HRɺ ɺ ɺ ɺ  

 

29 3 TH=H(RP=HR)   

 

30 3 

Toroidal 

and double 

cylindrical 

TH//P(RP=HR)  
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3.3. Mathematical Models of Overconstrained Subspaces 

 

Describing the geometry of the subspaces mathematically is a challenging task. 

In this section mathematical models of some intersecting geometries are described 

which will lead to the mathematical modeling of subspaces. 

 

3.3.1. Intersection of Two Non-Parallel Planes with Sphere 

 

The main equation of intersection of the two non parallel planes P1 and P2 with 

sphere (Figure 3.3.a) can be described as  

 

( ) ( ) ( )

1 1 1 4

2 2 2 4

2 2 2 2
A A A

l x m y n z d

l x m y n z f

x x y y z z a

+ + =
+ + =

− + − + − =

     (3.5) 

 

where: 4 1 1 1 4 2 2 2, , 1 , 2,D D D B B Bd l x m y n z f l x m y n z D P B P= + + = + + ∈ ∈  and 

[ ] [ ]1 1 1 1 2 2 2 2,
T T

l m n l m n= =e e are unit vectors of normals respect to planes P1 and P2 

 Let point A(xA, yA, zA) will not belong to planes P1 and P2, and the radius of 

sphere equal a. The point C(xC, yC, zC) is the point of intersection of the planes P1 and 

P2 with sphere. The problem is to define the coordinates of point C in frame coordinate 

system XYZ. Let us introduce moving coordinate system (U1, U2, U3) with the origin A, 

then coordinates of point C can be described as:  

 

1 2 3, ,C C A C C A C C AU x x U y y U z z= − = − = −    (3.6) 

 

Substituting Equation (3.6) in Equation (3.5) yields 

 

( ) ( ) ( )

1 1 1 2 1 3

2 1 2 2 2 3

2 2 2 2
1 2 3

)

)

)

C C C

C C C

C C C

a l U mU nU d

b l U m U n U f

c U U U a

+ + =
+ + =

+ + =

,        (3.7) 

 

where: 4 1 1 1 4 2 2 2,A A A A A Ad d l x m y n z f f l x m y n z= − − − = − − − . 
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b) 

 
c) 

 
a) 

 

 
d) 

 

Figure 3.3. Intersection of two non-parallel planes with sphere. 

 

Eliminating U1C, U2C and U3C in turn from linear Equations (3.7) we will get 

three linear Equations of line as the intersection of two planes as 

 

12 2 12 3

12 3 12 1

12 1 12 2

) 0

) 0

) 0

C C

C C

C C

a n U m U P

b l U n U Q

c m U l U R

− − =
− − =
− − =

 ,   (3.8) 

 

where: $(l12 , m12 ,n12 , P , Q , R ) are Plücker coordinates of line (axes of screw), 

 

1 1 1 1 1 1 2 2 2
12 12 12

2 2 2 2 2 2 1 1 1

, , , , ,
m n n l l m f l f m f n

l m n P Q R
m n n l l m d l d m d n

= = = = = = . (3.9) 

 

In Equations (3.9) l12 , m12 ,n12 are the projections of normal vectors 1 2 1× =s s S onto 

axes of system coordinates. Non parallelism of two planes is described by condition 

12 12 12 0l m n≠ ≠ ≠ .  
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Solution of system of Equations (3.7) are achieved by substituting expressions 

 

( )
( )

1
1 12 12 3

1
2 12 12 3

C C

C C

U n l U Q

U n m U P

−

−

= −

= +
     (3.10) 

 

From Equation (3.8) in Equation (3.7c) that gives quadratic equation with respect to 

unknown parameter U3C as 

 

( ) ( ) ( )2 2 2 2 2 2 2
12 12 12 3 12 12 3 122 0C Cl m n U m P l Q U P Q a n+ + + − + + − = .  (3.11) 

 

A solution of Equation (3.11) describes two real values U3C and corresponding two 

values for U1C and U2C from Equations (3.10).  

If discriminant of Equation (3.11) is less than zero, it means that the line of 

intersection of planes P1 and P2 will not intersect with the sphere. If discriminant is 

equal to zero the line of intersection of planes P1 and P2 is tangent to the surface of 

sphere. According to these definitions the following three cases can be described: 

If n12 =0 (Figure 5.1b), then from Equations (3.8) follow that line lie on the 

plane 1 1
3 12 12CU P m Ql− −= − =  that is parallel to plane (U1, U2 ). Substituting 1

3 12CU P m−= −  

and expression ( ) 1
1 12 2 12C CU l U R m−= +  from Equation (3.8c) to third Equation (3.7c) we 

can get quadratic equation with respect to U2C as 

 

( ) ( )2 2 2 2 2 2 2
12 12 2 12 2 122 0C Cl m U l RU P R a m+ + + + − = .   (3.12) 

 

Solution of Equation (3.12) describe two real values for U2C, and corresponding 

U1C can be found from Equation (3.8c) and U3C from Equation (3.8a) 

If l 12=0 (Figure 5.1c), then the line lie on plane 1 1
1 12 12CU Q n R m− −= − =  that is 

parallel to plane (U2, U3). Using expression 1
1 12CU Q n−= −  and ( ) 1

2 12 3 12C CU m U P n−= +  

then Equation (3.7c) yields 

 

( ) ( )2 2 2 2 2 2 2
12 12 3 12 3 122 0C Cm n U m PU Q P a n+ + + + − = .   (3.13) 
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Solution of Equation (3.13) gives two real values for U3C.  

If m12=0 (Figure 5.1d), we will get the line on the plane 1 1
2 12 12CU Rl P n− −= − =  that 

is parallel to plane (U3, U1). Then using expression 1
2 12CU Rl−= −  and 

( ) 1
3 12 1 12C CU n U Q l−= +  the last equation of system Equation (3.7c) is solved respect to 

U1C as, 

 

( ) ( )2 2 2 2 2 2 2
12 12 1 12 1 122 0C Cl n U n QU R Q a l+ + + + − =     (3.14) 

 

After solution of one of quadratic Equations (3.12-3.14) and using Equations 

(3.8) we can get values U1C, U2C, U3C, and respect to Equation (3.6) are define 

parameters xC, yC, zC. For choice one of solution of system Equations (3.7) 

characterizing the condition of assembly it is needed to bring in parameter K(0,1) the 

value of that is get involved with first or second solution of system. 

 For having only one solution for the choice the mixed multiplication of three 

vectors 1, ,CB CA e
���� ����

 are taken in to account. If ( ) 1 0× ⋅ >CB CA e
���� ����

 we will have xC, yC, 

zC when K=0, if ( ) 1 0× ⋅ <CB CA e
���� ����

 we will have xC, yC, zC when K=1. The mixed 

multiplication of vectors yields: 

( ) ( ) ( )1 2 2 2 3 1 2 1 2 3 1 2 1 2 2 0C C C C C CL N U M U M N U L U N M U L U− + − + − <  

 

3.3.2. Intersection of Two Spheres with a Plane 

 

 
 

Figure 3.4. Intersection of two spheres and a plane. 
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 Intersection of a plane with two spheres (Figure 3.4) can be introduced as  

 

( ) ( ) ( )
1 1 1 2 1 3

2 2 2 2

2 2 2 2
1 2 3

)

)

)

C C C

C B C B C B

C C C

a l U mU nU d

b x x y y z z b

c U U U a

+ + =

− + − + − =

+ + =

.   (3.15) 

 

 Adding to the left part of Equations (3.15b) by expressions , , ,A A Ax y z± ± ± and 

after some transformations we get equation of plane as intersection of two spheres, 

Equations (3.15) convert in the form 

 

1 1 1 2 1 3

1 1 2 2 3 3

2 2 2 2
1 2 3

)

)

)

C C C

C C C

C C C

a l U mU nU d

b f U f U f U f

c U U U a

+ + =
+ + =

+ + =

,    (3.16) 

 

where, 1 A Bf x x= − , 2 A Bf y y= −  3 A Bf z z= − , ( )2 2 2 2 2
1 2 3 / 2f b a f f f= − − − − .  

Determinations of the point of intersection of planes are calculated by using 

solutions of Equations (3.16). 

 

3.3.3. Intersection of Three Spheres 

 

 

 

Figure 3.5. Intersection of three spheres. 
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The basic equations of intersection of three spheres (Figure 3.5) are given by  

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2 2 2 2

2 2 2 2

2 2 2 2

)

)

)

C D C D C D

C B C B C B

C A C A C A

a x x y y z z c

b x x y y z z b

c x x y y z z a

− + − + − =

− + − + − =

− + − + − =

   (3.17) 

 

where a,b,c are radii of three intersecting spheres with coordinates of centers in points 

A(xA, yA, zA), B(xB, yB, zB), C(xC, yC, zC).  

Therefore, it is required expressions of coefficients of three linear line Equations 

(3.8) and corresponding values of coordinates of point C(xC, yC, zC). Adding in the left 

side of Equations (3.17 a,b) by expressions , , ,A A Ax y z± ± ± and after some 

transformations we will get the system similar (3.16) with following coefficients 

 

1 1 2 2 3 3

1 1 2 2 3 3

2 2 2 2
1 2 3

C C C

C C C

C C C

d U d U d U d

f U f U f U f

U U U a

+ + =
+ + =

+ + =

,     (3.18) 

 

( )
( )

2 2 2 2 2
1 2 3 1 2 3

2 2 2 2 2
1 2 3 1 2 3

where; , , , / 2,

, , , / 2.

A D A D A D

A B A B A B

d x x d y y d z z d c a d d d

f x x f y y f z z f b a f f f

= − = − = − = − − − −

= − = − = − = − − − −
 

 

 Solution of given mathematical model also come by solving quadratic Equation 

(3.11), where coefficients of these Equations correspond to Equations (3.18). So we can 

find U3C, then U1C and U2C from Equations (3.8) and then respect to Equations (3.6) are 

defined coordinates (xC, yC, zC) and (xC’, yC’, zC). 

 

3.3.4. Intersection of Plane and Sphere 

 

 Intersection of plane and sphere is the circle as introduced in (Figure 3.6). The 

solution of Equations that describe connection of plane with sphere can be described as 

 

2 1 2 2 2 3

2 2 2 2
1 2 3

)

)
C C C

C C C

a l U m U n U f

b U U U a

+ + =

+ + =
    (3.19) 
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Figure 3.6. Intersection of plane and sphere. 

 

Assume that value U1C is given, then solution of Equations (3.19) respect to parameter 

U3C yields 

 

( ) ( ) ( )( ) ( ){ }0.51 22 2 2 2
3 2 1 2 2 2 2 1 21 1C C CU l f U l n m l a f U l f

−
 = − − ± − − − −
 

.  (3.20) 

 

Hence, using Equation (3.20) it has within changing of parameter U1C, it means 

corresponding location of points as intersection plane with sphere. 
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CHAPTER 4 

 

STRUCTURAL SYNTHESIS OF  

OVERCONSTRAINED MANIPULATORS 

 

As a definitiona multi loop manipulator can be specified as a closed loop 

mechanism with an end-effector that is connected to the base by at least two 

independent loops and its actuators should be distributed to each leg. These 

manipulators have some advantages when compared with serial manipulators such as 

higher precision, robustness, stiffness and load carrying capacity. It is also obvious that 

multi loop manipulators should consist of multi mobility loops. In addition, multi loop 

manipulators can be referred as the manipulators that have more than two legs and 

consist of either one platform or many platforms that are connected by hinges or 

branches. During the structural synthesis of overconstrained multi loop manipulators, 

both legs and the loops of the manipulator should be considered and the general 

mobility formula for multi loop manipulators with variable general constraint should 

also be developed. 

 

4.1. Degree of Screw and Mathematical Models of Kinematic Pairs 

 

In order to form a kinematic pair, exactly two rigid bodies must be contacted to 

each other by a surface, a line or a point. Kinematic pairs respect to their contact 

geometries can be divided as Type I (surface, T1=1), Type II (line T2=2), Type III 

(point, T3=3). Due to the fact that the unconstraint space has six independent motions 

3R 3P and kinematic pairs need constraint (1 5)C ÷  in order to be defined properly 

degree of freedom f=6-C. 

 In order to define the mathematical models of the kinematic pairs by using 

transformation unit screw concept we will have additional input and as a result output 

unit screws. Thus, if the maximum DoF of kinematic pair fmax=5, it means that the 

number of variables are changed from one to five. If each variable corresponds to 
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variable of unit screws and adding input and output unit screws we can describe 

maximum number of unit screws of kinematic pair as $max=7. 

 Taking from seven, a number of constraint “C” and number of unit screw with 

variable pitch “S” that belong to translation motion, and adding the number of contact 

type “T” we obtain the following new structural formula of the degree of screw (Do$) 

for kinematic pair as 

 

$ 7 C S T= − − + .          (4.1) 

 

It is important to note that any screw that carries two independent motions as 

rotation around the screw axis and translation along the screw axis is called to have 

variable pitch. The most common kinematic pairs in all types and degree of screws are 

shown in Table 4.1 with their kinematic representations by using Equation (4.1). 

In order to define the mathematical models of the kinematic pairs by using 

transformation unit screw concept, the last output screw should be defined in terms of 

variable “ɶ ” constant “ ” or dependent variable ik ika µ α= . As seen in Table 4.1, the 

screw structures resemble each other but the parameter structures of all the joints are 

different. Assuming that the first two screws $i and $j are known, the final output screw 

can be computed by using Equation (2.17). Let’s look at the mathematical models of the 

first four joints in Table 4.1. The mathematical models of the revolute, prismatic, helical 

and cylindrical joints are introduced as ( )$ , , , , ,k k k k k k kl m n P Q R  in Equation (2.17). It is 

clear that the mathematical models are the same for all of the four joints in terms of 

formulation structure, however the behavior of the parameters ika  and ikα  are different 

for each joint. For instance, both of the parameters ika  and ikα  are independent 

variables in cylindrical joint ( ),ik ikC a αɶɶ  while they are dependent on each other in the 

case of helical joint ( )ik ikH a µα=ɶ . In the revolute joint ( ),ik ikR a αɶ  or in the prismatic 

joint ( ),ik ikP a αɶ  one of the parameters is constant and other is variable. After the 

sequential operations are carried out in Equation (2.17) mathematical models of the 

screw structure of spherical with finger joint ( )1 1, , 0f i k j k i k j kS a aα α + += =ɶ ɶ , spherical 

joint 1 2( 0i k j k k kS a a a+ += = = , i kαɶ , 1j kα +ɶ , 2, )k kα +ɶ , spherical in slot joint 

1 2 1 3( , 0S i k j k k k k kS a a a a+ + + += = =ɶ , i kαɶ  , 1j kα +ɶ , 2k kα +ɶ , 1 3)k kα + +ɶ , spherical in torus joint 
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1 2 1 3( , 0t j k i k k k k kS a a a a+ + + += = = , i kαɶ , 1j kα + , 2,k kα +ɶ  1 3)k kα + +ɶ , spherical on plane 

joint 1 1 3 2 4( , , 0P i k j k k k k kS a a a a+ + + + += =ɶ ɶ , i kα , 1j kα + , 2k kα +ɶ , 1 3k kα + +ɶ , 2 4)k kα + +ɶ  will be 

computed respectively. 

 

Table 4.1. Kinematic representations of kinematic pairs. 

 

# 
Kinematic 

Pair 
T C f S $ Kinematic diagram 

1 
Revolute 

R 
1 5 1 0 3 

 

2 
Prismatic 

P 
1 5 1 0 3 

 

3 
Helical 

H 
1 5 1 0 3 

 

 

(cont. on next page) 
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Table 4.1. (cont.) 

 

4 
Cylinder 

C 
1 4 2 1 3 

 

5 

Spherical 

with finger 

Sf 

 

1 4 2 0 4 

 

 

 

6 
Spherical 

S 
1 3 3 0 5 

 

 

 

 

(cont. on next page) 
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Table 4.1. (cont.) 

  

7 

Spherical 

in slot 

Ss 

2 2 4 1 6 

 

8 

Spherical 

in torus 

St 

2 2 4 1 6 

 

9 

Spherical 

on plane 

Sp 

3 1 5 2 7 

 

 

 

It is clear to note that the simple planar surface can be represented by two 

screws. The intersection of two planar surfaces will result in a line that can be presented 

by three screws and the intersection of three planar surfaces that will result in a point 

can be represented by four screws. In the light of these, the number of screws to define a 

kinematic pair is equal to the number of screws (Equation 4.1) needed to represent the 

orientation of its associated contact geometry. 
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4.2. Novel Mobility Equation of Mechanisms 

 

Having learned the idea behind the degree of screw (Do$) of kinematic pairs by 

the help of recurrent screws, the subject can be extended beyond by applying screw 

theory to mobility equation for the mechanisms and robot manipulators. Definition of 

mobility is that in any position of a mechanical system it defines the difference between 

the number of independent screw and number of independent differential constraint 

equations. 

The mobility equation applies to mechanisms without exception is, 

 

1 1

M $
j L

i K
i K

λ
= =

= −∑ ∑ɶ ,                     (4.2) 

 

where M is mobility of mechanism, $ɶ  is number of independent unit screws, Kλ  is 

number of independent loop-closure equations. 

The Equation (4.2) can be applied to all kinematic chains and mechanisms with 

mixed number of space ( )2,3,4,5,6Kλ . If the number of λ  is identical in each 

independent loop then Equation (4.2) becomes 

 

1

M $ L
j

i
i

λ
=

= −∑ ɶ .       (4.3) 

 

In this case the degree of independent screw of kinematic pair is the number of 

independent screw needed to describe the relative positions of pairing elements. Pairing 

element occurs by assembly of surfaces, lines or points of a solid body through which it 

may contact with another solid body. Each solid body can be described by screws $, so 

the independent degree of screw ($ɶ ) of kinematic pair, Equation (4.1) can be introduced 

also in the following form as 

 

$ $ S (T 1)= + − +ɶ ,        (4.4) 

 

where S is number of unit screws with variable pitch. 
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Combining Equations (4.4) and (4.2), we have the mobility equations with 

mixed or constant number of independent loop-closure equations in each independent 

loop in the general form as 

 

p
1 1

M $ +q-j
j L

i K
i K

λ
= =

= −∑ ∑ɶ ,     (4.5) 

 

p
1

M $ L q j
j

i
i

λ
=

= − + −∑ ɶ ,    (4.6) 

 

where q is the number of excessive links and pj  is the number of passive joints. 

 The Equations (4.5) and (4.6) shows that the mobility number is associated with 

the motion of the kinematic pair and with the constraint of an independent loop. The 

conclusions of the equations (4.2-4.6) can be summarized in the following forms. 

• The number of space within which the mechanism operates, λ  is equal to the 

number of independent, scalar, differential loop-closure equations. 

• The total number of independent unit screws of loop is determined by the rank 

of the coefficient matrix of the loop-closure equations. 

• A mobility equation applicable for mixed or constant constraint reduces to 

Equations (4.5) or (4.6). 

 

4.3. Simple Overconstrained Structural Groups 

 

 It is known that overconstrained manipulators can be obtained by taking 

appropriate overconstrained simple structural group and adding the required number of 

actuators. The geometry of actuator joints must be satisfied by the geometry of simple 

overconstrained structural group. Simple structural group is the smallest kinematic 

chain with zero mobility. 

 Let $h∑ ɶ , $b∑ ɶ  and $l∑ ɶ  denote the total number of independent screws of 

hinges, branches and legs of the manipulator respectively. A platform in subspace with 

general constraint one usually has pj  independent joints, that 2 5pj≤ ≤ . By definition, 

the number of independent screws follows as 
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1 1 1 1

$ $ $ $
h b lj j jj

h b l
i h b l= = = =

= + +∑ ∑ ∑ ∑ɶ ɶ ɶ ɶ      (4.7) 

 

 Taking mobility M=0 and a number of variable pitch S=0 in Equation (4.3), we 

can reach following equation for simple structural group described in Equation (4.8). 

 

1

$ L
j

i

λ
=

=∑ ɶ      (4.8) 

 

The number of independent loops in a closed simple structure is obtained from Equation 

(4.8) as  

 

1

1
$

j

i

L
λ =

= ∑ ɶ .     (4.9)  

 

At the same time the number of independent loop in simple structural group will be 

 

p p b hL j n n n= − − − ,         (4.10) 

 

where pj  is the total number of joints on the platforms, pn  is the number of platforms, 

bn  is the number of branches between platforms and hn  is the number of hinges 

between platforms. 

 

4.4. Simple Overconstrained Structural Groups with General    

       Constraint One 

 

 For overconstrained kinematic chain with one platform where number of joints 

on platform are 2 5pj≤ ≤  and subspace number 5λ = , the simple structural group can 

be obtained by using Equations (4.10) and (4.5) respectively: ( )1,2,3,4L = , 

( )$ L= 5,10,15,20λ=∑ ɶ  and ( )1 $ 2-3,3-3-4,2-2-4,4-4-4-3,4-4-4-4-4l pj j −= ∑ ɶ , where lj  
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is the number of joints in the legs. Distribution of constraints in the legs for the simple 

structural groups with general constraint one are shown in Table 4.2 and by using these 

values possible structural groups with constraint conditions (see Table 3.2) are tabulated 

in Table 4.3. 

 

Table 4.2. Distribution of conditions to joints of simple structural groups in λ=5 

 

Number of legs 2 3 4 5 

Number of joints attached to first condition 3 6 9 12 

Number of joints attached to second condition 2 4 6 8 

 

If we will have two or more platforms with 6pj ≥  and 5λ =  connected each 

other by branches then the total number of legs of overconstrained simple structural 

group is described as, 

 

2 2l p b hn j n n= − − .         (4.11) 

 

Example 4.4.1: Let’s take, two platforms 2pn =  with joints ( )3 3pj = +  

connected by hinge 1hn = , so the number of legs is 2 6 2 1 4l p hn j n= − = − ⋅ =  . The 

number of independent loops is 6 2 0 1 3p p b hL j n n n= − − − = − − − = . Thus, the total 

number of independent screws will be calculated as $ L=5 3=15λ= ⋅∑ ɶ  or 

$ $ $ 14 1 15l h= + = + =∑ ∑ ∑ɶ ɶ ɶ  and number of joints in each leg is calculated as 

1 1$ 4 14 (3,3,4,4)l l l
j n− −= = ⋅ =∑ ɶ . Connections of constrained joints are shown in 

Table 4.4-1 

Example 4.4.2: Two platforms 2pn =  with joints ( )3 4pj = +  connected by 

branch 1hn = , so the number of legs is 2 7 2 1 5l p hn j n= − = − ⋅ =  and the number of 

independent loops is 7 2 0 1 4p p b hL j n n n= − − − = − − − = . Thus, the total number of 

independent screws will be $ L=5 4=20λ= ⋅∑ ɶ  or $ $ $ 19 1 20l h= + = + =∑ ∑ ∑ɶ ɶ ɶ  and 

number of joints in each legs is 1 1$ 5 19 (3,4,4,4,4)l l l
j n− −= = ⋅ =∑ ɶ . Connections of 

constrained joints are shown in Table 4.4-2 
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Table 4.3. Simple structural groups with general constraint one. 

 

Connection of joints by two conditions 
L $ jp Figure j l 

1 2 3 4 5 6 

2 -2-2 -1-2 -1-1    

1 5 2 

 

3 -1-1-1 -1-1-2 -1-2-2    

3 -2-2-2 -1-2-2 -1-2-2 -1-1-2 -1-1-2  

3 -1-1-1 -1-1-2 -1-1-1 -1-1-2 -1-1-1  

 

4 -1-1-1-2 -1-1-1-2 -1-1-2-2 -1-1-2-2 -1-2-2-2  

2 -2-2 -1-2 -1-1 -1-1   

4 -1-1-1-2 -1-1-2-2 -1-2-2-2 -1-1-2-2   

2 10 3 

 

4 -1-1-1-2 -1-1-1-2 -1-1-1-2 -1-1-2-2   

3 -2-2-2 -1-2-2 -1-1-2 -1-1-2 -1-1-1 -1-1-1 

4 -1-1-1-2 -1-1-2-2 -1-2-2-2 -1-1-2-2 -1-1-2-2 -1-2-2-2 

4 -1-1-1-2 -1-1-1-2 -1-1-1-2 -1-1-2-2 -1-1-2-2 -1-1-2-2 

3 15 4 

 4 -1-1-1-2 -1-1-1-2 -1-1-1-2 -1-1-1-2 -1-1-2-2 -1-1-1-2 

4 -1-2-2-2 -1-1-2-2  

4 -1-1-2-2 -1-1-2-2  

4 -1-1-1-2 -1-1-2-2  

4 -1-1-1-2 -1-1-1-2  

4 20 5 

 4 -1-1-1-2 -1-1-1-2  
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Table 4.4. Simple structural groups with multiple platforms. 

 

# L $ j p Figure j l 
Connection of joints by two 

conditions 

3 -1-1-2 

1 

3 

1 

-1-1-2 

4 -1-1-2-2 

1 3 15 3+3 

 

4 -1-1-2-2 

4 -1-2-2 

1 

3 

1 

-1-1-1-2 

4 -1-1-2-2 

4 -1-1-2-2 

2 4 20 3+4 

 
4 -1-1-1-2 

3 -1-1-2 

3 -1-2-2 

3 -1-2-2 

3 3 15 3+3 

 

3 

3 

1- 

1- 

1- 

-1-1-2 

 

 

Example 4.4.3: Two platforms 2pn =  with joints ( )3 3pj = +  connected by 

branch 1bn = , with 3 joints, so the number of legs is 2 6 2 1 4l p bn j n= − = − ⋅ =  and the 

number of independent loops is 6 2 1 0 3p p b hL j n n n= − − − = − − − = . Thus, after 

calculating total number of loops the total number of independent screws can be 

calculated as $ L=5 3=15λ= ⋅∑ ɶ  or $ $ $ 12 3 15l b= + = + =∑ ∑ ∑ɶ ɶ ɶ  and the number of 

joints in each legs will be calculated as 1 1$ 4 12 (3,3,3,3)l l l
j n− −= = ⋅ =∑ ɶ . Connections 

of constrained joints are shown in Table 4.4-3. 
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Table 4.5. Number of simple structural groups of λ =5. 

 

Simple Structural 
Groups of λ=5 

2 Loops / 
3Legs 

3 Loops 
/ 

 4Legs 

4Loops /  
5Legs 

 

G
eo

m
et

ry
 

o
f 

S
u

b
sp

ac
e 

S
ym

et
ry

 

3-3-4 2-4-4 4-4-4-3 4-4-4-4-4 

Number of Simple 
Structural Groups 

1 P-P x 1  5 4 6 2 17 
2 H-P x 2 10 8 12 4 34 
3 P-S x 2 10 8 12 4 34 
4 Et-P x 2 10 8 12 4 34 
5 Ec-P x 2 10 8 12 4 34 
6 H-S x 2 10 8 12 4 34 
7 H-Et x 2 10 8 12 4 34 
8 S-S x 1 5 4 6 2 17 
9 Et-S x 2 10 8 12 4 34 
1
0 

Et-Et x 1 5 4 6 2 17 

Total  85 68 102 34 289 

 

 

Example 4.4.4: As an example, single platform with three legs is selected. From 

Table 4.3 leg configuration is selected as 3-3-4 with condition number 4, where each leg 

has conditions as 1-1-2, 1-1-2, 1-1-2-2. As the overconstraint condition spherical- 

spherical geometry is selected. Resulted simple structural group is shown in Figure 4.1. 

 

 

 

Figure 4.1. Simple structural group with one platform and three legs in λ=5. 
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Example 4.4.5: A two platform manipulator with four legs is selected. The shape 

of the simple structural group is shown in Table 4.4-1. Structural geometry is selected 

as spherical-spherical and conditions of these joints are described as 1 for the 

connection of the platforms and then 1-1-2, 1-1-2, 1-1-2-2, and 1-1-2-2 for the legs. 

Simple structural group with two platforms is shown in Figure 4.2. 

 

 

 

Figure 4.2. Simple structural group with two platform and four legs in λ=5. 

 

4.5. Simple Overconstrained Structural Groups with General  
       Constraint Two 

 

 For overconstrained kinematic chain with one platform 2 4pj≤ ≤  and 4λ = , 

the simple structural group can be obtained by using Equations (4.10) and (4.8) 

respectively: ( )1,2,3L = , ( )$ L= 4,8,12λ=∑ ɶ  and ( )1 $ 2-2,2-3-3,3-3-3-3l pj j −= ∑ ɶ . 

The distribution of conditions (see Table 3.3) to the legs of simple structural groups 

with general constraint two are described in Table 4.6 and Table 4.7 and possible 

structural groups are shown in Table 4.8. 

 

Table 4.6. Distribution of conditions to joints of simple structural groups in λ=4 

 

Number of legs 2 3 4 

Number of joints attached to first condition 3 5 7 

Number of joints attached to second condition 1 3 5 
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Table 4.7. Simple structural groups with general constraint two. 

 

L $ j p Figure j l 
Connection of joints by two 

conditions 

2 -1-2 

1 4 2 

 
2 -1-1 

2 -1-2 

3 -1-1-2 2 8 3 

 3 -1-1-2 

3 -1-1-2 

3 -1-1-2 

3 -1-1-2 

3 12 4 

 3 -1-2-2 

 

 

If we will have two or more platforms with 6pj ≥  and 4λ =  connected each 

other by branches, then, the total number of legs of overconstrained simple structural 

group is defined as  

 

2 2l p b hn j n n= − −         (4.12) 

 

Example 4.5.1: Two platforms 2pn =  with joints ( )3 3pj = +  connected by 

branch 1hn = , so the number of legs will be 2 6 2 1 4l p hn j n= − = − ⋅ = . Number of 

independent loops will be 6 2 0 1 3p p b hL j n n n= − − − = − − − = . Thus, the total number 

of independent screws will be $ L=4 3=12λ= ⋅∑ ɶ  or $ $ $ 11 1 12l b= + = + =∑ ∑ ∑ɶ ɶ ɶ  

and the number of joints in each leg will be 1 1$ 4 11 (2,3,3,3)l l l
j n− −= = ⋅ =∑ ɶ . 

Connections of constrained joints are shown in Figure 4.3. 
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Figure 4.3. Two platform structural group with general constraint two. 

 

Table 4.8. Number of simple structural groups of λ=4. 

 

Simple Structural Groups of λ =4 
1 Loop / 

 2Legs 

2 Loops /  

3Legs 

3 Loops / 

 4Legs 

 Geometry of Subspace 2-2 2-3-3 3-3-3-3 

Number of Structural 

Groups 

1 Plane-Skew Line 2 1 1 4 

2 Plane-Perpendicular Line 2 1 1 4 

3 Plane-Parallel Line 2 1 1 4 

4 Sphere-Intersecting Line 2 1 1 4 

Total 8 4 4 16 

 

 

Example 4.5.2: A simple structural group is used with a single platform with 

three legs which is described in Table 4.8 with overconstraint condition Spherical 

Surface - Line geometry. Resulted simple structural group is shown in Figure 4.4. 

 

 

 

Figure 4.4. Simple structural group with one platform and three legs in λ=4. 



72 
 

4.6. Structural Design of Overconstrained Parallel Manipulators 

 

To design a manipulator in a subspace, first, a motion type must be selected. 

Then, with respect to this motion, a suitable geometry will be decided. A structural 

group with decided number of platforms and number of legs must be generated as 

described in previous sections. Then, construction of overconstrained manipulator is 

just a matter of adding mobile joints to the system with suitable conditions. The 

constraint conditions of the loops of multi loop manipulator should be consistent. 

Mobility of the manipulator that will be equal to the number of input joints added to the 

structural group 

Algorithm for the structural synthesis can be summarized as 

1- Decision for the objective motion (m) of platform and DoF of the Manipulator. 

2- Selection of suitable subspace geometry for the motion (λ, Chapter 3). 

3- Determination of needed number of platforms (np). 

4- Determination of number of joints on platforms (jp).  

5- Determination of number of legs (nl), branches (nb), and hinges (nh) in the 

system. 

6- Calculation of number of loops (L) (Equation 4.10). 

7- Calculation of total number of joints to describe a simple structural group 

Equation (4.6). 

8- Selection of condition combination for the joints to adapt to subspace geometry. 

9- Addition of input joints with consistent conditions with the structural group. 

 

Example 4.6.1: DoF of the manipulator is selected to be 3, and the subspace 

number should be λ≥3 and decided to be λ=5. There will be only one platform (np=1) 

with three joints (jp=3). There are no branches or hinges in the system because there is 

only one platform, thus the number of legs will be three (nl =3). The number of loops 

will be calculated as L= jp-np=2.. Total number of joints of the simple structural group 

will be $ L=5 2=10λ= ⋅∑ ɶ  and distribution of joints on legs can be calculated as 

( )1 $ 3-3-4,2-2-4l pj j −= =∑ ɶ . From this two combination, (3-3-4) will be used for this 

manipulator. Structural group is constructed by selecting appropriate conditions for the 

joints as shown in Figure 4.5.a. Three inputs (Figure 4.5.b) will be added to the simple 

structural group and manipulator shown in Figure 4.5.c is constructed. 
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a 

 

  b 

c 

 

Figure 4.5. Three DoF manipulator with one platform in λ=5. 

 

Example 4.6.2: DoF of the manipulator is selected to be 4, and the subspace 

number should be λ ≥4 and decided to be λ=5. It is decided to have two platforms 

(np=2) and both platforms will have three joints each (jp=3+3=6). 

There will be no branches but one hinge will connect two platforms. The number 

of legs will be from Equation (4.12) (nl =6-2.1=4). Number of loops will be calculated 

as L=jp-np-nh=2. Total number of joints of the simple structural group will be 

$ L=5 3=15λ= ⋅∑ ɶ  and distribution of joints on legs will be ( )1 $ 3-3-4-4l pj j −= =∑ ɶ . 

Structural group can be constructed by selecting appropriate conditions for the joints as 

shown in Figure 4.6.a. Four inputs (Figure 4.6.b) will be added to the simple structural 

group with consistent conditions and manipulator shown in Figure 4.6.c will be 

constructed. 
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a 

b 
c 

 

Figure 4.6. Four DoF manipulator with two platforms in λ=5. 

 

Example 4.6.3: DoF of the manipulator is selected to be 3, and the subspace 

number should be λ ≥3 and decided to be λ=4. There will be only one platform (np=1) 

with three joints (jp=3). There are no branches or hinges in the system, number of legs 

will be three (nl =3). The number of loops will be calculated as L= jp- np=2.. Total 

number of joints of the simple structural group will be $ L=4 2=8λ= ⋅∑ ɶ  and 

distribution of joints on legs will be ( )1 $ 2-3-3l pj j −= =∑ ɶ . Structural group is 

constructed and three inputs are added to create manipulator shown in Figure 4.7. 

 

 

 

Figure 4.7. Three DoF manipulator with one platform in λ=4. 
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Example 4.6.3: 4 DoF manipulator is selected and the subspace number should 

be λ ≥3 and decided to be λ=4. There will be two platforms (np=2) with four joints 

(jp=4). There will be one hinge in the system, number of legs will be four (nl =6-2=4). 

Number of loops will be calculated as L= jp-nh=3. Total number of joints of the simple 

structural group will be $ L=4 3=12λ= ⋅∑ ɶ  and distribution of joints on legs can be 

calculated as ( )1 $ 2-3-3-3 1l pj j −= = +∑ ɶ . Structural group is constructed and three 

inputs are added to create manipulator shown in Figure 4.8. 

 

 

 

Figure 4.8. Four DoF manipulator with two platforms in λ=4 
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CHAPTER 5 

 

KINEMATIC SYNTHESIS OF 

 PARALEL MECHANISMS 

 

In this chapter, an investigation on the function generation synthesis of 

overconstrained mechanisms will be presented with a novel method. Function 

generation synthesis method will be applied to a double spherical six bar mechanism 

and a planar-spherical six bar mechanism. Furthermore, a motion generation synthesis 

of a parallel mechanism is presented by another method.  

 

5.1. Kinematic Synthesis of Overconstrained Mechanisms 

 

In this section, function generation synthesis of overconstrained mechanisms 

will be investigated. For the synthesis, two mechanisms are used. The first one is a 

double spherical six bar mechanism and the second is a planar-spherical six bar 

mechanism. The synthesis of these kinds of mechanisms is difficult, but the 

mechanisms can be separated into two sections by using an imaginary joint and solved 

recurrently. 

Two different methods as interpolation approximation and least squares 

approximation will be used during synthesis procedure. Theory of screws is used to 

derive the objective function of the planar and spherical parts of overconstrained 

mechanisms. 

It is assumed that there are two four bar mechanisms where output of the first 

one is the input for the second four bar. Function generation synthesis procedure starts 

with a desired function as ( )y f x=  . The range of x is given as 0 mx x x≤ ≤  and 

respectively 0 my y y≤ ≤  where ( )0 0y f x=  and ( )m my f x= . 

Initially, the function ( )y f x=  is scaled for the input (φ ) and output (ψ ) of the 

mechanism where the range of input is 0 mφ φ φ≤ ≤  and range of output is 0 mψ ψ ψ≤ ≤ . 

The scale equation will be 
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1 2a x aφ = +    ,    1 2b y bψ = +          (5.1) 

 

and the desired function for output angle will be 

 

2
1 2

1

a
b f b

a

φψ
 −= + 
 

.            (5.2) 

 

After defining the input output relations, a function is found by making synthesis of the 

first four bar linkage as 

 

( ),ψ ψ φ= cɶ ,         (5.3) 

 

where c  is the designed construction parameters of the first four bar linkage.  

 After defining the output ψɶ   as the input of the second four bar linkage and 

desired output is set as ( )ψ ψ φ=  another synthesis operation will be done for the 

second four bar linkage. A function with respect to φ , c and d will be found as  

 

( ), ,ψ ψ φ= c d
⌢

,         (5.4) 

 

where c and d are vector of construction parameters for the first and second four bar 

linkages respectively. The error in the synthesis can be calculated by the difference 

between designed and desired outputs as shown in Equation (5.5). 

 

( ), ,e ψ ψ φ= − c d          (5.5) 

  

5.1.1. Function Generation Synthesis with a Double Spherical 
Mechanism 

 

 Double spherical linkage is a one constrained mechanism which belongs to 

subspace 5λ = . It has six revolute joints whose axes are intersecting three by three in 

two different points as shown in Figure 5.1. 
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Figure 5.1. Double spherical six bar linkage. 

 

The function generation synthesis of the double spherical linkage mechanism is 

described as two spherical four bar linkages. As shown in Figure 5.2 an imaginary 

revolute joint is attached between two parts of the mechanism that gives ability to solve 

the equations for the mechanism separately. 

 

 

 

Figure 5.2. Double spherical mechanism as two spherical four bar linkages with unit 
vector axes. 

 

The sequence of finding unit vectors is important to finding the objective 

functions of four bar linkages. Since  ( )1,0,0=1s  and ( )0,0,1=2s , vector s3 will be 

calculated using s1, s2 and 1,3α  then s4 will be calculated using s2, s3, and 2,4α . Vector s8 

will be calculated using s2,s1 and 2,8α  then s15  will be calculated using s1, s8 and 1,15α  . 



79 
 

Next, s6 will be calculated using s8, s15 and 8,6α  for the first four link of the mechanism. 

Further, for the second part of the mechanism s14 will be calculated using s8, s1 and 8,14α  

then s13 will be calculated using s1,s14, and 1,13α . Vector s12 will be calculated using s14, 

s13 and 14,12α  then s9 will be calculated using s1, s8 and 1,9α  . Finally s10 will be 

calculated using s8, s9 and 8,10α  . 

The objective function of the first four-bar will be 

 

4,6Cα⋅ =6 4s s .        (5.6) 

 

Substituting values of s4 and s6 and arranging will result in Equation (5.7). 

 

4,6 2,4 2,8 8,6 1,3 8,6 2,4 2,8

1,3 1,15 2,8 2,4 8,6 1,15 2,4 2,8 8,6

1,3 1,15 2,4 8,6

-

0

C C C C C C S S

C C C S S C C S S

S S S S

α α α α α α α α
α α α α α α α α α
α α α α

+ +
+ −

+ =

,       (5.7) 

 

where the input φ  is 1,3α  and output ψ  is 1,15α . 

The function can be written in the polynomial form if divided by 2,4 8,6-S Sα α  as 

 

0 0 1 1 2 2 3 3( ) ( ) ( ) ( ) ( ) 0P f P f P f P f Fφ φ φ φ φ+ + + − = ,        (5.8) 

 

where 1 1
0 4,6 2,4 2,8 8,6 2,4 8,6( )P C C C C S Sα α α α α α− −= − , 1

1 8,6 8,6 2,8-P S C Sα α α−= , 2 2,8-P Ca= , 

1
3 2,4 2,4 2,8P S C Sα α α−= , ( )0f =1φ , ( )1f =C  φ φ , ( )2f =C Cφ φ ψ , ( )3f =Cφ ψ , 

( )F =S  Sφ φ ψ . 

For describing the objective function of second spherical four bar linkage, 

Equation (5.9) will be used. 

 

10,12Cα⋅ =12 10s s ,        (5.9) 

 

where the input ψɶ  is 1,9α  and output ψ  is 1,13α . The function can be written in the 

polynomial form if divided by 8,10 14,12-S Sα α  to get 
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0 0 1 1 2 2 3 3( ) ( ) ( ) ( ) ( ) 0R g R g R g R g Gψ ψ ψ ψ ψ+ + + − =ɶ ɶ ɶ ɶ ɶ ,      (5.10) 

 

where -1 -1
0 10,12 8,10 8,14 14,12 8,10 14,12(C -C C C )S SR α α α α α α= , -1

1 14,12 14,12 8,14 -S C SR α α α= , 

2 8,14-CR α= , -1
3 8,10 8,10 8,14S C SR α α α= , ( )0 =1g ψɶ , ( )1 =Cg ψ ψɶ ɶ , ( )2 =C  Cg ψ ψ ψɶ ɶ , 

( )3 =Cg ψ ψɶ , ( )=S  SG ψ ψ ψɶ ɶ . 

Linear approximation will be used. For exact solution, we need 4 points of the 

function, thus n=4 and precision points are distributed with exact synthesis equally in 

the range of x as shown in Equation (5.11). 

 

0 1 0( - ) /( 1), 1,j nx x j x x n j n+= + + =           (5.11) 

 

Values of y is described for a given function as 

 

( ) , 0, 1j jy f x j n= = + .             (5.12) 

 

The distance between precision points will be calculated by using Equation (5.13) 

 

1 0( ) /( 1)nx x nδ += − +  .          (5.13) 

 

The scaled equations of input and output variables are given in Equation (5.1) the 

constant parameters will be calculated using Equations (5.14). 

 

1 0 2 0 1 2 1 0 1 0 1

1 0 1 0 1 2 1 0 1 1 0 1

-((- ) /( - )), -(( - ) /( - ))

-((- ) /( - )), -(( - ) /( - ))
n n l n n

n n n n n

a x x a x x x x

b y y b y y y y

φ φ φ φ
ψ ψ ψ ψ

+ + + +

+ + + + +

= + =
= + =

    (5.14) 

 

General form of equations derived from the objective function is shown in equation 

(5.15). 

 

( ) ( )
1

0

0 , 1,
n

k k i i
k

P f F i nφ φ
−

=

= − =∑     (5.15) 
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The number of precision points is 4 thus 4 linear equations with 4 unknowns are 

acquired from Equation (5.15) which can be written in the matrix vector form as 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( )
( )
( )

0 1 1 1 2 1 3 1 0 1

0 2 1 2 2 2 3 2 1 2

0 2 1 3 2 3 3 3 2 3

0 2 1 4 2 4 3 4 3 4

.

f f f f P F

f f f f P F

f f f f P F

f f f f P F

φ φ φ φ φ
φ φ φ φ φ
φ φ φ φ φ
φ φ φ φ φ

    
    
     =
    
    
       

.        (5.16) 

 

By multiplying both sides of Equation (5.16) with inverse of matrix  ,[ ]k if  results as 

 

1
,[ ] .k if −=P F       (5.17) 

 

Values of Pi (i=1,n) could be found by using Equation (5.17 ) and which construction 

values of first spherical four bar can be found as shown in Equations (5.18). 

 

2,8 2

2,4 2,8 3

8,6 2,8 1

4,6 2,4 8,6 2,8 2,4 8,6 0

(- ),

( ( ) ),

- ( ( ) ),

( ( ) ( ) ( ( ) ( ) ( ) )).

ArcCos P

ArcCot Csc P

ArcCot Csc P

ArcCos Sin Sin Cos Cot Cot P

α
α α
α α
α α α α α α

=
=
=
= +

  (5.18) 

 

 

Solving objective function with the found parameters with respect to φ  will give us the 

output as a function of input 

 

( ),ψ ψ φ= cɶ ,     (5.19) 

 

where  2,8 2,4 8,6 4,6[ ]Tα α α α=c . 

Moreover, the error can be calculated by the difference of desired function and 

defined function by the first four bar linkage as shown in Equation (5.20). 

 

( )2
1 1 2

1

,
a

e b f b
a

φψ ψ ψ φ
  −= − = + −   

  
cɶ    (5.20) 
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To find the mechanism that will generate minimum error an algorithm must be 

applied and a relation between precision points and error must be established. Precision 

points are selected as equally spaced in the beginning. Then the combination of each 

point between 0.5δ±  range with 0.15δ  step is applied to the procedure of synthesis. 

After each selection of precision points Pi values are controlled if they are real numbers, 

value of P2 is checked if it is in the range 21 1P− < < . If all these values are satisfied 

then the results of the synthesis procedure is added to a list with construction parameters 

and related error. Finally best approximation is selected with the criteria both minimum 

error and constructability. 

General form of equations derived from the objective function of the second 

spherical four bar is shown in Equation (5.21). 

 

( ) ( )
1

0

0 , 1,
n

k k i i
k

R g G i nψ ψ
−

=

= − =∑ ɶ ɶ          (5.21) 

 

Number of precision points is again 4 thus 4 linear equations with 4 unknowns 

are also acquired from Equation (5.21) which can be written in the matrix vector form, 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( )
( )
( )

0 1 1 1 2 1 3 1 0 1

0 2 1 2 2 2 3 2 1 2

0 2 1 3 2 3 3 3 2 3

0 2 1 4 2 4 3 4 3 4

.

g g g g R G

g g g g R G

g g g g R G

g g g g R G

ψ ψ ψ ψ ψ
ψ ψ ψ ψ ψ
ψ ψ ψ ψ ψ
ψ ψ ψ ψ ψ

    
    
     =
    
    
       

ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ

.   (5.22) 

 

By multiplying both sides of Equation (5.22) with inverse of matrix  ,[ ]k ig  results as,  

 

1
,[ ] .k ig −=R G .     (5.23) 

 

The values of Ri (i=1,n) could be found by using Equation (5.23 ) and which 

construction values of  second spherical four bar can be found as shown in Equations 

(5.24). 
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8,14 2

14,12 1 8,14

8,10 3 8,14

10,12 8,10 14,12 8,14 8,10 14,12 0

(- )

(- / ( ))

- ( / ( )) 

( ( ) ( )( ( ) ( ) ( ) ))

ArcCos R

ArcCot R Sin

ArcCot R Sin

ArcCos Sin Sin Cos Cot Cot R

α
α α
α α
α α α α α α

=
=
=
= +

   (5.24) 

 

Solving objective function with the found parameters with respect to φ  will give 

us the output as a function of input as, 

 

( ), ,ψ ψ φ= c d
⌢

,      (5.25) 

 

where  8,14 14,12 8,10 10,12{ , , , }α α α α=d . 

Error of the six bar mechanism can be calculated by the difference of desired 

function and defined function by both four bar linkage as shown in Equation (5.20). 

 

( )2
2 1 2

1

, ,
a

e b f b
a

φψ ψ ψ φ
  −= − = + −   

  
c d

⌢
     (5.26) 

 

The same procedure to find the mechanism best suits the function with 

constructability is applied also to the second spherical four bar linkage. Here R1 value is 

checked if it is in the range 11 1R− < < . 

Example 5.1: In the case of a numerical example function to be synthesized is 

selected to be 2y x= . Selected range of x, input angle and output angle of the desired 

six bar mechanism is shown in Table 5.1. 

 

Table 5.1. Design ranges of input output parameters. 

 

# Range Minimum Maximum 

1 x 1 2 

2 y 1 4 

3 φ  0.4π  π  

4 ψ  0.1π  0.6π  
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Table 5.2. Precision points used in the synthesis. 

 

# Precision points 1 2 3 4 

ix  First mechanism 1.2 1.4 1.6 1.8 

ix∆  
Shift for first 

mechanism 
0 0 0 0 

iψɶ  Second mechanism 1.63 2.01 2.38 2.76 

iψ∆ ɶ  
Shift for second 

mechanism 
-0.09 -0.09 0.05 0.13 

 

 

Precision points are calculated as shown in Table 5.2. For this precision points 

parameters of the six bar mechanism will be; 2,8{ 1.12c α= = , 2,4 0.91α = , 8,6 1.11α = , 

4,6 1.54}α = , 8,1{ 0.177d α= = − , 14,12 0.099α = ,  8,10 0.175α = − ,   10,12 0.096}α = . 

In Figure 5.3 designed mechanism is shown with two intersection points. 

 

 

 

Figure 5.3. Designed double spherical six bar mechanism.  

 

In Figure 5.4.a scaled desired function and designed function is shown for the 

first spherical linkage. In Figure 5.4.b error is shown and total error of first mechanism 

is calculated as 0.0899. 
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a) 
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0.025

 

b) 

 

Figure 5.4. a) Designed and desired functions of first spherical linkage, b) Error of first 
spherical linkage. 

 

In Figure 5.5.a, scaled desired function and designed function is shown for the 

second spherical linkage. In Figure 5.5.b, error of the second mechanism is shown and 

calculated as 0.033 and total error generated by six bar linkage is 0.113. 

 

 

a) 

 

b) 

 

Figure 5.5. a) Designed and desired functions of 6R linkage, b) Error of 6R linkage. 

 

5.1.2. Function Generation Synthesis with Planar Spherical 
Mechanism 

 

 Planar-spherical six bar is a one DoF mechanism working in subspace 5λ = . It 

has six revolute joints where axes of the first three are parallel and axes of other three 

recurrent revolute are intersecting as shown in Figure 5.6. 
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Figure 5.6. Planar-spherical six bar linkage. 

 

The input output function synthesis of the planar-spherical linkage mechanism 

can be described as two four bar linkages where first is a planar four bar and second is a 

spherical four bar as shown in Figure 5.7. 

 

 

 

Figure 5.7. Planar-spherical mechanism shown as a planar and a spherical four bar 
linkages with screw axes. 

 

The sequence of defining screws for planar-spherical linkage is as follows. 

( )1,0,0=1s  and ( )0,0,1=2s  is given in x and z coordinates, s3 is parallel to s1 thus it is 

equal to s1 . Hence,  s4 will be calculated using s2, s3, and 2,4α . The vector s5 will be 

calculated using s2, s1 and 2,5α  for defining the objective function of planar four-bar 
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linkage part. Further, for the second part (spherical four-bar) of the mechanism s10 will 

be calculated using s3 ,s2 and 3,10α , then s9 will be calculated using s2, s10, and 2,9α . The 

vector s8 will be calculated using s10, s9 and 10,8α , then s11 will be calculated using s2,s3 

and 2,11α  . Finally, s6 will be calculated using s3, s11 and 3,6α  . 

The objective function of the planar four-bar will be calculated from Equation 

(5.27). 

 

12,14a− =B C          (5.27) 

 

B and C vector can be found from 1,12 1,3 3,14, ]a a a= = +5 2 4B s C s s , Equation (5.27) can 

be written in open form as, 2 2 2
12,14( ) ( )B C B Cx x y y a− + − = . 

Substituting values of vector B and C in to Equation (5.27) gives us the 

objective function of the planar four bar linkage as, 

 

2 2 2 2
12,14 3,14 1,12 1,3 1,12 1,3 2,5 3,14 1,12 2,5 2,4 3,14 1,3 2,4- - 2 - 2 ( - ) 2 0a a a a a a Ca a a C a a Cα α α+ + + + =  (5.28) 

   

where the input φ  is 2,5α  and output ψ  is 2,4α . The function can be written in the 

polynomial form if divided by 3,14 1,122 a a  as, 

 

0 0 1 1 2 2( ) ( ) ( ) ( ) 0P f P f P f Fφ φ φ φ+ + − = ,   (5.29) 

 

where, 
2 2 2 2
12,14 3,14 1,12 1,3

0
3,14 1,12

-

2 a a

a a a a
P

+ + +
= , 1,3

1
3,14

 
-
 a

a
P = , 1,3

2
1,12a

a
P = , ( )0f =1φ , ( )1f =Cφ φ , 

( )2f = Cφ ψ , ( ) ( )F =Cφ φ ψ− . 

The objective function of second spherical four bar linkage will be calculated 

from,  

 

 10 8 10,8Cα⋅ =s s ,      (5.30) 

 

where the input ψɶ  is 2,11α  and output ψ  is 2.9α . 
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The function can be arranged and written in the polynomial form as 

 

0 0 1 1 2 2 3 3( ) ( ) ( ) ( ) ( ) 0R g R g R g R g Gψ ψ ψ ψ ψ+ + + − =ɶ ɶ ɶ ɶ ɶ ,      (5.31) 

 

where; -1 -1
0 6,8 3,6 3,10 10,8 3,6 10,8(C -C C C )S SR α α α α α α= , -1

1 10,8 10,8 3,10 -S C SR α α α= , 

2 3,10-CR α= , -1
3 3,6 3,6 3,10S C SR α α α= , ( )0 =1g ψɶ , ( )1 =Cg ψ ψɶ ɶ , ( )2 =C  Cg ψ ψ ψɶ ɶ , 

( )3 =Cg ψ ψɶ , ( )=S  SG ψ ψ ψɶ ɶ . 

 

Linear approximation will be used for the planar four bar part of the system. For 

exact solution, we need 3 positions of the function, thus n=3 and precision points are 

distributed with exact synthesis equally in the range of x. Equations (5.11-5.15) can be 

used also for this procedure for n=3. The number of precision points is three, thus three 

linear equations with three unknowns are acquired from Equation (5.29) for this case, 

which can be written in the matrix vector form, 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( )
( )
( )

0 1 1 1 2 1 0 1

0 2 1 2 2 2 1 2

0 2 1 3 2 3 2 3

.

f f f P F

f f f P F

f f f P F

φ φ φ φ
φ φ φ φ
φ φ φ φ

    
     =    
        

    (5.32) 

 

By multiplying both sides of Equation (5.32) with inverse of matrix  ,[ ]k if  

results in Equation (5.33) 

 

1
,[ ] .k if −=P F .     (5.33) 

 

Values of Pi (i=1,2,3) could be found by using Equation (5.33) and construction 

values of first planar four bar can be found as shown in Equation (5.34) 

 

1,3 1,32 2 2
1,3 12,14 3,14 1,12 1,3 3,14 1,12 0 3,14 1,12

1 2

 
1, -2 a a ,  a - ,a

a a
a a a a a P

P P
= = + + = =         (5.34) 

 

where 1,3 a  must be given as design parameter then other link length values can be 

found respectively.   
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Solving objective function with the found parameters with respect to φ  will give 

us the output as a function of input as described in Equation (5.19), where  

3,14 1,12 12,14{ , , }a a a=c . Then error ( 1e ψ ψ= − ɶ  ) can be calculated by the difference of 

desired function and defined function by planar four bar linkage as shown in Equation 

(5.20). 

To find the mechanism that will generate minimum error an algorithm must be 

applied and a relation between precision points and error must be established. Precision 

points are selected as equally spaced in the beginning. Then the combination of each 

point between a range with 0.15δ  step is applied to the procedure of synthesis. The 

ranges are{ 0.95 , 0.4 }, { 0.6 , 0.6 }, { 0.4 , 0.95 }δ δ δ δ δ δ− + − + − +  for three precision points 

respectively. 

After each selection of precision points, Pi (i=1, 2, 3) values are controlled if 

they are real numbers, value of P1 is checked to be negative. If all these values are 

satisfied then the results of the synthesis procedure is added to a list with construction 

parameters and related error. Finally the best approximation is selected with the criteria 

both minimum error and constructability. 

In the synthesis of spherical part of the mechanism number of precision points 

(m) wanted to be more than the number of construction parameters (n). This problem 

can be solved by using least square approximation method and best fitting function can 

be found with respect to the given design point set. The least square approximation 

method suggests that, when the sum of squared errors (η ) is a minimum function it will 

be the best fitting function. 

 

( ) ( )( )22

1

,
m

i i
i

e F Fη ψ ψ
=

= = −∑ ∑ dɶ ɶ          (5.35) 

 

The minimum error is reached when the partial derivatives of Equation (5.35) 

with respect to construction parameters are zero. 

 

0, ,0,1,..., 1
i

i n
P

η∂ = = −
∂

           (5.36) 
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For the synthesis of spherical four bar linkage Equation (5.36) can be written in the 

form, 

( ) ( )
23

1 0

m

k k i i
i k

R g Gη ψ ψ
= =

 = − 
 

∑ ∑ ɶ ɶ .   (5.37) 

 

For m precision points and n = 4 parameters Equation (5.37) can be written in matrix 

form, 

, ,[ ] [[ ] ]T
k i k ig g⋅ = ⋅∑ k,iR G ,            (5.38) 

 

where 3
0

1

{[ ( ) ( )]}
m

R i i
i

G g Gψ ψ
=

= ∑ ɶ ɶ  and R = 3
0{ }kR can be found by solving Equation (5.38) 

as described in Equation (5.39). 

 

,
1

[ ( )]
m

k i i
i

g ψ
=

= ⋅∑R Gɶ .    (5.39) 

 

Construction values of spherical four-bar can be found from Equations (5.40). 

 

3,10 2

10,8 1 3,10

3,6 3 3,10

6,8 3,6 10,8 3,10 3,6 10,8 0

(- )

(- / ( ))

- ( / ( )) 

( ( ) ( )( ( ) ( ) ( ) ))

ArcCos R

ArcCot R Sin

ArcCot R Sin

ArcCos Sin Sin Cos Cot Cot R

α
α α
α α
α α α α α α

=
=
=
= +

    (5.40) 

 

Solving objective function with the found parameters with respect to φ  will give 

us the output as a function of input as shown in Equation (5.25), where 3,10{α=d , 10,8α , 

3,6α , 6,8}α . 

Error of the six bar mechanism can be calculated by the difference of desired 

function and defined function by both four bar linkage as shown in Equation (5.20). For 

finding the mechanism best suiting to the function with constructability with minimum 

error a random function is added to the each precision point where the range is 

1 1δ δ− < ∆ < −  and R2 value is checked to be in the range 21 1R− < <  where all Ri (i=1, 

2, 3, 4) values are real numbers. 
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Example 5.2; As a numerical example function to be synthesized is selected to 

be 2y x= . Selected range of x, input angle and output angle of the desired six bar 

mechanism is shown in Table 5.3 

 

Table 5.3. Ranges of parameters. 

 

# Range Minimum Maximum 

1 x 1 10 

2 φ  0.1π  0.5π  

3 ψ  0.05π  0.7π  

 

 

Precision points are calculated as shown in Table 5.4 and Table 5.5. For this 

precision points parameters of the six bar mechanism will be 1,3{ 1a= =c , 3,14 1.637a = , 

1,12 1.052a = , 12,14 0.812}a = , 3,10 10,8 3,6 6,8{ 0.858, 0.1789, 0.945, 0.104}α α α α= = = = =d . 

In Figure 5.8 the designed mechanism is shown. 

 

Table 5.4. Precision points for the first linkage. 

 

# Precision points 1 2 3 

ix  Initial 3.25 5.5 7.75 

ix∆  Shift  0.225 1.035 1.8 

ix  Final  3.475 6.535 9.55 
 

 

Table 5.5. Precision points of the second linkage. 

 

Precision 
points 1 2 3 4 5 6 7 8 9 10 

Initial 0.428 0.542 0.656 0.771 0.885 0.999 1.113 1.228 1.342 1.456 

Shift 
-

0.085 
0.042 0.076 

-
0.058 

0.051 0.102 0.015 
-

0.095 
0.036 0.059 

final 0.343 0.584 0.732 0.712 0.937 1.101 1.129 1.132 1.379 1.516 
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In Figure 5.9.a, scaled desired function and designed function are shown for the 

planar linkage. In Figure 5.9.b, error of planar linkage is shown and error of first 

mechanism is calculated as 0.675. 

 

 

 

Figure 5.8. Designed planar-spherical six bar mechanism. 

 

 

 

a) 

 

b) 

 

Figure 5.9. a) Designed and desired function of planar linkage, b) Error of planar 
linkage. 
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In Figure 5.10.a, scaled desired function and designed function is shown for the 

second spherical linkage. In Figure 5.10.b, error of second mechanism is shown and 

calculated as 0.213 and total error generated by six bar linkage is 0.888. 

 

 

a) 

 

b) 

 

Figure 5.10. a) Designed and desired output functions of spherical linkage, b) Error of 
spherical linkage. 

 

5.1.3 Motion Generation Synthesis of Planar Spherical Mechanism 

 

 In this section, motion generation of a planar-spherical mechanism is done for 

three positions of the end effector. The screw axes of the mechanism are shown in 

Figure 5.11. Mechanism is fixed to the ground from two parallel revolute joints and an 

end effector will be placed on the axis of the joint 15s . Three positions of the end 

effector are given as three positions for point C and three orientations of vector 15s . 

 The synthesis procedure starts with the synthesis of first leg of the planar part of 

the mechanism which can be defined with four parameters, two link parameters 

2,10 10,8,a a  and two joint parameters 1,9 9,11,α α . The objective function for the first leg of 

the planar part will be derived from Equation (5.41). 

 

2,10 10,8a a+ =9 11 Cs s ρ         (5.41) 

 

If the values of vectors 9s  and 11s  are substituted in to Equation (5.41) Equations (5.42) 

will be reached. 
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2,10 1,9 10,8 1,9 9,11

2,10 1,9 10,8 1,9 9,11

( ) ( ) ,

( ) ( ) .
CX

CY

a Cos a Cos

a Sin a Sin

α α α ρ
α α α ρ

+ + =
+ + =

.    (5.42) 

 

Eliminating 9,11α  from Equations (5.42) will result in as objective function in 

polynomial form as 

 

0 0 1 1 2 2P f P f P f F+ + =  ,    (5.43) 

 

where,  2 2
0 1 21, , ,CX CY CX CYf f f Fρ ρ ρ ρ= = = = + , 2 2

0 10,8 2,10P a a= − , 1 2,10 1,92 ( )P a Cosα= , 

2 2,10 1,92 ( )P a Sinα= . 

 

 

 

Figure 5.11. Screw placement for the planar-spherical mechanism. 
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Solving the polynomial equation (5.43) for three points of Cρ  will give us 

parameters 1,9α , 2,10a  and 10,8a . Then, a value is set for the angle1,9 9,11α α+  is set as 1φ  

and it will be calculated for three positions from Equation (5.44). 

 

( ) ( ) ( )1 2,10 1,9 10,8 2,10 1,9 10,8, / , /CX CY CY CXATan a S a a C aφ ρ ρ ρ α ρ α = − −     (5.44) 

 

 The second step is the synthesis of first leg of spherical part of the mechanism. 

Given parameters are { }, ,X Y Z=s s s s  and input angle 1,11α  which is known as 1φ  from 

Equation (5.44). Design parameters are 8,13 13,15,α α  and 11,12α . Objective function will be 

found from Equation (5.45) 

 

 = 15s s              (5.45) 

 

Substituting values of s and 15s  into Equation (5.45) results in 

 

13,15 1,12 8,13 13,15 8,13 12,14 1,12 1,12 12,14

1,12 12,14 13,15 1,12 13,15 8,13 8,13 12,14 13,15

8,13 13,15 12,14 8,13 13,15

( )

( )
X

Y

z

s C S S S C C S C S

s S S S C C S C C S

s C C C S S

= + +
= − +

= −

. (5.46) 

 

Eliminating 12,14S  and 12,14C  from Equations (5.46) results in  

 

8,13 1,12 1,12 8,13 13,15( ) 0Z Y Xs C s C s S S C+ − + − = .           (5.47) 

 

1,12α  can be written as 1,11 11,12α α+  and substituted into Equation (5.47) and 

objective function will be  

 

0 0 1 1 2 2R g R g R g G+ + = ,     (5.48) 

 

where, 0 13,15 11,12 8,13R C Csc Csc= − , 1 8,13 11,12R Cot Csc= , 2 11,12R Cot= − , 0 1g = , 1 Xg s= , 

2 1,11 1,11Y Xg s C s S= + , 1,11 1,11X YG s C s S= + . 
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Solving Equation (5.48) for three positions give us three design parameters 

11,12α , 8,13α  and 13,15α . 

In the third step of synthesis, a kinematic analysis for the second leg of spherical 

part will be done. Constant design parameters8,17α , 17,15α  and 7,16α  will be given. 

Equation (5.49) can be written in the left part of the equation are the given orientation of 

the end effector and on the right part is 15s  which is calculated from the second leg by 

using parameters8,17α , 17,15α  , 7,16α , 16,18α  and 1,7α . 

 

15= *s s              (5.49) 

 

From Equation (5.49) 16,18α  have been eliminated and Equation (5.50) have been found. 

 

8,17 (1,7 7,16) (1,7 7,16) 8,17 17,15( ) 0Z Y Xs C s C s S S C+ ++ − + − =       (5.50) 

 

Equation (5.50) has been solved to find values of 1,7α   for three positions of the end 

effector. Values of 1,7α  will be used in next step as input variable. 

On the last step of synthesis a close loop equation have been written for the 

second leg of planar part as shown in Equation (5.51)ç. 

 

2,4 3 4,6 5 6,8 7a a a+ + = Cs s s ρ               (5.51) 

 

Expanding Equation (5.51) results as 

 

2,4 1,3 4,6 1,5 6,8 1,7

2,4 1,3 4,6 1,5 6,8 1,7

CX

CY

a C a C a C

a S a S a S

ρ
ρ

+ + =
+ + =

,       (5.51) 

 

where 1,5 1,3 3,5 1,7 1,3 3,5 5,7,α α α α α α α= + = + + . Eliminating 1,5α  from Equations (5.51) 

will give the objective function as shown in polynomial form in Equation (5.52).  

 

0 0 1 1 2 2 3 3T h T h T h T h H+ + + = ,     (5.52) 
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where, ( )2 2 2
0 4,6 2,4 6,80.5T a a a= − + + , 1 6,8T a= − , 2 2,4T a= − , 3 6,8 2,4T a a=  , 0 1h = , 

1 1,7 1,7CX CYh C Sρ ρ= + , 2 1,3 1,3CX CYh C Sρ ρ= + , 3 (1,7 1,3)h C −= , ( )2 20.5 CX CYH ρ ρ= − + . 

After giving a value for 1,3α  and Equation (5.52) have been solved for three 

position of point C and profound three values of 1,7α . Design parameters 2,4 4,6 6,8, ,a a a  

have been found by this process. A designed manipulator for three positions is shown in 

Figure 5.12. 

 

  

 

 

Figure 5.12. Three desired positions for the designed planar-spherical manipulator. 

 

5.2 Kinematic Synthesis of Multi Loop Platform Mechanisms 

 

In this section, a novel procedure for synthesis of multi loop platform 

mechanisms will be described with an example. Multi loop mechanism selected as 

example is one DoF with three legs and leg joint configurations are RS-RS-CS. In 

Figure 5.13, mechanism is shown with all constant (constructive) and variable 

parameters. Pre-designed conditions of the mechanism are that all fixed kinematic 

pivots, two revolute and one cylindrical has parallel axes.  

Main target for synthesis is generation of a platform with three legs where center 

point on the platform C pass through three given points in space with coordinates 

( )1 1 1 1, ,x y zρ , ( )2 2 2 2, ,x y zρ , ( )3 3 3 3, ,x y zρ . 
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Figure 5.13. Parameters of RS-RS-CS parallel mechanism. 

 

Synthesis problem is divided into three steps. On the first step, synthesis of 

kinematic chain which is denoted in Figure 5.13 as leg 1 will be described. Then, 

inverse task analysis will be done for this leg. On the second step leg 2 in Figure 5.13 

will be solved with respect to objective functions 10 5 1Cosϕ⋅ =e e , and the synthesis 

parameters are 18 29 4, ,a a a . For the third step of synthesis procedure leg 3 in Figure 5.13 

the objective functions  13 5 3Cosϕ⋅ =e e  and 13 10 2Cosϕ⋅ =e e , with synthesis parameters  

2 2,12 5, ,a a a  will be solved. For the platform 3 4 5, ,a a a  lengths are distances from edges of 

the triangle center C of platform and angles  1 2 3, ,ϕ ϕ ϕ  define form of the triangle 

platform. To center C not to be outside of the triangle the angles 1 2 3, ,ϕ ϕ ϕ  will not be 

set as synthesis parameters and they will be given as 1 2 3 120ϕ ϕ ϕ= = = .  

For the first step let solve the inverse kinematic chains of leg 1. Close loop 

equations from the frame to point C in the vector form can be written as, 

 

13 2 24 3 3 5C a a a= + +ρ e e e .     (5.53) 
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By using recurrent screw equations values of 2 3 5, ,e e e  are found and substituted 

in Equation (5.53) and get 

 

13 3 24 35 13 24 3 35( ) ( )Cx S a C S C a a C= − + + ,        (5.54) 

13 24 3 35 13 3 24 35( ) ( )Cy S a a C C a C S= + +  ,        (5.55) 

13 3 24 35Cz a a S S= + .           (5.56) 

 

Solutions of Equation (5.54) and (5.55) with respect to 13S  and 13C  will yield 

 

2 2 1
13 24 3 35 3 24 35[ ( ) ( )]( )c C C CS y a a C x a C S x y−= + − + ,     (5.57) 

2 2 1
13 24 3 35 3 24 35[ ( ) ( )]( )c C C CC x a a C y a C S x y −= + + + .     (5.58) 

 

If Equations (5.54-5.56) will be squared and added it will result in 

 

2 2 2 2 2
13 24 3 24 3 35( ) 2C C Cx y z a a a a a C+ + − = + +      (5.59) 

 

From Equation (5.59) value of 35C  is found as 

 

2 2 2 2 2 1
35 13 24 3 24 3[ ( ) ](2 )C C CC x y z a a a a a −= + + − − −       (5.60) 

 

From known trigonometric equation 2 2
35 35 1S C+ =  we can find 35S  

 

2 0.5
35 35(1 )S C= ± − .      (5.61) 

 

From Equation (5.56) 24S  can be found as, 

 

1
24 13 3 35( )( )CS z a a S −= − .     (5.62) 

 

With respect to trigonometric equation 2 2
24 24 1S C+ =  we have 
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2 0.5
24 24(1 )C S= ± − .      (5.63) 

 

Respect to values 13 13 24 24 35 35, , , , ,S C S C S C we can find the values of unknown 

angles 13 24 35, ,α α α . As a result, we get four solutions of inverse task for given values of 

construction parameters on leg 1. These solutions provide determination of three 

derived value of vector 5 5 5 5{ , , }L M Ne  for given point { , , }C C C Cx y xρ .  

Magnitude of the value of 5e  are defined by using recurrent equations and 

described as 

 

5 13 24 35 13 35L S C S C C= − + ,           (5.64) 

5 13 24 35 13 35M C C S S C= + ,            (5.65) 

5 24 35N S S= .              (5.66) 

   

Furthermore, in the second step kinematic chain of leg 2 will be investigated. 

Loop closure equations for the leg 2 in the vector form can be written as, 

 

1 6 18 2 29 8 4 10C a a a a= + + +ρ e e e e .     (5.67) 

 

Equation (5.67) can be written in the scalar form by substituting values of vectors as, 

 

18 4 29 810 18 29 4 810( ) ( )Cx S a C S C a a C= − + + ,    (5.68) 

1 18 29 4 810 18 4 29 810( ) ( )Cy a S a a C C a C S= + + + ,     (5.69) 

18 4 29 810Cz a a S S= + .       (5.70) 

 

Rearranging Equations (5.68-5.70) for simplicity gives us 

 

4 29 810 1 18 18( )C Ca C S y a C x S= − − ,      (5.71) 

29 4 810 1 18 18( )C Ca a C y a S x C+ = − + ,         (5.72) 

18 4 29 810Cz a a S S= + .        (5.73) 
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From Equation (5.72) value of  810C  can be written as 

 

1
810 1 18 18 29 4[( ) ]C CC y a S x C a a−= − + −  .         (5.74) 

 

From trigonometric relations value of 810S  can be found as 

 

2 0.5
810 810(1 )S C= ± − .         (5.75) 

 

By using Equations (5.74) and (5.75)  810α  can be determined. From Equations (5.71) 

and (5.73) 29C  and 29S  are derived as 

 

1
29 1 18 18 4 810[( ) ]( )C CC y a C x S a S −= − − ,        (5.76) 

1
29 18 4 810( )( )CS z a a S −= − .          (5.77) 

 

By using Equations (5.76) and (5.77) 29α  can be found. For finding variable angles 810α  

and 29α   squares of Equations (5.71-5.73) are summed and get 

 

2 2 2 2 2
18 1 18 1 18 29 4

29

1
( ) [ ( ) ( ) ]

2C C C C CS y a C x x y a z a a a
a

− + = + − + − + − .    (5.78) 

 

Moreover, describing additional conditions of rigidity of triangle in point C Equation 

(5.79) is presented. 

 

5 10 1

1

2
Cosϕ⋅ = = −e e .     (5.79) 

 

Rearranging Equation (5.79) in another form results in 

 

1
4 5 1

1
( )

2Ca Cosϕ− − ⋅ = = −ρ ρ e .     (5.80) 

 

Describing Equation (5.80) in the coordinate form gives us Equation (5.81).  
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1 1
18 5 18 5 29 5 5 5 4 18 5 1 52( )C C CS M C L a L x M y N z a a N a M−+ = + + + ⋅ − − .      (5.81) 

 

Solutions of Equations (5.78) and (5.81) respect to 18S  and 18C  yields 

 

( ) ( )18 2 5 1 18 5 1 5 29 5 1 50.5 ( ) / [ ( ) ]C C CS R L x R a N a M a L y a M x= − − − − − ,      (5.82) 

( ) ( )18 1 1 18 5 1 5 2 5 29 5 1 5( )( ) 0.5 / [ ( ) ]C C CC y a R a N a M R M a L y a M x= − − − − − − , (5.83) 

 

where 2 2 2 2 2
1 5 5 5 4 2 1 18 29 40.5 , ( ) ( )C C C C C CR L x M y N z a R x y a z a a a= + + + = + − + − + − . 

From Equations (5.82) and (5.83) angle 18α  can be found. By using trigonometric 

identity 2 2
18 18 1S C+ =  and Equations (5.82) and (5.83) objective functions for synthesis 

of parameters 18 29 4, ,a a a  can be defined as 

 

2 2 2 2 2 2
2 5 5 1 18 5 1 5 1

2 2
2 1 18 5 1 5 5 5 1 29 5 1 5

0.25 ( ) ( ) [ ( ) ]

( )[ ( )] [ ( ) ] .

C C

C C C C

R L M R a N a M x y a

R R a N a M L x M y a a L y a M x

+ + − − + −

− − − + − = − −
  (5.84) 

 

After setting an arbitrary design parameter for 1a  , using a numerical method system of  

three nonlinear equations for given three parameters can be solved to determine 

18 29 4, ,a a a . Output coordinates of unit vector 10 10 10 10{ , , }L M Ne  are calculated using 

recurrent equations to get 

 

10 18 29 810 18 810L S C S C C= − + ,     (5.85) 

10 18 29 810 18 810M C C S S C= + ,     (5.86) 

10 29 810N S S= .       (5.87) 

 

For the third step of the task kinematic chains of leg 3 is described and loop closure 

equations are found as 

 

5 2,12 11,13 2 1,11 1,11( )C Ca C S y a C x S= − −         (5.88) 

2,12 5 11,13 2 1,11 1,11( )C Ca a C y a S x C+ = − + ,         (5.89) 

5 2,12 11,13 1,11Ca S S z a= − ,                      (5.90) 
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From Equation (5.89) value of 11,13C  can be found as 

 

1
11,13 2 1,11 1,11 2,12 5[( ) ]C CC y a S x C a a−= − + −            (5.91) 

 

Value of 11,13S  can be found using Equation (5.91) and trigonometric identity. 

 

2 0.5
11,13 11,13(1 )S C= ± −            (5.92) 

 

From (5.76) and (5.78) values of  2,12C  and 2,12S  can be defined as 

 

1
2,12 2 1,11 1,11 5 11,13[( ) ]( )C CC y a C x S a S −= − −            (5.93) 

1
2,12 1,11 5 11,13( )( )CS z a a S −= −             (5.94) 

 

By using the values of 11,13S , 11,13C , 2,12C  and 2,12S  angles 11,13α  and 2,12α  can be 

determined. For eliminating angles 11,13α ,  2,12α  Equations (5.88) to (5.90) are squared 

and then summed as 

 

2 2 2 2
1,11 2 1,11 1,11 2 2,12 5

2,12

1
( ) [( ) ( ) ]

2C C C C CS y a C x z a y a x a a
a

− + = − + − + + − .   (5.95) 

 

Then two conditions from the rigidity of triangle platform are described in Equations 

(5.96, 5.97) as 

 

 13 5 3 0.5Cosϕ⋅ = = −e e ,       (5.96)           

 13 10 2 0.5Cosϕ⋅ = = −e e        (5.97) 

 

or 

 

1
5 5[( ) ] 0.5C a−− ⋅ = −ρ ρ e ,     (5.98)  

 1
10 5[( ) ] 0.5C a−− ⋅ = −ρ ρ e .      (5.99) 
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Equations (5.98, 5.99) can be described in coordinate form as follows 

 

5

2,12 1,11 5 2 2,12 1,11 5 1,11 5 5 2( ) a
Ca C L a a S M a N+ + + = ⋅ +ρ e ,   (5.100) 

 

5

2,12 1,11 10 2 2,12 1,11 10 1,11 10 10 2( ) a
Ca C L a a S M a N+ + + = ⋅ +ρ e .   (5.101) 

 

If Equation (5.100) multiplied by 10N  and Equation (5.101) multiplied by 5N  and 

subtracted from other, Equation (5.102) will be found. 

 

5

2,12 1,11 5 10 10 5 2 2,12 1,11 5 10 10 5

5 10 10 5 10 52

( ) ( )( )

( ) ( ) ( ).a
C C

a C L N L N a a S M N M N

N N N N

− + + −

= ⋅ − ⋅ + −ρ e ρ e
   (5.102) 

 

Equations (5.100, 5.102) can be described in the following form as 

 

5
1,11 5 1,11 5 5 2 5 1,11 5

2,12

1
( )

2C

a
S M C L a M a N

a
+ = ⋅ + − −ρ e ,      (5.103) 

 

1,11 5 10 10 5 1,11 5 10 10 5

5
5 10 10 5 10 5 2 5 10 10 5

2,12

( ) ( )

1
[ ( ) ( )]

2C C

S M N M N C L N L N

a
N N N N a M N M N

a

− + −

= ⋅ − ⋅ + − − −ρ e ρ e
.      (5.104) 

 

Solution of Equations (5.103) and (5.104) with respect to 1,11S  and 1,11C   define two 

expressions as 

 

5

3 5 10 1,11 42 2
1,11

2,12 5 2,12

( )aR L L a R a
S

a R a

+ − −
= − ,   (5.105) 

5

6 5 10 1,11 12
1,11

2,12 5

( )aR M M a R
C

a R

− − +
= ,     (5.106) 

 

where 3 10 5 5 10C CR L L= ⋅ − ⋅ρ e ρ e , 4 5 10 10 5R L N L N= − , 5 5 10 10 5R L M L M= − , 

6 10 5 5 10C CR M M= − ⋅ + ⋅ρ e ρ e ,         7 5 10 10 5R M N M N= − . 
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From the values of  1,11S  and 1,11C , value of 1,11α  can be found. Using 

trigonometric identity 2 2
1,11 1,11 1S C+ =  we get equations with respect to 1,11a  as 

 

2 2 2 2 2 2 2 2
1,11 4 7 1,11 7 9 4 8 2 5 4 8 9 2 8 5 5 2 2,12( ) 2 ( - ) -2 ( - ) 0a R R a R R R R a R R R R a R R R a a+ + + + + + = , (5.107) 

 

where 5 5
8 3 5 10 9 6 5 10( ), ( )

2 2

a a
R R L L R R M M= + − = − − . 

If we use the values 1,11S  and 1,11C from Equations (5.105) and (5.106) in (5.95) 

we get other expressions for determination of 1,11a . 

 

1,11 11 12/a R R=      (5.108) 

 

where 

2 2 2 2 2 2 25 5 10
11 2 8 5 8 9 5 2 2,12 9 2 8 5 2 4 7

2 2
12 7 9 4 8 2 5 4 5 2 4 5 7 4 7

[2 ( )] [ ( )( )]( )
2 2

( ) [( ) ]( )

C C

C C C

R R R
R a R R R R R a a x R y a R R a R R

R R R R R a R R R y a R R z x R R R

= − − − − − − + − − +

= − + − − − − +
 

Equation (5.108) is objective function for synthesis parameters 2 2,12 5, ,a a a , a 

numerical method is used to find ( , , )C C C Cx y zρ  and three non linear equations are 

solved with respect to three construction parameters. 

Thus, the synthesis parameters in this mechanism are 18 29 4 2 2,12 5, , , , ,a a a a a a and 

will be given arbitrarily in the design process. Other construction parameters are 

13 24 3 1 1 2 3, , , , , ,a a a a ϕ ϕ ϕ . The designed mechanism gives to the center C generates given 

three point in space Cρ . The variable parameters are determined from expressions given 

above. Numerical example for solving this task respect to 6 parameters is given in Table 

5.6. Here , ,i i ix y z  are given parameters of the task, but 18 29 4 2 2,12 5, , , , ,a a a a a a are 

parameters found from synthesis. Designed Parallel mechanism is shown in Figure 5.14. 
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Table 5.6. Parameters of the synthesis and construction. 

 

Given points of center C Arbitrary parameters 

 ix  iy  iz  1,3a  1.0 

1 0.44558 2.793871 1.1025453 2,4a  2.0 

2 -0.0262626 3.293184 1.257827 3a  1.73205 

3 0.0730888 3.140754 2.184055 1a  4.0 

Synthesized parameters 

1,8a  2,9a  4a  2a  2,12a  5a  

2.0 1.0 1.73205 4.5 2.0 1.73205 

 

 

 

 

Figure 5.14. Designed parallel mechanism with three objective points. 
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CHAPTER 6 

 

AN EXPERIMENTAL CHARACTERIZATION OF 

EARTHQUAKE EFFECTS ON MECHANISM 

OPERATION BY USING A PARALLEL MANIPULATOR 

 

In the last decade parallel manipulators have been proposed for new application 

areas because of their better characteristics such as higher stiffness, velocity and 

acceleration motion, and payload capacity, with respect to those of serial manipulators. 

In this thesis these properties of parallel manipulators have been used to investigate 

experimentally the effects of earthquakes on the operation of mechanical systems by the 

help of CaPaMan (Cassino Parallel Manipulator), which is a 3 DoF robot designed in 

1997, (Ceccarelli 1997). CaPaMan being a less degree of freedom manipulator and 

having similar properties with overconstrained manipulators is the motivation to use it. 

For investigating the earthquake characteristics and earthquake resistant 

constructions, earthquake simulators are commonly used for experimental tests in the 

field of Civil Engineering. For dynamic testing of structures subjected to earthquake 

accelerations and for experimenting effects on structures small scale uni-axial servo-

hydraulic seismic simulators have become popular as shown by Conte and Trombetti 

(2000) and Kuehn et al. (1998). A number of new large scale seismic simulator facilities 

have recently been, presented as in the works of Crewe and Severn (2001), Ogawa et al. 

(2001) and Shortreed et al. (2001). Furthermore some exceptional simulators are also 

made for outdoor even with 6 DoF motion in the studies of Bruneau et al. (2002). It is 

important to have earthquake simulators that can reproduce earthquakes with main real 

characteristics. Generally, most of the earthquake simulators are shaking tables, which 

are actuated by hydraulic actuators fixed on the base. High payload capacity, high 

motion speeds, and high accelerations are the main characteristics of the shaking tables 

but they refer to seismic translational motions only. 

A new earthquake simulator is a suitable application of CaPaMan which can 

simulate not only translational motion but also 3D waving motions of earthquakes. 

Performances and suitable formulation for the operation of CaPaMan as earthquake 

simulator have been presented by theoretical investigations and experimental 
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validations in the works of Ceccarelli et al. (1999, 2002), Ottaviano and Ceccarelli 

(2006) and Carvalho and Ceccarelli (2002). In fact, the operation of CaPaMan can be 

easily adjusted to obtain any kind of earthquake in terms of magnitude, frequency and 

duration by giving suitable input motion. 

A novel field of interest can be recognized in investigating the effects of 

earthquake motion on the operation of machinery. Although vibrations and their 

isolations are well known as affecting the machinery operation, the specific 

characteristics of earthquake actions on machinery are not yet fully explored. In 

previous works of Selvi and Ceccarelli (2010), the effects of earthquakes on mechanism 

operation are shown with experiments on a slider-crank mechanism and a robotic hand.  

In this chapter of the thesis the effects of earthquake on the operation of 

mechanical systems have been investigated by an analysis and reproduction of an 

earthquake motion. This chapter illustrates a specific activity that has been focused in 

determining experimentally the effects of earthquake motion on mechanism operation 

by looking at the changes in the motion (acceleration) or force outputs of the 

mechanisms. Experimental tests have been carried out by using a slider-crank linkage 

with dc and servo motors, robot leg linkage, a small car model, and LARM Hand as 

test-bed mechanisms with acceleration or force sensors.  

 

6.1. Earthquake Motion Characteristics 

 

A sudden and sometimes catastrophic movement of a part of the surface of the 

Earth is called an earthquake which results from the dynamic release of elastic strain 

energy that radiates seismic waves. Large earthquakes can cause serious destruction and 

massive loss of life through a variety of types of damage such as fault rupture, vibratory 

ground motion, inundation, various kinds of permanent ground failure, and fire or a 

release of hazardous materials, but even buildings/constructions collapses and 

vehicles/machinery operations crashes. Ground motion is the dominant and most 

widespread cause of damages as interpreted in the study of Chen and Scawthorn (2003). 

In general an earthquake has three phases such as an initial phase, which 

corresponds to the beginning of the seismic motion, an intermediate phase where the 

maximum acceleration peaks and displacements occur and a final phase representing the 

end of the earthquake. Main characteristics of an earthquake are frequency, amplitude 
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and acceleration magnitude, since the resonance of a system is determined by frequency 

value, duration of the stress action due to a seismic motion, amplitude and acceleration 

magnitude of an earthquake. 

 

 

a) 

 

b) 

 

c) 

 

Figure 6.1. Basic characteristics of seismic waves; a) Compression and expansion 
waves, b) Transversal waves, c) Types of seismograms  

   (Source: Carvalho and Ceccarelli 2002). 

 

 The period of a seismic cycle and characteristic length for each seismic wave 

must be identified to define the seismic motion. As shown in Figure 6.1, main types of 

seismic waves can be considered as the compression expansion waves P, transversal 

waves S, and superficial waves M. They can be classified by referring to the spread 

speed and terrain movements. S waves are transversal waves and the usual period of the 

S waves is between 0.5 and 1 second. The P waves spread through a spring-like-motion 

with a typical period between 0.1 and 0.2 second. Both P and S waves occur close to the 

epicenter. Unlike P and S waves, M waves occur on the surface of the terrain at a 

considerable distance from the epicenter of the earthquake and usually they have a 

period from 20 second to 1 minute. In Figure 6.1.c main differences among the seismic 

waves are represented in terms of acceleration magnitude and characteristic period of 

oscillating motion, which is responsible of a periodical excitation of structures that can 

be damaged when resonance situation occurs. 

Usually, critical resonant motion is analyzed in terms of translational seismic 

components, but even angular motion can strongly contribute to the resonant excitation. 

Thus, unlike most of the simulators where the 3D motion of the terrain due to 
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earthquake waves has not been taken into account in this study 3D motion capability of 

CaPaMan parallel manipulator have been used to simulate earthquake motion with its 

full motion effects. 

 

6.2. Operation of Mechanisms 

 

As mentioned in the IFToMM terminology (2003) a machine is “a mechanical 

system that performs a specific task, such as the forming of material, and the 

transference and transformation of motion and force.” and mechanism is defined as a 

“constrained system of bodies designed to convert motions of, and forces on, one or 

several bodies into motions of, and forces on, the remaining bodies”. Mechanisms, 

which can be considered the core parts for machines are combination of gears, cams, 

linkages, springs etc.  

Operation of mechanisms can be characterized by input, task and output. Task 

and output of mechanisms can differ with respect to desired results. These desired 

results are task goals for mechanisms, which can be classified as function generation, 

point guidance and body guidance. Considerations for designing mechanisms for those 

and other tasks are related to characteristics of operation such as general operation 

performance, repeatability of operation frequency, efficiency, reliability, precision and 

accuracy. Also vibrations that can occur during the operation can be considered and 

some isolation can be applied to machine basements. 

Machinery operations are usually aimed to perform motions and actions with the 

task performance that are related to the machinery aim and also interaction with users 

and environments. The machinery aim can be in general understanding as described by 

mechanical properties whose performance indices can be expressed in term of motion 

characteristics and action transmission with efficiency features both from kinematical 

and energy view points. Machinery interactions can be understood as related to the 

effects toward the surrounding environment and mainly as from the viewpoint of 

human-machine interactions. Those last features will include issues on comfort and 

safety that can make strong constraints to machinery operations with limited range of 

feasible operations. Thus, machinery operations can be described and characterized by 

performance indices which can be formulated for general but specific aspects that 

permit both design procedures towards optimal solutions and experimental 
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control/monitoring of successful operation. Special attention is today addressed to 

safety as interaction with human users, even when using a machine under critical, risky 

situations which can be characterized by impact, high accelerations or changed 

operation outputs. Also efficiency in force transmission and energy consumption is of 

great importance in modern machinery. 

Unfortunately in general the effects of earthquakes are neglected during machine 

design. The difficulty to determine the effects of the earthquakes is due to different 

types of totally random waves caused by them, as mentioned in Section 6.2. 

An illustrative example for machinery operation can be given as referring to the 

running of a train. Input for trains is the action of actuators for wheel motion. Task for 

the train is the body guidance of the train and the output is a stable motion with the 

features comfort, safety, efficiency and reliability. A general operation performance of 

the train is related to vibrations which effect also comfort. Characteristics of train 

motions are strongly affected by actions on machinery operations. Comfort in train task 

is felt by human users mainly in terms of acceleration of the train cars. But this task 

efficiency is a result from the transmission of motions and forces from the mechanism 

for the wheel actuation and car guidance in relative motion during the run. Those 

characteristics are demanded in more robust outputs in faster trains. Any disturbance 

can produce not only uncomfortable operation, but even risks of disasters in train run, as 

it can be the case of an earthquake. 

For a mechanism it is necessary to have a fixed reference for defining the 

motion. Usually ground is taken as the reference for machines and manipulators. When 

an earthquake occur these fixed link starts to move and even the frame applies force 

acting on the machines or manipulators. The effect of these unexpected random forces 

and motions on machines must be investigated to see the unexpected changes of the 

outputs. This knowledge can give useful feedback for the design and operation of 

machines that can work without affected by earthquakes. 

 

6.2.1. An Example with a Slider Crank Mechanism 

 

The slider-crank mechanism in Figure 6.2.a is often used to convert rotary 

motion into alternating linear motion or vice versa. A slider-crank kinematic chain 

consists of four bodies that are linked with three revolute joints and one prismatic joint. 
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Four different mechanisms or inversions of this kinematic chain are possible depending 

on which body is grounded, namely the crank, connecting link, sliding link or slot link. 

One of the inversions of slider crank mechanism is used in internal combustion engines 

(automobiles, trucks and small engines), with application of perhaps a billion engines 

makes the slider crank mechanism one of the most used mechanisms in the world.  

 

 

a) 
 

b) 

 

Figure 6.2. A test-bed slider-crank mechanism; a) Kinematic parameters, b) Slider 
accelerations with stationary frame (43 rpm). 

 

In Figure 6.2.a kinematic parameters of the slider crank are shown, acceleration 

equation as output of the slider can be calculated from the acceleration equation of the 

slider with respect to input rotation as, 

 

2r sin 2θ r cos 2θ
x=-rα sinθ+ -rω cosθ+

2l l

   
   

  
ɺɺ       (6.1) 

 

 

A numerical computation is shown in Figure 6.2.b which shows a nearly 

harmonic motion.  

 

6.2.2. An Example with a Leg Mechanism 

 

 Another example for mechanism operation is an eight-bar linkage mechanism as 

shown in Figure 6.3.a. Top part of the linkage mechanism with links abcdfm is a 

Chebyshev four bar mechanism to produce near-linear motion and second part with 
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links z2, z3, z4, z5 is a pantograph mechanism to invert and scale the motion. This 

mechanism is designed to use for walking robots with one DoF as shown in Figure 

6.3.b. Rickshaw robot is designed as a biped walking robot with low-cost design and 

easy operation in terms of compactness, and light weight. 

 

 

a) 
 

b) 

 

Figure 6.3. Leg mechanism; a) Kinematic parameters, b) Rickshaw robot 
(Source: Ottaviano et al. 2010). 

 

 Position of the point A can be calculated by using Equation (6.2) as 

 

3 1 5 2

3 1 5 2

A x

A y

x M z Cos z Cos

y M z Sin z Sin

θ θ
θ θ

= + +
= + +

,         (6.2) 

 

where, 1 1Bθ θ α π= − + , 2 1θ π θ γ= + − , ( )1 2 2 2
2 4 2( ) 2B BCos P z z P zγ −= − + + , 

( )1 /B BO BOTan y xθ −= , ( )1 2 2 2
1 2 4 2 4( ) 2BCos P z z z zα −= + − , 2 2

B BO BOP x y= + , 

BO B xx x M= − , BO B yy y M= − . 

 The position of B can be formulated by closure equations of Chebyshev four bar 

linkage. Acceleration of point A of the leg mechanism has been calculated two times 

derivation of Equation (6.2) with respect to time and the result is shown in Figure 6.4.a 

with input speed of 150 rpm and Figure 6.4.b with input speed of 257 rpm. 
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a) 

 

b) 

 

Figure 6.4. Acceleration of point A along x direction with stationary frame; a) 150 rpm, 
b) 257 rpm. 

 

6.3. An Experimental Evaluation  

 

 The CaPaMan prototype is shown in Figure 6.5. Laboratory test-bed prototype 

for earthquake simulator consists of CaPaMan prototype with sensors, a controller for 

its operation and an acquisition board connected to the computer in order to acquire the 

components of the linear accelerations occurring along the axes of the reference system 

belonging to the mobile platform, (Ceccarelli et al. 1999). 

 

 

 

Figure 6.5. An experimental setup at LARM with the slider-crank mechanism. 
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The minimum numbers of accelerometers need to directly calculate the angular 

velocity for a 3D motion of a rigid body is twelve. In this section four of three axis 

accelerometers are placed in the corners to keep symmetry and using the mathematical 

calculations in the study of Schopp (2009), this configuration of 4 sensors is used to 

keep the replacement errors of sensor minimum.  

Four three axis accelerometers are planned to be placed under the platform of the 

CaPaMan with dimensions as shown in Figures 6.6.a and 6.6.b, and placed 

accelerometers shown in Figures 6.6.c and 6.6.d. The control system scheme layout for 

CaPaMan manipulator is shown in Figure 6.7. Data for simulating the earthquake is 

send to the servo motor controller (Scorbot-ER V) by using the ACL programming 

language. The motors move the mobile platform and by the help of accelerometers the 

acceleration information of the mobile platform through the NI-DAQ 6210 is processed 

and visualized with the LabView software.  

 

 

a) 

 

b) 

 

c) 

 

d) 

 

Figure 6.6. CaPaMan platform with accelerometer sensors; a) Scheme, b) Sensor 
locations, c) Sensor installation, d) Test lay-out. 
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A suitable Virtual Instrument has been developed in LabView environment to 

manage the signals coming from the sensors. Then, the measured acceleration data from 

the accelerometers have been used to estimate the accelerations of the point H at the 

centre of the movable plate and the plate angular velocity.  

For characterization of earthquake effects on mechanism two types of 

earthquakes are simulated. Characteristic phases of the simulated earthquakes (Carvalho 

and Ceccarelli (2002)) are given in Table 6.1 and a reference earthquake simulation 

Figure 6.8 is given for defining parameters for earthquake characteristics  

 

 

 

Figure 6.7. Control system layout for CaPaMan as an earthquake simulator. 

 

Table 6.1. The characteristics of simulated earthquakes. 

 

 
Total 
Time 
(sec) 

DTmax 

(sec) 
DTmin 

(sec) 
Number of 
oscillations 

Maximum 
Frequency 

(Hz) 

Earthquake Type 1 45 2.0 0.8 30 1.2  

Earthquake 
Type2  

50 2.0 1.5 30 0.8  
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Figure 6.8. Typical characteristics of simulate earthquake. 

 

Accelerometer data of the simulated earthquake type 1 is shown in Figure 6.9. 

To calculate the linear angular accelerations and angular velocities around center point 

H first the relation of an accelerometer on a rigid body must be expressed. Let the 

acceleration of a point P fixed on a rigid body with a position r  expressed by Equation 

(6.3) (Field and Ziwet 1916, Schopp 2009). 

 

P B B B B( )= + × + × ×a a α r ω ω r          (6.3) 

 

where acceleration aB, the angular velocity ωB and the angular acceleration αB are 

described for the relative movement of the rigid body OB with respect to the fixed frame 

OF . The terms of the equation αB x r  can be described as tangential acceleration and   

ωB x(ωB x r ) as centripetal acceleration. In order to calculate the acceleration as 

measured by a sensor that is attached at position r  within a body the sensitivity axis s 

and the sensors’ metrological signal offset a0 must be added in above equation to give 

 

( )S B B B B 0( )T= + × + × × +a s a α r ω ω r a .      (6.4) 

 

Equation (6.4) can be written in vector form as 

 

S 0= +a c z a ,       (6.4) 

 

where 2 2 2
B,x B,y B,z B,x B,y B,z B,x B,y B,z B,x B,y B,x B,z B,y B,za ,a ,a , , , , , , , , ,

T
 =  z α α α ω ω ω ω ω ω ω ω ω  and 

x y z z y y z x z z x y x x y[s ,s ,s ,s r -s r ,s r -s r ,s r -s r=c , 

y y z z x x z z x x y y x y y x x z z x y z z y-(s r +s r ), -(s r +s r ), -(s r +s r ) ,s r +s r ,s r +s r ,sr +s r ]T . 
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By using four sensors with totally twelve sensitive axes it is possible to directly 

compute the quadratic terms of αB as well as aB and ωB. So the system becomes linear 

and can be written in matrix vector form as 

 

0,SA= +y z a ,     (6.5) 

 

where [ ]S1 S2 S12, , ,
T=y a a a⋯ , [ ]S1 S2 S12 A , , ,

T= c c c⋯  and 0,S 0,S1 0,S2 0,S12  , , ,
T

 =  a a a a⋯ .  

 

 

 

Figure 6.9. Accelerometer data during earthquake simulation. 

 

By inverting A it is possible to calculate characteristics of the relative body 

movement held by vector z for a given measurement vector y applying  

 

( )-1
0,SA= −z y a .         (6.6) 
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By using Equation (6.6) the linear accelerations (aH), angular accelerations (αH) and 

angular velocities (ωB) around point H are calculated and shown in Figure 6.10. 

 

 

 

a) 

 

 

b) 

 

 

c) 

 

Figure 6.10. An example of acceleration data during earthquake simulation; a) For 
platform center H, b) Angular platform velocity, c) Angular platform 
acceleration. 

 

6.4. Experimental Tests with Prototypes 

 

Experimental tests have been carried out by using a slider-crank linkage with 

DC and servo motors, a robot leg linkage, a small car model, and LARM Hand as test-

bed mechanisms with acceleration or force sensors.  
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6.4.1. Slider Crank Actuated with Dc Motor 

 

An accelerometer is attached to the slider of the slider crank mechanism as 

shown in Figure 6.11.a and accelerometers sensing axes can be seen in Figure 6.11.b. 

 

 

a) 

 

b) 

 

Figure 6.11. A test-bed slider-crank mechanism at LARM; a) An experimental set up 
with accelerometer and weight on the slider, b) Sensing axes of the 
accelerometer. 

 

a) 

 

b) 

 

Figure 6.12. An experimental measure of the typical accelerations of the slider-crank 
with stationary frame; a) Crank rotation 32 rpm, b) Crank rotation 43 rpm. 

 

Slider-crank mechanism with DC motor actuation is subjected to earthquake 

vibrations with different operating speeds. Figure 6.12 shows the filtered experimental 

measure of the acceleration of the slider as from the case in Figure 6.2.b. The noise in 
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the experimental measure is due to backlash of the components, flexibility of the links 

and design tolerances. Also some noise is caused by environmental waves into the 

frame link. Experiments are repeated with and without attached weight on the slider. 

 

6.4.2. Slider Crank Actuated by Servo Motor 

 

 An accelerometer is attached to the slider of the slider crank mechanism as 

shown in 6.13.a and accelerometers sensing axes can be seen in Figure 6.13.b. Usage of 

servo motor gives the advantage to view torque data during operation. In Figure 6.14.a 

torque data of the motor and acceleration of the slider is given without earthquake 

disturbance with crank motion of 90 rpm. In Figure 6.14.b same type of data with crank 

rotation 180 rpm is given. 

 

 

a) 
 

b) 

 

Figure 6.13. A test-bed slider-crank mechanism with servo motor at LARM; a) An 
experimental set up with accelerometer on the slider, b) Sensing axes of 
the accelerometer. 
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a) 

 
b) 

 

Figure 6.14. Experimental measures of slider crank with servo motor without 
earthquake effect, Torque data of the motor, acceleration of the slider 
with crank rotation; a) 90 rpm, b) 180rpm. 

 

6.4.3. Leg Mechanism 

 

 

a) 

 

b) 

 

Figure 6.15. A test-bed pantograph-Chebyshev mechanism; a) An experimental set up 
with an accelerometer, b) Sensing axes of the accelerometer. 
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a) 
 

b) 

 

Figure 6.16. An experimental measure of the typical accelerations of the leg mechanism 
without earthquake effect; a) Crank rotation 150 rpm, b) Crank rotation 
257 rpm. 

 

An accelerometer is attached to the end link of the pantograph- Chebyshev 

linkage as shown in Figure 6.15.a and accelerometers sensing axes can be seen in 

Figure 6.15.b. In Figure 6.16.a Experimental measure of accelerations with different 

speeds of input motion are shown in Figure 6.16.a with 150 rpm in Figure 6.16.b with 

257 rpm. 

 

6.4.4. LARM Hand 

 

Other peculiar mechanism operation can be considered from robotic systems. As 

test-bed mechanism LARM Hand prototype has been used in this work. The LARM 

Hand shown in Figure 6.17 is composed of three fingers. In particular, a human-like 

grasping is obtained by each finger with one DoF motion by using a suitable 

mechanism, whose design has been obtained through cross four-bar linkages to be fitted 

in the finger body as described in the study of Carbone and Ceccarelli (2008). 

Consequently the grasp can be regulated through a simple control by using force sensor 

signals and an industrial small PLC for operation. The LARM Hand can be used as a 

grasping end-effector in robots and automatic systems. Each finger of LARM Hand has 

three joints and one actuator. The range of motion for the prototype in Figure 6.17 is 40 

degrees for finger inputs and 140 degrees for fingertip links. LARM Hand is equipped 

with four force sensors whose ranges of sensitivities are from 1N to 100 N. The 

dimensions of the finger are 1:1.2 of the human finger size and the hand is 

110x240x120 mm and range of the grasp is between 10-100 mm. 
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a) 

 

b) 

 

Figure 6.17. LARM Hand; a) Prototype, b) Sensor locations. 

 

Both types of earthquakes are applied to LARM Hand during grasping a 

cylinder block. Earthquakes are repeated also just after implementation of the first one 

because of the difference between first assembly before no earthquake and after 

earthquake as shown in Table 6.2. 

 

Table 6.2. Force data of the sensors on LARM hand while the platform is stable. 

 

 F1(N) F2(N) F3(N) F4(N) 

Static 2.437 2.493 2.389 2.854 

 

 

6.4.5. Vehicle Model 

 

A vehicle model is designed for characterization of earthquake effects on 

machinery operation. The vehicle model has a dc motor and set on a rail as shown in 

Figure 6.18.a. A force sensor and a three axis accelerometer are attached as shown in 

Figure 6.18.b. Due to friction on the wheels when voltage is applied to dc motor a force 

is applied on the force sensor. 
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a) 

 

b) 

 

Figure 6.18. Model car with force and accelerometer sensors; a) Experimental setup 
with prototype b) Sensors and directions. 

 

 

a) b) 

 

Figure 6.19. An experimental measure of the typical forces on the model car without 
earthquake effect; a) Applied voltage 7v, b) Applied voltage 9v. 

 

6.5. Results of Tests and Considerations for Characterization 

 

The results of simulated earthquakes can be summarized with the maximum 

acceleration values of center point H. For the earthquake type 1 maximum acceleration 

is ah,max= 8.4 m/s2, and for earthquake type 2 max acceleration of point H is ah,max= 

5.29m/s2. In Table 6.3 maximum acceleration data for the mechanisms are given for 

comparison. In each sub-section experimental data from mechanism sensors are shown 

during earthquake disturbance. 
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Table 6.3. Experimental data from experimental tests with test-bed mechanisms. 

 

 Exp data 
Earthquake 

type 1 

Earthqua

ke type 2 
Stationary 

24 volts 32rpm 8.575 9.160 0.452 
Horizontal 

32 volts 43rpm 5.664 5.267 0.531 

24 volts 32rpm 9.023 8.006 0.316 
weighted 

32 volts 43rpm 6.235 6.223 0.574 

24 volts 32rpm 9.286 7.438 0.447 
Vertical 

32 volts 43rpm 4.390 3.829 0.587 

24 volts 32rpm 7.145 8.583 0.609 

Slider crank 

With DC motor 

azmax (m/s2) 

weighted 
32 volts 43rpm 3.975 4.242 0.706 

15k-90rpm 7.530 4.15 2.508 

30k-180rpm 11.64 10.81 8.211 
New slider crank 

aymax  (m/s2) 
60k-360 rpm 16.90 16.03 13.97 

4v 150 rpm 15.446 11.172 3.452 Pantograph-Chebyshev leg 

ax max (m/s2) 7.5v 257 rpm 16.253 13.845 9.541 

Max 
2.65, 2.65, 

2.53, 2.99 

2.23, 2.30, 

2.37, 3.10 

2.52, 2.57, 

2.47, 2.97 Larm Hand  

Force (N) 
Min 

1.9, 1.99,  

1.91, 2.25 

1.64, 1.73, 

1.77, 2.33 

1.89, 1.94, 

1.86, 2.23 

Max 2.086 2.121 1.980 
7v 

Min 1.189 1.604 1.839 

Max 2.102 2.091 1.995 

Car model 

Force (N) 
9v 

Min 1.155 0.012 1.95 

 

 

6.5.1. Slider Crank 

 

6.5.1.1. Actuation by Dc Motor 

 

When the slider-crank is subjected to an earthquake motion the acceleration of 

the slider is altered up to the measured acceleration shown in Figure 6.20 for slider 

position horizontal and Figure 6.21 for slider position vertical. Details of these changes 

are visible from Figure 6.20 to Figure 6.21 with views of slider acceleration between 25 

and 30 seconds of earthquake motion, when the seismic accelerations are at maximum.  
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a) 

 

b) 

 

Figure 6.20. An experimental measure of the typical accelerations with horizontal slider 
under earthquake effect (type 1); a) Crank rotation 32 rpm, b) Crank 
rotation 43 rpm. 

 

It is observed from the Figures 6.20 and 6.21 that the shape and amplitude of the 

acceleration of the slider during a simulated earthquake are strongly changed and 

oscillations of the slider acceleration are also vanished. It seems that the slider 

acceleration is fully disturbed by the earthquake effects. Considering the different 

speeds and different position of the mechanism the motion is affected more when crank 

speed is at lower speed or slider position is vertical. 

 

 

a) 

 

b) 

 

Figure 6.21. An experimental measure of the typical accelerations with vertical slider 
under earthquake effect (type 1); a) Crank rotation 32 rpm, b) Crank 
rotation 43 rpm. 

 

6.5.1.2. Actuation by Servo Motor 

 

In Figure 6.22.a and Figure 6.22.b experimental data of motor torque and slider 

acceleration during earthquake disturbance are shown for a crank rotation of 90 rpm and 
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180 rpm respectively. It is recognized from acceleration data of slider shown in Figure 

6.20 that not only shape and amplitude of the acceleration of the slider during a 

simulated earthquake are strongly changed but also oscillations of the slider are 

vanished. Meanwhile torque data of the motor has some disturbances in the amplitude; 

shape and oscillation can be told to be similar with the static state. 

 

 

a) 

 

b) 

 

Figure 6.22. An experimental measure of slider crank with servo motor with earthquake 
effect (type 1), Torque data of the motor, acceleration of the slider with 
crank rotation a) 90 rpm, b) 180 rpm 

 

6.5.2. LARM Hand 

 

In Table 6.3 forces acting to object during static condition and during earthquake 

disturbance are given. In Figure 6.23 force data of the grippers and palm are shown 

during a simulated earthquake. From Table 6.3 and Figure 6.23 force on gripper fingers 

and palm have an oscillatory motion during the earthquake and there is an obvious 

change at the end. These results show that during an earthquake characteristic for the 
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manipulator such as output (force), repeatability of the operation frequency and 

efficiency, and the reliability of the process (precision accuracy) are affected. For the 

LARM Hand the holding force on the fingers decreases during the earthquake and if the 

force exceeds the force needed to handle object it can cause to the slipping of material. 

Amount of the applied force to the object is increased at the end of the experiment 

Therefore, the object can be damaged. 

 

 

 

Figure. 6.23. Force data of LARM Hand during earthquake type 1. 

 

6.5.3. Leg Mechanism 

 

Detail of changes on the acceleration of leg mechanism can be seen in Figure 

6.24 with views of slider acceleration between 25 and 30 seconds of earthquake motion 

when the seismic accelerations are at maximum. In contrast with static accelerations of 

leg mechanism shown in Figure 6.16 the amplitude and shape of accelerations do not 

represent the motion of the leg mechanism because of earthquake disturbance. 
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a) 
 

b) 

 

Figure 6.24. An experimental measure of the typical accelerations of the leg mechanism 
without earthquake effect; a) Crank rotation 150 rpm, b) Crank rotation 
257 rpm. 

 

6.5.4. Vehicle Model 

 

Figure 6.25 shows force data on the vehicle model under earthquake disturbance. 

Comparing with static data shown in Figure 6.19 Force on the sensor has radically 

changed with oscillations. Details of these changes can be seen in Figure 6.26 with 

views of force data between 20 to 25 seconds of earthquake motion when the seismic 

accelerations are at maximum. Considering the different voltages applied to motor of 

the mechanism from Figures 6.25 and 6.26 earthquakes seems to be affecting same. 

 

 

a) b) 

 

Figure 6.25. An experimental measure of forces on the model car with earthquake 
effect; a) Applied voltage 7v, b) Applied voltage 9v. 
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a) 

 

b) 

 

Figure 6.26. Detailed view of the experimental measure of forces on the model car with 
earthquake effect; a) Applied voltage 7v, b) Applied voltage 9v. 

 

Summarizing, with the help of CaPaMan the effects of earthquakes on the 

operation of mechanical systems have been investigated by an analysis and reproduction 

of an earthquake motion. The sensitivity of the operation characteristics of machinery to 

earthquake disturbance is characterized in terms of acceleration response of output of 

machinery operation. Experimental tests have been carried out by using a slider-crank 

linkage with DC and servo motors, a robot leg linkage, a small car model, and LARM 

Hand as test-bed mechanisms with acceleration or force sensors. The results show that 

an earthquake will surely effect the acceleration of the mechanism operation both in 

shape and amplitude of the output motion. Also effect of earthquake is inverse 

proportional with the speed of the mechanism, in other words, the more we are 

approaching to the frequency of the earthquake the less mechanism is affected. Applied 

force is affected during earthquake and it is observed that it is increased after earthquake 

disturbance. 
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CHAPTER 7 

 

CONCLUSION 

 

In this thesis a generalized approach for structural synthesis and creation of new 

overconstrained manipulators is described and a potentially generalizable approach for 

function and motion generation synthesis of overconstrained mechanism is presented. 

Studies on these subjects are investigated and presented as a literature survey. Then an 

introduction is given with the definition of the problems and methods for solution of 

these problems. A novel method for calculation of screws is presented called “Unit 

Transformation Screw Matrix” and kinematic calculations for mechanisms is described 

for position, velocity, acceleration and force analyses. Methodology for structural 

analysis of parallel manipulators is described using reciprocity and virtual work and 

screw systems. Eleven overconstrained mechanism are represented for λ= 2, 3, 4 

subspaces and a methodology for the generation of new overconstrained mechanisms is 

given by utilizing these mechanisms in lower subspaces.  4, 11 and 30 overconstrained 

mechanisms are generated for λ=3, λ=4, λ=5 subspaces respectively. Moreover, 

mathematical models for overconstrained subspaces are exemplified. 

To describe structural synthesis initially degree of screw (Do$) and 

mathematical models of kinematic pairs are described. Then novel mobility equations 

for manipulators are given. Using new formulas simple overconstrained structural 

groups with general constraint one and two are calculated and listed with examples. A 

procedure for the structural design of overconstrained parallel manipulators by using 

simple structural groups is given and illustrated with examples 

Furthermore kinematic synthesis of overconstrained mechanisms is shown with 

a novel method for function generation of double spherical and planar spherical 6R 

linkages. Also motion generation for planar spherical 6R linkage for three positions is 

described which has a new approach for the motion synthesis of overconstrained 

mechanisms. Moreover, a synthesis method for a multi loop platform mechanism is 

shown with a numerical example. Finally to make an application on parallel robots an 

experimental setup is used to investigate the effects of earthquake motions on 

mechanisms.  
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