1,709 research outputs found

    Grasp planning under uncertainty

    Get PDF
    The planning of dexterous grasps for multifingered robot hands operating in uncertain environments is covered. A sensor-based approach to the planning of a reach path prior to grasping is first described. An on-line, joint space finger path planning algorithm for the enclose phase of grasping was then developed. The algorithm minimizes the impact momentum of the hand. It uses a Preshape Jacobian matrix to map task-level hand preshape requirements into kinematic constraints. A master slave scheme avoids inter-finger collisions and reduces the dimensionality of the planning problem

    Autonomous Robots for Active Removal of Orbital Debris

    Full text link
    This paper presents a vision guidance and control method for autonomous robotic capture and stabilization of orbital objects in a time-critical manner. The method takes into account various operational and physical constraints, including ensuring a smooth capture, handling line-of-sight (LOS) obstructions of the target, and staying within the acceleration, force, and torque limits of the robot. Our approach involves the development of an optimal control framework for an eye-to-hand visual servoing method, which integrates two sequential sub-maneuvers: a pre-capturing maneuver and a post-capturing maneuver, aimed at achieving the shortest possible capture time. Integrating both control strategies enables a seamless transition between them, allowing for real-time switching to the appropriate control system. Moreover, both controllers are adaptively tuned through vision feedback to account for the unknown dynamics of the target. The integrated estimation and control architecture also facilitates fault detection and recovery of the visual feedback in situations where the feedback is temporarily obstructed. The experimental results demonstrate the successful execution of pre- and post-capturing operations on a tumbling and drifting target, despite multiple operational constraints

    Visuo-Haptic Grasping of Unknown Objects through Exploration and Learning on Humanoid Robots

    Get PDF
    Die vorliegende Arbeit befasst sich mit dem Greifen unbekannter Objekte durch humanoide Roboter. Dazu werden visuelle Informationen mit haptischer Exploration kombiniert, um Greifhypothesen zu erzeugen. Basierend auf simulierten Trainingsdaten wird außerdem eine Greifmetrik gelernt, welche die Erfolgswahrscheinlichkeit der Greifhypothesen bewertet und die mit der grĂ¶ĂŸten geschĂ€tzten Erfolgswahrscheinlichkeit auswĂ€hlt. Diese wird verwendet, um Objekte mit Hilfe einer reaktiven Kontrollstrategie zu greifen. Die zwei KernbeitrĂ€ge der Arbeit sind zum einen die haptische Exploration von unbekannten Objekten und zum anderen das Greifen von unbekannten Objekten mit Hilfe einer neuartigen datengetriebenen Greifmetrik

    Computational Methods for Cognitive and Cooperative Robotics

    Get PDF
    In the last decades design methods in control engineering made substantial progress in the areas of robotics and computer animation. Nowadays these methods incorporate the newest developments in machine learning and artificial intelligence. But the problems of flexible and online-adaptive combinations of motor behaviors remain challenging for human-like animations and for humanoid robotics. In this context, biologically-motivated methods for the analysis and re-synthesis of human motor programs provide new insights in and models for the anticipatory motion synthesis. This thesis presents the author’s achievements in the areas of cognitive and developmental robotics, cooperative and humanoid robotics and intelligent and machine learning methods in computer graphics. The first part of the thesis in the chapter “Goal-directed Imitation for Robots” considers imitation learning in cognitive and developmental robotics. The work presented here details the author’s progress in the development of hierarchical motion recognition and planning inspired by recent discoveries of the functions of mirror-neuron cortical circuits in primates. The overall architecture is capable of ‘learning for imitation’ and ‘learning by imitation’. The complete system includes a low-level real-time capable path planning subsystem for obstacle avoidance during arm reaching. The learning-based path planning subsystem is universal for all types of anthropomorphic robot arms, and is capable of knowledge transfer at the level of individual motor acts. Next, the problems of learning and synthesis of motor synergies, the spatial and spatio-temporal combinations of motor features in sequential multi-action behavior, and the problems of task-related action transitions are considered in the second part of the thesis “Kinematic Motion Synthesis for Computer Graphics and Robotics”. In this part, a new approach of modeling complex full-body human actions by mixtures of time-shift invariant motor primitives in presented. The online-capable full-body motion generation architecture based on dynamic movement primitives driving the time-shift invariant motor synergies was implemented as an online-reactive adaptive motion synthesis for computer graphics and robotics applications. The last chapter of the thesis entitled “Contraction Theory and Self-organized Scenarios in Computer Graphics and Robotics” is dedicated to optimal control strategies in multi-agent scenarios of large crowds of agents expressing highly nonlinear behaviors. This last part presents new mathematical tools for stability analysis and synthesis of multi-agent cooperative scenarios.In den letzten Jahrzehnten hat die Forschung in den Bereichen der Steuerung und Regelung komplexer Systeme erhebliche Fortschritte gemacht, insbesondere in den Bereichen Robotik und Computeranimation. Die Entwicklung solcher Systeme verwendet heutzutage neueste Methoden und Entwicklungen im Bereich des maschinellen Lernens und der kĂŒnstlichen Intelligenz. Die flexible und echtzeitfĂ€hige Kombination von motorischen Verhaltensweisen ist eine wesentliche Herausforderung fĂŒr die Generierung menschenĂ€hnlicher Animationen und in der humanoiden Robotik. In diesem Zusammenhang liefern biologisch motivierte Methoden zur Analyse und Resynthese menschlicher motorischer Programme neue Erkenntnisse und Modelle fĂŒr die antizipatorische Bewegungssynthese. Diese Dissertation prĂ€sentiert die Ergebnisse der Arbeiten des Autors im Gebiet der kognitiven und Entwicklungsrobotik, kooperativer und humanoider Robotersysteme sowie intelligenter und maschineller Lernmethoden in der Computergrafik. Der erste Teil der Dissertation im Kapitel “Zielgerichtete Nachahmung fĂŒr Roboter” behandelt das Imitationslernen in der kognitiven und Entwicklungsrobotik. Die vorgestellten Arbeiten beschreiben neue Methoden fĂŒr die hierarchische Bewegungserkennung und -planung, die durch Erkenntnisse zur Funktion der kortikalen Spiegelneuronen-Schaltkreise bei Primaten inspiriert wurden. Die entwickelte Architektur ist in der Lage, ‘durch Imitation zu lernen’ und ‘zu lernen zu imitieren’. Das komplette entwickelte System enthĂ€lt ein echtzeitfĂ€higes Pfadplanungssubsystem zur Hindernisvermeidung wĂ€hrend der DurchfĂŒhrung von Armbewegungen. Das lernbasierte Pfadplanungssubsystem ist universell und fĂŒr alle Arten von anthropomorphen Roboterarmen in der Lage, Wissen auf der Ebene einzelner motorischer Handlungen zu ĂŒbertragen. Im zweiten Teil der Arbeit “Kinematische Bewegungssynthese fĂŒr Computergrafik und Robotik” werden die Probleme des Lernens und der Synthese motorischer Synergien, d.h. von rĂ€umlichen und rĂ€umlich-zeitlichen Kombinationen motorischer Bewegungselemente bei Bewegungssequenzen und bei aufgabenbezogenen Handlungs ĂŒbergĂ€ngen behandelt. Es wird ein neuer Ansatz zur Modellierung komplexer menschlicher Ganzkörperaktionen durch Mischungen von zeitverschiebungsinvarianten Motorprimitiven vorgestellt. Zudem wurde ein online-fĂ€higer Synthesealgorithmus fĂŒr Ganzköperbewegungen entwickelt, der auf dynamischen Bewegungsprimitiven basiert, die wiederum auf der Basis der gelernten verschiebungsinvarianten Primitive konstruiert werden. Dieser Algorithmus wurde fĂŒr verschiedene Probleme der Bewegungssynthese fĂŒr die Computergrafik- und Roboteranwendungen implementiert. Das letzte Kapitel der Dissertation mit dem Titel “Kontraktionstheorie und selbstorganisierte Szenarien in der Computergrafik und Robotik” widmet sich optimalen Kontrollstrategien in Multi-Agenten-Szenarien, wobei die Agenten durch eine hochgradig nichtlineare Kinematik gekennzeichnet sind. Dieser letzte Teil prĂ€sentiert neue mathematische Werkzeuge fĂŒr die StabilitĂ€tsanalyse und Synthese von kooperativen Multi-Agenten-Szenarien

    Robotic Manipulation and Capture in Space: A Survey

    Get PDF
    Space exploration and exploitation depend on the development of on-orbit robotic capabilities for tasks such as servicing of satellites, removing of orbital debris, or construction and maintenance of orbital assets. Manipulation and capture of objects on-orbit are key enablers for these capabilities. This survey addresses fundamental aspects of manipulation and capture, such as the dynamics of space manipulator systems (SMS), i.e., satellites equipped with manipulators, the contact dynamics between manipulator grippers/payloads and targets, and the methods for identifying properties of SMSs and their targets. Also, it presents recent work of sensing pose and system states, of motion planning for capturing a target, and of feedback control methods for SMS during motion or interaction tasks. Finally, the paper reviews major ground testing testbeds for capture operations, and several notable missions and technologies developed for capture of targets on-orbit

    Robotic Grasping of Large Objects for Collaborative Manipulation

    Get PDF
    In near future, robots are envisioned to work alongside humans in professional and domestic environments without significant restructuring of workspace. Robotic systems in such setups must be adept at observation, analysis and rational decision making. To coexist in an environment, humans and robots will need to interact and cooperate for multiple tasks. A fundamental such task is the manipulation of large objects in work environments which requires cooperation between multiple manipulating agents for load sharing. Collaborative manipulation has been studied in the literature with the focus on multi-agent planning and control strategies. However, for a collaborative manipulation task, grasp planning also plays a pivotal role in cooperation and task completion. In this work, a novel approach is proposed for collaborative grasping and manipulation of large unknown objects. The manipulation task was defined as a sequence of poses and expected external wrench acting on the target object. In a two-agent manipulation task, the proposed approach selects a grasp for the second agent after observing the grasp location of the first agent. The solution is computed in a way that it minimizes the grasp wrenches by load sharing between both agents. To verify the proposed methodology, an online system for human-robot manipulation of unknown objects was developed. The system utilized depth information from a fixed Kinect sensor for perception and decision making for a human-robot collaborative lift-up. Experiments with multiple objects substantiated that the proposed method results in an optimal load sharing despite limited information and partial observability

    Human-like arm motion generation: a review

    Get PDF
    In the last decade, the objectives outlined by the needs of personal robotics have led to the rise of new biologically-inspired techniques for arm motion planning. This paper presents a literature review of the most recent research on the generation of human-like arm movements in humanoid and manipulation robotic systems. Search methods and inclusion criteria are described. The studies are analyzed taking into consideration the sources of publication, the experimental settings, the type of movements, the technical approach, and the human motor principles that have been used to inspire and assess human-likeness. Results show that there is a strong focus on the generation of single-arm reaching movements and biomimetic-based methods. However, there has been poor attention to manipulation, obstacle-avoidance mechanisms, and dual-arm motion generation. For these reasons, human-like arm motion generation may not fully respect human behavioral and neurological key features and may result restricted to specific tasks of human-robot interaction. Limitations and challenges are discussed to provide meaningful directions for future investigations.FCT Project UID/MAT/00013/2013FCT–Fundação para a CiĂȘncia e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020

    Dynamic Path Planning for a 7-DOF Robot Arm

    Get PDF
    Klanke S, Lebedev DV, Haschke R, Steil JJ, Ritter H. Dynamic Path Planning for a 7-DOF Robot Arm. In: Int. Conf. Intelligent Robots and Systems. IEEE; 2006: 3879-3884
    • 

    corecore