
Visuo-Haptic Grasping of Unknown
Objects through Exploration and
Learning on Humanoid Robots

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik des
Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Simon Ottenhaus

Tag der mündlichen Prüfung: 9.12.2019
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Zusammenfassung

Die humanoide Robotik ist ein Teilgebiet der Robotik mit der Zielsetzung Ro-
boter zu schaffen, die Menschen sowohl im Aussehen, als auch in den Fähig-
keiten ähnlich sind. Das Greifen ist dabei eine zentrale Fähigkeit humanoider
Roboter, da es eine Voraussetzung der Objektmanipulation ist. Studien in den
Neurowissenschaften zeigen, dass taktiles Feedback für Menschen zentral ist,
um Objekte erfolgreich zu greifen. Tatsächlich ist ein großer Bereich des Ge-
hirns für die Verarbeitung von Sinneswahrnehmungen der Hand zuständig.
Im Kontext der Robotik wird das Greifen vorwiegend basierend auf visueller
Information realisiert. Jedoch kann visuelle Wahrnehmung nur eine Teilansicht
des Objekts liefern und wird zusätzlich durch Dunkelheit oder reflektierende
Oberflächen beeinträchtigt. Das Greifen von unbekannten Objekte stellt auf-
grund von fehlendem a priori Wissen nach wie vor ein ungelöstes Problem in
der Robotik dar, welches bei humanoiden Robotern mit einer großen Anzahl an
Bewegungsfreiheitsgraden besonders ausgeprägt ist. Daher wird in dieser Ar-
beit das Ziel verfolgt, ergänzende Objektinformation durch eine haptische Ex-
ploration zu gewinnen, um z.B. unbekannte Objekte zu greifen. Hierzu werden
haptische und visuelle Information zu einem Objektmodell fusioniert, auf des-
sen Basis Griffe generiert werden können. Zentrale Herausforderungen hierbei
ergeben sich aus Sensorrauschen, ungenauer Objektmodellschätzung bzw. ei-
ner unpräzisen Kalibrierung und Griffausführung.

Ziel dieser Arbeit ist es, einen Beitrag zum Greifen unbekannter Objekte durch
humanoide Roboter zu leisten. Dazu werden visuelle Informationen mit hap-
tischer Exploration kombiniert, um Greifhypothesen zu erzeugen. Basierend
auf simulierten Trainingsdaten wird außerdem eine Greifmetrik gelernt, wel-
che die Erfolgswahrscheinlichkeit der Greifhypothesen bewertet und die mit
der größten geschätzten Erfolgswahrscheinlichkeit auswählt. Diese wird ver-
wendet, um Objekte mit Hilfe einer reaktiven Kontrollstrategie zu greifen. Die
zwei Kernbeiträge der Arbeit sind zum einen die haptische Exploration von un-
bekannten Objekten und zum anderen das Greifen von unbekannten Objekten
mit Hilfe einer neuartigen datengetriebenen Greifmetrik.
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Haptische Exploration für das Greifen
unbekannter Objekte
Inspiriert von menschlichen Greif- und Explorationsstrategien werden unbe-
kannte Objekte vom Roboter abgetastet und die gesammelten Kontaktpunkte
in einem geschätzten Oberflächenmodell zusammengefasst. In dieser Arbeit
wird Gaussian Process Implicit Surfaces (GPIS) als dateneffizientes Modell zur
Oberflächenschätzung eingesetzt. Zusätzlich wird GPIS um Oberflächennor-
malen ergänzt, um den Informationsgehalt pro Kontaktpunkt zu erhöhen. Um
diese Information zu erfassen wurde ein neuer taktiler Sensor entwickelt, be-
stehend aus einer Trägheitsmesseinheit (inertial measurement unit, IMU) und ei-
nem taktilen Drucksensor. Der Sensor misst die lokale Oberflächenorientierung
mit der IMU und detektiert Kontakt mit dem Drucksensor. Durch das Hin-
zufügen der Oberflächennormalen konnte der Oberflächenschätzungsfehler im
Mittel um 50 % reduziert werden. Das geschätzte Oberflächenmodell bildet die
Grundlage für die Generierung von Griffen mit Hilfe eines konventionellen
Greifplaners. Dieser Greifplaner optimiert eine gegebene Greifmetrik auf dem
geschätzten Oberflächenmodell des Objekts und synthetisiert daraus Greifhy-
pothesen.

Datengetriebenes Greifen unbekannter Objekte
durch Ergänzung visueller Information
Im zweiten Teil der Arbeit wird die haptische Exploration durch visuelle Tie-
fenbilder erweitert und mit GPIS in einem geschätzten Oberflächenmodell fu-
sioniert, auf dessen Basis Greifhypothesen durch einen Greifplaner syntheti-
siert werden. Dazu wird ein unbekanntes Objekt wird von einer aktiven Kame-
ra in Form einer Punktwolke aufgenommen. Die haptische Exploration ergänzt
die visuelle Information durch Kontaktpunkte auf der Rückseite des Objekts.
Basierend auf den visuellen und haptischen Daten werden Greifhypothesen
synthetisiert. Die Greifhypothese mit der höchsten Erfolgswahrscheinlichkeit
wird mit einer neu entwickelten datengetriebenen Greifmetrik prädiziert. Hier-
für wird in einer Simulationsumgebung mit virtuellen Kameras und simulier-
ter haptischer Exploration ein neuronales Netz trainiert. Für den Transfer auf
den humanoiden Roboter ARMAR-6 wurde eine neuartige Greifstrategie ent-
wickelt, die für die unteraktuierten Hände des Roboters optimiert ist. Schließ-
lich greift der Roboter verschiedene unbekannte Objekte durch die Kombinati-
on der Greifmetrik und der Greifstrategie.
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1 Introduction

Humanoid robotics is a field of robotics that strives to create robots that have
a human-like appearance and human-like capabilities. The field has already
made great progress in numerous areas, but many basic capabilities are still
considered unsolved. One of these capabilities is grasping objects that the robot
has never seen before.

Grasping is the basis of many other, more complex activities, especially object
manipulation e.g. the transport of objects. Grasping unknown objects is a dif-
ficult task for most robots, since most objects are not optimized for robots, but
for humans. For example, most robots need accurate environment and object
models to be able to grasp any object. In practice, creating such models is com-
plex and requires expert knowledge. In order for humanoid robots to become
suitable for everyday use, they must be able to act independently in unknown
environments and grasp unknown objects.

1.1 Motivation and Problem Statement

Grasping is a central skill for humanoid robots, as it is a prerequisite for object
manipulation. Studies by Johansson and Flanagan (2009) in neuroscience show
that tactile feedback is essential for human grasping. In the context of robotics,
grasping is primarily approached using visual information. However, visual
perception can only yield a partial view of the object and can be impaired by
darkness or reflections. Grasping unknown objects poses an unsolved prob-
lem in robotics, due to the lack of prior knowledge. A central challenge is the
generation of robust grasp candidates based on partial information about the
object.

The lack of prior knowledge can be addressed in several ways. In this work,
two approaches are pursued:

• Acquiring additional information about the object through exploration: The robot
haptically explores the object before trying to grasp it. From the collected
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Chapter 1. Introduction

contact information a surface model is estimated, which is used for grasp
planning.

• Building prior knowledge through learning: Prior to grasping the object, the
robot simulates grasping many different objects and collects the results in
form of grasp successes and failures. These results are then combined in a
unified data-driven model through learning. When the robot then has to
grasp an unknown object, it uses this learned model to fall back on pre-
vious experience and selects a grasp candidate, that has a high predicted
success rate.

This thesis contributes to grasping of unknown objects by humanoid robots by
implementing strategies for the two aforementioned approaches: Haptic explo-
ration for grasping and grasping unknown objects through learning.

Part I: Haptic Exploration

Next-Best-Touch

Exploration procedure

Maximize information gain

Transfer to ARMAR

Explore object

Estimate surface & plan grasp

Part II: Visuo-Haptic Grasping

Data-Driven Grasp Metric

Trained in simulation

Fuse visual and haptic data

Transfer to ARMAR

Grasping with underactuation

Grasp unknown objects

Figure 1.1: Contributions of this thesis, structured into two parts.

1.2 Contributions

This thesis presents a novel approach for humanoid robots to grasp unknown
objects through exploration and learning. The contributions are structured into
two parts, as shown in Figure 1.1. The first contribution , and can be summa-
rized as follows:

Haptic Exploration for Grasping: Next-Best-Touch

Inspired by human grasping and exploration strategies a novel method is pre-
sented that allows the robot to find the next-best-touch while performing a tac-
tile scan of an unknown object. The presented method extends existing state
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1.2. Contributions

of the art methods in three ways. Firstly, the exploration focuses not only on
the pure information gain per exploration action, but also takes the expected
costs into account. The developed method maximizes the information gain per
cost. Second, Gaussian Process Implicit Surfaces (GPIS) is used as a data-efficient
surface modeling technique. The standard formulation of GPIS covers only the
position of contact points, but not the local surface orientation at the contact
points. In the context of this work, GPIS is extended by normal information to
take into account the orientation of the surface. Third, a tactile sensor is intro-
duced that allows the robot to directly measure the local surface orientation.
The sensor combines an inertial measurement unit (IMU) and a tactile pres-
sure sensor to estimate the local surface orientation and to detect contacts. The
combination of the next-best-touch method with the extended formulation of
GPIS and the tactile sensor allows the robot to explore unknown objects and
to approximate the surface of the object with a mesh model. This mesh model
enables a conventional grasp planner to synthesize grasp candidates by opti-
mizing a given grasp metric using the estimated object model and the hand
model. The evaluation of the developed next-best-touch exploration method
shows that the consideration of path costs for each exploration action leads to
a reduction of the total path costs. The next-best-touch algorithm is evaluated
using over 100 object models originating from two object model sets. A second
evaluation examines the addition of contact normals. It is shown that these ad-
ditional contact normals can significantly reduce the surface estimation error
both in simulation and in experiments with the humanoid robots ARMAR-III
and ARMAR-6. The developed methods and evaluation results were published
in Ottenhaus et al. (2018a) and Ottenhaus et al. (2018b).

Data-Driven Grasping of Unknown Objects through added Visual
Information

In the second part of this thesis, a method is presented that enables the hu-
manoid robot ARMAR-6 to grasp unknown objects. A complete grasping pipeline
was developed that combines visual perception with tactile exploration. Explo-
ration follows the next-best-touch method, while a depth camera in the head
of the robot performs visual perception. The visual and tactile information is
fused into a surface estimate using GPIS. Two conventional grasp planners use
the surface estimation to synthesize possible grasp candidates. The first grasp
planner uses topological information of the object in form of a mean curva-
ture skeleton while the second grasp planner generates uniformly distributed
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Chapter 1. Introduction

grasps through random sampling. The grasp candidate with the highest suc-
cess rate is predicted using a newly developed data-driven grasp metric. To
this end, a neural network is trained in a simulated environment using virtual
cameras and simulated haptic exploration. This learned grasp metric enables
the robot ARMAR-6 to select a suitable grasp candidate for grasp execution.
Finally, the robot approaches the best-rated candidate with its under-actuated
hand. The closing of the fingers is coordinated with the wrist rotation and inter-
actions with the environment are exploited to shape the under-actuated fingers
around the object. During the evaluation of the grasping pipeline in simulation
the data-driven grasp metric is compared to a baseline that uses conventional
grasp metrics. The new data-driven approach generates grasp candidates with
a higher grasp success rate than the conventional approach. The data-driven
grasp metric is also validated on the humanoid robot ARMAR-6 by first gener-
ating grasp candidates for various unknown objects. Thereafter, the objects are
grasped using the best-rated grasp candidate. The grasp pipeline, the evalua-
tion and the validation were published in Ottenhaus et al. (2019).

1.3 Outline

The remainder of this thesis is structured as follows: chapter 2 gives an overview
on prior publications related to the two contributions of this thesis, namely
haptic exploration for grasping and data-driven grasping of unknown objects.
In chapter 3 the developed next-best-touch exploration algorithm is described.
The algorithm maximizes the information gain while taking the cost of explo-
ration actions into account. The acquired contact points are used to estimate a
surface model of the object, which forms the basis of subsequent grasp plan-
ning. In chapter 4 the next-best-touch approach is extended by an initial vi-
sual view. Grasp planners generate grasp candidates using a surface estimate
based on the fused visual and tactile information. A data-driven grasp metric is
then developed to determine the grasp candidate with the highest success rate.
A grasping pipeline combines the contributions of this thesis, namely the ini-
tial visual view, the next-best-touch exploration, surface estimation, grasp can-
didate generation, candidate selection with the data-driven grasp metric and
grasp execution. This grasping pipeline is first evaluated in simulation and
then transferred to the humanoid robot ARMAR-6 to enable the grasping of
unknown objects. Finally, chapter 5 concludes the thesis with a summary and
discusses possible future work.
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2 State of the Art

The goal of this thesis is to enable humanoid robots to grasp previously un-
seen objects through the combination of haptic exploration, visual perception
and learning. This chapter gives an overview over the wide field of research
that is humanoid robotic grasping. The overview is structured into two parts,
aligned with the two main contributions of this thesis, i.e. haptic exploration
for grasping and grasping unknown objects through learning.

In section 2.1, works from the scientific literature on haptic exploration are pre-
sented that address the problem of choosing exploration targets efficiently, esti-
mating the surface of the object and synthesizing grasp candidates based on the
explored data. These methods are based on either tactile exploration alone or
the combination of visual and tactile perception. Grasp synthesis is mostly per-
formed using conventional grasp planners that work on the estimated object
surface. Here, the term conventional grasp planners refers to grasp planning
algorithms that optimize a grasp with respect to a given grasp metric.

In contrast to exploration-based approaches, section 2.2 summarizes data-driven
approaches that work on visual input. The focus here lies on acquiring inher-
ent prior knowledge during a learning phase that can be applied to unknown
objects during execution.

2.1 Haptic Exploration for Grasping

The goal of haptic exploration is to explore the surface of an unknown object,
to collect a set of contact points. These contact points are then used to estimate
a surface of the object. To this end, the robot’s hand is equipped with tactile
sensors. The robot moves its hand to establish contact between the hand and
the object. The tactile sensors are used to determine the location of the contact.
The robot then uses its kinematic model to calculate the position of the hand in
3D space and in turn to calculate the position of the tactile sensor at the time
of contact. After each contact, the robot creates an estimation of the object and
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Chapter 2. State of the Art

selects a new goal for the next exploration target. The hand is then moved to the
next selected exploration target, until contact occurs. Through this exploration
process, the robot touches the object from different sides. All collected contacts
are stored in one contact set that is used to finally create a surface estimation of
the object. This estimated surface can then be used for grasp planning.

In practice, several questions arise during haptic exploration:

1. How to collect contact information by efficiently selecting the next best
touch on the object surface?

2. How to control the robot’s hand to move to the next exploration target?

3. How to generate object shape models based on the acquired sparse tactile
data?

An extensive body of work has been conducted in the literature to address these
questions. First subsection 2.1.1 defines the term haptic perception. Thereafter,
the following sections give an overview on the different approaches to haptic
exploration.

Figure 2.1: Exploration procedures introduced by Lederman and Klatzky
(1987), © 1987 Elsevier.

2.1.1 Robotic Haptic Perception and Exploration

Human haptic perception is comprised of proprioception and tactile percep-
tion. Proprioception refers to the sense of self-movement and body position
(Tuthill and Azim, 2018). This includes limb location, limb configuration, self
induced motion, internal or external forces and torques. The sensing nerves are
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2.1. Haptic Exploration for Grasping

located within the body in muscles, tendons and joints. Tactile sensing refers to
the sensing that arises from the skin and includes temperature, texture, pres-
sure, vibration, slip, and pain.

In the context of robotics proprioception is realized by sensors that are places
within the joints and the links of the robot. Examples are the sensing of forces
and torques in the joints of the robot or the sensing of linear and angular ac-
celeration. However, robotic proprioception can also be realized by sensing
modalities, that have no direct mapping to human sensing, e.g. measuring the
motor current to estimate the exerted torque by the joint. Robotic tactile percep-
tion can by realized by dedicated tactile sensors that are placed at the fingertips
of the robot’s hand. Another option is to replace the fingertip by an integrated
sensing element that offers sensing of different modalities. Furthermore, the
robot can be covered with a robotic skin that offers tactile sensing not only
at the fingertips, but on a larger scale. Similar to the robotic proprioception,
robotic tactile perception can differ from human tactile perception in terms of
available sensing modalities and sensing range.

Humans use a combination of proprioception and tactile perception during ob-
ject exploration. Lederman and Klatzky (1987) proposed different exploration
procedures, that are common during haptic object recognition, see Figure 2.1.
These exploration procedures include:

• Lateral motion: Exploration of texture.

• Unsupported holding: Exploration of weight.

• Pressure: Exploration of object hardness/stiffness.

• Enclosure: Estimation of global shape and volume.

• Static contact: Sensing of the temperature.

• Contour following: Exploration of exact shape.

• Function test: Try to use the object as a tool.

• Part motion test: Try to move one part of the object with one hand, while
holding the object with the other hand.

Here the lateral motion relies mainly on tactile perception to sense the texture of
the surface, while the unsupported holding uses proprioceptive sensing to esti-
mate the mass of the object. In the context of robotic exploration some of these
modalities can be either explored by tactile perception or by proprioception.
For example the stiffness of an object was explored using proprioceptive sens-
ing in the form of joint torques by Do et al. (2014) and was also explored using

7



Chapter 2. State of the Art

tactile sensing in the form of normal forces by Kaboli et al. (2018). The ability of
robots to sense a modality either through proprioception or tactile perception
is also used in this work. In the first part (chapter 3) a dedicated tactile sensor is
used to measure contact and surface orientation, while in the second part (chap-
ter 4) the contact between hand and object is inferred using the proprioceptive
force torque sensor, mounted in the wrist of the robot.

2.1.2 Potential Field based Exploration

Bierbaum et al. (2008) propose to combine the touch-point selection, path plan-
ning and exploration motion generation in one unified approach using har-
monic potential fields. The potential field is the sum of attractive potentials and
repellent potentials, which are in turn defined as a sum of individual potential
sources.This potential field is used to guide the robot hand during exploration.
The velocity vector of the hand is calculated to be aligned with the derivative
of the potential field.This definition achieves a hand movement that is similar
to the motion of a charged particle within an electrical field.

The exploration procedure is initialized by creating attractive potential sources
in a grid inside the estimated bounding box of the unknown object. This leads
to a hand motion towards the object center. As the hand moves, the potential
field is updated. The region covered by the hand motion is marked as explored
and the attractive potentials are removed. When the hand makes contact with
the object, repellent potentials are added to guide the hand away from known
regions. In order to overcome local minima within the potential field, result-
ing in stalled exploration, the approach uses a small and a large reconfigu-
ration mechanism. During the small reconfiguration, all attractive potentials
are inverted, leaving the potential field in a complete repulsive state. After a
short while, this reversion is removed and the exploration continues normally.
Sometimes the small reconfiguration remains in a local minimum of the po-
tential field. In this case, the hand is retracted completely from the object and
approached from a different direction.

During the exploration, all contact points and contact normals are collected in
one set of oriented contacts. Based on this set, a four stage grasping pipeline
is executed. In the first stage, parallel faces are extracted from the oriented
point cloud. In the second stage, the minimum face size is asserted. In the third
stage, mutual visibility of face pairs is assured and in the final stage, the dis-
tance of the faces is constrained to be within given margins. Face sets that pass
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all four pipeline stages are considered grasp candidates. An exemplary explo-
ration with face extraction is shown in Figure 2.2.

Figure 2.2: Potential field based exploration: Simulation environment (left), ori-
ented point cloud (middle) and resulting parallel faces (right), ex-
tracted for grasping, (taken from Bierbaum et al., 2009a, ©2009
IEEE).

2.1.3 Model Uncertainty based Exploration

Another approach to exploring unknown objects is to divide the exploration
problem into different parts. Several approaches follow the flowchart shown
in Figure 2.3. The exploration process is initialized by either visual observa-
tion or the first contact of the hand with the object. Thereafter, the surface of
the model is estimated. The next best goal for the exploration is chosen to be
the point where the model estimation uncertainty is highest. Then a path is
planned from the current hand position to the chosen target and the explo-
ration action is executed. When the hand makes contact with the object again,
the model is updated and the process is stared over at the beginning. When the
estimation uncertainty has dropped below a predefined threshold, the explo-
ration is stopped and the estimated surface is passed to a grasp planner. Over
the years, many approaches for shape estimation have been proposed. Popular
approaches are shown in Figure 2.4. Early approaches opted to employ para-
metric object models for surface estimation. Superquadrics and decompositions
of multiple superquadrics have been applied to estimate the surface of the ob-
ject (Barr, 1981; Solina and Bajcsy, 1987; Allen and Roberts, 1989; Leonardis
et al., 1997; Zha et al., 1998; Bierbaum et al., 2007; Biegelbauer and Vincze, 2007;
Duncan et al., 2013). Other approaches use a composition of geometric prim-
itives for the representation of the object (Huebner et al., 2008; Huebner and
Kragic, 2008; Huebner et al., 2009; Przybylski et al., 2010; Gorges et al., 2010;
Marton et al., 2011). For object modeling based on vision data, estimating the
back of the object is of special interest and often performed by leveraging as-
sumed object symmetries (Thrun and Wegbreit, 2005; Bohg et al., 2011; Quispe
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1) Shape estimator

2) Touch-point selector

3) Path planner

4) Explotary motion

Get touch information

Initialization

5) Grasp planner

Figure 2.3: Common architecture of haptic exploration approaches. Grasp plan-
ning is not present in all approaches and therefore displayed with
dashed lines.

et al., 2015; Schiebener et al., 2016). However, when dealing with unknown ob-
jects, no prior shape knowledge or symmetries can be assumed and more gen-
eral surface estimation methods are required. In the field of haptic exploration
the use of Gaussian Processes Implicit Surfaces (GPIS) (Williams and Fitzgibbon,
2007, see section 3.2) became popular to overcome the limitations of parametric
models, and have often been applied (Dragiev et al., 2011; Bjorkman et al., 2013;
Sommer et al., 2014; Mahler et al., 2015; Yi et al., 2016; Yang et al., 2016; Martens
et al., 2017; Matsubara and Shibata, 2017; Rosales et al., 2018).

Superquadrics Primitive Decomposition GPIS

Figure 2.4: Shape estimation methods: Superquadrics (Duncan et al., 2013,
© 2013 IEEE, left side), decomposition into primitives (Huebner
et al., 2008, © 2008 IEEE, middle top; Marton et al., 2011, © 2011
Springer Nature, middle bottom), Gaussian Process Implicit Sur-
faces (Williams and Fitzgibbon, 2007, right top; Bjorkman et al.,
2013, © 2013 IEEE, right bottom).

GPIS has two properties that benefit haptic exploration in particular:
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• GPIS does not assume a global shape prior, but combines local Gaussian
shape priors to fit all observed contact points.

• GPIS yields not only the estimated surface of the object but also provides
an uncertainty measure of the estimate.

Using these two properties the first two steps of the exploration architecture
can be covered. GPIS yields a shape estimation, based on the explored point
set. Then many potential exploration target candidates x are sampled from the
estimated surface S. For each candidate the model estimation uncertainty σ,
provided by GPIS, is evaluated. The candidate with the highest uncertainty is
selected as the next target x̂.

x̂ = argmax
x∈S

σ(x) (2.1)

For path planning and hand motion generation different approaches have been
proposed in the literature. Some approaches retract the hand of the robot com-
pletely after each exploration action and approach the object again, using in-
verse kinematics planning. Bierbaum et al. (2009a) use a dual approach where
the hand is guided using the derivative of the harmonic potential field. If the
hand gets stuck in a local minimum a small reconfiguration is performed. The
harmonic potential field is modified so that the field is completely repulsive.
This state is kept for a while and the the field is returned to the normal state.
If the hand returns to the same location after several of these small reconfigu-
rations the hand is retracted completely in a large reconfiguration. The hand is
returned to the initial position and thereafter approaches the object again. Bier-
baum et al. (2009a) use Virtual Model Control, introduced by Pratt et al. (1996).
The approach by Matsubara and Shibata (2017) uses Rapidly-exploring random
trees (RRTs) to plan to reach the next exploration action.

2.1.4 Inclusion of Visual Perception

To execute exploration motions the robot arm has to move and in some cases
has to reconfigure completely, e.g., when the joint limits are reached or the arm
has to reach around the object. Therefore acquiring a dense point cloud by hap-
tic exploration takes a long time and is infeasible in real-world grasping tasks.
Bierbaum et al. (2009a) use a stereo camera system to estimate the position,
orientation and the dimensions of the object. From this initial estimate they
initialize the potential field to contain only attractive sources. In a alter work
Bjorkman et al. (2013) use a depth camera to capture an initial point cloud of
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Figure 2.5: Taking path cost into consideration, (taken from Matsubara and Shi-
bata, 2017, © 2017 Elsevier): Model uncertainty (left) and travel cost
in terms of path length (right). This example illustrates that an ex-
ploring a location with high uncertainty can lead to long travel
paths. However, choosing the exploration action with the shortest
path does not yield a lot of new information.

the object. This point cloud contains the front view of the object. Then an ini-
tial surfaces estimate using GPIS is created. Based on this initial estimate the
exploration pipeline is started. The first exploration target is chosen using the
model uncertainty. This first exploration target often lies on the back of the ob-
ject, since the back is hidden from the viewpoint of the camera, hence no points
can be observed. The robot touches the object several times and the estimated
surface is refined, as shown in Figure 2.4 (right side). The inclusion of visual
perception can greatly reduce the amount of required exploration actions. In
their work, Bjorkman et al. (2013) mention that about ten exploration actions
per object were sufficient to successfully classify the objects, based on features
extracted from the estimated surface.

2.1.5 Inclusion of Path Cost

Each executed exploration action comes with a cost in terms of robot arm move-
ments. When exploration actions are chosen, based on the predicted model un-
certainty alone it can happen that exploration targets are chose that lead to high
exploration costs. To reduce the expected cost of exploration actions, resulting
from arm movements of the robot, Matsubara and Shibata (2017) proposed to
include the path cost during the evaluation of possible exploration candidates.
In their work, the authors show that in some cases exploring based on uncer-
tainty alone will lead to overall higher exploration costs than taking smaller
exploration steps that consider path costs. A 2D example taken from their work
can be seen in Figure 2.5. The object is shown as a gray area while the estimated
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surface is displayed as a thick, color-coded line. On the left side, the estimation
uncertainty is shown. In this case, the uncertainty is highest at a location far
away from the current position, marked as a big dot. The resulting exploration
path, shown as an arrow, reaches around the object to reach the area of high
model uncertainty. On the right side, the path cost is shown, for each potential
target on the estimate surface. The resulting path is much shorter, however not
much new information will be gained. This example demonstrates that a trade-
off must be found between minimizing uncertainty and minimizing path costs.
In their work, the authors propose to find this trade-off by subtracting the path
cost ν from the estimated information gain. The selected exploration target x̂ is
described by maximizing this difference E, see Equation 2.2 and Equation 2.3.

x̂ = argmax
x

E(x) (2.2)

E(x) =
σ(x)

maxx′∈S σ(x′)
− θ ν(x)

maxx′∈S ν(x′)
(2.3)

Here x is a potential exploration target, σ(x) is the variance at location x, ν(x) is
the path cost to location x and S is the estimated surface. The authors state that
θ is needed to balance the two parts of the difference, and object specific tuning
of θ is necessary.

2.1.6 Exploration of Object Properties

When exploring unknown objects, various modalities can be explored. In the
previous sections, approaches were presented that focus on the contact modal-
ity. These approaches deal with the collection of contact points with the goal
of surface estimation. In addition to the object surface, there are other proper-
ties that can be explored. The exploration can be divided into proprioceptive
exploration, where forces, accelerations and torques within the robot’s joints
are measured and tactile exploration where tactile sensors are mounted at the
fingertips of the robot’s hand.

One property that can be explored using proprioception is the center of mass
of an object. Atkeson et al. (1985) implement the proprioception in form of a
force torque sensor to estimate the mass, center of mass and moments of inertia
of the object. They use the dynamic response of the object under acceleration
in conjunction with the measurements from the force torque sensor and the
dynamic model of the robot. The stiffness of an unknown object can also be
estimated using the proprioception of robotic hands. The pneumatic actuated
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hand (Bierbaum et al., 2009b) of the humanoid robot ARMAR-III (Asfour et al.,
2006) offers torque sensing capabilities in the form of air pressure measurement.
Do et al. (2014) use this proprioception to estimate the softness of an object in
the hand.

Object properties that can be explored by tactile sensing include texture and
thermal conductivity. To estimate these parameters Kaboli et al. (2017) use the
multi-modal robotic HEX-O-SKIN, first introduced by Mittendorfer and Cheng
(2011). The authors use the skin to first explore an unknown workspace in order
to find objects. After objects have been found they use the skin to actively ex-
plore the physical properties surface texture, stiffness, and thermal conductiv-
ity. Using these explored object properties the authors train a Gaussian Process
Classifier (GPC) for object discrimination. In a later work, Kaboli et al. (2018)
use OptoForce sensors (Tar and Cserey, 2011) which can measure contact forces
subdivided into normal forces and shear forces. Kaboli et al. (2018) slide the
sensor across the objects’ surfaces to explore the surface texture of the objects.
Furthermore, the stiffness and the center of mass of the objects is explored.

Another approach to explore the surface texture of objects was proposed by
Fishel and Loeb (2012). They use the multi-modal BioTac sensor that integrates
sensing of force, vibration, and thermal conductivity (Fishel et al., 2008; Wettels
et al., 2008; Lin et al., 2009; Wettels et al., 2014). Fishel and Loeb (2012) use the
vibration sensing of the BioTac sensor while sliding the sensor over the surface
of different materials. They use exploration motions that are inspired by human
exploration motions, that were first analyzed by Lederman et al. (1982) and
later formalized as exploration procedures by Lederman and Klatzky (1987).

2.1.7 Tactile Sensing and Robotic Skin

In order to be able to execute exploratory motions with the robotic system
end acquire contact information from the object, the robotic hand has to be
equipped with some kind of tactile or force sensing element. However, the goal
of achieving human-level performance in tactile perception has been studied
for several decades (Harmon, 1980, 1982; Esrom, 1989) but remains a major
challenge in the field of robotics (Bartolozzi et al., 2016). It is therefore not sur-
prising that a great variety of research work has been dedicated to develop-
ing tactile sensors. This section gives a brief overview over the different sensor
technologies that have been applied for exploration purposes.

In the field of robotics, many tactile sensors have been proposed to measure
contact force, relying on different measurement principles. Tactile sensors have
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to be placed at the positions of contact between the hand and the object. This
location is often at the fingertips, leading to size constraints on the sensor. Since
it is difficult to measure interaction force directly in a confined space, most
sensors leverage some kind of electrical measuring principle. In most cases, the
force applied to the sensor is transferred to a soft material, leading to a property
change of that material, which in turn can be measured. The literature contains
a large number of different tactile sensors. In the following, exemplary sensors
are presented for some measuring principles.

Barometric Sensors

Tenzer et al. (2012) propose to use a barometric pressure sensor as a tactile
sensor. The pressure sensor is housed in a sensor chip mounted on a stan-
dard printed circuit board. The chips integrate signal amplifiers, analog-to-
digital converters, pressure and temperature sensors and digital communica-
tion capabilities, allowing several sensors to be connected to one physical bus.
The sensors are covered using an elastic polyurethane to provide good fric-
tion for grasping tasks. External forces applied to the polyurethane cover are
transferred as a pressure to the underlying sensor. The sensor is able to de-
tect these pressure changes, allowing for accurate measurement of the applied
force, which is linear to the digital sensor output.

Resitive Sensors

Another sensing principle relies on the change of resistance under pressure.
Weiß and Worn (2005) propose to use resistive tactile sensor cells, comprised
of a conductive polymer and electrodes. When the conductive polymer is com-
pressed, the electrical resistance changes according to the applied force. The
approach allows the sensor to be built in a matrix arrangement, resulting in a
tactile sensing array. This measurement principle was extended to 3D surfaces
and applied to a robotic hand fingertip (Koiva et al., 2013). In their work, the
authors use laser-structuring technology to apply conductive tracks to curved
surfaces, arguing that this enables the manufacturing of 3D-shaped tactile sen-
sors. The signal processing electronics is placed on the backside of an artificial
layer of skin within the fingertip. The sensor is applied to the Shadow Robot
Hand, resulting in 12 tactile sensor regions. The embedded microcontroller can
capture the force patterns with a sample rate of 1 kHz, enabling slip detection
of objects.
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Capacitive Sensors

Tactile sensing is not only relevant for the fingertips, but may also be imple-
mented as a sensorized skin for humanoid robots. Cannata et al. (2008) devel-
oped such a skin for use on the iCub robot (Metta et al., 2008). Continuing this
work, large parts of the iCub robot were covered with a sensitive skin (Schmitz
et al., 2011), which can be used for kinematic self-calibration (Roncone et al.,
2014). Distributed tactile perception capabilities in combination with vision
have been used to learn visuo-tactile associations for peripersonal space rep-
resentation (Roncone et al., 2016). Furthermore, the fingertip of the iCub has
also been sensorized based on a capacitive sensor (Schmitz et al., 2010; Jamali
et al., 2015).

Optical Sensors

Another measuring principle for measuring forces is to use the force acting
on the sensor to elastically deform the structure of the sensor. Reflecting sur-
faces or small mirrors are mounted inside the structure of the sensor. A light
beam is sent onto these surfaces, which is usually generated by one or more
LEDs. The applied force deforms the structure elastically, deflecting the light
beam. The change in light intensity is then converted into electrical signals by
a phototransistor. This measuring method is used in the OptoForce sensor (Tar
and Cserey, 2011). The sensor consists of a hemisphere whose inside is reflec-
tive. In the middle there is an infrared LED, whose emitted light is reflected by
the reflecting inner side. Phototransistors measure the light intensity at several
points within the hemisphere. The normal force and the shear forces can then
be calculated from the measured light intensity.

Another approach is to use a small camera rather than individual photo transis-
tors. This is used for example in the sensors FingerVision (Yamaguchi and Atke-
son, 2016) and GelSight (Yuan et al., 2015, 2017). Small black dots are marked
on the surface of the material. A camera inside the sensor looks at these points.
The positions of the dots in the camera image are stored in the unloaded state.
External forces on the sensor lead to a deformation of the sensor material. This
also causes the points on the sensor surface to shift. This displacement is again
tracked by the camera. After calibration of the camera and material parameters,
tangential forces and torques can be calculated from the relative displacement
of the points.
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Multi Modal Robotic Skin

With the HEX-O-SKIN, Mittendorfer and Cheng (2011) introduced a hexagonal,
modular and multi-modal skin. Each cell of the skin has a hexagonal shape, im-
plemented as a printed circuit board, equipped with sensors for temperature,
acceleration and proximity. The goal is to emulate the human sense of temper-
ature, vibration and light touch. To achieve fast results the authors opted to use
off-the shelf sensors, instead of developing the sensors themselves, leading to a
faster development cycle. The skin was later evaluated by exploring unknown
workspaces and by identification of different objects (Kaboli et al., 2017; Kaboli
and Cheng, 2018).

Multi Modal Robotic Fingertips

With the BioTac sensor, a multi modal sensor was introduced, that integrates
sensing of force, vibration, and thermal conductivity. First Fishel et al. (2008)
introduced a sensor concept that allowed the sensing of micro-vibrations, when
the sensor was slided across a textured surface. In the same year Wettels et al.
(2008) described the placing of electrodes within the fingertip of the sensor that
allow the sensing of contact forces. Later, Lin et al. (2009) extended the sen-
sor with signal processing that enabled the sensing of contact forces, micro-
vibrations and thermal flux. Finally, Wettels et al. (2014) proposed to extend the
sensing modalities by processing the raw signals further using Artificial Neural
Networks (ANNs) and calibration procedures.

Capacitive Proximity Sensors

Tactile perception is not limited to contacts between the robot and the envi-
ronment. Leveraging the unique capabilities of contactless perception with ca-
pacitive sensor technology, Navarro et al. (2013) can assure safe human-robot-
interaction. The sensor is arranged in a matrix and can be used to detect events
in the near proximity, to enable near field perception. The authors use the sen-
sor for objects tracking, including human hands. This allows for safe human
robot interaction, as touch events can be detected before contact is made. This
sensor has meanwhile been improved and can operate in proximity sensing
mode and tactile sensing mode (Alagi et al., 2016). The signal processing is in-
tegrated in the sensor prototype, resulting in a modular design. In their work,
the authors use the sensor to measure the change in capacity for different ma-
terials, including wood, plastic and metal surfaces.
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Inertial Measurement Units

An interesting approach to haptic perception is the usage of inertial and orien-
tation sensors. Following this idea, the underactuated Pisa/IIT SoftHand was
equipped with IMU sensors to estimate the pose of the hand (Santaera et al.,
2015). Traditionally the configuration of the kinematic structure is performed
using relative or absolute encoders in the joints. However, when dealing with
joints in the fingers of humanoid hands, size and structural constraints often
make sensor placement a difficult task. Therefore, the authors opt to place
IMU sensors not in the joints of the fingers, but on the fingers. They develop
a method to estimate the kinematic configuration state of the hand, based on
the orientations provided by the IMUs. Besides reducing the constraints of sen-
sor placement, the choice of IMU sensors also allows for non-rigid kinematic
structures, such as soft hands. This enables the approach to be adopted for
other sensing tasks, such as sensorizing gloves, to estimate the configuration
of human hands during grasping studies.

Achieving human-level tactile sensing capabilities is still an unsolved problem
and active field of study. Comprehensive summaries of recent tactile sensor
developments can be found in the extensive review papers by Kappassov et al.
(2015), Dahiya et al. (2010) and Yousef et al. (2011).

2.1.8 Summary

The previous sections presented different approaches to haptic exploration for
grasping. The first approach introduced by Bierbaum et al. (2008) combines the
choice of the next exploration target, the motion generation and the robot con-
trol in one unified approach using potential fields. The robot’s hand is guided
by a potential field, following the gradient of the field. The potentials within the
field are updated when contact occurs to drive the hand to unexplored regions.
The approach was extended to avoid local minima in the potential field.

More recent works in haptic exploration follow a different approach, where
the choice of the next exploration target, the robot control and the surface es-
timation are separated. All approaches use the same surface estimation tech-
nique called Gaussian Process Implicit Surfaces (GPIS), introduced by Williams
and Fitzgibbon (2007). The reason for this is that GPIS is very well suited for
surface estimation when only a few contact points are available. In addition,
various modalities may be combined, such as an initial visual view followed by
tactile exploration. GPIS is based on Gaussian processes and thus, in addition
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to the surface estimation provides the variance of the estimate. This variance
is then used to select the nearest exploration point on the estimated surface.
In addition to purely optimizing the information gain, Matsubara and Shibata
(2017) introduced consideration of the expected exploration costs.

In addition to the exploration strategy, the measurement of contact between
robot hand and object is an important topic. To achieve this, a variety of differ-
ent tactile sensors has been developed. A variety of measurement principles are
used, including capacitive sensors, resistive sensors, optical sensors, Hall effect
based sensors, pressure sensors, and sensors that combine different measure-
ment principles. The diversity of the different sensors and the large variance
of the measuring principles indicate that the reproduction of the human sense
of touch is a difficult task. Therefore, some sensors specialize in measuring a
single modality, such as normal forces or shear forces. These specialized sen-
sors often do not have the variety of modalities like the human sense of touch.
A task-specific specialization, however, allows specific exploration tasks to be
performed.

2.2 Data-driven Grasping of Unknown Objects
with Humanoid Robots

In industrial and household settings, humanoid robots have to work in an un-
structured and partially unknown environment, where unknown objects are
present. For many manipulation tasks, the robots need to be able to grasp these
objects. However, finding a suitable hand position and approach direction for
grasping is a difficult task. In the case of unknown objects no precise objects
models are available. In addition, there is no prior knowledge about the objects.
The robots need to be able to plan and execute grasps based on the available
sensor data. Bohg et al. (2014) describe the problem of finding a suitable grasp
in their survey paper:

Given an object, grasp synthesis refers to the problem of finding
a grasp configuration that satisfies a set of criteria relevant for the
grasping task. Finding a suitable grasp among the infinite set of can-
didates is a challenging problem and has been addressed frequently
in the robotics community, resulting in an abundance of approaches.

A common approach is to split the grasping problem into two parts. First one or
multiple grasp candidates are generated, based on the visual and haptic data.
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Following the definition by Morales et al. (2006) and Bohg et al. (2014), these
grasp candidates can be described using the following parameters:

• Grasping point on the object: relative position of the tool center point (TCP)
to the object.

• Approach direction: vector that the hand should follow, to reach the grasp-
ing point.

• Hand orientation: rotation of the hand during grasping.

• Pre-shape: initial finger configuration.

Thereafter, one of the generated candidates is chosen for execution and the
robot’s hand is moved to the grasp location. When the hand reaches the target
location, the fingers can be closed around the object. However, neither the ob-
ject perception, nor the execution by the robot is perfect in practice. Therefore,
sensor feedback can be incorporated to mitigate uncertainties during grasping
and reactively adapt the grasp position. Finally, when the fingers are firmly
closed around the object, the object can be lifted and the grasp is complete.

2.2.1 Structure of Data-Driven Grasping Approaches

Following the definition of Bohg et al. (2014), data-driven approaches for grasp-
ing unknown objects can be split into two phases, called offline and online, as
shown in Figure 2.6.

In the offline learning phase, a set of labeled training examples is available. Each
training sample consists of an object, derived object features, such as visual rep-
resentations, and associated grasping points. The goal of the training process is
to build a model that can generate grasp candidates, based on the derived ob-
ject features, without having access to the underlying object model. Prior to
deep learning based approaches, the features used for learning were created
using hand crafted algorithms. The model can for example be implemented as
a support vector machine (SVM) (Pelossof et al., 2004; Jiang et al., 2011).

In the online phase, the robot is confronted with a previously unseen scene,
containing unknown objects. First, the scene is segmented into background and
objects. Then, one object is chosen for grasping. For this object, features are
extracted. Using these derived features, the model can be queried and possible
grasp candidates can be predicted.

The paper by Bohg et al. was published in 2014, which is right before deep
learning was applied widely for grasping unknown objects by robots. There-
fore, numerous non-deep learning approaches are listed and categorized in the
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Figure 2.6: Typical flow-chart of data-driven grasping approaches, as defined
by Bohg et al. (2014), © 2014 IEEE.

survey paper. However, the introduction of deep learning in grasping has led
to a significant performance increase in grasp detection and generation accu-
racy (see Table 2.2). This trend has been stated explicitly in the computer vi-
sion community by Bütepage et al. (2018): ”Recently, deep learning has seen
unprecedented developments within the computer vision community and is
therefore a promising candidate for learning-based approaches.“ Therefore, the
related work covered in this section will focus deep learning based approaches,
published after 2014. The structure given in the flow-chart still remains valid.
The only changed part is that in the case of deep learning the feature extraction
is now mostly part of the model, with the exception of simple data prepro-
cessing. When using deep learning usually no hand crafted feature extractors
are needed, as this feature extraction process is part of the training process as
well.

As stated in Bohg et al. (2014), ”finding a suitable grasp among the infinite set of
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candidates is a challenging problem“. The approaches to find a suitable grasp
can be categorized into five groups, as shown in Figure 2.7.

(A) Conventional approaches first extract features, using handcrafted techniques.
Based on these features a classifier is trained to rate different possible
grasp candidates.

(B) Generative approaches leverage the potential of deep learning by using a
direct regression approach to output the best grasp pose directly, for any
given input.

(C) Shape completion circumvents the direct generation of grasp candidates by
instead estimating the 3D shape of the object, based on the input data.
Then a conventional grasp planner is used to plan grasps, based on this
estimated model.

(D) Heat-map based approaches transfer the learning problem to a pure image-
to-image mapping problem. The idea here is to leverage the advances in
deep learning based image processing, without dealing with encoding of
grasps directly. For each input image, an associated heat map is created,
where good grasping regions are marked.

(E) Discriminative approaches take as input the perceived scene and a grasp
candidate and output the expected grasp success probability. These ap-
proaches function by learning a data-driven grasp metric, which can deal
with incomplete information, however a grasp candidate generator is nec-
essary.

An overview of data-driven grasping approaches is listed in Table 2.1.

In the following, possible sources of training data for the offline training phase
are presented, followed by a detailed description of the five different cate-
gories.

2.2.2 Sources of Training Data

All learning based, data-driven approaches need labeled training data during
the offline training phase. Compared to pure computer vision tasks, where la-
beled training data is abundant, and comes in a standardized form, i.e. images,
acquiring training data for robotic grasping is challenging, as a recent survey
paper has stated.

While the performance of deep learning is promising, these approaches
are data hungry. [. . .] Although deep learning proved successful for
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Publication Year Input Hand Objects Method Lift success

Lin and Sun 2015 Mesh Barrett hand Own set LfD1) 79%3)

Nguyen et al. 2016 RGB-D WALK-MAN Own set Heat
map
(2D image)

92.2%3)

Kopicki et al. 2016 RGB-
D4)

DLR-HIT2 Own set LfD1) 77.8%1)

Varley et al. 2017 RGB-D Barrett hand YCB
subset

SC6)

(3D grid)
93.3%2)

Varley et al. 2018 RGB-D
& tactile

Barrett hand YCB
subset

SC6)

(3D grid)
87.5%1)

Schmidt et al. 2018 RGB-D ARMAR-III YCB &
KIT

Gen5)

(6D pose)
55%2)

Liu et al. 2019 RGB-
D4)

Shadow hand BigBIRD,
YCB,
KIT,
Grasp
DB

Gen5)

(Hand config.)
-

Lundell et al. 2019 RGB-D Barrett hand YCB,
Grasp
DB

SC6)

(3D grid)
59%1)

Table 2.1: Data-driven grasping approaches with humanoid hands.
1) Lift success during robot experiments
2) Lift success in simulation
3) LfD: Learning from demonstration
4) Multiple RGB-D images (color and depth images) were captured
per grasp
5) Generative
6) Shape completion, resulting in a 3D voxel grid
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Figure 2.7: The five different categories of approaches to data-driven grasp syn-
thesis.

images or videos, where large amounts of data are available, collect-
ing data for robotic grasping requires tedious human labeling, as in
the above-mentioned approach, or hours of execution time on a real
physical system (Bütepage et al., 2018)

In the robotics community, four major approaches exist to generate labeled
training data for real robotic system.

1. A grasping dataset is created by humans through hand labeling thousands
of training samples.

2. A self-supervised approach is executed directly on the target system. The
robot learns from trial and error and the associated model is incrementally
updated.

3. A human teacher demonstrates the grasping process by guiding the robot
directly or the robot observes the human grasping process. The robot
learns from these demonstrations.

4. A dataset can be created by training data generation in simulation. Here the
robot is placed in a simulated environment with virtual objects.

All aforementioned approaches have strengths and weaknesses, which will be
outlined in the following.
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Figure 2.8: Aspects of grasp candidate generation, as defined by Bohg et al.
(2014). The aspects covered in this work are highlighted green, while
further aspects covered in related work are marked blue. Not cov-
ered aspects are displayed in white.

Hand Labeled Datasets

The main advantage of hand labeled data for learning is that the resulting
dataset is of high quality. The human knowledge of the problem can be used
fully and no special algorithms have to be developed for the generation of the
training data. In addition, the data format and the format of the labels can be
optimized, so that the learning model can perform optimally.

The main disadvantage lies in the work required to create such a dataset. For
current deep learning approaches to function properly, large amounts of la-
beled training data is required.

In the field of robotic grasping, only few manually labeled datasets have been
created. The most prominent dataset is the Cornell Grasping Dataset, first used
by Jiang et al. (2011). One main aspect of this dataset is that it is designed for
grippers. Each training sample of this dataset consists of a top down RGB-D
camera image of an object and grasping locations encoded as rectangles. This
description is well suited for grasping with grippers and has led to a large
amount of publications, which work either solely on the dataset or evaluate
their approach using the dataset (see Table 2.2). To show the impact of a large
hand-labeled dataset, the increase of grasp detection accuracy is shown in Ta-
ble 2.2.

In the field of grasping with humanoid hands, hand labeled datasets are not
widely used. This is due to two main reasons:

• When grasping with a gripper the grasp execution can often be reduced to
a simple procedure. The necessary grasp aperture is applied and the grip-
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Model Year Approach Input Size
Accuracy

Image-wise Object-wise

Jiang et al. 2011 SVM1) 227 x 227 60.5 % 58.3 %

Lenz et al. 2015 Discrim. 227 x 227 73.9 % 75.6 %

Redmon and Angelova 2015 Generative 224 x 224 84.4 % 84.9 %

Redmon and Angelova 2015 Anchor boxes 224 x 224 88.0 % 87.1 %

Wang et al. 2016 Discrim. 96 x 96 81.8 % 69.0 %

Zhang et al. 2017 Anchor boxes 224 x 224 88.9 % 88.2 %

Kumra and Kanan 2017 Generative 224 x 224 89.2 % 89.0 %

Mahler et al. 2017 Discrim. 32 x 32 93.0 % -
Guo et al. 2017 Heatmap 108 x 108 93.2 % 89.1 %

Morrison et al. 2018 Heatmap 300 x 300 78.6 % -
Park and Chun 2018 Anchors2) 400 x 400 89.6 % -

Asif et al. 2018 Heatmap 244 x 244 90.6 % 90.2 %

Chu et al. 2018 Anchor boxes 227 x 227 96.0 % 96.1 %

Park et al. 2018 Anchor boxes 360 x 360 96.6 % 95.4 %

Zhou et al. 2018 Anchor boxes 320 x 320 97.7% 96.6%

Wang et al. 2019 Heatmap 400 x 400 94.4 % 91.0 %

Gariépy et al. 2019 Generative 224 x 224 92.4 % -

Table 2.2: Comparison of detection accuracy on the Cornell dataset.
1) Jiang et al. (2011) is the only non-deep learning approach in this
comparison.
2) Park and Chun (2018) use a CNN to generate anchor candidates
instead of scanning a full anchor grid. This speeds up the grasp can-
didate generation, as fewer grasp candidates have to be considered.

per is moved to the grasp pose. Then the gripper is closed. Morales et al.
(2006) have introduced a unified grasp description for humanoid hands,
in the form of grasp type, grasp starting point, approach direction and
hand orientation. The challenge here lies in finding an encoding for the
grasp type, that allows the transfer of a grasp from one humanoid hand
to another. This is difficult, since humanoid hands are different in size,
shape and actuation. E.g. some hands are fully actuated and others are
underactuated. Transferring a grasp for grippers is easier, since grippers
are very similar to each other.

• In the case of bin-picking applications with grippers, a top-down grasp
can be described by the position, rotation and aperture of the gripper,
leading to a representation, which can be drawn as a rectangle in a 2D
image, e.g. the representation found in the Cornell dataset. In the case
of humanoid hands such a top-down representation cannot describe all
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grasps that the robot should be able to execute. For example, grasping
tall objects from the side is difficult to encode in a top-down description.
Furthermore, most humanoid robots do not have access to a top-down
view of the scene during grasp execution, as the camera is mounted in
the head of the robot, in most cases. Therefore, the process of creating
suitable grasp labels for humanoid hands is more complex than labeling
grasps directly in the image plane.

As the performance increase in the case of grasping with grippers has shown,
ideally, a hand labeled dataset should be used for grasping, however due to the
two mentioned reasons, so far, no hand labeled dataset for humanoid hands
exists.

Training Data Generation on the Target System

In recent years reinforcement learning based approaches have been shown to
be effective in mastering board games such as ”Go“ (Silver et al., 2017b) and
chess (Silver et al., 2017a), as well as computer games such as Dota 2 (OpenAI,
2018) and StarCraft 2 (Vinyals et al., 2019). All these games are considered chal-
lenging to play by artificial intelligence (AI) and are considered milestones in
AI research. However, all of these approaches are still very data hungry, e.g.
the approach by OpenAI to play Dota 2 has been trained, playing the game
for the equivalent of over 40 000 human years. In the setting of board games
of computer games, generating this experience during training does not imply
any physical cost, since the games can be fully simulated or are designed to be
run on a computer in the first place. However, in the case of robotics, training
directly on the target system is often infeasible, due to the long run time.

Figure 2.9: Robot setup used for training and testing by Levine et al. (2018),
© 2018 SAGE Publications.

Nevertheless, to a certain extent, this fully data-driven deep reinforcement learn-
ing approach has been applied to grasping with robots equipped with grippers
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by Levine et al. (2018). In their work, the authors use a reinforcement learning
approach, training on 14 robotic manipulators in parallel. The robots try to ex-
ecute grasps, based on the current learned policy. Based on the outcome of the
grasping attempt, the policy is updated and refined iteratively. Overall, they
perform over 800 000 grasping attempts.

Another approach is to pre-train the model in simulations, used by Andrychow-
icz et al. (2018). Using domain randomization in the simulation, the authors
were able to build a model that was able to perform in-hand manipulation to
rotate a colored cube, using the shadow hand. The training time in simulation
was equivalent to about 100 years of experience. Running the simulation in par-
allel on 384 worker machines, each equipped with 16 CPU cores, allowed for
generation of 2 years of simulated experience per hour.

The main advantage of reinforcement learning is that the learned model can
deal with complex tasks in theory. However, these approaches are still very
data hungry and either require a full and accurate simulation of the target sys-
tem, or a lot of training time on multiple instances of the target system. Further-
more, pre-training in randomized simulated environments is, at the moment,
not accessible to us, as it requires large amount of computation power.

Learning from Demonstration

The main idea behind Learning from Demonstration (LfD) is to enable the robot
to learn skills from human demonstrations (Billard et al., 2008; Argall et al.,
2009). In the context of grasping, a human teacher demonstrates how to grasp
different objects and the LfD approach can represent this in an abstract skill,
incorporating the demonstrator’s intention (Lin and Sun, 2015) as well as trans-
ferring the demonstration from the human hand to the robotic hand. The ad-
vantage of LfD is that the full knowledge of the human teacher can be used in
learning the task. The human teacher does not necessarily have to be an expert
and many demonstrations can be performed quickly using different objects and
grasping motions. One of the main challenges in LfD approaches lies in the
transfer from human demonstrations to the robot’s kinematics and dynamics.
E.g., a direct transfer of joint trajectories is infeasible when dealing with robotic
hands, since most hands have less degrees of freedom than the human hand.
Therefore, other mappings between human demonstration and robot motion
have to be found (Romero et al., 2010). Lin and Sun (2015) focus on the grasp
type, thumb placement and approach direction. They thereby reduce the com-
plexity of the problem to factors, which can be mapped to most robotic hands.
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In fact, in their work, the authors transfer human five-finger grasping motions
to a three finger robotic hand. Kopicki et al. (2016) presented another approach
where they used kinesthetic teaching to guide the robot’s arm directly during
training, thereby circumventing the challenge of transferring the demonstra-
tions from humans to the robot. In order to record accurate finger trajectories
the authors used the active compliance of the DLR-HIT2 hand.

Training Data Generation in Simulation

The main idea of training data generation in simulation is to create a virtual en-
vironment in which grasping can be simulated. In this environment, 3D mod-
els of different objects can be loaded and presented to a robot for grasping.
The robot can repeatedly perform grasping experiments and the results can be
recorded, resulting in an abundance of training data. The main advantage of
generating training data in simulation is that this generation does not include
operating a real robot or labeling data by hand. However, the main challenge
is that no robotics simulation is perfect, especially when dealing with contacts.
In grasp planning the stability of grasps has been studied extensively. One fo-
cus point are the contact points between hand and object, which are used to
assess the quality of the grasp. E.g., the term force closure is used to describe
that a wrench in any direction can be generated by the grasp. In grasp analy-
sis this force closure is considered fundamental, since it is a simple measure to
determine grasp stability. However, a recent work by Weisz and Allen (2012)
has shown that relying on analytical grasp analysis is prone to misclassification
of grasps, leading to low transferability of simulated grasps to the real robotic
system. In their work, the authors propose a domain randomization process
for grasp analysis that calculates the probability of force closure for a given
grasp.

2.2.3 Deep Learning for Image Understanding

Deep learning methods have led to a significant speed up in image processing
research. This includes general tasks, such as classification of images (Guo et al.,
2016) as well as medical image analysis (Litjens et al., 2017). As deep learning
is a widely used method, this section will only briefly introduce the aspects of
deep learning models, relevant to this thesis. A comprehensive review of deep
learning methods for image processing and classification can be found in the
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thesis of Guo et al. (2016) as well as in the review of Alom et al. (2018) and the
book by Goodfellow et al. (2016).

Convolutional Neural Networks

Prior to deep learning approaches, image processing was primarily done by
feature extraction and subsequent classification, based on these features. The
feature extraction process was done by manually implementing feature extrac-
tors, such as histograms or gradients. These features were then presented to a
conventional classifier, e.g. a Support Vector Machine (SVM). One implemen-
tation of such a conventional approach for grasping unknown objects can be
found in Jiang et al. (2011).

With the popularization of deep learning most of the image classification ap-
proaches moved to using Convolutional Neural Networks (CNNs). One of the
first and often cited approaches, relying on a CNN, is AlexNet, introduced by
Krizhevsky et al. (2012). In their work, the authors state: ”Our results show
that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learn-
ing.“ AlexNet was one of the milestones in deep learning for image classifi-
cation. Many more publications followed, where each approach extended the
original concept. The main idea of CNNs is to not implement the feature extrac-
tion using human intuition, but to use a pure data-driven approach with super-
vised learning. To this end, a neural network is used as a model and trained.
In the case of CNNs, one common network architecture is to use a set of con-
volutional layers, followed by a set of fully connected layers. These CNNs can
be used for 2D images, but the concept is not limited to two dimensions and
can be extended to handle 3D voxel grids, as shown in Maturana and Scherer
(2015).

2.2.4 Generative Approaches

Motivated by the success of convolutional neural networks in image classifi-
cation tasks, similar techniques can be applied for robotic grasping. Instead
of classifying an image, the neural network is used to predict a feasible grasp
pose, given an input image. Here deep learning is applied in a straightforward
fashion to the grasping problem, as a deep neural network is trained to pre-
dict grasp poses based on the available robot’s sensor data, without any pre- or
post-processing.
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Figure 2.10: Generative network architecture for grasp prediction by Schmidt
et al. (2018), © 2018 IEEE.

Following this idea, Schmidt et al. (2018) use a depth camera to capture a depth
image of an object. They segment the object from the background and use the
depth information of the image as input for a neural network, as shown in Fig-
ure 2.10. The network is comprised of two convolutional layers, followed by
two fully connected layers. The network is trained to predict the grasp pose, en-
coded as the position of the tool center point and the orientation of the robot’s
hand. To train the network the authors use precomputed grasps, which are gen-
erated by a skeleton based grasp planner (Vahrenkamp et al., 2018), combined
with rendered depth images of the objects.

Figure 2.11: Training data set used by Schmidt et al. (2018), © 2018 IEEE.

The necessary training set is generated in simulation. The models taken from
the KIT and YCB object databases are placed into a simulation environment. A
simulated camera in the robot’s head observes the objects, as they are rotated
randomly in front of the robot. For each orientation of the object, one suitable
grasp is chosen from all available grasps to reduce planning complexity and
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to achieve a one-to-one match between an input image and the corresponding
grasp pose.

Figure 2.12: Generative network architecture for grasp configuration prediction
by Liu et al. (2019).

In a recent work, Liu et al. (2019) use a generative network architecture to pre-
dict not only the pose of the robot’s hand for grasping but also the full con-
figuration of the hand, i.e. the finger joint angles. Instead of taking a 2D depth
image as an input, they use a 3D occupancy voxel grid as input for their neural
network. In this voxel grid, each voxel is encoded binary: having a value of one,
if a point lies in the voxel and zero otherwise. In the first part of the network,
the authors use 3D convolutional layers to reduce the size of the voxel grid. In
the second part of the network, the voxel grid is flattened to a one-dimensional
vector and processed by several fully connected layers, finally resulting in the
joint configuration of the hand.

Generative approaches can be powerful for predicting grasping poses, as the
underlying structure of the neural network is straightforward. However, the
models rely on direct regression from the input to the desired output. In an
effort to predict grasping poses for non-humanoid robot arms equipped with
grippers, Redmon and Angelova (2015) show that direct regression approaches
can suffer from inaccuracies when multiple grasp candidates are possible for a
given input. A regression model tries to minimize the error between the pre-
dicted output and the ground truth value. If multiple ground truth values are
present, the regression minimizes the average error to all ground truth labels.
This results in a prediction that averages over all presented labels. If this av-
erage is a valid label then this is not a problem, however if the average of all
ground truth labels is not included in the set of valid outputs this averaging
can lead to incorrect predictions, as the three examples show in Figure 2.13.
The correct grasp poses are displayed as red and blue rectangles in the figure.
In case of the plate on the left all these correct grasp poses lie on the border of
the plate. When a regression model is trained, using these ground truth labels,
the resulting average output of the regression model is the rectangle drawn
with green and yellow lines. This predicted grasp pose minimizes the average
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error to all ground truth poses, but is in itself not a valid grasp pose.

Figure 2.13: Averaging effect in direct regression approaches, (taken from Red-
mon and Angelova, 2015, © 2015 IEEE). The red and blue rectan-
gles represent the ground truth, while the predicted grasp pose is
shown as a green and yellow rectangle.

2.2.5 Shape Completion Approaches

When an object is observed by a camera, only the front of the object is visible.
The point cloud calculated from the camera image is therefore always a partial
representation of the object. The idea of shape completion is to estimate the
shape of the object in occluded areas, i.e. the back, the bottom and the sides.
When the model is completed, a traditional grasp planner can be used to plan
grasps.

Input Point Cloud Completed Point Cloud Triangulated Mesh
& Planned Grasp

Figure 2.14: Shape completion based on object symmetries by Schiebener et al.
(2016), © 2016 IEEE.

An approach by Bohg et al. (2011) performs shape completion by exploiting
object symmetries. A set of symmetry plane hypotheses are generated and the
most likely symmetry plane is chosen. Then all points are mirrored at the sym-
metry plane. In a later publication, Schiebener et al. (2016) extend this approach
by addressing the remaining gaps after mirroring. To fill in the remaining gaps
in the point cloud, additional points at the estimated supporting surface of the
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object are added and the sides are filled in, using linear interpolation. An exem-
plary shape completion of a spray bottle can be seen in Figure 2.14. Using the
completed point cloud the object’s surface can be triangulated to form a surface
mesh. A grasp planner is used to plan grasps, based on the completed surface
mesh.

Scene: Object
and Depth Camera Partal View CNN Input CNN Output Triangulated Mesh

& Planned Grasp

Figure 2.15: Shape completion using CNNs by Varley et al. (2017), © 2017 IEEE.

Another approach by Varley et al. (2017) utilizes deep learning for shape com-
pletion. An object is observed by a depth camera, resulting in a partial observa-
tion of the objects, encoded as a point cloud. This point cloud is then converted
to an occupancy voxel grid, where each voxel has a binary value of one, if the
voxel contains a point or zero if the voxel is empty. This voxel grid is the in-
put to a 3D CNN. The output of the CNN is the completed shape, encoded
as an occupancy voxel grid, which is transformed to a mesh using triangula-
tion. Finally, grasps can be planned using the completed mesh, as shown in
Figure 2.15.

Figure 2.16: Shape completion, combining visual and tactile information by
Varley et al. (2018), © 2019 IEEE.

In a later work, Varley et al. (2018) extend their method to include tactile infor-
mation. They present a method that combines depth data from a Kinect camera
with tactile information. The depth data from the camera is converted to a point
cloud and fused with the tactile points, as shown in Figure 2.16. This combined
point cloud is presented to a 3D CNN that used the same network architecture,
as in the previous work. In the offline training phase, the network is presented
with depth and tactile data and trained to predict the full model of the object.
During online runtime, the network is tasked with shape completion, based on
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an incomplete point cloud extended with tactile data. The authors argue that
the inclusion of tactile data increases the accuracy of the completed shapes sig-
nificantly.

Figure 2.17: Shape completion with uncertainty by Lundell et al. (2019), © 2019
IEEE.

In a recent work, Lundell et al. (2019) extend the work by Varley et al. (2017)
to incorporate shape uncertainty. They train a deep neural network to take a
partial view of an object as input and output the completed shape of the object,
encoded as a voxel grid, see Figure 2.17. The neural network takes an occu-
pancy voxel grid as input. Over several convolutions, the size of the 3D grid is
reduced, while the number of features is increased. In the inner most layers of
the network all information is combined using a fully connected layer. Then 3D
deconvolutions are applied to reduce the number of features and increase the
size of the grid, until the dimensions of the input grid are matched. The main
novelty of the approach is to include dropout layers in the network, which are
enabled during training and during runtime to generate a set of shape candi-
dates, representing the shape uncertainty. They generate grasp candidates on
the mean of all shape candidates. Each grasp candidate is then evaluated on all
shape candidates in terms of analytical grasp metrics. In their work, the authors
show that the inclusion of shape uncertainty during grasp planning increases
the grasp success rate, especially when dealing with unknown objects.

2.2.6 Heat Map Approaches

Another approach for detecting grasp candidates in images is to transfer the
problem completely to an image-to-image mapping problem. Following this
idea, Nguyen et al. (2016) use a network architecture that takes the depth image
of a scene as an input and outputs several affordances, encoded as different
images.

The authors emphasize the importance of encoding the input and output of the
neural network in order to enable the network to train well. The input RGB-D
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image is split into six channels. Three channels contain the red, green and blue
values of the image. The depth channel is split into three channels, where one
contains the horizontal distance to the camera, the second channel contains the
height above the ground and the third channel encodes the angle between the
surface normal and the gravity vector.

Depth
Channel

Horizontal
Distance

Height Angle

Figure 2.18: Encoding of the depth channel by Nguyen et al. (2016), © 2016
IEEE.

The output of the network are heat map images, where each image corresponds
to one affordance. In regions where the affordance is present, the heat map
contains a large value and in regions where the affordance is not present, the
corresponding heat map has a low value. The authors use a fully convolutional
encoder-decoder-network (see Figure 2.19) that was first introduced by Noh
et al. (2015).

Figure 2.19: Fully convolutional encoder-decoder-network architecture by
Nguyen et al. (2016), © 2016 IEEE. From left to right: perceived
scene, heat map of the grasp affordance, extracted grasp rectangle.

Using this architecture enables the network to predict multiple affordances at
the same time and to predict the occurrence of one affordance multiple times in
one image. Examples for detecting the grasp affordance in different scenes are
shown in Figure 2.20. In the left row, the scenes are shown, while the center row
denotes the heat map of the grasp affordance. Using classical image processing
techniques the authors then detect rectangles in the heat map image and use
these rectangles as grasp candidates.

In a later work, Nguyen et al. (2017) replace this rectangle description of grasp
candidates. They first transform all points matching to one occurrence of a
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Figure 2.20: Encoding of grasp affordances as heat maps by Nguyen et al.
(2016), © 2016 IEEE.

grasp affordance from 2D to 3D using a calibrated depth camera. Then they
perform a principal component analysis on the 3D points, extracting the major
axis of the grasp affordance. The hand of the robot is then aligned with this axis
during grasp execution.

One major advantage of using heat maps over generative approaches is that
heat maps allow the encoding of multiple occurrences of grasps in one image.
Therefore, heat map based approaches overcome the limitation of averaging
that is present in generative approaches. However, heat map based approaches
are similar to pixelwise segmentation approaches, where a class is assigned to
each pixel. These techniques operate solely in the 2D image plane. In order to
extract grasp candidates from the segmented images, further post processing
steps are necessary.

2.2.7 Discriminative Approaches

The idea behind discriminative approaches is not to generate grasp candidates
directly from the available sensor input, but to rate grasp candidates. In a way,
a discriminative approach can be seen as a data-driven grasp metric that oper-
ates on the available sensor data. For each grasp candidate the discriminator is
evaluated and produces a predicted grasp success probability.

To the best of the author’s knowledge, discriminative approaches have not yet
been applied to humanoid grasping. The method will therefore be presented at
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the example of a robot equipped with a gripper. Thereafter, the transferability
to humanoid robots will be outlined.

In their work, Mahler et al. (2017) use a data-driven discriminator to rate pos-
sible grasp poses, given a depth image of a scene containing unknown objects.
This discriminator is implemented as a neural network and called ”Grasp Qual-
ity Convolutional Neural Network“. The discriminator predicts the probability
of grasp success from depth images. Grasp candidates are encoded as planar
position, angle, and depth of a gripper relative to the depth camera, mounted
directly above the scene. The experimental setup is shown in Figure 2.21.

Figure 2.21: Discriminative approach for grasp candidate rating by Mahler et al.
(2017).

When a new object is presented to the system, first a depth image of the object
is captured from above. Then multiple grasp candidates are generated using
antipodal candidate grasps, first proposed by Chen and Burdick (1993). The
grasp quality network rates each of the grasp candidates. Finally, the grasp
with the highest assigned score is selected for execution.

The authors state that training the grasp quality network requires a ”huge num-
ber of samples“. They solve this issue by generating the required training data
in simulation, rendering depth images of many objects and associating the cor-
responding analytical grasp scores to grasp candidates within the depth im-
ages.

The main advantage of discriminative approaches is the ability to rate multiple
grasp candidates within one scene and predict the grasp success probability for
each grasp candidate. The challenge in applying a discriminative approach to
humanoid robots is that the problem definition of humanoid robotic grasping
and grasping with a gripper differs significantly. First, the camera setup is dif-
ferent. In the humanoid case, the camera is not located above the scene, but is
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in the head of the robot, observing the objects from a varying view point. Sec-
ond, the grasp candidate generation technique used by Mahler et al. (2017) is
specific for grasping objects from the top, using a parallel jaw gripper and can-
not be applied directly to humanoid robots. Therefore, a new grasp candidate
generation method has to be developed.

2.2.8 Discussion

This section presented different approaches for data-driven grasping with hu-
manoid robots.

The data-driven grasp generation can be divided into four categories, listed in
Table 2.3. The table lists the advantages and disadvantages for each approach.
Early approaches focus on direct generation of the best grasp candidate, i.e.
they use a learned model that takes an image as an input and generates di-
rectly the best grasp candidate. As shown by Redmon and Angelova (2015)
this direct generation of grasp candidates can lead to averaging effects, if mul-
tiple correct grasp candidates exist for one given input. Other approaches opted
to not generate grasp candidates, but to estimate the shape of the object to be
grasped by means of shape completion. The learned model takes a partial view
of the target object as input and outputs a completed 3D shape, often in the
form of a voxel grid. Then a conventional gasp planner generates grasp candi-
dates based on this completed shape. The advantages of shape completion are
that existing grasp planners can be reused and that the learned model can be
transferred to any robot and hand, if a grasp planner exists for that hand. The
main disadvantage is that it is unclear, which of the generated grasp candidates
has the highest success rate. Another category are heat map based approaches,
where the learning problem is first transferred to an image-to-image mapping
problem. This is advantageous, since a lot of research has already been done
in the image-to-image learning domain and therefore this knowledge can be
used. To this end, first possible grasp candidates are encoded as a 2D heat map,
where each pixel denotes if a grasp at that location will be successful or not.
The main disadvantage of this approach is that it is currently limited to 2D
images. This induces a constraint to the grasp execution where any grasp at-
tempt can only be performed orthogonally to the image plane. Therefore, these
kind of approaches can only work on problems that are representable in 2D,
but not for full 6D grasp generation, which is necessary for multi fingered, hu-
manoid hands. The last group follows a discriminative approach. Here grasp
candidates are not generated directly, but an external candidate generator is
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used. The learned model takes a grasp candidate and the perceptual object in-
formation as input and predicts the grasp success probability, also called grasp
robustness. The advantage of these approaches is that the perception of the ob-
ject is not constrained to a certain encoding and can be multi-model, allowing
e.g. fusion of visual and tactile data. The main disadvantage is that an external
grasp candidate generator is necessary.

Method Advantage Disadvantage

Generative Simple structure Averaging
Shape completion Use existing grasp plan-

ners
Possible incorrect rating

Heat map Multiple candidates Post processing, 2D only
Discriminative Multiple, rated candi-

dates
Grasp candidate generator required

Table 2.3: Comparison of different grasp candidate generation techniques.

Most of the models used in data-driven grasping are implemented as neural
networks. These neural networks require large amounts of raining data. The
different possible sources are listed in Table 2.4. The first possible source of
training data is to use human labor. A data set of good grasp candidates is
created by hand labeling thousands of training examples. These training exam-
ples mostly come in the form of images, where grasp candidates are drawn into
these images. The advantage of hand labeled data sets is that the quality of the
training data is high, since the human perception and reasoning is still far supe-
rior to any automated grasp planning approach. The main disadvantage is that
this labeling is constrained to 2D image problems. So far, no data set was cre-
ated aiming at full 6D grasp poses, necessary for humanoid hands. The second
option is to generate training data directly on the target system. The robot tries
to execute different grasps and determines if the grasp execution was success-
ful or not. This kind of training is called self-supervised, as no human labeling
of grasping results is necessary. Levine et al. (2018) demonstrated that learning
grasping on the target system is possible and can lead to good grasping results.
However, the amount of training samples necessary is still a limiting factor.
The robot or multiple robots have to execute thousands of grasp attempts to ac-
quire enough training data. Another approach is to learn grasping from human
demonstrations. Here, a human teacher demonstrates how to grasp different
objects. The robot observes the grasp execution and builds a model that aims
to mimic the human. The advantage of learning from demonstration is that the
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training data is of high quality. However, the cost in terms of human labor are
high, as many successful grasps have to be recorded to gather enough training
data. Furthermore, learning from demonstration poses a challenging domain
transfer problem, as the grasping demonstrations have to be mapped from the
human to the robot. The last source of training data is to use a simulator. Here,
the robot is placed into a virtual environment, where grasping is simulated.
The simulator evaluates grasp success based on the geometry of the robot’s
and the geometry of the target object. The advantage is that the time the robot
spends in the simulator comes at almost no cost, i.e. large amounts of training
data can be generated. The main disadvantage is that perfect simulators do not
exist, especially when it comes to contact models needed for grasping. There-
fore, the transfer of the learned model from the simulator to a real robot can be
challenging.

Data source Cost Domain

Hand labeled High Same
Target system High Same
Learning from demonstration High Different
Simulation Low Different

Table 2.4: Comparison of different training data sources.
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As humanoid robots move from the laboratory to real world environments,
they need to be able to grasp unknown objects. Among others, grasping re-
quires an understanding of the geometric shape of such objects. In order to
synthesize grasp candidates using grasp planners, a detailed surface model
is required, but not available for unknown objects. While visual information
might be the most obvious sensor modality to acquire this surface model, vi-
sion based systems can be impaired by either the object properties (e.g. reflect-
ing, translucent, uniformly colored) or the environmental conditions (e.g. poor
lighting, smoke, fog, and bright sunshine). To overcome these shortcomings,
tactile sensing can be used to gather additional information, which also plays
an important role in human grasping, as Johansson and Flanagan (2009) show
in their work. In order to enable the robot to grasp unknown objects using tac-
tile exploration four problems have to be solved:

1. How to collect contact information by efficiently selecting the next best
touch?

2. How to efficiently generate object shape models based on the acquired
sparse tactile data?

3. How to gather as much information per contact as possible?

4. How to plan grasps based on the approximate object model?

This chapter addresses all four challenges. First, section 3.1 outlines the ap-
proach of the overall exploration algorithm. Thereafter, section 3.2 presents a
data efficient surface model that can operate on sparse and incomplete tactile
data. Then section 3.3 explain how the next-best-touch is selected using the esti-
mated surface model. Section 3.4 presents a sensor that enables the robot to not
only sense contact with the object, but to also sense the local surface orientation,
thus increasing the information per contact. Finally, section 3.5 introduces the
chosen grasp planner to synthesize grasps based on the estimated surface. The
proposed exploration method is evaluated in simulation and compared against
the state of the art in section 3.6. The exploration method, tactile sensor, surface
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model and grasp planning approach are then combined and validated in robot
experiments.

3.1 Exploration Strategy for the Next-Best-Touch

Haptic exploration of an object can yield detailed surface information. How-
ever, acquiring this information is costly, since the robot hand and arm have
to be moved after each contact to a new location. Selecting the location of the
next-best-touch is therefore an important part of the exploration process. Pre-
vious work in this area has mostly focused on selecting this location to yield
the most new information per touch action. After each exploration action, the
surface of the object is estimated. Thereafter, the location on the surface with
the highest estimation uncertainty is determined and selected as the next ex-
ploration target. However, this can lead to large travel distances that the robot
arm has to cover. This will be illustrated at an imaginary exploration of a 2D
plane, that follows the procedure described in Algorithm 1. In this example, the
exploration region A is limited to a 5 cm by 5 cm box.

Algorithm 1 Example exploration
1: t = centroid(A) . initial target is in the center
2: loop
3: explore at t
4: t = argmaxx∈A RateTarget(x)
5: end loop

The first target is predefined and set to be in the center of the exploration area.
Then the robot moves to the target and explores the surface of the plane at
the target. Thereafter, each possible target x within A is rated, according to the
exploration strategy. The exploration process is executed two times. Once using
an exploration strategy that focuses on maximizing the information gain. In
the second run, the exploration strategy balances maximizing information gain
and minimizing path cost. In the following, the first strategy will be referred
to as greedy and the second strategy will be labeled balanced. Possible results of
the two strategies are compared in Figure 3.1. Every five additionally explored
points a snapshot is taken. In each snapshot, the explored points are displayed
as dots and the covered distance connecting the dots is shown as lines. The
background of each snapshot depicts the uncertainty where blue corresponds
to low uncertainty and yellow corresponds to high uncertainty. In this example,
the uncertainty is calculated to be the distance to the closest explored point.
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Greedy strategy:
Maximize
Information gain

Balanced strategy:
Balance
Information gain
and cost

1 6 11 16 21Nr. of contacts

Figure 3.1: Comparison of pure information gain maximization and balancing
information gain with cost.

Both exploration procedures start in the center of the exploration area. After
the initial contact, the greedy strategy jumps into one of the corners of A. This
is expected, since the points in the corners are furthest away from the already
explored point in the center and therefore have the highest uncertainty. After
the first corner is explored, the other corners follow next. Then, after all corners
have been explored, the greedy strategy starts filling in the remaining gaps, see
top row of Figure 3.1. The balanced strategy starts by selecting the second tar-
get close to the initial central point. Then the exploration follows an outward
spiral.Visually the second, balanced strategy achieves a similar coverage of the
exploration area while being more efficient in terms of travel cost. To compare
the two strategies the overall travel cost in terms of path length is plotted in
Figure 3.2. The cost for exploring the initial point in the center is not included
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Figure 3.2: Path costs in relation to the number of touches.

in the chart. Therefore, both strategies start with one contact point in the cen-
ter and zero travel cost. The lines in the chart correspond to the so far, overall
covered distance of the respective strategy, for each contact point. The red line
in the chart denotes the distance covered of the greedy strategy and the green
line corresponds to the balanced strategy. In this example, the balanced strategy

45



Chapter 3. Next-Best-Touch for Grasping

clearly travels less distance per point.

In order to quantify the exploration coverage, a second plot is derived from the
exploration progress in Figure 3.3. In this plot, for each point x in the explo-
ration area A, the distance to the closest already explored point from the set
of all explored points C is calculated. Then the average over these distances is
calculated, according to Equation 3.1.

D =
1

‖A‖
∑
x∈A

min
c∈C
‖x− c‖ (3.1)

In Figure 3.3 this average distance to the closest explored point is plotted for
each touched point on the surface. This plot shows that the greedy exploration
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Figure 3.3: Comparison of exploration progress measured by the average dis-
tance to the next explored point in terms of the number of touches.

and the balanced strategy explore the plane at a comparable rate per contact,
showing that taking small steps can be beneficial in the long run.

Considering these initial observations in the following an algorithm will be de-
veloped that follows the design idea of balancing information gain with travel
cost, while the baseline strategy will follow a cost agnostic, greedy strategy.

3.1.1 Exploration Algorithm

The exploration strategy is developed in a simulated environment, where the
object to be explored is present in an otherwise empty simulation environment.
A single robotic fingertip that can freely move in the 3D space performs the
exploration. At the start of the simulation, no information about the object is
given to the exploration algorithm, with the exception of an initial touch target.
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Algorithm 2 Algorithm of the proposed haptic exploration strategy

1: procedure HAPTICEXPLORATION(t0, strategy)
2: c0 ← INITIALIZE(t0)
3: C ← {c0}
4: i← 1

5: loop
6: S ← ESTIMATESURFACE(C)
7: t← RATEANDSELECTTARGET(S, C, strategy)
8: {Tp(τ), TR(τ)} ← GENERATETRAJECTORY(t)
9: ci ← FOLLOWTRAJECTORY(Tp(τ), TR(τ))

10: C ← C ∪ {ci} . add new contact to contact set
11: i← i+ 1

12: end loop
13: end procedure

This initial target either can be given manually by the operator or can be deter-
mined based on visual information. In the context of the simulated exploration,
the initial exploration target is chosen to be the center of mass of the object. The
robotic fingertip moves towards this initial target, until contact occurs. One this
contact occurs, an initial surface can be estimated based on the acquired contact
and the exploration process is started.

The exploration procedure can be briefly summarized as follows:

1. Establish an initial contact with the object.

2. Add the contact to the set of explored points and update the surface esti-
mation.

3. Rate each point on the estimated surface and choose the point with the
highest rating as the next target.

4. Generate an exploratory action to reach the new target.

5. Move the fingertip along the trajectory until contact occurs.

6. Go to step 2.

The algorithm that implements this exploration procedure is described in de-
tail in Algorithm 2 while all used symbols are listed in Table 3.1. The fingertip
is controlled in velocity mode using a feed forward velocity controller that fol-
lows the generated trajectory.

INITIAL CONTACT The exploration algorithm is initialized by setting the start
position of the fingertip and the location of the initial target. The initial ap-
proach velocity vt of the fingertip is calculated to approach the initial target,
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1: procedure INITIALIZE(t0)
2: r ← start position
3: tp ← initial target
4: vn ← (tp − r)‖tp − r‖−1 . initial approach velocity
5: setVelocity(vnv0)

6: waitUntilInitialContact()
7: c0,p ← contact position
8: c0,n ← contact normal
9: return {c0,p, c0,n}

10: end procedure

1: procedure ESTIMATESURFACE(C)
2: S ← GPIS(C)
3: return S
4: end procedure

1: procedure RATEANDSELECTTARGET(S, C, strategy)
2: if strategy is GP variance then
3: ∀s ∈ S : I(s)← GP variance(s)

4: end if
5: if strategy is Information Gain Estimation Function then
6: I(S)← Information Gain Estimation Function(S) . see Algorithm 3
7: end if
8: t← argmaxs I(s)

9: return t

10: end procedure

1: procedure GENERATETRAJECTORY(t)
2: vn ← normalized velocity at contact detection
3: R0 ← current orientation
4: R1 ← getRotation(R0, tn)

5: β ← 1/3‖cp − tp‖ . control point scaling
6: Tp(τ)← bezier(cp, cp − βvn, tp + βtn, tp) . trajectory from c to t

7: TR(τ)← lerp(R0,R1)

8: return {Tp(τ), TR(τ)}
9: end procedure
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1: procedure FOLLOWTRAJECTORY(Tp(τ), TR(τ))
2: τ ← 0

3: loop
4: r ← current position
5: R← current orientation
6: τ ← argminτ?∈[τ,1]‖r − T (τ?)‖ . find closest point on trajectory
7: v∗ ← δ

δτ
Tp(τ) + kp,pos(Tp(τ)− r)

8: vt ← v0v∗‖v∗‖−1 . normalize velocity
9: setVelocity(vt)

10: ωt ← RPY( δ
δτ
TR(τ) + kp,oriR

−1TR(τ)) . get angular velocity
11: setAngularVelocity(ωt)

12: if contact detected then
13: ci,p ← contact position
14: ci,n ← contact normal
15: return {ci,p, ci,n}
16: else if τ > 1 and ‖r − T (1)‖ > ∆m then . missed prediction
17: {Tp(τ), TR(τ)} ← HANDLENOCONTACT

18: τ ← 0

19: end if
20: end loop
21: end procedure

1: procedure HANDLENOCONTACT

2: vn ← current normalized velocity
3: β ← 1/3‖r − tp‖ . control point scaling
4: Tp(τ)← bezier(r, r + βvn, tp − βtn, tp) . trajectory from r to t

5: R0 ← current orientation
6: R1 ← getRotation(R0,−tn) . inverted target approach
7: TR(τ)← lerp(R0,R1)

8: return {Tp(τ), TR(τ)}
9: end procedure
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Function / Symbol Description

r,v,ω ∈ R3 End-effector position, linear velocity and angular velocity
R ∈ SO(3) End-effector orientation

Tp(τ) : R→ R3 Trajectory position function
TR(τ) : R→ SO(3) Trajectory orientation function

τ ∈ [0, 1]
Argument of the trajectory function

T (τ = 0): trajectory start, T (τ = 1): trajectory end
C Set of all contacts

cp, cn ∈ R3 Position and normal of a contact in C
S Surface estimation

sp, sn ∈ R3 Position and normal of a point on S
tp, tn ∈ R3 Position and normal of the selected target on S
∆m ∈ R Distance that defines when a target is considered missed

σ1, σ3, µ3, σα ∈ R Tuning parameters
vt ∈ R Desired velocity of the end-effector

Table 3.1: Summary of used symbols

and then the velocity is passed to the underlying velocity controller. The ini-
tial target is approached until the initial contact occurs. Thereafter, the main
exploration loop is started.

SURFACE UPDATE The first step within the exploration loop is to handle the
new contact. The contact position is derived from the current position of the
fingertip and the contact normal is derived from the local surface orientation of
the object, see section 3.4. The approach velocity vector is stored for later use.
Then the motion of the fingertip is stopped by setting the velocity to zero. The
current contact consisting of the contact position cp and the contact normal cn
is added to the set of all explored points C. The surface estimate of the object
is updated using an extended formulation Gaussian process implicit surfaces,
that includes surface normals, see section 3.2.

TARGET SELECTION To choose the next target the developed algorithm can
support different target rating strategies, that work on a per point basis. The
rating function is evaluated for all points on the estimated surface. Here two
different strategies are used and compared later:

1. Variance of the Gaussian process that is the basis of the surface estimation.
This variance is a measure, how uncertain the surface estimate is at the
query point.

2. The newly developed Information Gain Estimation Function, that bal-

50



3.1. Exploration Strategy for the Next-Best-Touch

ances information gain and path cost.

After each point of the current surface estimate has been rated by the chosen
rating function, the target point with the highest assigned score is selected for
exploration.

TRAJECTORY GENERATION For trajectory generation from the current location
r to the selected target tp several requirements have to be considered:

1. The trajectory should start at the current location of the fingertip r.

2. The trajectory should end at the planned target.

3. The initial direction of the trajectory should be inverse to the velocity vec-
tor just before the contact occurred.

4. The trajectory should approach the selected target in the direction of the
estimated normal tn at the selected target position tp.

5. The trajectory should be smooth, i.e. differentiable.

A simple, yet powerful formulation that meets all these criteria are cubic Bézier
curves using four control points. By setting the first control point to be equal
to the current position and the last control point to match the target position
the first two requirements are already met. How the inner control points b1

and b2 are derived as well as detailed description of the trajectory generation,
including orientation, can be found in subsection 3.3.3. The result of the tra-
jectory generation are two trajectory functions: Tp(τ) encodes the trajectory in
3D Cartesian space and TR(τ) denotes the desired 3D orientation at each posi-
tion.

FINGERTIP CONTROL The motion of the fingertip is controlled using a feed
forward velocity controller that follows the desired trajectory and compensates
any execution inaccuracies. Besides the initial approach, the FOLLOWTRAJEC-
TORY procedure is the only part of the exploration algorithm where the finger-
tip is moved. To start the controller the argument of the trajectory τ is initialized
to 0. Then the control loop is started. In each iteration, first the current position
r and current orientation R are queried from the fingertip. The trajectory ar-
gument τ is updated by determining the closest point on the trajectory to the
current position r, so that τ increases. The target velocity v∗ is determined using
a feed forward velocity controller. The feed forward part is determined using
the derivative of the trajectory function δ

δτ
Tp(τ). To correct inaccuracies dur-

ing execution a secondary P-controller is employed. The combined controller is
given by Equation 3.2.

v∗ =
δ

δτ
Tp(τ) + kp,pos(Tp(τ)− r) (3.2)
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To ensure that the velocity magnitude of the fingertip is constant, the target
velocity vt is normalized to match the desired velocity magnitude given by v0,
see Equation 3.3.

vt = v0
v∗
‖v∗‖

(3.3)

The orientation of the fingertip is controlled in a similar way using a feed for-
ward P-controller that follows the desired orientation. To this end, the differ-
ence between the current orientation R and the desired orientation is calculated
and scaled by the control parameter kp,ori. the feed forward part is calculated by
the derivative of the orientation trajectory TR(τ). Finally, the sum of both parts
is converted to a roll pitch yaw rotation velocity and applied to the fingertip, as
described in Equation 3.4.

ωt = RPY (
δ

δτ
TR(τ) + kp,oriR

−1TR(τ)) (3.4)

The controller follows the trajectory until one of two possible events occurs:

A) A contact between the fingertip and the object is detected.

B) No contact is detected and the end of the trajectory is reached.

If a contact is detected, the contact position and normal are determined, the
contact is added to the set of explored points C and the exploration loop starts
over by updating the surface estimate based on the new set of contacts.

However, in some cases it is possible that the end of the trajectory is reached
without any contact event. The reason is that the target for exploration is chosen
based on an estimated surface of the object. Since the goal is exploration of
the object the chosen target often lies in a region where the estimated surface
is imprecise or incorrect. To compensate this two behaviors are implemented.
First, the trajectory is followed further, extending beyond the target point at τ =

1. This helps if the estimated surface is slightly incorrect and the real surface of
the object can be reached by extending the trajectory. If the surface estimate is
incorrect, this trajectory extension is insufficient to find the target object again.
In this case, the procedure HANDLE NO CONTACT is called to generate a new
trajectory that ensures intersection with the target object.

HANDLE NO CONTACT In the case that the calculated target is reached and
no contact event with the object has occurred the fingertip has to be brought
back into contact with the object. To this end, a new trajectory is generated that
starts at the current position and ends at the last observed contact. However,
the target is approached not from the original approach direction, but from the
exact opposite direction. This ensures that the trajectory has to pass through
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the object at some point. The trajectory is again implemented as a Bézier curve.
The effect of this behavior is illustrated in a 2D example in Figure 3.4.

Ti-1Ti-2

ci tp

Ti,old

object

ci-1

Ti,new

ci-2

ci
tp

Ti

ci-1
S

ci-2

Ti-1Ti-2

Figure 3.4: Handling of a ”no contact event“ at the end of the planned trajectory.

The top row of the image denotes the state of the exploration algorithm. The
contacts ci−2, ci−1 and ci have been explored. The estimated surface S resulting
from these three contacts is shown as a dotted line. The chosen target position tp

lies right of the last contact. However, the real object has a sharp corner between
ci and tp. Therefore, the trajectory Ti from ci to tp will not meet the object. The
object is shown in the bottom row of the figure. When the target tp is reached
a new trajectory Ti,new is generated, that starts at the current location, which
coincides with tp, and approaches ci from below. This ensures that the new
trajectory intersects the object at some point.

3.2 Data Efficient Surface Model

Touching the object from different sides and at different positions requires the
robot arm to move. This movement takes time and therefore the acquisition
of many contact points is expensive. During the exploration process, the ap-
proximate surface of the object has to be estimated, based on the contact points
acquired so far, during the exploration process. When the exploration starts,
only few contact points are available. During the process of the exploration,
it is possible that the density of observed contact points is inhomogeneous. In
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addition, the contact positions are uncertain, since execution and sensor noise
exists during exploration on a robotic system.

Therefore, several requirements for the surface model arise.

1. Sparse data: The surface model has to be able to generate a surface esti-
mate based on few observed contacts.

2. Inhomogeneous observations: Regions of high and low contact observa-
tion density can exist. The surface model has to incorporate all contact
data, including single observations that are far apart from the rest of the
observations.

3. Sensor noise: The surface model has to be able to incorporate uncertain
observations resulting in contradictory contact data.

4. Contact normals: The surface model has to be able to incorporate ob-
served surface normals.

A surface model that meets the first three of the above requirements is Gaussian
Process Implicit Surfaces (GPIS), which was first introduced by Williams and
Fitzgibbon (2007). Dragiev et al. (2011) first used GPIS in the context of grasp-
ing. In the following, the concept of GPIS will be introduced and several exam-
ples will illustrate the ability of GPIS to meet the requirements. Thereafter, the
GPIS formulation will be extended to include surface normal observations.

3.2.1 Gaussian Process Implicit Surfaces

The basic idea of Gaussian Process Implicit Surfaces (GPIS) is to describe the es-
timated shape of an object by means of an implicit surface potential (ISP) which
in turn is given by a Gaussian process (GP). The ISP function f(x) defines for
each point in space x if it is on the surface of the object, inside the object or
outside of the object.

f : Rd → R


= 0, x on the surface
< 0, x outside
> 0, x inside.

(3.5)

The estimated surface S can be found by calculating the 0-level set of the ISP:

S = {x, f(x) = 0} . (3.6)
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Following the original formulation of GPIS by Williams and Fitzgibbon (2007)
the estimated ISP f ∗ is given by a Gaussian process, therefore f ∗ can be ex-
pressed as sum of weighted kernel functions.

f ∗(x) =
N∑
i=1

wik(x,xi) (3.7)

In the case of GPIS, radial basis kernels are used. A radial basis kernel is only
dependent on the distance between the two arguments x and x′, but not on the
location of x or x′. A Gaussian radial basis function is given in Equation 3.8.

k(xi,xj) = exp

(
−1

2

‖xi − xj‖2
σ2

)
(3.8)

The value σ is a scaling value that can be adapted to change the width of the
kernel function, as shown in Figure 3.5.
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Figure 3.5: Examples of Gaussian radial basis functions with different scaling
values σ.

Given a set of observations of f(x) in the form of observation location xi and
observation value f(x) = yi all necessary information is given to determine the
weights of the ISP in Equation 3.7.

f(xi) =
N∑
j=1

wj exp

(
−1

2

‖xi − xj‖2
σ2

)
=

N∑
j=1

wjk(xi,xj) = yi ∀i ∈ [1, N ] (3.9)

Since σ is chosen to be equal in all kernels and the observation locations xi

and xj are known the values of the kernel functions can be computed. The
equation system from Equation 3.9 is written as a linear system, where K is the
symmetric covariance matrix containing the covariances between the samples

55



Chapter 3. Next-Best-Touch for Grasping

i and j given by the kernel function k(xi,xj).

Kω = y (3.10)

(K)ij = k(xi,xj) (3.11)

Similarly, the ISP function from Equation 3.7 can be written in vector notation
using the weight vector ω.

f ∗(x) = k∗
Tω (3.12)

(k∗)i = k(xi,x) (3.13)

By solving the linear system from Equation 3.10 the weight vector ω can be
determined, and in turn, the ISP f can be computed.

ω = K−1y (3.14)

f ∗(x) = k∗
TK−1y (3.15)

This approximate function f is also called the posterior of the Gaussian process.
To illustrate the procedure of fitting a Gaussian process to observed values an
example is given in Figure 3.6, while the underlying observations are listed in
Table 3.2.

−4 −2 0 2 4
x

0

1

2

3

f
(x

)

estimated function f

Figure 3.6: Example posterior of a Gaussian process.

i 1 2 3 4 5
xi -2 -1 0 1 2
yi 0 1 3 2 1

Table 3.2: Example observations

If all observed sample locations are separated, this process yields smooth ap-
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fn ‖x3 − x4‖ ω1 ω2 ω3 ω4 ω5

f1 1 0.75 -2.35 5.1 -1.56 1.28
f2 0.5 2.21 -6.32 15.38 -10.38 2.36
f3 0.25 5.2 -15.13 57.84 -48.37 3.8
f4 0.125 11.09 -33.14 228.07 -208.98 6.53
f5 0.0625 22.75 -69.24 907.38 -868.77 11.93

Table 3.3: The computed weights get larger when the observed location of sam-
ple x4 gets close to another sample x3.

proximations that respect the observations. However, this formulation fails to
incorporate contradictory observations. E.g, if two observations with different
values are close to each other, but have different observed values the weights ω
get large, leading to invalid ISP estimations. Furthermore, if two observations
at the same location yield different values the inverse of K−1 is not defined and
ω cannot be computed.

In an example, the distance between the location of observation x4 and x3 is
halved iteratively and for each distance the resulting weights are listed in Ta-
ble 3.3. The resulting posteriors are given in Figure 3.7.
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Figure 3.7: Example posteriors for contradictory observations. The sample
point at 1 is gradually shifted closer to the observed value at 0. The
resulting posteriors assume larger values the closer the contradic-
tory observations come to each other.

To overcome this limitation an observation uncertainty can be added to the co-
variance matrix along the diagonal axis. The posterior of the Gaussian process
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with observation uncertainty is given by Equation 3.16.

f ∗(x) = k∗
T (K + σ2

nI)−1y (3.16)

Using this formulation allows the Gaussian process to handle the contradicting
observations x3 and x4, as shown in Figure 3.8 for different observation noise
values. When using small values for σn the posterior follows the observations
closely, however the shape of the resulting function overshoots between the
observations. When using larger values for σn the overshoot is mitigated but
the resulting function does not pass through the observed values.
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Figure 3.8: Example posteriors with different observation noise for contradic-
tory observations y3 = 2 and y4 = 3 close to x = 0.

The Gaussian process formulation from Equation 3.16 can now be used as a
basis for the implicit surface potential. To define meaningful observation loca-
tions and values to define the ISP Williams and Fitzgibbon (2007) propose to
add 0-value observations on the surface of the object and to include additional
observations inside and outside of the object’s surface:

• At each surface observation, a sample is generated with value zero.

• A sample inside of the object is added with value 1.

• Multiple samples are added outside of the object with value −1.

To illustrate the surface approximation capabilities of GPIS several examples
are given below. In these examples, the center point is calculated as the mean
value of all contact positions. Several outside points are placed in a ring around
the center point. The first example in Figure 3.9 shows that GPIS can deal with
sparse contact data while the second example in Figure 3.10 displays inhomo-
geneous contact density and contradictory observations.
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Figure 3.9: GPIS can deal with sparse contacts (left) and dense contacts (right).
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Figure 3.10: GPIS can deal with inhomogeneous contact density (left) and con-
tradictory observations (right).

3.2.2 Extension of GPIS to Include Surface Normals

The original formulation of GPIS by Williams and Fitzgibbon (2007) does not
include surface normal observations. However, these surface normals can be of
great benefit for the surface estimate, as Martens et al. (2017) and Dragiev et al.
(2011) have indicated in their work.

Therefore, an extended formulation of GPIS is required, that can incorporate
surface position and surface normal observations. For each contact xi with the
object, three observations can be made:

• The position of the contact xi.

• The local surface orientation, encoded as the surface normal ni.

• The desired ISP value yi.
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Since the value of the ISP should be zero on the surface of the object, the desired
ISP at each xi should be zero:

f(xi) = 0 . (3.17)

The local surface orientation can be incorporated by constraining the derivative
of the ISP:

∇f(xi) = ni = (ni,1, ni,2, ni,3)
T . (3.18)

In the original formulation of GPIS, it is necessary to constrain the sign of the
GP inside and outside of the object by adding additional points. By adding the
normals in terms of derivative information to the GP these inside and outside
points are no longer necessary. Furthermore, the magnitude of the derivative
observations has only an impact on the overall scale of the GP, but not on the
location of the 0-level set. Therefore, the magnitude of the normals is chosen to
be 1:

‖ni‖ = 1 . (3.19)

Following the argument in Williams and Rasmussen (2006, p. 191), the GP can
be extended to include derivative observations: ”Since differentiation is a lin-
ear operator, the derivative of a Gaussian process is another Gaussian process.
Thus we can use GPs to make predictions about derivatives, and also to make
inference based on derivative information. In general, we can make inference
based on the joint Gaussian distribution of function values and partial deriva-
tives.“

In a GP without derivative information, the covariance k can be defined on
two data points xi and xj . Using this insight the covariance can be extended
to include mixed covariances between data points and partial derivatives and
between partial derivatives:

cov(f(xi), f(xj)) = k(xi,xj) (3.20)

cov
(
f(xi),

∂f(xj)

∂xj,m

)
=
∂k(xi,xj)

∂xj,m
(3.21)

and cov
(
∂f(xi)

∂xi,n
,
∂f(xj)

∂xj,m

)
=
∂2k(xi,xj)

∂xi,n∂xj,m
. (3.22)

Now all components of the GP have to be extended to include the additional
derivative information. Following the notation by Martens et al. (2017) intro-
duced all extended formulations will be marked with a plus sign.
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For a better overview, the covariance matrices are repeated here:

K ∈ RN×N , (K)i,j = k(xi,xj), (3.23)

k∗ ∈ RN×1, (k)i = k(x,xi). (3.24)

Here N denotes the number of observations.

Since at each data point all three partial derivatives are observed the covariance
matrices K and k have to be extended to include N(1 + 3) observations. One
entry for the value observation and three entries for the partial derivatives:

K+ ∈ R4N×4N (3.25)

k+∗ ∈ R4N×1 (3.26)

For a better understanding the matrix K+ is split into 4× 4 sub matrices, where
the covariances and mixed covariances are interleaved. The indices i and j de-
note the respective sample numbers for each observed contact, comprised of
observed valued and the three observed partial derivatives while n and m de-
note the index within the sub matrix.

((K+)i,j)m,n =



cov(f(xi), f(xj)) m = 0, n = 0

cov
(
f(xi),

∂f(xj)

∂xj,m

)
m > 0, n = 0

cov
(
∂f(xi)
∂xi,n

, f(xj)
)

m = 0, n > 0

cov
(
∂f(xi)
∂xi,n

,
∂f(xj)

∂xj,m

)
m > 0, n > 0

(3.27)

By replacing the covariances with the respective kernels from equations (3.20)
through (3.22) the full sub matrix K+

i,j is given by

K+
i,j =



k(xi,xj)
∂k(xi,xj)

∂xj,1

∂k(xi,xj)

∂xj,2

∂k(xi,xj)

∂xj,3

∂k(xi,xj)

∂xi,1

∂2k(xi,xj)

∂xi,1∂xj,1

∂2k(xi,xj)

∂xi,1∂xj,2

∂2k(xi,xj)

∂xi,1∂xj,3

∂k(xi,xj)

∂xi,2

∂2k(xi,xj)

∂xi,2∂xj,1

∂2k(xi,xj)

∂xi,2∂xj,2

∂2k(xi,xj)

∂xi,2∂xj,3

∂k(xi,xj)

∂xi,3

∂2k(xi,xj)

∂xi,3∂xj,1

∂2k(xi,xj)

∂xi,3∂xj,2

∂2k(xi,xj)

∂xi,3∂xj,3


(3.28)
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while the full matrix K+ can be constructed from the sub matrices

K+ =


K+

1,1 . . . K+
1,N

... . . .

K+
N,1 K+

N,N

 (3.29)

Similarly the covariance vector k+∗ between a test point and the observe sam-
ples can be extended, using the same indexing notation:

((k+∗)i)m =

{
cov(f(x), f(xj)) m = 0

cov
(
f(x),

∂f(xj)

∂xj,m

)
m > 0

(3.30)

The extended value vector y+ is given by

((y+)i)m =

{
f(x) m = 0
∂f(xi)
∂xi,m

m > 0
(3.31)

by inserting the 0-value observations and the normal observations from Equa-
tion 3.17 and Equation 3.18 the extended value vector can be written as

y = (0, n1,1, n1,2, n1,3, 0, n2,1, n2,2, n2,3, . . . )
T . (3.32)

By solving the linear system

(K+ + σ2
nI)w+ = y+ (3.33)

w+ = (K+ + σ2
nI)−1y+ (3.34)

the extended weight vector can be obtained, where weights for values and par-
tial derivatives are alternated:

w = (w1,0, w1,1, w1,2, w1,3, w2,0, w2,1, w2,2, w2,3, . . . )
T (3.35)

Finally, the estimated ISP f ∗(x) can be computed as:

f ∗(x) = k+∗y+ =
N∑
i=1

(
wi,0k(x,xi) +

3∑
n=1

wi,n
∂k(x,xi)

∂xn

)
. (3.36)
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3.2.3 Covariance Functions

In the literature, two different radial basis kernel functions have been proposed
to be used with GPIS: the standard squared exponential covariance function
and the thin plate covariance function from the original GPIS publication by
Williams and Fitzgibbon (2007). A radial basis function kRBF is a function de-
fined on two vectors xi and xj , where the function only depends on the distance
between the vectors:

kRBF (xi,xj) = kRBF (‖xi − xj‖) . (3.37)

Therefore, the function is stationary

kRBF (xi,xj) = kRBF (xi + a,xj + a) (3.38)

and symmetric
kRBF (xi,xj) = kRBF (xj,xi) . (3.39)

In practice, this can be exploited to reduce the amount of derivatives that have
to be computed since

∂k(xi,xj)

∂xi,n
= −∂k(xi,xj)

∂xj,n
(3.40)

In the following, the partial derivatives for the squared exponential kernel and
the thin plate kernel are derived.

The squared exponential kernel is given by

kSE(xi,xj) = exp

(
−1

2

‖xi − xj‖2
σ2

)
. (3.41)

The partial derivatives are

∂kSE(xi,xj)

∂xi,m
= − 1

σ2
(xi,m − xj,m)kSE(xi,xj) (3.42)

∂2kSE(xi,xj)

∂xi,n∂xj,m
=


1
σ4 (σ2 + (xi,m − xj,m)2) kSE(xi,xj) n = m

1
σ4 (xi,m − xj,m)(xi,n − xj,n)kSE(xi,xj) n 6= m

(3.43)

The thin plate kernel is given by

kTP (xi,xj) = 2d3 − 3Rd2 +R3 (3.44)
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with d = ‖xi − xj‖ and R = maxi,j‖xi − xj‖. The partial derivatives are

∂k(xi,xj)

∂xi,n
= 6(xi,n − xj,n)(R + d) (3.45)

∂2k(xi,xj)

∂xi,n∂xj,m
=

 6(R + d) +
6(xi,n−xj,n)2

d
n = m

6(xi,n−xj,n)(xi,m−xj,m)

d
n 6= m

(3.46)

3.2.4 Comparison

The benefits of adding normal observations will be illustrated using 2D and
3D examples. Contacts are sampled from a ground truth model while the sur-
faces estimates provided by GPIS with and without derivative information are
compared. The four ground truth models include:

• a 2D flat surface,

• a 2D corner,

• a 2D stair structure with two steps,

• and a 3D cube.

In case of the flat surface three contacts are sampled on the surface. For the
reconstruction using GPIS, an inner point inside of the object is assumed to be
below the sampled surface points. The resulting GPIS surface estimate resem-
bles and oval shape and can be seen in Figure 3.11 on the left side of the top
row. When the contact normals are included as derivative information of the
Gaussian process the surface estimate can match the ground truth, as shown
on the right side of the top row in the figure.

The corner example illustrates a situation that is common during the explo-
ration process. A surface is explored and three contact points have been gath-
ered. However, the surface is not limitless and has a sharp edge, therefore the
next acquired contact point has a normal perpendicular to the other contacts.
The GPIS estimate without normals underestimates the size of the object, while
the GPIS estimate with normal information extrapolates the object’s surface, as
shown in Figure 3.11 (middle).

In the stair example, the GPIS estimate without normals fails to estimate the
surface of the stairs, while the GPIS estimate with surface normals can represent
the stair structure and extrapolates in unseen regions. While the fine details
of the convex and concave stair corners are smoothed over, the local surface
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Figure 3.11: Comparison of the original GPIS formulation (left) and the ex-
tended formulation including surface normals (right).

orientation at the contact points is reproduced according to the ground truth
object, as shown in Figure 3.11 (bottom).

A similar reconstruction behavior can be observed for 3D objects. In Figure 3.12
the GPIS reconstruction with and without normals is compared at the example
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of a 3D cube. When normals are included, the estimated surface extrapolates
more accurately in unseen regions leading to smaller reconstruction errors at
the edges of the object.

(a) GPIS without normals (b) GPIS with normals (c) Ground truth

Figure 3.12: Comparison of GPIS surface estimation with and without normals.
The contacts on the object’s surface are displayed in blue. The re-
construction error at the edges of the cube are shown as color-
coded lines. Green indicates a small error whereas red corresponds
to a large error. Images taken from Ottenhaus et al. (2018b), © 2018
IEEE.

The addition of normals to the GPIS process has several key advantages:

• Improved surface orientation: The orientation of the estimated surface
conforms to the ground truth surface orientation.

• Improved interpolation: Without normals GPIS tends to remove edges
by connecting neighboring contact points with a smooth surface. The re-
construction near edges and corners is improved by including normals,
see Figure 3.12a and Figure 3.12b.

• Improved extrapolation: The addition of normals allows GPIS to extrap-
olate the surface in unknown regions, see Figure 3.11.

• Less hyper-parameters: The original formulation of GPIS requires addi-
tional points to constrain the value of the Gaussian process inside and
outside of the object. These points have to be chosen carefully to en-
sure that the resulting GPIS estimate resembles the underlying object.
The added normals introduce derivative information, which automati-
cally constrains the value of the Gaussian process, thereby eliminating
the need for additional points.
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• Higher information density: The added surface normals increase the in-
formation per contact. Therefore, the object’s surface can be estimated to
a higher level of detail using the same number of exploration actions.

Adding normal observations to GPIS clearly benefits the surface model in sev-
eral ways. Therefore, the extended formulation of GPIS including surface nor-
mals will be used in the remainder of this work.

3.3 Selection of the Next-Best-Touch

Starting from the requirements an efficient exploration algorithm should max-
imize the information gained per exploration action while the cost to perform
the exploration actions should be minimized. In real world scenarios these
goals are often contradictory, i.e. actions with low cost will not acquire much
new information while high information gain actions have high execution costs.
Therefore, it is desirable to maximize the gained information (∆information,∆I)
in relation to the cost (∆cost,∆C), as expressed in Equation 3.47.

Maximize
∆information

∆cost
=

∆I

∆C
(3.47)

The information gain is defined using the ground truth model and the already
acquired contacts. For each point m on the ground truth model M the state
of exploration is defined using the already acquired contact points ci ∈ Cn,
where Cn is the set of contacts after n exploration steps. A point m is considered
explored if any acquired contact point is within a certain radius r. The state of
exploration en(m) is given by

en(x) =

{
1 mini‖x− ci‖ < r , ci ∈ Cn
0 otherwise .

(3.48)

The overall explored surface En after n exploration steps can be calculated as

En =

∫
m∈M

e(m) . (3.49)

The information gain ∆In is given by the difference between the explored sur-
face at exploration step n and the explored surface at the previous exploration
step n− 1.

∆In = En − En−1 (3.50)
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The cost for each exploration step is quantified by the distance the robotic fin-
gertip has to cover to execute each exploration action. Let the trajectory of ex-
ploration action n from the previous contact cn−1 to the current contact cn be
given by Tn(τ) with τ ∈ [0, 1]. The trajectory starts at the previous contact and
ends at the current contact.

Tn(0) = cn−i (3.51)

Tn(1) = cn (3.52)

The cost ∆Cn can be defined as the path length of the trajectory

∆Cn =

∫ 1

0

∥∥∥∥∂T (τ)

∂τ

∥∥∥∥ dτ . (3.53)

Maximizing the fraction in Equation 3.47 can be achieved by balancing the
amount of information gained with the costs per exploratory action.

3.3.1 Gaussian Variance based Exploration

During the exploration of an unknown object, the ground truth surface of the
object is not available. Therefore, possible candidates for exploration can only
be chosen based on the current surface estimate of the object. In the context
of haptic exploration, GPIS is widely used to estimate the surface of the object
(Dragiev et al., 2011; Bjorkman et al., 2013; Sommer et al., 2014; Matsubara and
Shibata, 2017; Yi et al., 2016). The GPIS potential is given by the mean value of
a Gaussian process f(x) : R3 → R defining the implicit surface potential (ISP)

f(x) = k∗(x)T (K + σ2I)−1y , (3.54)

where K is the covariance matrix, and k∗ is the covariance vector between a
query point x and the observed sample locations xi

(K)i,j = k(xi,xj) (3.55)

(k∗)i(x) = k(x,xi) . (3.56)

Besides the mean value f the Gaussian process also yields a variance Q, that
can be evaluated for any query point x.

Q(x) = k(x,x)− k∗T (K + σ2I)−1k∗ (3.57)
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This variance is used by Bjorkman et al. (2013) and Yi et al. (2016) to select the
next potential target for exploration.

A variance-based exploration will be illustrated using a synthetic 1D example.
The ground truth function f(x) is plotted in Figure 3.13 and given by

f(x) = cos(4x)e−
x2

32 . (3.58)
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Figure 3.13: Synthetic 1D ground truth function.

The first exploration target t1 is chosen to be at x = 0. The width of the Gaussian
kernel is chosen as σ = 1

2
. The exploration procedure is given by

1. Sample ground truth function at ti.

2. Update function estimate using the Gaussian process.

3. Calculate mean and variance.

4. Select next target ti+1 to be at the location of the highest variance and
repeat.

Following this exploration scheme the algorithm proceeds to explore the ground
truth function over 30 steps. The resulting mean and variances after step 1,5,10
and 30 are shown in Figure 3.14, where the variance is displayed above and
below the mean. When using the Gaussian kernel function the variance Q is
bounded to [0, 1]. The variance Q is small when evaluated in proximity of an
explored point, while Q approaches 1 when evaluated far away from al ob-
served samples. This can be seen after the initial contact occurs (Figure 3.14,
top left): the variance is small around the sample point, but remains high in
other areas. The next exploration target is chosen to be as far away from the ini-
tial observed point as possible, thereby maximizing the information gain and
minimizing the overall variance.
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Figure 3.14: Variance-based exploration example: Mean and variance of the
Gaussian process estimate during the exploration process after ex-
ploration steps 1,5,10 and 30.

For comparison, a simple linear exploration strategy is also be considered. Here
the next exploration target is always chosen to be right of the previous sample
point, with a constant offset. the resulting exploration covers the ground truth
function from left to right, as shown in Figure 3.15.

−4 −2 0 2 4
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

Mean

Samples

Variance

−4 −2 0 2 4
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

Mean

Samples

Variance

−4 −2 0 2 4
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

Mean

Samples

Variance

−4 −2 0 2 4
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

Mean

Samples

Variance

Figure 3.15: Linear exploration example: Mean and variance of the Gaussian
process after exploration steps 1,5,10 and 30.

When comparing the function estimates and variances in Figure 3.14 and Fig-
ure 3.15 the variance-based strategy seems to decrease the variance of the Gaus-
sian process faster. In addition, the estimated mean approaches the ground
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truth faster. This observation can be quantified by comparing the mean vari-
ance and the root mean squared error (RMSE) between the estimate and the
ground truth for both strategies. The mean variance is given by

Qi =
1

b− a

∫ b

a

Qi(x)dx (3.59)

while the RMSE is given by

RMSEi =

√
1

b− a

∫ b

a

‖f(x)− g(x)‖2dx . (3.60)
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Figure 3.16: Comparison of mean variance and root mean squared error for the
variance-based and linear exploration strategy in the 1D case.

In Figure 3.16 the mean variance and the RMSE are given for each exploration
step. Using the variance-based exploration strategy, the variance of the Gaus-
sian process drops quickly in the beginning, compared to the linear strategy.
This is to be expected, since the variance-based exploration aims to decrease
the variance of the GP as quickly as possible. When comparing the estimation
error after each exploration step the results are different. In the beginning, the
linear strategy has lower RMSE than the variance-based strategy, until it is sur-
passed after approximately 15 exploration steps. Another interesting observa-
tion is that the variance of the GP does not necessarily correlate closely with
the RMSE, in the case of the variance-based strategy. While the variance drops
quickly below 50 % after 7 exploration steps, the RMSE remains high until 15
exploration steps have been performed. This illustrates that variance reduction
does not always imply RMSE reduction. Furthermore, optimizing only the re-
duction of variance neglects the path costs, as Matsubara and Shibata (2017)
have also stated in their work: ”We propose a novel criterion in active touch
point selection for fast estimation, which considers both uncertainty of shape
estimation and travel cost to touch.“
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3.3.2 Information Gain Estimation Function

Following the idea of Matsubara and Shibata (2017) in this work, an approach
is developed to explore an unknown object by maximizing the newly gained
information while considering execution cost. The estimated information gain
is modeled using Gaussian kernels, similar to the Gaussian variance based ap-
proaches. During the exploration, possible exploration candidates are gener-
ated using the estimated surface of the object. To rate the exploration candi-
dates, four different goals are considered:

1. Uncertainty: Each exploratory action should yield the maximum amount
of new information.

2. Locality: Prefer local targets to distant ones.

3. Travel cost: Consider the movement of the fingertip during an explo-
ration action.

4. Rotation cost: Minimize the rotation of the fingertip during an explo-
ration action.

The first goal drives the exploration process to unknown regions, to gain as
much new information per contact as possible. To counterbalance this greedy
information maximization the other goals consider the expected cost of the ex-
ploration actions.

Each exploration goal is quantified by a corresponding metric (Ψ1 . . .Ψ4). Each
metric yields a high value if a given candidate should be preferred and returns
a low value if the given candidate is of less interest. All metrics are evaluated
separately, based on

• the current fingertip location r,

• the set of all previous contacts ci ∈ C,

• a candidate target s on the estimated surface S of the object.

Each contact ci is comprised of a position component ci,p and a surface normal
component ci,n. In addition, candidate targets are comprised of a position sp

and normal sn. The full set of used symbols can be found in Table 3.1.

The first metric Ψ1 aims to explore the object by preferring distant candidates
and by penalizing candidates that are close to already explored contact points.
In fact, Ψ1 is zero when evaluated directly at a previously observed contact
point ci. This metric prefers candidates in previously unseen regions of the sur-
face estimate. Acquiring new contacts in these unseen regions often improves
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the surface estimate and reduces the uncertainty of the surface estimate.

Ψ1,c(s, c) := 1− exp

(
−‖s− c‖2

σ12

)
. (3.61)

The second metric Ψ2 prefers candidates in the neighborhood of already ac-
quired contact points. This is achieved using a Gaussian kernel with non-zero
mean µ3, preferring candidate points that have an approximate distance of µ3

to previously explored contacts.

Ψ2,c(s, c) := exp

(
−(‖s− c‖ − µ3)

2

σ32

)
. (3.62)
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Figure 3.17: Exemplary rating values according to the metrics Ψ1 and Ψ2. Here
one contact point is assumed at location 0, while the scaling factors
σ and µ are set to 1. Top: Individual values of Ψ1 and Ψ2. Bottom:
Product of Ψ1 and Ψ2.

The characteristics of Ψ1 and Ψ2 are visualized in Figure 3.17 using one exam-
ple contact at location 0. The singular use neither Ψ1 nor Ψ2 leads to a desirable
outcome. The metric Ψ1 penalized the candidates close to 0, however the max-
imum value of Ψ1 will only be reached at infinity. When Ψ1 is combined with
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Ψ2 via multiplication, the shape of the rating function has the desired shape:
Candidate targets at approximately distance µ3 are preferred while candidates
near the explored location 0 are penalized.

So far Ψ1,c and Ψ2,c have been defined per contact. To include all previous con-
tacts into the rating metrics different aggregate functions are employed. In case
of Ψ1,c, the minimum value is used to find the overall value of Ψ1

Ψ1(s) = min
c∈C

Ψ1,c(c, s) . (3.63)

The reason is that Ψ1,c primarily penalized candidates near already explored
contacts, therefore the minimum as an aggregate penalizes candidates near any
already explored contact.

In case of Ψ2,c the overall metric should return a measure that describes if a
candidate is within the desired range to several contacts. Therefore, a sum is
used as an aggregate function

Ψ2(s) =
∑
c∈C

Ψ2,c(c, s) . (3.64)

The third metric Ψ3 implements a travel cost function by measuring the length
of the planned trajectory Tr,s(τ) from the current position r to the candidate
touch point s. The argument of the trajectory τ is valid within the range [0, 1]

with Tr,s(0) = r and Tr,s(1) = s. The metric Ψ3 serves two purposes: it reduces
the time spent moving the end-effector from contact to contact and it leads to
a local exploration where the estimated surface is not likely to diverge greatly
from the actual object.

Ψ2(s) :=
1

Len (Tr,s(τ))
, (3.65)

where the length of the path Tr,s from r to s is calculated as the arc length of
the curve

Len(Tr,s(τ)) =

∫ 1

0

∥∥∥∥∂Tr,s∂τ

∥∥∥∥ dτ . (3.66)

Combining the metrics Ψ1 through Ψ3 leads to an exploration scheme that fol-
lows roughly an outward spiral, as can be seen in Figure 3.18.

The fourth metric Ψ4 aims to limit the rotation of the fingertip to execute an
exploratory action. To this end, a measurement is used that yields a value of 1

if the predicted rotation is zero. The returned value of Ψ4 drops as the predicted
rotation angle increases. The metric is implemented using an angular kernel, as
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Figure 3.18: Exemplary exploration of a plane. The combination of the explo-
ration goals Ψ1 through Ψ3 leads to an exploratory path that fol-
lows an outward spiral. In green areas, the predicted information
gain is high; in red areas, it is low. Image taken from Ottenhaus
et al. (2018a), © 2018 World Scientific Publishing Co Pte Ltd.

described in (Rasmussen and Williams, 2006, chapter 4.2.3).

Ψ4(s) := exp

(
−2 sin2

(
1
2

arccos(Rz · sn)
)

σα2

)
(3.67)
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Figure 3.19: The metric Ψ4 is implemented as an angular kernel.

The metrics Ψ1 through Ψ4 have been designed to be combined via multiplica-
tion. Therefore, the overall metric is given by

Ψ =
4∏

n=1

Ψn . (3.68)

The algorithm using this overall metric is given in Algorithm 3. The four met-
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rics are evaluated for each possible candidate target on the estimated surface S
and the combined rating for each candidate is returned. To reduce the execu-
tion time of the rating function candidate targets are only considered within an
R0 = 5 cm radius. Furthermore the surface S is discretized using the marching
cubes algorithm by Lorensen and Cline (1987) using a grid length of 5 mm.

Algorithm 3 Calculation of the Information Gain Estimation Function metrics
1: Input S, C, r, vn
2: for s ∈ S ∧ ‖s− r‖ < R0 do
3: Ψ1(s)← minc Ψ1(s, c) . see Equation 3.61
4: Ψ2(s)←∑

c Ψ3(s, c) . see Equation 3.62
5: Ψ3(s)← Len (Tr,s)

−1 . see Equation 3.65
6: Ψ4(s)← 1− exp

(
−2 sin2(1

2
α(Rz, sn))σ−2α

)
. see Equation 3.67

7: end for
8: return Ψ1Ψ2Ψ3Ψ4 . see Equation 3.68

3.3.3 Trajectory Generation

The trajectory generation should yield a function describing the path from the
current fingertip location to a potential exploration candidate. This trajectory
function Tvecr,s(τ) is defined for τ ∈ [0, 1] and should meet the functional re-
quirements given in subsection 3.1.1. These requirements will be repeated be-
low and translated to constraints. Additionally a qualitative requirement is
added that focuses on runtime efficiency.

REQ 1: The trajectory should start at the current location of the fingertip r.

Tr,s(0) = r (3.69)

REQ 2: The trajectory should end at the candidate target position.

Tr,s(1) = sp (3.70)

REQ 3: The initial direction of the trajectory should be inverse to the velocity
vector just before the contact occurred.

∂Tr,s(0)

∂τ
= −kvn , k ∈ R+ (3.71)

where k is a positive scaling factor that determines how quickly the trajectory
can deviate from the initial direction. Small values of k allow a quick deviation
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while large values of k require the trajectory to follow the initial velocity vector
longer.

REQ 4: The trajectory should approach the candidate s ∈ S in the direction of
the estimated normal sn at the selected candidate position sp.

∂Tr,s(1)

∂τ
= −ksn , k ∈ R+ (3.72)

where k is the same scaling factor as in REQ 3.

REQ 5: The trajectory should be smooth, i.e. differentiable.

∂Tr,s(τ)

∂τ
exists ∀ τ ∈ [0, 1] (3.73)

REQ 6: The generation and evaluation of Tr,s should be computationally effi-
cient.

As stated previously, a Bezier curve meets requirements REQ 1 through REQ 5.
The choice of parameters and the derivation of the Bezier control points will be
explained in the following.

The definition of a cubic Bézier is given in Equation 3.74.

b(τ) = (1− τ)3b0 + 3τ(1− τ)2b1 + 3τ 2(1− τ)b2 + τ 3b3 (3.74)

The requirements REQ 1 through REQ 4 can be expressed as
b(0)

b(1)
∂b(0)
∂τ
∂b(1)
∂τ

 =


r

sp

−kvn
−ksn

 (3.75)

Since b(0) = b0 and b(1) = b3 REQ 1 and REQ 2 can be met by setting b0 = r

and b3 = s.

To meet REQ 3 and REQ 4 first ∂b
∂τ

has to be computed

∂b

∂τ
= −3b0(1−x)2+3b1((1−x)2−2x(1−x))−3b2(x

2−2x(1−x))+3b3x
2 . (3.76)
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Evaluating ∂b
∂τ

(0) and ∂b
∂τ

(1) yields

∂b

∂τ
(0) = 3(−b0 + b1) and (3.77)

∂b

∂τ
(1) = 3(−b2 + b3). (3.78)

By inserting the calculated values for b(0), b(1), ∂b(0)
∂τ

and ∂b(1)
∂τ

into Equation 3.75
all four control points of the Bézier curve are fully constrained

b0

b3

3(−b0 + b1)

3(−b2 + b3)

 =


r

sp

−kvn
−ksn

 (3.79)

Solving the equation system results in the control points
b0

b1

b2

b3

 =


r

r − 1
3
kvn

sp + 1
3
ksn

sp

 (3.80)

To scale the shape of the Bézier curve with the distance of r and s the scaling
parameter k is chosen to be

k = ‖r − sp‖ (3.81)

By using a short hand notation of

T (τ) = bezier(b0, b1, b2, b3) (3.82)

the overall trajectory function is then given by

T (τ) = bezier(r, r − 1

3
vn‖r − sp‖, sp +

1

3
sn‖r − sp‖, sp) (3.83)

REQ 5 is met, since the derivative of the Bézier equation exists for all τ . Further-
more, REQ 6 is met, since the Bézier equation is given by a simple polynomial
function.

The orientation of the fingertip is calculated by a linear interpolation between
the start Rs and the target orientation Rt. The target orientation is calculated so
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that the fingertip is aligned with the surface normal at the target.

TR(τ) = (1− τ) ∗Rs + τRt (3.84)

During the exploration, the trajectory is followed to the chosen target. If a con-
tact occurs before the end of the trajectory, the contact is added to the set of con-
tacts and the exploration process continues normally. If no contact occurs, the
trajectory is extended by a small amount ∆m to compensate for small inaccu-
racies in surface estimation. However, if the surface estimate deviates strongly
from the actual object’s surface a different strategy is necessary. In this case, a
new trajectory has to be generated that guides the fingertip back to the object
surface. This new trajectory starts at the current location r and ends at the pre-
vious contact location cp. Furthermore, the requirements for the velocities at the
start and target are modified, so that the velocity magnitude and direction of
the fingertip is continuous. In addition, the previous contact location cp is ap-
proached in the negative direction of the contact normal−cn. The requirements
can be expressed as 

T (0)

T (1)
∂T (0)
∂τ

∂T (1)
∂τ

 =


r

cp

vn‖r − cp‖
−cn‖r − cp‖

 (3.85)

T (τ) = bezier(r, r +
1

3
vn‖r − cp‖, cp −

1

3
cn‖r − cp‖, cp) (3.86)

The requirements from Equation 3.85 lead to the parametrization of the cubic
Bezier in Equation 3.86. The signs of the parameters defining the control points
b1 and b2 are flipped compared to the signs in Equation 3.83. This ensures that
contact with the object is always re-established, since the target position is the
last contact point and the approach direction is inverted, resulting in an ap-
proach from the underside of the surface.

An example is given in Figure 3.20 where the already acquired contacts are
shown as blue boxes and the contact normals are shown as blue lines. The sur-
face estimate is rendered in gray and the actual object is yellow. The chosen
exploration target, sampled from the surface estimate (Figure 3.20a) does not
lie on the actual object’s surface and thus the calculated trajectory misses the
object. The previous trajectory (red line in Figure 3.20b) is continued (blue line
in Figure 3.20b) to re-establish contact with the object by approaching the pre-
vious contact. After contacts have been established on the top of the object, the
surface estimate is updated (Figure 3.20c).
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(a) Incorrect surface esti-
mate. (b) Actual object.

(c) Updated surface esti-
mate.

Figure 3.20: Example of trajectory continuation to restore contact with the ob-
ject.

3.4 Maximizing the Information Gain per Contact

In the previous sections, the benefit of adding local surface orientation in the
form of normal information to the surface estimation has been shown. This sec-
tion describes the approach to acquire surface orientation using a newly devel-
oped prototype sensor. This sensor allows the direct measurement of surface
orientation as well as contact forces. This is achieved by the combination of
an Inertial Measurement Unit (IMU) (BNO055, Bosch Sensortec) and a pres-
sure sensor (BMP280, Bosch Sensortec). Both sensing elements are arranged as
shown in the schematic drawing in Figure 3.21a. The IMU provides 3D linear
acceleration measurement, 3D rotational acceleration measurement and a 3D
magnetic sensor, resuling in a 9-axis measurement system. The IMU was orig-
inally developed for use in mobile devices and therefore integrates on-board
signal processing and signal fusion methods. In particular an absolute 3D ori-
entation is offered, which can be accessed via a digital interface, reducing the
necessary signal processing on the host system. The pressure sensor operates
using a piezo-resistive sensing element and provides absolute barometric pres-
sure measurements with±1 hPa absolute accuracy and±0.12 hPa relative accu-
racy. The measured pressure is also available via a digital interface. Therefore,
no external analog signal processing is necessary and both sensors can be con-
nected directly to a common microprocessor.

In order to convert the air pressure sensor to a tactile sensing element the sen-
sor is covered in a layer of flexible material, similar to the approach described
by Tenzer et al. (2012). Tenzer et al. used polyurethane (PU) to completely fill
in the opening of the pressure sensor, allowing the PU to transmit any external
forces directly to the underlying sensing element. However, the original sen-
sor used by Tenzer et al. was no longer available, as it reached the end-of-life.
The polyurethane application process had to be adapted, since most recent inte-
grated pressure sensors feature a much smaller opening, which does not allow
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(a) Conceptual drawing (b) Sensor at fingertip

Figure 3.21: The sensor system consists of an IMU and a pressure sensor that is
covered in polyurethane. The conceptual drawing (left) shows the
structure of the sensor. For experimental evaluation, the sensor is
mounted at the fingertip of the humanoid robot ARMAR-III (right).
Images taken from Ottenhaus et al. (2018b), © 2018 IEEE

to be filled with PU.

While the pressure sensor is placed in a mold, the polyurethane is poured on
top until the desired covering height is achieved. Due to surface tension, the
polyurethane cannot flow through the opening of the pressure sensor, since
this opening has a diameter of only 0.3 mm. A small amount of residual air re-
mains within the pressure sensor as the opening is sealed with polyurethane.
While the polyurethane is still in the liquid phase the surrounding air pres-
sure is reduced to about 0.9 bar. The lower surrounding pressure forces the
residual air from within the pressure sensor out. As the air expands into the
polyurethane a small bubble forms. The polyurethane hardens while the air
pressure is kept constant at 0.9 bar. After the polyurethane has cured, a part
of the polyurethane was carved out, leaving a small raised section behind as
displayed in Figure 3.22.

The operation principle of the sensor is as follows: When an external force is ap-
plied, the polyurethane is compressed. This compression leads to an increase in
pressure within the air bubble, which is measured by the pressure sensor. When
the sensor contacts a surface, the contact force is distributed to the raised section
of the polyurethane on the sensor leading to a higher pressure and therefore in-
creasing the sensitivity of the sensor.

The dimensions of the combined sensing element are 18 mm × 18 mm × 8 mm

(width, length, height). The width and length are mainly determined by the
size of the pressure sensor circuit board. The height divides out into the IMU
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Figure 3.22: Side view (top) and bottom view (bottom) of the combined sensor.
The raised section of the polyurethane increases the sensitivity of
the sensor.

with circuit board (2 mm), the pressure sensor with circuit board (2 mm) and
the polyurethane cover (4 mm). The sensor was attached to the index finger of
ARMAR-III using a flexible coil spring as displayed in Figure 3.21b.

When the sensor is pressed against an inclined surface the coil spring allows for
self-alignment of the sensor, as the contact force increases. The pressure sensor
can then measure this contact force. If a given force threshold is surrpassed, it
can be assumed that the sensor has fully aligned with the surface and the abso-
lute orientation of the IMU can be queried to estimate the surface orientation.

3.5 Grasp Synthesis

Using the exploration strategy with the surface orientation sensor from the pre-
vious sections a set of oriented contact points can be acquired from an unknown
object. From this contact set, the surface of the object can be estimated using
Gaussian Process Implicit Surfaces. This surface estimate is converted to a mesh
model using the marching cubes algorithm introduced by Lorensen and Cline
(1987). For grasp planning two different grasp planners were considered.

The first grasp planner is a surface based grasp planner provided by Simox, de-
veloped by Vahrenkamp et al. (2013). The mesh model of the estimated surface
is provided to the grasp planner and several grasp candidates are generated.
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All generated grasp candidates are considered stable according to the calcu-
lated ε-metric. However, not all of the calculated candidates will result in a
stable grasp when executed by the robot. Especially the second candidate in
Figure 3.23 will probably fail, since the fingers will slip off the object.

Figure 3.23: Grasp candidates generated by the surface based grasp planner.

The second grasp planner is the skeleton-based grasp planner by Vahrenkamp
et al. (2018). This grasp planner first extracts a mean curvature skeleton from
the object mesh. Thereafter, several grasp candidates can be generated that are
aligned with the generated skeleton. The grasp candidates generated by the
skeleton-based grasp planner are stable for the test object, as can be seen in
Figure 3.24. Therefore, the grasp synthesis was performed using the skeleton-
based grasp planner.

Figure 3.24: Grasp candidates generated by the skeleton-based grasp planner.

The use of a general grasp planner allows to easily exchange the surface esti-
mate mesh model and the hand model, as shown in Figure 3.25. Both surface
estimates were acquired via haptic exploration using the tactile sensor and the
humanoid robot ARMAR-6. Grasp candidates were then generated for the AR-
MAR-III hand and the ARMAR-6 hand.

3.6 Evaluation

The evaluation of the tactile exploration is split into different parts. First, the
exploration strategy, proposed in section 3.1, will be evaluated in simulation
by comparing different next-next-touch approaches. To this end a set of 180 ob-
jects, taken from the KIT and YCB object sets (Kasper et al., 2012; Calli et al.,
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Figure 3.25: Grasp candidates for the estimated surfaces for the ARMAR-III and
ARMAR-6 hands.

2015) is explored in a simulated environment. Thereafter, the proposed tactile
sensor (see section 3.4) is used to explore objects, while the sensor is attached
to the humanoid robots ARMAR-III and ARMAR-6, to gather oriented contact
points from the objects. Finally the acquired contact points will be used to es-
timate the surface of the objects using the extended formulation of Gaussian
Process Implicit Surfaces (GPIS), presented in section 3.2. This surface estimate
is the basis fo the grasp candidate synthesis (see section 3.5).

3.6.1 Evaluation of the Next-Best-Touch Strategy

To evaluate the next-best-touch strategy a robotic fingertip is placed into a sim-
ulated environment, where one of the objects from the object set is present. The
fingertip can move freely around the object and is controlled in velocity mode.
When the tip of the finger collides with the object, a touch event is simulated
by extracting the touch position and surface normal at the contact location. To
guide the fingertip the exploration strategy described in section 3.1 is used.
Before the exploration starts, one of three strategies for selecting the next-best-
touch is chosen:

• Recent publications described in the state-of-the art suggest using the un-
certainty of the surface estimate to select the exploration target (Matsub-
ara and Shibata, 2017). To this end the variance of the underlying Gaus-
sian process is evaluated. In the following, this approach will be called
GP-V.

• The second strategy is the proposed Information Gain Estimation Func-
tion to rate the potential next-best-touch locations. This approach will be
called IGEF in the following.

• To establish a common baseline a random exploration will also be per-
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formed, labeled RND. Here the next exploration target is sampled ran-
domly from the current estimated surface.

All three strategies have in common that the next exploration target is selected
from the current surface estimate, following an update-surface, select-exploration-
target and explore cycle, which is common in the haptic exploration literature
(Dragiev et al., 2011; Bjorkman et al., 2013; Matsubara and Shibata, 2017; Yi
et al., 2016).

Exploration of Simple Shapes

The three strategies will first be compared using simple geometric shapes to
give an understanding about the characteristics of each strategy and the whole
exploration process. Throughout the evaluation, several 3D views of the explo-
ration will be provided. All views share the same color-coding and markers,
which are explained in Table 3.4.

Marker / Color Description

Small blue box & blue line Explored contact position with normal
Curved blue line Exploration trajectory

Gray surface Surface estimate
Yellow object Ground truth object

Color coded (red to green) boxes Rating of potential exploration targets by
the next-best-touch strategy. Green corre-
sponds to a high rating while red denotes
a low rating.

Table 3.4: Overview of used colors and markers

First, a flat plane is explored, where the space from which possible exploration
targets are selected is limited. The initial contact is selected to be in the cen-
ter. Further exploration targets are chosen according to the selected strategy.
In Figure 3.26 the exploration is depicted for each next-best-touch strategy. The
GP-V approach selects the next target to be far away from already explored con-
tact points, thereby maximizing the information gained per contact. The IGEF
based strategy selects the next exploration target to be close to the current po-
sition, resulting in a spiraling exploration pattern. The RND strategy chooses
the target randomly. The path between the contacts follows the Bézier curves,
described in subsection 3.3.3. In this simple example, the path length is closely
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related to the distance of the chosen target from the current position of the fin-
gertip. The right column of the figure shows the complete path covered by the
exploration. Using the GP-V and the random strategy results in longer path
lengths per contact, while the IGEF strategy generates short paths.

Initial state Intermediate
State

Final state

GP-V

IGEF

RND

Figure 3.26: Comparison of different next-best-touch strategies at different ex-
ploration stages. From left to right the number of explored contacts
increases. The color-coding of the plane denotes the rating accord-
ing to the strategy.

The second example covers the exploration of a sphere. The GP-V approach
quickly covers the surface by taking large steps while the IGEF strategy ex-
plores the surface in a spiral pattern. The covered exploration path is shown in
Figure 3.27.

GP-V IGEF

Figure 3.27: Comparison of the exploration of a sphere.

The final example is the exploration of a cube, as shown in Figure 3.28. The top
row of the figure shows the ground truth object, acquired contacts and the path
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covered by the exploration. The bottom row shows the final surface estimate.
For both strategies, a similar amount of contacts was necessary to achieve com-
parable surface reconstructions, while the path covered by the GP-V approach
is longer than the path taken by the IGEF approach.

GP-V IGEF

Covered
exploration

path

Final
surface
estimate

Figure 3.28: Comparison of the exploration of a cube.

Exploration Termination

During the exploration of an unknown object, the exploration procedure has to
be stopped at one point, to avoid an endless exploration and refinement of the
object’s surface. Therefore the exploration process is executed, until one of two
exploration termination conditions is met:

1. Over X % of the object’s surface is marked as explored.

2. The exploration is stuck and no new information is gathered over 10 suc-
cessive contacts.

To evaluate the first condition, the state of exploration is determined by mark-
ing an area of radius rE on the surface of the ground truth object as explored
around each object. During the evaluation, a value of rE = 2 cm was used. The
exploration was terminated when over 80 % of the object’s surface was marked
as explored. In this evaluation, 80 % were chosen instead of 100 % exploration,
since the exploration of the remaining 20 % can take disproportional amounts
of time to the information gained. This is the case if some disjoint areas of the
object’s surface are still unexplored, while the surface estimate does not cover
these areas, i.e. thin or small structures on the object that have not been touched
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during exploration and are not present in the surface estimate. Finding these
areas can be left to random chance and can thereby distort the exploration re-
sults.

The second condition terminates the exploration if the exploration procedure
is not able to gather any additional information over 10 successive contacts. In
some cases, the chosen exploration target on the estimated surface is far away
from the actual object’s surface. Then the exploration strategy guides the fin-
gertip back to the object’s surface and generates a new contact, which updates
the surface estimate. However, this new contact can be close to existing con-
tacts, resulting in no additionally gained information. Thus, the updated sur-
face estimate is similar to the previous surface estimate and the next chosen
exploration target is similar to the previous exploration target.

Exemplary Exploration

In this section, the exploration algorithm will be performed for the objects

”YCB-Softball“, ”YCB-Banana“ and ”YCB-Tortoise“. The objects are sorted by
surface complexity, starting with the softball, which resembles a sphere.

BananaSoftball Tortoise

Figure 3.29: Objects used in the exemplary exploration.

The softball is explored 100 times using each next-best-touch strategy. An ex-
ample exploration path for the GP-V and IGEF approaches is shown in Fig-
ure 3.30. As the softball is similar to a sphere, the exploration path is similar
to the sphere example. The GP-V approach takes large steps to maximize the
information gain per contact, while the IGEF approach takes smaller steps. The
spiral exploration pattern can be seen on the right of Figure 3.30. While Fig-
ure 3.30 shows one example exploration, the average performance of the explo-
ration approaches is of interest. Therefore, Figure 3.31 shows the exploration
progress for each next-best-touch approach. The explored surface percentage
is plotted over the distance covered. The values for the individual exploration
runs are shown using light colors, while the median is shown as a thick dashed
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line. Here the median was chosen instead of the mean, since some of the explo-
ration runs take much longer to explore the object. In the plot, the exploration
is more efficient, if the respective curve rises more quickly, i.e. more surface
is explored per distance covered. As can be seen the IGEF approach explored
the object more quickly on average than the GP-V or the random approach. In
the beginning, the random approach explores the object faster than the GP-V
approach, while GP-V surpasses the random approach later. The increase of ex-
plored surface is almost linear for the IGEF approach with lower variance than
for the other approaches.

GP-V IGEF

Figure 3.30: Exploration of the object ”Softball“.
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Figure 3.31: Exploration progress for the object ”Softball“.

Examples for the exploration patterns for the ”Banana“ object are shown in Fig-
ure 3.32. The GP-V approach takes large steps while the IGEF approach takes
smaller steps. Here the spiral exploration pattern is not as obvious, due to the
high curvature of the banana in one direction and the elongation in the other
direction. The exploration progress in shown in Figure 3.33. Here the IGEF ap-
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proach explores the object quickly; however, the variance is a bit higher. The
main difference to the softball is that the GP-V approach is on average slower
than the random exploration. However, this is only true for the average, due to
the high variance in the results.

GP-V IGEF

Figure 3.32: Exploration of the object ”Banana“.
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Figure 3.33: Exploration progress for the object ”Banana“.

The exploration patterns for the ”Tortoise“ are shown in Figure 3.34. Again, the
GP-V approach takes larger steps while IGEF takes smaller exploration steps.
The resulting exploration progress shown in Figure 3.35 is similar to the explo-
ration progress of the banana, while the overall exploration takes a bit longer,
since the tortoise has a larger surface area than the banana. Besides the example
exploration path, Figure 3.34 also shows the surface estimate in an intermedi-
ate state and after the exploration has finished. The GP-V approach first covers
all sides of the object, resulting is a rough initial estimate. The final surface es-
timate is similar for both exploration approaches.

The question arising from these results is: ”Why is the GP-V based exploration
slower than the IGEF exploration?“ One possible explanation is that the GP-V
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Figure 3.34: Exploration of the object ”Tortoise“.
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Figure 3.35: Exploration progress for the object ”Tortoise“.

approach chooses exploration targets far away from previous contacts. These
possible exploration targets are always sampled from the estimated surface.
The estimated surface has a high probability of being incorrect if sampled far
away from already explored points. To validate this hypothesis an additional
metric is evaluated. For each exploration action, the predicted contact location
is compared with the actual contact location. The average results for the exam-
ple objects and the next-best-touch approaches are shown in Figure 3.36. As the
figure shows, the distance between the predicted and the actual contact is high
for the GP-V approach and low for the random and the IGEF approaches. The
targets chosen by the GP-V approach are often far away from the actual sur-
face of the object. Therefore, the exploration has to return to the actual object’s
surface, resulting in additional travel cost.

As a result of the exploration of the example object several observations can be
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Figure 3.36: Distance between the predicted contact on the estimated surface
and the actual contact location.

made:

1. The IGEF approach gains more information per distance covered than the
GP-V approach.

2. The final surface estimates are similar for the IGEF and the GP-V ap-
proach.

3. The GP-V approach often chooses exploration targets that are far away
from the actual object’s surface.

In order to evaluate if these observations generalize to all objects from the eval-
uation set the exploration procedure is repeated for all objects.

Quantitative Evaluation

The exploration of the example objects suggests that the IGEF approach can ex-
plore an unknown object more rapidly than the state-of-the-art approach GP-V.
In this section, the proposed IGEF strategy is compared with the state-of-the art
approach GP-V. Furthermore, a common baseline is established by choosing
the exploration target randomly from the current surface estimate. The strate-
gies are compared using objects from the KIT and YCB object sets. Each strategy
is executed 100 times per object, using different initial conditions, like starting
positions. The initial target for exploration is chosen to be the center of mass
of the object. The exploration strategy has no prior knowledge of the object.
The ground truth object is only used to calculate surface contact positions and
contact normals during exploration and to estimate the exploration process ac-
cording to the termination conditions. Each object is explored, until one of the
aforementioned termination conditions is met. Thereafter, different metrics are
evaluated:
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1. Distance covered: The overall path length of all exploratory actions.

2. Overall rotation: The accumulated rotation of the fingertip orientation
during all exploratory actions.

3. Surface RMSE: The Root-Mean-Square Error (RMSE) between the ground
truth mesh and the triangulated estimated surface after the exploration
has finished.

4. Prediction error: The average distance between the predicted contact based
on the estimated surface and the actual contact with the ground truth
mesh.

The distance covered is recorded for each exploration run, when the explo-
ration is complete. The object surface area is plotted over this distance in Fig-
ure 3.37. For each exploration run, one dot is plotted in the figure. Thereafter, a
linear regression is fitted to the data for each strategy. Points on the left of the
graph correspond to better results, while points on the right side correspond
to larger distances. The figure shows that the IGEF strategy outperforms the
GP-V approach in most cases, since the green dots (IGEF) are mostly left of
the orange dots (GP-V). Most of the distances covered by the IGEF approach
follow the linear regression. Furthermore, the average distance traveled is pro-
portional to the object’s surface area. In the case of GP-V, the variance of the
data is higher and the average indicates a higher distance covered to explore
the objects.

The average results for all evaluated metrics are displayed in Table 3.5. Each
row of the table gives the results for one metric, while the columns correspond
to the three strategies. The last column compares the IGEF strategy with the
GP-V approach. For each metric, a lower value is better. As the table shows,
the IGEF strategy outperforms the GP-V strategy in distance covered, overall
rotation of the fingertip and the prediction error. The achieved surface recon-
struction RMSE is similar for both approaches. The last row gives the average
number of contacts, for comparison.

3.6.2 Evaluation of Surface Normal Observations

In the previous sections, the surface estimation was performed using the con-
tact positions and the surface normals. To obtain these surface normals the tac-
tile sensor presented in section 3.4 is used. Two experiments are performed to
evaluate the contact detection and the surface normal sensing of the proposed
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Figure 3.37: Evaluation of the distance covered.

Metric Random GP-V IGEF Avg. Improvement

Avg. distance covered 243 cm 255 cm 117 cm 54%
Avg. overall rotation 2680° 1884° 1383° 27%
Avg. surface RMSE 0.81mm 0.65mm 0.53mm 18%

Avg. prediction error 4.7mm 14.9mm 3.5mm 77%
Avg. number of contacts 58.8 38.0 46.1 -

Table 3.5: Results for the KIT and YCB Object Dataset

sensor. Thereafter, the benefit of adding surface normals is evaluated by com-
paring the surface estimation quality with and without surface normals.

Obtaining Surface Normals using ARMAR-III and ARMAR-6

To evaluate the contact detection and normal sensing capabilities of the tactile
sensor presented in section 3.4 the sensor is mounted at the tip of the index
finger of ARMAR-III. The sensor is then brought into contact with a surface
repeatedly. During the experiment the linear acceleration, the angular deviation
from the initial orientation and the pressure is plotted in Figure 3.38. The sensor
touches the surface seven times during the experiment. During each contact
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Figure 3.38: Comparison of the sensing modalities of the IMU and the pressure
sensor for contact detection. Some contacts can be estimated from
the IMU data whereas all contacts can be reliably derived from the
drift compensated pressure data. Image taken from Ottenhaus et al.
(2018b), © 2018 IEEE.

event one or multiple of the sensing modalities are effected. To detect contacts
with the environment, the value of the filtered pressure can be used. This is
highlighted for two contact events in the figure, where t1 marks the begin of the
first contact and t2 marks the end of the first contact, while t3 and t4 correspond
to the beginning and end of the second highlighted contact. For each contact,
the filtered pressure deviates from the zero line and a simple threshold decider
can be used to detect contacts. The other two modalities are sometimes effected,
but not in all cases, as can be seen between t1 and t2, in case of the angular
deviation. When using the linear acceleration alone it is difficult to distinguish
between establishing contact and breaking contact with the surface. Therefore,
the filtered pressure is used to detect contacts.

In a second experiment, the accuracy of the obtained surface normals is eval-
uated. To obtain the surface orientation the absolute orientation of the IMU
within the sensor is used, when a contact is detected. During the experiment,
the sensor is brought into contact with a tilted surface. For each contact the
ground truth surface tilt and the measured surface tilt is recorded and shown
in Figure 3.39. The blue line in the figure denotes the ideal reference line, while
each cross corresponds to a measurement. The measured orientation follows
the ground truth with an average error of 7.3°. This orientation error is mostly
due to the orientation drift, present within the IMU sensor.
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Figure 3.39: The IMU indicates orientation directly when the sensor is pressed
against a surface. The relative tilt between the sensor and the sur-
face varies between 0° and 50°. The blue line indicates the ground
truth while the error bars indicate the RMSE between the ground
truth and measured normals. Image taken from Ottenhaus et al.
(2018b), © 2018 IEEE.

Validation using ARMAR-III and ARMAR-6

Two sets of experiments are performed using the humanoid robots ARMAR-III
and ARMAR-6. First, the sensor is attached to the arm of ARMAR-6 Asfour
et al. (2018). The robot arm has eight joints, also called degrees of freedom
(DOF). A human operator guides the arm in zero torque mode to bring the
tactile sensor into contact with the object’s surface.

In the second experiment, the humanoid robot ARMAR-III performs an au-
tonomous exploration of the object’s surface, while the sensor is attached to the
robot’s fingertip.

In both cases, contact events are detected using the pressure sensing, while the
contact locations are calculated from the forward kinematics of the robots. The
contact normals are computed from the absolute orientation of the IMU.

After each experiment, the gathered data is used to reconstruct the surface of
the object. The reconstruction results are given in Table 3.6. For each experi-
ment, the surface is reconstructed twice. Once without the observed surface
normals, using only the contact positions as the input for the standard formu-
lation of GPIS. In the second reconstruction, the extended version of GPIS is
used, where the derivative of the underlying Gaussian Process is defined by
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Reconstruction RMSE
Object Robot without normals with normals

Box Simulation 5.2 mm / 25° 2.7 mm / 17°
Sphere Simulation 1.9 mm / 6° 0.5 mm / 1°

Cylinder Simulation 6.0 mm / 27° 3.2 mm / 17°
Banana Simulation 5.9 mm / 27° 1.8 mm / 10°

Ground Coffee ARMAR-6 4.6 mm / 22° 3.5 mm / 20°
Cheez It ARMAR-6 7.0 mm / 30° 3.5 mm / 24°

Flat surface ARMAR-6 9.5 mm / 23° 2.8 mm / 1°
Bowl ARMAR-III 7.6 mm / 39° 4.7 mm / 17°

Table 3.6: Reconstruction results

the observed surface normals. The reconstruction quality is measured by com-
paring the distance between the estimated surface and the ground truth object
model. Furthermore, the surface normals of the estimate are compared against
the ground truth. Exemplary reconstruction results are shown in Figure 3.40.
As can be seen in Table 3.6 and Figure 3.40 the addition of surface normals im-
proves the surface estimation accuracy in every experiment. Furthermore, the
reconstruction error at sharp edges is improved, as can be seen in Figure 3.41.

3.7 Discussion

In the beginning of the chapter, four questions were asked:

1. How to collect contact information by efficiently selecting the next best
touch?

2. How to generate object shape models efficiently, based on the acquired
sparse tactile data?

3. How to gather as much information per contact as possible?

4. How to plan grasps based on the approximate object model?

For each question, the previous sections have proposed an approach:

1. Next-Best-Touch strategy for efficient exploration.

2. Extension of GPIS to include surface normal observations for efficient
surface estimation.

3. A surface normal and contact sensor to provide the necessary sensing
modalities.
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4. Grasp planning by using existing grasp planners in the form of the skeleton-
based grasp planner.

By combining all proposed approaches, it is possible to generate grasp candi-
dates for unknown objects. First, the robot explored the object, following the
Next-Best-Touch exploration strategy using the proposed tactile sensor. There-
after, the obtained contacts and contact normals are used to estimate the object’s
surface with the extended formulation of GPIS. Finally, the estimated surface is
fed to the grasp planner, that is then able to generate grasp candidates for the
unknown object.

This shows that tactile exploration alone is a feasible approach to grasp un-
known objects. While the proposed methods aim to explore efficiently and to
gather as much information per contact as possible this exploration process
still takes time. Therefore, one question arises: How many exploration actions are
necessary for grasping? The next chapter will introduce an approach to gener-
ate grasp candidates by combining visual and tactile information, which will
greatly reduce the number of necessary exploration actions.
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(a) “Cheez-It” (b) Ground truth
model

(c) GPIS reconstruc-
tion
normals ex-
cluded

(d) GPIS reconstruc-
tion
normals in-
cluded

(e) “Ground Coffee” (f) Ground truth
model

(g) GPIS reconstruc-
tion
normals ex-
cluded

(h) GPIS reconstruc-
tion
normals in-
cluded

Figure 3.40: Comparison of the GPIS reconstruction results with included and
excluded normal information. The reconstruction error is dis-
played using a color-coding where green indicates a small error
and red corresponds to a large error. For both objects, the GPIS re-
construction with included normals follows the ground truth more
accurately. Images taken from Ottenhaus et al. (2018b), © 2018
IEEE.

(a) GPIS reconstruction without normals,
RMSE: 20.7mm

(b) GPIS reconstruction with normals,
RMSE: 9.5mm

Figure 3.41: Reconstruction quality near edges of the objects. The closest points
on the reconstruction and the actual object edge are shown as col-
ored lines. Green indicates small errors whereas red denotes larger
errors. Images taken from Ottenhaus et al. (2018b), © 2018 IEEE.
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Using tactile exploration alone to estimate a surface model of an unknown ob-
ject can take a long time, since the object has to be touched several times from
multiple sides to gather enough contact points. Therefore, in the second part
of the thesis the tactile exploration is combined with visual perception to get
an initial view of the object. The approach is split into the three classical parts:
sense, plan and act, as shown in Figure 4.1. The robot captures a point cloud
of the object and explores the unseen back of the object to gather contact in-
formation. The visually acquired points and the tactile contact information is
then fused in one joint model of the object. Thereafter, grasp candidates are
generated and one candidate is chosen for grasp execution. Finally, the robot
executes the chosen grasp candidate by moving the hand to the target 6D pose
and closes the fingers to lift the object.

In order to find a suitable approach to implement the different parts several
questions arise:

1. How should the exploration targets be chosen?

2. How many tactile exploration actions are necessary for grasping?

3. How can visual and tactile information be fused?

4. How can grasp candidates be generated, based on the fused data?

5. Which of the available grasp candidates has the highest success rate?

The following sections cover these questions in detail. First, the experiment
setup is introduced in section 4.1. Thereafter, section 4.2 gives an overview over
the developed grasping pipeline, that combines all necessary steps, including
perception and model estimation, grasp candidate generation, selection and
grasp execution. In section 4.3 a data-driven grasp metric is introduced that
enables the robot to rate available grasp candidates according to grasp success
probability. The complete pipeline is evaluated in section 4.4 and transferred to
the robot ARMAR-6 in section 4.5, including validation experiment.
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Figure 4.1: Visuo-haptic grasping pipeline: Visual and tactile information are
fused in one surface model. Grasp planners synthesize grasp candi-
dates, which are rated by a data-driven grasp metric, implemented
as a neural network. The best-rated grasp candidate is selected for
execution. Image taken from Ottenhaus et al. (2019), © 2019 IEEE.

4.1 Experiment Setup

During the grasping experiments, the humanoid robot ARMAR-6 is located in
front of a table. On top of the table, one unknown object is placed. The ap-
proximate location of the object is known beforehand, i.e. segmentation of the
object is not a central part of this thesis. The robot uses its depth camera, lo-
cated in its head to capture a point cloud of the scene. It then separates the
points belonging to the object from the background and the table. Once the ob-
ject is segmented, the robot chooses a next-best-touch location and moves its
hand to the exploration target, until contact with the object is measured. The
exploration is repeated up to five times, while the optimal amount of explo-
ration actions is determined during the evaluation in section 4.4. Thereafter,
the visual and tactile information is fused and grasp candidates are generated.
One candidate is selected for execution, according to the rating provided by
the data-driven grasp metric. Finally, the robot executes the chosen grasp can-
didate by approaching the chosen target pose and closes the hand around the
object.

This experiment setup is constructed in simulation as well as using the hu-
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manoid robot ARMAR-6. The setup in simulation and in reality is similar; how-
ever, some modifications are necessary: In simulation, the visual perception is
simulated in form of a virtual depth camera, provided by the ArmarX1 simula-
tion environment. This virtual depth camera renders a depth map of the scene.
This depth map is then converted to a point cloud. The tactile exploration is
also simulated using the ArmarX simulator. The models of the hand and the
object are continuously checked for collisions with each other. If such a colli-
sion is detected a tactile contact is generated at the location of the collision.
During the simulation of the grasp execution, only the robot’s hand is consid-
ered. The hand is placed directly at the target grasp pose and the fingers are
closed. If the hand configuration leads to a force closure around the object, the
grasp is considered successful.

During the experiments on the real robotic system, a Primesense Carmine cam-
era mounted in the robot’s head performs the visual perception. To this end,
the head of the robot is pointed at the object lying on the table. The ArmarX
framework provides a driver for the depth camera, so that the point cloud is
directly available. At the time of the experiments, the hands of the robot were
not equipped with any tactile sensors. However, the robot has a precise force
torque sensor (FT sensor) mounted in the wrist. Using the measurements from
the FT sensor tactile contacts can be inferred. This process will be described in
detail in the section transfer to ARMAR-6 in section 4.5. The fusion of visual
and tactile data as well as the grasp candidate generation and selection do not
have to be adapted for the real world experiments. The execution of the grasps
however had to be adopted for the real robot, as the used hand is underactu-
ated, with only two actuated degrees of freedom. One motor is used to control
the thumb, while the other motor controls all fingers. The publication by Asfour
et al. (2018) offers a detailed description of the hand.

4.2 Grasping Pipeline

In this section, one grasping pipeline will be introduced that combines all nec-
essary steps to grasp unknown objects based on visual perception and tac-
tile exploration. The developed grasping pipeline consists of six stages: Visual
perception, haptic exploration, surface estimation, grasp candidate generation,
candidate scoring and selection and grasp execution. The pipeline is depicted
in Figure 4.2 and explained in the following.

1Available online: https://armarx.humanoids.kit.edu/
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Figure 4.2: Full visuo-haptic grasping pipeline integrating visual perception,
tactile exploration, model estimation, grasp candidate generation
and scoring and grasp execution. Image taken from Ottenhaus et al.
(2019), © 2019 IEEE.

4.2.1 Visual Perception

In the first pipeline step (S1: Visual Perception), the robot uses the depth camera
in its head to capture a point cloud of the unknown object. The object lies on
a flat supporting plane and can therefore be easily separated from the back-
ground. The RANSAC (Fischler and Bolles, 1981) algorithm is used to find the
supporting plane in the point cloud. All points belonging to the plane are sub-
tracted, and the remaining points are filtered for outliers, so that only points
belonging to the object remain. Thereafter, the point cloud is down sampled
and normals are computed from the points. The result of the first pipeline step
is a set of points with normals on the front and top surface of the object.

4.2.2 Tactile Exploration

During Tactile Exploration (S2) the exploration algorithm presented in section 3.1
is initialized using the point cloud from S1. Then the next-best-touch is chosen,
according to the Information Gain Estimation Function, see subsection 3.3.2.
The robots explores several points on the surface of the object, primarily in un-
seen regions at the back of the object.

4.2.3 Surface Estimation

The visually acquired point cloud and the tactile contact points are combined
in one GPIS model in the third pipeline stage (S3). The computed normals from
the point cloud are used to define the gradient of the Implicit Surface Potential
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(ISP) of the GPIS, as introduced in subsection 3.2.2. During the surface esti-
mation process, GPIS requires the inversion of the covariance matrix. To speed
up this matrix inversion the visual point cloud is further reduced to about 100
points, using methods from the point cloud library (PCL, Rusu and Cousins,
2011).

4.2.4 Grasp candidate generation

During the Grasp candidate Generation (S4) stage the Implicit Surface Potential is
converted to a triangle mesh using the marching cubes algorithm. Thereafter,
two different grasp planners are used to generate grasp candidates. To this end,
the grasp planners optimize a given grasp metric with respect to the surface
mesh and the model of the robot hand. The used grasp planners are both part
of the Simox robotic toolbox, developed by Vahrenkamp et al. (2013):

• The first grasp planner is the standard grasp planner provided by Simox.
It selects a random triangle from the triangle mesh and places the robot’s
hand with respect to the normal of the triangle. Thereafter, the hand is
moved towards the object and the hand is closed until all fingers collide
with the surface mesh. Then the grasp metric is calculated.

• The second grasp planner is the skeleton-based grasp planner introduced
by Vahrenkamp et al. (2018). The grasp planner first extracts a skeleton
from the estimated surface mesh. The straight sections of the skeleton are
identified and checked for possible hand placements. Additional possi-
ble hand placements are generated at the end points of the skeleton. A
detailed description of the skeleton-based grasp planner can be found in
Vahrenkamp et al. (2018).

4.2.5 Candidate Rating and Selection

The Rating and selection (S5) stage first estimates the success probability for each
grasp candidate using the data-driven grasp metric. Each candidate is encoded
as a 6D grasp pose and a voxel grid containing a local view of the gathered
visual and tactile points around the grasp pose. Based on the grasp pose and
the voxel grid the grasp metric predicts the grasp success probability between
0 and 1 for each grasp candidate. Then the grasp candidate with the highest
success probability is chosen for execution.
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4.2.6 Grasp Execution

An ArmarX state chart implements the Grasp Execution (S6) stage. Within this
state chart, the position of the hand pose is controlled using a Cartesian velocity
controller. The state chart first moves the hand just above the grasp pose and the
starts lowering the hand. The force torque sensor measures the interaction force
between the hand and the object during the approach phase. When a given
force threshold is exceeded the fingers of the hand are closed and the object is
lifted.

4.3 Data-Driven Grasp Metric

When the pipeline execution reaches the stage of the grasp metric, many possi-
ble grasp candidates have been generated by the previous pipeline stage. Tra-
ditional grasp planners, using the estimated surface of the object, have gener-
ated the grasp candidates. While these grasp planners calculate grasp metrics
on their own, these ratings often do not correspond well with real grasp suc-
cess rates. The main reason is that the grasps were planned using the estimated
surface. This surface deviates from the actual object, in particular in unseen re-
gions of the object. Therefore, a different metric has to be developed that is able
to predict the grasp success when only partial information is available. To this
end a new data-driven grasp metric is developed. This metric has two inputs:

• The 6D grasp pose, relative to the object center.

• A 3D voxel grid containing features related to the captured point cloud
and the explored points on the object.

This grasp metric is implemented as a deep neural network, as shown in Fig-
ure 4.3. The network structure is inspired by Voxnet, introduced by Maturana
and Scherer (2015). In the original Voxnet publication, the neural network is
used to classify objects based on a 3d occupancy grid calculated from a point
cloud. The structure of the original Voxnet architecture is extended to allow the
prediction of the grasp success probability. In the Voxnet architecture, the in-
put is encoded as an occupancy grid. For the grasping application, the input
is expanded to contain two features per voxel. The first feature measures the
distance of the voxel center to the nearest point in the fused visual and tactile
point cloud. The second feature is derived from the Implicit Surface Potential
that was calculated during the GPIS surface estimation. As a second input, the
6D grasp pose relative to the object center is added. The pose is encoded as
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Figure 4.3: Data-driven grasp metric implemented as a deep neural network.
The first input is derived from the homogeneous grasp pose matrix,
taking the top three rows of the matrix (3× 4). The grasp pose is
preprocessed by two fully connected layers. The second input en-
codes the captured visual and tactile points as a 3D voxel grid. The
voxel grid is processed by two 3D convolutional layers conv(d, s, f),
where d is the kernel size, s is the stride and f denotes the number of
filters. At each voxel, center two features are observed: The Implicit
Surface Potential (ISP) and the distance to the closest point within the
fused visual and tactile point cloud. The information is fused in two
fully connected layers, resulting in the success probability of grasp
execution. Image taken from Ottenhaus et al. (2019), © 2019 IEEE.

the top three rows of the homogeneous pose matrix (3×4). The bottom row of
the pose matrix is omitted, since it does not contain any information. The out-
put of the network is a single value that predicts the grasp success probability
between 0 and 1. The structure of one training sample is given in Table 4.1.

Type Dimension Description

Input 4× 3 6D Pose
Input 323 3D Voxel grid
Output 1 Grasp success probability

Table 4.1: Structure of one training sample

4.3.1 Training Data Generation

The training of deep neural networks requires large amounts of labeled training
samples. In the present application case, one training sample consists of the
grasp pose, the voxel grid and the corresponding grasp success probability. As
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introduced in the related work (subsection 2.2.2) four sources of training data
can be considered:

1. Hand labeling of training samples.

2. A self-supervised approach, executed directly on the target system.

3. Learning from demonstration: A human teacher provides training examples.

4. Dataset creation by training data generation in simulation.

As discussed in the related work, the approaches hand labeling, learning on the
target system and learning from demonstration have high costs, either with respect
to necessary human work or due to the need of thousands of robotic exper-
iments. Therefore, in this thesis the necessary dataset was created in simula-
tion.

The robot is placed in a simulated environment in front of a table with an un-
known object on top. The objects used for training are taken from the KIT ob-
ject database (Kasper et al., 2012) and the YCB object and model set (Calli et al.,
2015). The simulation chooses one object from one object set (KIT or YCB) at
random and loads the corresponding object mesh. The object mesh is rotated
and scaled randomly and placed on the table. Then the pipeline stages S1 . . . S4

are executed using simulated cameras and simulated tactile exploration. There-
after, the grasp pose and corresponding voxel grid are calculated for each grasp
candidate. The grasp success probability is determined via a stochastic process,
as will be described in the next section.

4.3.2 Sim2real Transfer Considerations

Figure 4.4: The ε-metric is not robust under pose uncertainty, as shown by
Weisz and Allen (2012), © 2012 IEEE.

In the field of humanoid robotics, a perfect simulator is hard to find, especially
when it comes to grasping. In a study regarding grasp quality metrics Weisz
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and Allen (2012) have determined that grasp quality metrics, such as the ε-
metric, are not robust regarding pose uncertainty. In their work, they state: ”[. . .]
we have shown that the planned ε of a planned grasp is not predictive of the probability
of achieving a force closed grasp in the presence of uncertainty, neither in simulation
nor physical experiments.“ The effect of this uncertainty is shown in Figure 4.4.
Kappler et al. (2015) made similar observations in their work: ”[. . .] the metric
based on physics simulation is a more consistent predictor for grasp success than the
standard ε-metric. [. . .] labels based on the physics-metric are less noisy than those from
the ε-metric and therefore lead to a better classification performance.“

Therefore, the grasp success probability is predicted using the approach pro-
posed by Weisz and Allen (2012). A given grasp candidate pose is perturbed
slightly in position and orientation. The simulator determines if this perturbed
grasp will still result in a force closure configuration. This process is repeated
multiple times and the grasp success probability is determined by averaging
over the force closure results.

4.3.3 Preprocessing and Network Training

Training of a neural network requires the input and output data to be encoded
in a suitable format. This includes the dimensionality of the data as well as the
representation. The input data is preprocessed and normalized to speed up the
network training process.

• The grasp pose is encoded as a 4 × 4 matrix. The bottom row of this pose
matrix does not contain any information, as it is always 0001. Therefore,
only the tow three rows are input to the neural network as a flat vector.

• The base coordinate system of the voxel grid is aligned with the grasp pose.
The center of the grid is aligned with the position of the grasp candidate
pose. The grid axis are aligned with the axis of the grasp pose. The grid
therefore represents a local view, relative to the grasp candidate. In par-
ticular, the relative location of the hand is fixed within the voxel grid. The
grid has a side length of 30 cm.

• The grasp success probability is encoded as a singular value between 0 and
1.

An aligned voxel grid has multiple advantages: The grasp success probability is
only dependent on the local object geometry, which is encoded in the grid. The
network is not required to learn the transformation from a global orientation to
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the relevant local orientation, so the learning can focus on the relevant features.
A local view allows the transfer of grasps between objects with similar local
geometry.

The training set consists of 1.6 million samples that were generated in simula-
tion. During the training 50 % dropout is applied to the CNN part of the net-
work. The chosen leaning rate was 10−4. The network weights converged after
4 epochs.

1 2 3 4 5 6

7 8 9 10 11 12

Unknown Unknown, but familiar

Figure 4.5: Object test set for evaluation (1-4 YCB, 5-12 KIT): 1 Power Drill,
2 Apple, 3 Racquetball, 4 Jello, 5 Bottle, 6 Shampoo, 7 Spray Bottle,
8 Vitalis Cereal, 9 Tomato Soup, 10 Schaumküsse, 11 Koala Candy,
12 Fruit Drink. Image taken from Ottenhaus et al. (2019), © 2019
IEEE.

4.4 Evaluation

The evaluation focuses on the effectiveness of the data-driven grasp metric
(pipeline stage S5) and the tactile exploration (S2). Two main questions are ad-
dressed:

• What is the benefit of the data-driven grasp metric, when compared to
conventional grasp planning?

• How much tactile exploration is necessary for successful grasping?

The evaluation uses a test set comprised of 12 unseen test objects, depicted in
Figure 4.5. The objects are taken from the KIT and YCB object sets. The test set is
separated into two categories: Unknown objects and objects that are unknown,
but have familiar shapes. The unknown objects (Power Drill and Spray Bottle)
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Figure 4.6: Evaluation pipeline: The grasping pipeline is adapted (red parts)
to provide baseline results and evaluation in simulation. The data-
driven grasp metric is replaced with the grasp metrics computed
by the grasp planners. The execution is replaced by the evaluation
of the grasp candidate against the ground truth mesh of the object.
Image adapted from Ottenhaus et al. (2019), © 2019 IEEE.

differ significantly from the raining set. The familiar objects from the test set
have similar shapes to some objects within the training set.

The evaluation section is structured as follows: First, a baseline is established
using conventional grasp planners. The data-driven grasp metric is then com-
pared against this baseline. Finally, the grasp success probability is determined
depending on the number of exploration actions.

4.4.1 Baseline and Evaluation Pipeline

In their work, Bjorkman et al. (2013) explore unknown objects and fuse tactile
and visual data using GPIS. The focus of the publication is on the exploration
and modeling, however the authors suggest that the final GPIS model can be
used for grasp synthesis by means of a conventional grasp planner. This idea
can be easily applied to the proposed grasp pipeline by replacing the data-
driven grasp metric with the grasp metrics computed by the conventional grasp
planners, as shown in Figure 4.6. During evaluation, the execution stage of the
pipeline is also replaced. The simulator moves the simulated hand of the robot
to the pose of the selected grasp candidate. Then the closure probability is cal-
culated using the ground truth mesh and the hand model, as described in sub-
section 4.3.2. A grasp candidate is considered successful, if the computed grasp
success probability is above 80 %.
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4.4.2 Benefit of the Data-Driven Grasp Metric

The evaluation of the data-driven grasp metric compares the predicted grasp
success with the actual grasp success. Each the predicted grasp success and the
actual grasp success are considered as binary values. The predicted grasp suc-
cess is derived from the predicted grasp success probability (PG) by the data-
driven grasp metric. If PG is larger than a given threshold Pδ,G the prediction
is considered positive. The same threshold mechanism is applied to the actual
grasp success, derived from the ground truth mesh. For the given grasp candi-
date the force closure probability (P (FC)), according to Weisz and Allen (2012),
is calculated. If P (FC) is larger than a given threshold Pδ(FC) the ground truth
is considered a successful grasp. During the evaluation, the values PG,δ = 0.95

and Pδ(FC) = 0.8 were chosen. The possible combinations of predicted grasp
success and actual grasp success are listed in Table 4.2.

Prediction Ground truth Type

Failure Failure True negative (TN)
Failure Success False negative (FN)
Success Failure False positive (FP)
Success Success True positive (TP)

Table 4.2: Possible combinations of predicted grasp success and actual grasp
success.

After the possible four cases have been enumerated in the table, the question is
if all of the cases are relevant during the evaluation. To this end, the final grasp
execution by the robot is considered. When the robot is tasked with grasping
an unknown object, the pipeline stages S1 through S4 are executed. Within S4

arbitrarily many grasp candidates can be generated. The grasp metric is eval-
uated for each of the grasp candidates. However, the robot has to pick exactly
one grasp candidate for execution. This candidate will be picked from the set
that the grasp metric considers successful. This corresponds to the two bottom
rows of the table.

The data-driven grasp metric is evaluated by evaluation the precision of the
predictions. The precision is defined as

Precision =
TP

TP + FP
. (4.1)

In this case, the precision of the predictions corresponds to the question: How

112



4.4. Evaluation

good is the data-driven grasp metric in predicting grasp candidates, that are
actually successful?

To answer this question the evaluation loads each of the 12 objects from the test
set into the simulator. Each object is rotated randomly in five different orien-
tations. For each of the orientations the evaluation pipeline is run, while 800

grasp candidates are generated. For each of the grasp candidates the predicted
grasp success and the actual grasp success are computed. Thereafter, only the
grasp candidates are considered for which the grasp metric predicted grasp
success.

The same procedure is repeated to generate the ground truth data. In this case,
the data-driven grasp metric is replaced by the grasp metric computed by the
conventional grasp planner, as described in subsection 4.4.1.
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Figure 4.7: Comparison of the data-driven grasp metric (blue) against the base-
line (orange). The data-driven grasp metric outperforms the con-
ventional grasp planning baseline for complex shaped objects. The
difference is most significant for object 1, 7, and 8. Image taken from
Ottenhaus et al. (2019), © 2019 IEEE.

Finally, the success rate in terms of the prediction precision of the baseline and
the data-driven grasp metric are compared or all 12 objects. The results are
given in Figure 4.7. Each of the bars in the figure corresponds to the average of
the prediction success. As the figure shows the data-driven approach outper-
forms the baseline by a significant margin, i.e. the data-driven approach yields
higher or equal average prediction success for all objects. In the following the
results are analyzed for the different groups of objects: ball-shaped objects (2
and 3), cylindrical (5, 6, 9 and 11), boxes (4, 8, 10 and 12) and complex objects
(1 and 7).
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For the ball-shaped objects both the baseline and the data-driven grasp met-
ric yield almost perfect results. This can be explained by the surface estimation
produced by GPIS. The captured depth image from the front of the object de-
scribes a half sphere. In this case, the GPIS surface completion generates the
rest of the sphere. Therefore, the estimated surface is quite close to the actual
surface of the object and the planned grasp candidates have a high success rate
already. If all of the predicted grasp candidates work as actual grasps, the pre-
diction of the chosen grasp metric does not matter, since the expected grasp
success is almost 100 %, independent of the chosen grasp candidate.

This consideration can be extended to the cylindrical objects from the test set.
The GPIS estimate follows the ground truth surface of the object closely. The
largest deviations are to be expected at the ends of the cylindrical parts, i.e. the
flat bottom and top side. However, the baseline can still achieve high grasp suc-
cess rates for objects 5, 9 and 11. The baseline drops below to 60 % success rate
for object 6, namely the shampoo. The reason is that the shampoo has an oval
shape. The GPIS estimate completes the object following a round shape at the
unseen back. This can lead to misplaces grasp candidates. Here the data-driven
grasp metric can identify these incorrect grasp candidates and can improve the
grasp success rate significantly.

The same consideration can be made for the boxes within the test set. The GPIS
estimate competes the unseen back of the object with a round shape. Therefore,
the estimated surface of the object is too large, i.e. the enclosed volume of the
GPIS model is larger than the actual object. Since the boxes have sharp edges,
the depth camera can only observe up to three sides of the boxes at once. This
means that at least three sides of the objects are estimated incorrectly. There-
fore the predicted grasp candidates deviate from the actually successful grasp
candidates in many cases.

The largest improvement can be observed for the complex shaped objects 1 and
7: the spray bottle and the power drill. For these objects, the GPIS estimate de-
viates from the actual object surface in many cases. An example can be seen in
Figure 4.8 on the right side. Each arrow in the figure denotes one grasp candi-
date. The arrows are colored according to the grasp success of the respective
grasp candidate. The baseline produces many false positives, while the data-
driven grasp metric can filter out many of these false positives, leading to a
higher grasp success rate.

Overall, the experiments show that the data-driven grasp metric outperforms
the conventional baseline for all tested objects. Regarding the grasp failures,
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GPIS es�mate Baseline DNN

Figure 4.8: Comparison of the baseline and the data-driven grasp metric: True
positives are shown as green arrows and false positives are shown
as red arrows. The GPIS estimate (colored surface) deviates from the
actual object. The data-driven grasp metric is able to filter out most
of the false positive grasp candidates. Image taken from Ottenhaus
et al. (2019), © 2019 IEEE.

the baseline fails in 35 % of the cases while the data-driven grasp metric fails
in only 5 % of the tested cases, resulting in an average of 7-times less grasp
failures. Exemplary successful grasp candidates are displayed in Figure 4.9.

Unknown Unknown, but familiar

1 7 6 8 9

Figure 4.9: Examples grasps generated by the data-driven grasp metric. Image
taken from Ottenhaus et al. (2019), © 2019 IEEE.

4.5 Transfer to ARMAR-6 and Validation

The evaluation showed, that the data-driven grasp metric is able to reliably
predict the success probability of a given grasp candidate in simulation. When
transferring to the humanoid robot ARMAR-6 several questions have to be an-
swered:

• How does the real robot differ from the simulation?
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• How many tactile exploration actions are necessary?

• How should the grasp execution be implemented?

The following sections address these questions and describe the transfer of the
approach from simulation to the real robot.

4.5.1 Validation Setup

The developed grasping pipeline is validated using the humanoid robot AR-
MAR-6. The validation setup is depicted in Figure 4.10.

Selected grasp candidate

Figure 4.10: Validation setup: The humanoid robot ARMAR-6 is tasked with
grasping an unknown object from the workbench. Image taken
from Ottenhaus et al. (2019), © 2019 IEEE.

The robot is placed in front of a table with an unknown object on top. The object
should be grasped and lifted from above with the right hand.

The main differences of the real robot system compared to the simulation are:

1. The robot must actively control the arm so that the hand is moved to the
desired destination.

2. The hand has no tactile sensors; however, the 6D force / torque sensor in
the wrist can be used to infer contacts.

3. The hand is underactuated and has two motors. The first motor controls
the thumb while the second motor controls all the fingers.
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4.5.2 Control of the Robot’s Arm

During the experiments, the robot moves its arm using velocity bound Carte-
sian control. The control of the arm is split into three different layers, namely:

• A Cartesian position controller that takes in the target pose of the hand
and the actual pose of the hand and calculates a Cartesian velocity.

• A Cartesian velocity controller that converts a Cartesian velocity to a
joint velocity vector by means of the pseudo-inverse Jacobian.

• A Null-space controller that calculates the null-space of the current joint
configuration from the Jacobian. The controller moves the joints in this
null-space to avoid the joint limits.

As Cartesian position and velocity control are standard, only the null-space
control will be explained here. If the Jacobian of the kinematic chain of the arm
is given by J then

Jθθ̇ = ẋ (4.2)

denotes the relation between the joint angle velocity θ̇ and the end-effector ve-
locity ẋ. In case of ARMAR-6 the dimension of θ is 8, i.e. the robot has two
more joints than needed to sweep a 6D workspace. However, these joints are
very useful to increase the volume of the workspace. In particular, the clavicle
joint in the shoulder allows the robot to reach far in front of it. The kinematic
structure of the arm has 8 degrees of freedom (DOF), therefore the dimension
of the null-space is 2. The null-space of the arm configuration coincides with
the null-space Nθ (also known as kernel) of the Jacobian:

Nθ =
{
θ̇|Jθθ̇ = 0

}
. (4.3)

In matrix form this can be written as

JθNθ = 0 (4.4)

The goal of the null-space controller is to calculate a joint velocity of the arm,
that moves the arm in this null-space, i.e. changes the configuration of the arm
without moving the end-effector. The null-space controller uses the available
motion in the null-space to move the joints away from the joint limits. First, a
desired joint limit avoidance velocity vector θ̇a is calculated that moves all joints
away from their limits.

θ̇ai = cos

(
π
θi − θ−i
θ+i − θ−i

)
(4.5)
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where θ−i and θ+i denote the lower and upper joint limit of joint i. Then this de-
sired velocity vector θ̇a is mapped onto the available null-space of the Jacobian.

θ̇N =
∑
i

Nθ,jNθ,j · θ̇a
‖Nθ,j‖2

(4.6)

Here Nθ,j denotes the j-th column of the null-space matrix Nθ. Finally, the re-
sulting null-space joint limit avoidance velocity is scaled with a proportional
factor pN and added to the joint velocity θ̇

θ̇′ = θ̇ + pN θ̇
N (4.7)

When θ̇ is commanded to the joints of the robot’s arm the desired Cartesian
velocity is reached and the available null-space is used to avoid the joint limits.
Values of pN ∈ [1..2] have proven suitable for most operations during tests on
the robot. In practice, this additional null-space control has been beneficial to
the overall Cartesian control of the robot’s arm, as joint limits are avoided as
long as possible. If a joint limit is reached during Cartesian control without the
null-space controller active, the end-effector usually deviates from the desired
velocity vector. Therefore, the null-space controller developed in this thesis was
added to the standard implementation of the Cartesian controllers used for AR-
MAR-6 and ARMAR-III. The implementation is part of ArmarX and available
online2

4.5.3 Emulation of Tactile Sensing

At the time of the experiments, the robot’s hand did not include any tactile sen-
sors. However, a 6D force/torque sensor is available in the wrist of the hand,
shown in Figure 4.11. This FT-sensor can be used to infer tactile contacts: Just
before a contact between hand and object is expected, the current force val-
ues of the FT-sensor are stored as F0. Then the difference between the current
measured force and the initial force value is compared and a tactile contact is
assumed if this difference exceeds a predefined threshold ∆F .

Tactile contact if ‖F − F0‖ > ∆F (4.8)

The position of the tactile contact can be inferred from the model of the hand.

2https://gitlab.com/ArmarX/RobotAPI/blob/master/source/RobotAPI/
libraries/core/CartesianVelocityController.cpp
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Wrist with
FT-sensor

Figure 4.11: The underactuated hand of ARMAR-6. A 6D force/torque sensor
is mounted in the wrist of the hand. Image adapted from Asfour
et al. (2018), © 2018 IEEE.

4.5.4 Control of the Underactuated Hand

During initial grasping experiments, fine hand-control was mostly neglected
and the predominant grasping strategy can be summarized as: Move the hand’s
TCP to the grasping point on the object and close the fingers. This approach worked
for large and bulky objects, when grasped from the side. Grasping objects from
the top with the underactuated hand is more challenging and requires the co-
ordination of hand and finger motions.

Underactuated Mechanism of the ARMAR-6 Hand

The ARMAR-6 hand features a mechanism in the palm that realizes its under-
actuation. This mechanism follows the design of the TUAT/Karlsruhe mecha-
nism first described by Fukaya et al. (2000). Starke et al. (2018) described the
implementation of the mechanism in detail for the KIT prosthetic hand, while
the mechanism of the ARMAR-6 hand is similar to the one in the KIT prosthetic
hand.

The mechanism in the ARMAR-6 hand can be summarized as follows: The
hand has two motors: one for the fingers and one for the thumb. The thumb
motor is connected via a tendon to the thumb. The tendon is routed through
the thumb and enables the closing of both thumb joints. The finger motor is
connected via a tendon pulley mechanism to the fingers. Each finger has three
joints and the hand has four fingers, plus the thumb. The finger motor has to
pull 12 joints and has to overcome the losses within the mechanism, while the
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thumb motor only has to pull two joints.

If both motors are commanded to close their respective fingers, the thumb will
close much faster as the rest of the fingers. In practice, this resulted in failed
grasping attempts, as the thumb moved the object out of the hand, while fingers
were still closing.

A second challenge lies in the coordination of the hand posture and the finger
closing strategy. When a small object is approached from above, the fingers and
thumb usually touch the table before the hand touches the object. In this con-
figuration, neither fingers nor thumbs can be closed because the table blocks
them. Therefore, the hand position and closing of the fingers must be coordi-
nated. The goal of the coordination is to realize a ”collecting movement“: The
fingertips and thumb should remain as close to the table surface as possible
while the hand closes.

Development of a Coordinated Finger and Thumb Grasping Strategy

Table

A
B

C

Figure 4.12: Design of the grasping strategy: Coordination of hand position and
rotation with the closing of the fingers and the thumb.

In the initial state, both fingers and thumb are in contact with the table sur-
face; see state (A) in Figure 4.12. To allow the fingers to move, the hand must
be raised slightly. The hand is lifted until the fingers are orthogonal to the ta-
ble surface (state B). The hand must then be lowered again until the fingers
are completely closed. The same applies to the thumb. However, the thumb is
shorter than the fingers. This results in two contradictory requirements for the
position of the hand: Closing the fingers requires a higher raising of the hand
than closing the thumb. Therefore, by simply controlling the position of the
hand it is not possible to ensure that both fingers and thumbs are at a small
distance from the table surface while the hand is being closed. This can be com-
pensated by an additional rotation of the hand during closing. The rotation
causes the thumb to move closer to the table as the fingers move away from the
table (state C).
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Parameterization of the Grasping Strategy

To enable the robot to perform a coordinated grasping movement, this must
first be described as a trajectory. The relevant parameters of this trajectory in-
clude (1) the position of the hand, (2) the orientation of the hand, (3) the posture
of the thumb and (4) the posture of the fingers.

In detail, these four parameters are divided into:

1. 3D position of the Tool Center Point of the hand.

2. 3D orientation matrix of the hand.

3. Tendon length change of the thumb.

4. Tendon length change of the fingers.

The change in tendon length for thumb and finger is measured in percent,
where 0 % corresponds to the hand opening and 100 % means completely closed.

Model of the Fingers

The first idea is to develop a suitable grasp trajectory using the model of the
robot. This can be applied to the 3D position and the 3D orientation of the hand
straight forward, since the kinematic model of the arm is sufficiently calibrated.
However, the 3D position of the fingertips and thumb cannot be calculated di-
rectly due to the underactuated mechanism. An approach to calculate the po-
sition of the fingertips is to analyze the structure of the fingers and derive the
necessary equations. The finger in the open state is depicted in Figure 4.13. The
tendon coming from the TUAT/Karlsruhe mechanism is in the default state,
i.e. no force is applied. When the tendon is pulled, the finger closes. The fully
closed state is shown in Figure 4.14.

Proximal
Joint

Medial
Joint

Distal
Joint

Tendon
mount

Tendon
pull direction

Figure 4.13: One finger of the ARMAR-6 hand in the open state.

In each joint of the finger, one torsion spring is present. This spring helps to
open the finger again, when the tendon is no longer pulled. To understand how
this closing works one has to look at the length of the tendon that runs through
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Figure 4.14: One finger of the ARMAR-6 hand in the closed state.

the finger. The overall length of the tendon within one finger is determined by
the parts where the length cannot change, i.e. the static routing part. The actual
length change occurs under the joints, where the tendon is not routed through
the finger and is not constrained. If the tendon is pulled by a length of ∆L, this
change of length is distributed to all three joints, namely the proximal joint, the
medial joint and the distal joint.

R0

L0

θ

Figure 4.15: Detail view of one finger joint. The tendon acts as a lever, transfer-
ring the force within the tendon to a torque in the joint.

In order to determine how much the three joints contribute to the change in
length, the change in length per joint must be expressed as a function of the
torque in the joint. All used symbols are listed in Table 4.3. The joint angle θi is
0 if the joint is open and 1/2π if the joint is closed. The change in tendon length
is defined to be 0 if the joint is open and L0,i if the joint is closed.

The torque Mi is determined by the force pulling on the tendon at the joint and
the effective lever length.

Mi = Ri(θi)Fi (4.9)

The force within the tendon is assumed to be the same throughout the tendon,
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Symbol Description

θi ∈ [0, 1/2π] Joint angle of joint i
∆Li ∈ [0, L0,i] Change of the tendon length in joint i
R0,i Effective lever length in the open state
Ri(θ) Effective lever length as a function of the joint angle
θ0,i Pretension angle of the torsion spring
Ki Spring constant of the torsion spring

Table 4.3: Symbols used for the calculation of the joint angles.

while friction is neglected.

F1 = F2 = F3 = F (4.10)

By solving Equation 4.9 for Fi and inserting it into Equation 4.10, a dependency
between all three joints can be derived.

M1

R1(θ1)
=

M2

R2(θ2)
=

M3

R3(θ3)
(4.11)

The effective lever length is equal to R0,i if θi = 0. This effective lever changes
to
√

2R0,i when the joint is closed at θi = 1/2π

Ri(θ) =
√

2R0,i sin

(
π

2
+
θi
2

)
(4.12)

The dependency between ∆Li and θi is simplified and assumed linear.

θi ≈
π

2

∆Li
L0,i

(4.13)

The torque in each joint is determined by the torsion spring and can be ex-
pressed by the torsion spring constant Ki and the effective angle of the torsion
spring, given by the sum of the joint angle and the pretension angle.

Mi = Ki(θi + θ0,i) (4.14)

The overall change in tendon length is given by the sum of the tendon length
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change per joint.

∆L =
3∑
1

∆Li (4.15)

If ∆L is the input to the system, it can be assumed to be known. Using all
equations above an equation system can then be derived with three equations
and three unknown variables, namely θ1, θ2, θ3.

∆L = θ1
2

π
L0,1 + θ2

2

π
L0,2 + θ3

2

π
L0,3 (4.16)

K1(θ1 + θ0,1)√
2R0,1 sin

(
π
2

+ θ1
2

) =
K2(θ2 + θ0,2)√

2R0,2 sin
(
π
2

+ θ2
2

) (4.17)

K2(θ2 + θ0,2)√
2R0,2 sin

(
π
2

+ θ2
2

) =
K3(θ3 + θ0,3)√

2R0,3 sin
(
π
2

+ θ3
2

) (4.18)

This system of equations has some nonlinear terms, therefore a closed form
solution is difficult to find. However, approximate solutions can be found by
means of non-linear optimization. To this end, the popular NLopt library is
used (Johnson, 2014). NLopt is presented with the equations 4.16 through 4.18,
reformulated as an optimization problem.

E(θ1, θ2, θ3) = (∆L−∆Ltarget)
2 + (F1 − F2)

2 + (F1 − F3)
2 + (F1 − F3)

2 (4.19)

Here ∆Ltarget denotes the target value of ∆L. This target value is enumerated
in the range of [0, L0,1 + L0,2 + L0,3]. Using the actual parameters of the hand
(Table 4.4), NLopt can find approximate solutions for the three joint angles, for
each target of ∆L. The resulting joint angles are graphed in Figure 4.16. Using
the segment lengths Si from the hand model these joint angles can be translated
to joint configurations. Several examples of joint configurations are shown in
Figure 4.17.

While a numerical solution could be found for the equation system, an experi-
ment on the robot could not confirm the analytical solution. The closing behav-
ior of the fingers and the thumb is depicted in Figure 4.18. While the analytical
model predicted that all three joints of the fingers close at the same rate, with a
small offset, the behavior on the real robot differs. The proximal joint begins to
close immediately, while the other two joints move little up to about 40 %. The
reasons for this could be other, not modeled effects:

• The glove over the fingers adds an additional spring, which is non-linear.
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Description Symbol Proximal Medial Distal

Index i 1 2 3
Spring part no. - 0T032-180-218 0T035-180-187 0T035-180-187
Spring constant Ki 0.67 N mm 0.82 N mm 0.82 N mm

Spring pretension θi,1 30° 30° 35°
Initial lever length R0,i 7.5 mm 7.5 mm 7.5 mm

Maximum lever length Ri(90°) 10.6 mm 10.6 mm 10.6 mm

Initial tendon length L0,i 15 mm 15 mm 15 mm

Segment length Si 60 mm 39 mm 30 mm

Table 4.4: Physical parameters of the three joints in the fingers, taken from the
model.

• Gravity adds additional torque to the joints.

• Friction was not modeled.

• Contact with the environment change the force equilibrium.

Due to these difficult to model effects, in practice a different approach was nec-
essary to design a coordinated grasping motion.

Design of a Coordinated Grasp Trajectory

In the previous section, the model of the fingers was examined analytically.
Experiments with the real hardware showed that there are factors that are dif-
ficult to model, such as friction and environmental contacts. However, these
environmental contacts can be very useful to close the fingers around the target
object.

The forward kinematics of the fingers are difficult to model, but the hand has
a repetitive accuracy, i.e. the same control inputs result in the same finger con-
figuration. Therefore, a tool was developed which enables the design of grasp
trajectories using the real robot hand in the loop. This tool is implemented as an
ArmarX state chart that actively controls the hand of the robot using a Cartesian
position controller. The user is presented with a graphical interface that allows
changing the target of the controller online. In addition, the target values for
the fingers and the thumb can be adjusted. The user can change the target po-
sition and the target orientation of the hand in small increments. The controller
within the state charts follows this changed target and the hand moves accord-
ingly. The tool also has an option to get the currently available grasp candidates,
exacted from vision.
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Figure 4.16: Finger joint angles derived from the shortening of the tendon.

To design a new grasp trajectory, first all available grasp candidates are queried
from the ArmarX framework. Then the user selects one grasp candidate and
commands the target of the hand to be above this selected grasp candidate.
When the hand has reached this target, the user can visually verify that the
hand is in the correct location. The user can then command the robot to move
the hand downwards, while keeping the orientation, until the force torque sen-
sor in the robot’s wrist detects a force. When the hand touches the table, the
grasp trajectory is initialized. The current position and location of the hand is
stored, together with the current joint values. This tuple, consisting of hand
position, hand orientation, finger target and thumb target is stored as one key
point in the grasp trajectory. After the initial key point has been set, the user
can move the hand in small increments, rotate the hand and close the fingers in
small steps. Using this tool, a grasp trajectory was designed by setting several
key points. During grasp execution, the robot uses these key points to control
the hand leveraging feed forward control.

Coordinated Grasp Trajectory

The developed coordinated grasping motion is depicted in Figure 4.19 where
the robot grasps a flash light. First, the robot orients the hand so that the line
between the fingertips and the thumb is parallel to the table surface (1). The
hand is moved down, until the contact force is measured by the FT-sensor (2).
The finger closing starts (4) while the wrist is continuously rotated to match the

126



4.5. Transfer to ARMAR-6 and Validation

−50 0 50 100

x Position [mm]

−120

−100

−80

−60

−40

−20

0

y
P

os
it

io
n

[m
m

]

Figure 4.17: Finger configuration for different solutions of the equation system.

Figure 4.18: Closing behavior of the fingers and the thumb of the real robot
hand.

finger closing speed (5). The fingertips and the thumb are kept at a constant
height, just above the surface of the table. When the fingers are almost fully
closed, the hand is moved down slightly to exploit the interaction between the
underactuated fingers and the table (6). This shapes the fingers around the ob-
ject. During the final closing sequence, the weight of the object is transferred
from the table to the robot’s hand (7). When the object is grasped, it can be
lifted (8).

The grasp trajectory is comprised of 10 key points, excluding the initial key
point. The key points are spaced by 0.5 s each, resulting in an overall 5 s dura-
tion. The linearly interpolated trajectory is depicted in two plots in Figure 4.20.
The right plot shows the linearly interpolated trajectory of the fingers and the
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Figure 4.19: ARMAR-6 grasps a flashlight with its underactuated hand using a
precise motion coordinating finger closing and hand orientation.
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Figure 4.20: Coordinated grasp trajectory for the underactuated hand of AR-
MAR-6. The joint values for finger and thumb are given relatively,
where 0 means open and 1 means completely closed (left side). The
hand is controlled in Z-direction (height) and Y-direction (distance
from the robot) and in rotation to match the finger trajectory (right
side).

thumb. The finger joint value increases steadily to about 50 % at 4 s. The thumb
is first closed to 20 % and then remains mostly unchanged until 4 seconds have
passed. After 4 s the fingers and the thumb are completely closed. The control
of the position and the orientation takes place simultaneously with the control
of the fingers. The right plot shows the relative position change and the relative
orientation change of the hand. The plot summarizes the height of the hand (z),
the displacement of the hand in the direction of the robot (y) and the rotation
around the pitch axis. The initial raising of the hand is clearly visible in the Z-
component. In addition, the lowering of the hand, between second 3 and 4, is
visible. While the Z-position is adjusted, the hand is also moved closer to the
robot. This is necessary because the center of rotation is close to the palm of the
hand and not between the fingertips. During the grasping process, the hand is
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rotated by approx. 25° so that the fingertips and the tip of the thumb always
remain at a constant height. After the fingers are completely closed at 4.5 s, the
hand is raised 30mm to complete the grasp.

4.5.5 Minimal Tactile Exploration

During execution on the robot, acquiring tactile contact with the objects is a
time consuming endeavor, which might move the objects resulting in loss of
precision. However, adding more tactile contact points improves the GPIS es-
timate gradually (Bjorkman et al., 2013). Therefore, a trade-off between execu-
tion time and model completeness arises. Prior to transfer to the real robot, the
minimum number of tactile exploration actions is determined. The grasping
pipeline is executed in simulation using the 12 test objects. The number of tac-
tile exploration actions is varied between 0 and 5. Here 0 exploration actions is
equivalent to using visual information alone. The results of this evaluation are
listed in Table 4.5.

Number of exploration actions
Object 0 1 2 3 4 5

1 70 % 73 % 82 % 68 % 94 % 90 %
2 100 % 100 % 100 % 100 % 100 % 100 %
3 100 % 100 % 100 % 100 % 100 % 100 %
4 88 % 96 % 98 % 98 % 96 % 97 %
5 89 % 99 % 98 % 99 % 99 % 98 %
6 89 % 95 % 92 % 96 % 93 % 90 %
7 77 % 91 % 70 % 74 % 79 % 97 %
8 92 % 88 % 92 % 92 % 94 % 93 %
9 90 % 100 % 99 % 99 % 100 % 99 %
10 96 % 94 % 99 % 93 % 94 % 99 %
11 97 % 99 % 99 % 100 % 99 % 99 %
12 83 % 97 % 97 % 99 % 96 % 78 %

Mean 89% 94% 94% 93% 95% 95%

Table 4.5: Grasp success probability depending on the number of tactile explo-
ration actions.

The table shows that the information gain from the first exploration action is
the greatest. The grasp success rate is increased from 89 % to 94 %, which is
equivalent to halving the grasp error rate. Further exploration actions yield
only little improvement of the grasp success rate. Therefore, one exploration
action was chosen for the execution on the real robot.
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4.5.6 Validation Results

Figure 4.21: Object set used for validation. Objects from top to bottom and
left to right: Aluminum Profile, Hammer, Multimeter, Screw Box,
Power Drill, Cutter, Pliers, Spray Bottle. Image taken from Otten-
haus et al. (2019), © 2019 IEEE.

During the validation, different objects are used, including the ”Power Drill“
and the ”Spray Bottle“. The validation objects are shown in Figure 4.21. Dur-
ing the validation, the grasping pipeline is executed. The camera in the robot’s
head captures a point cloud. The robot performs exactly one exploration action,
as determined in subsection 4.5.5. The visual and tactile information is fused in
one GPIS model. The two grasp planners provided by Simox synthesize 500

grasp candidates using the GPIS estimate. The grasp candidates are filtered to
leave only top grasps. The data-driven grasp metric rates the remaining candi-
dates and selects one candidate for grasp execution.

The robot tries to grasp each of the objects from the validation set. Example
grasping results can be seen in Figure 4.22. Each of the objects could be lifted
successfully, while in some cases multiple attempts were necessary, see Ta-
ble 4.6. Further examples for successful and failed grasps are shown in the
accompanying video3.

3http://ottenhaus.de/simon/vhgrasping/
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Success Failure

Figure 4.22: Examples of grasping results. Image taken from Ottenhaus et al.
(2019), © 2019 IEEE.

Object Mass Lift success? Attempts

Alum. Profile 1.2 kg Yes 2
Hammer 0.8 kg Yes 2
Multimeter 0.4 kg Yes 1
Screw box 0.4 kg Yes 2
Power drill 0.9 kg Yes 2
Cutter 0.3 kg Yes 2
Pliers 0.3 kg Yes 1
Spray bottle 0.2 kg Yes 1

Table 4.6: Results of the validation on the real robot, taken from Ottenhaus et al.
(2019), © 2019 IEEE.

4.6 Discussion

This chapter introduced a visuo-haptic grasping pipeline that enables the hu-
manoid robot ARMAR-6 to grasp unknown objects. The developed pipeline
combines visual perception with tactile exploration and fuses both modalities
in one joint surface estimate. Two grasp planners generate grasp candidates us-
ing this estimated surface. A newly developed data-driven grasp metric scores
all available grasp candidates, according to the predicted grasp success prob-
ability. A simulator executes the whole grasp pipeline many times in simu-
lation using different objects. The grasp metric is trained by simulating the
grasp success probability using the ground truth surface mesh. The approach is
transfered to the humanoid robot ARMAR-6 and validated by grasping various
objects using the underactuated hand of the robot. Several requirements were
identified at the beginning of the chapter and are discussed below.

Choice of Exploration Targets After the robot has captured an initial visual
view of the object the unseen sides of the object should be explored via tac-
tile exploration. However, tactile exploration actions are time consuming, as
the robot needs to physically move its end-effector. Therefore, the tactile explo-
ration is performed using the developed next-best-touch approach introduced
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in section 3.1. This enables the robot to maximize the information gain per cost
in order to improve the surface estimate as quickly as possible.

Fusion of Visual and Tactile Data The point cloud coming from the depth
camera and the positions of the contact point acquired by tactile exploration
are fused using Gaussian Process Implicit Surfaces (GPIS). GPIS was introduced
in subsection 3.2.1 and was extended to include surface normals in subsec-
tion 3.2.2. The Implicit Surface Potential provided by the GPIS method is then
triangulated; resulting is an estimated surface mesh of the object.

Grasp Candidate Generation Two grasp planners, namely the skeleton grasp
planner and the surface based grasp planner, developed by Vahrenkamp et al.
(2009, 2018) use the estimated surface of the object to synthesize grasp candi-
dates.

Minimum Required Exploration The question at the end of the last chapter
(chapter 3) was, How many exploration actions are necessary for grasping? Regard-
ing the combination of visual and tactile information this was answered during
the transfer of the grasping pipeline to the real robot. The surprising answer
was: The first exploration action yields the most new information that is necessary
for grasping. After this first exploration action, the estimated model of the ob-
ject still differs from the actual surface of the object. However, the data-driven
grasp metric is able to extract the necessary information from this one touch at
the back of the object to reliably produce grasp candidates with high success
rate.

Rating and Selection of Grasp Candidates After the grasp planners have gen-
erated many grasp candidates the central question is: Which of the available grasp
candidates has the highest success rate? One simple answer could be that one can
simply use the computed grasp scores by the grasp planners to select the grasp
candidate with the highest grasp score, i.e. the ε-metric. However, this is not
possible since the grasps were planned on an estimated surface. The computed
metrics are based on this estimated surface and do not reflect the actual grasp
success probability. To overcome this, a new data-driven grasp metric was de-
veloped that predicts the grasp success of a given grasp candidate. This grasp
metric uses the captured visual and tactile points as well as the surface estimate
as an input. The output value of this metric is trained in simulation using an
improved grasp score, namely the force closure rate, introduced by Weisz and
Allen (2012).

Transfer to the Humanoid Robot ARMAR-6 The developed grasping pipeline
was transferred to the humanoid robot ARMAR-6. The robot’s hand does not
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have any tactile sensors; therefore, the tactile exploration was adapted. Instead
of sensors at the fingertips, tactile contacts are inferred from the force/torque
sensor reading from the wrist. The hand model is then used to calculate the
position of the contact. The grasp execution was optimized to fit to the under-
actuated hand of the robot, see subsection 4.5.4. A grasping procedure was de-
veloped that coordinates the closing of the fingers with the rotation and trans-
lation of the wrist. The grasping procedure exploits the interaction between the
underactuated fingers and the supporting surface to shape the fingers around
the object. In validation experiments, the robot was able to grasp and lift several
objects using the developed grasping pipeline.
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5 Conclusion

The goal of this work was to develop new approaches to address the following
question:

How can a humanoid robot grasp unknown objects?

The present work addressed this question as follows: First, the robot gathers
information about the object by performing a tactile scan of the object. Then
the robot uses a data-driven grasp metric in combination with an initial visual
view to select a suitable grasp. The grasping problem was thus divided into
two sub problems, (1) the efficient tactile scanning of the object with the aim of
exploring the object surface for subsequent grasp planning, and (2) the gener-
ation, evaluation and selection of grasp candidates based on visual and tactile
perception with a data-driven grasping metric.

Both parts of the work are closely related, since the exploration strategy devel-
oped in the first part is used in the second part. A self-imposed constraint in
the entire work was that the developed methods were to be used for the hu-
manoid robots ARMAR-III and ARMAR-6. Thus, only sensors directly avail-
able in the respective robot system were used. In addition, the developed ap-
proaches should be data-efficient. The exploration was required to move the
robot arm as little as possible. For the visual perception, only one view per ob-
ject and grasping attempt was used, which originated from the camera in the
head of the robot.

5.1 Scientific Contributions

The scientific contributions of this thesis can be summarized as follows.

Next-Best-Touch for Grasping of Unknown Objects

A novel next-best-touch algorithm was developed that efficiently plans explo-
ration actions to maximize the information gain with respect to the expected
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costs of the exploration actions. The result of each exploration action is a new
contact point on the object’s surface, including the local surface orientation en-
coded as a surface normal. Gaussian Process Implicit Surfaces (GPIS) were used as
a data-efficient surface model. The standard formulation of GPIS was extended
to include surface normals by adding derivative information to the underly-
ing Gaussian process. A new tactile sensor, comprised of an inertial measure-
ment unit (IMU) and a tactile pressure sensor, was developed to measure the
local surface orientation. The approach was evaluated in simulation using over
120 objects from the KIT and YCB object datasets. The developed next-best-
touch algorithm has outperformed state-of-the-art approaches with respect to
the exploration cost. The evaluation of the developed surface normal sensor
has shown that the added surface normals significantly reduced the surface
estimation error. The exploration algorithm was published in Ottenhaus et al.
(2018a), while the sensor concept was initially published in Kaul et al. (2016)
and extended and evaluated in Ottenhaus et al. (2018b).

Data-Driven Grasping of Unknown Objects through added Visual
Information

In the second part of this thesis, a method was developed that enables the hu-
manoid robot ARMAR-6 to grasp unknown objects. To this end, a complete
grasping pipeline was developed that combines visual and tactile information,
estimates the object’s surface, synthesizes grasp candidates, rates the candi-
dates, and executes the grasp candidate with the highest success rate. First, a
depth camera in the robot’s head is used to capture an initial view of the ob-
ject. Since this initial view captures only part of the object, i.e. the back of the
object is missing, the previously developed next-best-touch algorithm is used
to explore the unseen back of the object. The visually acquired point cloud and
the tactile contact points are fused into a single surface model by means of
GPIS. In the next step, multiple grasp candidates are generated by feeding the
estimated surface of the object to two conventional grasp planners. To answer
the question regarding which of the generated grasp candidates has the high-
est success rate, a novel data-driven grasp metric was developed. This grasp
metric predicts the probability of success of a given grasp candidate based on
visual and tactile sensor data, as well as the estimated surface model. The data-
driven grasp metric was trained using synthetic grasping data obtained in a
simulated environment. In simulation, the developed data-driven grasp metric
has outperformed conventional grasp planning by a significant margin. During
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the transfer to the real robot ARMAR-6, special attention had to be paid to the
grasp execution. The robot’s hand is underactuated, where only two motors
control all five fingers by means of a specialized mechanism. However, this un-
deractuation could not be simulated sufficiently accurately with the available
simulators. Therefore, a specialized grasping procedure was developed that co-
ordinates the closing of the fingers and the wrist rotation. Furthermore, interac-
tions with the environment were exploited to shape the under-actuated fingers
around the object. The grasping pipeline including the data-driven grasp met-
ric was published in Ottenhaus et al. (2019).

5.2 Discussion and Future Work

This work led to novel approaches in two investigated aspects of robotic grasp-
ing: next-best-touch for grasping and data-driven grasping of unknown ob-
jects.

Next-Best-Touch for Grasping of Unknown Objects

The extensive evaluation of the developed next-best-touch algorithm presented
in chapter 3 has shown that tactile exploration is a promising approach for a
humanoid robot to gather contact information about an unknown object. It was
shown that this contact information can be used to generate a surface estimate
of the object. To this end, the data-efficient surface model GPIS was used.

The evaluation of the newly developed next-best-touch algorithm has also shown
that balancing expected path costs with the predicted information gain per ex-
ploration action can lead to a significant reduction in overall exploration costs.
Furthermore, the extension of GPIS to include surface normal information re-
duced the surface estimation error by 50 %.

A newly developed tactile sensor was used to collect surface normal data as
well as contact data at the same time by combining an IMU with a pressure sen-
sor. The evaluation of the sensor has shown that the orientation accuracy of the
IMU was accurate enough to gather the surface normals of unknown objects.
Using these surface normals together with the contact positions as input for the
GPIS model, the surface of unknown objects could be reconstructed. The result-
ing surface reconstruction was precise enough to allow grasp planning using a
conventional grasp planner. This is an interesting result, as conventional grasp
planners tend to require precise object models.
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Data-Driven Grasping of Unknown Objects through added Visual
Information

The evaluation of the developed data-driven grasping pipeline and the sub-
sequent transfer to the humanoid robot ARMAR-6 have produced some inter-
esting findings. First and foremost, it became clear that successfully grasping
unknown objects with humanoid robots depends on a variety of factors. These
factors include (1) the hardware in the form of the hand, the arm and the camera
systems, (2) the grasp planning and (3) the execution of the grasp. In this thesis,
the hardware was specified by the humanoid robot system ARMAR-6. There-
fore, the developed data-driven grasp planning and the grasp execution could
be optimized especially for the given underactuated hand of the robot. From
this it can also be deduced that precise grasp planning and execution cannot be
robot agnostic, especially with regard to underactuated hands. This clearly dis-
tinguishes grasping with humanoid robots from bin-picking tasks performed
by industrial yaw grippers, where most gripper share similar physical proper-
ties.

In this thesis, the data-driven grasp planning was performed by first generat-
ing a large set of possible grasp candidates, which were then rated by a data-
driven grasp metric. This discriminative approach circumvents the need for
searching good grasp candidates in the full 6D space that is theoretically avail-
able for hand placements. However, a discriminative approach always hinges
on a suitable candidate generator. In the present work, this candidate gener-
ator was implemented by reusing the surface estimation method of the next-
best-touch method presented in chapter 3. A conventional grasp planner uses
this estimated surface to synthesize possible grasp candidates. As the evalua-
tion showed, some of these candidates have a high success rate, while a large
portion of the candidates will result in failed grasps. Here, the data-driven dis-
criminative grasp metric, implemented as a deep neural network, was able to
distinguish between promising grasp candidates and unsuitable grasp candi-
dates. On the one hand, it was shown that the use of deep learning in the area
of humanoid robot grasping can lead to significant improvements compared
to conventional methods. On the other hand, it was found that when learning
grasping data in simulation, special attention must be paid to the transfer to
the real robot system.

After the data-driven grasp metric was evaluated in simulation, the approach
was transferred to the robot. In the first iteration of validation on the robot,
a relatively simple grasping strategy was used. Some objects had to be lifted
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slightly from the tabletop by placing small foam blocks underneath, to ensure
that the fingers could be closed around the object. In later experiments, it be-
came clear that a controlled interaction between the fingers and the tabletop
can be exploited to close the fingers of the hand around small objects. A large
part of the grasp success is thus not only dependent on the hardware and grasp
planning, but depend also on a precise execution of the grasp. Both the fingers
and the position and the orientation of the wrist must be continuously con-
trolled.

Another interesting result arose during the evaluation of the minimally neces-
sary tactile exploration. If an initial point cloud of the object had already been
captured with a depth camera in the head of the robot, the first exploration ac-
tion yielded the greatest information gain in terms of the grasp success rate.
Further exploration actions could only marginally improve the grasping suc-
cess. It can be argued that the main reason for this is that the first contact on
the back of the object provides information about the overall size of the object.
Therefore, the deep learning model was able to implicitly predict the center
of the object and thus was able to filter out grasp candidates that placed the
fingers or the palm in unsuitable locations.

Extensions in Future Work

The next-best-touch algorithm and the data-driven grasping of unknown ob-
jects presented in this thesis lay the foundation for a variety of possible ex-
tensions in future work. As the grasping of unknown objects is a central and
challenging problem in humanoid robotics, many aspects can be investigated
in more detail in the future. The developed next-best-touch algorithm also of-
fers several starting points for future work.

Extension of the Next-Best-Touch Algorithm to Whole Hands

The presented next-best-touch algorithm predicts the information gain for one
exploration action at a time, using one robotic finger. The used Information
Gain Estimation Function (IGEF) evaluates possible exploration targets, where
each target is defined as one point on the estimated surface. Although this func-
tion is limited to one finger at the moment, it can be extended to include multi-
ple exploration targets at the same time. Thereby multiple fingertips of a robotic
hand could be evaluated simultaneously and an optimal next-best-touch for the
whole hand could be planned.
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Extension of the Information Gain Estimation Function Exploration Horizon

The current IGEF approach estimates the information gain with an exploration
horizon of one exploration action. In future research this could be extended
by planning not one, but multiple exploration actions at the same time, e.g.
by means of optimizing an exploration policy aiming to minimize the overall
expected exploration cost of all exploration actions. In the field of deep rein-
forcement learning, promising techniques have been developed for such policy
optimization.

Joining the Surface Estimation with the Exploration Planning

Using deep learning techniques, it is also possible to combine the dual problem
of exploration action planning and surface estimation in one joint approach.
Thereby, the sampling of possible next-best-exploration actions would not be
limited to exploring targets on the estimated surface of the object. This could
significantly speed up the exploration process, since the estimated surface of
the object usually deviates from the actual object, especially in regions where
the object has not been explored yet. Thereby the exploration would need to
spend less time to restore contact with the object, but could focus more on ac-
quiring relevant contact information in interesting regions of the object.

Grasping with Different or Improved Hands

The presented data-driven grasping approach was evaluated and validated
solely using the under-actuated hand of the humanoid robot ARMAR-6, due
to the fact that this hand was the only available hand for the robot at the time
of evaluation. As the hand development continues, an upgraded version of the
hand could be used for grasping, especially since the robot offers the ability to
easily mount different hands. Furthermore, the impact of the fingers’ friction
properties can be investigated in detail. For some objects, the friction of the fin-
gers might not be of relevance, since the object is fully enclosed by the fingers.
However, other objects require highly adherent fingertips. As an example, the
screw box is too large and cannot be enclosed by the fingers of the robot. There-
fore, the fingers can only be placed on two opposite, parallel faces on the box.
In future work, the suitability of different materials for fingertip coating can be
investigated to improve the overall grasp success rate of the hand.

Extension of the Grasp Metric to Include of Finger Configurations

The presented data-driven grasp metric rates possible grasps according to the
6D pose of the hand’s TCP. In future work this can be extended to include the
configuration of the fingers. During the grasping experiments, it became appar-
ent that some small objects might require precise pre-shapes of the hand. The
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prediction of such a suitable pre-shape could be included in the data-driven
grasp metric to extend the set of objects that can be grasped.

Data-Driven Grasp Execution
The coordinated grasp execution presented in subsection 4.5.4 had a signifi-
cant positive effect on grasp success. However, it was mainly developed using
visual inspection and trial and error methods. The synthesis of object-specific
grasp executions can therefore be of interest in the future. Objects requiring
precise finger placement at specific locations could particularly benefit from
such methods. This could include part-specific grasping of objects, e.g. grasp-
ing an object at a handle or grasping a cup or bowl-shaped object at the rim.
These grasping procedures either could be generated from a set of predefined
grasping primitives or could be transferred from human grasping experiments
by learning from demonstration methods. Another approach could be the ap-
plication of reinforcement learning techniques to enable the robot to find new
grasp execution strategies autonomously.

Iterative Refinement and Learning from Failures
Iterative learning is one of topics in machine learning, that currently remain
challenging. However, robotics and in particular grasping could benefit from
such methods. Especially learning from mistakes could improve the grasp suc-
cess rate. The presented implementation of the grasp execution is feed forward,
i.e. the whole trajectory is precomputed and then precisely executed. If a new
iteration of the hand provides additional sensor feedback, e.g. in the form of
tactile sensors, these signals could be used to continuously monitor the grasp
execution. The robot could then learn to distinguish between tactile signals that
correlate with stable grasps and signals that indicate an imminent grasp failure.
In case of a predicted failure, corrective motions could be executed.
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Appendix
A Evaluation Table of the Next-Best-Touch

Strategy

The following table lists the exploration results for each tested object from the
KIT and YCB object sets. Each object was explored 100 times using each explo-
ration strategy. The table lists the average result for each strategy and object.
The strategies include:

• Random: Random sampling of the next-best-touch from all available tar-
gets.

• GP-V: Selection of the next-best-touch with the highest Gaussian process
variance, according to state-of-the art approaches.

• IGEF: Selection of the next-best-touch according to the newly developed
Information Gain Estimation Function.

Nr Object Name Random GP-V IGEF
1 KIT Amicelli 534.9 cm 480.7 cm 261.8 cm
2 KIT BakingSoda 263.3 cm 413.1 cm 128.5 cm
3 KIT BakingVanilla 270.9 cm 395.7 cm 143.6 cm
4 KIT BlueSaltCube 471.4 cm 467.8 cm 223.9 cm
5 KIT BroccoliSoup 607.8 cm 568.9 cm 265.5 cm
6 KIT CatLying 492.5 cm 493.0 cm 233.0 cm
7 KIT CatSitting 521.8 cm 508.7 cm 239.4 cm
8 KIT CeylonTea 780.1 cm 598.3 cm 356.8 cm
9 KIT ChickenSoup 467.6 cm 534.5 cm 225.0 cm
10 KIT ChocSticks 483.7 cm 578.8 cm 226.2 cm
11 KIT ChocolateBars 567.9 cm 557.1 cm 272.7 cm
12 KIT ChoppedTomatoes 447.2 cm 454.2 cm 224.6 cm
13 KIT Clown 459.3 cm 531.1 cm 227.1 cm
14 KIT CoffeeBox 1060.0 cm 811.9 cm 528.6 cm
15 KIT CoffeeCookies 360.2 cm 424.7 cm 189.4 cm
16 KIT CondensedMilk 332.2 cm 426.8 cm 158.6 cm
17 KIT CoughDropsBerries 399.4 cm 472.6 cm 196.3 cm
18 KIT CoughDropsHoney 413.7 cm 474.6 cm 198.9 cm
19 KIT CoughDropsLemon 410.3 cm 515.3 cm 194.5 cm
20 KIT Curry 244.1 cm 523.8 cm 119.2 cm
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Nr Object Name Random GP-V IGEF
21 KIT DanishHam 545.5 cm 593.4 cm 269.2 cm
22 KIT Deodorant 228.2 cm 444.0 cm 111.8 cm
23 KIT DropsCherry 217.8 cm 497.7 cm 104.0 cm
24 KIT DropsOrange 203.2 cm 574.7 cm 100.7 cm
25 KIT Fish 446.9 cm 447.6 cm 222.7 cm
26 KIT FizzyTablets 271.7 cm 358.1 cm 127.8 cm
27 KIT FizzyTabletsCalcium 279.1 cm 422.3 cm 124.3 cm
28 KIT FlowerCup 462.1 cm 477.7 cm 230.6 cm
29 KIT FruitTea 448.5 cm 446.8 cm 209.7 cm
30 KIT GreenSaltCylinder 233.5 cm 565.9 cm 107.6 cm
31 KIT HamburgerSauce 513.2 cm 493.7 cm 254.4 cm
32 KIT HeringTin 418.9 cm 581.4 cm 195.9 cm
33 KIT HotPot 488.3 cm 608.3 cm 222.0 cm
34 KIT HotPot2 533.2 cm 574.9 cm 243.3 cm
35 KIT HygieneSpray 376.0 cm 471.3 cm 196.5 cm
36 KIT InstantDumplings 827.6 cm 681.3 cm 389.3 cm
37 KIT InstantIceCoffee 597.8 cm 521.1 cm 285.9 cm
38 KIT InstantMousse 555.3 cm 606.6 cm 257.5 cm
39 KIT InstantSauce 570.5 cm 564.4 cm 268.0 cm
40 KIT InstantSoup 591.8 cm 548.0 cm 281.5 cm
41 KIT InstantTomatoSoup 469.8 cm 540.6 cm 225.9 cm
42 KIT JamSugar 466.0 cm 462.0 cm 233.4 cm
43 KIT Knaeckebrot 972.7 cm 767.8 cm 462.8 cm
44 KIT KnaeckebrotRye 794.8 cm 656.8 cm 390.7 cm
45 KIT LivioClassicOil 538.5 cm 510.3 cm 275.7 cm
46 KIT LivioSunflowerOil 572.0 cm 514.4 cm 276.2 cm
47 KIT Margarine 439.7 cm 487.3 cm 227.8 cm
48 KIT Marjoram 257.3 cm 536.5 cm 119.5 cm
49 KIT MilkDrinkVanilla 555.2 cm 478.7 cm 264.1 cm
50 KIT MilkRice 656.5 cm 597.8 cm 315.8 cm
51 KIT MuesliBars 740.0 cm 700.0 cm 354.6 cm
52 KIT NutCandy 892.3 cm 762.7 cm 402.1 cm
53 KIT NutellaGo 297.1 cm 346.9 cm 145.3 cm
54 KIT OrangeMarmelade 426.7 cm 427.8 cm 199.0 cm
55 KIT OrgHerbTea 589.7 cm 537.7 cm 289.9 cm
56 KIT Paprika 250.4 cm 512.8 cm 121.7 cm
57 KIT Patches 322.7 cm 457.8 cm 154.2 cm
58 KIT PatchesSensitive 454.2 cm 506.3 cm 210.5 cm
59 KIT Peanuts 490.1 cm 458.6 cm 228.6 cm
60 KIT Peanuts2 485.5 cm 471.8 cm 226.5 cm
61 KIT Peas 441.1 cm 439.4 cm 214.1 cm
62 KIT PineappleSlices 547.1 cm 481.1 cm 257.9 cm
63 KIT Pony 474.1 cm 576.7 cm 232.3 cm
64 KIT PotatoeDumplings 587.6 cm 631.7 cm 266.9 cm
65 KIT PotatoeStarch 827.6 cm 673.1 cm 385.8 cm
66 KIT PotatoeSticks 645.3 cm 536.6 cm 310.0 cm
67 KIT PowderedSugar 500.0 cm 537.5 cm 250.5 cm
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Nr Object Name Random GP-V IGEF
68 KIT PowderedSugarMill 586.7 cm 494.6 cm 285.8 cm
69 KIT RavioliLarge 666.4 cm 551.3 cm 320.7 cm
70 KIT SardinesCan 288.4 cm 396.9 cm 139.2 cm
71 KIT SauceThickener 375.8 cm 407.0 cm 186.2 cm
72 KIT Sauerkraut 654.2 cm 547.3 cm 321.2 cm
73 KIT SauerkrautSmall 382.2 cm 477.1 cm 183.3 cm
74 KIT Seal 446.6 cm 496.0 cm 213.6 cm
75 KIT Shampoo 429.8 cm 470.3 cm 223.4 cm
76 KIT ShowerGel 448.5 cm 496.8 cm 238.1 cm
77 KIT SmallGlass 340.1 cm 421.2 cm 162.2 cm
78 KIT SoftCheese 400.6 cm 562.7 cm 177.8 cm
79 KIT StrawberryPorridge 749.0 cm 689.2 cm 363.6 cm
80 KIT Sweetener 248.0 cm 374.6 cm 131.3 cm
81 KIT TomatoHerbSauce 457.9 cm 476.0 cm 232.1 cm
82 KIT TomatoSauce 430.2 cm 444.6 cm 213.4 cm
83 KIT TomatoSoup 363.3 cm 414.4 cm 179.1 cm
84 KIT Tortoise 421.8 cm 471.3 cm 211.1 cm
85 KIT Wafflerolls 622.9 cm 520.2 cm 292.6 cm
86 KIT Waterglass 517.1 cm 494.6 cm 256.4 cm
87 KIT WhiteCup 451.9 cm 380.3 cm 236.3 cm
88 KIT YellowSaltCube 463.0 cm 446.9 cm 226.6 cm
89 KIT YellowSaltCube2 475.1 cm 469.8 cm 227.2 cm
90 KIT YellowSaltCylinder 456.3 cm 427.5 cm 225.6 cm
91 KIT YellowSaltCylinderSmall 226.7 cm 558.0 cm 108.0 cm
92 YCB black and decker lithium drill driver unboxed 726.4 cm 694.8 cm 363.4 cm
93 YCB block of wood 6in 529.5 cm 513.4 cm 261.9 cm
94 YCB brine mini soccer ball 878.8 cm 549.7 cm 342.7 cm
95 YCB campbells condensed tomato soup 398.2 cm 411.9 cm 175.4 cm
96 YCB champion sports official softball 580.3 cm 330.8 cm 190.9 cm
97 YCB clorox disinfecting wipes 35 816.7 cm 657.0 cm 397.6 cm
98 YCB comet lemon fresh bleach 663.3 cm 554.6 cm 320.9 cm
99 YCB dark red foam block with three holes 309.5 cm 460.7 cm 147.8 cm

100 YCB domino sugar 1lb 630.6 cm 575.3 cm 304.1 cm
101 YCB frenchs classic yellow mustard 14oz 515.8 cm 473.7 cm 247.5 cm
102 YCB jell-o chocolate flavor pudding 450.5 cm 485.8 cm 205.1 cm
103 YCB jell-o strawberry gelatin dessert 320.9 cm 430.8 cm 150.1 cm
104 YCB large black spring clamp 522.1 cm 546.8 cm 264.6 cm
105 YCB master chef ground coffee 297g 733.6 cm 574.3 cm 349.2 cm
106 YCB medium black spring clamp 233.4 cm 480.2 cm 117.8 cm
107 YCB melissa doug farm fresh fruit apple 412.9 cm 443.4 cm 143.4 cm
108 YCB melissa doug farm fresh fruit banana 347.1 cm 443.0 cm 179.1 cm
109 YCB melissa doug farm fresh fruit orange 357.7 cm 420.1 cm 133.3 cm
110 YCB melissa doug farm fresh fruit pear 306.9 cm 444.3 cm 129.7 cm
111 YCB morton salt shaker 218.8 cm 575.4 cm 104.8 cm
112 YCB play go rainbow stakin cups 10 blue 532.9 cm 554.9 cm 295.9 cm
113 YCB play go rainbow stakin cups 5 green 327.3 cm 397.7 cm 135.6 cm
114 YCB play go rainbow stakin cups 6 purple 358.1 cm 342.0 cm 206.8 cm
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Nr Object Name Random GP-V IGEF
115 YCB play go rainbow stakin cups 7 yellow 394.8 cm 371.1 cm 161.5 cm
116 YCB play go rainbow stakin cups 8 orange 450.7 cm 411.2 cm 262.3 cm
117 YCB red metal bowl white speckles 824.1 cm 666.5 cm 404.2 cm
118 YCB red metal cup white speckles 590.8 cm 446.1 cm 297.7 cm
119 YCB soft scrub 2lb 4oz 748.2 cm 647.0 cm 385.8 cm
120 YCB spam 12oz 466.4 cm 464.8 cm 205.8 cm
121 YCB sponge with textured cover 271.5 cm 564.1 cm 126.4 cm
122 YCB starkist chunk light tuna 332.6 cm 445.6 cm 149.9 cm
123 YCB thick wood block 6in 826.5 cm 645.3 cm 399.6 cm
124 YCB wescott orange grey scissors 268.0 cm 490.7 cm 151.9 cm

average 243.3 cm 255.3 cm 116.6 cm
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Acronyms

AI Artificial intelligence
ARMAR Antropromatic multi-arm robot

CNN Convolutional Neural Network
CPU Central processing unit

DOF Degrees of freedom

GP Gaussian process
GP-V Gaussian process variance
GPIS Gaussian Process Implicit Surface

IGEF Information Gain Estimation Function
IMU Inertial measurement unit
ISP Implicit surface potential

LfD Learning from demonstration

RANSAC Random sample consensus
RMSE Root-mean-square error
RRT Rapidly-exploring random tree

SVM Support vector machine

TCP Tool center point
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