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In near future, robots are envisioned to work alongside humans in professional and

domestic environments without significant restructuring of workspace. Robotic

systems in such setups must be adept at observation, analysis and rational de-

cision making. To coexist in an environment, humans and robots will need to

interact and cooperate for multiple tasks. A fundamental such task is the manip-

ulation of large objects in work environments which requires cooperation between

multiple manipulating agents for load sharing. Collaborative manipulation has

been studied in the literature with the focus on multi-agent planning and control

strategies. However, for a collaborative manipulation task, grasp planning also

plays a pivotal role in cooperation and task completion.

In this work, a novel approach is proposed for collaborative grasping and manipu-

lation of large unknown objects. The manipulation task was defined as a sequence

of poses and expected external wrench acting on the target object. In a two-agent

manipulation task, the proposed approach selects a grasp for the second agent

after observing the grasp location of the first agent. The solution is computed in

a way that it minimizes the grasp wrenches by load sharing between both agents.

To verify the proposed methodology, an online system for human-robot manipu-

lation of unknown objects was developed. The system utilized depth information

from a fixed Kinect sensor for perception and decision making for a human-robot

collaborative lift-up. Experiments with multiple objects substantiated that the

proposed method results in an optimal load sharing despite limited information

and partial observability.

Keywords: Grasp planning, Multi-agent grasping, Collaborative manip-

ulation, Load sharing

Language: English
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E Equality matrix in quadratic programming
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Chapter 1

Introduction

Expanding role of robots for manipulation tasks in domestic and industrial

environments needs no introduction. Robots have been widely used for ma-

nipulation in industrial environments and are being increasingly investigated

for use in domestic environments. Although industrial robots provide high

throughput in production by efficiently repeating a single task in a pre-

programmed way, the use of robots is limited to restricted environments with

the expectation that the type of artifacts being manipulated remain within a

narrow range of variance [1]. On the other hand, in a domestic environment

a robotic system is expected to handle a dynamic range of objects, some of

which might even be unknown to the system. However, in both cases, robots

have to interact with humans for instructions, assistance or coordination to

carry out their tasks.

The Human Robot Interaction - HRI problem refers to understanding

the interaction between one or multiple robots and one or multiple humans

to collaboratively accomplish a goal with the objective that the interaction

is beneficial in some sense [2]. The interaction in HRI is not necessarily of

physical nature; applications of the field span from remote interaction such

as teleoperation of robots, to close physical interaction or social and cognitive

interactions. However, technological advancements in artificial intelligence,

computing power and robotic hardware have made physical or close proximity

interaction between human and robots more practical [3]. Use of professional

service robots designed to assist humans in work environments outside indus-

trial settings [4] has increased substantially and significant research has been

carried out in recent years to maximize utility of robots beyond traditional

1



CHAPTER 1. INTRODUCTION 2

industrial setups.

In an environment where robots and humans are envisioned to share same

workspace, physical human robot interaction is inevitable. These interactions

will involve humans and robots working together on a single task. While the

aspect of shared responsibility in such interactions has also been studied

[3], better cooperation requires enhanced perception, analysis and decision

making capabilities in these service robots. Advanced techniques have been

developed for typical cooperation problems including human-robot object

handover [5, 6], motion planning for cooperative manipulation [7] and other

human-robot cooperative manipulation tasks [8].

Collaborative manipulation requires coordination between multiple agents

handling a single object. While a multi-robot system increases the complexity

in terms of planning and control, collaborative manipulation in human-robot

interaction may use agility of human to ease strict coordinated control. How-

ever, a common goal in both these cases is the collaboration to manipulate

an object that may not be manipulated by an individual agent. Thus both

agents need to contribute in manipulation in order to accomplish the desired

task.

Grasping plays a major role in manipulation of objects. In case of multiple

agents, the grasp location of each agent with respect to the center of gravity

of an object will be a defining factor towards the agent’s contribution in load

sharing. Therefore, along with control strategy, grasp planning is also crucial

for better cooperation in both robot-robot and human-robot interactions.

1.1 Problem Statement

While a lot of work has been done on grasping in general, grasping of un-

known objects and manipulation using multiple hands, field of grasping for

multiple independent agents, lacks significant research. Particularly the prob-

lem of manipulating unknown target objects when multiple agents are influ-

encing the target is unexplored. A common scenario in both domestic and

work environments is collaborative lift and transport of large objects. Even

if the object consist of simple geometric shapes, multiple independent agents

handling a single object make the grasp planning problem non-trivial. Grasp

planning with partial observability of the target and incomplete knowledge
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about other agents is addressed in this work to devise a grasping solution for

the lifting task.

1.2 Motivation

The motivation for the proposed solution comes from human behaviour in

collaborative manipulation. It is observed that during collaborative manip-

ulation e.g. assisting in lifting and transporting objects, humans tend to

take rational grasping decisions based on visual features of object. Further-

more, intuitive selection of grasp location is also appropriate for unknown

objects that have not been previously handled by the person. Although a

human decision is supported by years of learning and experience in object

manipulation, the principle is based on basic laws of motion and inertia. If

dynamics of the task being performed and adequate knowledge of the envi-

ronment are known, a rather simple approach based on the laws of motions

can be adopted to identify grasp locations that will minimize required forces

and torques to complete the task.

1.3 Objective and Contributions

The aim of this thesis is to develop a real-time grasping solution for collabora-

tive manipulation of unknown large objects. A collaborative lift is considered

as the manipulation task. Depth cloud viewed from a fixed Kinect is taken

as an input to the system. Partial depth information about the target object

is then used to extract candidate grasps on the visible surface of the object.

For an assistive role in manipulation, this system expects the other agent

(possibly human or another robot agent) to first execute a grasp on the tar-

get object. For selection of best suitable grasp among candidate grasps, a

new algorithm is proposed in this work that tries to minimize collective ef-

forts needed from both agents to accomplish the manipulation task. Several

configurable parameters allow tuning the method to incorporate capability

and desired contribution of each agent. The proposed method is tested in an

experimental setup with objects of different shapes and sizes.
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1.4 Assumptions and Simplifications

A few assumptions have been made about the environment and target objects

to simplify testing and verification of the system. To simplify target extrac-

tion process, the system expects a large target object on a planner surface in

Kinect view. Objects consisting of basic geometric shapes are considered as

target so that a simple grasp synthesis methods can be used for generation

of candidate grasps. For the method proposed for collaborative grasp selec-

tion, it is considered that the extracted candidates result in stable grasps.

Furthermore, due to immobility of the manipulator used for experiments, it

was assumed that an optimal solution lies within the reachable workspace of

manipulator.

1.5 Structure

The rest of the thesis is organized as follows. Chapter 2 provides a brief

overview of grasp theory with further insight into grasp planning approaches

for unknown objects. Recent studies in the field of cooperative and multi-

agent grasping are discussed in Chapter 3. A new grasp planning method for

collaborative manipulation is proposed in Chapter 4 and it’s mathematical

formulation is presented. Chapter 5 elaborates the design and implemen-

tation of the system, hardware and software components, and processing

pipeline of the real-time collaborative grasping solution. Experiments to

test and verify the components of the system are discussed along with the

acquired results in Chapter 6. Finally, Chapter 7 concludes the work and

provides future directions.



Chapter 2

Grasp Theory

Grasping and manipulation is a key feature to increase applicability of robots

in domestic and professional environments. In recent years, significant tech-

nological advance has been achieved in the development of relevant hardware

and its utility for better grasp execution. Availability of dexterous hands and

tactile sensing has made it possible to imagine human like grasping and ma-

nipulation capabilities for robots in near future. As a result recent studies

in this field have focused on more generic solutions, maximal utilization of

available sensory information and real-time execution.

This chapter gives an overview of grasp theory and different factors that

influence grasping solutions. In latter part of the chapter, approaches for

grasping unknown objects are further discussed.

2.1 Grasp Synthesis

A grasp or grasp configuration can be defined with an appropriate hand

configuration and/or contact points of fingers on the target object. Grasp

synthesis is the process of finding a grasp configuration for a given object,

which satisfies requirements of the grasping task [9]. Sahbani et al. in their

overview of grasp synthesis algorithms [10] advocate that a grasp synthesis

strategy should answer the question “where to grasp an object in order to

accomplish a task?” along with ensuring stability, task compatibility and

adaptability to novel objects. While the task to be performed is the primary

objective of grasp synthesis, several other factors also influence the method

5
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that can be adopted for grasp planning. Bohg et al. [9] have identified these

factors as shown in Figure 2.1. Major factors include type of gripper, prior

knowledge about the target, available sensors and grasp synthesis approach.

2.1.1 Task Oriented Grasp Planning

Task oriented grasp planners use a task oriented quality measure to rank can-

didate grasps. The importance of grasp location in relation to a manipulation

task is intuitive for humans, e.g. flipping a cylinder is easier if grasped from

the center than if grasped from the top. For robotic grasping, an appropriate

definition of task is also critical for task oriented grasp planning. Haschke et

al. [11] specify a task with a single wrench, a wrench cone or a wrench poly-

tope for task oriented grasp quality measures. In [12] a task was specified

with sequence of desired poses of object and multiple external wrenches to

show that grasp evaluation results in different quality for different tasks.

2.1.2 Type of Robotic Hand

The type of hand used for grasping also affects possible grasp configurations.

While a simple gripper may simplify the planning problem, multi-fingered

hands are usable with wide range of target objects. Critical factors to con-

sider for a particular gripper are gripper pre-shape, number of contact points

and type of contacts. Dexterous hands with multiple fingers result in multi-

ple possible pre-shapes of hand and increased number of contacts, resulting

in a larger number of possible grasp configurations.

2.1.3 Local vs Global Quality Measures

An infinite number of candidate grasps may exist for a single object. A

quality measure is used to rank multiple possible grasps in order to select an

optimal one. Relation of quality measure to the object is thus an important

aspect for ranking. The measures can be local to the grasp location i.e.

contact point, contact area or curvature of object around grasp location;

or may depend on global characteristic of object e.g. principal component

analysis or bounding box [9].
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Figure 2.1: Aspects influencing generation of grasp hypotheses [9].
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2.1.4 Sensing and Features

Another critical aspect influencing grasping methodology is observable fea-

tures of target objects. Based on sensing devices, an object can be observed

as 2-D images, 3-D data including depth information or other modalities.

Furthermore, observation is also influenced by the mobility of the sensor. A

fixed sensor will only be able to partially observe a static target object.

2.1.5 Analytical vs Empirical Approaches

Traditionally two grasp planning approaches are used [10]: analytical and

empirical. Analytical approaches consider contact points between gripper

and object to calculate force wrenches on the object as a result of a grasp.

Force wrenches on target object are then analyzed for force closure [13] to

ensure a stable grasp. Analytical grasp synthesis strategies thus try to make

sure that a force closure is achieved on the grasped object. For the purpose,

contact point normals are required to find the direction of resultant wrenches.

Some quality criteria are used to select better grasps out of multiple force

closure grasps. Quality criteria are usually based on ability of grasp to resist

external wrenches in one or more directions. Figure 2.2 shows a common flow

of analytical grasp synthesis. Both object and hand models are considered in

grasp synthesis and a quality criterion is used to rank and choose the optimal

grasp.

Empirical or data-driven strategies on the other hand try to plan a grasp

by either observing the target object or by learning object grasping from hu-

man demonstration or repetitive grasp execution. Thus empirical strategies

focus more on processing of perceptual data than grasp analysis. Major prob-

lems addressed in these strategies are object recognition and pose estimation,

extracting features on target object and modeling [9]. Unlike analytical ap-

proaches, data-driven methodologies cannot provide a guarantee about grasp

stability and can only be verified empirically. A common approach is shown

in Figure 2.3. Sensing and signal processing is the key area of focus in these

strategies. In empirical approaches a robotic system either observes human

demonstration of task execution and tries to reproduce the same grasps, or

learns the association between objects characteristics and hand shapes to

compute a grasp solution [10].
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Figure 2.2: Typical grasp synthesis strategy in analytical approaches [10].

Figure 2.3: Typical grasp synthesis strategy in empirical approaches [10].
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2.1.6 Prior Knowledge of the Target Object

Prior knowledge of the target object plays a major role in dictating how a

grasp synthesis problem is addressed. Grasp synthesis approaches in litera-

ture consider target object to be known, familiar or completely unknown [9].

In case of known objects, it is assumed that the target object has been en-

countered before by the system, or complete knowledge about object’s shape

is available. The system typically contains a set of candidate grasps com-

puted off line for the object. Grasp synthesis problem is thus reduced to

estimating current pose of object and selecting suitable grasp configuration.

Objects are considered familiar if the system has grasp experience for

objects similar but not exactly same as current target. Approaches for such

a scenario try to find similarities between known object models and the query

object to apply previous grasp experience on current target. One example

case is approximating target with a set of primitive shapes and applying

primitive shape grasping experience to generate grasps [14].

Contrary to known and familiar objects, grasp planning methods target-

ing unknown objects usually consider no prior knowledge about expected

model of the object [15, 16]. Instead these approaches rely mainly on infor-

mation perceived by sensors. Methodologies for such scenarios try to link

observed structure of the object to candidate grasps.

2.2 Grasping of Unknown Objects

An unknown object is an object never seen before by the robot system for

grasping. The case is significantly different from known objects or familiar

objects as those approaches consider available object model or other grasp-

ing experience [9]. Instead the sensed data has to be analyzed to generate

candidate grasp solutions. Thus methods to grasp totally unknown objects

focus more on data acquisition, processing and modeling of target objects for

grasp synthesis.

Most common sensors used for robotic vision are stereo camera systems

and RGB-D cameras to capture 3D structural details of the target object.

Sensed data always contains noise and may also be incomplete. Furthermore

the solutions need to consider how data is being acquired, e.g. in the form
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of images or depth point cloud. Similarly sensor’s location may also be

fixed or movable, resulting in perception from a single or multiple viewpoints

respectively. Therefore methodologies for grasping unknown objects relying

on sensed information need to take into account scene perception to extract

required information that can lead to optimal grasp planning.

Considering preprocessing of acquired data before grasp planning, Bohg

et al. [9] divide data driven grasp methodologies of novel objects in three

categories:

• Approximating complete shape of unknown objects

• Grasps based on low level features

• Relying on partially observed shape of target

Latter two strategies do not rely on a complete model of object but differ

in the way available partial information is utilized for grasp planning. Lei

et al. [17] have thus categorized recent work for grasping unknown objects

into two major groups: global and local approaches. Global approaches try

to construct a complete 3D model of the object before extracting candidate

grasps, whereas local approaches exploit shape features in available data that

might help in finding suitable grasp locations.

In global grasping approaches, a complete model of the target object

or a close approximation is constructed using either multiple views of the ob-

ject, considering symmetries in object shape, factorizing objects into simple

shapes or just by closing missing surface area in observation data to complete

the shape.

Wang et al. [18] used a laser scanner attached to a multi fingered robotic

hand to scan and reconstruct 3D object models before grasp planning. Dif-

ferent grasp configurations are then evaluated in simulation environment on

a reconstructed model using wrench space metrics to choose the best grasp

configuration before actual execution. Bone el al. [19] used a similar scanning

concept with wrist mounted video camera along with a line laser to recon-

struct a 3D model of the target object. Object silhouettes are extracted from

2D images to reconstruct an initial 3D model of the object, which is later

refined by merging laser scan data. A force closure grasp is then generated by

analyzing the object model. Dune et al. [20] used camera in hand to roughly
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approximate a 3D model of the object with quadratic functions, from multi-

ple 2D views of the object. They assume that necessary features for a proper

grasp are object’s major axis, centroid point and size. A rough estimation of

object model includes all these features.

If only one view of the object is available, the complete model of the object

cannot be observed due to self occlusion, even with a depth camera. Such

a scenario requires assumptions for occluded part of the object to complete

the model. To make up for missing information Bohg et al. [21] made use of

the observation that many target objects for service robotics are symmetric

in shape. Assumption of symmetry was then used to complete partially

observed model of object before grasp planning. Ilonen [22, 23] used same

assumption for his work with Bohg and Kyrki for initial hypothesis of 3D

model, which was later improved during grasping by optimally fusing tactile

information with visual data.

To simplify grasp planning problem on complex objects, decomposition

into simpler shapes has also been used for grasp hypothesis generation. Miller

et al. [24] presented a framework for grasp planning on shape primitives. If a

complex object is decomposed in smaller primitive shapes, same techniques

can be utilized for grasp planning on subparts of the object. Huebner et

al. [14] presented a maximum volume box decomposition algorithm to divide

a given 3D point cloud data into primitive box shapes to be used for grasp

planning. Schnabel et al. [25] used RANSAC algorithm to efficiently detect

multiple basic shapes in unorganized point clouds.

The 3D model reconstruction problem has also been addressed by re-

searchers in the field of computer vision and graphics [26–29] using multiple

images or depth information without considering grasp planning task. Once

a complete 3D model is available, different grasp planning approaches for

known/familiar objects can be utilized to generate suitable grasps.

Contrary to global grasping approaches, local grasping approaches try

to exploit local features such as edges or boundaries to generate candidate

grasps. Local grasping approaches are more practical when only a single

view of object is available as the global approximation in shape is no more

required.

Richtsfeld et al. [30] used single view range data for grasping objects

with cylindrical shapes or with flat top surface. High curvature points in
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visible point cloud were used to identify cylinders out of arbitrary shapes.

Cylindrical shapes were tested for open or close shapes and side or top grasp

was generated based on diameter of cylinder. For arbitrary parts on the

other hand, only top surface grasps were evaluated. Lei et al. [31] also used

partial point cloud data of unknown object from one or two view points to

find grasp locations using force balance optimization. Partial point cloud was

projected on 2 different planes and a suitable grasp location was calculated by

maximizing force balance coefficients on projected contours of point clouds.

Ele et al. [32] used boundary information in a single 3D image to plan

two finger gripper grasp on unknown objects. In other similar local grasping

approaches Calli et al. [33] have used curvature information obtained from

silhouette of an object; and Suzuki and Oka [34] used principal component

analysis on partial point cloud for grasp planning on common household

items.

2.3 Discussion

Grasp planning has been an active area of research over past few decades. Re-

searchers have addressed the problem with different aspects for both known

and unknown objects and have achieved significant progress towards both

generic and specific solutions. Some of the recent works were discussed in

this chapter. For the scope of this thesis, grasping solutions for unknown

objects are of particular interest. Such solutions have shown to achieve ac-

ceptable success rate if the unknown target satisfies certain assumptions. To

focus on the collaboration aspect of human-robot interaction, robotic grasp-

ing problem for an individual agent has not been addressed in this thesis. A

candidate grasp generation method based on elementary grasp actions was

used on targets consisting of simple geometric shapes. Aarno et al. [35] has

shown that elementary grasp actions on low complexity objects result in up

to 80% of successful grasps. Therefore during the collaborative manipulation,

it was assumed that individual grasps are stable i.e. able to exert forces and

torques in all directions on the target object.



Chapter 3

Cooperative Grasping and Manip-

ulation

As discussed in Chapter 2, robotic grasping problem has been actively ad-

dressed in literature for different types of objects and environments. The

solutions are typically limited to pick and place tasks by a single manipu-

lator and gripper. Such solutions are applicable widely in service robotics

where objects of different kinds are to be manipulated by a single agent.

However, they usually does not consider influence by any external agent on

the target object.

A wide range of manipulation tasks in human centric environments need

an interaction between multiple agents or manipulators. Following sections

discuss a few of such problems addressed in recent years.

3.1 Dual-arm Manipulation

Anthropomorphic robots have also gained popularity in recent times due to

their applicability as a replacement to human workers without significant

changes in workplace. Deployment of robots in human centric environments

requires object handling abilities in robots similar to humans. This has led

to an increased research in the field of dual arm manipulation which involves

object handling by more than one robotic hands. Such a task requires a

grasp solution for each hand. However, as most multi-arm systems are single

agent, a centralized planning approach can be used to devise solution for

14
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both grasps simultaneously. Berenson [36] extended a multi-fingered single

hand grasping approach to a two handed grasp by considering two hands as

two fingers of single virtual hand. Rojas-de-Silva and Suárez [37] found a

simultaneous grasping solution for manipulation of bulky objects with two

anthropomorphic hands by slicing the target object’s point cloud and eval-

uating quality of grasp combinations that satisfy force closure condition.

However, the method required an existing model of the target object.

Such approaches are not applicable in distributed multi-agent systems

as a distributed system is restricted by limited knowledge about the other

agent’s grasp. Besides, in human-robot interaction, communication beyond

visual observation is impractical, restraining the possibility of a centralized

grasp solution.

3.2 Human-Robot Handover

One of the problems addressed in recent works where an object is considered

under influence of more than one agent is the hand-over task in human robot

interaction. Human-robot object handover is a fundamental scenario of hu-

man robot cooperation in domestic environments. Since the object has to be

transfered from a robot to a human or vice versa, solutions have to consider

the handover phase when the object will be grasped by both the agents.

The handover task completely transfers control of the object from robot to

human or vice versa. Therefore, the grasp configuration for robot is chosen

such that the pose of the object ensures stable grasps for both agents: giver

and taker of the object. Even though the object will undergo a simultaneous

influence by both agents in such manipulation task, the object will also be

manipulated by both agents individually. Coordination between agents (hu-

man and robot) is of primary importance for a successful transfer. Strabala

et al. [6] studied human-human interaction in terms of communication and

coordination during a handover task to propose a coordination framework for

human-robot handover scenario. In another interesting work, Edsinger [38]

showed that the intuitive nature of human simplifies the grasping problem

between human and robot, as humans tend to align the object according to

position and orientation of robotic hand during a handover. Chan et al. [5]

presented another framework to learn handover grasp configurations by ob-
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serving humans handing over object to the robot. By observation, the robot

was able to handover object back to the human.

Even though the handover problem represents a fundamental human

robot interaction, the problem differs significantly from cooperative manip-

ulation. A cooperation requires sharing required effort during manipulation

between multiple agents. Thus both these cases will have a different optimal

grasp solution. Besides, handover tasks typically involve small objects that

can be handled by a single agent and do not require cooperative manipula-

tion.

3.3 Collaborative Manipulation

Most existing literature in the field of collaborative manipulation mainly

focuses on motion planning and control strategies [7, 39], assuming that a

grasping solution already exists. Arai et al. [40] presented an assistance

system to help transport long objects that are difficult to manipulate from

a single point of support. The method focused on the control strategy for

manipulation of the object rather than the grasping problem. It was assumed

that the robot will grasp the object from one end and human from the other.

Fink [41] and Mellinger [42] in their work addressed cooperative grasping and

manipulation for aerial robots, but again the work was focused on planning

and control of multiple aerial robots to manipulate or transport the payload

in three dimensional space.

3.4 Decentralized Multi-robot Systems

Muthusamy [43] addressed the problem of cooperative grasp planning for

decentralized agents in a multi robot system (MRS). He proposed a multi

robot grasp planning method for coordinated grasps in a setting where agents

do not have information about embodiment of the other agent. However, it

was considered in his work that both agents have similar capabilities and

the grasps were executed in a sequential manner. Moreover, both agents had

knowledge that the object will be manipulated by multiple agents. Thus

each grasp was chosen to maximize expected quality after both grasps. The

approach can also be used in a human-robot interaction for manipulation as
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the intuitive nature of humans will also result in an appropriate human grasp

if collaboration is expected.

Extending his work to task specific cooperative grasp planning in MRS

[44], Muthusamy proposed task specific grasp planning strategies for decen-

tralized multiple robots. He demonstrated that if task characteristics are

known, task independent grasp planning is inferior to task specific grasps

planning. However, the work considered grasp planning on known objects.

If the object is unknown and partially observable, the quality measures used

in his work may not be applicable.

3.5 Discussion

With increasing influence of robots in industrial and professional environ-

ments, human robot interaction and robot-robot interaction will be funda-

mental features in future robots. Such systems will require execution of tasks

in collaboration with other agents. Manipulation being one of the elemen-

tary task in robotic applications will be a common scenario in collaborative

execution. A significant amount of research has been carried out in the field

of grasping by single agent and towards control strategies for multi-agent

manipulation but the field of multi-agent grasping for manipulation task has

received little attention.

The grasping and manipulation task becomes non-trivial when incom-

plete information is available about the object. Furthermore, if the object is

to be manipulated by multiple distributed agents, an additional factor of un-

certainty is introduced in the task execution. Incorporating robots in human

centric environments to assist and work alongside humans will need robots

capable of analyzing unfamiliar situations and human actions; and to make

rational decisions despite limited information.



Chapter 4

Proposed Method

Collaborative manipulation requires agents to contribute in manipulation

task in a way that the collaboration is beneficial in task completion. There-

fore, it is considered that an optimal solution for a manipulation task must

ensure task completion and minimize efforts required by the manipulating

agents. In collaborative execution of task, if one agent has better capabili-

ties such as a robot in a human-robot interaction, more contribution may be

expected from the agent in an optimal solution.

The problem of grasping for collaborative manipulation of unknown ob-

jects is addressed in this work for a lift-up task on large objects. Limited

prior knowledge of the environment is assumed and sensory information is

utilized for logical decision making. A 3D range data of the target object

from a single view is considered as input to the system. In case of large ob-

jects, partial view of the object is adequate for principal component analysis

to approximate size and centroid of the target object. This work assumes

that the target objects have uniform mass density. The center of gravity is

approximated from axis aligned bounding box (AABB) of the target point

cloud. Furthermore, to play an assistive role, a sequential coordination pro-

tocol is considered between manipulating agents where first agent makes a

grasp on the target object followed by a decision for second agent grasp by

the proposed method. It is assumed that approximate location of grasp by

first agent can be observed from real time range data and the grasp location

will remain constant.

The visible partial surface of the object is processed to extract candidate

grasp locations. Chapter 2 discussed a number of approaches that can be used

18
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Figure 4.1: Sequence of operations

for this purpose. For the collaborative grasp analysis method proposed in this

chapter, it is assumed that one such approach will provide stable candidate

grasps. A simple method based on elementary grasp actions (EGA) [35] is

used in this work to extract candidate grasps on reachable part of the target

object. The sequence of operations for robotic grasp planning is shown in

Figure 4.1.

Given the approximate location of center of gravity, approximate location

of grasp by the first agent and candidate robotic grasps, an algorithm for col-

laborative grasp quality evaluation is proposed in this chapter. The method

tries to minimize total efforts required by both agents to complete manip-

ulation task under given conditions. The problem is thus modeled as 2nd

order minimization problem. Following sections explain the mathematical

formulation of the proposed approach.
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4.1 Grasp Representation

During robotic manipulation of an object, a single grasp results in multiple

contact points on the target object. In typical grasp stability analysis, each

contact point is represented by a single force (frictionless contact) or a friction

cone (contacts with friction) in the direction of surface normal at the contact

point. The grasp will be stable (force closure) if any external wrench can be

resisted by these contact forces.

During the execution of a manipulation task, a stable grasp will be ap-

plying forces and torques in one or multiple direction on the target object.

Thus at any time instant during the manipulation, a stable grasp can be

represented by a wrench acting on the object.

g =

[

f

τ

]

(4.1)

where g is the grasp wrench of an arbitrary stable grasp, f is the force vector,

and τ is the torque vector acting on the target object in the object reference

frame.

4.2 Task Definition

Over the course of a manipulation task, the object undergoes a trajectory

which can be described as a sequence of poses. At each pose during the

manipulation, external wrenches such as gravitational force will be acting on

the object. The manipulating agents need to cooperatively apply a wrench

on the target object to compensate the external wrenches and change the

object’s state to next pose in the trajectory. In object reference frame, this

wrench can be represented by a task wrench

wt =

[

ft

τt

]

(4.2)

where ft is the task force vector and τt is the task torque vector required

at a particular time instant. A similar approach for task representation has

also been used by Seredyński [12] for task specific grasp planning.
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Consider a target object being manipulated by two agents A1 and A2,

with its center of gravity at o = [0, 0, 0]T in object reference frame. Assume

that the locations of grasps by A1 and A2 are represented by vectors p1 =

[p1x, p1y, p1z]
T and p2 = [p2x, p2y, p2z]

T respectively, where

p1 = [p1x, p1y, p1z]
T

p2 = [p2x, p2y, p2z]
T

Using the grasp representation discussed in Section 4.1, grasps by both

agents can be expressed as:

g1 =

[

f1

τ1

]

g2 =

[

f2

τ2

]

where g1 and g2 are grasps by agent A1 and A2 respectively. For a successful

manipulation, these grasps must equate the task wrench wt. Thus the system

of equations for task execution can be expressed as

f1 + f2 = ft (4.3)

p1 × f1 + τ1 + p2 × f2 + τ2 = τt (4.4)

where ft and τt are force and torque vectors from task wrench.

For a lift-up task, if the object is kept in equilibrium after lift, the task

wrench can be expressed as wt =

[

fg

0

]

where fg is the gravitational force on

the object.

4.3 Grasp Quality Measure

The utility of a g1-g2 grasp pair is proportional to the wrenches required

from both agents for the manipulation task where smaller wrenches repre-

sent a better grasp solution. Therefore, for a particular pose during the

manipulation, a cost function for a grasp pair can be defined as

c(g1, g2) =‖ f1 ‖2 + ω1
2‖ τ1 ‖2 + ǫ2‖ f2 ‖2 + ǫ2ω2

2‖ τ2 ‖2 (4.5)
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The factors ǫ, ω1, and ω2 are non-negative coefficients, introduced to

incorporate capabilities of manipulating agents in cost factor. ǫ indicates the

ratio between contribution desired from each agent, whereas ωi is the factor

of torque compared to force for Ai in cost calculation. ωi is typically related

to the size of a gripper, which can be used as a scaling factor between forces

and torques.

Setting ǫ = 1 represents equal desired efforts by both agents. In a lift-up

task, such a solution will try to distribute the object’s load equally between

both agents. A value of less than 1 for ǫ will result in higher efforts by A2

compared to A1.

For a g1-g2 grasp pair, the total cost of task execution can be calculated

as sum of the costs over poses.

cT (g1, g2) =
∑

i

ci(g1, g2) (4.6)

where ci is the cost of ith pose during the desired trajectory.

4.4 Cost Minimization and Grasp Solution

An optimum solution will offer a minimum total cost to ensure maximum

quality. Since it was considered that the candidate grasps are available, the

problem is reduced to grasp selection such that the cost of manipulation

is minimized. Therefore, the load sharing problem can be considered as a

quadratic minimization problem; minimizing cost expressed in (4.5) for each

grasp pair while satisfying task equations presented in (4.3) and (4.4).

For the manipulation task, grasp wrenches are unknown for both grasps

before task execution. However, minimum required wrenches for a known

task wrench can be computed for each g1-g2 grasp pair where grasp by A1

will remain same in all pairs. A candidate grasp by A2 offering minimum total

cost will result in an optimal collaboration under given cost factor. Quadratic

programming [45] can be used to estimate minimum required wrenches.

The quadratic programming solution will estimate the unknown state

vector x while minimizing the function

c(x) =
1

2
xTQx (4.7)
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s.t. Ex+ e0 = 0

where

x = [f1 τ1 f2 τ2]
T

Q =











I O O O

O ω1
2I O O

O O ǫ2I O

O O O ǫ2ω2
2I











E =

[

I O I O

R1 I R2 I

]

e0 = −wt.

The matrix Q is derived from the cost factor expressed in (4.5). I and O

are 3 × 3 identity and zero matrices respectively. The matrix Ri is a cross

product operator given by

Ri =







0 −piz piy

piz 0 −pix

−piy pix 0







such that the equality constraint Ex+e0 = 0 is the equivalent representation

of wrench equilibrium expressed in (4.3) and (4.4).

The state vector estimated by quadratic programming includes the min-

imum grasp wrenches required to satisfy task equations by a pair of grasps.

Estimated grasp wrenches can then be used to calculate the cost of manip-

ulation for a grasp pair using 4.5. For an established A1 grasp at p1, grasp

location of A2 is selected from a given set of grasp candidates P2 = {p1
2
, ..., pn

2
}

to accomplish a trajectory specified as a list of task wrenches Wt = w1

t , ..., w
n
t

using

p2 = argmin
pk
2
∈P2

(

∑

i

min
x

ci(x;w
i
t, p1, p

k
2
)

)

(4.8)

The selected robot grasp at location p2 is the one offering minimum ex-

pected wrenches required to complete the manipulation task.
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4.5 Discussion

An novel approach was presented in this chapter to analyze candidate grasps

for a collaborative manipulation task. The proposed solution estimates the

grasp wrenches while trying to keep the cost of manipulation minimum. The

cost of manipulation is formulated with grasp wrenches required to complete

the manipulation task. The cost factor can also incorporate capabilities of

manipulating agents and ability of an individual agent to generate force vs

torque on the target object. The solution can also be extended to consider

the force and torque limits that can be produced by manipulating agents.



Chapter 5

System Architecture and Design

This chapter describes the implementation details of the system developed

for a human-robot collaborative lift-up. The complete system consists of a

hardware setup including sensors and manipulator operated by a workstation.

The workstation also hosts the analyses and decision making logic including

an implementation of methodology proposed in Chapter 4.

5.1 Hardware

The hardware includes a depth sensor (Kinect), a manipulator (Kuka LWR)

and a gripper (BarrettHand). A brief description of each component is given

in following subsections.

5.1.1 Kinect

Kinect is an input device used by Microsoft for perception and motion sensing

with gaming consoles. Different sensing components of Kinect are shown in

Figure 5.1. The device is widely used in research work as a sensor for its

RGB-D output. In this work, depth information from Kinect is used as

sole input to the system. As mentioned in its specification [46], the device

includes:

– An RGB camera with 1280× 960 resolution

– An infrared emitter and sensor. Infrared light beams are emitted from

IR emitter, the depth sensor senses reflected beams which are then

25
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Figure 5.1: Kinect Sensor Components [46].

converted in depth information to measure distance between object

and sensor.

– A multi array microphone

– A 3-axis accelerometer to determine current orientation of Kinect

5.1.2 KUKA LWR

KUKA Lightweight Robot (LWR) is a product of research collaboration be-

tween KUKA Roboter and the German Aerospace Center (DLR) [47]. The

robotic arm has been specifically designed for robotic research and future

manufacturing; and is commonly used by researchers for manipulation tasks.

The problem considered in this work addresses grasp planning without the

consideration of trajectory planning and control required for manipulation.

Path planning and execution for the manipulator is carried out by existing

planner and control solutions; and are not the focus of this work.

5.1.3 BarrettHand BH8-282

BH8-282 is a 3-fingered grasper that can be used to grasp object of different

sizes, shapes and orientation [48]. Light weight hand of under 1kg can be used

to lift payload of up to 6kg. The gripper is also equipped with tactile sensors
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(a) Hand before grasp execution (b) Hand after grasp execution

Figure 5.2: Grasp execution on a target object.

in finger tips and palm; and torque sensors installed in finger joints. In ma-

nipulation tasks, tactile sensing can be used to enhance perceived knowledge

about the target object.

In this thesis, the hand is used as a simple gripper for grasping. Before

making a grasp, fingers are kept open and spread (Figure 5.2a). To make

a grasp, fingers are closed until the target object is grasped (Figure 5.2b).

ROS package barrett_hand [49] is used to control the BarrettHand.

5.1.4 Calibration between Kinect and KUKA Arm

KUKA manipulator and Kinect being independent systems and installed at

different spatial locations, have separate coordinate systems for represen-

tation of a point in space. To synchronize perception of environment and

actuation within the environment, a coordinate transformation was required

between Kinect and KUKA coordinate frames. Therefore, a calibration pro-

cess was carried out to estimate the required transformation.

In the calibration process, a blinking IR emitter was attached to the

palm of robotic hand. The robotic arm was moved to multiple random poses

and IR image were captured using Kinect at each pose. Pose information

and corresponding IR images were used to estimate coordinate transforms

between the two coordinate systems. The calibration process used here was
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Figure 5.3: IR images captured during calibration process.

proposed by Ilonen [50]. Figure 5.3 shows sample IR images captured during

the calibration process. A bright spot (IR emitter) can be observed in all

images near the palm of BarrettHand.

5.2 Software Components

Several existing software components and APIs were used in this work. Use

of already developed frameworks not only speeds up the development process

but has also increases reliability of the system as they have been intensively

tested by developers. All 3rd party components used in development for this

work are open source and free to use; and are widely used in academia and

industry in their respective fields.

5.2.1 Robot Operating System - ROS

The Robot Operating System is a framework developed to help in making

robotic software applications. The open source framework is built to encour-

age collaborative robotic software development by mutual contributions from

numerous research institutes and individual in robotic community. Flexible

development framework contains a number of tools, libraries and packages to

make a robotic software application simple and modular; easier to develop

and test; and to reuse existing components. A visualization tool RViz is also

included in ROS to visualize commonly used data types including images,

objects, robot models and point clouds. Structural components in ROS in-

cluding nodes, services and topics simplify communication between modules

and integration of components. [51]
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Figure 5.4: Path planned using MoveIt! planner, displayed in ROS-Rviz.

5.2.2 MoveIt! - Motion Planning Framework

MoveIt! is an open source motion planning, manipulation, control and navi-

gation software [52] widely used in research and development. The framework

includes implementation of state of the art algorithms for trajectory planning

and control. In this thesis, MoveIt! integration with ROS is used for motion

planning and control of KUKA arm. Figure 5.4 shows a MoveIt planned path

as a sequence of intermediate poses for KUKA LWR.

5.2.3 Point Cloud Library

Point Cloud Library (PCL) is a large scale open source project for point cloud

data processing [53]. The framework contains implementation of several al-

gorithms for filtering, feature extraction, recognition, segmentation, model

estimation and fitting; and visualization of data. Most point cloud data

processing carried out in this work is performed using existing APIs and im-

plementations by PCL. Information about different APIs and tutorials can

be found at [54].
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Figure 5.5: Block diagram of system.

5.3 Software System Architecture

A block diagram of software system is shown in Figure 5.5. A brief ex-

planation about implementation of each component is provided in following

subsections.

5.3.1 Target Extraction

Range data captured with a Kinect in the form of a point cloud is used as

real time input to the system. However depending on the location of sensor,

the data contains view of environment including clutter along with the object

of interest. For a real time system, the first task is to extract the object of

interest from environment for further processing. Besides, received data also

includes random noise and variations which must be reduced before further

processing.

A preprocessing step extracts the target of interest from cluttered envi-

ronment. It is assumed that object of interest is the largest object in sensor’s

field of view. A number of filters are applied in preprocessing chain to ex-

tract the target object. The preprocessing sequence of operations is shown in
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Figure 5.6: Operations on point cloud input for target extraction.

Figure 5.6. Filter parameters are made configurable to adjust system’s per-

formance according to requirements and quality of input. A brief descriptions

of these filters is given below in the order of operation.

The Pass-though filter limits the range data to limited space where the

object of interest is expected. This helps exclude clutter in background (far

from area of interest) and significantly reduces data to be processed in later

steps.

A Voxel grid filter is subsequently applied to down sample data if

required. Performance is also of critical importance in a real time system,.

Thus the system is designed to complete processing chain in reasonable time.

Down sampling using Voxel grid filter reduces number of sample while keep-

ing the overall structure of the target in point cloud data.

It is assumed that the target object is placed on a flat surface. Therefore, a

ground plane should be visible in the input data. Ground plane extraction

step extracts largest plane in point cloud using segmentation APIs provided

in PCL. RANSAC algorithm is used in PCL for extracting largest plane in

a given point cloud.

Input data captured by depth sensor contains noisy measurements in the

form of outliers. A Statistical Outliers Removal Filter is used to remove

those noisy measurements which utilizes statistical analysis techniques. An

introduction to how the filter works and how it can be used in PCL can be

found at [55].

After the processing steps discussed above, the data contains the object

of interest along with other small objects present around the target in the

work environment. To extract point cloud of the object of interest from

its surroundings, a Euclidean segmentation technique is used. Euclidean

segmentation clusters given point cloud data based on Euclidean distance



CHAPTER 5. SYSTEM ARCHITECTURE AND DESIGN 32

between points in the point cloud. PCL implementation of Euclidean seg-

mentation is based on Rusu’s work [56].

Output of target extraction step is a point cloud containing range data

of the target object. Figure 5.7 shows a point cloud before and after target

extraction steps. The object point cloud is stored as reference for subsequent

steps and also registered as obstacle in MoveIt! planner after triangulation.

Center of gravity of the object is estimated by computing an axis aligned

bounding box (AABB) of object point cloud. The center of AABB is con-

sidered as the CG.

(a) Kinect captured range data (b) Extracted target after processing

Figure 5.7: Point Cloud before and after preprocessing cycle.

5.3.2 Generation of Grasp Candidates

Once point cloud of the target object has been extracted, a candidate grasp

generation step extracts candidate graspable locations by analyzing visible

shape of the target. Candidate grasp generation is simplified to focus more

on collaborative behavior of the manipulation task. An elementary grasp

analyses based method is used for generation of candidates. In this method,

the system approximates target object with a set of planes and candidate

grasp poses are generated on extracted planes, considering the size of robotic

gripper.

Elementary grasp actions make use of planar surfaces and boundaries to

generate candidate grasps on unknown objects. Figure 5.8 shows different

elementary grasp actions. In this thesis, only EGA5 grasping approach [35]
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Figure 5.8: Elementary Grasp Actions [35].

is used to extract candidate grasps. On a planar surface, EGA5 grasp will

have the direction of gripper parallel to the surface normal.

A candidate grasp consists of a pose of the gripper at grasp location. To

execute the grasp, the gripper needs to be moved to the grasp pose with an

open pre-shape and closed to make a grasp. An example was discussed in

Section 5.1.3.

5.3.2.1 Rectangular Approximation

Plane segmentation API provided in PCL is used to extract planner sur-

faces in partial point cloud of target. PCL uses RANSAC algorithm to

approximate plane parameters that contain maximum inliers. Once a plane

is extracted, all points in close proximity of approximated plane are removed

from the point cloud. Process is repeated until number of points remaining

in point cloud are below a particular threshold.

Plane parameters approximated in aforementioned step do not represent

a closed surface. A closed surface is generated by calculating convex hull of

all inlier points for each plane. Convex hull is then replaced by minimum

bounding rectangle to simplify closed shapes for further processing. However,

the rectangles extracted this way do not ensure enclosed area to be filled with

points i.e. side of a table which is mostly empty will be approximated as a

single rectangle. A recursive algorithm is used to subdivide these surfaces

into smaller regions until density of resultant rectangles is above configured

threshold.

Figure 5.9 shows rectangular approximation of table and box objects
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along with the point cloud data. It can be seen that shape as a set of

rectangles is reasonably close approximation of original point cloud data.

(a) Rectangular approximation of a table. (b) Rectangular approximation of a box.

Figure 5.9: Rectangular approximation of different point clouds.

5.3.2.2 Generation of Grasps

Once a rectangular approximation of target object has been calculated, can-

didate EGA5 grasps (Figure 5.8) can be calculated on approximated rectan-

gles. Only rectangles with width less than maximum gripper width are used

to generate candidate grasps. To generate multiple candidate grasps on a

rectangle, a configurable step size is used. Direction of the gripper at grasp

location is parallel to the surface normal of rectangle in a way that the grip-

per approaches grasp location on the outer surface of the object. Candidate

grasp locations extracted for a table and a box target are shown in Figure

5.10.

5.3.2.3 Collision Avoidance

Extracted candidate grasps are generated on each rectangle individually. The

generation method does not ensure feasibility of grasp execution and collision

avoidance. To filter out candidates which result in a definite collision, a

collision check is performed on candidate grasps.
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(a) Candidate grasp locations on a table. (b) Candidate grasp locations on a box.

Figure 5.10: Candidate grasp locations generated for different objects.

A grasp will not be feasible if the gripper collides with the target object

before making a grasp. A stable grasp thus can be validated by placing the

gripper at candidate grasp point in simulation environment and checking for

potential collision. Gripper is modeled as set of cuboids for the purpose,

which is placed at candidate grasp location with point cloud data (Figure

5.11). If one or more points from point cloud are found inside gripper model,

grasp will result in a collision. Such grasps are therefore removed from can-

didate grasp points.

5.3.3 Human Grasp Detection

Prior to making grasp decision, the designed system waits for a human to

attempt a grasp on the target object. Human grasp is detected by comparing

object’s reference point cloud (extracted in Section 5.3.1) and real time point

cloud data from Kinect. Difference in both point clouds identifies a human

grasp. Figure 5.12 shows an attempted human grasp identified in a point

cloud. Once a difference in point clouds is detected, location of human grasp

is approximated by taking mean position of 100 points closest to the target

object.
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Figure 5.11: Collision check of different candidate grasps for a table.

Figure 5.12: Point cloud of human grasp on a table.
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5.3.4 Robot Grasp Decision and Execution

A new approach was proposed in Chapter 4 to rank candidate grasp locations

in the order of maximum quality for collaboration. For experiments in this

work, a value of one is considered for ǫ and ω. Thus the system will try to

achieve an equal contribution by both agents during the manipulation task.

Such a setup simplifies evaluations of results. System’s module responsible

for grasp decision making takes as input the center of gravity location of the

object, candidate robot grasps and human grasp location. Since a lift-up

task is considered for a human-robot collaborative manipulation, the task

definition includes only the final pose of the object with task wrench

wt =

[

gg

0

]

(5.1)

where fg is the force due to gravity. The task equations for the object after

lift-up can be expressed as

f1 + f2 = fg (5.2)

p1 × f1 + τ1 + p2 × f2 + τ2 = 0 (5.3)

For a fixed human grasp, the cost of task execution was computed for each

candidate grasp - human grasp pair using the method proposed in Chapter 4

and the candidates were ranked in ascending order of cost. A candidate grasp

producing the minimum cost was selected for robotic grasp. Subsequently,

communicated to MoveIt planner and controller for execution to complete

the manipulation task.

It is to be noted that the gravitational force in the task wrench depends

on mass of the object which cannot be estimated for an unknown object.

However, a unity value can be assumed for the unknown mass since the

optimal location for a robotic grasp will be independent of object’s mass. A

constant value of unknown mass used for cost evaluation of each candidate

will scale the approximated cost with the same factor.

Figure 5.13 shows an example execution. Estimated location of center

of gravity of the objected is displayed as an orange sphere in the Figure

5.13b. Candidate grasp locations and estimated location of human grasp are

identified with pink and blue spheres respectively. The decision for robotic

grasp is shown as a coordinate axis indicating the pose of gripper at the time

of grasp.
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(a) Real environment. (b) Visualized environment

and grasp decision.

(c) Collaborative

manipulation.

Figure 5.13: Human-robot collaborative lift-up of a table.

5.4 Discussion

A real time collaborative manipulation system was presented in this chap-

ter and its implementation was discussed. Free and open source frameworks

and libraries were used where ever possible during the development in this

work. The system also includes visualizations and hardware integrations.

All software components were implemented keeping in mind modularity and

reusability of the developed modules. Furthermore, to ensure acceptable

real-time performance and reliability, computational cost was also consid-

ered and minimized during the development. For wide applicability of the

system, minimum assumptions were made about the environment and generic

approaches were used.



Chapter 6

Experiments and Results

This chapter presents experiments conducted to analyze performance of the

developed system and grasping solution for collaborative manipulation. Tar-

get objects used in these experiments were a table, a rectangular box, a

cylindrical pipe and a chair.

6.1 Experiment 1: Verification of Candidate

Grasps

One of the fundamental assumptions towards the methodology proposed in

Chapter 4 was the stability of individual grasps, which is also crucial for

expected collaborative behavior in manipulation. As explained in Section

5.3.2, a simple EGA5 method is used in this work for generation of candidate

grasps. It was assumed that the extracted candidates result in a successful

grasp.

Before proceeding with collaborative manipulation experiments, grasp

candidates were verified on different target objects. Furthermore, it was

validated in this experiment that the method used for generation of candidate

grasps is applicable on objects of different shapes.

6.1.1 Experimental Setup

An unknown object was placed in work area of the robotic manipulator. Par-

tial object model acquired by sensory information was registered as obstacle

39
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with MoveIt! planner. Candidate grasps were generated on visible surface

of the object. Each candidate grasp was tested individually by approaching

the grasp location with an open gripper and making a grasp by closing the

gripper. If the object was held inside robotic hand, the grasp was considered

successful.

This experiment was performed on a table and a box taking two random

poses for both the objects. For a cylindrical pipe and chair object, only one

random pose was considered. At least ten candidate grasps were tested for

each target object.

6.1.2 Results

Figure 6.1 shows objects in the real environment vs visualized by the system.

Generated candidate grasps are displayed as blue markers in the visualized

environment. A robotic grasp was attempted for each reachable candidate

grasp location. The success rate was found to be around 90% on considered

objects. Some of the attempted grasps resulting in a success are shown in

Figure 6.2.

The grasp success rate on archived in this experiment is on a par with

[35], which showed that for low complexity objects, grasp success rate can go

above 80% using EGAs.

The results also validate that the EGA as a candidate grasp generation

method can be considered suitable for subsequent experiments on collabora-

tive manipulation.

6.2 Experiment 2: Real-time Grasp Decision

System design discussed in Chapter 5 is a real time system able to detect the

human grasp on a target object and decide a collaborative robotic grasp for

manipulation accordingly. To verify the real time behavior of the system, this

experiment was aimed to test system’s ability to detect changes in human

grasp location and adjust its decision accordingly.
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Figure 6.1: Real vs visualization environment. Blue markers in

visualization environment represent extracted candidate grasp locations.

Figure 6.2: Grasps attempted on different objects.
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Figure 6.3: Target object (green), candidate grasp locations (orange

squares), human grasp location (pink sphere) and decision for robotic grasp

(RGB coordinate axis marker) for multiple human grasp attempts.

6.2.1 Experimental Setup

A table object was placed in workspace of KUKA robotic manipulator. Hu-

man grasps were attempted at different locations on the target object and

system’s decisions for robotic grasp were visualized without executing robotic

grasps.

6.2.2 Results

The system was able to detect human grasp on the target object and make its

decision accordingly in a period of less than 2 seconds. Figure 6.3 shows mul-

tiple human grasps attempts on a target object and corresponding decision

made by the developed system for robotic grasp.

Since the proposed grasping approach selects one of the available can-

didate grasps, the ability of the system to adjust its decision is limited to
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discrete set of available candidate locations. Moreover, the designed system

approximates human grasp location from difference between reference point

cloud data of the target and real time point cloud data. If a robotic grasp

has already been made, manipulator will also appear in difference of point

clouds making it impossible for the system to detect or update human grasp

location. However, the limitation can be eliminated by incorporating a self

see filter to exclude points belonging to the manipulator from sensory point

cloud data.

Nevertheless, the results demonstrate ability of the developed system to

be used in an real-time setup for online decision making.

6.3 Experiment 3: Collaborative Manipulation

In a manipulation task, multiple candidate grasps can result in successful ma-

nipulation. However, the quality of task completion in terms of stability and

load sharing differs for each solution. The manipulation task considered for

this experiment was a lift-up of 5 cm above the ground surface. The quality

of the result can be evaluated by either measuring the tilt of the target object

after lift or by measuring the total effort applied by both agents (human and

robot) during the manipulation task. Applied effort can be approximated

by observing forces and torques exerted by manipulating agents. In case of

tilt based evaluation, a successful lift with less or no tilt was considered as a

desirable result.

6.3.1 Experimental Setup

To measure the quality of different grasps, a target object was placed in work

space of the robotic arm. A human grasp was executed on the target ob-

ject. Human grasp in this experiment was emulated by a constant support

made of legos. This eliminated any possible variations in actual human grasp

execution during multiple experiment iterations. For a fixed human grasp,

manipulation task was performed with multiple candidate grasps to measure

the quality of collaborative manipulation for each pair. The quality measures

were subsequently correlated with grasp decisions by the proposed method

to observe optimality of the method. Two primary aspects: collaborative
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grasp stability and load sharing, were investigated for collaborative manipu-

lation. Experiments and results for both measures are discussed in following

subsections.

6.3.2 Collaborative Grasp Stability

To analyze collaborative grasp stability, quality of manipulation was evalu-

ated by measuring tilt produced in the table after lift. Tilt was measured

using accelerometer measurements taken before and after the lift at table top

surface. Roll and yaw angles of tilt were computed using tri-axis tilt sensing

[57]. Sum of square of both roll and yaw angles gave total tilt produced in

the table. The experiment was performed on two random poses of the table

with different human grasp locations.

Figure 6.4 shows first experimental case along with a human grasp. Ap-

proximated human grasp location, candidate robot grasp locations and grasp

decision by the developed system are displayed in the visualization environ-

ment. To verify the quality of decision, the manipulation task was performed

with seven candidate robot grasp. The evaluated grasps are labeled in Fig-

ure 6.4c. Manipulation task was performed with each of these candidates as

shown in Figure 6.5. It can be observed that manipulation task (i.e. lifting

of object) is successful in most cases but the object has a different tilt angle

after each manipulation. A sum of absolute roll and yaw tilt angles is plotted

in Figure 6.6. It can be seen that the tilt after manipulation is minimum for

Grasp f, which was also selected for robot grasp by the proposed solution.

The same experiment was repeated on the table object with a different

pose and human grasp location. Real and visualization environments are

shown in Figure 6.7 along with candidate grasp locations and selected robot

grasp solution. Similar to the prior experiment, a lift of 5 cm was performed

with pairs of fixed human grasp and eight candidate robot grasps (Figure

6.7c and 6.8). Tilt in the table was measured after the manipulation. Total

tilt angle for each evaluated grasp pair is plotted in Figure 6.9. Grasp f was

observed to have minimum tilt after manipulation which is again same as the

computed solution by the developed system.

The proposed method was able to choose the optimal solution in both

executions. This substantiates that the method plans stable coordinated

grasps for stability defined using tilt and thus can be utilized for collaborative
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(a) (b) (c)

Figure 6.4: Table object (pose 1) (a) Real environment with a human grasp

(b) Visualization environment (c) Visualization environment - Pink sphere

is estimated location of human grasp, yellow squares are robot grasp

candidates and rgb axes marker indicates grasp decision by proposed

solution. Candidate grasps evaluated in this experiment are labeled (a-g).

(a) (b) (c) (d)

(e) (f) (g)

Figure 6.5: Table object (pose 1) - 7 candidate robot grasps (a-g) executed

against an emulated human grasp.
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Figure 6.6: Table object (pose 1) - Total absolute tilt angle (radians) for

robot grasps (a-g).

(a) (b) (c)

Figure 6.7: Table object (pose 2) (a) Real environment with an emulated

human grasp (b) Visualization environment (c) Visualization environment -

Pink sphere is estimated location of human grasp, orange squares are robot

grasp candidates and rgb axes marker indicates grasp decision by proposed

solution. Candidate grasps evaluated in this experiment are labeled (a-h).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.8: Cooperative manipulation of the table (pose 2) - 8 candidate

robot grasps (a-h) executed against an emulated human grasp.

Figure 6.9: Table object (pose 2) - Total absolute tilt angle (radians) for

robot grasps (a-h).
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grasp planning.

6.3.3 Load Distribution

If human grasp location, center of gravity of the object and all candidate

robot grasp locations on a target object are collinear, selection of different

candidate grasps will not produce significant tilt in the object after lift-up.

An example object is a rectangular box as shown in Figure 6.10. However,

object’s load is distributed differently for different candidate grasps. To val-

idate load sharing between agents, force contributed by manipulator in a

lifting task is measured using a force/torque sensor. Since an equal contribu-

tion was desired from both manipulating agents, an optimal solution will be

when the robot carries half of the total load of object. In this experiment,

total load was measured by lifting object with only the manipulator and ob-

serving the force exerted on the force/torque sensor and was observed to be

approximately 4N.

A rectangular box is shown in real and visualization environment in Figure

6.10. For a fixed human grasp, manipulation task is performed with six

candidate robotic grasps. Evaluated grasp are labeled (a-f) in Figure 6.10c

and corresponding task execution is displayed in Figure 6.11. It can be

observed that orientation of the target object is identical after manipulation

in all cases. Therefore, instead of the tilt, force experienced by the gripper

in the direction of gravity (negative Z axis in chosen world coordinate frame)

was observed to approximate robot’s contribution in the manipulation task.

The force was measured for different robot grasps and has been plotted in

Figure 6.12. As the robotic grasp location moves closer to the object’s center

of gravity, contribution by the robot will increase. Since the total load of

the object was observed to be 4N, an optimal solution must contribute close

to half of the total required force i.e. 2N, which makes Grasp b to be the

optimal solution in this case.

As displayed in Figure 6.10b, the proposed collaborative grasping solution

selected Grasp a for robotic grasp which is closest to the actual optimal so-

lution. Since the proposed solution depends on location of human grasp and

the center of gravity of object, both of which are approximated in this exper-

iment, difference in approximated and actual locations of these parameters

will effect the optimality of selected solution. Moreover, due to the physical



CHAPTER 6. EXPERIMENTS AND RESULTS 49

(a) (b) (c)

Figure 6.10: Box object (a) Real environment with an emulated human

grasp (b) Visualization environment (c) Visualization environment - Pink

sphere is estimated location of human grasp, orange squares are robot grasp

candidates and rgb axes marker indicates grasp decision by proposed

solution. Candidate grasps evaluated in this experiment are labeled (a-f).

properties of target object in this particular case, emulated human grasp with

legos also introduces additional uncertainty in perceived and actual location

of the grasp effecting the measured forces as a result.

The force measurements indicate that the proposed method can be used

for load distribution among agents. However, the quality of load distribution

depends on the accuracy of estimated parameters such as the object center

of gravity.

6.3.4 Collaborative Manipulation of Complex Shaped

Objects

Individual grasp success is fundamental to collaborative manipulation. A

simple EGA method (as discussed in Section 5.3.2) was used in this work

for generating candidate grasp locations using plane estimation of object’s

surface. Therefore, if the surface is not planar, the grasp may not be stable

and manipulation can result in a failure. This was observed while conducting

experiments with cylindrical shaped objects as shown in Figure 6.14 and

Figure 6.13d. The grasps resulted in a success according to the criterion

used in experiments discussed in the Section 6.1 but the lifting task failed.
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(a) (b) (c)

(d) (e) (f)

Figure 6.11: Cooperative manipulation of box object - 6 robot grasps (a-f)

executed against an emulated human grasp.

Figure 6.12: Box object - Forces experienced by gripper for Grasps (a-f).

Grasp (a) is the grasp decision by proposed solution.
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(a) (b) (c) (d)

Figure 6.13: Cooperative manipulation with a chair object. (a) Pose 1 -

Visualization environment (b) Pose 1- Cooperative lift-up by selected

solution. (c) Pose 2 - Visualization environment (d) Pose 2- Cooperative

lift-up by selected solution. - Pink sphere is estimated location of human

grasp, yellow sphere is the estimated location of center of gravity, orange

squares are candidate robot grasp locations and rgb axes marker indicated

grasp decision.

The cylindrical shape and weight of the object caused it to slip from the

hand. However, if the individual grasp is stable, the grasp solution by the

proposed method results in a successful manipulation as shown in Figure

6.13b.

Thus a successful collaborative manipulation can be achieved using the

proposed method if a close approximation of object parameters and set of

stable candidates is available.

6.4 Discussion

This chapter presented experiments performed to validate the proposed grasp-

ing solution. It was shown that the proposed methodology produces satis-

factory results for objects of different size, shape and pose despite the partial

knowledge about the object. It was also observed that stability of an indi-

vidual grasp is critical for success of the manipulation task. The approach

used for generating candidate grasps produced good results on simple shaped

objects but was not suitable for complex shapes. However, the proposed so-

lution for collaborative manipulation does not bounded with the method

used for generation of candidate grasps. Thus, a more advanced approach
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Figure 6.14: Failed lift on a cylindrical shaped object.

can be used to generate better individual candidates. It was also shown by

experiments that the grasp decision exploiting sensory information was very

close to the measured optimal solution. This substantiates potential of the

proposed method as an on-line collaborative grasping solution.



Chapter 7

Conclusion and Future Work

The objective of this thesis was to develop a solution for collaborative ma-

nipulation of unknown large objects. A human-robot collaborative lift-up

was considered as the manipulation task. A novel approach was proposed

to analyze candidate robotic grasps with respect to the collaboration crite-

rion. The proposed approach modularized collaborative grasping problem

into generation of grasp candidates and grasp quality analysis for collabora-

tive manipulation, allowing the use of existing grasp syntheses techniques for

generation of candidate grasps. The complete solution for human-robot col-

laborative lift-up included analysis of target object using range data from a

single Kinect view, estimation of object’s center of gravity, candidate robotic

grasps generation, detection of human grasp on the target object, robot grasp

decision and execution.

For robotic grasping, a grasp coordination method was proposed for opti-

mal load sharing in collaborative manipulation. The method aims to deter-

mine collaborative grasp that maximize the distribution of load among the

agents.

A real time system was developed to experimentally demonstrate and

study the performance of the proposed method using real hardware. Sev-

eral existing components were used to develop the complete system. It in-

cluded ROS modules for hardware control, PCL for point cloud processing

and MoveIt! for trajectory planning and execution. The architecture of de-

veloped system and specifications of the hardware were discussed in Chapter

5. The system made it feasible to test the method proposed for collaborative

manipulation on a range of unknown objects with limited prior knowledge of
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the environment.

To validate the effectiveness of the load sharing grasp solutions for phys-

ical systems, two experimental metrics were investigated to quantify quality

of the executed collaborative grasps. Experiments were performed on multi-

ple poses of table, box, cylinder and chair objects. The results were discussed

in Chapter 6. Experimental results showed that the collaborative grasp so-

lutions and their performance based on cost evaluated correlate with experi-

mental metrics. The method showed potential for collaborative manipulation

in human centric environments.

Experiments also revealed shortcomings in the method used for generation

of candidate grasps. It was observed that unstable candidate grasps caused

a failure of the manipulation task on complex shaped objects.

For the collaborative grasp planning method proposed in this work, all

candidate grasps were considered stable and equally good for the manipula-

tion task. The assumption in reality however will not be true as the stability

and quality of a grasp will depend on the surface properties and expected

contact points of grasp. In future extensions of the work, a better grasp

synthesis method can be used and quality of individual grasps can be incor-

porated for even better grasp selection. Furthermore, a simple lifting task

was considered for manipulation in experiments. Future works may experi-

ment the method with complex manipulation tasks.
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