86,374 research outputs found

    Dynamical Optimal Transport on Discrete Surfaces

    Full text link
    We propose a technique for interpolating between probability distributions on discrete surfaces, based on the theory of optimal transport. Unlike previous attempts that use linear programming, our method is based on a dynamical formulation of quadratic optimal transport proposed for flat domains by Benamou and Brenier [2000], adapted to discrete surfaces. Our structure-preserving construction yields a Riemannian metric on the (finite-dimensional) space of probability distributions on a discrete surface, which translates the so-called Otto calculus to discrete language. From a practical perspective, our technique provides a smooth interpolation between distributions on discrete surfaces with less diffusion than state-of-the-art algorithms involving entropic regularization. Beyond interpolation, we show how our discrete notion of optimal transport extends to other tasks, such as distribution-valued Dirichlet problems and time integration of gradient flows

    Dynamical optimal transport on discrete surfaces

    Get PDF
    We propose a technique for interpolating between probability distributions on discrete surfaces, based on the theory of optimal transport. Unlike previous attempts that use linear programming, our method is based on a dynamical formulation of quadratic optimal transport proposed for flat domains by Benamou and Brenier [2000], adapted to discrete surfaces. Our structure-preserving construction yields a Riemannian metric on the (finitedimensional) space of probability distributions on a discrete surface, which translates the so-called Otto calculus to discrete language. From a practical perspective, our technique provides a smooth interpolation between distributions on discrete surfaces with less diffusion than state-of-the-art algorithms involving entropic regularization. Beyond interpolation, we show how our discrete notion of optimal transport extends to other tasks, such as distribution-valued Dirichlet problems and time integration of gradient flows

    Discretization of the 3D Monge-Ampere operator, between Wide Stencils and Power Diagrams

    Get PDF
    We introduce a monotone (degenerate elliptic) discretization of the Monge-Ampere operator, on domains discretized on cartesian grids. The scheme is consistent provided the solution hessian condition number is uniformly bounded. Our approach enjoys the simplicity of the Wide Stencil method, but significantly improves its accuracy using ideas from discretizations of optimal transport based on power diagrams. We establish the global convergence of a damped Newton solver for the discrete system of equations. Numerical experiments, in three dimensions, illustrate the scheme efficiency

    Entropic Wasserstein Gradient Flows

    Full text link
    This article details a novel numerical scheme to approximate gradient flows for optimal transport (i.e. Wasserstein) metrics. These flows have proved useful to tackle theoretically and numerically non-linear diffusion equations that model for instance porous media or crowd evolutions. These gradient flows define a suitable notion of weak solutions for these evolutions and they can be approximated in a stable way using discrete flows. These discrete flows are implicit Euler time stepping according to the Wasserstein metric. A bottleneck of these approaches is the high computational load induced by the resolution of each step. Indeed, this corresponds to the resolution of a convex optimization problem involving a Wasserstein distance to the previous iterate. Following several recent works on the approximation of Wasserstein distances, we consider a discrete flow induced by an entropic regularization of the transportation coupling. This entropic regularization allows one to trade the initial Wasserstein fidelity term for a Kulback-Leibler divergence, which is easier to deal with numerically. We show how KL proximal schemes, and in particular Dykstra's algorithm, can be used to compute each step of the regularized flow. The resulting algorithm is both fast, parallelizable and versatile, because it only requires multiplications by a Gibbs kernel. On Euclidean domains discretized on an uniform grid, this corresponds to a linear filtering (for instance a Gaussian filtering when cc is the squared Euclidean distance) which can be computed in nearly linear time. On more general domains, such as (possibly non-convex) shapes or on manifolds discretized by a triangular mesh, following a recently proposed numerical scheme for optimal transport, this Gibbs kernel multiplication is approximated by a short-time heat diffusion

    Fully discrete semi-Lagrangian methods for advection of differential forms

    Get PDF
    We study the discretization of linear transient transport problems for differential forms on bounded domains. The focus is on unconditionally stable semi-Lagrangian methods that employ finite element approximation on fixed meshes combined with tracking of the flow map. We derive these methods as finite element Galerkin approach to discrete material derivatives and discuss further approximations leading to fully discrete schemes. We establish comprehensive a priori error estimates, in particular a new asymptotic estimate of order O(hr+1τ−12)O(h^{r+1}\tau^{-\frac{1}{2}}) for the L 2-error of semi-Lagrangian schemes with exact L 2-projection. Here, h is the spatial meshwidth, τ denotes the timestep, and r is the (full) polynomial degree of the piecewise polynomial discrete differential forms used as trial functions. Yet, numerical experiments hint that the estimates may still be sub-optimal for spatial discretization with lowest order discrete differential form

    Optimal Transport for Domain Adaptation

    Get PDF
    Domain adaptation from one data space (or domain) to another is one of the most challenging tasks of modern data analytics. If the adaptation is done correctly, models built on a specific data space become more robust when confronted to data depicting the same semantic concepts (the classes), but observed by another observation system with its own specificities. Among the many strategies proposed to adapt a domain to another, finding a common representation has shown excellent properties: by finding a common representation for both domains, a single classifier can be effective in both and use labelled samples from the source domain to predict the unlabelled samples of the target domain. In this paper, we propose a regularized unsupervised optimal transportation model to perform the alignment of the representations in the source and target domains. We learn a transportation plan matching both PDFs, which constrains labelled samples in the source domain to remain close during transport. This way, we exploit at the same time the few labeled information in the source and the unlabelled distributions observed in both domains. Experiments in toy and challenging real visual adaptation examples show the interest of the method, that consistently outperforms state of the art approaches

    On location-allocation problems for dimensional facilities

    Get PDF
    This paper deals with a bilevel approach of the location-allocation problem with dimensional facilities. We present a general model that allows us to consider very general shapes of domains for the dimensional facilities and we prove the existence of optimal solutions under mild, natural assumptions. To achieve these results we borrow tools from optimal transport mass theory that allow us to give explicit solution structure of the considered lower level problem. We also provide a discretization approach that can approximate, up to any degree of accuracy, the optimal solution of the original problem. This discrete approximation can be optimally solved via a mixedinteger linear program. To address very large instance sizes we also provide a GRASP heuristic that performs rather well according to our experimental results. The paper also reports some experiments run on test data.Ministerio de Economía y Competitividad (MINECO). Españ
    • …
    corecore