4 research outputs found

    Automated machine learning driven stacked ensemble modelling for forest aboveground biomass prediction using multitemporal sentinel-2 data

    Get PDF
    Modelling and large-scale mapping of forest aboveground biomass (AGB) is a complicated, challenging and expensive task. There are considerable variations in forest characteristics that creates functional disparity for different models and needs comprehensive evaluation. Moreover, the human-bias involved in the process of modelling and evaluation affects the generalization of models at larger scales. In this paper, we present an automated machine learning (AutoML) framework for modelling, evaluation and stacking of multiple base models for AGB prediction. We incorporate a hyperparameter optimization procedure for automatic extraction of targeted features from multitemporal Sentinel-2 data that minimizes human-bias in the proposed modelling pipeline. We integrate the two independent frameworks for automatic feature extraction and automatic model ensembling and evaluation. The results suggest that the extracted target-oriented features have excessive contribution of red-edge and short-wave infrared spectrum. The feature importance scale indicates a dominant role of summer based features as compared to other seasons. The automated ensembling and evaluation framework produced a stacked ensemble of base models that outperformed individual base models in accurately predicting forest AGB. The stacked ensemble model delivered the best scores of R2 cv = 0.71 and RMSE = 74.44 Mgha-1 . The other base models delivered R2 cv and RMSE ranging between 0.38–0.66 and 81.27– 109.44 Mg ha-1 respectively. The model evaluation metrics indicated that the stacked ensemble model was more resistant to outliers and achieved a better generalization. Thus, the proposed study demonstrated an effective automated modelling pipeline for predicting AGB by minimizing human-bias and deployable over large and diverse forest area

    Optimal Support Vector Machines for forest above-ground biomass estimation from multisource remote sensing data

    No full text

    Forest Biomass and Land Cover Change Assessment of the Margalla Hills National Park in Pakistan Using a Remote Sensing Based Approach

    Get PDF
    Climate change is one of the greatest threats recently, of which the developing countries are facing most of the brunt. In the fight against climate change, forests can play an important role, since they hold a substantial amount of terrestrial carbon and can therefore affect the global carbon cycle. Forests are also an essential source of livelihood for a remarkably high proportion of people worldwide and a harbor for rich global biodiversity. Forests are however facing high deforestation rates. Deforestation is regarded as the most widespread process of land cover change (LCC), which is the conversion of one land cover type to the other land cover type. Most of this deforestation occurs in developing countries. Agricultural expansion has been reported as the most significant widespread driver of deforestation in Asia, Africa, and Latin America. This deforestation is altering the balance of forest carbon stocks and threatening biodiversity. Pakistan is also a low forest cover country and faces high deforestation rates at the same time, due to the high reliance of local communities on forests. Moreover, it is also the most adversely affected by climate change. Agricultural expansion and population growth have been regarded as the most common drivers of deforestation in Pakistan. Financial incentives such as ‘Reducing Emissions from Deforestation and Forest Degradation, and the Role of Conservation of Forest Carbon, Sustainable Management of Forests and Enhancement of Forest Carbon Stocks’ (REDD+) offer hope for developing countries for not only halting deforestation but also alleviating poverty. However, such initiatives require the estimation of biomass and carbon stocks of the forest ecosystems. Therefore, it becomes necessary that the biomass and carbon potentials of the forests are explored, as well as the LCCs are investigated for identifying the deforestation and forest degradation hit areas. Based on the aforementioned, the following research objectives/sub-objectives were investigated in the MHNP, which is adjoined with the capital city of Pakistan, Islamabad; A) Forest Biomass and Carbon Stock Assessment of Margalla Hills National Park (MHNP) A.1) Aboveground Biomass (AGB) and Aboveground Carbon (AGC) assessment of the Subtropical Chir Pine Forest (SCPF) and Subtropical Broadleaved Evergreen Forest (SBEF) using Field Inventorying Techniques A.2) Exploring linear regression relationship between Sentinel-1 (S1) and Sentinel-2 (S2) satellite data with the AGB of SCPF and SBEF A.3) AGB estimation combining remote sensing and machine learning approach B) LC Classification and Land Cover Change Detection (LCCD) of MHNP for the time-period between 1999 and 2019 B.1) LC Classification for the years 1999, 2009 and 2019 using Machine Learning Algorithm B.2) LCCD of MHNP between 1999 to 2019

    Remote sensing technology applications in forestry and REDD+

    Get PDF
    Advances in close-range and remote sensing technologies are driving innovations in forest resource assessments and monitoring on varying scales. Data acquired with airborne and spaceborne platforms provide high(er) spatial resolution, more frequent coverage, and more spectral information. Recent developments in ground-based sensors have advanced 3D measurements, low-cost permanent systems, and community-based monitoring of forests. The UNFCCC REDD+ mechanism has advanced the remote sensing community and the development of forest geospatial products that can be used by countries for the international reporting and national forest monitoring. However, an urgent need remains to better understand the options and limitations of remote and close-range sensing techniques in the field of forest degradation and forest change. Therefore, we invite scientists working on remote sensing technologies, close-range sensing, and field data to contribute to this Special Issue. Topics of interest include: (1) novel remote sensing applications that can meet the needs of forest resource information and REDD+ MRV, (2) case studies of applying remote sensing data for REDD+ MRV, (3) timeseries algorithms and methodologies for forest resource assessment on different spatial scales varying from the tree to the national level, and (4) novel close-range sensing applications that can support sustainable forestry and REDD+ MRV. We particularly welcome submissions on data fusion
    corecore