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Abstract 

 

Context: Climate change is one of the greatest threats recently, of which the 

developing countries are facing most of the brunt. In the fight against climate 

change, forests can play an important role, since they hold a substantial amount of 

terrestrial carbon and can therefore affect the global carbon cycle. Forests are also 

an essential source of livelihood for a remarkably high proportion of people 

worldwide and a harbor for rich global biodiversity. Forests are however facing high 

deforestation rates. Deforestation is regarded as the most widespread process of 

land cover change (LCC), which is the conversion of one land cover type to the other 

land cover type. Most of this deforestation occurs in developing countries. 

Agricultural expansion has been reported as the most significant widespread driver 

of deforestation in Asia, Africa, and Latin America. This deforestation is altering the 

balance of forest carbon stocks and threatening biodiversity. Pakistan is also a low 

forest cover country and faces high deforestation rates at the same time, due to the 

high reliance of local communities on forests. Moreover, it is also the most adversely 

affected by climate change. Agricultural expansion and population growth have been 

regarded as the most common drivers of deforestation in Pakistan. Financial 

incentives such as ‘Reducing Emissions from Deforestation and Forest Degradation, 

and the Role of Conservation of Forest Carbon, Sustainable Management of Forests 

and Enhancement of Forest Carbon Stocks’ (REDD+) offer hope for developing 

countries for not only halting deforestation but also alleviating poverty. However, 

such initiatives require the estimation of biomass and carbon stocks of the forest 

ecosystems. Therefore, it becomes necessary that the biomass and carbon 

potentials of the forests are explored, as well as the LCCs are investigated for 

identifying the deforestation and forest degradation hit areas. Based on the 

aforementioned, the following research objectives/sub-objectives were investigated 

in the MHNP, which is adjoined with the capital city of Pakistan, Islamabad; A) 

Forest Biomass and Carbon Stock Assessment of Margalla Hills National Park 

(MHNP) A.1) Aboveground Biomass (AGB) and Aboveground Carbon (AGC) 

assessment of the Sub-tropical Chir Pine Forest (SCPF) and Sub-tropical 

Broadleaved Evergreen Forest (SBEF) using Field Inventorying Techniques A.2) 

Exploring linear regression relationship between Sentinel-1 (S1) and Sentinel-2 (S2) 
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satellite data with the AGB of SCPF and SBEF A.3) AGB estimation combining 

remote sensing and machine learning approach B) LC Classification and Land Cover 

Change Detection (LCCD) of MHNP for the time-period between 1999 and 2019 B.1) 

LC Classification for the years 1999, 2009 and 2019 using Machine Learning 

Algorithm B.2) LCCD of MHNP between 1999 to 2019. 

 

Research Objective A) Forest Biomass and Carbon Stock Assessment of 

MHNP; 

 

Materials and Methods: For the field inventorying, stratified random sampling was 

adopted. The field sampling was conducted from March 2019 to June 2019. There 

were 46 circular sampling plots, of 17.84 m radius, laid in SCPF and 31 circular plots 

were laid in SBEF. The diameter at breast height (DBH) of trees above 5 cm was 

recorded using DBH tape. The heights of the trees were recorded using a Vertex IV 

instrument. The following variables were calculated using prescribed equations; 

quadratic mean diameter (cm), volume (m3), basal area (m2), density, AGB (Mg), and 

AGC (Mg C). For AGC, a conversion factor of 0.5 was used. All the variables were 

scaled up to the hectares. Regression analysis was performed for exploring the 

linear relationships between the variables. In the case of a non-linear relationship, 

power regression was used. The Coefficient of Determination (R2) was used for 

assessing the strengths of the statistical relationships between the variables. Means 

and standard deviations were calculated for the variables. For normality distribution 

of the data, Shapiro-Wilk Test was performed. Wilcoxon Rank Sum Test was used 

for the non-linear data for exploring the statistical differences between the two 

variables. Spearman correlation coefficients were also investigated between the two 

variables. A significance level of 0.5 was used for the statistical tests. The statistical 

analyses were performed in the RStudio software.   

 

In the case of remote sensing, S2 Level-1C (for August 19, 2019) and S1 C-band 

SAR data were used in this study. For S2, band 2, band 3, band 4, and band 8 were 

downloaded using QGIS software. The S2 Level-1C are radiometrically and 

geometrically corrected products. The ToA reflectance for Sentinel-2 data was 

converted to BoA reflectance, using the Dark Object Subtraction (DOS) method, by 

employing the DOS1 algorithm of the SCP of the QGIS software. For S1, 
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Interferometric Wide Swath (IW) Ground Range Detection (GRD) Level-1 data, in 

dual polarization (VV+VH), was downloaded on August 24, 2019, from 

(https://scihub.copernicus.eu/). Pre-processing was performed in the SNAP software. 

Pre-processing steps involved; Apply Orbit File, Thermal Noise Removal, Border 

Noise Removal, Calibration, Speckle Filtering, Radiometric Terrain Flattening, Range 

Doppler Terrain Correction. S2 and S1 images were imported into the RStudio 

Software, and the study sites were extracted for further processing and analysis. 

Vegetation Indices VIs; Normalized Difference Vegetation Index (NDVI) and 

Enhanced Vegetation Index (EVI), from the S2 site image, were calculated using 

QGIS software. The Grey Level Co-occurrence Matrix (GLCM) technique was used 

for texture analysis. Three GLCM metrics; Entropy, Angular Second Moment (ASM), 

and Contrast, were calculated for both the S1 and S2 site images using QGIS 

software. The statistics for mean, maximum, standard deviation, and minimum for 

VIs, VV Polarization (from S1 site image) and VH Polarization (from S1 site image), 

and texture indices for S1 and S2 site images were computed using QGIS software. 

Overall, 16 predictor sets each for both forest types, SCPF and SBEF were formed. 

In total, there were 70 variables, for each forest type, which were used in this study. 

Two machine learning algorithms, Random Forest (RF) and Support Vector Machine 

(SVM), and Stepwise Regression-Backward Elimination (SR) were used for 

exploring the best model for the AGB mapping of the two forest types of the study 

area. For RF, ‘randomForest’ and ‘caret’ packages were used and for SVM, ‘e1071 

package’ was used. The root mean square error (RMSE) and Coefficient of 

Determination (R2) were used for the selection of the best model, with higher 

preference given to RMSE. RStudio was used for the analysis and spatial map 

prediction was performed using the ‘raster’ package of R. Final AGB maps were 

prepared in the QGIS software.  

 

Results: The SCPF recorded a mean AGC of 73.36 ± 32.55 Mg C ha-1 and the 

SBEF recorded a mean AGC of 16.88 ± 25.81 Mg C ha-1. A significant statistical 

difference was recorded between the mean AGC of the two forests (W = 43, p < 

0.05). Mean AGB for SCPF was recorded as 146.73 ± 65.11 Mg ha-1, while for SBEF 

it was 33.77 ± 51.63 Mg ha-1. Again, a significant statistical difference was recorded 

between the mean AGB of the two forests (W = 43, p < 0.05). The DBH interval 35-

40 cm for SCPF recorded the highest number of stems, 114, forming 17.81% of the 

https://scihub.copernicus.eu/
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total stems of the SCPF. The DBH interval 10-15 cm contained the highest number 

of stems, 167, for SBEF. This interval formed 37.70% of the total stems of the SBEF. 

Pinus roxburghii had the highest contribution of the AGC (Mg C ha-1) to the SCPF 

with 98.85% of the total. Eucalyptus camaldulensis had the highest AGC (Mg C ha-1) 

contribution, with 33.65% of the total, for SBEF. The NDVI of MHNP ranged between 

-0.34 and 0.80. The EVI of MHNP ranged from -0.11 to 0.89. Linear regression 

analysis had shown weak statistical associations between the NDVI and the AGB of 

the two forests. Weak statistical associations were also recorded for the EVI and the 

AGB of the two forests. The VH and VV Polarizations from the two forests also 

showed weak statistical associations with the AGB of the two forests. RF was found 

to be the better algorithm for SCPF for AGB estimation. The final RF model was 

recorded for the predictor set ‘S1 and VIs’ having six variables. The RF model had 

an RMSE of 52.46 Mg ha-1 and an R2 value of 0.31. The predicted AGB map for 

SCPF using the RF model recorded values ranging from 94.55 Mg ha-1to 283.77 Mg 

ha-1. A significant statistical association (R2= 0.89) was recorded between the 

predicted and observed AGB of the SCPF. SVM was recorded as the best algorithm 

for the SBEF. The final model of SVM was recorded for the predictor set ‘S1 and S2 

Texture’ containing nine variables. The RMSE for the final SVM model was recorded 

as 32.59 Mg ha-1 and the R2 value was 0.21. The predicted AGB map for SBEF 

using the SVM model recorded values ranging from 9.67 Mg ha-1 to 30.92 Mg ha-1. 

The predicted and observed AGB for SBEF recorded moderate statistical association 

(R2= 0.4).  

 

Research Objective B) LC Classification and LCCD of MHNP for the time- 

period between 1999 and 2019; 

 

Materials and Methods: Three Landsat images i.e., Landsat-5 Thematic Mapper 

(TM) image (for April 28, 2009), Landsat 7 Enhanced Thematic Mapper Plus (ETM+) 

image (for July 14, 1999), and Landsat-8 Operational Land Imager (OLI) image (for 

April 8, 2019) were downloaded using QGIS software. These are Level-1 Tier-1 

products that are geometrically and radiometrically corrected. The atmospheric 

correction was performed, using the DOS method, employing the DOS1 algorithm of 

the SCP of the QGIS software. Site areas were extracted from the Landsat images 

using RStudio. Seven land cover classes were identified which included i.e., 
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Agricultural Land, Barren Land, SCPF, SBEF, Grassland, Settlements, and Water 

Body. These classes were identified using natural color composites, NIR 

composites, high-resolution imagery available from Google Earth, field visits, and 

experts’ knowledge from the site area. The polygon-shaped selection was used for 

the collection of training samples. QGIS was used for this process. Overall, 105 

polygons were created using a stratified random sampling approach. The polygons 

were saved as a shapefile and the shapefile was imported to RStudio for further 

analysis. The sample size of 272 pixels was used for avoiding the misbalance 

between training samples using the down-sampling approach. Supervised 

classification was performed using the RF algorithm in the RStudio. The 

‘randomForest’ package was used for the LC classification using the RF algorithm. 

The raster files were imported in QGIS software and respective LC maps for the 

years 1999, 2009, and 2019 were developed. For the accuracy assessment, a field 

visit was conducted from March 2019 to June 2019 and 50 samples for each land 

cover class, except for the water body, were collected. The water body was not 

accessible thus 10 samples were collected from it using high-resolution imagery from 

Google Earth. Overall, there were 310 reference samples, which were collected 

using the stratified random sampling approach. The samples were saved as a 

shapefile which was imported to the RStudio for the accuracy assessments. The 

‘raster’ package of R was used for this purpose. The accuracy measures i.e., overall 

accuracy, kappa coefficient, user’s accuracy, and producer’s accuracy were used. A 

confusion matrix for each LC classification was also generated. For change 

detection, a post-classification comparison method was employed, using QGIS 

software, for assessing the changes in the LC classes for time-periods i.e., 1999-

2009, 2009-2019, and 1999-2019. The LCC in percentages and annual change rates 

in ha for LC classes were also calculated.  

 

Results: For LC classifications, the SBEF had the highest cover percentages 

amongst all the land cover classes, which were 40.90%, 40.11%, and 43.21% for the 

years 1999, 2009, and 2019, respectively. Overall accuracies of 94.83%, 96.77%, 

and 97.09% were recorded for the years 1999, 2009, and 2019, respectively. Kappa 

coefficients of 0.93, 0.96, and 0.96 were recorded for the years 1999, 2009, and 

2019, respectively. The highest decrease for the time-period 2009-2019 was 
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recorded for SCPF which was 14.99%. The overall highest increase, for the time-

period 1999-2019, was recorded for agricultural land which was 130.62%.  

 

Overall Conclusion: SCPF had a higher mean AGB and mean AGC compared to 

the SBEF. The difference can be attributed to the larger sizes of the trees in the 

SCPF compared to the SBEF. It may also be attributed to the species composition 

since pines have been reported to have more carbon stocks compared to 

broadleaved species. Pinus roxburghii and Eucalyptus camaldulensis recorded the 

highest AGC, compared to other tree species, for the SCPF and SBEF, respectively. 

The unimodal DBH distributions of the two forests hinted toward the undue 

pressures on these forests in the form of deforestation and forest degradation. NDVI 

and EVI for the two forests showed weak statistical associations with the AGB of the 

two forests. VH and VV polarizations also showed weak statistical associations with 

the AGB of the two forests. RF was recorded as a better algorithm for SCPF and 

SVM was recorded as a better algorithm for the SBEF. SBEF recorded the highest 

LC amongst all the land cover classes for the years 1999, 2009, and 2019. The 

highest decrease was recorded for SCPF for the time-period 2009-2019. Agricultural 

land had the highest increase amongst all the LC classes for the overall period from 

1999-2019. Comparison with other studies had shown both the forests had lower 

AGB and AGC, which may be also lower in terms of their actual potential.  

 

It is recommended that findings from this study should be adopted by Islamabad 

Wildlife Management Board (IWMB) and incorporated into the sustainable 

management plans for the MHNP. The design of REDD+ projects should be initiated 

by IWMB in cooperation with various national and international organizations. 

Research methodologies from this study should be adopted and included in future 

monitoring and research studies, related to forest biomass/carbon and LCCs, of the 

MHNP. Local communities should be involved in the conservation strategies and 

plans of the MHNP. The site and species-specific allometric equations should be 

developed for future AGB/AGC studies in MHNP.  
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1. Introduction: 

 

1.1. Importance of Forest Biomass and Carbon: 

 

Climate change is one of the greatest threats of recent times (Soutter and Mõttus, 

2020); (Hilbig et al., 2013); (Poškus and Žukauskienė, 2017). It is defined as the shift 

in the climate patterns, which is mainly caused by Greenhouse Gas (GHG) 

emissions (Fawzy et al., 2020). CO2 has mainly received widespread attention, 

among other GHG emissions, due to its increasing levels which have resulted in 

increasing temperatures, shifting precipitation patterns and unpredictable extreme 

events, etc. (Reichstein et al., 2013). The CO2 concentration has risen from 

approximately 277 parts per million (ppm) in 1750, which was the beginning of the 

Industrial Era, to 409.85 ± 0.1 ppm in 2019 (Joos and Spahni, 2008); (Dlugokencky 

and Tans, 2020). Anthropogenic activities are the most responsible for causing this 

climate change (Xi-Liu and Qing-Xian, 2018). The severity of climate change can be 

seen in the fact that the average temperature over land for the period 2006-2015 

was 1.53°C higher than the period 1850-1900 and also 0.66°C higher than the 

equivalent global mean temperature change (IPCC, 2019). Deforestation and forest 

degradation have led to an increase in GHG emissions from 490 ± 180 Gt CO2 in 

1970 to 680 ± 300 Gt CO2 in 2010 (IPCC, 2007a). In addition, of the total 

anthropogenic GHG emissions from 2007-2016, almost 23% have come from 

Agriculture, Forestry, and Other Land Use (AFOLU) (IPCC, 2019). The 

anthropogenic use influences at various intensities about 60-85% of forests and 70-

90% of other natural ecosystems (IPCC, 2019).  

 

Forests are spread over 31% of the earth’s surface, which makes up 4.06 billion 

hectares (ha) of the land surface (FAO, 2020a). Fig. 1 shows the global distribution 

and proportion of the forest area by climatic domain where the tropical domain forms 

the highest percentage of forest area with 45%, followed by boreal with 27%, 

temperate with 16%, and sub-tropical with 11%. Forest ecosystems are considered 

the main carbon pool in terrestrial ecosystems (Gower, 2003). They account for 80% 

of terrestrial carbon and also play an essential role in climate change mitigation (Liu 
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et al., 2017); (Chen et al., 2018). The mean forest carbon for the globe stands at 75 

Mg C ha-1 (Rojas Montaño et al., 2017). The estimated annual carbon sequestration 

by forests is 2-4 gigatons (Qureshi et al., 2012). Forests, therefore, greatly affect the 

global carbon cycle which is related to the greenhouse effect (Costanza et al., 1998); 

(Li et al., 2020). Forests are also an essential source of income and livelihood for 1.6 

billion people in the world and can significantly affect human lives (Mukul et al., 

2020); (Liu et al., 2007). They also provide a range of ecosystem services as well as 

harbor immensely rich biodiversity (Brockerhoff et al., 2017). 

 

 

Fig. 1: Proportion and Distribution of Global Forest Area by Climatic Domain (FAO, 2020b) 

 

The forest biomass is an important indicator that can be used for assessing the 

forest carbon status since carbon forms half of the dry weight of a tree (Vicharnakorn 

et al., 2014); (Bi et al., 2004); (Köhl et al., 2006); (Brown, 1997). The AFOLU offers 

one of the largest potentials for GHG emissions reduction through reduced 

deforestation and forest degradation, amounting to 0.4–5.8 Gt CO2-eq per year 

(IPCC, 2019). However, according to the fourth assessment report of the 

Intergovernmental Panel on Climate Change (IPCC) (IPCC, 2007a), there is a limited 
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amount of information available regarding forest biomass and carbon status at both 

national and regional levels. For limiting warming to 1.5°C or 2°C, large-scale 

implementation of mitigation response options would require 

afforestation/reforestation activities over large areas (IPCC, 2019). The United 

Nations Framework Convention on Climate Change (UNFCCC) has also recognized 

the Aboveground Biomass (AGB) as an Essential Climate Variable (ECV) (Omar et 

al., 2017). ECVs are the physical, biological, and chemical variables or groups of 

variables that critically affect the earth’s climate (Bojinski et al., 2014). The ‘reducing 

emissions from deforestation and forest degradation and the role of conservation of 

forest carbon, sustainable management of forests and enhancement of forest carbon 

stocks’ (REDD+) is also a result-based financial incentive for developing countries 

for countering deforestation (Maraseni et al., 2014); (Köhl et al., 2020b) since 98% of 

the deforestation is occurring in developing countries (FAO, 2020a). REDD+ is also 

one of the cheapest climate mitigation options for tackling climate change (Golub et 

al., 2018). However, such global initiatives require quantification of forest biomass 

and carbon (Gibbs et al., 2007); (Koch, 2010); (Campbell, 2009).   

 

AGB, generally, accounts for 70% to 90% of total forest biomass and is considered 

one of the most important carbon pools of forest ecosystems (Cairns et al., 1997); 

(Chen et al., 2018). Additionally, the disturbances such as forest fires, logging, and 

land use change, directly affect the AGB which results in a higher contribution to the 

carbon fluxes from this particular pool compared to the other carbon pools (Issa et 

al., 2020). AGB is usually measured in the metric tons of dry matter per hectare (e.g. 

t ha-1 or Mg ha-1) or in metric tons of carbon per hectare (e.g. t C ha-1 or Mg C ha-1) 

(Rodríguez-Veiga et al., 2017); (Omar et al., 2017). Forest biomass generally is the 

total sum of living mass present above and below the ground including trunks, 

leaves, branches, roots, etc. (Chandola, 2014). These are the following carbon pools 

generally found in forest ecosystems; AGB, Belowground Biomass (BGB), 

deadwood, litter, and soil organic carbon (SOC) (Buchholz et al., 2014). AGB 

includes all living biomass above the soil including stems, shrubs, stumps, branches, 

barks, seeds, and foliage (FAO, 2010). BGB includes all the living biomass of the 

roots, of which, fine roots less than 2 mm are excluded because it’s hard to 

distinguish them from the soil organic matter and litter (FAO, 2010). Deadwood is 
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comprised of all non-woody biomass that is not contained in the litter, either 

standing, lying on the ground, or in the soil and it also includes wood that is lying on 

the surface, dead roots and stumps that are larger than or equal to 10 cm in 

diameter or any other diameter that is used by the country (FAO, 2010). Litter 

includes all non-living wood biomass, above the mineral or organic soil, with a 

diameter less than the minimum diameter for the lying Deadwood (e.g. 10 cm) (FAO, 

2010). SOC includes organic carbon in mineral and organic soils (including peats) for 

a specified depth chosen by the country and that is consistently applied through the 

time series (FAO, 2010). Fig. 2 shows the proportion of different carbon pools, with 

SOC the highest with 45%, followed by AGB and BGB (here collectively shown as 

living biomass) with 44%.    

 

 

 

Fig. 2: Proportion of Carbon Stock in Forest Carbon Pools (FAO, 2020b) 

 

Pakistan’s forest area is 4.6%, according to the (FAO, 2020a). It is a low forest cover 

country (LFCC) (Aftab and Hickey, 2010). Forest per capita in Pakistan is only 0.03 

compared to the global average of 1 ha (Ali et al., 2020). Despite this, Pakistan has 

faced one of the highest deforestation rates of 0.94% annually (from 2010-2020) in 

the world (FAO, 2020a). In Pakistan, there is a high reliance of local communities on 

the forestry resources living in and around the forests (Hussain et al., 2019); (Ali et 

al., 2005); (Shahbaz et al., 2007). For instance, 60% of the Himalayan Forests in 
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Pakistan have been destroyed due to the marginalized socio-economic conditions of 

the communities, rapidly growing population, and lack of substitute fuel (Gairola et 

al., 2008); (Lindner et al., 2010); (Pokhriyal et al., 2010). According to an estimate, 

20% of the world population depends on forestry resources for meeting their 

essential livelihood means, which further signifies the importance of forestry 

resources (Cheng et al., 2019). Vedeld et al. (2007) also estimated that 22 percent of 

the average household income of the 19 developing countries has come from forest 

resources. Moreover, forest resources have contributed 10-12% to the average 

household income in Asia (Mukul et al., 2016). Pakistan is also one of the developing 

countries which are most affected by the adverse effects of climate change (Khan et 

al., 2020). This is despite Pakistan’s contribution is only a meager 0.8% to the 

world's GHG emissions (Sajid, 2020); (Hussain et al., 2019b). The climate change 

effects on Pakistan over the last decade have been in the form of increasing floods, 

high temperatures, extreme water scarcities, increasing droughts, and increasing 

diseases and pests (Smit and Skinner, 2002). Pakistan was ranked overall as the 

29th most vulnerable country to climate change in 2009-2011, similarly, it was placed 

16th in 2010-2011, 12th in 2012, and 8th in 2015 (Abid et al., 2016); (Khan et al., 

2020). The severe droughts that occurred from 1999 to 2003 and floods in 2010, 

2011, 2012, and 2014 exacerbated the risky situation arising from climate change in 

Pakistan (Abid et al., 2016). The climate change situation has caused environmental 

destruction which has resulted in the loss of over $9.6 billion, since 2010, to the 

economy of Pakistan (Lin and Raza, 2019). Pakistan has also recognized the 

importance of the forestry sector for mitigating climate change (Hussain et al., 

2019a); (Lin and Ahmad, 2016).  

 

Protected areas are considered key management tools for the conservation of 

biodiversity and for avoiding deforestation, hence also contributing to the 

conservation of forest carbon stocks (Geldmann et al., 2013). The International 

Union for Conservation of Nature (IUCN) has defined a protected area as “a clearly 

defined geographical space, recognized, dedicated and managed, through legal or 

other effective means, to achieve the long-term conservation of nature with 

associated ecosystem services and cultural values” (Dudley, 2008). The protected 

areas have expanded from a mere 8.5% of land and inland waters in 2004 to 14.7% 
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in 2015 (Lewis et al., 2019). The effectively managed protected areas would 

generally improve biodiversity and ecosystem services (Adams et al., 2019); (Lanzas 

et al., 2019). Due to this, the Aichi Biodiversity Target 11 of the Strategic Plan for 

Biodiversity 2011–2020 has called for Parties to the Convention on Biological 

Diversity (CBD) for conserving at least 17% of terrestrial and inland water areas, and 

10% of coastal and marine areas, especially areas of particular importance for 

biodiversity and ecosystem services, as protected areas by 2020 (Li et al., 2020). 

The protected areas are, however, faced with anthropogenic pressures which can 

result in increased deforestation, especially in developing areas (Islam et al., 2018); 

(Islam et al., 2019); (Jones et al., 2018); (Spracklen et al., 2015). National Park, 

which is a category II of protected areas, is a “Large natural or near-natural areas 

protecting large-scale ecological processes with characteristic species and 

ecosystems, which also have environmentally and culturally compatible spiritual, 

scientific, educational, recreational and visitor opportunity” (Dudley, 2008). There are 

28 National Parks in Pakistan and overall protected areas (different categories 

including National Parks) cover 10.4% of the total land area of Pakistan (Khan, 

2003).  

 

1.2. Forest Biomass Measurements using Forest Inventory and Remotely 

Sensed Parameters: 

 

AGB can only be measured directly and accurately through destructive sampling 

(Wilkes et al., 2018). This is however laborious, expensive, impractical, and rarely 

adopted (Ketterings et al., 2001); (Dumitrașcu et al., 2020). Destructive sampling is 

also not recommended for places where there is threatened flora and fauna (Kumar 

and Mutanga, 2017). Non-destructive methods include the use of allometric 

equations for the estimation of AGB (Rodríguez-Veiga et al., 2017); (Debastiani et 

al., 2019). The allometric equations are statistical models based on the forest 

inventory data such as diameter at breast height (DBH), height, wood density, and 

forest type (Chave et al., 2004). The forest inventory data is one of the most reliable 

sources for carbon estimation globally (Zhao et al., 2019). The choice of the 

allometric equation is, however, critical, where an inconsiderate selection of the 

equation may lead to errors of up to 79% (Clark et al., 2001). For reduction in 
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uncertainties in AGB estimation, site and species-specific allometric equations have 

been emphasized (Soares and Schaeffer-Novelli, 2005). In Pakistan, however, there 

is a lack of allometric equations for local tree species for AGB estimation (Ismail et 

al., 2018). The other non-destructive method, involving forest inventorying data, 

includes the use of the Biomass Expansion Factors (BEF) and Wood Density (WD) 

to convert the tree volume to the AGB (Asrat et al., 2020); (Hossain et al., 2020); 

(Sun et al., 2020); (Lu et al., 2016). BEF is unit less and is defined as “the ratio of 

oven-dried tree biomass to either the commercial or stem oven-dried biomass 

including bark” (Schepaschenko et al., 2018); (IPCC, 2003). The BEF accounts for 

the non-merchantable/non-commercial portions of the tree (Njana, 2017). The value 

for the BEF mainly depends on the tree species and tree age (Koch, 2010). The non-

destructive methods, involving forest inventorying data, however, are not feasible for 

large-scale areas (Kumar and Mutanga, 2017); (Dumitrașcu et al., 2020); (Fassnacht 

et al., 2014); (Ghosh and Behera, 2018).  

 

Due to mainly the advantage to cover larger spatial areas, remote sensing-based 

approaches, combined with the field inventorying data, are preferred for the AGB 

estimations (Goetz et al., 2009); (Issa et al., 2020); (Dang et al., 2019). Remote 

sensing methods are also lesser time-consuming (Vashum and Jayakumar, 2012); 

(Issa et al., 2020). Remote sensing methods, therefore, are considered the most 

popular methods for AGB estimation (Lu et al., 2016). The United Nations 

collaborative programme on REDD (UN-REDD) has also advocated for the inclusion 

of remote sensing methods in national forest monitoring systems of the countries 

due to their effectiveness (Dang et al., 2019). There are mainly three categories of 

sensors involved in remote sensing methods; 1) passive sensors 2) active sensors 

such as Radio Detection and Ranging (Radar) 3) Light Detection and Ranging 

(LiDAR) (which is also an active sensor) (Issa et al., 2020); (Li et al., 2020); 

(Rodríguez-Veiga et al., 2017); (Su et al., 2016); (Shao and Zhang, 2016); (Kumar et 

al., 2015). All three categories have their advantages and disadvantages (Issa et al., 

2020).  

 

Passive sensors/optical remote sensing have been used widely by numerous 

researchers for AGB estimation (Kumar and Mutanga, 2017); (Thenkabail et al., 



 

8 
 
 

2004); (Hyde et al., 2006); (Foody et al., 2003); (Sun et al., 2002); (Rahman et al., 

2005); (Zheng et al., 2004); (Basuki et al., 2013); (Kajisa et al., 2009); (Muukkonen 

and Heiskanen, 2005); (Li et al., 2008); (Calvão and Palmeirim, 2004); (Dong et al., 

2003). These have been commonly employed for AGB estimation because of high 

correlations between the spectral bands and/or vegetation indices (VIs) with the AGB 

(Zhao et al., 2016); (Sinha et al., 2015). Passive sensors utilize the energy from the 

sun and cannot operate without sunlight (Indirabai et al., 2019). The spatial 

resolutions for the passive sensors vary from less than one meter to hundreds of 

meters (Kumar and Mutanga, 2017). The signals obtained by the passive sensors 

are sensitive to the forest canopy structure (Gibbs et al., 2007); (Foody et al., 2001). 

The passive sensors have been available and operating for a very long time and 

provide rich data archives (Rodríguez-Veiga et al., 2017); (Issa et al., 2020); 

(Beamish et al., 2020); (Gómez et al., 2016). For instance, Landsat and the National 

Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution 

Radiometer (AVHRR) missions have been operating for the last 40 years and more 

(Rodríguez-Veiga et al., 2017); (Lu, 2006). The other advantage is that high to 

coarse resolution imageries from the passive sensors can be obtained for free or low 

cost (Rodríguez-Veiga et al., 2017); (Issa et al., 2020). The main drawback of the 

passive sensors is that they are obscured by the presence of the cloud cover which 

becomes especially challenging for tropical forests (Rodríguez-Veiga et al., 2017); 

(Kumar et al., 2019). Some of the passive sensors include; Coarse Spatial 

Resolution (> 100 m): Moderate Resolution Imaging Spectroradiometer (MODIS), 

AVHRR, Meteosat and SPOT Vegetation; Medium Spatial Resolution (10-100 m): 

Sentinel-2 (S2), Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), 

Operational Land Imager (OLI) and SPOT; Fine/High Spatial Resolution (< 5m): 

QuickBird, WorldView-2 and IKONOS (Issa et al., 2020).  

 

Radar can acquire satellite data irrespective of cloud covers, weather, and light 

conditions (Lu, 2006). Being an active sensor, Radar has its source of illumination 

and does not depend on sunlight like the optical remote sensing sensors (Chan and 

Koo, 2008); (Flores-Anderson et al., 2019). Some other characteristics of the Radar 

sensors include; Penetration through the vegetation, soil, and to a certain degree in 

dry snow; Sensitivity to the following: surface roughness, dielectric properties and 
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moisture, wave polarization and frequency; and volumetric analysis (Sinha et al., 

2015). The dielectric properties are an essential component of a material that 

describes its interaction with an electrical field (McDonald et al., 2002); (Ashish and 

Kurtadikar, 2017). Synthetic Aperture Radar (SAR) is a technique/system of a Radar 

that uses signal processing for improving the spatial resolution beyond the limitation 

of physical antenna aperture (Curlander and McDonough, 1991). SAR uses the 

forward motion of an actual antenna for synthesizing a very long antenna which 

allows the use of longer microwave wavelengths and obtaining good spatial 

resolutions with reasonable-sized antenna structures (Chan and Koo, 2008). The 

energy utilized by the SAR for remote sensing falls in the electromagnetic microwave 

domain which ranges from 1 mm to 1 m in wavelengths or 0.3–300 GHz in terms of 

frequency (Konings et al., 2019). The most common microwave bands used in SAR 

remote sensing include X-band (2.4-3.8 cm wavelength), C-band (3.8-7.5 cm 

wavelength), L-band (15-30 cm wavelength) and some experiments have also used 

S-band (7.5-15 cm), P-band (30-100 cm wavelength) and Very High Frequency 

(VHF) band (> 1 m wavelength) (Ackermann, 2015); (Hanes, 2014); (Flores-

Anderson et al., 2019). In SAR, the reflection of the energy from the objects back to 

the sensor is termed a backscatter and the earth features that interact with the 

transmitted energy are termed scatterers (Köhl et al., 2006). SAR systems are 

generally used in forest monitoring (Köhl et al., 2006); (Flores-Anderson et al., 2019). 

The longer wavelengths have a deeper penetration into the forest canopy and have 

a better correlation with the AGB (Woodhouse, 2006); (Jensen, 2009); (Sun et al., 

2002). AGB can be retrieved from radar using regression and inversion models 

(Hanes, 2014). Various researchers have shown that the use of SAR sensors for 

estimating AGB holds potential (Berninger et al., 2018); (Wijaya, 2009); (Debastiani 

et al., 2019); (Hamdan et al., 2014); (Ghosh and Behera, 2018); (Huuva et al., 2020); 

(Schlund and Davidson, 2018).  

 

Polarization of the electromagnetic waves, which is also an important parameter for 

the SAR data, refers to the orientation of the electric field intensity (Ackermann, 

2015). The SAR sensors generally emit signals in horizontal (H) or vertical (V) 

polarizations (Sinha et al., 2015). The four general polarization combinations for SAR 

sensors include; 1) HH: the emitted signal has horizontal polarization and the 
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received backscatter also has horizontal polarization 2) HV: the emitted signal has 

horizontal polarization and the received backscatter has vertical polarization 3) VH: 

the emitted microwave signal has a vertical polarization and the received backscatter 

energy has a horizontal polarization 4) VV: the emitted signal has a vertical 

polarization and the received signal will also be in vertical polarization (Ghasemi et 

al., 2011). HH and VV are co - or like polarized and HV and VH are cross-polarized 

signals (Jensen, 2009). Similarly, based on the transmit-receive microwave 

polarizations, the SAR sensors can be categorized into; 1) Single-Polarization: same 

polarization is used for transmitting and receiving the signal 2) Cross-Polarization: 

different polarization is used for transmitting and receiving the signal 3) Dual-

Polarization: the signal is transmitted in one polarization and received in two 

polarizations simultaneously (e.g. HH and HV) 4) Quad-Polarization: all four 

polarization combinations are used for transmitting and receiving the signals (Flores-

Anderson et al., 2019); (Gaber et al., 2017). The cross-polarized microwave signals 

are more sensitive to the AGB (Sinha et al., 2015). Sentinel-1 (S1), Advance Land 

Observing Satellite (ALOS)-2, RADARSAT 2, RADARSAT constellation mission, 

TerraSAR-X, TerraSAR-X add-on for Digital Elevation Measurements (TanDEM-X), 

etc. are some of the SAR satellite missions. Some of the limitations of SAR sensors 

include the saturation problem, expensive satellite datasets, data processing 

difficulties, and complex interactions with the forests (Sinha et al., 2015).  

 

LiDAR is a relatively new technology that has been used in AGB estimation (Kumar 

and Mutanga, 2017). It is an active-ranging technology that uses the shorter 

wavelength of near-infrared laser light (e.g. 1040 nm) and records its backscatter 

from the target object (Jensen, 2009); (Sun and Liu, 2019). It can effectively provide 

the forest canopy with a 3-Dimensional structure which can be further used for 

extraction of forest height and other biophysical parameters (Issa et al., 2020); (Sun 

and Liu, 2019); (Shan and Toth, 2008); (Vosselman and Maas, 2010). LiDAR 

systems can be mounted on aircraft, terrestrial platforms, and satellites (Maltamo et 

al., 2014). Various researchers have demonstrated a high degree of precision by 

using high-resolution LiDAR for AGB estimation (Bortolot and Wynne, 2005); 

(Thomas et al., 2006); (Nelson et al., 2007); (Lu et al., 2020); (Salum et al., 2020); 

(Saarela et al., 2020). The National Aeronautics and Space Administration’s (NASA) 
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Global Ecosystem Dynamics Investigation (GEDI) and NASA's Ice Cloud and land 

Elevation Satellite (ICESat-2) are two such examples of LiDAR systems mounted on 

satellite platforms (Duncanson et al., 2020). The GEDI, however, is the first space-

borne LiDAR mission that is specifically designed for vertical forest structures 

(Dubayah et al., 2020). The major drawback associated with LiDAR is that it is very 

costly, which makes it difficult particularly for developing countries to acquire LiDAR 

data and sensors for AGB estimation (Hernández-Stefanoni et al., 2020); (Issa et al., 

2020). Nonetheless, despite various drawbacks, passive/optical, 

active/SAR/microwave and LiDAR techniques still have attracted scientific interest in 

the estimation of the AGB (Sinha et al., 2015). Fig. 3 shows the comparative 

penetration, through the forest canopy, of the three widely used remotely sensed 

techniques for AGB estimation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Comparative Penetration of three Remote Sensing Techniques in the Forest Canopy 

(Pancel and Köhl, 2016). 

 

1.3. Parametric and Non-Parametric Based Algorithms: 

 

The linear, quadratic, exponential and logarithmic regression equations have been 

the most common regression equations which have been used for the AGB 
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estimation using field inventory parameters (Husch et al., 2002); (Ghosh and Behera, 

2018). Parametric approaches/models such as linear regression, non-linear 

regression, multiple linear regression (MLR), etc. have also been the most common 

approach adopted for the estimation of AGB using remote sensing parameters (Lu et 

al., 2016); (Skowronski et al., 2014); (Kumar et al., 2013); (Li et al., 2019); (He et al., 

2013). In these approaches, in case of the remote sensing, the first empirical 

relationship between AGB and remote sensing parameters is established and 

subsequently, this relationship is applied to the pixels of the image (Song, 2013); 

(Heiskanen, 2006). The parametric approaches are easy to implement, however, 

they require fulfilling assumptions like normal distribution of the data and absence of 

multicollinearity (Song, 2013); (Rodriguez-Galiano et al., 2012); (Breiman, 2001a). 

Parametric models also do not gauge the complex and non-linear relationship 

between the forest variables and remote sensing parameters (Li et al., 2019); (Zhu 

and Liu, 2015); (Ghosh and Behera, 2018). Non-parametric methods are highly 

powerful methods that can handle complex and non-linear problems (Breiman, 

2001b); (Li et al., 2020). Non-parametric methods also do not depend on the 

distribution of the data (Ghosh and Behera, 2018); (Mutanga et al., 2012); 

(Rodriguez-Galiano et al., 2012). The use of non-parametric (which are often called 

machine learning algorithms) models have gained popularity and have been 

preferred over parametric-based algorithms for AGB estimation (Lu et al., 2016). 

Various studies have utilized non-parametric machine learning-based algorithms for 

the estimation of AGB using remote sensing parameters (Lu et al., 2016); (Jafari et 

al., 2020); (Li et al., 2020); (Ghosh and Behera, 2018); (Dang et al., 2019); (Deb et 

al., 2020). 

 

The Random Forest (RF) and Support Vector Machine (SVM) algorithms, therefore, 

have also been used in this study owing to their wide use in estimating AGB by 

combining remote sensing parameters and field inventory data (Deb et al., 2020); 

(Opelele et al., 2021); (Yadav et al., 2021); (Liu et al., 2020); (Purohit et al., 2021); 

(López-Serrano et al., 2020); (Schuh et al., 2020); (Qiu et al., 2020). The RF and 

SVM algorithms assist in the interpretation and structuring of the models with the 

selected parameters (Breiman, 2001b); (Biau and Scornet, 2016).  
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1.4. Land Use/Land Cover Change and Classification: 

 

Land use (LU) and land cover (LC) are two concepts that are often used 

interchangeably (Mishra et al., 2020). LC is the biophysical characteristics of the 

surface of the earth that includes vegetation distribution, water, soil, and other land 

features and land use is how the land has been utilized by humans (Liping et al., 

2018). 

 

LC can be directly observed using both fields as well as remote sensing images but 

LU may not be easily recognized and often requires ancillary information such as 

socio-economic data (Verburg et al., 2009). LU/LC has been identified as one of the 

major determining factors influencing global change with impacts on ecosystems and 

climate change (Foley et al., 2005); (Verburg et al., 2009). 

 

LU/LC Change (LCC) is the conversion of LU/LC types into different LU/LC types 

(Pielke et al., 2011). Erb (2012) has identified two aspects of LU/LCC; i) Changes in 

LC: as already mentioned, conversion of LU/LC to another type, either expansion or 

contraction ii) Changes in LU/LC intensity: it is the intensity with which a LU/LC is 

utilized, however, changes in the intensity may not necessarily result in a change of 

an LC but may cause ecological changes. LCCs have occurred on vast areas of the 

earth’s surface (Galicia and García-Romero, 2007). An increase in population and 

advances in technologies that have resulted in rapid economic development have 

been considered to put mainly the LC category of forests under stress, especially in 

developing countries (Meli Fokeng et al., 2020); (Pielke et al., 2011). For instance, 

the world population continues to increase at an alarming rate and is expected to 

reach 9.7 billion in 2050, and 11.2 billion by the turn of the century (UN, 2015). Geist 

and Lambin (2002) have distinguished LCC causes into; i) Proximate causes: human 

activities/immediate actions originating at local levels directly impacting LCs such as 

agricultural expansion etc. ii) Underlying causes: social processes that strengthen 

the proximate causes which may operate at a local level or may influence from 

national or global level such as in the form of population growth and agricultural 

policies etc.   
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The human-induced changes in LC have also altered the carbon fluxes of the 

terrestrial ecosystems (Li et al., 2018); (Clerici et al., 2014) and have contributed in a 

significant manner to the global CO2 emissions (IPCC, 2014). The irrational use of 

land seriously degrades its original carbon stock potential (Lal, 2008). Deforestation 

is considered an essential and most widespread process of LCC (Lambin et al., 

2001); (Lambin et al., 2003); (Rodríguez-Veiga et al., 2020). The IPCC has also 

emphasized that the conversion of forests to other LC types should be referred to as 

deforestation (Hu et al., 2019). Deforestation historically has been responsible for a 

large part of human-induced GHG emissions globally (IPCC, 2007b). It has been 

considered a global problem and is predicted to continue at an alarming rate in the 

future as well (Foley et al., 2005); (d’Annunzio et al., 2015). The most common 

drivers of deforestation in Asia have been classified as logging, agricultural 

expansion, urbanization, mining, and grazing (Hosonuma et al., 2012). Agricultural 

expansion, however, has been described as the largest cause of deforestation, 

ranging from 70% to 90 %, in Asia, Africa, and Latin America, according to various 

estimates (Nepstad et al., 2008); (Gutiérrez-Vélez et al., 2011); (Hosonuma et al., 

2012). Williams et al. (2021) have also projected that 87.7% of the terrestrial 

vertebrate species will lose their habitat due to an increase in agricultural expansion 

by 2050.  

 

Pakistan recorded a population of 208 million in 2017, which makes an annual 

growth rate of 2.4% compared to the previous census held in 1998 (Goujon et al., 

2020). The growth rate is twice the average rate of South Asian countries, which is 

1.2%, and if nothing changes Pakistan will double its population in 29 years 

compared to the South Asian countries which will need 58 years for doing so 

(Goujon et al., 2020). The increase in population at alarming rates in Pakistan has 

led to the rise in urbanization (Khan et al., 2021). According to an estimate, about 

93% of global urbanization is occurring in developing countries alone (Natasha et al., 

2020). There has also been a substantial increase in the agricultural area followed 

by the huge investments made by the government in Pakistan over the several 

decades (Ahmad, 2001). This has made the agricultural sector to be the largest 

contributor to the economy of Pakistan constituting 24% of its GDP and employing 
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almost half of its population (Aziz, 2021); (Ali et al., 2020); (Rehman Zia et al., 2020). 

Generally, population expansion combined with economic development, therefore, 

has been responsible for extensive LCC in Pakistan (Aziz, 2021). Agricultural 

expansion and population growth have been more specifically noted as the most 

common drivers of deforestation in Pakistan since deforestation is the most common 

form of LCC as already mentioned (Lodhi et al., 1998); (Nüsser, 2000); (Qasim et al., 

2011); (Shehzad et al., 2014), followed by timber extraction, poverty, administrative 

reform, poor management, human-induced fires and road construction (Qamer et al., 

2012); (Ali et al., 2005); (Ullah et al., 2021). For a healthy economy, 25% of the land 

surface has been recommended to be covered with forests, but as already 

mentioned, Pakistan is classified as an LFCC (FAO, 2012). Furthermore, there is no 

national-level LU/LC policy existing in Pakistan (Aziz, 2021). It is also feared that the 

megaprojects, which are considered to be at the core of socio-economic 

development in Pakistan such as the China-Pakistan Economic Corridor (CPEC) etc. 

to further aggravate LCC because of the absence of appropriate LU/LC policy at a 

national level for specifically addressing the ensuing issues (Samie et al., 2017). 

CPEC is an initiative started by China that focuses on the construction of railways, 

highways, optical fiber, oil and gas pipelines, etc. in Pakistan (Chen et al., 2017). 

 

LC and LCC mapping are considered crucial steps for sustainable development 

planning considering their direct effects on ecosystem processes (Mei et al., 2016). 

Furthermore, analysis of LCC based on long-term satellite data is useful for 

understanding the patterns in LCC and can provide important information for 

policymakers (Hu et al., 2019). Remote sensing has been extensively used in LCC 

mapping at local and global scales (Yin et al., 2018); (Clark et al., 2012). A boom in 

the use of remote sensing in the recent decade can also be noticed further by the 

arrival of advanced sensors along with the open access data policy (Pouliot et al., 

2014). Generally, few studies have focused on LCC in Pakistan in the past (Samie et 

al., 2017). However, it has been changing over time concerning its increasing 

importance. For instance, Chen et al. (2017) investigated the influence of LCC on the 

carbon stocks of the terrestrial ecosystems in Pakistan, using Landsat 5 TM data, 

and reported the decrease in future carbon stocks due to the business as usual 

(BAU) scenario. Gilani et al. (2020) studied the LCC in the capital city of Islamabad 
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that have occurred over four decades from 1976 to 2016, using Landsat 3 

Multispectral Scanner (MSS), Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 OLI 

data, and highlighted the increase in settlements and decrease in forest cover during 

this period. (Khan et al., 2020) also investigated the LCC in Islamabad from 1993 to 

2018, using Landsat 5 TM and Landsat 8 OLI/Thermal Infrared Sensor (TIRS) data, 

with a major impact on the land surface temperature and reported an increase in 

impervious surfaces and decrease in forest cover increasing temperatures. Mannan 

et al. (2019a) investigated the LCC from 1998 to 2018, using Landsat 5 TM and 

Landsat 8 OLI data, and its impacts on the forest carbon stocks for the foothills of the 

Himalayan mountains of Pakistan and reported a decrease in forest carbon stocks 

and increase in agricultural lands and settlements. Tariq et al. (2021) investigated 

the LCC from 2000 to 2015 for the Fateh Jang, Attock District, Pakistan, using 

Landsat 7 ETM+ and Landsat 8 OLI/TIRS data, and reported a decrease in the 

vegetation area anan d increase in the settlements. Mazhar and Fadia (2019) 

studied the LCC from 1999 to 2019 for the city of Gujranwala, Pakistan, using 

Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 OLI, and reported the decrease in 

vegetation and increase in settlements.  

 

There are generally three types of pixel-based remote sensing image classification 

techniques; supervised unsupervised and hybrid classification (Li et al., 2014). 

Unsupervised classification is the computer-automated pixel-based classification that 

does not require prior knowledge of the study area and includes the following 

techniques i.e. K-means and Iterative Self-Organizing Data Analysis (ISODATA) etc. 

(Li et al., 2014). The hybrid classification involves the combination of supervised and 

unsupervised classifications (Kantakumar and Neelamsetti, 2015). In the supervised 

classification, the user selects respective training sets for the classification of 

different LC classes based on prior experience and knowledge of the respective area 

(Mather and Tso, 2016). Supervised classification is the most frequently used 

technique for image classification (Richards and Jia, 2006); (Mather and Tso, 2016). 

The supervised classification techniques include RF, spectral angle mapper (SAM), 

SVM, decision tree (DT), multilayer perceptron (MLP), maximum likelihood classifier 

(MLC), etc. (Ma et al., 2019); (Shih et al., 2019). The use of supervised machine 

learning algorithms in LC classifications has recently gained considerable 
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momentum (Talukdar et al., 2020a); (Maxwell et al., 2018). The machine learning 

algorithms i.e. RF, SVM, etc. have been outperforming the traditional statistical 

classifiers i.e. minimum distance classifier (MDC), MLC, etc. in terms of accuracy 

and reliable results, particularly in case of abundant data (Shih et al., 2019); 

(Schneider, 2012); (Pal and Mather, 2005). Numerous studies have been carried out 

which have used machine learning algorithms for the LC classifications (Talukdar et 

al., 2020b); (Zhang et al., 2019); (Teluguntla et al., 2018); (Pal, 2005). RF has 

particularly gained popularity for LC classifications due to its easy use and high 

accuracy (Pal, 2005); (Belgiu and Drăguţ, 2016); (Talukdar et al., 2020a). RF is also 

insensitive to noise or overtraining, which shows its ability to handle irregular data 

(Breiman, 2001b). RF is more robust than the single decision tree and easier to 

implement compared to other advanced algorithms such as SVM (Chan and 

Paelinckx, 2008); (Breiman, 2001b). 

 

1.5. Research Objectives: 

 

Based on the aforementioned, the following research objectives/sub-objectives were 

investigated in the study area, Margalla Hills National Park (MHNP); 

 

A. Forest Biomass and Carbon Stock Assessment of MHNP. 

 

A.1. AGB and AGC assessment of the Sub-tropical Chir Pine Forest 

(SCPF) and Sub-tropical Broadleaved Evergreen Forest (SBEF) using Field 

Inventorying Techniques. 

 

A.2. Exploring linear regression relationship between S1 and S2 satellite 

data with the AGB of SCPF and SBEF. 

 

A.3. AGB estimation combining remote sensing and machine learning 

approach.   
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B. LC Classification and Land Cover Change Detection (LCCD) of MHNP for 

the time-period between 1999 and 2019. 

 

B.1. LC Classification for the years 1999, 2009, and 2019 using Machine 

Learning Algorithm 

 

B.2. LCCD of MHNP between 1999 to 2019 
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2. Study Area: 

 

The MHNP is spread over an area of 17,386 ha (Mannan et al., 2018). It is situated 

between 73°7’3.32” E, 33°41’59.61” N and 73°1’34.07” E, 33°45’2.87” N (WWF-

Pakistan, 2009). The elevation of the MHNP is between 1,347 to 3,907 feet. The 

MHNP consists of three zones i.e., Margallah hills, Shakar Parian, and Rawal Lake. 

The Margallah hills Zone, however, forms most of the MHNP and is the extension of 

the Himalayan range. The MHNP has a rough topography with some steep slopes 

and various gullies.  

 

 

Fig. 4: Overview of the Study Area 

 

According to Fig. 4, it can be seen that the MHNP is adjoined with the Federal 

Capital City of Pakistan, Islamabad, highlighted in yellow (Rawal Lake and Shakar 

Parian are located within the city and the Margalla Hills are located to the north of 

the city), and it is also extended to the Khyber Pakhtunkhwa Province. The MHNP 

was declared as a National Park on 27 April 1980 under Section 21(1) of the 

Islamabad Wildlife (Protection, Conservation, and Management) Ordinance, 1979 

(Himalayan Wildlife Foundation, 2007). Before 1960, much of the area was classified 
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as a ‘Reserve Forest’. Later, however, the area was declared a ‘Wildlife Sanctuary’ 

under the West Pakistan Wildlife Protection Ordinance, 1959 (Himalayan Wildlife 

Foundation, 2007). 

 

There are 27 villages located within the boundaries of the MHNP. Agriculture is the 

mainstay for the subsistence of the people (Akbar, 2012). The climate of the area is 

subtropical semi-arid. The MHNP lies in the monsoon belt, and it experiences two 

rainy seasons: Winter rains from January to March, whereas summer rains from July 

to September. For the winter season, the temperature ranges from 1-15 °C, and for 

summer the temperature between 20-40 °C can be recorded. Specifically, MHNP 

has five seasons which are i.e., winter (December-February), spring (March-April), 

summer (May-June), monsoon (July-September), and autumn (November) (Anwar 

and Chapman, 2000). The average annual rainfall is 1,000 mm (Himalayan Wildlife 

Foundation, 2007). The soil of MHNP is mainly composed of limestone (Butt et al., 

2015).   

 

The flora of the MHNP includes 101 families, 548 genera, and 608 species (Akbar, 

2012). The MHNP is composed of two types of forests i.e. SBEF and SCPF (Mannan 

et al., 2018).  

 

The SCPF is predominantly located above the 900 m elevations (Himalayan Wildlife 

Foundation, 2007). The SCPF is mainly characterized by the Pinus roxbughii Sarg., 

which forms the main canopy. A heavy needle fall of the Pinus roxburghii occurs in 

May every year forming a thick carpet, which causes forest fires in this forest, due to 

the presence of resins in the needles (Gupta et al., 2020). Forest fires mainly occur 

due to human activities (Himalayan Wildlife Foundation, 2007). The understorey, 

which is mainly in the form of shrubs, is sparse. The shrub species include i.e., 

Myrsine Africana L., Woodfordia fruticosa (L.) Kurz, Berberis lyceum Royle etc. The 

grasses include i.e., Themeda sp. and Heteropogon contortus (L.), etc. The soil is 

light sandy, of moderate fertility, and has low pH values. Other areas in Pakistan 

where this forest is found include Murree Hills, Swat, Shinkiar,i etc. (Nizami, 2010).  
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The SBEF is classified as an arid forest and usually is composed of branchy trees, 

which vary from complete closure due to favorable conditions to scattered trees or 

shrubs on the drier sites (Sheikh, 1993). These are low forests with species that are 

mostly thorny and are often with evergreen leaves (Sheikh, 1993). The larger trees 

can be seen in valleys where deep soil and adequate water are available. Generally, 

these forests are encountered by noticeable erosion and are characterized by gullies 

and deep ravines, which makes the rocks and boulders common features to 

observe. A good amount of grasses and herbs, as understorey vegetation, may also 

develop during the monsoon season with the availability of water (Himalayan Wildlife 

Foundation, 2007). Some of the tree species include Acacia modesta Wall., Cassia 

fistula L., Bauhinia variegate L., and Grewia optiva J. R. Drumm. Ex Burret etc. The 

shrubs include the Dodonaea viscose (L.) Jacq., Carissa opaca Stapf ex Haines and 

Justicia adhatoda L. etc. The grasses include i.e., Chrysopogon serrulatus Trin., 

Bothriochloa pertusa (L.) A. Camus, and Pennisetum orientale L.C. Rich. etc. 

(Himalayan Wildlife Foundation, 2007). The soil is usually dry and shallow (Nizami, 

2010). In other areas in Pakistan, these forests are generally found in Kala Chitta 

Mountains (Kherimurat), salt ranges, Malakand Agency, Parachinar, Loralai, 

Sohawa, etc. (Nizami, 2010). 

 

The Broussonetia papyrifera (L.) L’Her. ex Vent. is the major invasive tree species, 

which is found at lower elevations, particularly in the plain areas of the MHNP (Malik 

and Husain, 2007). The fauna of the MHNP is also diverse. The wildlife species 

found here include Leopard (Panthera pardus), Rhesus Monkey (Macaca mullata), 

Barking Deer (Muntiacus muntjak), Grey Goral (Naemorhedus goral), Wild Boar (Sus 

scrofa), Asiatic Jackal (Canis aureus), Indian Crested Porcupine (Hystrix indica) and 

Indian Pangolin (Manis crassicaudata). There are also various birds of prey, game 

birds, reptiles, and butterflies found in the MHNP. 
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3. Materials and Methods: 

 

3.1. Forest Biomass and Carbon Stock Assessment of MHNP: 

 

3.1.1. Field Inventorying for Forest Biomass and Carbon Estimation: 

 

3.1.1.1. Stratified Random Sampling: 

 

Sampling in forestry offers various advantages over full enumeration such as cost-

effectiveness, greater speed, and improved accuracy (Jin and Yang, 2020);  

(Jayaraman, 1999). The small sample sizes, thus, may lead to reduced errors such 

as those relating to field workers making mistakes in taking measurements and 

recording the data, errors related to the instruments, and/or during field inventory 

and data analysis (Jayaraman, 1999).  

 

Generally, there exist two sampling approaches i.e. subjective and probability 

samplings (FAO, 2015). Subjective sampling utilizes personal experience and 

judgment for the selection of the sampling units which would represent the entire 

population. However, the subjective sampling approach may not accurately 

characterize the entire population which needs to be sampled (FAO, 2015). 

Probability sampling on another hand depends on the theory of probability for the 

selection of sampling units representing the entire population, which also means that 

the sampling units from the entire population would have an equal chance of 

selection. Some of the probability sampling approaches include simple random 

sampling, stratified sampling, systematic sampling, stratified random sampling, etc. 

(Jin and Yang, 2020).  
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Fig. 5: LC Map for MHNP for the year 2019 

 

Stratified random sampling was adopted for this research. In stratified random 

sampling the entire population, for example, the forest is broken down into different 

strata of familiar attributes and characteristics and randomly the samples are taken 

in each stratum. The advantages of stratified random sampling include the easier 

organization of the work and reduced bias and increased precision (FAO, 2015). In 

general, it also helps in decreasing the cost of field sampling. In the case of this 

research, the MHNP was first divided into two forest types i.e., SCPF and SBEF, and 

then respective samples were laid randomly in each of the forests. Overall, there 

were 46 sampling plots, which were laid in SCPF, and 31 sampling plots were laid in 

SBEF of the MHNP. The sampling was conducted mainly in the accessible areas of 

the MHNP. The limitations of the financial and personnel resources were also the 

essential factors that governed the overall sampling in the MHNP. Fig. 5 shows the 

LC Map for MHNP for the year 2019.  
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3.1.1.2. Plot Shape: 

 

There can be different plot shapes that can be selected for sampling such as square, 

rectangle, circle, etc. The circular plots, however, are advantageous because they 

can be easily laid out, requiring only one control point, and easier management in 

hilly areas (Vries, 1986); (FAO, 2015). For this study, therefore, the sampling plots 

with a circular shape having a 17.84 m radius, which forms a 0.1 ha area each, were 

used (Pearson et al., 2005). Generally, in forestry for sampling purposes, the plots 

are selected with sizes ranging from 0.01 to 0.1 ha (West, 2009).  

 

3.1.1.3. Data Collection (Measurement of Forest Variables): 

 

The DBHs of all the trees above 5 cm were measured in the sampling plots, with the 

help of a DBH tape, at a height of 1.3 m above the ground level (Laar and Akça, 

2007). The DBH tape was wrapped around a tree and the respective reading was 

noted, in cm, on the data collection form, attached as Annexure 1. DBH is the most 

common variable which is measured in forest inventories because it can easily be 

correlated to other variables (West, 2009). For younger trees, if a suitable height is 

not reached, this DBH can be measured at heights of 0.1-0.3 m (West, 2009). 

Overall, there were 640 trees sampled from the SCPF and 443 trees sampled from 

the SBEF of the MHNP. The sampling was conducted from March 2019 to June 

2019. The GIS coordinates were also recorded from the center of the plots. While 

measuring the DBH of the trees, extreme care was shown towards the location of the 

recording of the DBHs. The scheme, which was adopted for measuring the DBHs of 

various straight, leaning, and forking trees, etc. during this study can be seen in Fig. 

6. The local staff of the Islamabad Wildlife Management Board (IWMB) of the MHNP 

helped in the identification of various tree species. All the vernacular and scientific 

names of all the sampled trees were noted down on the data collection form. The 

IWMB is the legal custodian of the MHNP and is responsible for the protection and 

management of the MHNP.  

 

 



 

25 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: DBH measurement locations’ for trees (Pearson et al., 2005) 

 

The heights of all 640 trees sampled from the SCPF and 443 trees sampled from the 

SBEF of the MHNP were measured. In each sampling plot, the heights of all the 

trees were measured and recorded in the data collection form. Height is also another 

attribute in forestry-related assignments or exercises that can be measured directly. 

There can be different types of heights i.e. tree height, bole height, merchantable 

height, etc. which can be measured in forestry inventories, therefore, utmost care 

should be given to the appropriate selection of the terminology especially 

corresponding to the objectives of the forest inventory assignment (Köhl et al., 2006). 

For this research tree height was used, which is defined as the vertical distance 

between the base of the tree and the tip of the tree (Köhl et al., 2006). Fig. 7 also 

shows the height of a single tree (Laar and Akça, 2007). The tree height 

measurement in the forests is generally a difficult, costly, and time-consuming task 

(Wang et al., 2019); (Næsset and Økland, 2002). All the heights during this study 
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were also measured by a single observer, the researcher himself (Hunter et al., 

2013).  

 

 

Fig. 7: Height of a Tree (Laar and Akça, 2007) 

 

The Vertex IV instrument, along with its transponder, was used for the estimation of 

tree height. It uses ultrasound technology for the estimation of height, and is easy to 

use and precise (Velázquez-Martí et al., 2013); (Pariyar and Mandal, 2019). The 

location of the sampling plots which were laid in the SCPF and the SBEF at the 

MHNP for the forest inventorying can be seen in Fig. 8. The pictures from the MHNP 

can be found in Annexure 2.  
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Fig. 8: Sampling Plots at the Two Forests of the MHNP 

 

 

3.1.2. Satellite Remote Sensing: 

 

3.1.2.1. S2 Data Acquisition and Processing: 

 

The European Commission’s (EC) Copernicus program, which was called the Global 

Monitoring for Environment and Security (GMES), started back in 1998 (Szantoi and 

Strobl, 2019). The program has a space component managed by the European 

Space Agency (ESA) which is responsible for the Copernicus Sentinel satellite 

constellations (Szantoi and Strobl, 2019). The S2 mission of the Copernicus program 

has become operational in October 2017 and it provides free access to satellite 

images (Corbane et al., 2020).  
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The S2 constellation mission has two satellites, the first is S2A which was launched 

on June 23, 2015, and the second satellite is the S2B, which got launched on March 

7, 2017 (Wang et al., 2019). The S2 constellation has a high revisit time of 5 days. 

Their Multispectral Imager (MSI) collects data in 13 spectral bands and it uses push-

broom technology by using a field of view of 290 km. The data produced by the S2 

constellation can be found in three spatial resolutions of 10 m, 20m, and 60 m. The 

mission operates in a sun-synchronous orbit at an altitude of 786 km. The S2 data 

have been utilized in various vegetation-related studies (Mura et al., 2018). The 

details of the various spectral bands of S2 can be found in Table 1 (Lamquin et al., 

2019).  

 

      Table 1: Spectral Bands of S2 

Sr. 

No.  

Band Central 

Wavelength 

(nm) 

Resolution (m) 

1 Band 1 - Coastal aerosol 443 60 

2 Band 2– Blue 490 10 

3 Band 3 – Green 560 10 

4 Band 4 – Red 665 10 

5 Band 5 – Vegetation Red Edge 705 20 

6 Band 6 – Vegetation Red Edge 740 20 

7 Band 7 – Vegetation Red Edge 783 20 

8 Band 8 – NIR 842 10 

9 Band 8A – Narrow NIR 865 20 

10 Band 9 – Water Vapour 945 60 

11 Band 10 – Short Wave Infrared 

(SWIR) – Cirrus 

1375 60 

12 Band 11 – SWIR 1610 20 

13 Band 12 – SWIR 2190 20 
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Two images of S2 were downloaded for this study because there was no single 

image representing the entire area i.e. the first image was for August 19, 2019, with 

a cloud cover of 0.4 percent, and the second image was also for the same date, 

August 19, 2019, with a 0.05 percent of cloud cover. For this study, the images, 

which were closest to the date of the forest inventory, were considered (Wessel et 

al., 2018). The Semi-Automatic Classification Plugin (SCP) (Congedo, 2016) of the 

QGIS (QGIS Development Team, 2020) was used for downloading the imageries 

(Gemusse et al., 2018). Band 2, band 3, band 4, and band 8 were used for taking 

advantage of the higher resolution of 10 m and to ensure consistency and to assure 

that there is no loss of information (Pandit et al., 2018). The product level of the 

images used was Level-1C. This product S2 Level-1C already includes the 

radiometric and geometric corrections (Pandžic et al., 2016). The S2 Level-1C 

products also contain the Top-of-Atmosphere (ToA) reflectance,  which is needed to 

be converted to the Bottom-of-Atmosphere (BoA) reflectance for obtaining the 

surface characteristics (Estévez et al., 2020). The conversion to BoA reflectance was 

done using the Dark Object Subtraction method (DOS) which was developed by 

Chavez (1996). The DOS1 algorithm of the SCP of the QGIS software, developed by 

Congedo (2016), was used for the DOS method for conversion of the image into BoA 

reflectance (Gemusse et al., 2018); (Pandit et al., 2020).  

 

The pre-processed S2 images were imported into the RStudio software (RStudio 

Team, 2020). The ‘raster package’ was loaded in the RStudio software (Hijmans and 

Ettan, 2012). The ‘raster package’ provides important functions for handling and 

importing raster layers (Kamusoko, 2019). The ‘raster()’ function was used for 

loading each band (band 2, band 3, band 4, and band 8) from each image as a 

single raster layer. The bands for each image were stacked using ‘stack()’, which is 

used for reading separate files (Kamusoko, 2019). The stacked files/images were 

converted into brick files/images using the ‘brick()’ function, which reads multiple 

layers from one file and has a better processing time compared to the ‘stack()’ 

function (Hijmans, 2017). Both the bricked images were mosaicked/merged using 

the ‘merge()’ function of the base package of R (R Core Team, 2020). Image 

mosaicking is the process where two or more images with overlapping areas are 

merged into a single image with an undistinguishable seamline (Burt and Adelson, 
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1983). Mosaicking is considered an important task in image processing in remote 

sensing (Li et al., 2015); (Li et al., 2019).  

 

The sub-setting (clipping) of the image was conducted by using the shapefile of the 

study area, which reduces the processing time of the images since the study area 

forms only a small portion of the image. For this purpose, the ‘shapefile()’ function 

was used for importing the shapefile, and the ‘crop()’ and ‘mask()’ functions were 

used for cropping and clipping the image to the corresponding size of the study area. 

All three functions belong to the raster package of R. Fig. 70 shows the first image 

i.e., with four bands i.e., band 2 (B02), band 3 (B03), band 4 (B04), and band 8 (B08) 

(Annexure 1). Fig. 71 shows the second image with the same four bands (Annexure 

1). Fig. 72 shows the merged S2 image (Annexure 1). Fig. 73 shows the clipped 

image of the study area (Annexure 1). The images were then converted to natural 

color composite and near-infrared (NIR) composite. Fig. 74 shows the natural color 

composite of the S2 image for the study area and Fig. 75 shows the NIR composite 

of the S2 image of the study area (Annexure 1). The methodological workflow for the 

AGB estimation and mapping can be seen in Fig. 11. The S2 raster image of the 

study area was saved and imported to QGIS software for the calculation and 

mapping of vegetation indices.  

 

3.1.2.2. S1 Data Acquisition and Processing: 

 

The S1 mission is the European Radar Observatory for the Copernicus joint initiative 

of the EC and the ESA. Copernicus was previously known as GMES, as already 

mentioned earlier. It is an initiative by Europe for providing information services 

related to the environment and security.  

 

The S1 mission carries two satellites that are 180° apart (Crabbe et al., 2021). It 

contains a constellation of two identical satellites, S1A and S1B, which have been 

launched separately. The satellites are equipped with the C-Band SAR instrument 

which is operating at a center frequency of 5.405 GHz (Crabbe et al., 2021). The 

mission follows a sun-synchronous orbit which is at a height of 693 km (Huang et al., 

2018). It includes four imaging modes i.e. Strip Map (SM), Interferometric Wide 
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swath (IW), Extra-Wide Swath (EW), and Wave (WV), having different resolutions 

(that is down to 5 m) and a coverage of up to 400 km with a capability of dual 

polarization (HH+HV, VV+VH) (Chang and Shoshany, 2016). Each mode is intended 

for use in different applications. The revisit time is 12 days for both satellites (Gao, 

2019). The mission provides free data to the public for use. 

 

A dual polarization (VV+VH), S1 IW Ground Range Detection (GRD) Level-1 scene 

was downloaded from the ESA Copernicus Open Access Hub 

(https://scihub.copernicus.eu/). The C-Band SAR product was downloaded for the 

date of August 24, 2019. The IW mode of acquisition has a 250 km swath width at a 

spatial resolution of 5 x 20 m spatial resolution (Single Look) and an incidence angle 

between 29.1° and 46.0° (Laurin et al., 2018). The IW mode of acquisition is suitable 

for land surface studies (Geudtner et al., 2013). 

 

For the pre-processing of the downloaded S1 GRD scene, the workflow proposed by 

Filipponi (2019) was used. The pre-processing was conducted in the Sentinel 

Application Platform (SNAP) software version 8.0 of the ESA (SNAP, 2020). At first, 

a subset of the image was created after which the pre-processing steps were carried 

out. The steps involved for pre-processing were; Apply Orbit File, Thermal Noise 

Removal, Border Noise Removal, Calibration, Speckle Filtering, Radiometric Terrain 

Flattening, and Range Doppler Terrain Correction. 

 

The ‘Calibration’ step converts the pixel values to the radiometrically calibrated 

backscatter (Filipponi, 2019). At this stage, the sigma nought (σ°) was converted to 

the beta nought (ß°), as for the ‘Radiometric Terrain Flattening’, the SNAP requires 

the beta nought (ß°) (Nuthammachot et al., 2020). Afterward, for reducing the salt 

and pepper effect, speckle filtering was done using the Multi-temporal Speckle Filter 

(Nuthammachot et al., 2020). For this purpose, the gamma map filter of a 5 x 5 pixel 

window was used because of its previous successful use in forested regions (Lopes 

et al., 1993). 

 

The ‘Radiometric Terrain Flattening’ was applied since the study area was hilly and 

there would be a decline in the backscatter due to the double bounce scattering 

https://scihub.copernicus.eu/
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mechanism (Folkesson et al., 2009). The ‘Radiometric Terrain Flattening’ thus 

reduces this relief influence on the backscatter coefficient (Nuthammachot et al., 

2020). The ‘Radiometric Terrain Flattening’ was applied which converted the beta 

nought (ß°) to the Gamma nought (𝛄°) (Small, 2011). Subsequently, the ‘Range 

Doppler Terrain Correction’ was applied by using the Digital Elevation Model (DEM) 

that is derived from the Shuttle Radar Topography Mission (SRTM) 3 sec v.4 (Huang 

et al., 2018). In the same step, the image was projected to the coordinate system of 

Universal Transverse Mercator(UTM) zone 43N and it was also resampled to the 10 

m spatial resolution (Nuthammachot et al., 2020). The backscatter coefficient σ° was 

converted to the decibels (dB) using logarithmic transformation (Filipponi, 2019); 

(Wang et al., 2019). The mathematical expression for this conversion is (Equation 1) 

(ESA, 2021); 

 

σ°(dB) = 10𝑙𝑜𝑔10σ°                                                                           (1) 

 

where σ°(dB) is the normalized radar cross section and σ° is the backscatter for a 

specific polarization. 

 

The Non-linear Median Filter (3 x 3) was applied for visual enhancement of the 

images (Dhruv et al., 2017). The shape file of the study area was imported into the 

SNAP software. The respective images with VH and VV Polarizations were clipped 

to the size of the study area and were saved as GeoTiff raster images. These raster 

images with VH and VV Polarizations were imported to the RStudio for obtaining the 

images in respective PNG formats. Fig. 9 shows the VH Polarization and Fig. 10 

shows the VV Polarization of the study area. As can be seen in Fig. 9, the 

backscatter coefficient tσ° expressed in dB, ranges from -49.29 dB to 16.06 dB, with 

-49.29 dB being the lowest and the 16.06 dB being the highest. Similarly, Fig.10 

shows the backscatter coefficient σ° (dB) from, the minimum of -42.48 dB to the 

maximum of 25.29 dB. 

 

 

 

 



 

33 
 
 

 

 

Fig. 9: VH Polarization from the Study Area 
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Fig. 10: VV Polarization of the Study Area 
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Fig. 11: Methodological workflow for AGB Estimation and Mapping 

 

 

3.1.2.3. Extraction of Variables from Satellite Data: 

 

3.1.2.3.1. VIs: 

 

VIs are the combination of different spectral bands in visible and near-infrared 

regions of the electromagnetic spectrum (Viña et al., 2011). These VIs are a simple 

way to extract information regarding vegetation characteristics from a large set of 

remote sensing data (Govaerts et al., 1999). They are a useful measure for 

determining the vigor and productivity of the vegetation (Steven et al., 2003). VIs 

have also been used for AGB estimation and have also demonstrated significant 

statistical relationships (Nagler et al., 2004). Some of the causes for this relationship 

include chlorophyll, water content, canopy structure, leaf angle, density, etc. (Taddeo 

et al., 2019). Several types of VIs exist which can be categorized into broadband and 
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narrowband (Agapiou et al., 2012). Abdou et al. (1995), for instance, reviewed 

around 35 VIs for their study. Similarly, Agapiou et al.(2012) reported 71 different VIs 

in their study.  

 

For this research, the Normalized Difference Vegetation Index (NDVI) and Enhanced 

Vegetation Index (EVI) are used because of their relatively higher use due to 

significant correlations with the AGB (Guerini Filho et al., 2020).  

 

3.1.2.3.1.1. NDVI: 

 

NDVI is one of the most preferred indices for comparing vegetation and non-

vegetation areas (Pandey et al., 2019b). Since the healthier and greener vegetation 

absorbs more visible light and reflects a higher infrared light compared to the 

unhealthy and sparse vegetation, therefore this characteristic is utilized by the NDVI 

for indicating these differences and changes (Silvia et al., 2019). The NIR zone is 

(0,75 – 1,3 μm) and the red zone is (0,62 – 0,75 μ m) within the electromagnetic 

spectrum (Silvia et al., 2019). The red portion of the visible light is absorbed by the 

leaves due to the presence of the chlorophyll and the NIR portion is reflected which 

also depends on the leaf and canopy structures (Buchhorn et al., 2016). The NDVI 

ranges from -1 to +1. The negative values portray water bodies, the values which are 

slightly above 0 represent bare grounds, values which are between 0.2 and 0.8 are 

representative of the spread and sparse vegetation and the values greater than 0.8 

portrays greener vegetation and the values which are close to 1 are representatives 

of lush forests (Silvia et al., 2019). The formula for the NDVI is as follows (Equation 

2) (Tucker, 1979);  

 

NDVI = (NIR-RED)/(NIR+RED)                              (2)   

 

The NDVI for the study area was calculated using QGIS software. S2 image for the 

study area was imported to the QGIS software and the raster calculator was used for 

writing the equation of the NDVI (Equation 1). After the calculation, the respective 

raster was saved for further analysis, and, using the layout manager of the QGIS 

software, an NDVI map was prepared (Fig. 47).  
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3.1.2.3.1.2. EVI: 

 

EVI is also one of the most used indices mainly because of its simplicity, availability, 

and its utility in various kinds of ecosystems (Garroutte et al., 2016). EVI is also a 

ratio that contains the red and NIR bands of the electromagnetic spectrum which are 

correlated to the ‘greenness’ of the vegetation canopy (Garroutte et al., 2016). 

Amongst the two vegetation indices, NDVI and EVI, the EVI is more sensitive to the 

canopy structure, while NDVI is more sensitive to the chlorophyll (Gao et al., 2000). 

Both of these indices complement each other in vegetation-related studies (Huete et 

al., 2002). The value of the EVI also ranges from -1 to 1. The following formula was 

used for the EVI (Equation 3) (Huete et al., 2002);  

 

EVI = 2.5(NIR−RED)/(NIR +6×RED−7.5×Blue+1)                      (3) 

 

The EVI for the study area was calculated using QGIS software. S2 image for the 

study area was imported and the raster calculator was used for writing the equation 

for the EVI (Equation 2). The raster was saved for further use and, using the layout 

manager of the QGIS software, and EVI map was prepared (Fig. 51).  

 

3.1.2.3.2. Grey Level Co-occurrence Matrix (GLCM): 

 

The GLCM technique was used for texture analysis (Haralick et al., 1973). GLCM is 

a two-dimensional dependence matrix that takes into account the spatial relationship 

between the neighbouring pixels (Thakare and Patil, 2014). Three GLCM metrices 

were calculated for this study, for both the S2 and S1 data. These included Entropy, 

Angular Second Moment (ASM), and Contrast. The ‘r.texture’ geo-algorithm of the 

Geographic Resources Analysis Support System (GRASS) plugin (GRASS 

Development Team, 2020) in the QGIS software was used for the calculation of the 

GLCM metrices, with the size of the pixel moving window of 3 x 3. Entropy measures 

the degree of disorder in the image (Ouma and Tateishi, 2015). ASM measures the 

textural uniformity of an image and is also called ‘Energy’ (Ouma and Tateishi, 
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2015). Contrast measures the amount of local variations in the image (Wang et al., 

2010). The Entropy, ASM, and Contrast have also produced strong correlations with 

the AGB (Eckert, 2012); (Kuplich et al., 2003). The formulae for the three metrices, 

Entropy, ASM, and Contrast, are as follows (Equations 4, 5, and 6, respectively); 

 

 

𝐄𝐧𝐭𝐫𝐨𝐩𝐲∆𝒙∆𝒚 =  − ∑ ∑ 𝑃(𝑖, 𝑗)∆𝑥∆𝑦log 𝑃(𝑖, 𝑗)∆𝑥∆𝑦
𝑗𝑖

                                       (4) 

 

𝐀𝐒𝐌∆𝒙∆𝒚 =  ∑ ∑ 𝑃(𝑖, 𝑗)2
∆𝑥∆𝑦

𝑗
𝑖

                                                                  (5) 

   

𝐂𝐨𝐧𝐭𝐫𝐚𝐬𝐭∆𝒙∆𝒚 = ∑ ∑ (𝑖 − 𝑗)2
∆𝑥∆𝑦

𝑃(𝑖, 𝑗)∆𝑥∆𝑦
𝑗𝑖

                                                    (6)  

 

 

Here above in the formulae, each element P(i,j)ΔxΔy represents the relative frequency 

with which the two neighbouring pixels occur which are separated by the distance 

ofΔx columns and Δy lines (Soares et al., 1997). 

 

3.1.2.3.3. Extraction of Neighbourhood Statistics and Setting Up of the 

Predictor Sets for the Algorithms: 

 

The GIS coordinates were recorded from the center of the sampling plots, using 

Garmin’s handheld Global Positioning System (GPS) receiver, as already mentioned 

earlier. Since, it is common to have an error of 8-10 m in GPS-related surveys, a 15 

m buffer was created around each point (Ghosh and Behera, 2018); (Carreiras et al., 

2013). The main sources of the error have been described as the multipath 

propagation of GPS signals and tree canopies that block these signals (Zheng et al., 

2005). The statistics for mean, maximum, standard deviation, and minimum for 

vegetation indices, VV and VH polarizations, and texture indices for S1 and S2 data 

inside the buffer were computed using QGIS software (Ghosh and Behera, 2018). 

Overall, there were 16 predictor sets and a total of 70 variables that were used in this 
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study; details of each predictor set along with their respective input variables can be 

seen in Table 2. These predictor sets were evaluated for both the forest types, SCPF 

and SBEF of the MHNP.  

 

Table 2: Predictor Sets for the Algorithms 

Sr. 
No. 

Predictor Set Input Variables 

1 Bands Band 2 (Blue), Band 3 (Green), Band 4 
(Red), Band 8 (NIR) 

2 Bands and S1 Band 2, Band 3, Band 4, Band 8, S1_VV, 
S1_VV_max, S1_VV_min, S1_VV_sd, 
S1_VV_avg, S1_VH, S1_VH_max, 
S1_VH_min, S1_VH_sd, S1_VH_avg 

3 Bands and S1 Texture Band 2, Band 3, Band 4, Band 8, 
S1_asm_VH, S1_asm_max_VH, 
S1_asm_min_VH, S1_asm_avg_VH, 
S1_asm_sd_VH, S1_ent_VH, 
S1_ent_max_VH, S1_ent_min_VH, 
S1_ent_avg_VH, S1_ent_sd_VH, 
S1_con_VH, S1_con_max_VH, 
S1_con_min_VH, S1_con_avg_VH, 
S1_con_sd_VH,S1_asm_VV, 
S1_asm_max_VV, S1_VV_asm_min_VV, 
S1_asm_avg_VV, S1_asm_sd_VV, 
S1_ent_VV, S1_ent_max_VV, 
S1_VV_ent_min_VV, S1_ent_avg_VV, 
S1_ent_sd_VV, S1_con_VV, 
S1_con_max_VV, S1_con_min_VV, 
S1_con_avg_VV, S1_con_sd_VV 

4 Bands and S2 Texture Band 2, Band 3, Band 4, Band 8, S2_asm, 
S2_asm_max, S2_asm_min, 
S2_asm_avg, S2_asm_sd, S2_ent, 
S2_ent_max, S2_ent_min, S2_ent_avg, 
S2_ent_sd, S2_con, S2_con_max, 
S2_con_min, S2_con_avg, S2_con_sd 

5 Bands and VIs Band 2, Band 3, Band 4, Band 8, NDVI, 
NDVI_max, NDVI_min, NDVI_avg, 
NDVI_sd, EVI, EVI_max, EVI_min, 
EVI_avg, EVI_sd 

6 S1 S1_VV, S1_VV_max, S1_VV_min, 
S1_VV_sd, S1_VV_avg, S1_VH, 
S1_VH_max, S1_VH_min, S1_VH_sd, 
S1_VH_avg  

7 S1 and S1 Texture S1_VV, S1_VV_max, S1_VV_min, 
S1_VV_sd, S1_VV_avg, S1_VH, 
S1_VH_max, S1_VH_min, S1_VH_sd, 
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S1_VH_avg, S1_asm_VH, 
S1_asm_max_VH, S1_asm_min_VH, 
S1_asm_avg_VH, S1_asm_sd_VH, 
S1_ent_VH, S1_ent_max_VH, 
S1_ent_min_VH, S1_ent_avg_VH, 
S1_ent_sd_VH, S1_con_VH, 
S1_con_max_VH, S1_con_min_VH, 
S1_con_avg_VH, S1_con_sd_VH, 
S1_asm_VV, S1_asm_max_VV, 
S1_VV_asm_min_VV, S1_asm_avg_VV, 
S1_asm_sd_VV, S1_ent_VV, 
S1_ent_max_VV, S1_VV_ent_min_VV, 
S1_ent_avg_VV, S1_ent_sd_VV, 
S1_con_VV, S1_con_max_VV, 
S1_con_min_VV, S1_con_avg_VV, 
S1_con_sd_VV 

8 S1 and S2 Texture S1_VV, S1_VV_max, S1_VV_min, 
S1_VV_sd, S1_VV_avg, S1_VH, 
S1_VH_max, S1_VH_min, S1_VH_sd, 
S1_VH_avg,S2_asm_max, S2_asm_min, 
S2_asm_avg, S2_asm_sd, S2_ent, 
S2_ent_max, S2_ent_min, S2_ent_avg, 
S2_ent_sd, S2_con, S2_con_max, 
S2_con_min, S2_con_avg, S2_con_sd  

9 S1 and VIs S1_VV, S1_VV_max, S1_VV_min, 
S1_VV_sd, S1_VV_avg, S1_VH, 
S1_VH_max, S1_VH_min, S1_VH_sd, 
S1_VH_avg, NDVI, NDVI_max, 
NDVI_min, NDVI_avg, NDVI_sd, EVI, 
EVI_max, EVI_min, EVI_avg, EVI_sd 

10 S1 Texture S1_asm_VH, S1_asm_max_VH, 
S1_asm_min_VH, S1_asm_avg_VH, 
S1_asm_sd_VH, S1_ent_VH, 
S1_ent_max_VH, S1_ent_min_VH, 
S1_ent_avg_VH, S1_ent_sd_VH, 
S1_con_VH, S1_con_max_VH, 
S1_con_min_VH, S1_con_avg_VH, 
S1_con_sd_VH, S1_asm_VV, 
S1_asm_max_VV, S1_VV_asm_min_VV, 
S1_asm_avg_VV, S1_asm_sd_VV, 
S1_ent_VV, S1_ent_max_VV, 
S1_VV_ent_min_VV, S1_ent_avg_VV, 
S1_ent_sd_VV, S1_con_VV, 
S1_con_max_VV, S1_con_min_VV, 
S1_con_avg_VV, S1_con_sd_VV 

11 S1 Texture and S2 Texture S1_asm_VH, S1_asm_max_VH, 
S1_asm_min_VH, S1_asm_avg_VH, 
S1_asm_sd_VH, S1_ent_VH, 
S1_ent_max_VH, S1_ent_min_VH, 
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S1_ent_avg_VH, S1_ent_sd_VH, 
S1_con_VH, S1_con_max_VH, 
S1_con_min_VH, S1_con_avg_VH, 
S1_con_sd_VH, S1_asm_VV, 
S1_asm_max_VV, S1_VV_asm_min_VV, 
S1_asm_avg_VV, S1_asm_sd_VV, 
S1_ent_VV, S1_ent_max_VV, 
S1_VV_ent_min_VV, S1_ent_avg_VV, 
S1_ent_sd_VV, S1_con_VV, 
S1_con_max_VV, S1_con_min_VV, 
S1_con_avg_VV, S1_con_sd_VV, 
S2_asm_max, S2_asm_min, 
S2_asm_avg, S2_asm_sd, S2_ent, 
S2_ent_max, S2_ent_min, S2_ent_avg, 
S2_ent_sd, S2_con, S2_con_max, 
S2_con_min, S2_con_avg, S2_con_sd  

12 S1 Texture and VIs S1_asm_VH, S1_asm_max_VH, 
S1_asm_min_VH, S1_asm_avg_VH, 
S1_asm_sd_VH, S1_ent_VH, 
S1_ent_max_VH, S1_ent_min_VH, 
S1_ent_avg_VH, S1_ent_sd_VH, 
S1_con_VH, S1_con_max_VH, 
S1_con_min_VH, S1_con_avg_VH, 
S1_con_sd_VH, S1_asm_VV, 
S1_asm_max_VV, S1_VV_asm_min_VV, 
S1_asm_avg_VV, S1_asm_sd_VV, 
S1_ent_VV, S1_ent_max_VV, 
S1_VV_ent_min_VV, S1_ent_avg_VV, 
S1_ent_sd_VV, S1_con_VV, 
S1_con_max_VV, S1_con_min_VV, 
S1_con_avg_VV, S1_con_sd_VV, 
NDVI, NDVI_max, NDVI_min, NDVI_avg, 
NDVI_sd, EVI, EVI_max, EVI_min, 
EVI_avg, EVI_sd 

13 S2 Texture S2_asm_max, S2_asm_min, 
S2_asm_avg, S2_asm_sd, S2_ent, 
S2_ent_max, S2_ent_min, S2_ent_avg, 
S2_ent_sd, S2_con, S2_con_max, 
S2_con_min, S2_con_avg, S2_con_sd  

14 S2 Texture and VIs S2_asm_max, S2_asm_min, 
S2_asm_avg, S2_asm_sd, S2_ent, 
S2_ent_max, S2_ent_min, S2_ent_avg, 
S2_ent_sd, S2_con, S2_con_max, 
S2_con_min, S2_con_avg, S2_con_sd, 
NDVI, NDVI_max, NDVI_min, NDVI_avg, 
NDVI_sd, EVI, EVI_max, EVI_min, 
EVI_avg, EVI_sd 

15 Vis NDVI, NDVI_max, NDVI_min, NDVI_avg, 
NDVI_sd, EVI, EVI_max, EVI_min, 
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EVI_avg, EVI_sd  

16 All Band 2, Band 3, Band 4, Band 8, NDVI, 
NDVI_max, NDVI_min, NDVI_avg, 
NDVI_sd, EVI, EVI_max, EVI_min, 
EVI_avg, EVI_sd, S2_asm, S2_asm_max, 
S2_asm_min, S2_asm_avg, S2_asm_sd, 
S2_ent, S2_ent_max, S2_ent_min, 
S2_ent_avg, S2_ent_sd, S2_con, 
S2_con_max, S2_con_min, S2_con_avg, 
S2_con_sd,S1_VV, S1_VV_max, 
S1_VV_min, S1_VV_sd, S1_VV_avg, 
S1_VH, S1_VH_max, S1_VH_min, 
S1_VH_sd, S1_VH_avg, S1_VH_asm, 
S1_asm_VH, S1_asm_max_VH, 
S1_asm_min_VH, S1_asm_avg_VH, 
S1_asm_sd_VH, S1_ent_VH, 
S1_ent_max_VH, S1_ent_min_VH, 
S1_ent_avg_VH, S1_ent_sd_VH, 
S1_con_VH, S1_con_max_VH, 
S1_con_min_VH, S1_con_avg_VH, 
S1_con_sd_VH, S1_asm_VV, 
S1_asm_max_VV, S1_VV_asm_min_VV, 
S1_asm_avg_VV, S1_asm_sd_VV, 
S1_ent_VV, S1_ent_max_VV, 
S1_VV_ent_min_VV, S1_ent_avg_VV, 
S1_ent_sd_VV, S1_con_VV, 
S1_con_max_VV, S1_con_min_VV, 
S1_con_avg_VV, S1_con_sd_VV 

Note= Entropy (ent), Contrast (con), ASM (asm), maximum (max), minimum (min), sd (standard 

deviation), average (avg). 

 

 

3.1.3. Data Analysis: 

 

3.1.3.1. Data Analysis of the Field Parameters: 

 

3.1.3.1.1. Quadratic Mean Diameter: 

 

The quadratic mean diameter for each plot was computed as follows (Equation 7) 

(Iles and Wilson, 1977);  
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𝐌𝐞𝐚𝐧 𝐃𝐁𝐇 =  √
𝑑𝑖

2

𝑛
                                                          (7) 

 

The quadratic mean diameter is considered more useful than the average of DBHs 

because it is more closely related to the volume (West, 2009). For this research, 

quadratic mean diameter was referred to as the mean DBH.  

 

3.1.3.1.2. Volume: 

 

The tree volume was recorded using the following formula (Equation 8) (Philip, 

1994);  

 

Volume of a tree (m3) = (π / 4) × DBH2× H × FF               (8) 

 

Whereas, 

H = Height of a tree 

FF = Form Factor 

 

The volume of a tree is considered one of the most important variables in forestry 

because of commercial reasons and it can also be related easily to other forestry 

variables (West, 2009).  

 

The form factor of a tree is defined as “the stem volume which is expressed as the 

proportion of the cylinder volume of the same height which has diameter equal to the 

stem diameter at the selected reference point” (Laar and Akça, 2007). For this 

research, a form factor of 0.45 was used for Pinus roxburghii, and for broadleaved 

species, a form factor of 0.59 was used as suggested by Gray (1956).  

 

 

 

 

 



 

44 
 
 

3.1.3.1.3. Basal Area: 

 

The stand basal area is defined as the sum of the cross-sectional area of the stems 

at breast height and expressed per unit of ground area (West, 2009). The basal area 

was calculated by using the following formula (Equation 9) (Köhl et al., 2006);  

 

                       𝐁𝐚𝐬𝐚𝐥 𝐀𝐫𝐞𝐚 (𝐦𝟐) =  
(DBH)2 × 𝜋

4
                                     (9) 

 

It is also an important variable used in forestry because it is often correlated with the 

tree volume and it also increases with the age of the trees and it can vary with the 

number of trees located in the stand (West, 2009).  

 

3.1.3.1.4. Density: 

 

The density is the number of trees per unit area (West, 2009). The density is 

considered an important variable because it helps in describing the developmental 

stages of a forest stand (West, 2009).  

 

3.1.3.1.5. AGB: 

 

Initially, the AGB was calculated as follows (Equation 10) (Brown et al., 1999); 

(Pandey et al., 2019b);  

 

AGB (Kg) = Volume (m3) × Wood Density (Kgm-3) × BEF          (10) 

 

Whereas,  

 

BEF = Biomass Expansion Factor 

 

The ‘Wood Density’ is defined as “the amount of actual wood substance which is 

present in a unit volume of wood” (Zobel and Jett, 1995). It is considered an 

essential variable for AGB calculations (Fearnside, 1997). Following ‘Wood 
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Densities’ were sourced, for different tree species, from various published resources 

(Table 3);  

 

      Table 3: Wood Densities of Trees Species 

Sr. 

No.  

Species Wood Density 

(g cm-3) 

Sources 

1 Pinus roxburghii Sarg. 0.49 (Sheikh et al., 

2009) 

2 Bombax ceiba L. 0.33 (Brown, 1997) 

3 Bauhinia variegata L. 0.67 (Brown, 1997) 

4 Eucalyptus camaldulensis 

Dehnh. 

0.681 (Awan et al., 2012) 

5 Ficus palmata subsp. 

virgata Forssk. 

0.39 (Brown, 1997) 

6 Acacia modesta Wall. 0.809 (Awan et al., 2012) 

7 Grewia optiva J. R. Drumm. 

ex Burret 

0.68 (Ranot and 

Sharma, 2013) 

8 Mallotus philippensis (Lam.) 

Muell. Arg. 

0.64 (Brown, 1997) 

9 Cassia fistula L. 0.71 (Brown, 1997) 

10 Broussonetia papyrifera (L.) 

L'Herit ex Vent. 

0.507 (Ayarkwa et al., 

2011) 

11 Celtis australis L. 0.44 (Sheikh et al., 

2011) 

12 Albizia lebbeck (L.) Benth 0.55 (Brown, 1997) 

13 Ziziphus mauritiana Lam. 0.76 (Brown, 1997) 

14 Ficus benghalensis L. 0.39 (Brown, 1997) 

15 Flacourtia indica (Burm. 

f.) Merr. 

0.55 (Jothivel, 2016) 

 

The wood densities ranged from 0.33 g cm-3 to 0.809 g cm-3. 
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The BEF converts the tree volume into the AGB (Brown, 1997). The BEF of 1.51 was 

used for Pinus roxburghii and 1.59 was used for all other broadleaved tree species 

which were encountered during the sampling process (Haripriya, 2000).  

 

The ‘AGB (Kg)’was converted to ‘AGB Mg (megagram)’by dividing the former by 

1000. 

 

3.1.3.1.6. AGC (Mg): 

 

The ‘AGB’ was converted to ‘Aboveground Carbon (AGC)’ by using the carbon 

conversion factor of 0.5 (Köhl et al., 2020a).  

 

3.1.3.1.7. Scaling Up to the Hectare: 

 

The abovementioned variables i.e. Volume (m3), Basal Area (m2), Density, AGB 

(Mg), and AGC (Mg C) were scaled up to ha by dividing the variables by 0.1 (Torres 

et al., 2020).  

 

3.1.3.1.8. Statistical Analysis: 

 

Regression analysis was performed to see the linear relationship between the two 

variables. Power regression was used in case of a non-linear relationship between 

the two variables. Power regression has been widely applied in AGB modeling for 

coping with the non-linearity of the statistical relationships (Tetemke et al., 2019). 

The Coefficient of Determination (R2) was used for assessing the strength of the 

statistical linear relationship between the two variables. It is a useful measure for 

assessing the statistical linear strength between the two variables (Pham et al., 

2020). It has also been a common measure that has been used in AGB estimation 

studies (Hamdan et al., 2014). The evaluation of the strengths of the R2 was based 

on the following; 1) 0.19 (weak) 2) 0.33 (moderate) and 3) 0.67 

(substantial/significant) (Chin, 1998). The negative sign implies the negative 

statistical relationship between the two variables.   
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Means and standard deviations were calculated for the variables (mean ±sd). The 

data was checked for the normality distribution, for which Shapiro-Wilk Test was 

used. Since the data were not normally distributed, the Wilcoxon Rank Sum Test 

was used for probing the statistical difference between the two variables. The 

Spearman correlation coefficient (rs), which is a nonparametric measure, was used 

for the correlation analysis of the two variables since the data was not normally 

distributed. For the Spearman correlation coefficient, which ranges between -1 to 1, 

the interpretation was done following Ratner, (2009); 1) 0 - no relationship 2) +1  

(perfect positive linear relationship) 3) -1 (perfect negative relationship) 4) 0-0.3 

(weak positive linear relationship) and -0.3-0 (weak negative relationship) 5) 0.3-0.7   

(moderate positive linear relationship) and -0.3 - -0.7 (moderate negative linear 

relationship) 6) 0.7-1 (strong positive linear relationship) and -0.7 - -1 (strong 

negative linear relationship). A significance level of 0.05 was used for all the 

statistical tests and analysis. The statistical analysis was performed in RStudio, and 

the respective graphs were generated.  

 

3.1.3.2. Data Analysis of the Satellite Remotely Sensed Parameters used 

for Estimation of AGB: 

 

3.1.3.2.1. RF: 

 

RF is a non-parametric machine learning algorithm that is used for both i.e. 

classification and regression (Fawagreh et al., 2014). It had been successfully used 

in the AGB estimation studies combined with remote sensing techniques (Pandit et 

al., 2018); (Chrysafis et al., 2017); (Dhanda et al., 2017); (Mutanga et al., 2012); 

(Pham and Brabyn, 2017); (Dang et al., 2019). It was developed by Breiman (2001b) 

and it uses the ensemble learning method for classification and regression 

(Fawagreh et al., 2014). The results from the ensemble models will be better, in most 

cases, compared to the results from the individual models (Dahinden and Guyon, 

2011). Categorical data tend to produce classifications and continuous data are used 

for the regressions when using the RF algorithm (Youssef et al., 2016); (Horning, 

2010). The response variables can be predicted as an average of all decision trees 

in case of a continuous variable classification or as a model vote among all decision 
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trees in case of a categorical classification (Mellor et al., 2015). Advantages of RF 

include; 1) higher accuracy 2) robustness to outliers and noise 3) computation speed 

4) estimation of the importance of predictor variables (Cutler et al., 2007); 

(Rodriguez-Galiano et al., 2012). Also, a large number of predictor variables can be 

used in the case of RF (Breiman, 2001b). In the RF algorithm, the decision trees to 

the maximum extent are generated without pruning and for this case, two third of the 

training data is selected randomly using bootstrapping (where the data is re-sampled 

many times with replacement) (Pandit et al., 2018). This process strengthens the 

flexibility for the final prediction by aggregating the predictions which occurred across 

various individual trees (Pandit et al., 2018). The remaining one-third, which is the 

rest of the data, is used as the validation samples for estimating the model errors 

(Prasad et al., 2006). This remaining data, which is also not seen by the model, is 

known as the OOB data (out-of-bag) (Pandit et al., 2018). The RF algorithm requires 

two parameters 1) mtry; the number of predictor variables used for data splitting at 

each node of the decision tree 2) ntree; the total number of the trees used in the 

model (Pandit et al., 2020) 

 

The ‘randomForest’ (Liaw and Wiener, 2002), ‘caret’ (Kuhn, 2008), and ‘raster’ 

packages (Hijmans and Ettan, 2012) were used in the RStudio statistical software 

(Millard and Richardson, 2015); (Ghosh and Behera, 2018). For the regression, the 

default value of 500 for ntree and 1/3 for mtry were used in the RF models (Pandit et 

al., 2018). The ‘caret’ package of the R was used for the identification of the most 

important variables in a model (Dang et al., 2019). The optimal number of variables 

is important for the improved accuracies of the models (Pham and Brabyn, 2017). It 

also increases the predictive power of the variables and results in easier 

interpretations (Gregorutti et al., 2017). Generally, a validation dataset is set aside 

from the overall dataset for evaluating the predictive performance of the model 

(Ghosh and Behera, 2018). However, in this research, since the dataset was small, a 

5-fold cross-validation approach was used (Carreiras et al., 2013); (Ghosh and 

Behera, 2018).  
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3.1.3.2.2. SVM: 

 

The SVM is a high-complexity classifier that has been widely used for classification 

and regression problems (Clevers et al., 2007). The SVM algorithm was developed 

by Vapnik (2000) and is a supervised learning technique that is based on statistical 

learning theory. In regression cases, the SVM utilizes the principle of structural risk 

minimization for optimizing performance and generalization (Axelsson et al., 2013). 

The SVM focuses on the training samples which are closest to the boundary 

between the classes in feature space (Pal and Foody, 2012). These samples are 

called Support Vectors (Maxwell et al., 2018). The SVM aims to find an optimal 

boundary that could maximize the separation (also known as margin) between the 

Support Vectors (Maxwell et al., 2018). Originally, the SVMs were designed for the 

identification of a linear class boundary, which is also called a hyperplane, but this 

limitation was addressed by projecting the feature space in a higher dimension 

(Maxwell et al., 2018). The projection to the higher dimensionality is also called the 

kernel trick (Maxwell et al., 2018). See also Fig. 12.  

 

 

Fig. 12: Kernel function support vector machine diagram (Lv and Wang, 2020) 

 

There are four common kernels used in SVM which include linear kernel function, 

polynomial kernel function, radial basis function (RBF), and sigmoid kernel function 

(Guo et al., 2012). In this study, the RBF was used due to its small computation cost, 

high prediction accuracy, and relatively good stability (Zhang et al., 2020). RBF had 
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also been used in previous AGB estimation studies (Pham et al., 2020); (Navarro et 

al., 2019); (Vafaei et al., 2018). For the SVM model, two parameters are often 

required i.e., 1) the regularization parameter C and the kernel width (γ) (Vafaei et al., 

2018). The ‘C’ is the penalty parameter, which distinguishes the balance between 

the training error and the generalization error (Xue, 2015). The kernel width ‘γ’ is the 

width parameter of the RBF function (Zhang et al., 2020). The ‘e1071’ package 

(Meyer and Wien, 2017) was used for the implementation of the SVM in the RStudio. 

A similar, 5-fold cross-validation approach was used, which was described above for 

the RF model since the dataset was small. The variable selection was also carried 

out similarly to the RF model by using the ‘caret’ package in RStudio software.  

 

3.1.3.2.3. Stepwise Regression: 

 

Stepwise regression (SR) was adopted for this research. SR is a type of MLR 

analysis. It is usually opted for the selection of the most significant predictor 

variables in a model, keeping in view the importance of optimal parsimony (Breiman, 

1995). There are three approaches to stepwise regression i.e. 1) Forward Selection, 

2) Backward Elimination and 3) Mixed Selection (James et al., 2013); (Wang et al., 

2016).  

 

In ‘Forward Selection’, the model is empty first but then the variable most significant 

and which helps in improving the model is added. The process reiterates until the 

final set of most significant variables is added to the final model. The process is 

based on a pre-defined criterion. In ‘Backward Elimination’, the model starts with the 

full set of predictor variables. Then one by one, the variables which are not of any 

significance for the model are removed. This approach is also based on a pre-

defined criterion. The ‘Mixed Selection or Bidirectional Elimination’, whereas is a 

combination of the abovementioned two approaches, ‘Forward Selection’ and 

‘Backward Elimination’.  

 

In this research, the ‘Backward Elimination’ approach of the SR was used. The 

approach has been widely adopted in AGB estimation using remote sensing 

parameters (Li et al., 2008). The normality distribution of the data was checked using 
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the Shapiro-Wilk Test (He et al., 2013). The Spearman correlation coefficient of the 

variables was calculated using the RStudio software (Domingo et al., 2017). The 

logarithmic transformation of the data was also performed, where necessary (Means 

et al., 1999). The collinearity was assessed using the variance inflation factor (VIF). 

The variables having VIF above 10 were removed (He et al., 2013). Moreover, it was 

also ensured that the models met the basic assumptions of linear regression 

(Domingo et al., 2017). The ‘caret’ package was again used for the implementation 

of the 5-cross validation approach.  

 

3.1.3.2.4. Model Validation and AGB Mapping: 

 

The root mean square error (RMSE) and the R2 were used for assessing the 

performance and strength of a model. The RMSE is widely used for assessing the 

differences between the values which are predicted by the model and the values 

which are actually measured (Zhu and Liu, 2015). The smaller RMSE implies a 

higher accuracy (Zhu and Liu, 2015). The RMSE is given as (Equation 11); 

 

                        RMSE = √
∑ (𝑦𝑖 − �̂�𝑖)

𝑛
𝑖=1

2

𝑛
                                                 (11) 

 

Where yi is the measured AGB in the field and ŷi is the predicted AGB and n is the 

total number of the plots. 

 

R2 was also used for evaluating the linear relationship between the observed AGB 

and the predicted AGB by the final models from the two machine learning algorithms, 

RF and SVM, and from the SR (Zhu and Liu, 2015). The main weightage for the 

selection of the model, however, between the two metrices, RMSE and R2, was 

given to the RMSE.  

 

The final models for the two forest types, SCPF and SBEF, were selected for the 

AGB mapping based on the model evaluations. The ‘raster’ package of R was used 

for the spatial prediction of the AGB for both the forest types. The ‘predict()’ function 
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was used for this purpose, for which the raster object and the finalized models were 

provided as inputs. The AGB rasters for SBEF and SCPF were saved for further 

processing. The raster of the LC classification using Landsat 8 Operational Land 

Imager OLI and RF algorithm for the year 2019 was first converted to 

polygon/shapefile (the detailed process of the LC classification can be found in the 

method’s section of the second objective of this study i.e., 3.2) and then SBEF and 

SCPF were extracted from this shapefile and converted to separate rasters, with a 

spatial resolution of 10 x 10 m, using QGIS software. The AGB rasters were then 

subtracted from the rasters of the respective forest types obtained as LC 

classification using Landsat 8 OLI image for the year 2019 and RF algorithm 

(Richardson et al., 2017). The maps were prepared using the final AGB rasters of 

the two forests. For this purpose, the ‘layout manager’ of the QGIS software was 

used. The LC classification derived from Landsat 8 OLI image, using RF algorithm, 

for the year 2019 also coincided with the field inventorying period.   
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3.2. LC Classification and LCCD of MHNP for the time-period between 

1999 and 2019: 

 

3.2.1. Landsat Data Acquisition and Processing: 

 

The Landsat satellite programme initially called as Earth Resource Technology 

Satellite (ERTS) programme, was launched back in 1972 by NASA and United 

States Geological Survey (USGS) (Wulder et al., 2019). The Landsat satellite 

programme represents the record for the longest-running terrestrial satellite 

programme (Zhu et al., 2019). The Landsat archive has been held at USGS Earth 

Resources Observation and Science (EROS) Centre and contains more than 5.6 

million acquisitions that have been sensed by the Landsat series satellites from 

Landsat-1 to the Landsat-8 satellite (Dwyer et al., 2018). The free and open policy 

has been adopted by USGS since 2008, which has resulted in a substantial surge in 

the use of the Landsat satellite data (Roy et al., 2014); (Wulder et al., 2012); (Wulder 

et al., 2019). The use of Landsat satellite data has been so extensive, that even 

global forest mapping was performed using Landsat data from 2000 to 2012, which 

revealed a forest loss of 1.5 million Km2 (Hansen et al., 2013). Landsat satellite data, 

over the years, have demonstrated the capacity and ability for land cover mapping 

and monitoring of biophysical parameters and properties of the land surfaces 

(Hansen and Loveland, 2012); (Wulder et al., 2012). Landsat satellite data have also 

been used as a key input by the UN-REDD Programme, which was launched in 

2008, for supporting the forest cover and carbon stocks measurement, reporting, and 

verification in developing countries (GOFC-GOLD, 2016). Fig. 13 provides a glimpse 

of the history and future satellite programme associated with the Landsat series 

mission.  

 

Three Landsat satellite images, Landsat-5 TM image (Date: April 28, 2009), Landsat-

7 ETM+ image (Date: July 14, 1999), and Landsat-8 OLI image (Date: April 8, 2019) 

were downloaded from the SCP, developed by Congedo (2016), using QGIS 

software. Table 4 provides the bands, their respective wavelengths, and spatial 

resolutions for the sensors: Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 

OLI/TIRS.   
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Fig. 13: Landsat series mission and history (Source: NASA/Landsat Legacy Project Team 

and American Society for Photogrammetry and Remote Sensing) (Wulder et al., 2019). DOD 

stands for Department of Defense and EOSAT stands for Earth Observation Satellite 

Company.  
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Table 4: Bands and pixel size information for the Landsat satellites and sensors 

Landsat Sensors Landsat 5 TM Landsat 7 

ETM+ 

Landsat 8 

OLI/TIRS 

Pixel Size 

(m) 

Coastal Aerosol   B1 (0.43–0.45) 30 

Blue B1(0.45-0.52) B1 (0.45–0.52) B2 (0.45–0.51) 30 

Green  B2 (0.52–0.60) B2 (0.52–0.60) B3 (0.53–0.59) 30 

Red B3 (0.63–0.69) B3 (0.63–0.69) B4 (0.64–0.67) 30 

NIR B4 (0.76–0.90) B4 (0.77–0.90) B5 (0.85–0.88) 30 

Short Wave 

Infrared (SWIR) 1 

B5 (1.55–1.75) B5 (1.55–1.75) B6 (1.57–1.65) 30 

SWIR 2 B7 (2.08–2.35) B7 (2.09–2.35) B7 (2.11–2.29) 30 

Thermal B6 (10.40–

12.50) 

B6 (10.40–

12.50) 

B10 (10.60–

11.19) 

B11 (11.50–

12.51) 

120 (TM), 60 

(ETM+), 100 

(TIRS) 

Panchromatic   B8 (0.50–0.68) 15 

Cirrus   B9 (1.36–1.38) 30 

Note: B stands for the band. The empty space shows the absence of that band from the respective 

sensor. The wavelengths in parenthesis are in micrometers (μm). Cited from (Young et al., 2017).  

 

The Landsat-5 was launched on March 1, 1984, with TM and Multi-Spectral Scanner 

(MSS) sensors on board (Chen et al., 2019). It has a repeat cycle of 16 days. The 

satellite was decommissioned on June 5, 2013 (Zhang and Roy, 2016). It has been 

recognized as the longest-serving satellite providing high-quality satellite data for 

about 29 years (Liu et al., 2017). Landsat 7 with an ETM+ sensor was launched on 

April 15, 1999, and is still operational (Goward et al., 2001). Landsat 8 was launched 

on February 11, 2013, with an OLI sensor and TIRS on board (Wang et al., 2017). It 

went operational on May 30, 2013 (Wulder et al., 2016). Both Landsat 7 and Landsat 

8 also have a 16-day repeat cycle.  

 

From the downloaded Landsat-5 TM and Landsat 7 ETM+ images, band 6, which is 

the thermal band, was excluded and from the Landsat 8 OLI image, bands 1, 8, 9, 

10, and 11 were excluded (Table 5). The downloaded images were cloud-free (Table 
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5). The Landsat images were downloaded for the period coinciding with the field 

work which spanned from March 2019 to June 2019 and also for a similar seasonal 

period (spring-summer) to avoid seasonal variations (Fernández-Landa et al., 2016).  

 

Table 5: Satellite data used in this study 

Date Satellite Imagery Cloud 

Cover 

(%) 

Paths and 

Rows 

Bands 

Used 

Spatial 

Resolution 

(m) 

July 14, 1999 Landsat 7 ETM+ 0 150-037 1,2,3,4,5,7 30 

April 28, 2009 Landsat 5 TM 0 150-037 1,2,3,4,5,7 30 

April 8, 2019 Landsat 8 OLI 0 150-037 2,3,4,5,6,7 30 

 

 

All the three downloaded Landsat images, Landsat 7 ETM+, Landsat 5 TM and 

Landsat 8 OLI, were Level-1 Tier 1 Landsat products. The Level-1 Tier-1 products 

are high-quality satellite products and are already geometrically and radiometrically 

corrected (Dwyer et al., 2018); (USGS, 2019). Therefore, the downloaded Landsat 

images were not accounted for geometric and radiometric corrections. The 

atmospheric correction was performed using DOSmethod (Arjasakusuma et al., 

2018); (Arekhi et al., 2019), employing the DOS1 algorithm of SCP of the QGIS 

software developed by Congedo (2016). The methodological workflow for this part of 

the study is presented in Fig. 14.  
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Fig. 14: Methodological Workflow for LC Mapping and LCCD 

 

 

The pre-processed Landsat images were loaded in the RStudio software. The 

‘raster’ package (Hijmans and Ettan, 2012) was employed for importing, stacking, 

bricking, and sub-setting (clipping) the images by using the following functions: 

raster()’, ‘stack()’, ‘brick()’, ‘crop()’, ‘mask()’ and ‘shapefile()’. The bands and clipped 

images for Landsat 7 ETM+ can be seen in Fig. 76 and Fig. 77, respectively 

(Annexure 1). The bands and clipped images for Landsat 5 TM can be seen in Fig. 

80 and Fig. 81, respectively (Annexure 1). The bands and clipped images for 

Landsat 8 OLI can be seen in Fig. 84 and Fig. 85, respectively (Annexure 1). The 

images were converted to natural colour composite and NIR composite for 

classification purposes. The natural colour composites and NIR composites of 

Landsat 7 ETM+, Landsat 5 TM, and Landsat 8 OLI images of the study area can be 
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found in Fig. 78, Fig. 79, Fig. 82, Fig. 83, Fig. 86, and Fig. 87, respectively 

(Annexure 1).  

 

3.2.2. Definition of LC Classes and the Sampling Procedure: 

 

The visual interpretation was used by utilizing the natural colour composites, NIR 

composites, and high-resolution imagery available from Google Earth, along with the 

field visits and experts’ knowledge from the site area for delineation of the land cover 

classes and the selection of training samples (Jin et al., 2018); (Ge et al., 2020); 

(Phan et al., 2020); (Mohajane et al., 2018). There were seven classes identified in 

the study area which include agricultural land, barren land, SBEF, SCPF, grassland, 

settlements, and water body. The description of the classes is provided in Table 6.  

 

   Table 6: Description of LC Classes 

Sr. 

No. 

Class Description 

1 Agricultural Land Areas covered with agricultural fields. 

2 Barren Land Areas covered with barren fields and rocks. 

3 SBEF Area covered with SBEF.  

4 SCPF Area covered with SCPF. 

5 Grassland Area covered by grasses and sparse shrubs.  

6 Settlements Built up areas in the form of houses, building 

infrastructures, and roads.  

7 Water Body Permanent Lake i.e., Rawal Lake. 

 

 

For collecting training samples, different collection strategies such as single pixel 

selection, seeding, and polygon-shaped selection are available (Chen and Stow, 

2002). The polygon-shaped selection was used in this study (Chen and Stow, 2002); 

(Feng et al., 2015); (Phan et al., 2020). The ‘New Shapefile Layer’ tool in QGIS 

software was used for creating polygons. There were overall 105 polygons created 

with a stratified random sampling approach (i.e., 15 in SBEF, 14 in SCPF, 36 in 

settlements, 18 in barren land, 17 in agricultural land, and 5 in water body). The 
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settlements due to their wider spread had a higher number of polygons. The number 

of pixels between each LC class differed due to the different sizes of the polygons 

(Thanh Noi and Kappas, 2018). Table 7 shows the total number of pixels for each LC 

class collected through the different polygons. The polygons were saved into a new 

shapefile for further analysis in RStudio software. The SBEF had the highest number 

of pixels because it was the most dominant class.  

 

Table 7: Pixels for LC Classes 

Land Cover 

Classes 

Agricultural 

Land 

Barren 

Land 

SBEF SCPF Grassland Settlements Water 

Body 

Number of 

Pixels 

272 1463 38909 512 982 1699 1323 

 

The training sample imbalance can affect the classification by overfitting the majority 

class and the class with the lower numbers can be underrepresented (Breiman, 

2001b); (He and Garcia, 2009); (Maxwell et al., 2018). The methods such as down-

sampling the majority class or duplicating the minority class samples can be helpful 

against the over-fitting problem (Sun et al., 2007). The sample size of 272 pixels, 

therefore, was used, employing a down-sampling approach, as a training sample for 

all the land cover classes for avoiding the imbalance. Thanh Noi and Kappas (2018) 

reported that training samples with pixels more than 250/class improved the 

classification accuracy. 

 

3.2.3. Supervised Classification using RF Algorithm: 

 

RF is an ensemble, as mentioned earlier, which involves many independent 

individual decision trees; a decision tree is also called classification and regression 

tree (CART) (Feng et al., 2015). The final output of the RF is calculated based on all 

the decision trees involved, which is also illustrated in Fig. 15. As already explained 

in one of the previous sections, the bootstrap strategy selects 2/3 of the data 

randomly with a replacement for building each decision tree (Breiman, 2001b), and 

the 1/3 of this data is left out, known as the out-of-bag (OOB) data, which is used for 

cross-validation for evaluating the classification accuracy of the RF, also yielding the 

OOB error (Breiman, 2001b); (Feng et al., 2015). The OOB error hence is often used 
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for the assessment of the performance of RF in terms of its prediction (Janitza and 

Hornung, 2018). RF can be defined by the following equation (Equation 12) 

(Breiman, 2001b); 

 

{ℎ(𝑥, 𝜃𝑘), 𝑘 = 1,2 … 𝑖 … }                   (12) 

 

Whereas,  

 

   h= RF classifier,  

x= Input Variable,                                                

 = Independently Identically Distributed Random Predictor Variables used for  

                 Generating each CART tree 

 

RF algorithm also has default indices for calculating the importance of the variables 

used in classification problems which are Mean Decrease Accuracy (MDA) and 

Mean Decrease Gini (MDG) (Han et al., 2016). MDA measures the difference 

between the OOB error which results from data obtained from random permutations 

of different variables and the OOB error which results from the original data set, 

while the MDG is the measure of the reduction of the Gini impurity metric by a 

variable in a particular class (Breiman, 2001b). The larger the values for MDA and 

MDG, the more important the variable is (Han et al., 2016). The Gini impurity 

indicates the probability of misclassification and is a very popular criterion for 

selecting attributes during the construction of decision trees. It can, however, only be 

used for the categorical variables.  
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Fig. 15: Schematic Diagram for Image Classification Using Random Forest Algorithm (Feng 

et al., 2015) 

 

 

As explained earlier, the RF algorithm requires only two primary parameters, mtry 

which is the number of randomly selected predictors as candidates at each split, and 

ntree which is the number of decision trees to be generated (Belgiu and Drăguţ, 

2016). In this research, the ntree value of 250 was used after Feng et al. (2015) 

stated that with ntree = 200 desired accuracy results for RF can be achieved.  

 

The shapefile of the training samples in polygon shapes was imported into RStudio 

software. The ‘extract()’ function of the raster package was used for extracting raster 

values for the respective land cover classes, from bricked file image (having multiple 

layers combined in one file) of the study area and shapefile with the training samples 

as inputs. The ‘randomForest’ package was used for performing the RF algorithm 

(Liaw and Wiener, 2002). The ‘rep()’ function of the base package of R was 

employed for down-sampling. The ‘tuneRF ()’ function of the ‘randomForest’ package 

was then used to train the model and for identification of the best value for mtry for 

which the OOB error is the smallest (Janitza and Hornung, 2018). This function also 

used the raster values extracted from the ‘extract()’ function as a data frame and the 

same sample size derived from ‘rep()’ employing the down-sampling technique. The 
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‘predict()’ function of the raster package was then used for spatial prediction of the 

land cover classes with the trained RF model and the bricked file image of the site 

area as inputs. The final classifications (for each year i.e., 1999, 2009, and 2019) 

were then saved as a raster file and opened in the QGIS software for developing 

land cover maps for each year, respectively. The ‘varImpPlot()’ function of the 

‘randomForest’ package of R was used for identifying the important variables. 

Mainly, the R script was adapted from (Freie Universität Berlin, 2020). 

 

3.2.4. Accuracy Assessment: 

 

The accuracy assessment helps in identifying the differences between the land cover 

classification and the reference data (Negassa et al., 2020); (Disperati and Virdis, 

2015); (Tsutsumida and Comber, 2015); (Pouliot et al., 2014). For the appropriate 

selection of the sample size of the reference data, no benchmark exists that is 

universally accepted (Gedefaw et al., 2020). Lillesand et al. (2015) however have 

suggested a minimum of 50 samples for each land cover class. Because of this, a 

field visit was conducted from March 2019 to June 2019 and 50 samples for each 

land cover class were collected, except for the water body (Lake). The water body 

was not accessible therefore only 10 samples were collected from it using high-

resolution imagery from Google Earth. Overall, there were 310 reference samples 

collected using a stratified random sampling approach (Twisa and Buchroithner, 

2019). The GIS coordinates of the reference samples were entered in the Microsoft 

Excel spreadsheet and were imported to the QGIS software. The shapefile for the 

reference samples was saved in the projected Coordinate Reference System (CRS); 

European Petroleum Survey Group (EPSG): 32643 –World Geodetic System (WGS) 

84 / Universal Transverse Mercator (UTM) zone 43 North (N). The shapefile was 

imported in RStudio for the accuracy assessments. The ‘raster’ package (Hijmans 

and Ettan, 2012) was used for this purpose. 

 

The accuracy measures, such as overall accuracy, kappa coefficient, user’s and 

producer’s accuracies were calculated in this study, and a confusion matrix (or error 

matrix) for each land cover classification i.e., 1999, 2009, and 2019 were generated 

(Congalton, 1991); (Gedefaw et al., 2020); (Foody, 2002). A confusion matrix is also 
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considered a standard way for presenting the accuracy assessment and 

characterizing the performance of the classification method utilized (Story and 

Congalton, 1986); (Rees, 1999).  

 

Producer’s accuracy, associated with the omission error, measures the number of 

pixels classified to an LC class to which they truly belong (Verma et al., 2020); 

(Zeferino et al., 2020) and hence reflects the accuracy from map maker’s (the 

producer) point of view (Negassa et al., 2020). It is described as the accurate 

classification of the number of the reference sample sites divided by the total number 

of the reference sample sites for that class (Equation 13) (Negassa et al., 2020); 

 

𝐏𝐫𝐨𝐝𝐮𝐜𝐞𝐫′𝐬 𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 

=  
Total number of pixels in a category

Total number of pixels of that category derived from the reference data (i. e. , row total)
            (13) 

 

User’s accuracy, associated with the commission error, measures the number of 

pixels classified in an LC class but actually belonging to another LC class (Verma et 

al., 2020) and hence provides the accuracy on the other hand from the point of the 

map user (Negassa et al., 2020). User’s accuracy is thus the total number of correct 

classifications per particular class divided by the row total (Equation 14) (Negassa et 

al., 2020); 

 

𝐔𝐬𝐞𝐫′𝐬 𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲

=  
Total number of pixels in a category

Total number of pixels of that category derived from the reference data (i. e. , column total)
     (14)  

 

Overall accuracy calculates the measure of the accuracy of the entire classified 

image (Equation 15) (Negassa et al., 2020). The overall accuracy of at least 85% 

has been recommended by various researchers (Mohajane et al., 2018); (Foody, 

2002); (Thomlinson et al., 1999). 

 

𝐎𝐯𝐞𝐫𝐚𝐥𝐥 𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 =  
Sum of the diagonal elements

Total number of accuracy sites pixels (column total)
         (15)  
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The kappa coefficient is a measure of agreement between the land cover 

classification and the respective reference data (Mishra et al., 2020). The kappa 

coefficient generally ranges between-1 to 1, but it usually falls between 0 to 1 

(Wongpakaran et al., 2013). Five levels of accuracy for the kappa coefficient were 

used in this study; higher than 0.85 (excellent), 0.70 to 0.85 (very good), 0.55 to 0.70 

(good), 0.4-0.55 (fair), lower than 0.4 (poor or very poor) (Monserud and Leemans, 

1992).   

 

The equation used for the calculation of the kappa statistics is as follows (Equation 

16); 

 

                              𝐾 =
𝑁 ∑ 𝑋𝑖𝑖 −𝑋

𝑖=1 ∑ (𝑋𝑖+ × 𝑋+𝑖)
𝑟
𝑖=1

𝑁2 − ∑ (𝑋𝑖+ × 𝑋+𝑖)
𝑟
𝑖=1

                                              (16) 

 

where N stands for the total number of samples in the matrix, r is the number of rows 

in the matrix, Xii is the number in row i and column i, X+i is the total for row i, and Xi+ 

corresponds to the total for column i. 

 

3.2.5. LCCD: 

 

Change detection is “the process of identifying differences in the state of an object or 

phenomenon by observing it at different times” (Singh, 1989). There have been 

various change detection methods that have been developed in the last few decades 

such as image differencing, post-classification comparison, vegetation index 

differencing and principal component analysis, etc. (Lu et al., 2004). A post-

classification comparison is a common approach used for change detection (Lu et 

al., 2004); (Mei et al., 2016); (Henchiri et al., 2020). The post-classification 

comparison, thus, was used in this study for the analysis of the land cover changes 

between different time-periods (Mishra et al., 2020); (Fernández-Landa et al., 2016). 

It involves a change matrix that provides essential information regarding the changes 

in the LC in different time-periods. Using the SCP (Congedo, 2016), the post- 

classification change/LCC matrix was generated for the three time periods: 1999 to 

2009, 2009 to 2019, and 1999 to 2019 (Gedefaw et al., 2020). The area changes in 
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hectares and percentage changes for each LC for all three periods were calculated 

(Kindu et al., 2016); (Gashaw et al., 2018). The annual change rates in ha were also 

calculated for each LC (Tilahun et al., 2017). 

 

The LCC % was calculated by the following equation (Equation 17) (Garai and 

Narayana, 2018);  

 

LCC% =  
Present LC Area − Previous LC Area

Previous LC Area
  ×   100                        (17) 

 

The Rate of Change (ROC) was calculated using the following equation (Equation 

18) (MohanRajan et al., 2020); 

 

                          𝑅𝑂𝐶 (ℎ𝑎 𝑦𝑟⁄ ) =
𝑇2 − 𝑇1

𝑇𝑖
                                                     (18) 

 

where T1 is the area (ha) of LC for the initial time-period 1; T2 is the area (ha) of LC 

for the final time-period 2; Ti is the time interval between the T1 and T2 in years (yr).  
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4. Results: 

 

4.1. Forest Biomass and Carbon Stock Assessment of MHNP: 

 

4.1.1. Structural Characteristics of the two Forests of the MHNP: 

 

As demonstrated in Table 8, the mean AGC for SCPF was 73.36 ± 32.55 Mg C ha-

1and the mean AGC for SBEF was 16.88 ± 25.81 Mg C ha-1. There was a significant 

difference recorded between the mean AGC of the two forests (W = 43, p < 0.05). 

 

Table 8: Structural characteristics of forests of MHNP 

Forests Mean AGC 

(Mg Cha-1) 

Mean AGB 

(Mg ha-1) 

Mean Tree 

Volume  

(m3 ha-1) 

Mean Basal 

Area  

(m2 ha-1) 

Mean 

Density per 

hectare 

Mean DBH 

(cm) 

Mean Tree 

Height (m) 

SCPF 73.36 ± 32.55 146.73 ± 

65.11 

198.75 ± 87.76 14.48 ± 4.80 139.13 ± 

22.88 

36.37 ± 6.51 27.34 ± 3.67 

SBEF 16.88 ± 25.81 33.77 ± 51.63 37.82 ± 50.38 4.28 ± 3.43 142.90 ± 

32.37 

18.64 ± 6.03 10.62 ± 1.99 

Combined 

 

50.62 ± 40.84 101.25 ± 

81.68 

133.96 ± 

108.96 

10.37 ± 6.60 140.64 ± 

26.96 

29.23 ± 10.77 20.61 ± 8.81 

 

 

The mean AGB for SCPF was recorded as 146.73 ± 65.11 Mg ha-1, whereas the 

mean AGB for SBEF was recorded as 33.77 ± 51.63 Mg ha-1. There was a 

significant difference recorded between the AGB of the two forests (W = 43, p < 

0.05). 

 

The mean tree volume for the SCPF was recorded as 198.75 ± 87.76 m3 ha-1 and for 

SBEF, it was recorded as 37.82 ± 50.38 m3 ha-1. There was a significant difference 

recorded between the tree volume of the two forests (W = 38, p < 0.05). 

 

The mean basal area for the SCPF was 14.48 ± 4.80 m2 ha-1 and the mean basal 

area for SBEF was recorded as 4.28 ± 3.43 m2 ha-1. There was a significant 

difference recorded between the tree basal area of the two forests (W = 68, p < 

0.05). 
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The mean density per ha for the SCPF was 139.13 ± 22.88 and the mean density 

per ha for SBEF was 142.90 ± 32.37. There was no significant difference recorded 

between the tree densities per ha of the two forests (W = 723.5, p > 0.05). 

 

The mean DBH for the SCPF was 36.37 ± 6.51 cm and the mean DBH for the SBEF 

was 18.64 ± 6.03 cm. There was a significant difference recorded between the mean 

DBHs of the two forests (W = 58, p < 0.05). 

 

The mean tree height for the SCPF was 27.34 ± 3.67 m and the mean tree height for 

the SBEF was 10.62 ± 1.99 m. There was a significant difference recorded between 

the mean tree heights of the two forests (W = 0, p < 0.05). 

 

Spearman correlation coefficients were calculated between the AGB and other 

structural characteristics of the SCPF (Table 9). Strong positive and significant 

correlations were recorded between AGB and AGC, volume, basal area, mean DBH, 

and mean tree height.  

 

 

Table 9: Spearman correlation coefficients for SCPF (n=46) 

Variables 
AGC 

(Mg Cha-1) 

Volume 

(m3ha-1) 

Basal Area 

(m2ha-1) 

Mean DBH 

(cm) 

Mean Tree 

Height (m) 

AGB (Mgha-1) 1* 0.99* 0.94* 0.91* 0.75* 

AGC (Mg Cha-1)  0.99* 0.94* 0.91* 0.75* 

Volume (m3ha-1)   0.94* 0.91* 0.75* 

Basal Area (m2ha-1)    0.87* 0.59* 

Mean DBH (cm)     0.71* 

*Correlation is significant at the 0.05 level. 

 

Spearman correlation coefficients were calculated between AGB and other structural 

characteristics of the SBEF (Table 10). Strong positive and significant correlations 

were recorded between AGB and AGC, volume, basal area, mean DBH, and mean 

tree height.   
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Table 10: Spearman correlation coefficients for the SBEF (n=31) 

Variables 
AGC 

(Mg Cha-1) 

Volume 

(m3ha-1) 

Basal Area 

(m2ha-1) 

Mean DBH 

(cm) 

Mean Tree 

Height (m) 

AGB (Mgha-1) 1* 0.95* 0.89* 0.87* 0.68* 

AGC (Mg Cha-1)  0.95* 0.89* 0.87* 0.68* 

Volume (m3ha-1)   0.93* 0.90* 0.70* 

Basal Area (m2ha-1)    0.89* 0.52* 

Mean DBH (cm)     0.64* 

*Correlation is significant at the 0.05 level. 

 

The DBH interval with the highest number of stems was recorded as 35-40 cm for 

the SCPF, as can be seen in Fig.16. It is followed by the DBH interval of 25-30 cm 

and the DBH interval of 20-25 cm. The total number of 114 stems was recorded in 

the DBH interval class 35-40 cm, which formed 17.81% of the total stems of the 

SCPF. Overall, there were 640 stems recorded for the SCPF. The DBH interval 25-

30 cm recorded 107 stems, which formed 16.72% of the total stems, and for DBH 

interval 20-25 cm, 85 stems were recorded, forming 13.28% of the total stems of the 

SCPF. The maximum DBH was recorded as 67 cm, for Pinus roxburghii, and the 

minimum DBH as 10 cm, also for Pinus roxburghii, for the SCPF.  

Fig. 16: DBH Distribution of the Two Forests of the MHNP 
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For SBEF, the DBH interval of 10-15 cm contained the highest number of stems, as 

demonstrated in Fig. 16. It included 167 stems, which formed 37.70% of the total 

stems of the SBEF. There were overall 443 stems recorded for the SBEF. The DBH 

interval 15-20 cm recorded the second highest number of trees with 102 trees, 

constituting 23.02% of the total number of trees. The DBH interval of 5-10 cm formed 

the interval with the third highest number of trees of 80, constituting 18.06% of the 

total stems. The highest DBH was recorded as 87 cm for Ficus palmata subsp. 

virgata and the lowest DBH was recorded as 5.5 cm for Grewia optiva for the SBEF.  

 

As demonstrated in Fig.17, the height interval class 21-24 m contained the highest 

number of stems of 117, which forms 18.28% of the total stems of the SCPF. The 

class interval 24-27 m formed the second highest interval class with 114 stems, 

constituting 17.81% of all the stems. The class interval 27-30 m formed the third 

highest class interval with 102 stems, which made 15.94% of the total stems of the 

SCPF. The highest height was 41.7 m (Pinus roxburghii) and the lowest height 

was10 m (Bauhinia variegata) for the SCPF. 

 

The height class intervals, 6-9 m, and 9-12 m contained the highest number of stems 

in the SBEF, as can be seen in Fig. 17. Both the intervals contained 163 stems each, 

which formed 36.79% of the total stems of the SBEF. The height class interval of 12-

15 m contained the second highest number of stems after the two interval classes 

mentioned above. The 12-15 m interval class contained 41 stems which formed 

9.26% of the total stems. The Bombax cieba was the tallest tree with 37.7 m height 

and Acacia modesta was recorded with the lowest height of 4.5 m for the SBEF.  

 

The height distributions of the SCPF and the SBEF also show that there are no 

distinct strata for both forests.  
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Fig. 17: Height Distribution of Two Forests of the MHNP 

 

The AGB (Mg ha-1) of the SCPF increases with the increasing mean DBH (cm) and 

mean tree height as shown in the 3D graph (Fig. 18).  

 

The AGB (Mg ha-1) of the SBEF has shown an erratic pattern against the mean DBH 

(cm) and the mean tree height (m) as can be seen in the 3D graph (Fig. 19).  
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Fig. 18: AGB (Mg ha-1) of SCPF against the Mean DBH (cm) and the Mean Height (m) 
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Fig. 19: AGB (Mg ha-1) of SBEF against the Mean DBH (cm) and the Mean Height (m) 

 

 

As demonstrated in Table 11, the Pinus roxburghii contributed the highest 

percentage of 98.85%, which constitutes a total AGC of 3336.13 Mg C ha-1, from the 

overall total AGC of 3374.80 Mg C ha-1 for the SCPF. The Bombax cieba formed 

0.81%, with 27.01 Mg C ha-1, and the Bauhinia variegata contributed 0.34%, with 

11.64 Mg C ha-1, to the total AGC of the SCPF of MHNP.  

 

       Table 11: AGC contribution of different trees species in SCPF 

Sr. 

No. 

Species Total AGC (Mg C 

ha-1) 

AGC Percentage 

(%) 

1 Pinus roxburghii Sarg. 3336.13 98.85 

2 Bombax ceiba L. 27.01 0.81 

3 Bauhinia variegata L. 11.66 0.34 

Total 3374.80 100 
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For the SBEF, Eucalyptus camaldulensis formed the highest contribution of 33.65%, 

with 176.14 Mg C ha-1, in the total AGC, as shown in Table 12. The Ficus palmate 

subsp. virgata and the Bauhinia variegata formed the second and third highest 

contributions with 94.24 Mg C ha-1, 18%, and 73.35 Mg C ha-1, 14.01%, respectively, 

in the total AGC of the SBEF of the MHNP. Similarly, the Acacia modesta, Bombax 

ceiba, and Grewia optiva followed with 42.29 Mg C ha-1 (8.08%), 36.94 Mg C ha-1 

(7.06%), and 30.84 Mg C ha-1 (5.89%). The lowest contributions were recorded from 

the Ficus benghalensis with 0.7%, constituting 3.67 Mg C ha-1, and the Flacourtia 

indica, with 0.1%, forming 0.51 Mg C ha-1, of the total AGC of the SBEF of the 

MHNP.  

 

        Table 12: AGC contribution of different trees species in SBEF 

Sr. 

No. 

Species Total AGC (Mg C 

ha-1) 

AGC  

Percentage (%) 

1 Eucalyptus 

camaldulensis Dehnh. 

176.14 

 

33.65 

 

2 Ficus palmata subsp. 

virgata Forssk. 

94.24 

 

18 

3 Bauhinia variegate L. 73.35 14.01 

4 Acacia modesta Wall. 42.29 8.08 

5 Bombax ceiba L. 36.94 7.06 

6 Grewia optiva J. R. 

Drumm. ex Burret 

30.84 

 

5.89 

 

7 Mallotus philippensis 

(Lam.) Muell. Arg. 

20.78 

 

3.97 

 

8 Cassia fistula L. 10.99 2.1 

9 Broussonetia 

papyrifera (L.) L'Herit 

ex Vent. 

9.86 

 

1.88 

 

10 Celtis australis L. 9.29 1.77 

11 Albizia lebbeck (L.) 

Benth 

8.44 

 

1.61 
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12 Ziziphus mauritiana 

Lam. 

6.14 

 

1.17 

 

13 Ficus benghalensis L. 3.67 0.7 

14 Flacourtia indica 

(Burm. f.) Merr. 

0.51 

 

0.1 

 

Total 523.47 100 

 

 

The highest AGC was recorded for plot no. 45, which was 189.01 Mg C ha-1, for the 

SCPF, as demonstrated in Fig. 20. The plot no. 45 formed 5.06% of the total AGC of 

the SCPF. The highest AGC for plot no. 45 is attributed to the high DBH range which 

varied from 40-62.5 cm and the greater heights ranging from 28-40.1 m. Plot no. 16 

recorded the second highest AGC of 153.90 Mg C ha-1 for SCPF. The lowest AGC 

for SCPF was recorded for plot no. 33, which was 41.95 Mg C ha-1.  

 

For SBEF, plot no. 19 recorded the highest AGC of 147.68 Mg C ha-1 (Fig. 20). Plot 

no. 19 formed 28.21% of the total AGC of the SBEF. The DBH range for Plot no. 19 

was from 9-86 cm and the height ranged from 6.6-33 m, which contributed to the 

higher AGC in this plot. The Eucalyptus camaldulensis was also sampled from this 

plot which was the reason for higher DBHs and heights from this plot. Plot no. 31 

was recorded with the second highest AGC of 36.85 Mg C ha-1 for the SBEF. Plot 

no. 9 of the SBEF recorded the lowest AGC of 4.28 Mg C ha-1.  
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Fig. 20: AGC Distribution of the Two Forests of the MHNP 

 

 

4.1.2. Regression and Correlation Analysis of Pinus roxburghii: 

 

The regression analysis between DBH (predictor variable) and height (outcome 

variable) of the Pinus roxburghii had shown a significant association (R2 = 0.74), 

where 74% of the variation in height is explained by the predictor variable, DBH, as 

evident from the Fig. 21. The relationship between the two variables is also 

statistically significant (p < 0.05). The linear regression equation obtained is the 

following; y=11.55+0.45x. The analysis included 612 sampled trees of Pinus 

roxburghii. Spearman correlation coefficient of 0.85 was recorded for the DBH and 

height variables, which shows a strong positive linear relationship between the two.  
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Fig. 21: DBH-Height Regression of Pinus roxburghii 

 

 

The regression analysis between basal area (predictor variable) and volume 

(outcome variable) of the Pinus roxburghii had shown a significant association (R2 = 

0.96), which shows that 96% of the variation in volume is explained by the predictor 

variable, basal area, as demonstrated in Fig. 22. A significant statistical relationship 

was also revealed (p < 0.05) between the two variables. The total number of 

observations used for the analysis was 46. The linear regression equation of 

‘y=58.96+17.87x’ was obtained from the analysis. Spearman correlation coefficient 

of 0.94 was recorded for the basal area and volume variables, which shows a strong 

positive linear relationship between the two.   
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Fig. 22: Basal Area-Volume Regression of Pinus roxburghii 

 

 

As demonstrated in Fig. 23, a non-linear relationship was revealed between the two 

variables, DBH (predictor variable) and AGB (outcome variable). This non-linear 

relationship was in the form of a power curve. A significant association was revealed 

between the two variables, AGB (outcome variable) and DBH (predictor variable) (R2 

= 0.98). The value of the coefficient of determination, R2, shows that 98% of the 

variation in AGB is explained by the DBH. A significant statistical relationship was 

also revealed between the two variables (p < 0.05). The power regression equation 

of ‘y=0.0007 * x2.62’ was obtained from the analysis. A total number of 612 

observations, for each variable, were used. Spearman correlation coefficient of 0.99 

was recorded for the DBH and AGB, which shows a strong positive linear 

relationship between the two variables.   
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Fig. 23: DBH-AGB Power Regression of Pinus roxburghii 

 

 

4.1.3. Regression and Correlation Analysis of Bauhinia variegata: 

 

The regression analysis between the DBH (predictor variable) and height (outcome 

variable) of the Bauhinia variegata revealed a moderate association (R2 = 0.36) (Fig. 

24). Statistically, however, a significant relationship was revealed (p < 0.05). The 

linear regression equation of ‘y=5.60+0.25x’ was obtained from the analysis. A total 

number of 141 observations, for each variable, were used. Spearman correlation 

coefficient of 0.66 was recorded for the DBH and height, which shows a moderate 

positive linear relationship between the two variables.   
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Fig. 24: DBH-Height Regression of Bauhinia variegata 

 

 

According to Fig. 25, the regression analysis between the basal area (predictor 

variable) and volume (outcome variable) of the Bauhinia variegata revealed a 

significant association between the two variables (R2 = 0.92); the value of the 

coefficient of determination, R2, shows that 92% of the variation in the volume is 

explained by the predictor variable, basal area. A significant statistical relation was 

also revealed between the basal area and volume (p < 0.05). A total number of 20 

observations, for each variable, was used for the regression analysis. The linear 

regression equation of ‘y=0.07+5.86x’ was obtained from the analysis. Spearman 

correlation coefficient of 0.97 was recorded for the basal area and volume of the 

Bauhinia variegata, which shows a strong positive linear relationship between the 

two variables.   
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Fig. 25: Basal Area-Volume Regression of Bauhinia variegata 

 

 

A non-liner relationship, in the form of power regression, was revealed between the 

DBH (predictor variable) and the AGB (outcome variable) of the Bauhinia variegata, 

according to Fig. 26. A significant association was revealed between the two 

variables (R2 = 0.93), which shows that 93% of the variation in AGB can be 

explained by the DBH. A significant statistical relationship was also revealed 

between the two variables (p < 0.05). A total number of 141 observations, for each 

variable, were used for the regression analysis. The power regression equation of 

‘y=0.002 * x2.21’ was obtained from the analysis. Spearman correlation coefficient of 

0.97 was recorded for the DBH and AGB, which shows a strong positive linear 

relationship between the two variables.   
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Fig. 26: DBH-Tree Biomass Power Regression of Bauhinia variegata 

 

 

4.1.4. Regression and Correlation Analysis of Grewia optiva: 

 

According to Fig. 27, the regression analysis between DBH (predictor variable) and 

height (outcome variable) of the Grewia optiva revealed a moderate association (R2 

= 0.42). A significant statistical relationship had been revealed between the two 

variables (p < 0.05). The linear regression equation of ‘y=4.69+0.33x’ was obtained 

from the analysis. A total number of 71 observations, for each variable, were used 

for the regression analysis. Spearman correlation coefficient of 0.64 was recorded 

for the DBH and height, which shows a moderate positive linear relationship between 

the two variables.   
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Fig. 27: DBH-Height Regression of Grewia optiva 

 

 

According to Fig. 28, the regression analysis between the basal area (predictor 

variable) and volume (outcome variable) of the Grewia optiva revealed a significant 

association between the two variables (R2 = 0.97); the value of the coefficient of 

determination, R2, shows that 97% of the variation in the volume is explained by the 

predictor variable, basal area. A significant statistical relation was also revealed 

between the two variables (p < 0.05). A total number of 12 observations, for each 

variable, were used for the regression analysis. The linear regression equation of 

‘y=0.20+5.95x’ was obtained from the analysis. Spearman correlation coefficient of 

0.97 was recorded for the basal area and volume of the Grewia optiva, which shows 

a strong positive linear relationship between the two variables.   
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Fig. 28: Basal Area-Volume Regression of Grewia optiva 

 

 

A non-linear relationship was recorded for the DBH (predictor variable) and the AGB 

(outcome variable) of the Grewia optiva, which can be seen in Fig. 29. This non-

linear relationship was in the form of power regression. A moderate association was 

revealed between the two variables (R2 = 0.59), which shows that 59% of the 

variation in AGB is explained by the DBH, which is the outcome variable. A 

significant statistical relationship was also revealed between the two variables (p < 

0.05). A total number of 71 observations, for each variable, was used for the 

regression analysis. The power regression equation of ‘y=0.002 * x2.33’ was obtained 

from the analysis. Spearman correlation coefficient of 0.97 was recorded for the DBH 

and AGB, which shows a strong positive linear relationship between the two 

variables.   
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Fig. 29: DBH-AGB Power Regression of Grewia optiva 

 

 

4.1.5. Indices estimation and regression analysis of AGB-Indices of the 

MHNP: 

 

According to Fig. 30, the NDVI ranged from -0.34 to 0.80. The minimum NDVI value 

was recorded as -0.34 and the highest value was recorded as 0.80. The mean NDVI 

for the MHNP was recorded as 0.60 ± 0.19. The NDVI distribution of the MHNP is 

left-skewed (Fig. 31). The highest values of NDVI were recorded in the class interval 

0.6-0.8 which was 69.82%, followed by 0.4-0.6 which was recorded as 21.22% 

(Table 13). 
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Fig. 30: NDVI Estimation of MHNP 
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Fig. 31: NDVI Distribution of MHNP 

 

 

     Table 13: NDVI Percentage by Class Interval 

Sr. 

No. 

NDVI Index Class Interval Percentage of Total Pixels 

1 -0.4 - -0.2 2.53 

2 -0.2 – 0 0.49 

3 0 – 0.2 1.56 

4 0.2 – 0.4 4.35 

5 0.4 – 0.6 21.22 

6 0.6 – 0.8 69.82 
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As demonstrated in Fig. 32, the regression analysis between the NDVI (predictor 

variable) and the AGB (outcome variable) had shown a weak association between 

the two variables (R2 = 0.009). There was no significant statistical relationship 

observed between the two variables of NDVI and the AGB of the SCPF (p > 0.05). 

There were 46 observations used for each of the variables for the regression 

analysis. The linear regression equation of ‘y=77.24+108.05x’ was obtained from the 

analysis. 

 

 

Fig. 32:  NDVI-AGB Regression of SCPF 
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According to Fig. 33, the regression analysis between the NDVI (predictor variable) 

and AGB (outcome variable) for the SBEF at the MHNP had shown a weak 

association between the two variables (R2 = 0.13). However, a significant statistical 

relation was revealed between the two variables (p < 0.05). There were 31 

observations used for each of the variables for the regression analysis. The linear 

regression equation of ‘y=462.1-595.8x’ was obtained from the analysis.  

 

 

 

Fig. 33: NDVI-AGB Regression of SBEF 

 

 

According to Fig. 34, the EVI values have ranged from -0.11 to 0.89. The minimum 

EVI was recorded as -0.11 and the highest EVI was recorded as 0.89. The mean 

value for EVI for the MHNP was recorded as 0.45 ± 0.16. The EVI shows a bimodal 

type of distribution for MHNP (Fig. 35). The highest percentage of EVI values was 
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recorded for the interval 0.4-0.6 which was 54.19%, followed by 0.2-0.4 which 

recorded 23.004% of the total values (Table 14).  

 

 

 

 

 

Fig. 34: EVI Estimation of MHNP 
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Fig. 35: EVI Distribution of MHNP 

 

 

      Table 14: EVI Percentage by Class Interval 

Sr. 

No.  

EVI Index Class Interval Percentage of Total Pixels 

1 -0.15 – 0 3.05 

2 0 - 0.2 2.77 

3 0.2-0.4 23.004 

4 0.4-0.6 54.19 

5 0.6-0.8 16.73 

6 0.8-1 0.24 
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According to Fig. 36, the regression analysis between the EVI (predictor variable) 

and AGB (outcome variable) of the SCPF of MHNP had shown a weak association 

(R2= 0.0002). Statistically, no significant relation was also revealed between the two 

variables (p > 0.05). There were 46 observations that were used for each of the 

variables for performing the regression analysis. The linear regression equation 

obtained from the analysis was, ‘y=141.65+12.23x’.  

 

 

Fig. 36: EVI-AGB Regression of SCPF 

 

 

According to Fig. 37, the regression analysis between the EVI (predictor variable) 

and AGB (outcome variable) for the SBEF of the MHNP had shown a weak 

association between (R2 = 0.09). There was also no significant statistical relation 

revealed between the two variables (p > 0.05). There were 31 observations used for 

each of the variables for the regression analysis. The linear regression equation of 

‘y=136.48-186.13x’ was obtained from the analysis.  
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Fig. 37: EVI-AGB Regression of SBEF 

 

 

4.1.6. Regression Analysis of VH and VV Polarizations with AGBof the two 

Forests: 

 

The linear regression analysis between the VH Polarization (predictor variable) and 

the AGB (outcome variable) of the SCPF has revealed a weak association (R2 = 

0.07) (Fig. 38). There was no significant statistical relationship recorded between the 

two variables (p > 0.05). The linear regression equation for these two variables was 

recorded as ‘y=7.527-8.538x’.  
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Fig. 38: VH Polarization-AGB Regression of SCPF 

 

 

The linear regression analysis between the VV Polarization (predictor variable) and 

AGB (outcome variable) of the SCPF has revealed a weak association (R2 = 0.01) 

(Fig. 39). There was no significant statistical relationship recorded between the two 

variables (p > 0.05). The linear regression equation for these two variables was 

recorded as ‘y=108.953-3.711x’.  
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Fig. 39: VV Polarization-AGB Regression of SCPF 

 

 

As shown in Fig. 40, the linear regression analysis between the VH Polarization 

(predictor variable) and AGB (outcome variable) of the SBEF has revealed a weak 

association between (R2 = 0.001). There was no significant statistical relationship 

recorded between the two variables (p > 0.05). The linear regression equation for 

these two variables was recorded as ‘y=44.28+0.69x’.  
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Fig. 40: VH Polarization-AGB Regression of the SBEF 

 

 

As shown in Fig. 41, a weak linear regression association has been revealed 

between the VV Polarization (predictor variable) and AGB (outcome variable) of the 

SBEF (R2 = 0.01). There was no statistically significant relationship recorded 

between the two variables (p > 0.05). The linear regression equation for these two 

variables was recorded as ‘y=17.209-1.876x’.  
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Fig. 41: VV Polarization-AGB Regression of the SBEF 
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4.1.7. Correlations, Model Evaluations and AGB Mapping of SCPF: 

 

Fig. 42 shows the correlation of the 17 top remotely sensed parameters with the 

AGB of the SCPF. For this purpose, Spearman correlation coefficient was used. The 

highest moderate positive correlations were recorded for the following variables: 

S1_VH_sd (rs: 0.4; p< 0.05), S1_VV_sd (rs: 0.38; p< 0.05), S1_ent_min_VV (rs: 0.36; 

p< 0.05), S1_ent_avg_VV (rs: 0.31; p< 0.05), S1_VV_max (rs: 0.31; p< 0.05). The 

rest of the variables showed weak positive and negative correlations with AGB of 

SCPF.  

 

 

 

Fig. 42: Correlation between the remotely sensed variables and AGB of SCPF 
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Table 15 shows the model evaluations of the SCPF. Sixteen predictor sets were 

used for the evaluation of the two machine learning algorithms, RF and SVM, and 

the SR. The predictor set of ‘S1 and VIs’ resulted in producing the best model by 

using the RF algorithm. The model had the lowest RMSE of 52.46 Mg ha-1 and the 

R2 value of 0.31. The range of the RF models varied from the lowest RMSE of 52.46 

Mg ha-1 to the highest RMSE of 72.17 Mg ha-1. The highest RMSE of the RF 

algorithm belonged to the predictor set of ‘Bands and S1 Texture’, which also had an 

R2 value of 0.09. For the SVM, the predictor set with the lowest RMSE of 59.72 Mg 

ha-1 and the R2 value of 0.18 was also recorded as the ‘S1 and VIs’. The highest 

RMSE for the SVM was recorded for the predictor set ‘VIs’ which had an RMSE of 

69.07 Mg ha-1and the R2 value of 0.10. For SR, the predictor set of ‘S1 and VIs’ 

again produced the lowest RMSE of 59.29 Mg ha-1and R2 value of 0.10. The highest 

RMSE for SR was recorded for the predictor set ‘Bands and S2 Texture’, which was 

73.96 Mg ha-1 and the R2 value was 0.08. The results have shown that all three, RF, 

SVM, and SR, had the same predictor set of ‘S1 and VIs’ which produced the lowest 

RMSE.  

 

 

Table 15: Model Evaluations of the SCPF 

Predictor 

Variable Sets 

RF SVM SR 

RMSE 

(Mg ha-1) 

R2 RMSE 

(Mg ha-1) 

R2 RMSE 

(Mg ha-1) 

R2 

Bands 71.77 0.06 63.52 0.07 66.66 0.07 

Bands and S1 55.47 0.32 60.06 0.18 65.11 0.08 

Bands and S1 

Texture 

72.17 0.09 65.71 0.06 64.51 0.08 

Bands and S2 

Texture 

68.69 0.14 66.95 0.23 73.96 0.08 

Bands and VIs 67.21 0.03 65.44 0.05 61.96 0.18 

S1 63.36 0.33 60.39 0.18 62.71 0.12 

S1 and S1 57.22 0.21 64.29 0.17 70.04 0.11 
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Texture 

S1 and S2 

Texture 

58.48 0.24 63.01 0.12 63.98 0.09 

S1 and Vis 52.46 0.31 59.72 0.18 59.29 0.10 

S1 Texture 64.62 0.03 68.98 0.14 73.23 0.19 

S1 Texture and 

S2 Texture 

68.67 0.09 61.93 0.13 66.06 0.09 

S1 Texture and 

Vis 

67.52 0.11 66.57 0.10 68.01 0.04 

S2 Texture 63.74 0.04 61.95 0.19 71.74 0.05 

S2 Texture and 

Vis 

68.96 0.06 66.21 0.08 69.16 0.04 

Vis 68.02 0.05 69.07 0.10 60.84 0.16 

All 58.44 0.21 65.38 0.06 67.61 0.06 

 

 

The final model of the best predictor set ‘S1 and VIs’, using the RF algorithm, 

included the top six variables of all the variables. The variable ranking can be seen in 

Fig. 43, where the higher number, on a scale of 0 to 100, indicates the higher 

importance of a variable in the model. Through an iterative process, all those 

variables which did not contribute to improving the model were removed gradually. 

This led eventually to a model with only the top six variables (i.e., S1_VV_sd, 

S1_VV_min, S1_VH_avg, S1_VH_sd, S1_VV_avg, S1_VV_max) which provided the 

best result. The process started with a total of 20 variables and was reduced to the 

top six variables with the best RMSE. As already mentioned, the final RF model with 

the top six variables had the RMSE of 52.46 Mg ha-1and the R2 value of 0.31, which 

is also shown in Table 15. The final RF model of the predictor set ‘S1 and VIs’ with 

the six variables was further used for the AGB mapping of the SCPF of the MHNP.  
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Fig. 43: Ranking of the Variables of the Predictor Set ‘S1 and VIs’ using RF algorithm 

 

 

Fig. 44 shows the AGB map of the SCPF of MHNP. The map was produced using 

the RF model of the predictor set ‘S1 and VIs’ with six final variables. According to 

the map, the AGB has ranged from 94.55 Mg ha-1to 283.77 Mg ha-1. The lowest AGB 

was recorded as 94.55 Mg ha-1 and the highest as 283.77 Mg ha-1. The mean value 

for the AGB was recorded as 163.57 ± 49.18 Mg ha-1. 
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Fig. 44: AGB Map of SCPF 
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The predicted AGB by the final RF model was plotted against the observed AGB 

obtained through field inventorying (Fig. 45). A significant statistical association 

between the two variables (R2 = 0.89) was obtained. This shows that the RF model 

has strongly predicted the AGB which is close to the observed AGB obtained 

through field inventorying. The same was also plotted for the SVM and the SR. The 

SVM showed a moderate association (R2 = 0.66) and the SR showed a weak 

association (R2 = 0.17) between the two variables.  

 

 

 

Fig. 45: Predicted vs Observed AGB of the SCPF 
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4.1.8. Correlations, Model Evaluations and AGB Mapping of the SBEF: 

 

Fig. 46 shows the correlation of the 17 top remotely sensed parameters with the 

AGB of the SBEF. Spearman correlation coefficient was used for the correlation 

analysis. The following variables showed the highest moderate positive correlation 

with the AGB; S2_ent_max (rs: 0.49; p< 0.05), S2_con_sd (rs: 0.42; p< 0.05), 

S2_con_max (rs: 0.4; p< 0.05), S2_con_avg (rs: 0.4; p< 0.05), S2_con (rs: 0.35; p> 

0.05), S2_ent_avg (rs: 0.32; p> 0.05). The rest of the variables recorded weak 

positive and negative correlations with the AGB of the SBEF.    

 

 

 

Fig. 46: Correlation between the remotely sensed variables and AGB of the SBEF 
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In the case of the model evaluations of the SBEF, the SVM produced the lowest 

RMSE for the predictor set ‘S1 and S2 Texture’ (Table 16). The RMSE recorded for 

this predictor set was 32.59 Mg ha-1and the R2 value was 0.21. The RMSE value for 

the same predictor set for the RF algorithm was 36.61 Mg ha-1 and the R2 was 0.11. 

For the SR for the same predictor set, the RMSE was 43.05 Mg ha-1and R2 was 0.52. 

The range of RMSE for the SVM models for the SBEF was from 32.59 Mg ha-1 to 

37.29 Mg ha-1. The highest RMSE for the SR was recorded as 57.09 Mg ha-1 and the 

lowest was recorded as 41.85 Mg ha-1. 

 

 

Table 16: Model Evaluations of the SBEF 

Predictor 

Variable Sets 

RF SVM SR 

RMSE 

(Mg ha-1) 

R2 RMSE 

(Mg ha-1) 

R2 RMSE 

(Mg ha-1) 

R2 

Bands 39.11 0.32 34.21 0.28 43.58 0.35 

Bands and S1 39.53 0.16 36.02 0.21 51.83 0.09 

Bands and S1 

Texture 

43.33 0.27 34.19 0.09 54.99 0.45 

Bands and S2 

Texture 

44.94 0.11 36.01 0.30 52.78 0.11 

Bands and Vis 35.32 0.31 37.29 0.11 47.72 0.36 

S1 38.32 0.23 36.08 0.03 52.86 0.21 

S1 and S1 

Texture 

45.78 0.05 33.07 0.19 55.86 0.23 

S1 and S2 

Texture 

36.61 0.11 32.59 0.21 43.05 0.52 

S1 and Vis 40.07 0.08 33.96 0.13 56.17 0.28 

S1 Texture 42.99 0.11 32.67 0.35 50.23 0.04 

S1 Texture and 

S2 Texture 

40.41 0.25 34.03 0.17 57.09 0.32 

S1 Texture and 

Vis 

36.11 0.31 33.73 0.42 41.85 0.17 
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S2 Texture 41.35 0.18 34.16 0.15 45.57 0.04 

S2 Texture and 

Vis 

35.19 0.32 33.72 0.31 52.67 0.23 

Vis 35.51 0.32 35.78 0.05 49.61 0.12 

All 37.44 0.14 35.21 0.05 52.96 0.09 

 

 

The final model of SVM was selected from the predictor set ‘S1 and S2 Texture’. The 

model initially had 25 total variables but after the iterative model evaluation process, 

only nine variables were left which produced the lowest RMSE of 32.59 Mg ha-1 and 

hence was selected as the final model for predicting the AGB for the SBEF of the 

MHNP. These nine variables (i.e., S1_VH, S1_VH_sd, S2_con_max, S2_con_sd, 

S2_con_avg, S2_ent_sd, S2_ent, S2_con, S2_asm_sd) were the top nine variables 

according to the scale of 0 to 100 amongst all the 25 variables of the predictor set 

‘S1 and S2 Texture’ (Fig. 47). So, overall, 16 variables had to be removed until the 

lowest possible RMSE could finally be obtained in the respective predictor set.  

Fig. 47: Ranking of the Variables of the Predictor Set ‘S1 and S2 Texture’ using SVM 

algorithm 
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The AGB map of the SBEF was produced using the final SVM model from the 

predictor set of ‘S1 and S2 Texture’, using eventually nine variables. The AGB map, 

shown in Fig. 48, had the lowest AGB of 9.67 Mg ha-1 and the highest AGB of 30.92 

Mg ha-1. The mean AGB for the SBEF was recorded as 20.40 ± 3.70 Mg ha-1. 

 

 

 

 

Fig. 48: AGB Map of the SBEF 
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The predicted AGB by the SVM final model did show only a moderate association 

(R2 = 0.4) with the observed AGB from the SBEF (Fig. 49). The RF model from the 

same predictor category ‘S1 and S2 Texture’ showed a significant association 

between the predicted and observed AGB (R2 = 0.85). The SR also showed a 

moderate association (R2 = 0.31), for the same category, between the predicted and 

observed AGB of the SBEF.  

 

 

Fig. 49: Predicted vs Observed AGB of the SBEF  
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4.2. LC Classification and LCCD of MHNP for the time-period between 

1999-2019: 

 

4.2.1. RF Algorithm: 

 

As was mentioned earlier that the RF depends on two important parameters mtry 

and ntree. The optimal mtry, with the lowest OOB error, was 4 for all the three RF 

models used for the land cover classification of three Landsat images (Fig. 50; Fig. 

51; Fig. 52). 

 

For the LC classes, a sharp decrease in OOB errors is observed, followed by the 

stabilization along with slight fluctuations, with the increase in ntree in all three 

figures (Fig. 53; Fig. 54; Fig. 55). For the RF model, which was used for the 

classification of Landsat 5 TM image for the year 1999 and the Landsat 7 ETM+ 

image for the year 2009, the grassland showed the lowest OOB errors. For the 

Landsat 8 OLI image for the year 2019, the water body showed the lowest OOB 

errors. Generally, the OOB errors decreased with the increasing number of trees 

(Rodriguez-Galiano et al., 2012). If for instance more number of trees are used, this 

will only result in increased time in the calculation without any sound improvement in 

the accuracy of the RF model (Feng et al., 2015).  

 

 

 

 

 

 

 

 

 

 

Fig. 50: Optimal mtry value for RF model of Landsat 7 ETM+ image for the year 1999 
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Fig. 51:  Optimal mtry value for RF model of Landsat 5 TM image for the year 2009 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 52:  Optimal mtry value for RF model of Landsat 8 OLI image for the year 2019 
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Fig. 53: The relationship between OOB error (used as Error in the graph) (y-axis) and ntree 

parameter (used as trees in the graph) (x-axis) of the RF model using Landsat 7 ETM+ 

image for the year 1999. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 54: The relationship between OOB error (used as Error in the graph) (y-axis) and ntree 

parameter (used as trees in the graph) (x-axis) of the RF model using Landsat 5 TM image 

for the year 2009. 
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Fig. 55: The relationship between OOB error (used as Error in the graph) (y-axis) and ntree 

parameter (used as trees in the graph) (x-axis) of the RF model using Landsat 8 OLI image 

for the year 2019. 

 

4.2.2. Importance of Variables: 

 

The MDA shows that the band 4 (B4) is the most important variable in the RF model 

using the Landsat 7 ETM+ image for the year 1999 for the land cover classification of 

MHNP (Fig. 63). The MDG shows band 1 (B1) as the most important variable of the 

RF model (Fig. 56). The MDA generally expresses how much the model suffers in 

terms of accuracy if a variable is excluded from it and MDG shows how much a 

variable contributes to the homogeneity of the nodes and leaves in the RF model 

(Martinez-Taboada and Redondo, 2020). The higher their values, the higher will be 

the importance of the variables.  

 

The RF model using Landsat 5 TM image for land cover classification of MHNP 

showed band 5 (B5) as the most important variable for MDA and band 1 (B1) as the 

most important variable for MDG (Fig. 57). The RF model using Landsat 8 OLI image 

had shown band 6 (B6) and band 2 (B2) as the most important variables for MDA 

and MDG respectively (Fig. 58).  
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Fig. 56: Important Variables for the RF model using Landsat 7 ETM+ for the year 1999. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 57: Important Variables for the RF model using Landsat 5 TM for the year 2009. 
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Fig. 58: Important Variables for the RF model using Landsat 8 OLI for the year 2019. 

 

 

4.2.3. Spectral Reflection: 

 

For Landsat 7 ETM+, SCPF and SBEF have shown the highest mean spectral 

reflectance for band 4 (B4) (Fig. 59). For Landsat 5 TM, Highest mean spectral 

reflectance for SCPF and SBEF was again recorded for band 4 (B4) (Fig. 60). 

However, band 5 (B5) recorded the highest mean spectral reflectance for SCPF and 

SBEF in case of Landsat 8 OLI (Fig. 61) 
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Fig. 59: Mean Spectral Reflectance of LC Classes for Landsat 7 ETM+ Image Bands. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 60: Mean Spectral Reflectance of LC Classes for Landsat 5 TM Image Bands. 
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Fig. 61: Mean Spectral Reflectance of LC Classes for Landsat 8 ETM+Image Bands. 

 

 

4.2.4. Analysis of LC Classifications: 

 

Table 17 shows the extent of LC classes for MHNP for the years 1999, 2009, and 

2019. For the year 1999, the SBEF formed the highest LC with 40.90%. The 

grassland formed the second highest with 17.68%. The other land cover types had 

the following coverage; SCPF (13.60%), Barren Land (11.56%), Settlements 

(10.64%), and Water Body (2.47%). For the year 2009, the SBEF formed the highest 

LC type with 40.11% of the total LC types. The SCPF formed the second highest LC 

type with 16.63%. The other LC types followed; Grassland (15.26%), Barren Land 

(11.90%), Settlements (7.49%), Agricultural Land (5.49%), and Water Body (3.10%). 

For the year 2019, SBEF again formed the highest LC with 43.21%. The grassland 

formed the second highest LC type with 14.23%. The other land cover types were; 

SCPF (14.14%), Barren Land (10.90%), Settlements (7.34%), Agricultural Land 

(7.17%), and Water Body (2.98%). Fig. 62 also shows the graphical representation 

of the extent of the LC types of the MHNP. Fig. 63 shows the LC map classification 

of the MHNP for the year 1999. Fig. 64 shows the LC map for the year 2009. Fig. 5 

shows the LC map for the year 2019.  
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Table 17: Extents of Classified LC Classes of MHNP 

Land Cover 

1999 2009 2019 

Area 

(ha) 

% Area Area 

(ha) 

% Area Area 

(ha) 

% Area 

Agricultural Land 536.4 3.11 946.71 5.49 1237.05 7.17 

Barren Land 1994.49 11.56 2052.18 11.90 1880.01 10.90 

SBEF 7052.49 40.90 6915.24 40.11 7449.48 43.21 

SCPF 2345.76 13.60 2867.94 16.63 2437.92 14.14 

Grassland 3048.39 17.68 2631.24 15.26 2453.4 14.23 

Settlements 1835.64 10.64 1292.22 7.49 1266.93 7.34 

Water Body 426.87 2.47 534.51 3.10 515.25 2.98 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 62: Extents of Classified LC Classes for MHNP for the years of 1999, 2009 and 2019 in 

ha (AL= Agricultural Land, BL = Barren Land, GL = Grassland, SL = Settlements, WB = 

Water Body). 
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Fig. 63: LC Map for MHNP for the year 1999 

 

Fig. 64: LC Map for MHNP for the year 2009 
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4.2.5. Accuracy Assessment: 

 

The accuracy assessments of the supervised LC classifications of the MHNP for the 

years 1999, 2009, and 2019 are documented in Table 18. For the year 1999, the 

highest user accuracy was recorded for agricultural land and water body with 100% 

each. The second highest was recorded for the barren land and SCPF with 97.91% 

each. The highest producer’s accuracy was recorded for water body with 100% and 

the second highest was for grassland and settlements with 96% each. The overall 

accuracy for the year 1999 was recorded as 94.83%. The kappa coefficient was 

recorded as 0.93. For the year 2009, the highest user accuracy was recorded again 

for agricultural land and water body with 100% each, which was followed by the 

second highest grassland with 97.95%. The highest producer’s accuracy was 

recorded for the water body with 100%, followed by the second highest for barren 

land, SCPF, and settlements with 98% each. The overall accuracy was recorded as 

96.77% and the kappa coefficient was 0.96. For the year 2019, the highest user 

accuracy was recorded for agricultural land, barren land, and water body having 

100% each. These classes were followed by the second highest grassland with 

98.03%. The highest producer’s accuracy was recorded for SCPF, grassland, and 

water body with 100% each. They were followed by the settlements with 98% as the 

second highest. The overall accuracy for the year 2019 was recorded as 97.09% and 

the kappa coefficient was recorded as 0.96. 

 

The confusion matrices, with detailed information, for the land cover classifications of 

MHNP for the years 1999, 2009, and 2019 can be seen in Table 19, Table 20, and 

Table 21, respectively. The agricultural land showed the highest misrepresentation 

for all three years (Araya and Hergarten, 2008).  
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Table 18: Accuracy Assessment (in %) of LC Maps of MHNP for 1999, 2009 and 

2019. 

Land Cover 

Classes 

1999 2009 2019 

User’s 

Accuracy 

Producer’s 

Accuracy 

User’s 

Accuracy 

Producer’s 

Accuracy 

User’s 

Accuracy 

Producer’s 

Accuracy 

Agricultural Land 100 92 100 94 100 92 

Barren Land 97.91 94 96.07 98 100 96 

SBEF 92.59 100 96 96 92.30 96 

SCPF 97.91 94 96.07 98 94.34 100 

Grassland 88.88 96 97.95 96 98.03 100 

Settlements 92.30 96 94.23 98 98 98 

Water Body 100 80 100 100 100 100 

Overall Accuracy 94.83 96.77 97.09 

Kappa Coefficient 0.93 0.96 0.96 

 

 

 

Table 19: Confusion Matrix for LC Classification of MHNP for 1999 

 Reference Data 

Total 

Agricultural 

Land 

Barren 

Land 

SBEF SCPF Grassland Settlements Water 

Body 

C
la

s
s
if

ie
d

 D
a
ta

 

Agricultural Land 46 0 0 0 0 0 0 46 

Barren Land 0 47 0 0 1 0 0 48 

SBEF 0 0 50 3 1 0 0 54 

SCPF 1 0 0 47 0 0 0 48 

Grassland 1 3 0 0 48 2 0 54 

Settlements 2 0 0 0 0 48 2 52 

Water Body 0 0 0 0 0 0 8 8 

Total 50 50 50 50 50 50 10 310 
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Table 20: Confusion Matrix for LC Classification of MHNP for 2009 

 Reference Data 

Total 

Agricultural 

Land 

Barren 

Land 

SBEF SCPF Grassland Settlements Water 

Body 

C
la

s
s
if

ie
d

 D
a
ta

 

Agricultural Land 47 0 0 0 0 0 0 47 

Barren Land 0 49 0 0 2 0 0 51 

SBEF 1 0 48 1 0 0 0 50 

SCPF 0 0 2 49 0 0 0 51 

Grassland 0 0 0 0 48 1 0 49 

Settlements 2 1 0 0 0 49 0 52 

Water Body 0 0 0 0 0 0 10 10 

Total 50 50 50 50 50 50 10 310 

 

 

 

Table 21: Confusion Matrix for LC Classification of MHNP for 2019 

 Reference Data 

Total 

Agricultural 

Land 

Barren 

Land 

SBEF SCPF Grassland Settlements Water 

Body 

C
la

s
s
if

ie
d

 D
a
ta

 

Agricultural Land 46 0 0 0 0 0 0 46 

Barren Land 0 48 0 0 0 0 0 48 

SBEF 2 1 48 0 0 1 0 52 

SCPF 1 0 2 50 0 0 0 53 

Grassland 0 1 0 0 50 0 0 51 

Settlements 1 0 0 0 0 49 0 50 

Water Body 0 0 0 0 0 0 10 10 

Total 50 50 50 50 50 50 10 310 

 

 

4.2.6. LCC: 

 

Table 22 highlights the percentage change, net change (ha), and ROC for the land 

covers of the MHNP for the three time periods of 1999 to 2009, 2009 to 2019, and 

1999 to 2019. The agricultural land increased for all the three time periods, 1999-

2009, 2009-2019, and 1999-2019 with 410.31 ha (76.49%), 290.34 ha (30.66%), and 

700.65 ha (130.62%), respectively. The highest decrease occurred for the 

settlements with -543.42 ha (-29.60%) followed by the grassland at -417.15 ha (-
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13.68%) for the time-period of 1999-2009. The highest decrease for the time-period 

2009-2019 was recorded for SCPF with -430.02 ha (-14.99%).  

 

The ROC showed that the SCPF increased by 52.21 ha/year for the time-period 

1999-2009. For the same time-period, settlements had the highest decrease with -

54.34 ha/year. SBEF showed the highest increase with 53.42 ha/year for the time-

period 2009-2019. SCPF showed the highest decrease in ROC with -43.002ha/year 

for the same time-period. For the time-period 1999-2019, the highest increase in 

ROC was recorded for agricultural land with 35.03 ha/year. The highest decrease 

was recorded for grassland for the same time-period with -29.74 ha/year. Fig. 65 

also shows the graphical representation of the LCC comparison of the MHNP. 

 

Table 23, Table 24, and Table 25 provide a detailed description of land cover 

changes for the time-periods of 1999-2009, 2009-2019, and 1999-2019, respectively. 

According to Table 23, for the time-period 1999-2009, the highest change for 

agricultural land was to a barren land with 121.23 ha. The highest change for barren 

land was to grassland which was 369.81 ha. The highest change for SBEF was to 

SCPF with 1337.31 ha. The highest change for SCPF was to SBEF with 907.11 ha. 

The highest change for grassland was to SBEF with 1008.99 ha. The highest change 

for settlements was to a barren land with 354.6 ha. The highest change for the water 

body was to SCPF with 8.91 ha. According to Table 24, for the time-period 2009-

2019, the highest change for agricultural land was to a barren land with 290.79 ha. 

The highest change for barren land was to grassland with 441.45 ha. The highest 

change for SBEF was to SCPF with 757.8 ha. The highest change for SCPF was to 

SBEF with 1150.11 ha. The highest change for grassland was to SBEF with 769.23 

ha. The highest change for settlements was to a barren land with 177.3 ha. The 

highest change to the water body was to agricultural land with 7.65 ha. According to 

Table 25, for the time-period 1999-2019, the highest change for agricultural land was 

to settlements with136.35 ha. The highest change for barren land was to grassland 

with 444.06 ha. The highest change for SBEF was to SCPF with 1191.24 ha. The 

highest change for SCPF was to SBEF with 1103.94 ha. The highest change for 

grassland was to SBEF with 1082.07 ha. The highest change for settlements was to 

a barren land with 327.51 ha. The highest change for the water body was to SBEF 
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with 18.45 ha. Fig. 66, Fig. 67, and Fig. 68 show the LCC for 1999-2009, 2009-2019, 

and 1999-2019, respectively.  

 

Table 22: Percentage change, net change, and rate of change occurring between 

the three time periods; 1999-2009, 2009-2019, 1999-2019 for the LC classes of 

MHNP. 

Land Cover  

Change (%) Net Change (ha) ROC (ha/year) 

1999-

2009 

2009-

2019 

1999-

2019 

1999-

2009 

2009-

2019 

1999-

2019 

1999-

2009 

2009-

2019 

1999-

2019 

Agricultural Land 76.49 30.66 130.62 410.31 290.34 700.65 41.03 29.03 35.03 

Barren Land 2.89 -8.38 -5.73 57.69 -172.17 -114.48 5.76 -17.21 -5.72 

SBEF -1.94 7.72 5.62 -137.25 534.24 396.99 -13.72 53.42 19.84 

SCPF 22.26 -14.99 3.92 522.18 -430.02 92.16 52.21 -43.002 4.60 

Grassland -13.68 -6.75 -19.52 -417.15 -177.84 -594.99 -41.71 -17.78 -29.74 

Settlements -29.60 -1.95 -30.98 -543.42 -25.29 -568.71 -54.34 -2.52 -1.54 

Water Body 25.21 -3.60 20.70 107.64 -19.26 88.38 10.76 -1.92 4.41 

Note: - sign indicates the decrease in the LC 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 65: LCC Comparison of MHNP (AL= Agricultural Land, BL = Barren Land, GL = 

Grassland, SL = Settlements, WB = Water Body) 
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Table 23: LCC matrix from 1999 to 2009 for MHNP 

1
9
9
9

 A
re

a
 (

h
a
)  

 

Land Cover 

Classes 

2009 Area (ha) 

Agricultural 

Land 

Barren 

Land 

SBEF SCPF Grassland Settlements Water 

Body 

Agricultural Land 163.53 121.23 41.13 16.11 58.14 111.24 25.02 

Barren Land 253.98 853.47 275.94 63.81 369.81 169.29 8.19 

SBEF 137.88 212.58 4443.48 1337.31 667.35 252.27 1.62 

SCPF 94.77 101.97 907.11 1166.58 17.37 0.18 402.21 

Grassland 137.61 402.21 1008.99 190.17 1175.22 127.08 7.11 

Settlements 158.22 354.6 231.93 85.05 298.17 609.93 97.74 

Water Body 0.72 6.12 6.66 8.91 4.77 5.04 394.65 

Note: Bold figures within the table are an indication of no change.  

 

Table 24: LCC matrix from 2009 to 2019 for MHNP 

  
  
  
  
  

  
  

2
0
0

9
 A

re
a
 (

h
a
)  

Land Cover 

Classes 

2019 Area (ha) 

Agricultural 

Land 

Barren 

Land 

SBEF SCPF Grassland Settlements Water 

Body 

Agricultural Land 224.37 290.79 126.81 63.27 139.14 102.33 0 

Barren Land 240.93 886.68 208.53 71.01 441.45 201.96 1.62 

SBEF 210.69 216.72 5015.88 757.8 678.24 33.75 2.16 

SCPF 75.6 64.08 1150.11 1487.7 86.85 3.6 0 

Grassland 346.5 242.73 769.23 57.96 1031.31 178.92 4.59 

Settlements 131.31 177.3 160.92 0.18 76.32 746.19 0 

Water Body 7.65 1.71 18 0 0.09 0.18 506.88 

Note: Bold figures within the table are an indication of no change.  

 

Table 25: LCC matrix from 1999 to 2019 for MHNP 

1
9
9
9

 A
re

a
 (

h
a
)  

Land Cover 

Classes 

2019 Area (ha) 

Agricultural 

Land 

Barren 

Land 

SBEF SCPF Grassland Settlements Water 

Body 

Agricultural Land 141.03 111.51 59.22 10.71 52.92 136.35 24.66 

Barren Land 222.57 767.61 244.53 78.48 444.06 229.77 7.47 

SBEF 259.65 232.65 4621.95 1191.24 613.17 132.75 1.08 

SCPF 86.58 135.54 1103.94 875.52 127.8 16.11 0.27 

Grassland 304.83 303.3 1082.07 215.19 993.78 143.82 5.4 

Settlements 216.81 327.51 319.32 61.2 220.86 602.01 87.93 

Water Body 5.58 1.89 18.45 5.58 0.81 6.12 388.44 

Note: Bold figures within the table are an indication of no change.  
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Fig. 66: Chord diagram representing LCC1999-2009 (in ha) 
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Fig. 67: Chord diagram representing LCC2009-2019 (in ha) 
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Fig. 68: Chord diagram representing LCC 1999-2019 (in ha)  
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5. Discussion: 

 

5.1. Forest Biomass and Carbon Stock Assessment of MHNP: 

 

5.1.1. AGB and AGC of the SCPF: 

 

Table 26 shows the AGC estimations of the SCPF from different studies in Pakistan 

and Azad Jammu and Kashmir (AJK). The mean AGC estimated through this study, 

73.36 ± 32.55 Mg C ha-1, is higher than the mean AGC recorded by Amir et al. 

(2018) for SCPF which was 40 Mg C ha-1at the Murre Hills, Pakistan, and from Ali et 

al. (2020b) who reported 24.77 Mg C ha-1 for the SCPF of the Khyber Pakhtunkhwa 

(KPK) Province. The other studies: (Nizami, 2012); (Shaheen et al., 2016); (Mannan 

et al., 2019a), have recorded higher mean AGC estimates compared to this study 

(Table 26). The other estimate provided by Amir et al. (2018), 264.5 Mg C ha-1, for 

the SCPF at Murree Hills, Pakistan, is also higher than this study. In three of these 

studies i.e. (Amir et al., 2018); (Nizami, 2012); (Mannan et al., 2019a), the 

Belowground Carbon (BGC) was also included in the mean AGC. The BGC 

generally constitutes 20% of the AGC (Cairns et al., 1997). The result of this study is 

also in agreement with the estimates provided by Singh et al. (1985) who reported 

AGC of 35 to 75.2 Mg C ha-1 for the degraded forests of the Central Himalayan, 

India. The lower AGC for the SCPF can be attributed to the lower AGB yield of the 

study area (Segura and Kanninen, 2005). This low yield may also be ascribed to the 

anthropogenic activities and the natural disturbances occurring in the area (Bhadwal 

and Singh, 2002); (Rossi et al., 2007). The depletion in the AGC of the forest 

ecosystems is mainly attributed to forest degradation in developing countries  (Pant 

and Tewari, 2014). 

 

Table 26: Mean AGC of SCPF Reported by Different Studies 

Sr. 

No. 

Authors/Workers Region/Study Area Mean AGC 

(Mg C ha-1) 

1 (Amir et al., 2018) Murree Hills, Pakistan 40 to 264.5 

2 (Nizami, 2012) Ghoragali and Lehterar, 

Pakistan 

119 and 92 
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3 (Shaheen et al., 2016) Muzaffarabad District, 

AJK 

154 and 264.5 

4 (Mannan et al., 2019a) Foothills of the 

Himalayan mountains, 

Pakistan 

173.38 

5 (Ali et al., 2020b) KPK, Pakistan 24.77  

6 This study MHNP 73.36 

 

 

The AGB estimation enables the quantification of the AGC, which forest stores 

(Naveenkumar et al., 2017). AGB estimation, therefore, is essential for the 

quantification of carbon budgets and for the national development planning for the 

overall forest management, which makes it also more important in view of the 

challenges posed by climate change (Devagiri et al., 2013). The mean AGB reported 

for this study, 146.73 ± 65.11 Mg ha-1, is lower than the mean AGB reported for 

SCPF by Shaheen et al. (2016) which were 491.2 Mg ha-1 and 308 Mg ha-1 for the 

two sites of the Muzaffarabad District, AJK. The estimates for mean AGB (including 

BGB), 94.46 Mg ha-1, and 112 Mg ha-1, for the SCPF reported by Pant and Tewari 

(2014) for the two sites of the Kumaun Central Himalaya are also not in agreement 

with the estimate of this study. The estimate from this study is also not in agreement 

with the 113−283 Mgha-1 (including BGB) reported by Chaturvedi and Singh (1987) 

for the SCPF at the site areas of the Central Himalaya, India. The result for the mean 

AGB for the SCPF is also not in agreement with the estimate provided by Sharma et 

al. (2020) which was 167.7 Mg ha-1for SCPF for a site area in Kathmandu, Nepal. 

Banday et al. (2018) reported a mean AGB of 194.19 Mg ha-1 for SCPF in Upper 

Himalayan, India, which is again higher than the estimate of this study. 

 

5.1.2. Structural Characteristics of the SCPF: 

 

The forest structure defines the arrangement and relationship between different tree 

components i.e. trunks, branches, and leaves (Ackermann, 2015). It consists of 

various attributes including type, size, shape, and spatial distribution of forest 

(McElhinny et al., 2005); (Pommerening, 2002). The mean basal area reported by 
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Nizami (2012) for the SCPF in Ghoragli and Lethrar, which were 30.38 m2 ha-1and 

26.11 m2 ha-1 respectively, are higher than the estimate of this study, 14.48 ± 4.80 

m2 ha-1. The basal area is among the common variables such as DBH, total height, 

volume, and crown diameter, which are used for estimation of the AGB (Goodman et 

al., 2014). The result of this study is also not in agreement with Amir et al. (2018) 

who provided a mean basal area of 32.3 m2 ha-1 for the SCPF of Murree Hills, 

Pakistan. Sharma et al. (2020) provided an estimate of 32.1 m2 ha-1 for a plantation 

site of Pinus roxburghii in Kathmandu, Nepal, which is also not in agreement with 

this study. The estimate for this study however is higher than the minimum mean 

basal area provided by Kumar et al. (2019) which was 11.12 m2 ha-1for the SCPF of 

Garhwal Himalaya, India. The mean tree volume of 198.75 ± 87.76 m3 ha-1 reported 

by this study is on the lower side compared to Nizami (2012) who reported 243 m3 

ha-1 for the SCPF of Ghoragli, but slightly higher than the 197 m3 ha-1 for Lethrar 

area. The result for the mean tree volume for this study is more than the lower end of 

mean tree volume of 83 m3 ha-1, which was for the young stands of SCPF, reported 

by the Amir et al. (2018) for Murree Hills, Pakistan. The higher estimate of the study, 

549.4 m3 ha-1, by Amir et al. (2018) for SCPF for Murree Hills, Pakistan, is higher 

than the estimate provided by this study. The mean tree volume estimate provided 

by Kumar et al. (2019) for SCPF of Garhwal Himalaya, India, which was 214.88m3 

ha-1, is also higher than the result of this study. The mean tree density reported by 

Nizami (2012) for SCPF was 878 trees ha-1for Ghoragali and 776 trees ha-1 for 

Lethrar. These estimates are on a higher side compared to the mean tree density of 

139.13 ± 22.88 trees ha-1 for this study. The mean tree density estimate for this study 

is also lower than the estimate provided by Kumar et al. (2019) for SCPF, which was 

244.34 trees ha-1 for Garhwal Himalaya, India. The tree density is also an indicator of 

deforestation pressures on the forest ecosystems since people are dependent on 

forests for their livelihood and this can further be aggregated by additional demands 

for construction and industrial demands (Shaheen et al., 2016); (Wani et al., 2010). 

In addition, lower tree densities may also portray lower forest carbon stock values 

(Kindermann et al., 2006). The mean tree density of this study is higher than the 

estimate provided by Khan et al. (2020) who reported 103-104 trees ha-1for the 

SCPF of Murree Forests, Pakistan, and thereby have attributed their lower densities 

to the anthropogenic pressures such as lopping and high tourism.  
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The DBH distributions are an effective way for describing the tree populations and 

forest stands (de Lima et al., 2015). These can be used for valuing forests, planning 

harvest operations, and predicting forest growth (Burkhart and Tomé, 2012). DBH 

distributions can also be used for inferring past disturbances in the forest stands, the 

successional status of forests, and the AGB contained in the forests (Coomes and 

Allen, 2007). The DBH distribution for the SCPF has shown a hump-shaped 

(unimodal type) (Subedi et al., 2018), which shows that there is a lesser number of 

stems in the lower DBH classes, and the number of stems increases with the 

increasing DBH classes until the classes 25-30 cm and 35-40 cm and after which the 

number of stems starts to decrease again (Fig. 16). These two classes contained 

16.72% and 17.81% of the total stems and were also the two highest classes in the 

DBH distribution. Pariyar et al. (2019) also reported similar results for the mixed 

Pinus roxburghii forest, of the Parbat District of Western Nepal, where most of the 

stems had 30 cm DBH compared to the pure stands of Pinus roxburghii which had 

higher representations from higher DBH classes. This type of distribution has also 

been observed elsewhere in different areas of the Himalayan region (Kunwar and 

Sharma, 2004); (Sharma et al., 2008); (Vetaas, 2000). This unimodal distribution is 

not a good sign for the forest ecosystem, since it is attributed to anthropogenic and 

natural disturbances (Wangda and Ohsawa, 2006); (Bin et al., 2012). Furthermore, 

looking at the classification of forest structure for Pinus roxburghii based on DBH; < 

10 cm (sapling), 10-30 cm (young), 30-50 cm (middle-aged), 50-70 cm (mature), > 

70 cm (overmature) (FRI, 2018), it was also found that highest percentage of the 

stems belonged to the young and middle-aged DBH classes with 39.84% and 

52.18%, respectively. This distribution represents imbalance and poses further 

challenges towards the sustainable management of the forest (FRI, 2018).  

 

The forest structure is a 3-dimensional phenomenon, which is represented by the 

horizontal and vertical components (Podlaski et al., 2019). The vertical structure of 

the forest plays an important role in ecological processes (Hao et al., 2007). The 

vertical structure of the forests is often represented by the height distribution 

(Podlaski et al., 2019). The height distribution for the SCPF is negatively skewed 
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(Fig. 17). The highest number of stems were found in two of the height classes i.e., 

21-24 m and 24-27 m.  

 

Regression analysis between DBH and height of the Pinus roxburghii, which was the 

dominant species of the SCPF, showed a significant association (R2 = 0.74, p < 

0.05) (Fig. 21). Tree heights are essential parameters for forest inventory variables 

and carbon budget models (Vanclay, 1994). Tree heights are difficult to collect in the 

forests and are also costlier compared to the DBH data collections (Peng et al., 

2001). Mostly, height-DBH equations are developed for predicting the missing 

heights, which were skipped during field expeditions (Peng et al., 2001). In this 

study, all the heights for the tree stems for both forests were measured during the 

field expedition, 640 for the SCPF and 443 for SBEF. The highest height recorded 

for Pinus roxburghii was 41.7 m and the lowest was 13.9 m. Pinus roxburghii is a 

fast-growing pioneer species, which can reach up to the height of 51 m and DBH of 1 

m (Jackson, 1994). Ghimire (2019) reported a maximum DBH of 84.41 cm and a 

maximum height of 37.50 m for Pinus roxburghii. FRI (2018) also reported a 

maximum DBH of 64.3 cm and a maximum height of 43.3 m for Pinus roxburghii. 

The linear regression relationship between DBH and height for the Pinus roxburghii 

from this study is in agreement with (Khan et al., 2016); (Nizami et al., 2009); 

(Subedi et al., 2018). Tree DBH and height can also directly influence biomass 

production, where lower DBH and heights can result in lower biomass and carbon 

stock values for the forests (Feldpausch et al., 2012). 

 

The regression analysis between basal area and volume of the Pinus roxburghii has 

shown a significant linear association (R2 = 0.96; p < 0.05) (Fig. 22). The result of the 

linear regression analysis is not in agreement with Amir et al. (2018) who have 

shown a polynomial relationship between the two variables. The result, however, is 

in agreement with Nizami et al. (2009). The regression analysis between DBH and 

AGB showed a significant non-linear relationship (R2 = 0.98; p < 0.05) (Fig. 23). This 

is in agreement with Ali et al. (2020a) and Solomon et al. (2017), who also reported 

significant non-linear relationship between the two variables. Many studies have 

shown that DBH is a reliable predictor of AGB (Solomon et al., 2017); (Hasen-Yusuf 

et al., 2013); (Giday et al., 2013).  
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5.1.3. AGB and AGC of the SBEF: 

 

The carbon stock assessment in the sub-tropical forests is of utmost importance 

because they have been poorly studied in comparison to the other forest types 

(Rosenfield and Souza, 2013). The estimate for AGC for the SBEF for this study is 

16.88 ± 25.81 Mg C ha-1 (Table 8). The result is on the very low side compared to the 

study by Mannan et al. (2019a) who reported 73.81 Mg C ha-1 for the AGB of the 

SBEF which also included the BGC. The result for this study is also on the lower side 

compared to the mean AGC reported by Ali et al. (2019), for SBEF, which was 49.54 

Mg C ha-1 for the sites in Swat, Dir Upper, Dir Lower, and Buner Districts in the KPK, 

Pakistan. The result of this study is also on the lower side compared to Ali et al. 

(2018) who reported a mean AGC of 39.02 Mg C ha-1 for SBEF at a site in Khanpur 

Range, KPK, Pakistan. The estimate for SBEF from this study is also lower than the 

estimates by Nizami (2012) who had reported mean AGC (including BGC) of 25.54 

Mg C ha-1 and 20.23 Mg C ha-1 for SBEF at the sites of Kherimurat and Sohawa 

respectively. The result of this study is higher than the estimate reported by Ali et al. 

(2020b) which was 4.52 Mg C ha-1for the SBEF for the entire KPK, Pakistan. All the 

above-mentioned comparisons can be found in Table 27.  

 

Table 27: Mean AGC for SBEF from Different Studies 

Sr. 

No.  

Authors Region/Study Area Mean AGC (Mg C 

ha-1) 

1 (Nizami, 2012) Kherimurat and Sohawa, 

Pakistan 

25.54 and 20.23 

2 (Ali et al., 2020b) KPK, Pakistan 4.52 

3 (Mannan et al., 

2019a) 

Foothills of the Himalayan 

mountains, Pakistan 

73.81 

4 (Ali et al., 2019) Swat, Dir Upper, Dir Lower, 

and Buner Districts, Pakistan 

49.54 

5 (Ali et al., 2018) Khanpur Range, Khyber 

Pakhtunkhwa, Pakistan 

39.02 

6 This study MHNP 16.88 
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The mean AGB reported by Nizami (2012) which was 50.93 Mg ha-1 and 40.43 Mg 

ha-1 (both estimates also included the BGB) for the SBEF for the sites of Kherimurat 

and Sohawa respectively are on the higher side comparing to this study, which is 

33.77 ± 51.63 Mg ha-1. The mean AGB reported by Ali et al. (2018) which was 83 Mg 

ha-1 for the SBEF for Khanpur Range, KPK, Pakistan, is higher than the estimate of 

this study. The estimate from this study is also on the lower side compared to the 

estimate provided by Mannan et al. (2019a) who reported a mean AGB (including 

BGB) of 147.62 Mg ha-1 for SBEF at the foothills of Murree. Mannan et al. (2019a) 

attributed their high AGB estimate to the high tree density observed in the SBEF in 

their study region. Ali et al. (2019) reported a mean AGB of 100.1 Mg ha-1 for SBEF 

in the Districts of Swat, Dir Upper, Dir Lower, and Buner of the Khyber Pakhtunkhwa 

Province of Pakistan; their estimate is also on the higher side comparing to the 

estimate of this study. Ali et al. (2019) attributed their high AGB to the presence of 

overmature trees, having DBH > 80 cm. Mannan et al. (2019b) reported a mean 

AGB of 70.80 Mg ha-1 for SBEF for the study sites of Margalla and Murree Forest 

Division, which is also on the higher side compared to the result of this study; they 

attributed their result to the high tree density of SBEF located at their study sites.  

 

5.1.4. Structural Characteristics of the SBEF: 

 

The mean tree volume recorded for the SBEF for this study, 37.82 ± 50.38 m3 ha-1, is 

on the higher side compared to the estimate provided by Nizami (2012) which was 

12.86 m3 ha-1 and 11.40 m3 ha-1for SBEF for the sites of Kherimurat and Sohawa, 

respectively. Mannan et al. (2019a) reported the mean tree volume for SBEF as 

115.71 m3 ha-1, which is on the higher side compared to the mean tree volume 

estimate of this study. Ali et al. (2018) recorded a mean tree volume of 57.66 m3 ha-1 

for SBEF for Khanpur Range, KPK, Pakistan, which is also on the higher side 

compared to this study. The mean tree basal area for this study was recorded as 

4.28 ± 3.43 m2 ha-1, which is slightly higher than the estimates of 3.06 m2 ha-1 and 

2.65 m2 ha-1 reported by Nizami (2012) for SBEF for the sites of Kherimut and 

Sohawa, respectively. The estimate for this study is less than the estimate of 13.1 m2 

ha-1 reported by Mannan et al. (2019b) for SBEF for the sites at Margalla and Murree 
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Forest Division. The estimate reported from this study is also close to the estimate of 

6.69 m2 ha-1 reported by Ali et al. (2019). The mean tree density of 142.90 trees ha-1 

were recorded for this study, which is lower than the mean densities of 197 trees ha-1 

and 179 trees ha-1 reported by Nizami (2012) for SBEF for Kherimurat and Sohawa, 

respectively. The mean tree density of this study is also on the lower side compared 

to Mannan et al. (2019b) who reported a mean tree density of 761.18 trees ha-1 for 

SBEF. The tree densities and basal areas are important characteristics that have 

significant effects on the AGB (Gogoi et al., 2020). 

 

Ideally, the DBH distribution of a forest should follow an inverse J shape (Shimano, 

2000). The DBH distribution of the SBEF is positively skewed which means tree 

density increases till the DBH class is 10-50 cm and after which it starts to decrease. 

The DBH class 10-15 cm also contained the highest percentage of the stems, 

37.70%. The highest number of stems in the lower DBH classes shows a good 

regeneration potential (Ballabha et al., 2013). It also highlights that a forest is in 

evolving stage (Campbell et al., 1992). But at the same time, the absence of the 

trees in the higher DBH classes suggests historical disturbances which must also be 

not neglected while undertaking the overall planning for management purposes 

(Nath et al., 2017). The height distribution of the SBEF also showed a positively 

skewed distribution, with most of the stems being present in the two classes, 6-9 m, 

and 9-12 m.  

 

Two tree species were selected for performing the regression analysis from the 

SBEF based on the highest number of the sampled stems. The regression analysis 

between DBH and height of the Bauhinia variegata had shown a moderate linear 

association (R2 = 0.36; p < 0.05) (Fig. 24). The DBH range recorded for Bauhinia 

variegata was 5.6-35 cm. The height range was 5.4-18.1 m. The regression analysis 

between basal area and tree volume of Bauhinia variegata had shown a significant 

linear association (R2 = 0.92; p < 0.05) (Fig. 25). The mean basal area for Bauhinia 

variegata was recorded as 1.16 ± 0.77 m2 ha-1 and the mean tree volume was 

recorded as 6.88 ± 4.77 m3 ha-1. Significant non-linear regression association was 

revealed between DBH and AGB of Bauhinia variegate (R2 = 0.93; p < 0.05) (Fig.  

26). The result of this study, a non-linear significant regression association between 
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DBH and AGB of Bauhinia variegata, is in agreement with the Kanwar (2019) who 

also recorded strong non-linear relationship between DBH and AGB. The mean AGB 

of Bauhinia variegata, 7.33 ± 5.02 Mg ha-1, from this study, is not in agreement with 

Kumar and Sharma (2015) who reported a mean AGB of 25.82 ± 48.57 Mg ha-1 for 

the Balganga Range of the Garhwal Himalaya region, India.  

 

The regression analysis between DBH and height of the Grewia optiva showed a 

moderate linear association (R2 = 0.42; p < 0.05) (Fig. 27). The DBH for Grewia 

optiva ranged from 5.5 cm to 22 cm and the height ranged from 5 m to 15 m. The 

regression analysis between the basal area and volume of the Grewia optiva had 

shown a significant linear association (R2 = 0.97; p < 0.05) (Fig. 28). The mean basal 

area and the mean tree volume were recorded as 0.83 ± 0.54 m2 ha-1 and 4.75 ± 

3.30 m3 ha-1, respectively. The regression analysis between DBH and AGB showed 

a moderate non-linear association (R2 = 0.59; p < 0.05) (Fig. 29). The result for the 

moderate non-linear association of this study between the DBH and AGB of Grewia 

optiva is not in agreement with the Kanwar (2019) who had reported a strong non-

linear association between the two variables at the Balganga Range of the Garhwal 

Himalaya region, India. The mean AGB for Grewia optiva, in this study, was 

recorded as 5.14 ± 3.57 Mg ha-1. This means AGB for Grewia optiva is on the lower 

side compared to Rana et al. (2020) who reported a mean AGB of 35.9 Mg ha-1 for 

Grewia optiva in Garhwal Himalaya, India. The result, however, is slightly higher than 

the mean AGB estimate of 4.91 Mg ha-1 for Grewia optiva reported by Kumar et al. 

(2012) for Dungripanth Village, Srinagar. Grewia optiva is a very important 

agroforestry species, which can also provide fodder for livestock during the winter 

season (Verma et al., 2014). It is also a very good fuelwood species since it has a 

calorific value of 4920 k cal kg-1 (Joshi and Dhiman, 1992).  

 

5.1.5. Comparison of AGC between SCPF and SBEF: 

 

The SCPF recorded higher AGC compared to the SBEF (Fig. 20), which has also 

resulted in a significant statistical difference between the two (W = 43, p < 0.05). This 

can be attributed to the higher mean DBH and higher mean height recorded for the 

SCPF which were 36.37 ± 6.51 cm and 27.34 ± 3.67 respectively (Table 8). The 
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carbon storage in the forests is the function of size (girth), wood density, and height 

(Chave et al., 2014); (Chave et al., 2005); (Macías et al., 2017); (Moussa et al., 

2019). The small-sized trees store less carbon compared to the large-sized trees 

(Nero et al., 2018); (Dimobe et al., 2019); (Portela et al., 2020); (Xu et al., 2018). 

Generally, therefore, the mature trees, which tend to have bigger and larger sizes 

such as DBHs, in a forest ecosystem store more carbon (Köhl et al., 2017); (Gandhi 

and Sundarapandian, 2017); (Clark and Clark, 2000); (Slik et al., 2013). In addition, 

larger trees have been reported to store more carbon despite lesser density and 

richness (Mensah et al., 2020); (Lutz et al., 2018); (Chiba, 1998). The SCPF 

recorded 7.81% of the trees in the mature category; DBH 50-70 cm (Fig. 33). At the 

same time, SCPF recorded 39.84% of the stems in the small-sized young aged DBH 

category < 30 cm. This category, therefore, can also be not neglected and hence can 

play a critical and important role in future carbon sequestration (Gandhi and 

Sundarapandian, 2017). Comparing all the plots, the SCPF had higher AGC in all the 

plots compared to SBEF (Fig. 37). The difference between the AGC of the two 

forests can therefore be attributed to the higher DBHs and heights recorded for the 

trees in the SCPF, as already mentioned above. The difference could also be 

attributed to the species composition since it is also considered an important factor in 

modulating forest carbon stocks (Reyes-Palomeque et al., 2021). Negi et al. (2003), 

for instance, reported that the maximum AGC was stored in the following order: 

pines > deciduous > evergreen > bamboos. A similar, pattern was also reported by 

Kaushal and Baishya (2021). The result of this study is in agreement with (Nizami, 

2012); (Mannan et al., 2019b); (Sharma et al., 2010) who also reported higher AGC 

for the SCPF over the SBEF. Gogoi et al. (2020), however, had reported higher AGC 

in the SBEF in comparison to the Pine Forests which were 140.4 Mg C ha−1 and 

133.6 Mg C ha−1 for SBEF against the 74.7 Mg C ha-1 and 63 Mg C ha−1 for Pine 

Forests of the Meghalaya District, India. They also attributed the higher carbon 

stocks to the presence of overmature trees, with DBH > 66 cm, and the relatively 

higher density of younger trees in the SBEF.  
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5.1.6. Species Wise AGB Contribution: 

 

The Pinus roxburghii contained the highest AGC, with 98.85% of the total, for the 

SCPF (Table 11). The result is in agreement with Pariyar et al. (2019); Shaheen et 

al. (2016) showing higher contributions of AGC by the Pinus roxburghii. Pinus 

roxburghii is usually a dominant species and mostly grows in pure stands throughout 

Pakistan, India, Nepal, and Bhutan (Khan et al., 2014); (Gupta and Dass, 2007). The 

species is commonly known as ‘Chir Pine’ (Anwar et al., 2019). It is spread over 

Bhutan, China, India, Nepal, and Pakistan from 400 to 2300 m a.s.l. (Polunin and 

Stainton, 1984). It is native to the foothills of the Himalayan Hindu Kush Region 

(Aryal et al., 2018). The species provides various economical and ecological 

benefits, due to which nearby communities leaving in or around its zone rely on it for 

various purposes (Khan et al., 2014); (Gupta and Dass, 2007). 

 

The Eucalyptus spp. is native to Australia (Afzal et al., 2018) and was introduced in 

Pakistan in the late 19s (Shah et al., 1991). Amongst the 40 spp. introduced in 

Pakistan, Eucalyptus camaldulensis has been the most widespread and adaptable 

(Bilal et al., 2014). It is a fast-growing species (Afzal et al., 2018), and is locally 

known as ‘Sufeda’ (Khan et al., 2017). The DBH and height for Eucalyptus 

camaldulensis in this study ranged between 38-86 cm and 22-35.5 m, respectively. 

The Eucalyptus camaldulensis recorded a total AGC of 176.14 Mg C ha-1 in this 

study, contributing 33.65% of the total AGC for the SBEF (Table 12). The result of 

this study is in agreement with (Arif et al., 2017) who reported the highest AGC 

contribution from the Eucalyptus camaldulensis towards the Chichawatni Plantation 

in Pakistan. Mandal et al. (2017) also recorded the highest AGC contribution by the 

Eucalyptus camaldulensis in a mixed plantation in the Mahottari District of Nepal.  

 

The Ficus palmata subsp. virgata was the second species with the highest AGC 

contribution to the SBEF. It contributed AGC of 94.24 Mg C ha-1 which was 18% of 

the total AGC. The DBH ranged from 8.2 cm to 87 cm and the height of the Ficus 

palmata subsp. virgata for this study ranged from 6.2 m to 18.6 m. The geographical 

distribution of the Ficus palmata subsp. virgata includes; Afghanistan, Arabian 

Peninsula, Ethiopia, Egypt, Iran, Nepal, Pakistan, Somalia, Sudan, and India 
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(Chaudhary et al., 2012). The species is well known for its medicinal properties 

(Saqib et al., 2014); (Salehi et al., 2021). The result of this study is not in agreement 

with Shaheen et al. (2016) who reported other trees species with higher AGC 

concentrations than the Ficus palmata subsp. virgata in AJK. The study is also not in 

agreement with Ali et al. (2019) who reported lower AGC contribution from Ficus 

palmata subsp. virgata., compared to other species, in four districts of Buner, Dir 

Upper, Dir Lower, and Swat of Khyber Pakhtunkhwa, Pakistan.  

 

5.1.7. AGC in Protected Areas: 

 

Protected areas can play a major role in avoiding the carbon emissions arising from 

deforestation and forest degradation (Fearnside, 2008). Protected areas include 

National Parks and other forms of protection which avoids illegal extractive activities 

and other anthropogenic disturbances (Collins et al., 2017). Protected areas are 

important carbon reserves (Walker et al., 2014); (Dimobe et al., 2019); (Haq et al., 

2020). It is estimated that protected areas store 3.12 × 105 Tg C globally, which 

accounts for 15% of the overall world’s terrestrial carbon stock (UNEP-WCMC, 

2014). Moreover, these protected areas continue to sequester carbon at 0.5 Pg 

C/year, which is about 20% of the terrestrial carbon stock globally (Melillo et al., 

2009).  

 

Carbon stocks held by the protected areas posed with lower risk of being emitted 

into the atmosphere compared to the areas which are outside the protected areas 

due to legal protection (Nogueira et al., 2018). The relative higher carbon stocks in 

the protected areas, however, also portray the effectiveness of the legal protection of 

the protected areas (Nolte et al., 2013). In addition, preventing carbon loss in the 

protected areas can serve as a measure of the effectiveness of the management of 

the protected areas (Nogueira et al., 2018). 

 

The government-managed Pinus roxburghii forests such as protected areas have 

recorded higher carbon stocks compared to the community-managed forests 

(Pariyar et al., 2019); (Sharma et al., 2011). Lecina-Diaz et al. (2019) reported higher 

carbon stocks for the protected areas in comparison to the buffer areas in the 
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Catalonia region, Spain. Sharma et al. (2008) have also reported higher carbon 

stocks for the protected and reserved forests compared to other land uses for 

Western Himalayan Watershed in India. Higher carbon stocks have also been 

reported in the protected areas compared to the areas outside protected areas 

(Dayamba et al., 2016); (Dimobe et al., 2019); (Asner et al., 2018); (Bebber et al., 

2017). The large amounts of carbon, however, can also be released back from the 

protected areas into the atmosphere due to the disturbances such as fires, etc., if in 

case vegetation and fuel load are not adequately managed (Lu et al., 2018).  

 

5.1.8. VIs and AGB: 

 

The NDVI for the study region ranged from -0.34 to 0.80 (Fig. 30). The similar result 

was reported by Mannan et al. (2018) for the same study region ranging from -0.26 

to 0.85 for the year 1990, but for the year 2017 slight differences were noted, as the 

values were reported from -0.67 to 0.62. They used the LANDSAT 5TM data for 

1990 and LANDSAT 8 OLI for 2017, where both have a spatial resolution of 30 m. 

They attributed their lower NDVI values for 2017 to the deforestation caused by the 

local people for fuelwood extraction, livestock grazing, and frequent forest fires. 

Slight differences were also noticed with Naeem et al. (2017) who reported NDVI 

values between -0.87 to 0.69 for the SCPF near Ghora Gali, Murree, Pakistan. They 

used the SPOT-5 data with 2.5 resolution from 2013. Almost similar results were 

obtained by Mannan et al. (2019a) who reported NDVI values for the foothills of the 

Himalayan mountains of northern Pakistan from -0.34 to 1 (1998), -0.14 to 0.89 

(2008), and -0.52-0.83 (2018) using LANDSAT 5 TM for 1998 and 2008 and 

LANDSAT 8 OLI for 2018. Mallick et al. (2012) reported NDVI values, for 2004, 

ranging from 0.15 to 0.528 for the SBEF and SCPF located in the foothills of 

Himalayan in northern India. They used the satellite data from Indian Remote-

Sensing Satellite (IRS)-P6 Linear Imaging Self-Scanning Sensor (LISS)-4. The NDVI 

values range between -1 to 1 where barren lands and residential built areas usually 

have values below 0.1 (Baniya et al., 2019). The water bodies such as lakes etc. 

have values below 0 or in the minus range, as such is the case in this study where 

the water body i.e. Rawal Lake had recorded the NDVI values in the minus range 
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(Askar et al., 2018); (Hussain et al., 2020). The values for the green vegetation 

typically range from 0.2 to 0.8 (Jensen and Lulla, 1987).  

 

In this study, the NDVI had recorded a weak association with the AGB of the SCPF 

(R2 = 0.009; p > 0.05) (Fig. 32) and similarly also recorded a weak association with 

the AGB of SBEF (R2 = 0.13; p < 0.05) (Fig. 33). The association between the two 

variables, NDVI and AGB, was however slightly better in the case of SBEF. The 

weak association between the AGB and NDVI in this study is in agreement with 

Imran et al. (2020) who also claimed a relatively weak non-linear association 

between the two for a study site in Muzaffarabad District, AJK, Pakistan. Similarly, 

Alam et al. (2017) also reported a weak association of the NDVI and AGB (R2 = 

0.19), using S2 satellite data, for the invasive tree species, Broussonetia papyrifera, 

found in the MHNP. Ali et al. (2018), however, reported a significant non-linear 

association between the two variables (R2 = 0.81), using S2 satellite data, for the 

Khanpur Range, Khyber Pakhtunkhwa, Pakistan. Naeem et al. (2017) also reported 

a significant linear association between AGB and NDVI (R2 = 0.7), using SPOT-5 

satellite data, for study sites in Murree and Abbottabad, Pakistan. Similarly, strong 

associations have also been reported between the two variables by the following 

researchers: (Riihimäki et al., 2017); (Motlagh et al., 2018); (Pandey et al., 2019b); 

(Joshi et al., 2019); (Wani et al., 2015). On the contrary, various researchers: 

(Gizachew et al., 2016); (Prawasi et al., 2019); (Bhardwaj et al., 2016); (Sader et al., 

1989); (Khan et al., 2020) have also reported a weak association between the two 

variables.  

 

Some of the drawbacks associated with NDVI also include saturation, which means 

that the increase in forest biomass is not gauged by the NDVI (Wang et al., 2018). 

The saturation can either be due to the maturity of the forest crop (Mutanga and 

Skidmore, 2004); (Wang et al., 2016) or because of the complex forest canopy 

structure (Lu et al., 2016); (Sinha et al., 2016); (Gómez et al., 2014). In the case of 

this study, the complex canopy structure along with the understorey vegetation 

seems to have played a significant role. In SBEF for instance, multi-layer spreading 

crowns were observed along with the profuse understorey vegetation i.e. shrubby 

growth, etc., which may have accounted for an increase in the vegetated area (Khan 
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et al., 2020); (Spanner et al., 1990). This would have resulted in an increase in the 

NDVI values since the light would have been reflected from these vegetated 

surfaces and would not have accounted for the heights and DBHs of the trees which 

are strongly correlated with the AGB (Mohd Zaki et al., 2018). This could be one of 

the reasons that increasing AGB may not have been reflected by the increasing 

NDVI. Nonetheless, the DBHs and heights of trees can also not be directly recorded 

by the optical satellite sensors (Alam et al., 2017). The SCPF had recorded a mean 

NDVI (per plot) of 0.64 ± 0.06 compared to the mean NDVI (per plot) of SBEF which 

was 0.71 ± 0.03. This also corroborates the presence of more vegetated areas in the 

sampled plots of the SBEF mainly due to the spreading crowns and the understorey 

vegetation in the form of shrubs etc. The understorey vegetation was not considered 

in carbon stock calculations because of its negligible contribution to the overall 

carbon stocks (Ming et al., 2014); (Gizachew et al., 2016); (Mannan et al., 2019a). 

Understorey vegetation was mostly absent in the SCPF, which again substantiates 

the reason for higher NDVI values in the SBEF (Nizami, 2012). The other reasons for 

the weak association between the NDVI and the AGB could be due to the shadow 

since the study area is a hilly region, and the mixed spectral response (Sader et al., 

1989); (Gizachew et al., 2016). The satellite data were atmospherically corrected, 

but shadows still may have existed affecting the NDVI values (Alam et al., 2017); 

(Baniya et al., 2019). Mixed spectral response in a pixel, similarly, may have been 

recorded due to the combined effects of soil and shadow etc. (Alam et al., 2017); 

(Wani et al., 2015).  

 

The EVI is considered an improved version of NDVI and was developed to optimize 

vegetation signals for improving sensitivity in high biomass regions and for improved 

vegetation monitoring by de-coupling of canopy background signals and attenuation 

of atmospheric effects (Huete et al., 2002); (Halos and Abed, 2019). The values for 

EVI also range from -1 to 1 (Halos and Abed, 2019); (Fraga et al., 2014); (Malhi et 

al., 2020). The EVI from this study ranged from -0.11 to 0.89 with a mean of 0.45 ± 

0.16 (Fig. 34). The EVI (per plot) for SCPF ranged from 0.24-0.59 with a mean (per 

plot) of 0.41 ± 0.08 and the EVI (per plot) for SBEF ranged from 0.33-0.68 with a 

mean (per plot) of 0.55 ± 0.08. This study has shown a weak statistical association 

between the two variables, EVI and AGB, for both the forests (Fig. 36; Fig. 37). 
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Similar results were also shown by the following researchers: (Anaya et al., 2009); 

(Askar et al., 2018); (Khan et al., 2020); (Nugroho, 2006). Various other researchers, 

however, have recorded a significant association between the two (Pandapotan et 

al., 2016); (Nguyen and Kappas, 2020); (Pandey et al., 2019a). The EVI is more 

sensitive to topographic variations compared to NDVI, which could be one of the 

reasons for the weak association between the EVI and AGB (Matsushita et al., 

2007); (Askar et al., 2018); (Matsushita et al., 2007); (Garroutte et al., 2016). The 

second reason could be related to the canopy structure, as EVI is also known to be 

sensitive to the canopy structures (Gao et al., 2000); (Huete et al., 2002). 

 

5.1.9. C-Band SAR S1 Data and AGB: 

 

The C-band SAR data for this study showed a weak association with the AGB of 

both the forests (Fig. 38; Fig. 39; Fig. 40; Fig. 41). The result is in agreement with the 

following researchers; (Debastiani et al., 2019); (Lucas et al., 2006); (Periasamy, 

2018); (Huang et al.,2018); (Kellndorfer et al., 2003); (Nuthammachot et al., 2020); 

(Kumar et al., 2019). Few researchers have also reported a strong association 

between the AGB and C band SAR data (Castillo et al., 2017); (Kumar et al., 2012); 

(Sarker et al., 2013). The backscatter approach based on SAR data has been widely 

used for AGB mapping (Berninger et al., 2018), and SAR sensors have been utilized 

in this context of AGB and AGC estimation for over three decades (Thumaty et al., 

2016); (Cougo et al., 2015); (Nuthammachot et al., 2020). The backscatter is the 

energy received by the sensor after the transmission which is subsequently related 

to the AGB measurements recorded during the field inventories (Debastiani et al., 

2019). The backscattering coefficient, similarly, is the function of various systems 

and target parameters (Ackermann, 2015). Microwave remote sensing uses radar 

signals of various wavelengths (1mm – 1m) for illuminating the area of interest and 

measures the backscattering from the same targets (Periasamy, 2018). The C-band 

(3.8-7.5 cm wavelength) is sensitive to leaves and smaller branches of tree crowns 

(Dobson et al., 1992). The C-band signals can penetrate 1-2 m deep into the canopy 

(Solberg et al., 2010); (Nizalapur et al., 2010). Unlike the shorter wavelengths such 

as C-band and X-band (2.4-3.8 cm wavelength), the L-band (15-30 cm wavelength) 

and P-band (30-100 cm wavelength) penetrate deeper into the canopy and are 
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sensitive to bigger branches and stems, which store highest of the biomass 

(Rodríguez-Veiga et al., 2017); (Yu and Saatchi, 2016); (Hamdan et al., 2011). Fig. 

69 shows how trees are seen by the longer wavelength microwave SAR sensors. 

The C-band saturates at a biomass level of 20 Mg ha-1 (Solberg et al., 2010); (Imhoff, 

1995); (Santos et al., 2003). It is therefore favored for low biomass areas such as 

regeneration sites (Sinha et al., 2015); (Ghasemi et al., 2011). The L-band saturates, 

for biomass, between 150-200 Mg ha-1 (Wagner et al., 2003); (Mitchard et al., 2009). 

And, the P-band saturates at around 300 Mg ha-1 (Saatchi et al., 2011); (Le Toan et 

al., 2011); (Sandberg et al., 2011); (Hoekman and Quiñones, 2000); 

(Papathanassiou and Cloude, 2001). The working, however, with the longer 

wavelength SAR data is not always feasible due to higher costs and lesser 

availability of operational satellites (Ghosh and Behera, 2018). There is also no P-

band SAR satellite currently available either (Huang et al., 2018). 

 

 

Fig. 69: Trees as seen by the longer wavelength microwave bands (Walker, 2000) 

 

 

The BIOMASS mission, which is the seventh Earth Explorer mission by ESA, will be 

launched in 2023 (Gelas et al., 2021). This will be the first P-band space-borne 

mission aiming at AGB mapping (Quegan et al., 2019). Similarly, NASA -Indian 

Space Research Organization (ISRO) Synthetic Aperture Radar (NISAR) is a joint 
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mission planned for launch in 2022 which will also become the world’s first SAR 

satellite operating in dual wavelengths of L-band and S-band (7.5-15 cm wavelength) 

(Silva et al., 2021); (Ghosh and Behera, 2018). The datasets from the NISAR 

satellite will also be freely available (Debastiani et al., 2019). The C-band SAR data 

by the ESA S1 mission is however freely available (Ghosh and Behera, 2018); 

(Huang et al., 2018). This can, nonetheless, serve as an opportunity for developing 

countries, where the requisite funding for satellite imageries is lacking, to regularly 

monitor their forest biomass potentials (Ghosh and Behera, 2018); (Castillo et al., 

2017). In this study, therefore, the penetration level and saturation could be the 

reasons for the weak association between the C-band SAR data and the AGB of 

both the forests (Debastiani et al., 2019); (Imhoff, 1995); (Periasamy, 2018); (Huang 

et al., 2018); (Nuthammachot et al., 2020).  

 

5.1.10. Machine Learning Algorithms for AGB: 

 

The RF algorithm in this study performed better than the SVM and SR in estimating 

the AGB of the SCPF (Table 15). Debastiani et al. (2019) reported that the RF 

algorithm performed better compared to other algorithms, using S1, S2, and LiDAR 

data, in predicting the AGB in Brazilian tropical forests. Ghosh and Behera (2018) 

reported the better performance of the RF algorithm over the Stochastic Gradient 

Boosting (SGB) algorithm in predicting the AGB, by combining S1 and S2 datasets, 

for Katerniaghat Wildlife Sanctuary, India. Pandit et al. (2018) have reported that the 

RF algorithm performed better than the MLR model, using S2 data, in predicting 

AGB for the Parsa National Park, Nepal. Similarly, various researchers:(Dang et al., 

2019);(Wu et al., 2016b); (Li et al., 2020); (Liu et al., 2019); (Pham and Brabyn, 

2017) have also demonstrated better performance of RF algorithm in predicting the 

AGB using remote sensing data. Machine learning algorithms can help in 

establishing a complex non-linear relationship that exists between the predictor and 

outcome variables (Ghosh and Behera, 2018). The RF algorithm is not affected by 

dimensionality and therefore can handle a large set of variables which is why, in 

some instances, it performs better than the other algorithms (Biau, 2012); (Scornet et 

al., 2015). RF algorithm also offers other advantages such as high accuracy, high-

speed computation, robustness, and its capacity for predicting important variables 
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(Belgiu and Drăguţ, 2016); (Cutler et al., 2007). As already mentioned, it also 

handles the non-linearity in a model effectively (Pandit et al., 2018).  

 

The predictor set ‘S1 and VIs’ for the RF algorithm recorded the best RMSE of 52.46 

Mg ha-1 and R2 of 0.31 (Table 15). This predictor set at the onset had 20 variables 

but was left with six top predictor variables i.e. S1_VV_sd, S1_VV_min, S1_VH_avg, 

S1_VH_sd, S1_VV_avg, S1_VV_max, which provided the best result (Fig. 43). 

These top six variables mainly included the VV and VH polarizations of the C-band 

SAR data. The backscatter coefficients at these two polarizations have been 

therefore the most important variables in predicting AGB. The combination of 

predictor variables could yield better predictive results for AGB estimation (Ghosh 

and Behera, 2018). Similar results have also been reported by: (Pham et al., 2017); 

(Shao and Zhang, 2016); (Castillo et al., 2017); (Navarro et al., 2019); (Cougo et al., 

2015); (Sivasankar et al., 2018). The two highest moderate correlations with the 

AGB for SCPF, using Spearman correlation coefficient, also included VV and VH 

polarizations; S1_VH_sd (rs: 0.4; p< 0.05), S1_VV_sd (rs: 0.38; p< 0.05) (Fig. 42). 

 

The AGB map predicted by the RF algorithm for the SCPF ranged from 94.55 Mg ha-

1 to 283.77 Mg ha-1, with a mean of 163.57 ± 49.18 Mg ha-1 (Fig. 44). The AGB 

recorded at field plots, on the other hand, ranged between 83.91 Mg ha-1 and 378.03 

Mg ha-1 with a mean of 146.73 ± 65.11 Mg ha-1. The predicted AGB was higher at 

the lower end and lower on the higher end of the AGB recorded from the field. The 

mean of the predicted AGB was also higher than the mean of the AGB recorded at 

the field. Overall, a significant statistical association (R2 = 0.89) was recorded 

between the observed AGB at the field plots and the estimated AGB from the RF 

algorithm (Fig. 45). According to the AGB map for SCPF, the highest AGB has 

displayed away from the human settlements mainly and the lower AGB is generally 

located near the settlements, which can also be corroborated by the field 

inventorying exercise. The higher AGB may therefore be attributed here to the lower 

disturbances due to the distant settlements (Caviglia-Harris and Harris, 2011); 

(Farias et al., 2018). The predicted AGB raster of the SCPF was clipped to the extent 

of the SCPF, obtained as an LC class, from the LC classification of the MHNP using 

Landsat 8 OLI image and RF algorithm. The LC classification of the Landsat 8 OLI 
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image, for the year 2019, recorded an overall accuracy of 97.09% (Table 18), which 

also validates the spatial distribution of the AGB of the SCPF in MHNP. 

 

The SVM for the SBEF performed better than the RF algorithm and the SR (Table 

16). Chen et al. (2018) reported the better performance of SVM over other 

algorithms such as RF and Artificial Neural Network (ANN), using S1 and S2 satellite 

data, for estimating AGB for the Jilin Province of North East China. Sivasankar et al. 

(2018) also demonstrated the better performance of SVM over linear regression 

analysis, using S1 and L-band ALOS-2/Phased-Array L-band Synthetic Aperture 

Radar – 2 (PALSAR-2), for Nongkhyllem Wildlife Sanctuary and Reserve Forest in 

Meghalaya State, India. Various researchers: (Navarro et al., 2019); (Pham et al., 

2018); (Gleason and Im, 2012); (Wu et al., 2016a), similarly, also demonstrated 

better performance of SVM, using remote sensing data, for the estimation of AGB. 

The SVM is a popular machine learning algorithm because of its stability, easy 

tuning, and modeling precision (Deb et al., 2020); (Drake et al., 2006); (Adam et al., 

2014). It is well known for outperforming various machine learning algorithms in 

estimating AGB (Jachowski et al., 2013). It also performs better with smaller 

datasets, which could be the reason why it was better in the case of SBEF (Wu et 

al., 2016a); (Diao et al., 2012); (Pal and Mather, 2005).  

 

The predictor set ‘S1 and S2 Texture’ recorded the best RMSE of 32.59 Mg ha-1and 

the R2 of 0.21. The nine best variables out of the total 25 variables from this predictor 

set provided the most optimal RMSE result. These nine best variables were i.e., 

S1_VH, S1_VH_sd, S2_con_max, S2_con_sd, S2_con_avg, S2_ent_sd, S2_ent, 

S2_con, S2_asm_sd (Fig. 47). Image texture is considered as an important property 

that can assist in identifying spectrally different objects (Haralick et al., 1973). It is 

also an important source of information that shows potential for the identification of 

forest structural characteristics and AGB estimation (Champion et al., 2008); (Pandit 

et al., 2020). (Wang et al., 2014); (Pandit et al., 2020). Khan et al. (2020) also 

demonstrated that the inclusion of texture metrices improved the model accuracy for 

AGB estimation. Various other researchers: (Eckert, 2012); (Reddy et al., 2017); 

(Sarker and Nichol, 2011); (Schumacher et al., 2016); (Sibanda et al., 2017) have 

also used texture metrices for AGB estimation. Texture metrices perform better 
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under high local variance, which could also be the reason why they performed better 

in the SBEF because it consists of mixed broadleaved trees species (Pandit et al., 

2020); (Woodcock and Strahler, 1987); (Ghosh and Behera, 2018). The texture 

metrices derived from S2 i.e., S2_ent_max (rs: 0.49; p< 0.05), S2_con_sd (rs: 0.42; 

p< 0.05), S2_con_max (rs: 0.4; p< 0.05), S2_con_avg (rs: 0.4; p< 0.05), also formed 

the highest moderate positive correlation, using Spearman correlation coefficient, 

with the AGB of the SBEF (Fig. 46). VH polarization of the C-band SAR data have 

been shown to be more efficient than the VV polarization for AGB estimation 

because it is less influenced by the soil moisture (Navarro et al., 2019); (Huang et 

al., 2018). This may be one of the reasons why VV polarization may not have played 

a significant role in AGB estimation in the case of SBEF. The higher backscatter 

from the VH polarization is also produced from the volume scattering coming from 

the tree crown, which could also be another reason for the VH being one of the 

important variables, for SBEF, in this study (Nuthammachot et al., 2020); (Laurin et 

al., 2018). The VV on the other hand is influenced more by the surface (Laurin et al., 

2018). The result, regarding the VH being one of the most important variables in 

AGB estimation, is also consistent with (Castillo et al., 2017); (Navarro et al., 2019); 

(Cougo et al., 2015). SAR backscatter from the forest vegetation generally depends 

on the water content, size, density, and orientation of the leaves (Ghosh and Behera, 

2018); (Castel et al., 2002).    

 

The AGB estimated for SBEF using the final SVM algorithm ranged between 9.67 

Mg ha-1 and 30.92 Mg ha-1 with the mean of 20.40 ± 3.70 Mg ha-1 (Fig. 48). The AGB 

recorded at the field plots ranged between 8.57 Mg ha-1 and 295.37 Mg ha-1 with the 

mean of 33.77 ± 51.63 Mg ha-1. There was a slight difference at the lower end but a 

significant difference at the higher end between the two AGB estimates. The SBEF 

recorded mainly lower AGB compared to the SCPF. The highest AGB of 295.37 Mg 

ha-1 recorded for SBEF was only for one plot which included the Eucalyptus 

camaldulensis. The Eucalyptus camaldulensisis is known for its fast growth rate 

which results in higher AGB rates (Sheikh, 1993); (Smith et al., 2017). This 

significant difference could be the reason that the predicted AGB by the SVM final 

model recorded a moderate association (R2 = 0.4) with the observed AGB (Fig. 49). 

The RF final model on the other hand recorded a significant association of (R2 = 
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0.85) but the RMSE recorded by the RF, for the predictor set ‘S1 and S2 texture’, 

was 36.61 Mg ha-1which was not better than the RMSE of SVM which was 32.59 Mg 

ha-1. The sample size in this case may have played a role, since RF algorithm does 

not perform better in case of lower sample size (Fassnacht et al., 2014); (Latifi et al., 

2012). The predicted AGB raster of the SBEF was clipped to the extent of the SBEF, 

obtained as an LC class, from the LC classification of MHNP using Landsat 8 OLI 

image and RF algorithm. As also mentioned earlier, the LC classification of the 

Landsat 8 OLI image, for the year 2019, recorded an overall accuracy of 97.09% 

(Table 18), which validates the spatial distribution of the AGB of the SBEF in MHNP. 

 

5.2. LC Classification and LCCD of MHNP for the time-period between 

1999 and 2019 

 

5.2.1. RF for LC Classification: 

 

The RF algorithm, used for the classification of remote sensing images, requires an 

optimal selection of mtry because it can affect the strength and correlation amongst 

the decision trees (Ming et al., 2016). Selection of all the variables at a split, in the 

case of mtry, can lead to the overfitting of the RF model, thus a portion of variables is 

selected instead of all the variables (Breiman, 2001b). A large mtry increases the 

interdependency of trees and may compromise the stability of the RF model (Zhang 

and Yang, 2020). A small mtry, however, may increase the biasness in the ranking of 

the variables (Strobl et al., 2008). The ntree on the other hand determines the votes 

as well as the accuracy. The increase in ntree converges the generalization error, 

thereby avoiding the overfitting of the RF model (Breiman, 1996). However, various 

studies have demonstrated that the addition of more trees does not improve the 

classification accuracy and also tends to increase the computational processing time 

required for running the RF algorithm (Menze et al., 2011); (Kühnlein et al., 2014). 

RF algorithm was used for LC classification for this study. The use of RF for land 

cover classification has also been demonstrated by various researchers with high 

accuracies. For instance, Talukdar et al. (2020a) reported high accuracy for RF 

(Kappa coefficient 0.89) compared to the SVM, ANN, Mahalanobis Distance(MD), 

Fuzzy Adaptive Resonance Theory-Supervised Predictive Mapping (Fuzzy 
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ARTMAP) and SAM using Landsat 8 OLI satellite data for the riparian landscape of 

the river Ganga from Rajmahal to Farakka barrage research site in India. Adam et al. 

(2014) reported a high accuracy for RF (Kappa coefficient 0.92) compared to the 

SVM using RapidEye image for the eastern coast of KwaZulu-Natal, South Africa. 

Pal (2005) reported that RF had slightly high accuracy (Kappa coefficient 0.86) than 

the SVM using Landsat 7 ETM+ for a study area near Littleport, Cambridgeshire, UK. 

Zhang et al. (2017) reported high accuracy for RF (Kappa coefficient 0.85) using 

Landsat 5 TM for the Wuhan urban agglomeration (WUA), located in the eastern 

portion of Hubei Province, China. Maxwell et al. (2018) have also reported high 

accuracies for RF classifier used for LC classifications.  

 

5.2.2. Spectral Reflection: 

 

The SBEF and SCPF showed the highest mean spectral reflection for band 4 (NIR) 

for Landsat 5 TM and Landsat 7 ETM+ images and band 5 (NIR) for Landsat 8 OLI 

image used in this research (Fig. 59; Fig. 60; Fig. 61), which is typical for the 

vegetation due to the internal structure of the leaves (Zhang and Zhu, 2011). The 

decrease, however, was noticed for the corresponding bands of SWIR1 (band 5 for 

Landsat 5 TM and Landsat 7 ETM+; band 6 for Landsat 8 OLI) and SWIR2 (band 7 

for all three Landsat images i.e. Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI), 

which may be due to the vibrational absorptions by the water content and other leaf 

components such as lignin and cellulose (Herold et al., 2004). The lowest mean 

spectral values for band 2 (Blue) and band 4 (Red) of the Landsat 8 OLI image of 

this study, for SBEF and SCPF, also corresponds with the results of Alba et al. 

(2017) and López-Serrano et al. (2016). The lower values can be associated with the 

absorption of electromagnetic radiation for photosynthesis by the vegetation 

(Feilhauer et al., 2015). The water body has also shown a typical highest mean 

spectral reflection for band 1 (Blue) for Landsat 5 TM and Landsat 7 ETM+ images 

and band 2 (Blue) for Landsat 8 OLI image and the lowest mean spectral reflectance 

for band 5 (SWIR 1) and band 7 (SWIR 2) for Landsat 5 TM and Landsat 7 ETM+ 

images and band 6 (SWIR 1) and band 7 (SWIR 2) for Landsat 8 OLI image (Zhang 

and Zhu, 2011). The settlements have shown the two highest mean spectral 

reflections for the band 4 (NIR) and band 5 (SWIR 1) for Landsat 5 TM and Landsat 
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7 ETM+ images and band 5 (NIR) and band 6 (SWIR 1) for Landsat 8 OLI image. 

Stathakis and Faraslis (2014) have stated that the spectral behavior for the 

settlements can be extracted from NIR and SWIR ranges. Iqbal et al. (2013) have 

also stated that the spectral curve for the settlements or man-built materials 

gradually increases from the visible to the NIR range, which was also the pattern in 

this study. The agricultural lands show high reflectivity in the NIR region and higher 

absorption in blue and red bands regions (Ayala-Silva and Beyl, 2005). This 

corresponds to the highest mean spectral values for agricultural land for band 4 

(NIR) for Landsat 5 TM image and band 5 (NIR) for Landsat 8 OLI image in this 

study. Band 5 (SWIR 1) showed the highest mean spectral reflection for agricultural 

land in the case of the Landsat 7 ETM+ image in this study. The SWIR bands are 

known for showing specific reflections from vegetation and soil moisture contents 

(Swathandran and Aslam, 2019). Similarly, SWIR 1 had the highest mean spectral 

reflections in the case of bare lands as well, which is again due to the characteristic 

of SWIR bands to discriminate soil from vegetation (Kartika et al., 2019). Nguyen et 

al. (2021) have also recommended the use of modified bare soil index containing 

SWIR and NIR wavelengths derived from Landsat 8 OLI for bare soil detection, 

which emphasizes the importance of SWIR in the case of bare lands. The 

grasslands in this study have also shown the highest mean spectral reflection by NIR 

bands which again highlights the influence and presence of vegetation affecting 

these reflections.  

 

5.2.3. Importance of Variables: 

 

Although, only ranking of the variables was performed here and not the feature 

selection, otherwise Immitzer et al. (2012) demonstrated that the MDA criterion is 

very efficient for the feature selection, which is also supported by Nicodemus and 

Malley (2009) and Nicodemus (2011). Feature selection is mostly required for 

reducing the set of a large number of variables to an optimal size for enhancing the 

accuracies of the machine learning algorithms and optimizing the computational time 

required by the algorithms (Kursa and Rudnicki, 2010). The green band was noticed 

to be the lowest of all the variables on two occasions and the second lowest on one 

occasion in ranking concerning the MDA, which could be attributed to the similar 
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green color portrayed by the vegetation for different land cover classes i.e. SBEF, 

SCPF and grassland (Feng et al., 2015). The NIR (B4 - Landsat 7 ETM+ 1999)and 

SWIR 1 (B5 - Landsat 5 TM 2009; B6 - Landsat 8 OLI 2019) were highly ranked 

features in this study using MDA which is also consistent with the findings of Zhang 

and Yang (2020). This indicates that these two bands provide more useful 

information for the classification than the visible bands used in this study (Li and 

Chen, 2005). As already mentioned, SWIR bands are also sensitive to leaf and 

surface moisture contents, which assists the classification between land covers with 

high moisture differences (Ge et al., 2020).  

 

5.2.4. LCC Pattern: 

 

The highest increase was recorded for agricultural land which increased 76.49% 

from 1999 to 2009, 30.66% from 2009 to 2019, and an overall increase of 130.62% 

from 1999 to 2019 (Table 22). The ROC for agricultural land, for the period 1999-

2019, was recorded in the form of an increase of 35.03 ha/year.  

 

Results of this study are in agreement with Mannan et al. (2018) who have reported 

the highest increases in agricultural land for all three time periods i.e., 1990-2000, 

2000-2010, and 2010-2017 for MHNP. They have reported, for agricultural land, an 

increase of 9.21% for 1990-2000, a 21.22% increase for 2000-2010, and a 15.69% 

increase for 2010-2017. They used Landsat 8 OIL, Landsat 5 TM, and Landsat 7 

ETM images for classification and change detection. Their kappa coefficient, using 

MLC, were 0.90, 0.91, 0.87, and 0.91 for the years 1990, 2000, 2010, and 2017 

respectively, which are close to the kappa coefficients estimated for this study. 

Mannan et al. (2018) have attributed this increase in agricultural land to the 

increasing population in the MHNP and its surroundings, especially the adjoining 

Islamabad city. Khalid et al. (2019) have reported one of the highest increases for 

the agricultural land in the MHNP with a 9% increase from 1992-2000 and a 4% 

increase from 2000-2011. They used Landsat 5 TM images for their study and 

recorded an overall accuracy, using a hybrid maximum likelihood approach, of 

99.17% for the LC classification of 1992, 98.33% for the LC classification of 2000, 

and 98.33% for the LC classification of 2011, which are slightly higher than the 
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results for this study. Kappa coefficients were reported as 0.9843, 0.9627, and 

0.9679 for the years 1992, 2000, and 2011 respectively, which are close to the 

results of this study. They have attributed this increase in agricultural lands to the 

increase in road networks and population. According to Ayaz (2005), 60% of the 

population of the MHNP depends on agriculture for subsistence. Khalid et al. (2015) 

reported the highest increasing trends for agricultural land for the MHNP with 9% for 

1992-2000 and 4% for 2000-2011. They used Landsat 5 TM images with hybrid 

classification for their LC classification. They also attributed this increasing trend to 

the development of roads and population growth. For instance, there were 10 

villages in the park in 1990, which have increased to 20 villages in 2017 (Khalid et 

al., 2015).  

 

Mannan et al. (2019a) have found the highest increases to occur in agricultural lands 

in the foothills of the Himalayan mountains, of which the MHNP is also a part. They 

reported a 68.05% increase in agricultural lands from 2008-2018. They used Landsat 

8 OLI and Landsat 5 images for the LC classification and reported kappa coefficients 

of 0.83, 0.82, and 0.84 for their classifications, using MLC, for the years 1998, 2008, 

and 2018, respectively. Their user’s accuracies and producer’s accuracies for 

agricultural land were recorded as 72.73% and 96% respectively for the years 1998 

and 2008, 72.73% and 85.71% for the year 2018. The results for the user’s 

accuracies and producer’s accuracies are not in agreement with this research. 

Similarly, the kappa coefficients are also not in agreement, since the kappa 

coefficients for this study are 0.93, 0.96, and 0.96 for the years 1999, 2009, and 

2019 respectively. Mannan et al. (2019a) have attributed the increase to the 

population expansion of Islamabad city. 

 

Islamabad is the capital city of Pakistan and is adjoined by the MHNP. The 

population of the city had grown rapidly from 169,000 in 1979 to 1,095,000 in 2019 

(Shah et al., 2021). This growth had resulted in the expansion of the city from 97.7 

km2 in 1979 to 474.8 km2 in 2019 (Shah et al., 2021). The expansion has opened 

various opportunities such as increasing road networks for providing easy access for 

the farmers to the desirable markets thus encouraging them to practice agriculture 

(Khalid et al., 2015). This study has shown a decrease in settlements, however, 
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which is contrary to various studies: Zafar (2020); (Iqbal et al. 2013); (Khalid et al., 

2019). The highest conversion for settlements, in this study, was to grasslands and 

bare lands (Table 23; Table 24; Table 25). The contrary results for this study for 

settlements could therefore be attributed to the similarity of spectral signatures 

between the three classes i.e., settlements, grasslands, and bare lands.  

 

The SCPF had the highest decrease, amongst all the LC classes, of 14.99% for the 

period 2009-2019 in this study (Table 22). Khalid et al. (2019) reported a 53% 

decrease in SCPF in MHNP, the highest amongst other LC classes, for the period 

1992-2000. They, however, reported a 27% increase in SCPF for the period 2000-

2011. They have attributed the decrease to soaring temperatures, prolonged 

droughts, forest fires, overgrazing, fuelwood extraction by local communities, 

conversion to agricultural lands, and limestone extraction for cement industries. The 

improvement was attributed to the ban on cutting Pinus roxburghii for fuelwood and 

timber purposes and the plantation campaign of the Pinus roxburghii was also cited 

as a reason for the improvement in the forest. In this study, the highest conversion of 

SCPF was to the SBEF and the grassland, from 2009-2019 (Table 23), which could 

also be due to the abovementioned reasons cited by Khalid et al. (2019) that may 

have led to this conversion (Sudhakar Reddy et al., 2018); (Shafiq et al., 1997). The 

prolonged drought followed by continuous soaring temperatures of 45 °C results in 

wild and anthropogenic fires, which subsequently contribute to the deforestation and 

degradation of the SCPF (Khalid et al., 2015). The forest is already under threat due 

to climate change, which is expected to aggravate further in the future (Khalid et al., 

2019). Similarly, Khalid et al. (2015) reported 320 forest fires from 2002 to 2012, 

which have affected approximately 8 km2 of the area in the MHNP. These fires 

mostly affect the SCPF more than the SBEF in the MHNP (Mannan et al., 2018). 

Forest fires can also lead to the conversion of coniferous forests to broadleaved 

forests, shrublands, and grasslands, which may require decades to revert to their 

original environment (Li et al., 2021). According to Berenguer et al. (2014), the forest 

sites which were encountered by the forest fires, combined with the logging, 

revealed the reduction of 40% of carbon stocks compared to the undisturbed sites in 

the Amazon. According to Khalid et al. (2015), the MHNP faces the threat of 

overgrazing from 12,000 to 13,000 livestock. Similarly, there are over 700 stone 
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quarries found around the MHNP, which are involved in limestone extraction 

(Mannan et al., 2018). Margalla Hills have high-quality Limestone, including 

sandstone and shale, which is used for infrastructural development purposes 

(Nawaz and Fayaz, 2004). Iqbal et al. (2013) have reported an increase in limestone 

extraction area in MHNP from 0.35% to 5.72% from 1992 to 2009 respectively. 

Overgrazing can influence vegetation and soil carbon negatively and can transform 

the carbon sink into a considerable source (Liu et al., 2021). There is also a high 

dependency of local communities on fuelwood. Saleem et al. (2014), for instance, 

have reported that 75% of the population of Saidpur Village of MHNP depend on 

fuelwood.  

 

In this study, the SBEF had the second highest decrease for the period 1999-2009, 

amongst all the LC classes, which was 1.94% (Table 22). The grassland was one of 

the highest conversions for the SBEF for the period 1999-2009 (Table 23). The 

results are in agreement with Saeed et al. (2011) who reported a decrease in SBEF 

and its conversion to the grassland for the Rawal watershed area in the Pothwar 

region of Pakistan. They have attributed this to the undue pressure on the forests, by 

the local communities, for the firewood due to the unavailability of alternate energy 

resources. Khalid et al. (2019) also reported a change in SBEF of -6% for the period 

2000-2011 for the MHNP. They attributed this change to an increase in settlements, 

population expansion, conversion to agricultural fields, and illegal logging.  

 

The grassland, in this study, has shown a decreasing trend. Zafar (2020) reported a 

decrease of 1.8% from 1997 to 2003 and 2.9% from 2003 to 2008 for the grassland 

in the MHNP. They have attributed this decrease to the construction of road 

networks and an increase in anthropogenic activities. Khalid et al. (2019) have 

reported a decrease of 22% from 1992 to 2000 and 6% from 2000 to 2011 in the 

grassland of MHNP. They have attributed this reduction to overgrazing, an increase 

in settlements, and forest fires. Grasslands are high biodiverse areas, spreading 

approximately over 20-30% of the world's surface, and are often understudied and 

least protected (Wilsey, 2021). In this study, the highest conversion of grassland was 

to SBEF and agricultural land for the overall period from 1999 to 2019. The 
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availability of favorable conditions such as water may have encouraged the 

conversion of grassland to SBEF (Sheikh, 1993).   

 

The water body had shown fluctuations in this study where it increased for the first 

decade 1999-2009 by 25.21% but decreased in the second decade from 2009-2019 

by 3.60% (Table 22). Similar fluctuations were also highlighted by Zafar (2020) who 

reported a decrease of 0.7% in the water body of the MHNP for the period 1997-

2003 and an increase of 1.08% for the period 2003-2008. They have attributed this 

change to seasonal variations. On the contrary, Khalid et al. (2019), have reported a 

continuous decrease of 46% and 1.5% of the water body of MHNP for the periods of 

1992-2000 and 2000-2011, respectively. They have attributed this change to 

deforestation, population expansion, and infrastructure development, which have 

severely affected ground infiltration capacities. Hassan et al. (2016) reported an 

increase of 11.5% in the water body of the Islamabad region, including the MHNP, 

from 1992 to 2012. They have attributed this increase to the monsoon’s rainfall. 

Similarly, Iqbal et al. (2013) also reported fluctuating trends in the water body in 

MHNP and attributed the increase to the rainfall before the satellite data was 

obtained and the decrease to the overconsumption of the water. In the case of 

barren land, a similar fluctuating trend recorded in this study was also reported by 

Khalid et al. (2015) for MHNP. They attributed the decrease in barren lands to the 

increasing settlements.  

 

Mannan et al. (2019a) have predicted an increase in agricultural lands and 

settlements for the years 2018 to 2028 in the region of the Himalayan foothills, which 

will put undue pressure on the forests of the region resulting in their decline. 

Similarly, Wang et al. (2020) have predicted a decrease in forests of Kathmandu, 

Nepal, by 14.43% due to an increase in urbanization and population expansion for 

the year 2030. Christensen and Jokar Arsanjani (2020) have predicted a decrease of 

4.21%, by 2030, in the forest area of Virunga National Park, Democratic Republic of 

Congo, due to the urbanization and agricultural fields. Another study by Tadese et al. 

(2021) has predicted a decline of 77.8% in forests of Majang Forest Biosphere 

Reserve, Ethiopia, for the period 2032-2047, due to settlement and agricultural 

expansion. The population expansion, thus, poses a grave threat to the future of the 
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forest ecosystems too, as clearly highlighted by the abovementioned studies. It is, 

therefore, essential to formulate suitable strategies for safeguarding forests and 

tackling the challenges arising from the increasing population.  
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6. Conclusion: 

 

6.1. Forest Biomass and Carbon Stock Assessment of MHNP. 

 

In this study, it was found that SCPF had a higher mean AGB and mean AGC 

compared to the SBEF. The SCPF recorded mean AGB and mean AGC as 146.73 ± 

65.11 Mg ha-1 and 73.36 ± 32.55 Mg C ha-1, respectively. The mean AGB and mean 

AGC for the SBEF were 33.77 ± 51.63 Mg ha-1 and 16.88 ± 25.81 Mg C ha-1, 

respectively. There were significant statistical differences recorded between the 

mean AGB (W = 43, p < 0.05) and mean AGC (W = 43, p < 0.05) of the two forests. 

The higher mean AGB and mean AGC of the SCPF in comparison to the SBEF can 

be attributed to the larger sizes of the trees in the former in the form of higher DBHs 

and heights. The difference may also be attributed to the species composition. Pinus 

roxburghii recorded higher AGC compared to other trees species in the SCPF. It 

recorded a total AGC of 3336.13 Mg C ha-1, forming 98.85% of the total AGC of the 

SCPF. Eucalyptus camaldulensis recorded the highest AGC, amongst all the trees 

species, for the SBEF with 176.14 Mg C ha-1, which was 33.65% of the total AGC. 

The unimodal DBH distribution of the two forests suggests they are experiencing 

deforestation and degradation. Further comparison with other similar forest types 

and protected areas, also hinted towards the lower AGB and AGC. The lower AGB 

and AGC in a forest ecosystem are mainly associated with human or natural 

disturbances (Lugo and Brown, 1992). Similarly, lower deforestation and forest 

degradation rates are generally encountered in protected areas, affecting forest 

biomass and carbon stocks, in comparison to the areas lying outside the protected 

areas (Leverington et al., 2010); (Nagendra, 2008). Adequate forest management, 

therefore, is necessary for conserving and enhancing not only the AGB and AGC but 

also for safeguarding the associated biodiversity and the local communities which 

depend upon the forestry resources for their sustenance (Feldpausch et al., 2005). 

 

The NDVI and EVI for the Margalla Hills National Park were recorded as -0.34-0.80 

and -0.11-0.89, respectively. The linear regression analysis between the AGB and 

the NDVI for the SCPF and SBEF showed weak statistical associations. Weak 
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statistical associations were also recorded for the EVI and AGB of the two forests. A 

similar pattern was also noticed with the linear regression analysis of the AGB with 

the VH and VV Polarizations obtained from the SCPF and SBEF, using C-band SAR 

data.  

 

The best model was RF, for the SCPF, which was eventually used for the AGB 

mapping. And the best model for the SBEF was SVM. SR did not perform well in the 

case of both forests. The predictor set ‘S1 and VIs’ with six variables performed the 

best for the RF algorithm. The predictor set ‘S1 and S2 Texture’ finally with nine 

variables performed the best for the SVM algorithm. The AGB map for SCPF had the 

predicted AGB values ranging from 94.55 Mg ha-1 to 283.77 Mg ha-1. Significant 

statistical association (R2 = 0.89) was recorded between the predicted and observed 

AGB of the SCPF. The predicted AGB map for the SBEF ranged between 9.67 Mg 

ha-1 and 30.92 Mg ha-1. A moderate linear association (R2 = 0.4) was recorded 

between the predicted and observed AGB of the SBEF.  

 

6.2. LC Classification and LCCD of MHNP for the time-period between 

1999-2019. 

 

The SBEF formed the highest LC, amongst all other LC classes, for the MHNP with 

40.90%in 1999, 40.11% in 2009, and 43.21% in 2019. RF algorithm used for the LC 

classification produced an overall accuracy of 94.83%, 96.77%, and 97.09% for the 

years 1999, 2009, and 2019, respectively. Kappa coefficients were recorded as 0.93, 

0.96, and 0.96 for the years 1999, 2009, and 2019, respectively. The highest 

decrease for the time-period 2009-2019 was recorded for the SCPF with 14.99%. 

The highest increase for the overall period 1999-2019 was recorded for the 

agricultural land with 130.62%.    

 

Overall, it was found in this study that the mean AGB and AGC from the two forests 

of the MHNP are generally on the lower side based on the comparison with other 

studies. The LCCD in this study revealed a decrease of 14.99 % in the SCPF which 

was the highest amongst all the LC classes for the time-period 2009-2019. This, 

therefore, has affected the actual potential of the SCPF and which could be the 
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reason why the mean AGB and AGC have been on the lower side compared with 

other studies. The increasing areas of agricultural land recorded in this study further 

pose a danger to the forest ecosystems and the mean AGB and AGC of the MHNP 

for the future.  

 

To the best of my knowledge, this has been the first time where AGB has been 

estimated using the machine learning algorithms i.e., RF and SVM, in combination 

with S1 and S2 data in Pakistan. The same is the case with the use of RF for the LC 

classification in this study, which has been again, to the best of my knowledge, the 

first time, it has been used in the same study area. Mostly, the MLC had been used 

in various studies for LC classifications for the same study area. The RF algorithm 

used in this study mostly showed higher overall accuracies and kappa coefficients 

for the LC classifications compared to other studies using MLC for the same site or 

the nearby regions. MLC delivers excellent results when using unimodal data but 

shows limitations against the multi-modal data because of assuming that the data 

have normal distributions (Liu et al., 2011). RF on the other hand does not have to 

assume that the distribution of the data is normal (Belgiu and Drăguţ, 2016). 

Therefore, the RF algorithm can also be adopted for future LC classification studies 

in the mountainous and other forested areas of Pakistan.  
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7. Recommendations: 

 

Following are the recommendations based on the findings from the research 

objectives/sub-objectives of this study: 

 

➢ The IWMB should formulate sustainable management plans for the MHNP, 

which should cater to the adequate management of the forests in combination 

with safeguarding the local communities depending on these forests for their 

subsistence. The findings from this study in this regard should be utilized and 

incorporated into these plans by the IWMB.  

 

➢ The findings should also be used by the IWMB for the formulation of REDD+ 

projects with the help of international nature conservation organizations such 

as WWF-P and IUCN and regional forest department and the Ministry of 

Climate Change, Pakistan, etc. These REDD+ projects would be able to draw 

suitable and adequate funding required for the conservation and improvement 

of the forestry resources of the MHNP. Local communities must also be 

catered for in these projects since they rely on these forests for their 

sustenance.  

 

➢ MHNP should also be included in the urban planning and management of 

Islamabad city for countering the negative consequences, that the MHNP is 

facing due to the increase in population and settlements in the city. Capital 

Development Authority (CDA), which is responsible for the overall 

management of Islamabad city should be approached by the IWMB and the 

inclusion of the MHNP in the urban management plan should be emphasized.    

 

➢ The use of remotely sensed satellite imagery must be integrated into the 

research and monitoring activities of the IWMB. The Landsat imageries, S2 

and S1 are freely available resources and have demonstrated their 

effectiveness in AGB and AGC assessment studies and monitoring of LC 

areas, and in detecting the spatial and temporal changes in the various LCs. 
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Necessary training and capacity-building programmes should be conducted 

for the responsible staff by the IWMB in this regard, which would make the 

integration and use of the remote sensing techniques and GIS tools easier in 

the research and monitoring framework of the MHNP.  

 

➢ The RF algorithm had shown good potential for producing LC classifications. 

It offers certain advantages such as being easy to use, producing higher 

accuracies, being robust to noise and outliers, providing estimates of the 

important variables involved in the classification, etc. The use of RF algorithm 

with remotely sensed data has gained popularity because of the complex 

nature of the data involved (Belgiu and Drăguţ, 2016). It is suggested 

therefore that it should be used for the LC classification exercises in the 

future.  

 

➢ The RF and SVM algorithms also have improved the performances of the 

models used for the estimation of the AGB. These are easy-to-use machine 

learning algorithms and therefore it is suggested that they should also be 

used, in combination with the remotely sensed data and the ground forest 

inventories, in future studies conducted by the IWMB for research and 

monitoring purposes.  

 

➢ It is imperative that environmental laws are enforced in the MHNP, and 

stringent measures are adopted in this regard. The activities such as the 

construction of commercial properties and road expansion etc. must be 

prevented since MHNP is a national park and its essence and integrity, 

therefore, needs to be maintained.  

 

➢ Afforestation programmes should be initiated to deal with the imbalances in 

the structures of the two forest types, which are noticed in this study. These 

afforestation programmes could also be based on the Assisted Natural 

Regeneration (ANR) technique, which has been considered a very useful 

technique involving local communities where active planting is combined with 

passive forest restoration. Passive forest restoration means the removal of 
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barriers and disturbances from the forests for allowing the natural succession 

of an ecosystem to occur. Local communities therefore can play a vital role in 

the implementation of ANR. Overall can help in contributing toward the Paris 

Climate Agreement, the Trillion Trees initiative, and the Bonn Challenge - 

which aims to restore 350 million ha of degraded and deforested areas by 

2030.  

 

➢ Mass awareness and media campaigns should be designed, which should 

highlight the importance of the MHNP concerning the challenges such as 

climate change.  

 

➢ Ecotourism plans should be developed for reducing pressure on the MHNP 

and for creating livelihood opportunities for the local communities.   

 

➢ Overhauling and up-gradation of the fire-fighting equipment and capacity 

building of the relevant staff should be carried out. Adequate fire-fighting 

strategies should be developed for dealing with the anthropogenic and natural 

forest fires occurring in the MHNP.  

 

➢ Strategies should be developed for creating alternate fuel options for the local 

communities, which heavily rely on the fuelwood from the forests for energy 

production purposes.  

 

➢ Local communities should be involved in various MHNP conservation and 

improvement-related strategies and plans. They should also be included in 

the research and monitoring teams for creating a sense of ownership in them.  

 

➢ The site and species-specific allometric equations should be developed for 

future AGB and AGC studies in the park.  

 

➢ The SAR microwave bands, with longer wavelengths, such as P-band (30-100 

cm wavelength), L-band (15-30 cm wavelength) and S-band (7.5-15 cm 

wavelength) should also be utilized in the future for AGB estimation. These 
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data will be freely available in the future with the BIOMASS and NISAR 

missions. 
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Annexure 1: Satellite Imageries 

 
Fig. 70: S2 First Image 

 

 
Fig. 71: S2 Second Image 
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Fig. 72: Merged S2 Image 

 

 
Fig. 73: Clipped S2 Image 
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Fig. 74: Natural Colour Composite of S2 Image of the Study Area 

(Band combination 4,3,2) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 75: NIR Composite of S2 Image of the Study Area (Band combination 8,4,3) 
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Fig. 76: Bands Used for Landsat 7 ETM+ images 

 

 

Fig. 77: Landsat 7 ETM+ Images of the Site Area with Respective Bands 
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Fig. 78: Natural Colour Composite of Landsat 7 ETM+ image of the Study Area 

(Band combination 3,2,1) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 79: NIR Composite of Landsat 7 ETM+ Image of the Study Area 

(Band combination 4,3,2) 
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Fig. 80: Bands Used for Landsat 5 TM images 

 

Fig. 81: Landsat 5 TM Images of the Site Area with Respective Bands 
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Fig. 82: Natural Colour Composite of Landsat 5 TM image of the Study Area 

(Band combination 3,2,1) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 83: NIR Composite of Landsat 5 TM image of the Study Area 

(Band combination 4,3,2) 
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Fig. 84: Bands Used for Landsat 8 OLI images 

Fig. 85: Landsat 8 OLI Images of the Site Area with Respective Bands 
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Fig. 86: Natural Colour Composite of Landsat 8 OLI image of the Study Area 

(Band combination 4,3,2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 87: NIR Composite of Landsat 8 OLI Image of the Study Area 

(Band combination 5,4,3) 
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Annexure 2: Data Collection Form 
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Annexure 3: Pictures from MHNP 

 

 

Fig. 88: View of MHNP (Photo Credit: IWMB) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 89: View of MHNP (Photo Credit: IWMB) 
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Fig. 90: SCPF Site in MHNP (Photo Credit: IWMB) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 91: SCPF Site in MHNP (Photo Credit: IWMB) 
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Fig. 92: SBEF Site in MHNP (Photo Credit: IWMB) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 93: SBEF Site in MHNP (Photo Credit: IWMB) 
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Fig. 94: Field Inventorying Exercise in MHNP 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 95: Field Inventorying Exercise in MHNP 
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Fig. 96: View of a Village in MHNP (Settlement) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 97: Grassland Site in MHNP (Photo Credit: IWMB) 
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Fig. 98: Agricultural Land in MHNP (Photo Credit: IWMB) 

 

 

 

Fig. 99: View of Islamabad City and Rawal Lake from MHNP (Photo Credit: IWMB) 


