310 research outputs found

    Exploiting subspace distance equalities in Highdimensional data for knn queries

    Get PDF
    Efficient k-nearest neighbor computation for high-dimensional data is an important, yet challenging task. The response times of stateof-the-art indexing approaches highly depend on factors like distribution of the data. For clustered data, such approaches are several factors faster than a sequential scan. However, if various dimensions contain uniform or Gaussian data they tend to be clearly outperformed by a simple sequential scan. Hence, we require for an approach generally delivering good response times, independent of the data distribution. As solution, we propose to exploit a novel concept to efficiently compute nearest neighbors. We name it sub-space distance equality, which aims at reducing the number of distance computations independent of the data distribution. We integrate knn computing algorithms into the Elf index structure allowing to study the sub-space distance equality concept in isolation and in combination with a main-memory optimized storage layout. In a large comparative study with twelve data sets, our results indicate that indexes based on sub-space distance equalities compute the least amount of distances. For clustered data, our Elf knn algorithm delivers at least a performance increase of factor two up to an increase of two magnitudes without losing the performance gain compared to sequential scans for uniform or Gaussian data

    A Learned Index for Exact Similarity Search in Metric Spaces

    Full text link
    Indexing is an effective way to support efficient query processing in large databases. Recently the concept of learned index has been explored actively to replace or supplement traditional index structures with machine learning models to reduce storage and search costs. However, accurate and efficient similarity query processing in high-dimensional metric spaces remains to be an open challenge. In this paper, a novel indexing approach called LIMS is proposed to use data clustering and pivot-based data transformation techniques to build learned indexes for efficient similarity query processing in metric spaces. The underlying data is partitioned into clusters such that each cluster follows a relatively uniform data distribution. Data redistribution is achieved by utilizing a small number of pivots for each cluster. Similar data are mapped into compact regions and the mapped values are totally ordinal. Machine learning models are developed to approximate the position of each data record on the disk. Efficient algorithms are designed for processing range queries and nearest neighbor queries based on LIMS, and for index maintenance with dynamic updates. Extensive experiments on real-world and synthetic datasets demonstrate the superiority of LIMS compared with traditional indexes and state-of-the-art learned indexes.Comment: 14 pages, 14 figures, submitted to Transactions on Knowledge and Data Engineerin

    Impact of the initialization in tree-based fast similarity search techniques

    Get PDF
    Many fast similarity search techniques relies on the use of pivots (specially selected points in the data set). Using these points, specific structures (indexes) are built speeding up the search when queering. Usually, pivot selection techniques are incremental, being the first one randomly chosen. This article explores several techniques to choose the first pivot in a tree-based fast similarity search technique. We provide experimental results showing that an adequate choice of this pivot leads to significant reductions in distance computations and time complexity. Moreover, most pivot tree-based indexes emphasizes in building balanced trees. We provide experimentally and theoretical support that very unbalanced trees can be a better choice than balanced ones.The authors thank the Spanish CICyT for partial support of this work through projects TIN2009-14205-C04-C1, the Ist Programme of the European Community, under the Pascal Network of Excellence, (Ist– 2006-216886), and the program Consolider Ingenio 2010 (Csd2007-00018)

    Pivot-based Metric Indexing

    Get PDF
    The general notion of a metric space encompasses a diverse range of data types and accompanying similarity measures. Hence, metric search plays an important role in a wide range of settings, including multimedia retrieval, data mining, and data integration. With the aim of accelerating metric search, a collection of pivot-based indexing techniques for metric data has been proposed, which reduces the number of potentially expensive similarity comparisons by exploiting the triangle inequality for pruning and validation. However, no comprehensive empirical study of those techniques exists. Existing studies each offers only a narrower coverage, and they use different pivot selection strategies that affect performance substantially and thus render cross-study comparisons difficult or impossible. We offer a survey of existing pivot-based indexing techniques, and report a comprehensive empirical comparison of their construction costs, update efficiency, storage sizes, and similarity search performance. As part of the study, we provide modifications for two existing indexing techniques to make them more competitive. The findings and insights obtained from the study reveal different strengths and weaknesses of different indexing techniques, and offer guidance on selecting an appropriate indexing technique for a given setting.</jats:p

    Accessing very high dimensional spaces in parallel

    Get PDF
    Access methods are a fundamental tool on Information Retrieval. However, most of these methods suffer the problem known as the curse of dimensionality when they are applied to objects with very high dimensionality representation spaces, such as text documents. In this paper we introduce a new parallel access method that uses several graphs as distributed index structure and a kNN search algorithm. Two parallel versions of the search method are presented, one based on master–slave scheme and the other based on a pipeline. A thorough experimental analysis on different datasets shows that our method can process efficiently large flows of queries, compete with other parallel algorithms and obtain at the same time very high quality results.This research has been supported by the CICYT project TIN2014-53495-R of the Ministerio de Economía y Competitividad

    Improving Distance-Join Query Processing with Voronoi-Diagram based Partitioning in SpatialHadoop

    Get PDF
    SpatialHadoop is an extended MapReduce framework supporting global indexing techniques that partition spatial datasets across several machines and improve spatial query processing performance compared to traditional Hadoop systems. SpatialHadoop supports several spatial operations (e.g., Nearest Neighbor search, range query, spatial intersection join, etc.) and seven spatial partitioning techniques (Grid, Quadtree, STR, STR+, -d tree, Z-curve and Hilbert-curve). Distance-Join Queries (DJQs), like the Nearest Neighbors Join Query (NNJQ) and Closest Pairs Query (CPQ), are common operations used in numerous spatial applications. DJQs are costly operations, since they combine spatial joins with distance-based search. Data partitioning improves the management of large datasets and speeds up query performance. Therefore, performing DJQs efficiently with new partitioning methods in SpatialHadoop is a challenging task. In this paper, a new data partitioning technique based on Voronoi-Diagrams is designed and implemented in SpatialHadoop. Moreover, improved NNJQ and CPQ MapReduce algorithms, using the new partitioning mechanism, are also designed and developed for SpatialHadoop. Finally, the results of an extensive set of experiments with real-world datasets are presented, demonstrating that the new partitioning technique and the improved DJQ MapReduce algorithms are efficient, scalable and robust in SpatialHadoop

    R-Forest for Approximate Nearest Neighbor Queries in High Dimensional Space

    Get PDF
    Searching high dimensional space has been a challenge and an area of intense research for many years. The dimensionality curse has rendered most existing index methods all but useless causing people to research other techniques. In my dissertation I will try to resurrect one of the best known index structures, R-Tree, which most have given up on as a viable method of answering high dimensional queries. I have pointed out the various advantages of R-Tree as a method for answering approximate nearest neighbor queries, and the advantages of locality sensitive hashing and locality sensitive B-Tree, which are the most successful methods today. I started by looking at improving the maintenance of R-Tree by the use of bulk loading and insertion. I proposed and implemented a new method that bulk loads the index which was an improvement of standard method. I then turned my attention to nearest neighbor queries, which is a much more challenging problem especially in high dimensional space. Initially I developed a set of heuristics, easily implemented in R-Tree, which improved the efficiency of high dimensional approximate nearest neighbor queries. To further refine my method I took another approach, by developing a new model, known as R-Forest, which takes advantage of space partitioning while still using R-Tree as its index structure. With this new approach I was able to implement new heuristics and can show that R-Forest, comprised of a set of R-Trees, is a viable solution tohigh dimensional approximate nearest neighbor queries when compared to established methods

    A Survey on Spatial Indexing

    Get PDF
    Spatial information processing has been a centre of attention of research in the previous decade. In spatial databases, data related with spatial coordinates and extents are retrieved based on spatial proximity. A large number of spatial indexes have been proposed to make ease of efficient indexing of spatial objects in large databases and spatial data retrieval. The goal of this paper is to review the advance techniques of the access methods. This paper tries to classify the existing multidimensional access methods, according to the types of indexing, and their performance over spatial queries. K-d trees out performs quad tress without requiring additional memory usage
    • …
    corecore