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Abstract 

Nolen, Michael Charles. Ph.D. The University of Memphis. August 2014. R-

Forest for Approximate Nearest Neighbor Queries in High Dimensional Space. Major 

Professor:  King-Ip Lin Ph.D. 

 

Searching high dimensional space has been a challenge and an area of intense 

research for many years.  The dimensionality curse has rendered most existing index 

methods all but useless causing people to research other techniques. In my dissertation I 

will try to resurrect one of the best known index structures, R-Tree, which most have 

given up on as a viable method of answering high dimensional queries.  I have pointed 

out the various advantages of R-Tree as a method for answering approximate nearest 

neighbor queries, and the advantages of locality sensitive hashing and locality sensitive 

B-Tree, which are the most successful methods today. I started by looking at improving 

the maintenance of R-Tree by the use of bulk loading and insertion.  I proposed and 

implemented a new method that bulk loads the index which was an improvement of 

standard method.  I then turned my attention to nearest neighbor queries, which is a much 

more challenging problem especially in high dimensional space.  Initially I developed a 

set of heuristics, easily implemented in R-Tree, which improved the efficiency of high 

dimensional approximate nearest neighbor queries.  To further refine my method I took 

another approach, by developing a new model, known as R-Forest, which takes 

advantage of space partitioning while still using R-Tree as its index structure.  With this 

new approach I was able to implement new heuristics and can show that R-Forest, 

comprised of a set of R-Trees, is a viable solution to high dimensional approximate 

nearest neighbor queries when compared to established methods.   
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1. Introduction 

 

For many years researchers in different fields have been creating very large data 

sets, comprised of large numbers of attributes commonly known as high dimensional 

data.  In many applications the need arises to determine the similarity of an object to one 

or more objects known as nearest neighbor (NN) [84], K-nearest neighbor (KNN) were as 

others wish to find objects in a range [60].  In other cases someone may ask the opposite 

question such that given an object, which objects in the set have this object as their 

nearest neighbor, known as reverse nearest neighbor [89, 92, 109]. Most cases the objects 

themselves are represented as a transformation of the attributes into a feature vector of 

high dimensionality, possibly numbering into the thousands of dimensions [54]. This set 

of objects which can be thought of as the search space (search domain), becomes a 

database. Real world applications can be found in molecular biology [88], gene 

identification, DNA sequencing and protein database sequence searching [2].  Other 

fields include image retrieval from multimedia databases [20, 33, 34, 54, 69, 74, 80, 96, 

100, 114, 115].  More recently there has been an increasing interest into image and video 

recognition.  Images are broken down and transformed into feature sets which become 

the objects in a database a similarity search (query) involves the same process an image is 

transformed into a feature vector which becomes the query object [72, 79, 82].  Google 

has taken this process a step further by attempting to develop processes to recognize 

video based on overlapping region and content requiring the search of high dimensional 

space [90].  Whereas other researchers in academia, have been focusing their research on 

video copy detection [32], and visual searching of objects in videos [91]. Others have 

applied this same research to the area of audio by attempting to use nearest neighbor 
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(NN) and approximant nearest neighbor (ANN) to find similar portions of music [19, 71]. 

Even in the field of computer learning which usually involves the transformation of 

objects into feature sets of high dimensionality, the need arises to search these spaces 

efficiently for NN and KNN [64].  All of these searches have the recurring theme of 

needing to deal with high dimensional data and the requirement to search for similar 

objects. 

The common theme is the representation of an object as a set of high dimensional 

data, with the need to locate similar objects.  When it comes to retrieval in any large data 

set it is usually done via a data structure known as an index.  An index can be loosely 

defined as a method to locate a record or group of records in a collection of records 

(database) by using a sub-set of the data which is organized in such a way as to facilitate 

an efficient search.  Here an index is used much the same way as a card catalog is used in 

a library.  Without an index, a query would have to resort to a sequential scan just as a 

person without a card catalog would have to do in a library (look at every book).   

 One must ask, why, is this problem important? Researchers in the field of 

database systems have developed many indexing methods which are used in all major 

relational database management systems (RDBMS)[1, 52].  The most prevalent is the 

family of tree structures know as B-Tree [57], with B+Tree being the most well known 

and widely used.  So it appears there is a simple solution to high dimensional NN and 

KNN searches, but there is not.  B+Tree as well as most other indexing structure used for 

traditional RDBMS, are for exact matches and range queries not involving similarity of 

many attributes.  Simply put, B+Tree is not well suited for high dimensionality similarity 

searches because it relies on the ordering of the attributes contained within the index.  
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Here the attributes are organized as a single dimension with each branch containing a 

distinct bound on the single dimension (see figure 1). For high dimensional data we are 

not concerned with ordering, but rather similarity of one object with another on multiple 

attributes (high dimensional) using some form of similarity computation such as a 

distance measure.   

 

 

Figure 1.  B+Tree structure, 3 levels each with 3 branches 

 

 

Some may suggest the use of multiple B+Tree indexing a sub-set of the attributes, 

but this only complicates the issue.  Rather than searching one index now, one has to 

search multiple indexes retrieving a group of objects based on a single dimension per 

B+Tree, yet the query is looking for similarity across multiple dimensions based on a 

distance measure. This sub-set may be closer in one dimension but not in another.  

Therefore, we may have a large sub-set (sum of all sets returned by the multiple B-Trees 

searches) with many points that may not be nearest neighbors when considering the entire 

set of attributes, here the emphasis is on similarity with all the attributes and a query 

point. The problem here can be loosely defined as follows, given a large set of objects, in 

A  G    H   P      Q  Z 

A  B    C D     E G H  K    L M     N P Q  R    S T     U Z 

B-Tree (storing Names by last then first) 
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a high dimensional space, find NN or KNN (where K  > 1) object(s) within the search 

space, to a given query object [31, 43] without having to compute the similarity (based on 

distance measure) between the query object and every object in the search space.  What is 

needed is an indexing method that facilitates this type of search, which reduces the 

computation complexity of reading every object and computing the similarity based on 

all attributes.    

Currently many high dimensional indexing methods exist, the most notable of 

which is the R-Tree [44].  It should be noted that this method is used in commercial 

relational database management systems (RDBMS), for example Oracle [51, 52], MS 

SQL Server [105], IBM Informix [45] as well as open source DB such as MySQL [73] 

and PostgreSQL [81] all use R-Tree. This data structure basically extends a B+Tree to 

include multiple dimensions, minimum bounding rectangles (MBR) and the addition of a 

similarity computation.  In turn this tree structure can handle any number of points and a 

large number of dimensions, unlike the standard B+Tree which basically works by 

hieratically partitioning the objects based solely on the attributes arranged as a single 

dimension in the index.   

The major drawback to R-Tree, as with other high dimensional indexing methods, 

is dimensionality.  As the number of dimensions grows the ability to hieratically partition 

the objects becomes difficult if not impossible.  This is caused by an unavoidable 

situation that occurs with the R-Tree whereby the minimum bounding rectangles overlap 

each other in one or more dimensions (boundaries are no longer distinct as they are in 

B+Trree) , details on this will be covered in chapter 2.  Therefore, during a similarity 

search we have to traverse several branches covered by minimum bounding rectangles to 
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resolve a NN query, this is because a given object’s NN could be in any MBR.  

Researchers have given this problem a name “The Curse of Dimensionality” [15] and 

have demonstrated that R-Tree, as well as most other high dimensional indexing methods 

degrades to no better than a sequential scan as the number of dimension grows, this will 

be discussed further in chapter 2.   

 Over the years researchers have struggled with this problem.  They have 

attempted to solve it by using a whole array of indexing structures, and have even turned 

to alternate methods that do not rely on any indexing data structure.  This other methods 

have had limited success when compared to a sequential scan.  As yet no one has actually 

developed an efficient reliable method to effectively search high dimensional space. It 

has come a point where some researchers have all but given up. Some have even 

published paper indicating it can never be truly solved [41], yet every year several new 

papers are published by researchers who look at the problem from a different angle 

sometimes with fresh ideas [3, 4, 43, 48, 67, 68].  Still there is a real, ever growing need 

to solve this problem, as many fields of study would benefit from a solution. 

 Recently some have proposed a shift in the area of high dimensional similarity 

searching.  It has been suggested that exact NN and KNN search may not always be 

relevant and that an approximant result may be sufficient [7, 13, 30, 39, 48, 56, 61, 63].  

Thereby one may choose to sacrifice accuracy for efficiency and yet still being able to 

reliably use the results. Some of the current approximant nearest neighbor (ANN) 

methods throw out the concept of any data structure completely, and attempt to solve this 

problem by other techniques.  One method for high dimensional ANN getting a lot of 

attention is Locality Sensitive Hashing (LSH) [3, 4, 30, 37, 43, 48, 67] and Locality 
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Sensitive Hashing B-Tree (LSB-Forest) [111, 112], which dismiss the notion of a data 

structure replacing it with hash functions.  With this in mind some researchers have 

refocused their attention on ANN similarity search in high dimensional space, by 

applying heuristics to existing index structures [66], developing alternate methods that 

provide only approximant results. This new attention has renewed some of the research 

into index structures, such as R-Tree, that others have abandoned. 

 The main focus of my dissertation is on efficiency of high dimensional indexing 

with an emphasis on an index structure known as R-Tree.  I will present my first work on 

construction cost that is improving the input/output (IO) cost of initially building an 

index from a data set.  Then I will turn my attention to NN and ANN query efficiency 

attempting to maintain accuracy.  

    I started with research into index disk IO efficiency using Rdnn-Tree (modified 

version of R-Tree used to answer reverse nearest neighbor queries). This first involved 

implemented persistence storage for Rdnn-Tree then different buffer management 

methods, to determine which performed best for this index structure.  The results from 

this led me to ask if I could improve the insertion efficiency by means of bulk loading the 

index. Rather than inserting points one at a time as normally done, I employed the use of 

an in-memory Rdnn-Tree built with small sets of the initial data. Points in the leaf nodes 

from in-memory Rdnn-Tree were than bulk loaded as a group with the thought that 

because they were in a leaf node together they would follow the same insertion path in 

the persistent Rdnn-Tree. This led to an improvement of 90% over single point insertion 

for Rdnn-Tree by use of an in-memory Rdnn-Tree built from a sub-set of the initial data.  

This method of bulk loading was shown to work very well and was applied to R-Tree, 
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although the improvement would not be as dramatic.  I have dedicated Chapter 4 of my 

dissertation is to this particular work. 

 As already discussed high dimensional searching is a very difficult problem, as 

the number of dimensions increases most indexing methods degrade in term of efficiency 

to no better than a sequential scan.  The problem stems from the fact that during a NN 

search we don’t know whether the solution found so far is the exact NN, additional 

searching is really verifying that the remaining un-search space does not have a better 

solution (NN).  One of the advantages of R-Tree is that it can handle multiple dimensions 

very easily, which means it handles high dimensional data. I decided to look at efficiency 

and accuracy of NN and later ANN queries using R-Tree indexing of low to high 

dimensional data.  This work involved the application of a number of pruning heuristics 

applied to the search algorithm which attempts to improve efficiency of exact NN.  My 

work involving the using pruning heuristics showed promise, in that I could reduce the 

amount of searching needed but could no longer maintain a guarantee on finding an exact 

NN. Basically there was a trade off in the amount of work (IO efficiency reading data 

from presenting storage) and query results, or to put simply, less IO returned lower 

accuracy in the results, yet as some have pointed out an ANN may be sufficient.  With 

this in mind I focused on good IO efficiency with an attempt to maximize accuracy for 

ANN, no longer attempting to find exact NN for high dimensional data.  This proved 

very promising as several of the tested heuristics have been shown to give better than 

expected results for ANN with very limited IO.  My work on this, presented in chapter 5 

shows that the heuristics worked for different dimensionality, data set sizes and 
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distributions without relying on any preprocessing or knowledge about the data, and 

returned accurate NN and ANN with limited IO. 

 While working on the pruning heuristics I started to reconsider the R-Trees 

strengths and weaknesses, first strengths is its ability to partition the space and apply 

branch and bound search, yet as the dimensionality of the data increases this strength, 

becomes its weakness.  The question was asked “What if I use multiple R-Trees”, each 

containing a sub-set of the data, disjointed on a limited number dimension, yet when 

taken as a whole covers the entire search space.  My approach would be known as a 

forest of R-Tree or R-Forest for short. With this forest I can select a sub-set of data (R-

Tree) to initially search and then select additional sub-sets of data (R-Trees) in an attempt 

to refine the ANN results.  It is also possible to eliminate entire sub-sets (R-Trees) which 

would not contain an ANN.  I will show that splitting the domain space on a relatively 

small number of dimensions using R-Forest yields better results than existing 

implementations for ANN queries, and I am able to implement an additional pruning 

heuristic with the ability to provide some feedback on the results returned. Details on R-

Forest will be provided in chapter 6 with my results shown in chapter 7. 

 My research has focused on index structures for nearest neighbor queries in high 

dimensional space, it shares a common them with newer research in the area of “Big 

Data” which can be comprised of large volumes of structured or un-structured data [49].  

This field which has been getting a lot of attention in the past few years, also involves 

large data sets often comprised of terabytes of data and beyond, which requires new file 

structure and storage methods, as exist systems do not handle gigabyte size files very 

well, much less terabyte size files.  Given the large data sizes involved, research has 
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focused on distributed files systems, the best example is Hadoop [16], which is an open 

source distributed files system often used in cloud computing built on top MapReduce 

developed by Google [49, 101], used to process web pages daily. These methods address 

the processing, storage requirements, as well as fault tolerance (hardware failure), and 

parallel access using clustering and distributed files systems.  One area that is being 

addressed, but may require additional research is indexing of large distributed file 

systems such as Hadoop, and the data produced by systems such as MapReduce [101, 

102].  My research may not be directly applicable to “Big Data” in the since that it 

focused on NN and ANN, but indirectly has given me insight as to the problems of 

dealing with large complex data sets and how to approach indexing large files system. 

 The rest of this dissertation is organized as follows; Chapter 2, covers past and 

present research into different methods of querying high dimensional data. Chapter 3, my 

implementation as well as experimental procedures used throughout my research. 

Chapter 4 is a discussion on the application of my past work on bulk loading for R-Tree 

index maintenance. Chapter 5 my work on a number of heuristics which have been 

implemented and tested for ANN. Chapter 6, R-Forest implementation and querying for 

ANN. Chapter 7 discusses of a number of experiments with data distribution, 

dimensionality scaling and point scaling using R-Forest and LSB-Forest. Chapter 8 talks 

about some future work and direction.   
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2. Background 

 

 Research into high dimensional indexing has taken three different paths, the first 

has focused on solutions involving indexes based on data structures, whereas the second 

line of thought has been on solutions involving grid based indexes and the third being 

based on hash functions.  Not only is this research following different paths, the search 

for a NN in high dimension space has moved toward finding an approximate solution.  

The following sections will present some of the predominant methods that have been 

studied. 

 

2.1 Types of Searches 

 

Typically high dimensional data is comprised of a very large set of objects.  With 

each object being compressed of a large number of attributes which represent features of 

the data, all of which would be organized into a database.  Users of this database are 

usually looking to perform specific types of queries (searches) such as NN, KNN, ANN 

or range queries even approximate range queries, [8] just to list a few.  These types of 

queries don’t involve searching for the existence of a specific object in the database but 

rather finding which objects are similar based on some form of similarity measure. All of 

the following queries involve a distance calculation as the method to determine 

similarity.  For this research the focus is on the use of Euclidean distance, yet other 

distance measures such as Manhattan distance could be used, all one needs to do is 

modify the distance calculation used between points and MBR.  In most cases Euclidean 

distance is used and can be formally defined by the following equation 1.  
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2.1.1 Range Queries 

 

 A range query is a request for a single point or several points that fall within a 

user supplied range.  This type of query can be defined by the following equation 2. 

 

dist (Q,P) R    (2) 

 

 

Where Q is the given query point and R is maximum distance as measured by 

some distance measure. Any point P who’s distance from Q is less then or equal to R is 

considered solution to the query. 

 

2.1.2 Nearest Neighbor Queries 

As discussed earlier there is a need to search high dimensional space efficiently, 

with the predominant type of query being Nearest Neighbor search (NN).  For this type of 

query the focus is with the similarity based solely on distance, not with the relationship 

between dimensions or importance of any one or more dimension,  for the sake of this 

research, all dimensions are treated equally even though they may not be.  Given a data 

set s of d dimensions with n points and a query point q, which point in s is nearest to q 

based on a distance measure.  This definition for NN can be extended to define a 

variation known as KNN where by the goal is to find the K nearest neighbors (KNN) in 

some data set.  That is a set of points in p of size K such that there are no other points in p 
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closer then this set. Formally defined in figure 2, also note that this definition also defines 

NN when K = 1: 

 

 

 

 

 

 

Figure 2. Definition of K Nearest Neighbor 

 

 

2.1.3 Approximate Nearest Neighbor 

 

 Another variation on nearest neighbor search is the Approximate Nearest 

Neighbor (ANN), this can be defined as a relaxation of the requirement that the exact 

nearest neighbor be found.  This can be done in the definition for KNN (figure 2) by 

relaxing the requirement that a solution be the one and only.  An approximate nearest 

neighbor search allows for some margin of error in that, of the set returned, there could 

be additional points that are closer but where not discovered during the search.  These 

undiscovered points are usually defined as approximation within some value known as 

Epsilon, as defined in Figure 3.  

Definition (K
th

 Nearest Neighbor) 

 

Given a set S of points in some d dimensional space and a query point q,  

the K
th

 Nearest Neighbor of q (denoted KNNS(q)) is a subset of S of size K  

defined as  

 

       )}',(),(:'|||{)( pqDpqDKNNSpKNNpSpSpqKNNs   

where D(q,p) denote the distance between point q and p   
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Figure 3. Definition of Approximate Nearest Neighbor 

 

2.1.4 Reverse Nearest Neighbor 

 Another type of search involves the reverse of the typical nearest neighbor search, 

known as reverse nearest neighbor (RNN).  This type is defined as the opposite of NN in 

that given a query point q which point(s) in the set s have q as their NN formally defined 

in figure 4 as follows and illustrated in figure 5. 

 

 

 

 

 

 

Figure 4. Definition of Reverse Nearest Neighbor 

 

Figure 5, shows an example for reverse nearest neighbors. Notice the contrast to 

the nearest neighbor, a point Q does not necessary have reverse nearest neighbors – or it 

Definition (Reverse Nearest Neighbor) 

 

Given a set S of points in some d dimensional space and a query point q,  

the Reverse Nearest Neighbor of q (denoted RNNS(q)) is a subset of S 

defined as  

       )},(),(:|{)( prDrqDSpSrqRNNs   

where D(p,q) denote the distance between point p and q   

 

 

Definition (Approximate Nearest Neighbor) 

 

Given a set S of points in some d dimensional space and a query point q,  

the Approximate Nearest Neighbor of q (denoted ANNS(q)) is a subset of S 

defined as  )}',()1(),(:|'{)( pqDpqDSpSpqANNs   

where D(q,p) denote the distance between point q and p   

 



14 

 

can have multiple reverse nearest neighbors. For instance, in 2-D Euclidean space, a point 

may have up to six reverse nearest neighbors. 

 

 

Figure 5. Illustration of Reverse Nearest Neighbors 

 

2.2 Search Methods for High Dimensional Data 

Over the past 20 years many researchers have proposed, developed, tested, 

analyzed and presented results for different data structures in an attempt to solve the 

problem of high dimensional searching.  Some have built on other’s work by suggesting 

improvements, whereas others have taken a totally different approach in an attempt to 

solve this problem. 

 

2.2.1 Indexing Structures 

The following section describes some of the more predominate index data 

structures used to search low dimensional data.  Some researchers have attempted to 

apply or extend some of these to NN searches in high dimensional data. 
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2.2.1.1 R-Tree 

 

The R-Tree proposed by Guttman [44] and later modified by other researchers 

including Roussopoulos [77, 84], is one of the primary data structures used for high 

dimensional indexes.  An R-Tree is a balanced tree, with a root node at the top.  The root 

is comprised of a number of branches each containing a minimum bounding rectangle 

(MBR) bounding all dimension and a pointer to the sub-tree bound by the MBR.  The 

number of MBR is governed by the number of dimensions and amount of storage 

allocated for a node (size of a node in terms of bytes will be discussed in chapter 3).  

Each sub-tree is comprised of the same structure with the exception of the leaf nodes 

which stores the data points and a reference pointer to the actual data.  Insertion involves 

choosing the branch starting at the root that minimizes overlapping with other branches.  

When a node is full it is split in such a way as to evenly distribute points into two nodes.  

The research White suggested splitting of nodes could be improved with the use of 

VAMSplit algorithm which he proposed in his paper [107].  He pointed out that 

VAMSplit would maintain the balance of the tree, should reduce storage and improve 

performance R-Tree.  During a split most and sometimes all of the MBR traversed during 

the insertion will have to be updated as their dimensions (MBR) may have changed. 

Deletion involves, traversing the tree to locate the point, deleting it from the leaf, and 

updating the MBR as needed for each branch traversed.  This basic data structure can be 

used to handle any number of data points having a larger number of dimensions (within a 

set all points must have the same number of dimensions).   

Performing a NN query in R-Tree can be handled using a condition derived from 

query points’s current best solution (initial ANN point found)  and the distance from the 
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query point to a MBR.  This method works by examining the minimum distance from Q 

to the closest edge of the MBR known as Mindist (Q, MBR) defined by [77, 84], if a 

point’s current best solution is less then Mindist then there cannot be a solution in the 

MBR see formula 3 and figure 6. 
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Figure 6 Illustration of Mindist and MBR pruning.  

 

In figure 6, Q’s  Mindist (Q, MBR1)  is greater than Q’s current best, therefore 

MBR1 cannot contain a better solution, whereas Q’s Mindist to MBR2 is less then Q’s 

current best solution, therefore MBR2 could contain a better solution (this is further 

discussed in chapter 5). 

Many variations exist like R+Tree developed by Sellis [87] and the dynamic 

R*Tree by Beckmann [9, 10].  Others continue to extend R-Tree by added additional 

Q’s Current best solution 
MBR2 

MBR1 

Mindist (Q, MBR1) 
Mindist(Q, MBR2) 
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information to improve its efficiency at the leaf level [28], for example Mehdi developed 

VoR-Tree which they describe as R-Tree with Voronoi diagram [70].   

 

2.2.1.2 SS-Tree 

 

One variation on the R-Tree is the SS-Tree developed by White [106], and 

extended by Kurnaiwati [62].  This structure is basically the same as R-Tree only that the 

MBR is replaced by a hyper-sphere, with the bounding region now based on a centroid 

(mean value of the child vectors) and a radius.  Internal nodes store bounding regions 

bound by a radius rather bounding each dimension.  This is illustrated by figure 7 below.  

 

 

 

Figure 7. SS-Tree bounding regions. 

 

Data points in SS-Tree are stored in the leaf nodes just as they are in R-Tree.  

Insertion proceeds in a similar manner to that of R-Tree with node splitting also choosing 

a dimension with highest variances. Deletions proceed by locating the point, removing it 
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from the leaf node, then adjusting the internal nodes traversed.  Like the R-Tree the SS-

Tree can handle high dimension data, having the same constraint on the nodes size based 

on the number of dimension of the centroid.  One major advantage SS-Tree has over R-

Tree concerns the storage of internal node.  SS-Tree does not use a MBR, therefore 

internal nodes require less storage, thus a higher fan out can be achieved.  One major 

difference between SS-Tree and R-Tree is in the name SS, which stands for similarity 

search, this implies a major difference in the two.  The authors focused more on 

similarity search rather than on nearest neighbor.  Their goal was to build a structure and 

search algorithm that met their needs, they were more concerned with similarity and in 

some cases dissimilarity.  Hence, they made assumptions about the domain of the date 

which would be provided by an expert, who could provide domain knowledge used to 

refine the similarity search.  This led to the use of a weighted Euclidean distance measure 

see formula 4. 

 

  

 

Here the authors have included weights on the feature vectors attributes based on 

the domain knowledge provided by an export.  There is a second advantage to this 

structure, in that a variance is included that can be used to control the accuracy and 

similarity search.  If the variance is zero then an exact search will be performed, the value 

of variance controls the level of similarity that will be accepted, hence this structure can 

also perform approximate searches. 

 

(4) 
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2.2.1.3 SR-Tree 

Further work on both the R-Tree and SS-Tree involves a hybrid data structure 

which combines the best of both into one tree. This is known as the SR-Tree which uses 

both MBR regions and hyper-spheres bounding from both the R-Tree and SS-Tree 

respectively.  Its focus is on the intersection of the two regions.   This can best be seen in 

figure 8, where the intersection of a MBR and hyper-sphere are used as the bounding 

region [53]. 

 

 

Figure 8. Showing intersection of MBR and hyper-sphere. 

 

Insertion of new points and deletion of existing points are handled much the same 

way as other tree based data structures.  One difference between the SR-Tree and other 
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tree based data structures has to do with storage requirements, now both the MBR and 

hyper-sphere bounding regions must be stored as well as updated during both insertion 

and deletion.  As with all index structures the height and branch fan out is constrained by 

the size of a node and the number of dimensions. 

 

2.2.1.4 X-Tree 

 

Some researchers have focused on attempts to improve existing index structures 

case in point is the X-Tree, which stands for eXtended node tree [17].  This is a hybrid R-

Tree which attempts to deal with one of the main problems of boundary based indexes, 

the problem of overlapping bounding regions.  The researchers give a good argument that 

by minimizing the bounding regions overlap should improved search performance.  The 

author’s main focus was on the selection of dimensions to split in an attempt to minimize 

or prevent overlapping which as they pointed out leads to a degradation of the indexes 

performance.  They extended the (hence the name) R-Tree index by adding what they 

referred to as super nodes which contain information about node split history as an 

attempt to better handle high dimensionality.  This history is accessed when a node has 

been filled and must be split; it is used to determine the best dimension to split.  Of 

course this additional information comes at a price requiring additional storage of super 

nodes within the index structure.   

 

2.2.1.5 Generalized Search Tree 

 

 Other researchers have focused on building generalized indexing methods which 

can be used in a number of applications.  The best example of this is GiST, known as the 
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Generalized Search Tree, which is implemented as a non-specific search tree.  It can 

handle B-Tree, R-Tree and RD-Trees, by simply modifying not the structure but only the 

data objects stored and the search algorithm.  Hence one does not have to have multiple 

indexing methods for different data sets [5, 40]. 

 

2.2.1.6 Addition Search Trees 

 As with any other research topic, this topic also has many not as well known 

solutions usually developed to solve a specific version of the problem unique to a 

particular researcher. An example of this includes the LB-Tree (Lower Bound Tree) that 

tries to minimize searching by apply clustering techniques to the internal nodes in an 

attempt to maintain a tight lower bond on mean distances [21].  Others attempt to 

organize the data into buckets known as hyper-rectangle buckets based on dimensions for 

details see Bently’s KD-Tree [11, 38].  Some have taken the approach of focusing on 

partitioning of the data using a rotary binary hyper-plane known as the BM
+
-Tree [117] 

which is an extension of the M
+
-Tree proposed by Zhou [116].  The VP-Tree proposed by 

Uhlmann [99] attempted to partition the data with respect to vantage points which are 

used as separators to partition the data into two balanced subsets.  This list is by no means 

complete, as many variations exist which extend or provide slight modifications to these 

just presented. 

 

2.2.2 Grid Based Indexes 

As with most research in computer science alternative methods are sometimes 

developed either to satisfy a specific need or because researchers feel alternate methods 
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may perform better.  With this in mind a number of researchers have embarked on 

different methods for solving this problem.  These methods differ in several aspects from 

the methods listed in previous section.  Rather than attempting to organize the data into a 

hieratical data structure these methods attempt to organize the data into a grid to facilitate 

improved searching.  In turn these methods attempt to do away with concepts of a 

hieratical structure and bounding regions.  The following sections give details on some of 

the better known grid space search methods. 

 

2.2.2.1 VA-File 

One of the first proposed alternatives to tree based indexes was by Weber and his 

colleagues, known as VA-File [35, 104]. The authors presented arguments that any index 

structure which had to access more than 20% of the data (index) would be no better than 

a sequential scan given the extra overhead of the index structure and cost of random 

access.  Therefore they proposed a relatively small approximation file that would be built 

from the original data, then sequentially scanned in much less time then scanning the 

original data file.  This file known as the Vector Approximation File (VA-File) divides 

the data space into 2
b
 rectangular cells, b is given by the user and defines the number of 

bits used to represent the approximation of the cell for each dimension see figure 9.   
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Figure 9. 2D data space representation of VA-File 

 

The VA-File need only store the boundary information as well as the bit 

approximations for the data.  Inserting and deleting become trivial in that points can 

either be added or removed from the VA-File.  A search involves a sequential scan of the 

VA-File returning a set of approximation points that represents the possible solutions.  

Finally the original data must be read via random access to refine the approximations into 

the final nearest neighbor.   

 

2.2.2.2 M-Grid 

 

A variation developed by Digout [31] known as M-Grid, is built on the VA-File 

concept.  This method uses the concept of triangular inequality [18, 36, 110] which can 
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be used to prune data points by means of a set of reference points known as pivot points.  

Triangular inequality basically says that given a pivot point and the distance to all data 

points in a data set, one can prune (eliminate) points that don’t fall within a given range.  

This can best be seen in figure 10.  

 

 

Figure 10. Pruning using triangle inequality  

 

Here the pivot point P1 is given as well as distances to all other points.  The 

distance from P1 to the query point Q is computed, a range R is also given, based on 

triangular inequality any point that falls out of the Distance (P1,Q) + R and  Distance 

(P1,Q) – R cannot have a distance to Q less than R.  With this concept in mind Digout 

devised a new method known as M-Grid, which first clustered the data set using any 

efficient data clustering method then computes and stores the distance from a given set of 

pivot points to all points in the data set.  Finally a set of rings from each pivot point are 

defined and stored, each of which houses an equal number of objects (data points).  The 
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intersection of these rings form grids or “cells” hence the name M-Grid.  This entire 

process can be summed up in figure 11.  

 

 

Figure 11. Illustrating a typical M-Grid implementation. 

 

Based on Figure 11 one can easily see that clusters A,B,F,G,D cannot contain 

nearest neighbors to Q bound by region R and only clusters C and E need to be searched.  

The computed distances and pivot points as well as cluster information, is stored in a data 

file which in turn becomes the index for the data set.  This method like other methods is 

dynamic such that insertion and deletion of points is relatively easy to implement. The 

authors suggest that their method is faster than VA-File which is in turn faster than a 

sequential scan, but the performance is dependent on the number of pivot points, number 

of rings for each pivot point, and the number of clusters, size and distance between the 

clusters. 
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2.2.2.3 Addition NN and ANN Non-Data Structure Methods 

Other researchers have embarked on alternate methods by proposing, 

implementing and testing different concepts in an attempt to solve NN, KNN, or ANN.  

On notable idea by Cui [29], involves bit mapping to represent each dimension.  This 

method which the authors called Bit-Difference (BID), assigns a single bit to each 

dimension, with each object now being represented by this mapping.  An object’s 

attributes (dimensions) are mapped to 1 or 0 depending on how the value of the attributes 

falls in the full domain for the dimension.  For example if a dimension domain is {0,1} 

then an attribute of 0.7  would be mapped to 1.  This reduces all the attributes to single 

bits, which are organized into a structure.  A query point is mapped the same way, using 

this new representation, than it is queried against the representation of the data set.   

The authors employed addition modification such as clustering, and dimensional weights 

to further improve their method.  They pointed out this method appears to be very similar 

to VA-File but has several advantages in terms of computation and disk IO cost.  Another 

method proposed by Volmer [103] known as Buoy Indexing, attempts to index high 

dimensional data by clustering methods.  The data is clustered using any existing 

methods, next the median point for each cluster is located and stored, this becomes the 

buoy point (hence the name) also stored is the radius from the buoy point to the furthest 

point in the cluster in turn defining a hyper-sphere.  A query proceeds by computing the 

distance to the buoy points, then ordering the clusters based on this distance. A parameter 

is used to control the number of clusters that are searched for ANN, this in turn controls 

the depth of the search of distance ordered clusters as well as the level of accuracy. The 

cluster’s hyper-sphere can provide additional optimization if the query point’s current 
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ANN is closer then the hyper-sphere of an unsearched cluster there is no reason to search 

that cluster.  Volmer was able to show that his method worked reasonably well for his 

specific application of searching multimedia databases [103]. 

Others have continued to build on past research in attempts to improve the results 

or combine different techniques in an attempt to provide better results.  For example, 

Ciaccia and Patella [26] extended the M-Tree with the addition of an algorithm known as 

PAC-NN (probably approximately correct nearest neighbor), which provides M-Tree 

with a search stopping criteria based on the distance distribution of the points.  The 

authors showed there is no need to search nodes where the query point’s current solutions 

overlapping volume is to small to contain a point. They were able to exploit the decrease 

in point density as the dimensionality increases. This was done by modifying C-NN 

(correct nearest neighbor) [14], by adding new parameters used to determine the 

probability that a branch will not have any additional NN because the overlap volume 

(volume of overlap between a query point’s current solution and a nodes hyper-sphere) is 

relativity small and unlikely to contain a point.  In turn their algorithm cannot guarantee 

an exact NN, rather it can only return ANN within some level of accuracy, based on the 

stopping parameters.   

 

2.3 Curse of Dimensionality 

Past research has shown that an index’s performance degrades as the number of 

dimensions increases [104]. For the type of queries studied here (NN using R-Tree) this 

is also the case. Even for other index structures that attempt to solve the same problem 

(NN in high dimensional space) the same happens.  This can best be seen in figure 11, 
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which shows the number of nodes accessed for nearest neighbor query using a SRTree. 

The query asks for the KNN with k equal to 100 from a data set of 70,000 points.  The 

figures 12, 13, show that the number of nodes accessed grows exponentially with the 

number of dimensions. Typically the entire tree is read when the dimensionality reached 

32 and above. Even if the data is clustered which should help the index structure, 

eventually the “Curse of Dimensionality” catches up with the data structure. 
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Figure 12, 13. Nearest neighbor query performance of SR-Tree 

 

The paper by Böhm [15] contains a thorough discussion of the causes of this 

curse. The authors divided the causes into three categories: 

 Geometric properties of high dimensional space. When the dimensionality 

increases, the volume of a sphere/rectangle (with fixed radius/length) increases 

exponentially. Consequently, the data in high dimensionality is more sparsely 

distributed. 

 Index organization. Most indexes work by partitioning the data along different 

dimensions. Typically, a region for a leaf node is formed by splitting it l times, 
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where l is the height of the tree. However, in a high dimensional index, d >> l, 

many dimensions are not split at all. 

 Query properties. As a result of the geometric properties of the space, for any query 

point q, its nearest neighbors are farther apart from q when dimensionality 

increases. This, in turn, drives up the volume of the space to be searched (one has 

to examine the space between a point and its nearest neighbor to ensure there is 

nothing closer).  

 

The above explanation for the “Curse of Dimensionality” provided by Böhm can 

easily be applied to R-Tree. All of the above cases have been verified in this research.  

Take the second property, index organization, in a typical R-Tree index with a height of 5 

only 3 to 4 dimensions are split, this was verified by looking at the individual dimensions 

of a hyper-rectangle defining a single leaf node at the bottom level of the R-Tree. It was 

found that nearly all of the dimensions were close to full range of the entire data space as 

defined by the entire set of points except for the few that were split as the tree was built.  

It should be noted that even a split dimension can grow as new points are inserted.   This 

is easily seen in table 1. This table shows the percentage of overlap for the 32 dimensions 

of a randomly select MBR within an R-Tree.  The table lists the domain of each 

dimension and the ratio of overlap of the MBR with the domain of the dimension.  It 

illustrates one of the fundamental problems of R-Tree with high dimensional data. 
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Table 1.  32 Dimensional MBR for a leaf selected at random for an R-Tree (data set 

contained 100,000 points with a uniform data distribution).  

Dim MBR Lo MBR Hi Data Set Min 

(Root) 

Data Set Max 

(Root) 

Percent of 

Overlap 

Split(Y/N) 

0 
0.011590 0.996857 0.000019 0.999999 98.53% 

 

1 
0.060741 0.865796 0.000004 1.000000 80.51% 

Y 

2 
0.027376 0.727943 0.000004 0.999998 70.06% 

 

3 
0.222539 0.960931 0.000042 0.999978 73.84% 

 

4 
0.118394 0.956759 0.000002 0.999997 83.84% 

 

5 
0.063024 0.983117 0.000004 0.999983 92.01% 

 

6 
0.144777 0.964902 0.000004 0.999986 82.01% 

 

7 
0.000976 0.967537 0.000004 0.999987 96.66% 

 

8 
0.333247 0.997902 0.000001 0.999987 66.47% 

 

9 
0.062988 0.947717 0.000001 0.999992 88.47% 

 

10 
0.024613 0.986062 0.000004 0.999995 96.15% 

 

11 
0.017236 0.997224 0.000007 0.999977 98.00% 

 

12 
0.061829 0.914414 0.000000 0.999973 85.26% 

 

13 
0.060277 0.973872 0.000006 0.999987 91.36% 

 

14 
0.004876 0.803485 0.000005 0.999994 79.86% 

 

15 
0.007752 0.988437 0.000001 0.999951 98.07% 

 

16 
0.045223 0.870849 0.000026 0.999995 82.57% 

 

17 
0.446516 0.955342 0.000007 0.999988 50.88% 

Y 

18 
0.000699 0.933230 0.000025 0.999992 93.26% 

 

19 
0.021558 0.999661 0.000009 0.999999 97.81% 

 

20 
0.011833 0.985059 0.000004 0.999994 97.32% 

 

21 
0.000378 0.797043 0.000008 0.999999 79.67% 

 

22 
0.052105 0.999893 0.000006 0.999996 94.78% 

 

23 
0.011760 0.995374 0.000005 0.999991 98.36% 

 

24 
0.176440 0.912952 0.000000 0.999999 73.65% 

 

25 
0.046933 0.995643 0.000002 0.999988 94.87% 

 

26 
0.009195 0.999200 0.000002 0.999997 99.00% 

 

27 
0.003163 0.877452 0.000020 0.999999 87.43% 

 

28 
0.002473 0.865191 0.000002 0.999994 86.27% 

 

29 
0.058407 0.753878 0.000006 0.999999 69.55% 

 

30 
0.549941 0.999413 0.000005 0.999999 44.95% 

Y 

31 
0.014874 0.966914 0.000024 0.999991 95.21% 
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 The columns MBR Lo and MBR Hi define the MBR for the branch containing a 

single leaf node with 23 data points.  The columns “Data Set Min (Root)” and “Data Set 

Max (Root)” define the entire bounding space for the full data set also known as the Root 

MBR.  The percent of overlap column is the ratio of root MBR to leaf MBR for each 

dimension.  Finally the Split column indicates which dimensions have been split, 

meaning which columns don’t cover the entire data space for that dimension. From table 

1, one can see that most dimensions (all but 3) cover nearly the entire range of the data 

set.  Only dimensions 1, 17 and 30 most likely have been split during the insertion 

process.  This simple example illustrates the fundamental problem with high dimensional 

data.  

This table also shows how the volume grows; take for example the first 16 

dimensions and compute the volume of the hyper-rectangle then look at the volume of the 

entire 32 Dimensional hyper-rectangle.  It is easy to see how the volume increases as the 

number of dimensions increase, this in turn illustrates the first property described by 

Böhm [15] and in turn the third property.  Because of this growth in volume as the 

dimensionality increases most data structure such as R-Tree suffer from large overlap of 

MBR at the different levels. 

 

2.4 Advantages of an Index 

 

If one considers the “Curse of Dimensionality” described in the previous section, 

it might cause one to consider an index to be all but useless for high dimensional data.  

On the other hand if one takes into consideration the following advantages it is easy to 
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see the rational for continuing research into high dimensional indexes. The following is a 

list of advantages related to data structure based indexes: 

1. Is generic in respect to the following: 

a. Number of dimensions 

b. Type of data (integer, floating point etc.) 

c. Size of data (number of points) 

2. Can be used regardless on the data distribution. 

3. Can be bulk loaded/inserted saving load time. 

4. Insertion and deletion can be performed without requiring the total reconstruction 

of the index. 

5. Search heuristic can be changed, modified or tuned (parameters adjusted) without 

requiring the complete reconstruction of the index. 

6. Bounding region can be changed, which could require reconstruction of the index 

with only slight modification to the index storage.  

7. All four searches discussed previously in section 2.1 can be implemented without 

changes to the index structure with the exception of RNN which requires only 

minor changes to the index structure [109]. 
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2.5 Disadvantage of an Index 

 

 Of course a data structure used for indexing has overhead and some 

disadvantages, which are listed below: 

1. The index structure (internal nodes) increase the space and time complexity. 

2. Sometimes the index needs to be re-built to maintain efficiency when many points 

are inserted or deleted. 

From this list of advantages one can make a good argument for using an index.  Most 

of all it is the generality and lack of specialty that justifies the use of an index over other 

methods, for high dimensional data. 

 

2.6 Approximate Nearest Neighbor Search 

 

Because of the “Curse of Dimensionality” and the nature of the problem being 

solved many researchers have come to a conclusion that an exact nearest neighbor search 

need not always be found.  In turn they have suggested that an approximate nearest 

neighbor (ANN) might be sufficient.  When the number of dimensions is large and the 

data set is large, on the order of 100,000 points or more, with 32 dimensions or more, 

sometime on the order of hundreds, an ANN may be as relevant as an exact solution.  In 

fact some have pointed out that an ANN also known as approximate similarity may 

provide a sufficient solution as to satisfy the user [47].  Others have suggested that a 

tradeoff between access time and approximate results, given that the approximate results 

may still be sufficient is worth it rather than having to wait for an exact result which in 

turn may not provide any more relevant information then the approximate results [27].  
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As an alternative Sakurai has developed a variation known A-Tree (approximation tree), 

which uses MBR and virtual bounding rectangles (approximate MBRs) in a tree 

structure, search this structure returns an approximate results which has been shown to 

outperform VA-File and SR-Tree [85]. 

 

2.6.1 Locality Sensitive Hashing 

As with other proposes some researchers have ventured away from data structure 

based indexing solutions, in this case they have suggested a different approach known as 

Locality Sensitive Hashing (LSH) [43, 48]. This is an indexing technique based on 

random projections. Within LSH the projection is done on the Hamming space 

representation of the data, which corresponds to the combination of the unary 

representation of each dimension of the data. The method proposed here implements two 

levels each having its own hash function.  The first maps the points into buckets based on 

the LSH function of a given size, the second level of hashing uses a standard hash 

function of a given size. Once the preprocessing is complete, all data points are placed 

into buckets according to a hash function, querying a new point becomes a simple 

process of applying the same hash functions (primary and second level) to the point. This 

returns an ANN with a guarantied computation complexity measured as disk access, with 

an error based on the parameters supplied during the pre-processing (primary and 

secondary hash table sizes). One drawback to this method is that it requires the data to be 

represented as a positive integer. The authors point out that a real number can be 

transformed into positive integers by shifting them with simple addition, and then 

transformed into integers by multiplying by a large enough integer.  They point out that 
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this would lead to a small amount of rounding error and even gave an analysis as to the 

amount of error to expect.    

A number of researchers have continued to explore this ANN method by 

expanding on the original work as well as applying it in a real world application.  Work 

by, Lv [67] expands on the original LSH ANN method by attempting to improve its space 

efficiency using a method known as Multi-Probe LSH.  This method expands LSH with 

the addition of a new concept known as multi-probe, which attempts to reduce the 

number of hash tables that have to be checked during a query.  This method uses a 

derived probing sequence to determining the hash buckets with the highest probabilities 

of containing ANN.  The authors showed that using multi-probe LSH fewer number of 

hash tables are required yet they were still able to maintain the quality of the query in 

comparison to standard LSH as well as another method known as Entropy-based LSH 

[78].  Multi-probe is very similar to a method proposed by Panigrahy [78] known as 

Entropy-based LSH, which uses sampling queries of a given distance to determine which 

hash buckets have the highest probabilities of containing ANN, thereby reducing the 

number of buckets that have to be searched.  Recently Casey [19] has applied LSH to a 

real world research problem known as song intersection.  While working on methods to 

determine if one song was derived from another, the authors used LSH in an attempt to 

find similarities in audio sequences.  The authors pointed out that an ANN would be more 

then acceptable given the trade off required to find an exact NN which they suggested 

may not provide any more additional information given the nature of the problem. 
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2.6.2 Locality Sensitive Hashing B-Tree 

In the past few years researches have focused on variations of LSH with the latest 

known as Locality Sensitive Hashing B-Tree.  This latest method is based on the original 

proposal published by Indyk and Motwani in 1998 [48], which supports a variation on 

approximate NN similar to C-Approximate NN.  This variation on ANN is defined as 

follows, a query point q has a point o who’s distance to q is at most c times the distance 

from q to its exact NN o’ where c is greater than or equal to 1, is the approximation ratio.  

This defines an approximate NN point o of q as having a distance ratio to q’s, exact NN 

of no more than c times the distance. LSH relaxes this a little by defining ANN as Ball 

Cover B(q,r) and B(q,cr).  A Ball Cover is defined as query which must return a point if it 

falls within B(q,r) and at most B(q,cr), otherwise it should return nothing, as seen in 

figure 14 [48]. 

 

 

Figure 14. Illustration of C-Approximate Ball Cover query. 

 

Given this approximation some researchers have concluded that an ANN queries 

can be reduced to a number of Ball Cover queries with different radii [39, 48] and that 

any point in B(q,cr) is therefore a c-approximate NN of q.   

B(q,cr) 

B(q,r) 

q 
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As described in previous discussion on Locality sensitive hashing, a set of hash 

functions to determine which points might be ANN to q.  Points in the domain search 

space are first hashed into buckets based on a hash function H(o).  These hash functions 

map d-dimensional points into buckets, which is locality sensitive if the chance of 

mapping two points to the same value (bucket) grows as their distance decreases [48, 

112].  The basis is simple if two points are close to each other they are likely to fall into 

the same bucket and if faraway they are likely to fall into different buckets [30]. 

It can be shown that LSH provides a theoretic guarantee on quality but with 

several draw backs, very high cost in terms of space and query complexity.  The original 

proposal for LSH (known as rigorous LSH) required numerous radii (buckets) to achieve 

its guarantee on quality but at a cost of space and query complexity. This high cost was 

resolved by Gionis using heuristics to find a pre-determined radius, this method became 

known as Adhoc LSH [43], but it sacrificed the quality of the results (guarantee) for 

reduced space and query complexity.  Many researchers still continue to explore 

variations on LSH, for example Junhao [37] has focused on finding better hash functions 

known as Collision Counting LSH (C2LSH).  Whereas, others have been applying LSH 

to other multiply dimensional search problems, for example, Venu has developed a 

variation for High Dimensional Similarity Searches [86]. 

Locality Sensitive B-Tree (LSB or LSB-Forest) takes LSH one step further by 

employing a forest of trees in an attempt to answer the short-comings of the different 

LSH methods, yet still guaranteeing the quality of the NN returned to be that of c-

approximate ball cover. This new approach, takes a different path than the normal use of 

hash functions found in current implementations of LSH.   LSB-Forest uses z-ordering of 
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d-dimensional points, pushing the z-order values which have been reduced to a single 

dimensional value into a B-Tree [112].  The authors proved that z-ordering is essentially 

locality sensitive and that by ordering the values into a B-Tree they can search much 

more efficiently.  Queries are performed based on length of longest common prefix 

(LLCP) derived from the z-ordering of a query point q.  As a further improvement they 

use a forest of LSB trees.  The algorithm works by calculating the z-ordering value of a 

point q, searching each tree in the forest returning leaf nodes with the next greatest LLCP 

until one of two conditions is met.  The first being a restriction on the number of pages 

read and the second being that the ANN returned so far has a distance at most  2
u-(v/m)+1 

to 

q (this distance is defined by the authors as an upper bound [111] and is based on the 

LLCP and Z-ordering, not Euclidean distance).  These conditions have the affect of 

controlling or reducing search complexity so that it meets the guarantee of rigorous LSH 

with improved space and query complexity and is equal to Adhoc in terms of space [112].  

Current research from Junhao has offered a new LSH method known as C2LSH which 

has been shown to offer better guarantee on query results and outperforms LSB [37]. 

 

2.7 Conclusion  

 

What has just been presented is a summary of past and current research into this 

problem, covering the basic types of searching, indexing methods and matrix space 

methods.  This provides the foundations for the next sections as well as the basis for 

ANN using R-Tree. 
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3. Implementation and Experimental Procedures 

 

This section provides a summary of my implementations and experimental 

procedures including experiment parameters, results and analysis techniques.  When 

working with large index structures and complex data files it becomes necessary to 

describe in detail the storage requirements, in this case R-Tree, because different 

parameters, such as the page size or number of dimensions, can affect not only the 

storage but the results from different experiments involving different data sets.  

 

3.1 Definition and Parameters 

 The following tables (2 and 3) contain lists of abbreviations and definitions, with 

a short description used throughout this dissertation, these will be defined further as they 

are used. 

 

Table 2. List of Abbreviations used throughout this chapter and later chapters 

 

Abbreviation Description 

D Number of Dimensions 

Q Query point 

MBR Minimum Bounding Rectangle of a set of points 

CB Current Best solution found during a search 

NN Nearest Neighbor 

ANN Approximate Nearest Neighbor 

KNN Kth Nearest Neighbor 

RNN Reverse Nearest Neighbor 

KB Kilo Byte 

MB Mega Byte 

GB Giga Byte 

IO Input Output (usually referring to Disk access) 
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Table 3. List of definitions used throughout this chapter and later chapters 

 

Definitions Description 

Rank Solution position in the k
th

 nearest neighbor ordering 

Leaf Node Nodes containing data points 

Internal Node Internal nodes of the tree which contain MBR 

Mindist Minimum distance from Q to the closest edge of a given MBR 

Maxdist Maximum distance from Q to the furthest corner of a given MBR 

Alpha Parameter used by pruning heuristics 

Cardinality The amount or number of branches from one internal node to the 

next 

Fan out Same as Cardinality  

Page Size Size of a physical disk page in bytes or Kilo Bytes 

 

 

3.2 Experimental Data Sets  

To test my implementation it was necessary to create testing data.  For 

experimentation purposes a number of data sets was generated, I denoted the sets as 

uniformed, clustered, and Gaussian, which were based on the underlying probability 

distributions, that was used to generate the data.  Most of the experiments in chapter 5 

and 7 will be with sets having 32 or more dimensions.  Past research [104] has shown that 

above 10 dimensions just about any index’s performance drops to no better than a 

sequential scan, therefore focusing on at least 32 dimensions at this time should provide 

insight as to whether a new method is working well. The uniformed, clustered and 

Gaussian data sets were generated with a simple program that randomly selected points 

within a given range based on the desired data distribution.  In the case of uniformed data 

range was 0.01 to 0.99999 for all dimensions, for clustered data 20 random clustered 

were specified, each having approximately the sample number of points (total did not 

exceed 100,000) again in the range of 0.01 to 0.99999 for all dimensions.   Lastly for 
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Gaussian data the distributions were centered, around 0 with the range being from -4.0 to 

4.0 for all dimensions.  Finally a relatively large data set containing real world data was 

located at the UCI KDD Archive Information and Computer Science University of 

California, which contained 32 Dimensional color histograms for 66,000 images [97].    

 

3.3 R-Tree Implementation 

 The R-Tree implementation used throughout this project follows the methods 

originally proposed by Guttman and later worked on by Roussopoulos [44, 84].  The 

basic structure is as follows, each internal node starting with the root node contains N 

number of branches known as its fan out, each of which contains an MBR and a pointer 

to the next level’s internal node defined by the MBR.  The maximum number of branches 

in an internal node is governed by the number of dimensions and page size.  The overall 

tree is height balanced meaning the number of nodes from the root to any leaf node is the 

same.  Data points are stored in the lowest levels called the leaf node, again the number 

of points stored is governed by the number of dimensions and page size.  Points are 

inserted by traversing the tree selecting branches that would be least affected by the 

insertion of a new point.  When the leaf node is reached the new point in inserted into the 

leaf.  After insertion into the leaf the MBR of each node traversed must be updated, if any 

leaf or internal node becomes full it is split.  Whereas deletion from the index is handled 

by simply locating the point and removing it from the leaf node then updating the MBR 

traversed.   

 Building on this method I added disk IO to the index structure described above by 

storing both the internal node and leaf nodes in a data file.  This changed the index from 
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being a memory based structure to disk based, much like any data base system would be.  

I added buffer management functionality, which allows me to specify which type of 

buffering technique to be used.  I implemented Least Recently Used (LRU), Most 

Recently Used (MRU), First In First Out (FIFO) and Last In First Out (LIFO). This was 

added to simulate a real world data base system, which uses available memory as data 

buffers to improve disk access to the data base.  Rather then read and write every page of 

data during an IO request, the buffer management algorithm checks to see if the 

requested page is currently in memory and if so uses this buffered page thereby saving 

disk IO.  This additional functionality allowed me to control the amount of memory 

allocated to the index.  During any testing including building, maintaining, and search I 

specify the number of dimension, the page size in bytes, and the number of page buffers 

to allocate (main memory used by the index).  Because the index is now disk based I only 

needed to build an index once for any given data set.  This also gives me a real world 

basis for comparison, once built I can compare the physical size of the index to that of the 

data file, not only that I can examine the cost in terms of storage and IO, of the data 

structure, including the nodes used for searching (internal nodes) as well as the nodes 

used for storage (leaf nodes). 

 

3.4 R-Tree Storage Cost 

When looking at an index structure one must consider two cost measures, time 

and space.  Storage cost (space) needs to be discussed first, because it directly effects the 

time cost.  For an R-Tree, like any other tree based index, consideration has to be given to 

the cost of storing the bounding information as well as the final points.  This can be easily 
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explained using points in a 2 dimensional space as seen in figure 15. R-Tree is a tree 

based data structure as the name suggests, with branches starting at the root, each 

bounding a sub-space of the overall space. Each branch can be thought of as R-Tree with 

branches bounding the sub-space of the parent branch.  This repeats until a tree large 

enough to hold all the points is constructed, with the points being stored in the lowest 

level of the tree known as the leaf nodes.  The height of the tree is inversely proportional 

to the branching, which is based on the number of dimensions and storage space allocated 

to each node.  Figure 15 illustrates points in a 2 dimensional space and the corresponding 

R-Tree needed to store the data. 

 

 

Figure 15.  The root has 2 branches defined by MBR1 and MBR2, under each MBR are 

sub-trees rooted by the parent MBR.  In this figure there are 4 levels each with 2 branches 

with the last being the lowest level which contains 2 or more points.   

 

One can see from this figure that at the root of the tree, 2 bounding regions exist 

(MBR1 and MBR2), within each bounding region is a sub-tree, and within each sub-tree 

MBR1.1 

MBR1.2 MBR2.2 

MBR2 

MBR2.1 

MBR2.1.1 

MBR2.1.2 

MBR2.2.1 

MBR2.2.2 
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is another sub-tree.   The bounding regions are stored in the internal nodes of the tree and 

finally the raw points are stored in the lowest levels (leaf nodes). 

With this index structure it is possible to answer a number of types of queries 

including approximate nearest neighbor, K nearest neighbor and even reverse nearest 

neighbor (with some slight modifications to the data structure) [109].  Solving both 

nearest neighbor and K nearest neighbor does not require any modifications to the data 

structure, for KNN all that needs to be done is to maintain a sorted list (by distance) of 

current best NN, updating the list as a new NN are found during a search. 

The storage requirements for an R-Tree are based primarily on the number of 

dimensions and page size.  Here page size is the physical storage of one node either an 

internal or leaf node (both of which require the same number of bytes).  An internal node 

has the following fields; level number, branch count and set of MBR (branches).  Each 

MBR is comprised of a high corner and a lower corner representing the minimum and 

maximum of each dimension, as well as a page pointer representing the pointer to the 

next node (branch pointer) which could be an internal or leaf node.  The storage 

requirements of an internal node can be seen in figure 16 and 17. 

 



45 

 

 

Figure 16. R-Tree Internal node structure with field names and sizes in bytes 

 

 

Figure 17. Break down of the fields contained in a internal node 

   

 The total fan out or number of branches is calculated from the page size and 

number of dimensions. For a page size of 4KB with 32 dimensional points the fan out 

would be computed as seen in figure 18. 

Branch Count (4bytes) 

MBR  0 

LO 

 (32D * 4Bytes) 

 

HI 

 (32D * 4Bytes) 

Page Pointer 

(4bytes) 

MBR  1 

LO 

 (32D * 4Bytes) 

 

HI 

 (32D * 4Bytes) 

Page Pointer 

(4bytes) 

MBR  n 

LO 

 (32D * 4Bytes) 

 

HI 

 (32D * 4Bytes) 

Page Pointer 

(4bytes) 

Level (4bytes) 

 
Fragmented Space 

Level   – Internal Node level within R-Tree 

Branch Count – Number of used branches in this node 

MBR0 – MBRn – MBR defining a bounding region 

MBR HI  – upper bound corner  

   MBR LO – Lower bound corner 

MBR Page Pinter – Page Pointer which points the node in  

the next level (sub tree) 
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Figure 18. Computing the internal node fan out based on a 4KB page size 

 

Based on these calculations an internal node would have a fan out of 15 (that is 15 MBR 

per page) with 188Bytes of fragmented space.   

As with most index structure that use persistence storage the page size is fixed for 

all types of nodes.  Therefore a leaf node will use the same amount of storage and would 

have the following fields; level number, point count and data points with a reference 

pointer.    The storage requirements of a leaf node can be seen in figure 19 and 20. 

Fan out  = (4KB – (4B + 4B)) / (4B + (4B * 32D) + (4B * 32D)) 

  = 4088B / 260B 

  = 15 

 

Fragmented space = 4K – (4B + 4B) – (15 * 260B) 

             = 188Bytes 
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Figure 19. R-Tree Leaf node structure with field names and sizes in bytes 

 

Figure 20. Break down of the fields contained in a leaf node 

 

The number of points that can be stored a leaf node is calculated from the page 

size and number of dimensions. An example how to compute the storage capacity of a 

leaf node with a page size of 4KB using 32 dimensional points can be seen in figure 21. 
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Level   – Leaf Node level within R-Tree 

Point Count  – Number of points in this node 

Point 0 to Point n – Point information 

        Point – The actual point (all dimensions) 

Point Reference Pointer – Data reference pointer used to  

point to the data reference by this point 
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Figure 21. Computing the number of points that can be stored in a leaf node based on a 

4KB page size. 

 

Based on these calculations a leaf node would store a maximum of 30 points with 128B 

of fragmented space per node.  This computation as with the fan out need only be 

computed once as all nodes have the same physical page size. 

 

3.5 R-Tree Access Cost  

Knowing these numbers it is now possible to calculate the approximate size of the 

R-Tree index, for a given number of points.  Because the tree is balanced then the number 

of levels (height) is a logarithmic function of the number of leaf nodes needed and the fan 

out of the inter nodes.  For example, 100,000 32 dimensional points, assuming each leaf 

node is 75% full then, 4,348 leaf nodes would have to be allocated to store just the points.  

This in turn would require at least 311 internal nodes (usually a little higher as not all 

internal nodes will be 100% full), having 3 levels as seen in the following figure 22.   

 

 

Number of points = (4KB – (4B + 4B)) / (4B + (4B * 32)) 

                   = 4088B / 132B 

                             =  30 

 

Fragmented space = 4K – (4B + 4B) – (30 * 132B) 

        = 128B 
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Figure 22. Computing the height and storage for an R-Tree housing 100,000 32 

dimensional points 

Number of leaf nodes = (75% * Number of points per leaf) / 100,000  

    = (75% * 30) / 100,000  

= 23/100,000  

= 4,348 Leaf Nodes required 

Number of levels = logfan out (LeafNodes)   

= log15 (4,348) 

    = 3.25 rounded down to 3 

    = 3 + 1 (1 more level for leaf nodes) 

    = 3 levels 

 

 Number of Internal nodes level 1 = (4,348 Leaf nodes ) / 15  

        = 290 Level 1 nodes 

 Number of Internal nodes level 2 = (290 Level 1 nodes ) / 15  

      = 20 Level 2 nodes 

 Number of Internal nodes level 3 = (20 Level 2 nodes ) / 15  

= 1 Level 3 node (known as the root) 

which needs 2 branches 

 Total number of internal nodes needed = 290 + 20 + 1 

         = 311 internal nodes 
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To compute the access cost during a search (traversal) simply count the number of 

internal and leaf nodes visited, since each is 4KB the total space read is (Internal + Leaf) 

* 4KB = KB read.  This becomes a simple measure of how efficient a particular search 

method is.  One conclusion that can be drawn from the R-Tree index is that it has a 

higher storage cost when compared to other high dimension search methods such as the 

SS-Tree, VA-File and M-Grid, the MBR, counters, page pointer and tree level indicators, 

all must be stored requiring extra space in the index.  Therefore, it is very important to 

count the total number of nodes accessed, which translates directly to the amount of disk 

IO performed and the number of bytes read.  If for example during an experiment 300 

internal nodes are read and 110 leaf nodes then the true cost is (300 + 110) * 4KB 

(assuming 4KB page) = 1,679,360 Bytes read, which might be plotted against the total 

cost of the R-Tree index, and in turn compared to sequential scan.  It also becomes 

important to try and reduce not only the number of leaf nodes but also the number of 

internal nodes read.   

As talked about earlier, results from any method need to be an improvement over 

a typical sequential scan.  This involves reading the entire data set, including a reference 

point (to be fair), computing the distance from Q to every point in the data set and 

returning Q’s NN at the end of the process.  Therefore, to compare R-Tree access to a 

sequential scan, the storage requirements need to be considered.  In the previous section it 

was mentioned that a point required 4 Bytes per dimension, and the reference pointer also 

required 4Bytes.  For the sake of comparison this can be considered the lower bound on 

the data storage requirements. Therefore, a 100,000 point data set having 32 dimensions 

would require (32D * 4Bytes + 4Bytes) * 100,000 = 13,200,000 Bytes and the 
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corresponding R-Tree would require approximately 19,083,264 Bytes (note this 

additional space is not fully utilized in that the leaf nodes could store an additional 30,000 

points). This makes presentation of results a function of the original data set if a result in 

terms of disk IO is greater than the size of the raw data file then the method did not have 

any improvement. 

There is also another item to consider, CPU time.  During a sequential scan of 

100,000 data points, exactly 100,000 NN distance calculations will be performed.  Any 

method that accesses less of the data set will also reduce the number of distance 

calculations.  This is usually not presented as it is assumed that reduced disk IO also 

equates to reduce CPU time (I assume CPU time is much smaller then disk access time). 

 

3.6 Maintenance Cost 

As with any index structure there is a cost associated with building and 

maintaining the index.  For this work I am not as concerned with that as I am with 

searching, still maintenance needs to be discussed.  Typically an index would be built by 

repeated insertion of single points, Chapter 4 has a detailed discussion of an alternate 

method to initial building of an index known as bulk loading/inserting.  Once the index is 

built additional points can be added by either insertion via single point insertion or by 

bulk insertion. 

 

3.7 Accuracy Measures  

In some cases people are willing to accept a less then accurate result this requires 

one to consider a second measure, accuracy. If the search is for an exact result and a 
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pruning heuristic is employed then the possibility exists that the results returned will not 

be exact. The best way to think of accuracy is that the results returned are not the exact 

NN but rather an approximate solution, meaning that points might exist that are closer but 

were missed during the search (pruned by some heuristic) not only that, but this lack of 

accuracy increases as the amount of pruning increases which equates to less searching.  If 

the user is willing to accept some inaccuracy, then any high dimensional ANN search 

method should be able to provide some level of performance or quality in terms of 

accuracy.  One way to provide a level of performance is to measure the accuracy during 

development and through experimentation. Currently there are two methods that can be 

used to measure the quality (accuracy) of an ANN result returned, with the first being 

rank and the second distance ratio.  

The first method known as the rank of the solution is defined as the ordering of a 

query point’s solutions based on distance with the NN having a rank of one and the 2
nd

 

NN having a rank of two etc.  For testing purposes the actual rank of a given solution is 

computed via a sequential scan of the test data computing the distance from the query 

point to every point. By checking the query results ordering one can get its actual rank 

(correct). This is used to report results and analyze the results, as it gives an idea as to the 

accuracy of the results.  In a real world implementation the actual rank of the solution 

would not be computed or known, yet based on the analysis done during development 

and testing it should be possible to provide some idea as to the accuracy.   

 The second method is the ratio of the query points ANN and to its exact NN, also 

known as the distance ratio (Formula 5).  This method, like the rank measure requires the 

query point’s exact NN therefore it is only computed as a means to determine the 
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accuracy of the results returned during an experiment and ultimately how well an 

implementation for ANN is performing.   

 

 

distRatio =  

 

Throughout most of the literature on the subject of ANN in high dimensional space, 

distance ratio is used as the measure of accuracy, because of this I will also use distance 

ratio to report my results, so that my results can be compared to other research. 

 

3.8 Conclusion 

 This section has described the parameters that must be considered when analyzing 

the results of any query using R-Tree index.  If these parameters are not taken into 

consideration when testing and running experiments then the performance results could 

be skewed and may not provide a fair comparison. 

 

 

4. Bulk Loading R-Tree 

 

With any index structure there are additional costs associated with maintaining 

the index. This includes initial building the index, inserting and deleting points.  These 

are not usually included in any experimental results studying high-dimension queries 

because the experiments are usually focused on searching not insertions and deletions.  

Still these costs need to be discussed.  When initially building R-Tree index the primary 

method used is single point insertion.  One point is read from the input, the tree is 

Dist(q, ANN) 

Dist(q, NN) 

 

(5) 
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traversed according to an insertion algorithm when the best leaf node is located the data 

point is added to the node then all parent nodes affected are updated.  The cost of this 

type of insertion is basically the cost of reading one internal node for each level of the 

tree, (height) and the cost of reading one leaf node, as well as the cost of possible 

updating and re-writing each node read.  As new points are inserted they may traverse the 

path causing the same internal nodes to be updated numerous times as their MBR needs 

to be updated, this leads to a lot of redundant IO.  

 My previous work can be directly applied to R-Tree [65] mainly involving work 

done on bulk loading/insertion algorithm for the Rdnn-tree [109], an indexing structure 

developed to efficiently answer nearest neighbor and reverse nearest neighbor (RNN) 

queries  (R-Tree extended to support reverse nearest neighbor queries). The algorithm 

developed utilizes the notion of in-memory organization of the data to efficiently insert 

multiple data points, with the following advantages: it was independent of the order of 

input the same cannot be said of many bulk insertion algorithms; it does not require any 

preprocessing of the entire data set; the algorithm was orthogonal to the buffer 

management that it used; and it was applicable to both bulk loading (initializing the 

index) and bulk insertion (addition of new points).  

 

4.1 Previous Work on RNN  

Many have developed methods to find RNN efficiently; a good example proposed 

by Korn and Muthukrishnan [59], is to preprocess the data set by finding the nearest 

neighbor of every point of the data set and then store them.  This process although 

efficient from one aspect still required additional work when the index is built.  The work 
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from Yang and Lin improved on this by combining both NN and RNN queries into one 

index [109].  Other work on algorithms for reverse nearest neighbors can be found in 

following papers [12, 92, 93, 94, 95]. 

The method given developed by Yang, was an extension of the basic R-Tree 

known as the Rdnn-tree index. The major modification to the R-Tree was the addition of 

the nearest neighbor distance for each point stored in the leaf nodes and for each MBR 

(branch), the additional storage of the maximum of all the nearest neighbor distances 

contained in the MBR. This extra information allows a single index to handle both 

nearest neighbor and reverse nearest neighbor queries efficiently, thus enabling quicker 

queries as well as effective insertion/deletion.  Yang’s work showed that the Rdnn-tree 

outperforms the original two trees approach by a factor four or more requiring only a 

single index. He was also able to show that, single point insertion also has far better 

performance as compared to the standard approach. 

 

4.2 Previous Work on Bulk Loading R-Tree and Other Index 

Many other researchers have also discovered the need to find alternate methods to 

efficiently insert and update tree based indexes. Some of the methods proposed for other 

index structures may also be applied to R-Tree  

One approach to bulk loading taken by Ciaccia [25] is to partition the new data, 

then build a tree for each partition, and finally combine the trees together forming a 

single tree. The authors point out that care must be taken in how to partition the data; 

otherwise it might be necessary to perform a reorganization of the new tree. The method 

for bulk loading M-Tree, proceeds by drawing samples from the data set, then each data 
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point is assigned to the sample that it is closest to. Using this approach still requires a 

reorganization of the final tree. The authors point out that this concept can be applied to 

bulk insertion.  

A second approach given by Choubey, [22] proposes to bulk insert points into an 

R-Tree by first using clustering techniques to partition the points into spatially-close 

clusters, second build a small R-Tree for each partition and third grafting it into the 

original R-Tree.  

A third approach by Arge [6] involves building the index by buffering the points 

to be inserted temporary. For example, Arge proposed a method whereby the internal 

nodes have buffers associated with them. When an insertion occurs, rather than traversing 

down the whole path, the insertion stops at a certain level, and the points to be inserted 

are stored in the buffer associated with the internal node. When enough points are 

accumulated in the buffers, they are pushed down to the next level.  This process is 

repeated until the points eventually reach the leaf nodes. 

The previous works on bulk loading R-Trees as well as other tree based indexes 

works well, but for the Rdnn-Tree these methods may not be efficient because of the 

additional work needed to maintain the index. My test showed that, for a typical 

2,000,000-point data set, inserting the points one at a time requires on average of 17 page 

requests.  

 

4.3 Rdnn-tree Bulk Loading/Insertion Method 

For the Rdnn-tree, I incorporate bulk loading and bulk insertion into one 

algorithm. Bulk loading is done by first reading a sub-set of points into main memory and 
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preprocessing them, and then inserting those points into the current Rdnn-tree. This 

approach enables this method to treat both bulk loading and bulk insertion uniformly. 

Moreover, the algorithm I developed was flexible enough to deal with variable size of 

main memory allocated to the program. 

The goal of the preprocessing was to enable multiple points to be inserted into the 

tree without duplicating effort in the form of additional page requests. The most intuitive 

way was to organize the points such that I can determine which points are going to be in 

the same node, or traverse a very similar path during insertion. Then multiple points can 

be inserted only by one transversal of the tree, saving a significant amount of page 

access, equating to reduced disk IO. 

An additional point to consider involving the Rdnn-Tree is that inserting a point 

not only requires finding the correct leaf node, but also requires finding its nearest 

neighbor to be stored as well as its reverse nearest neighbors (so other points can update 

their nearest neighbor distances). This has two implications. First it makes the grouping 

of points even more important. One can surmise that points that are to be inserted into the 

same node are likely to be close together, thus likely to share the same nearest neighbors. 

Thus inserting them at the same time will save effort in finding nearest neighbors. 

Moreover, the points may share the same reverse nearest neighbors. This suggests that 

inserting them together can reduce the number of updates of nearest neighbor distances. 

This is best illustrated by the following figure 23: 
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Figure 23. Illustration of wasted effort in single point insertion. v is t’s original nearest 

neighbor. Insertion of a, b, c, d will cause successive updates of t’s nearest neighbors. 

 

In figure 23, assume point t is a point that is already in the Rdnn-Tree. Point a, b, 

c, d are new points to be inserted into the existing Rdnn-Tree. Notice that they are 

inserted one at a time in the order of a, b, c and d,  then t is going to be the reverse nearest 

neighbor of all 4 points at the instance when each of the points is inserted. Based on this, 

I need to update the nearest neighbor distance of t 4 times as well as access the node 4 

times. This can lead to a large amount of wasted effort in terms of IO if t is actually in a 

different node then the new points. However, if I can insert all four points at once, then 

t’s nearest neighbor distance only needs to be updated once, thus saving a lot of disk 

access. 

A second implication of the extra work needed is that I cannot directly apply any 

of the standard bulk loading/insertion algorithms that currently exist in literature, 

therefore a new method needed to be developed. 

All of the discussion about this suggested that if I organize the points in such a 

way that I insert the closest points together I should be able to save disk IO. However, 

one needs to be cautious about this. As I mentioned earlier, during insertion one needs to 

find the nearest neighbors as well as the reverse nearest neighbors of the new point to be 

inserted. However, in the case of bulk insertion, the nearest neighbor/reverse nearest 

t 

a 

b 

c 

v 

 d 
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neighbor of a point to be inserted may actually be some other point(s) that are to be 

inserted. This suggests that care must be taken when determining those values. 

Taken all of this into consideration, I proposed building an in-memory Rdnn-Tree 

for the points that are to be bulk loaded/inserted. This essentially kills two birds with one 

stone: the in-memory Rdnn-Tree automatically clusters the data points, so that one can 

determine which points can be inserted simultaneously; also the in-memory Rdnn-Tree 

provides the nearest neighbor distance of the points to be inserted (relative to other points 

in the input set). This can help to speed up finding the real nearest neighbors and reverse 

nearest neighbors of the points to be inserted. Once the in-memory tree is built, I pick up 

each leaf node and insert the points together. If there are too many points to be 

loaded/inserted, then I first read a portion or sub-set of the data points to be inserted. 

After that, I insert all the points in the in-memory tree, and then build a new in-memory 

tree for the next portion of points. The overall pseudo-code is listed below in figure 24.  

 

 

Figure 24. Bulk Insertion/Loading 

 

Algorithm 1: Bulk Insertion/Loading an Rdnn-tree 

 

BulkInsert (Rdnn-tree T, PointSet S) 

 

While not all points inserted do 

 Read the next portion of S and build an in-memory Rdnn-tree T’  

 For each leaf node lnode in T’ do 

  BulkInsertNode (T, lnode) 

 End 

End 
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The BulkInsertNode procedure takes a leaf node (lnode) of the in-memory Rdnn-

Tree and inserts the points into the main disk based Rdnn-Tree. The insertion procedure 

is the same as the original tree: first, the nearest neighbors and reverse nearest neighbors 

of the points to be inserted are located ([109] showed that these two searches usually 

travel down the same path, so they can be performed in one traversal). After that the 

nearest neighbor distance of the reverse nearest neighbors are updated. Finally, the points 

in lnode are inserted by traversing the tree again. Since there is a possibility that the 

points in lnode will eventually reside in different leaf nodes in the main disk based Rdnn-

Tree, for the last traversal I apply a depth first traversal (as multiple branches of the tree 

may have to be traversed). Depth first search has an advantage of a fixed upper bound on 

the memory required. The pseudo code is listed below in figure 25. 
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Figure 25. Insert and update algorithms 

 

I have omitted details of BatchInsertPoints (). It is basically the depth first 

traversal of the tree while input each point in P in the appropriate node, and apply the R-

Tree insert procedure accordingly. One final item to point out has to do with the number 

of points being inserted (contained in an in-memory leaf node), which is less then or 

equal to the number contained in a leaf node in the main index.  Because of this, there is 

Algorithm 2: Insert Individual node 

 

BulkInsertNode (Rdnn-tree T, LeafNode N) 

 

1. Let P = the set of points in N (For each point p, there is a dnn (p) denoting  

the current distance from its nearest neighbor) 

2. Apply Batch-NN-Search [YAG01] to find the nearest neighbor for each  

point   in P (call this set NNP) 

3. Update dnn (p) for each point in P if necessary 

4. BatchUpdateCurrentTree (T, P) 

5. BatchInsertPoints (T, N, NNP) 

 

 

BatchUpdateCurrentTree (Node N, set < Points > P) 

 

If  N is not a leaf 

 For each branch B 

1. Let R be the bounding rectangle for B, and max_dnn as described  

in section 2 

   2. Find the set P’ P such that  p  P’, dist (p’ R) < max_dnn 

   3. BatchUpdateCurrentTree (B.child, P’) 

     else 

 For each point q in Node 

     If  p’ in P’ s.t. Dist (p’, q) < dnn (q). 

  Find the minimum of such distance and update dnn (q) 
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no danger that a single leaf node will overflow into 3 nodes, this means the standard R-

Tree algorithms that handle overflow (branch splits) can be used. 

  

4.4 Bulking Loading Results 

The following section will present some of the results from experiments involving 

2 dimensional uniformed, clustered and real data.  Tests were run using synthetic data, 

involving five different test sets of one million 2 dimensional non-clustered points as well 

as 5 different test sets of one million 2 dimensional clustered points, all randomly 

generated.  For the real world data, a single test set was retrieved from the US 

government web site: [98].  This test set contained 288,000 interesting locations in the 

southeastern United States represented as latitude and longitude points. I first apply 

individual point insertion to create the index; then apply my algorithm, varying the 

number of points in the in-memory Rdnn-Tree (denoted by Rsize) from 1,000 to 10,000. 

For each value I apply the 5 different test sets and present the averages in the plots.  

I have presented comparison of cost of building the index by measuring the cost 

in two ways. First I measured the number of read and write requests made. This gives me 

an overview of the cost. However, in case of bulk operations, buffering is an important 

aspect, as the same pages may be read and written repeatedly. Therefore, I maintained a 

consistent buffer count of 1,000 4K pages (4K is the size of a tree node in this set of 

experiment), with LRU as the page replacement policy, to make a fair comparison. Next I 

measured the actual number of page requests from the buffer pool giving me realistic 

numbers. 
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4.4.1 Bulking Loading Non-Clustered Results 

 Figure 26 shows the results for page request, while Figure 27 shows the results for 

read and write requests. 

 

 

Figure 26.  Total page requests for non-clustered data showing both single point and 

multiple point insertion. 

 

The results clearly show that as Rsize increases there is a reduction in the number 

of page requests, as compared to single point insertion.  There is an immediate reduction 

in page requests when Rsize = 1,000 and a continued improvement as it approaches 

10,000.  Figure 27 shows the change in pages read and written for the same set of tests. 

 

 



64 

 

 

Figure 27.  Read/Write page counts for non-clustered data showing both single point and 

multiple point insertion. 

 

 Figure 27 (above) shows that the number of read requests is more then half that of 

single point insertion,  while the number of write requests is also close to being half that 

of single point insertion. Therefore, we can see that this method provides an inherit 

advantage. One other thing to note is that a small Rsize actually put the bulk insertion 

algorithm at a disadvantage. This is because it is less likely to locate points in the in-

memory Rdnn-Tree that are actually close together and will benefit from bulk insertion. 

However, this situation is quickly remedied even with a modest Rsize. 
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4.4.2 Bulking Loading Clustered Results 

 Identical experiments are run again but this time with the data being clustered.  

Figure 28 shows the results. 

 

 

Figure 28.  Total page requests for clustered data showing both single point and multiple 

point insertion. 

 

Just as with the non-clustered data figure 28 clearly shows that as Rsize increases 

the number of page requests decreases, as compared to single point insertion. The 

improvement is as much as 4 times.  Figure 29 shows the change in pages read and 

written. 
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Figure 29.  Read/Write page counts for clustered data showing both single point and 

multiple point insertion. 

 

4.4.3 Bulking Loading Real Results 

  For the real world data I have one test set for each instance. Figures 30 and 31 

highlight the results which show significant improvement for the bulk loading/insertion 

algorithms. Notice that the improvement is bigger than the case of synthetic data. 
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Figure 30.  Read/Write page counts for real data showing both single point and multiple 

point insertion. 

 

 

 

Figure 31. Total page requests for real data showing both single point and multiple point 

insertion. 
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4.4.4 Bulking Loading Robustness Results 

 One concern for this algorithm is that whether the performance of the bulk 

insertion will degenerate as the database size becomes large. To test this, I keep the 

running average of the page requests for every 10,000 points inserted. From figure 32, 

one can see that the number of insertions grows at a slow pace.  Moreover, the growth 

rate for the bulk insertion is similar to that of single point insertion. Thus we can see that 

the bulk insertion algorithm is as robust as single point insertion. 

 

 

Figure 32.  Comparison of average page requests and leaf requests for indexes created 

with both single point and multiple point insertion. 

 

As I mentioned earlier, I need to check whether the index created by my bulk 

loading algorithm has similar quality to the one using single point insertion. To verify 

this, I execute a series of 100 reverse nearest neighbor queries for each of the indexes 

produced from the same test data set.  The same queries are posed to all indexes. I 

measure the cost of the query by the average number of nodes visited as well as the 

average number of leaves visited – as in some cases, all but the leaf nodes of an index are 
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stored in main memory.  Figure 33 shows the results of these tests. We can see that as 

Rsize varies, the average page request remains stable.  This shows that the index built by 

bulk insertion is of good quality.     

 

 

Figure 33.  Comparison of page request per 10,000 points inserted for both single point 

and multiple point insertion. 

 

4.5 Application of Rdnn-Tree Bulk Loading to R-Tree 

 This work on bulk loading showed that methods could be designed that would 

improve the maintenance cost by outperforming single point insertion, without any affect 

on efficiency or quality of the index.  One of the goals of this work was to extend this 

particular method to other indexes including the general R-Tree.  After publishing this 

work [65] I re-implemented my method in existing R-Tree code and ran some initial 

tests.  Figures 34, 35 and 36 show the cost in pages accessed, written and read 

respectively for single point verses bulk insertion of data into a R-Tree.  These tests show 

the cost of inserting 100,000 points for the four different data distribution, having 32 
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dimensions with R-Tree pages size set to 4K pages and data buffers limited to 1,000.  For 

bulk insertion in-memory multiple point insertion was set to 5,000 (Rsize). 
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Figure 34. Total Pages accessed for single point verse bulk insertion, for all four data 

distributions 
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Figure 35. Total Pages written for single point verse bulk insertion, for all four data 

distributions 
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Figure 36. Total Pages read for single point verse bulk insertion, for all four data 

distributions 

 

 The figures show that for pages accessed bulk insertion showed an improvement 

of around 45%-65% over single point insertion.  When broken down for pages written 

and read the improvement was less dramatic, in two cases (read results figure 36) 

Gaussian and real, bulk insertion did worse than single point insertion.   

 

4.6 Bulk Loading Conclusion 

In conclusion I have shown that the use of an in-memory Rdnn-Tree to process 

sub-sets of the input data, which is then used to bulk load a disk based Rdnn-Tree reduces 

disk IO by a significant amount.  And when compared to an index built with single point 

insertion, the bulk loaded index has the same level of performance in terms of query IO. 

This means the bulk loaded index is of the same quality as one built with single point 

insertion.  Further work shows this same method can be applied to R-Tree with similar 
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results, thereby improving the IO efficiency during construction of an R-Tree index.  

Finally my method can be used for both bulk loading of the initial data and bulk insertion 

of larger sets of new data. 

 

5. Approximate Nearest Neighbor Search 

 

As some researchers have already suggested, an approximate solution may be 

acceptable in many circumstances.   Because of R-Tree’s many advantages, it may be 

possible to apply heuristics for NN queries that may eliminate branches that are less 

likely to improve the current solution, thereby returning an approximate result.  If this is 

possible then it should reduce the amount of searching hence reducing disk IO and CPU 

computations. Since this pruning would return the likelihood of an improvement 

(probability) I might prune a branch that could have a better NN, therefore I can no 

longer guarantee exactness. If the search heuristic is working correctly then the number 

of nodes searched will be reduced and the accuracy of the solution will still be 

acceptable. 

Before developing any R-Tree ANN heuristics it is necessary to define the 

standard search method as a baseline, (other than a sequential scan) to be used as a 

comparison for improvement.  The basic goal is straight forward, provide a simple but 

effective means to eliminate unnecessary searching during a query that wastes disk IO 

and CPU time.  This will be done by means of a search heuristic applied to each MBR 

(branch) in each internal node during a query. 
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5.1 Standard Search  

As described earlier R-Tree is basically a tree data structure comprised of 

bounding regions.  Therefore, a basic straight forward NN search, also known as a 

standard search, should take advantage of this feature.  During a search, traversal 

involves picking a branch based on the bounding region, which should lead to a better 

solution (closer NN).  When a leaf node is reached the distance from Q to each point is 

computed, any point(s) that are closer to Q are now considered the current best solution 

and become Q’s new nearest neighbor(s). 

Because the branches in R-Tree index uses all dimensions in the similarity 

calculation rather than using them as a discrete bound as in a B-Tree index, it is possible 

that any given MBR may or may not contain a new solution (new NN).  Therefore, to 

avoid searching the entire space some method of pruning must be used.  If the method is 

optimal then only the branches that might lead to a solution are searched whereas 

branches that can never lead to a solution are pruned.  One optimal method of pruning a 

branch (MBR) involves making a decision based on the minimum distance from Q to the 

closest edge of the MBR known as mindist (Q, MBR) defined by [77, 84].  This method is 

considered optimal in that it will only select branches that could contain a solution, and 

prune branches that can never have a solution. This simple method can be seen in formula 

6 below.   
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By computing Mindist (Q, MBR) and comparing it to the current best solution 

(current NN), one can see that if Mindist is less than the distance from Q to its current 

best solution then the given MBR can potentially contain a new better solution.  On the 

other hand if Mindist is greater than the distance from Q to its current best solution then 

the given MBR cannot contain a better solution.  With this in mind, a sub-tree of the R-

Tree can potentially contain the solution to Q if, and only if, the Mindist between Q and 

the MBR of that node is smaller than the current best solution. This is used as the main 

pruning heuristic, and is illustrated in figure 37.  

 

Figure 37. Illustration of Mindist and MBR pruning.  

 

In figure 37 Q’s current best solution is less then Mindist (Q, MBR1) therefore MBR1 

cannot contain a better solution, whereas Q’s Mindist to MBR2 is less then Q’s current 

best solution therefore MBR2 could contain a better solution. 

The only other item to consider is the order of MBR to search, known as traversal 

order.  Controlling the search order may direct the search to a solution faster, as Q’s 

nearest neighbors distance improves “gets smaller” then in theory more MBR should be 

pruned.  Therefore, the search order should improve performance.  In the past two 

Q’s Current best solution 
MBR2 

MBR1 

Mindist (Q, MBR1) 
Mindist(Q, MBR2) 

 

Q 
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methods have been proposed: in [84] a depth-first approach is used; while [42] uses a 

``best-first’’ method involving the use of a priority queue to store all nodes not yet 

traversed then choosing the best one to traverse next.  A slight improvement “best-first” 

involves using Mindist but also the distance to center of the MBR (hyper-rectangle) as 

search order.  

This standard approach has an advantage in that it guarantees an exact match for 

KNN, but with a high penalty.  As discussed in previous sections, R-Tree built with data 

in high dimensional space (above 16 dimensions) suffers from a high degree of overlap in 

the MBR.  It can be shown that at the top level (root) of the tree all of the MBR overlaps 

each dimension by nearly 99% and even at the level above the leaf nodes the overlap is 

still 95%, therefore this approach ends up searching nearly 100% of the tree, an example 

can be seen in table 1 section 2.3.  

When examining the definition of Mindist, it appears to be a very good solution to 

pruning branches within R-Tree, yet because of the nature of high dimensional data and 

the “curse of dimensionality” this method fails to prove very useful as was just discussed. 

Before this method is totally discarded it should be noted that Mindist does provide some 

useful information, such as a guaranteed bound of the approximate solution. For instance, 

if during a traversal a node with given MBR is pruned then Mindist (Q, MBR) will 

provide a lower bound for the actual solution. Therefore, it is possible to calculate the 

lower bound of the actual solution as formula 7, note that MBR is the bounding region of 

a node that has been pruned or not yet visited [66]. 

 

 
MinMBR MinDist(q, MBR)  (7) 
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This guaranteed bound can be very useful for on-line query processing. For 

example, as each node is traversed calculate the Mindist to each MBR (for each branch) 

before they are traversed, thereby providing a bound of the solution during query 

execution in return giving feedback to the user. Of course, this online query with 

guaranteed bounds works best with “best-first” traversal. Because the traversal order is 

based on increasing Mindist of the MBR, the lower bound will steadily increase therefore 

the bound will continue to get tighter. The drawback to on-line queries using guaranteed 

bounds has to do with the fact that it works best with the “best-first” traversal method and 

does not work very well with “depth-first” traversal. To use “best-first” would require 

enumerating all branches therefore requiring a much larger amount of main memory then 

“depth-first”.  Because of this a query uses “depth-first” traversal, but with the addition 

modification of involving the center distance to the MBR. 

Because the traversal is “depth-first”, some children of the root node will not be 

visited until very late in the search. It should be pointed out that the root node tends to 

have a large MBR, and therefore they usually have a Mindist closer to or more commonly 

equal to zero which indicates that a query point is fully contained in the MBR. This is 

because at the root all MBR usually overlap each other by 99%, therefore any query point 

will be contained in all the MBR. Also, since the bounding region of a node is always 

enclosed in the bounding region of its parent node, it can be shown that Mindist of the 

parent’s bounding region is never going to be larger than that of the current node. 

Therefore, the lower bound only changes when the next child of the root node is visited. 

For high dimensional queries, it may take a long time before the lower bound changes, as 
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a large portion of the tree is traversed.  This can be seen in figure 38, which shows two 

examples of changes in the guaranteed bound (as well as the current best solution) during 

a NN search for a 150,000 point, 32 dimension data set, using best-first traversal [66]. 
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Figure 38. Illustrates lower bounds for on-line NN query 

 

Based on the standard NN search and the “Curse of Dimensionality” one can 

easily surmise that a standard search of high dimensional space will lead to a complete 

search of the space.   Yet from the previous observations it is possible to derive new 

heuristics which could be used for ANN queries.  These new pruning heuristics sacrifice 

the NN exactness guarantee for efficiency. 

 

5.2 ANN Search Heuristics 

Approximate nearest neighbor search involves pruning based on some 

approximation or estimate as to the likelihood that a better solution exists.  By relaxing 

the requirement of an exact solution and being willing to accept an approximant solution, 
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it may be possible to apply a new heuristic to the tree traversal in an attempt to prune 

branches that will have less of a chance at improving the solution.   

 

5.2.1 Methods 

The following sections describe several heuristics that can be used during the 

traversal to prune branches which may be less likely to improve the current solution. 

Each of these heuristics attempts to estimate the likelihood of an improvement if a node 

is visited.   

 

5.2.1.1  Heuristics Using Mindist 

The following heuristics are built on the concept of Mindist in an attempt to prune 

branches based on an estimate as to whether a given MBR will improve the current 

solution.   

 

5.2.1.1.1 Heuristic R_MCB 

Heuristic MCB (Mindist/currentbest) looks at an estimate of how much the radius 

(hyper-sphere) as defined by Q and its current solution extends into the MBR (hyper-

rectangle) see figure 39.  Pruning accrues based on the following rule, a branch is pruned 

from the search if Mindist (Q, MBR) / CurrentBest < R-MCB where R-MCB is a user 

defined parameter. Small R-MCB has the effect of pruning very few branches leading to a 

search of the majority of the tree, improving accuracy, but still with the possibility of not 

finding the exact NN.  A larger R-MCB has the effect of pruning more of the branches 

decreasing the search space and decreasing the accuracy.   
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Figure 39. Example of Heuristic R_MCB 

 

This heuristic guarantees a solution within the user defined value of R-MCB of the 

true solution, yet it can be shown that the heuristic is not very useful in high dimensional 

space.  
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Figure 40. Ratio of Mindist/actual NN distance 
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In Figure 40, which plots the ratio between Mindist and the actual NN distance, 

notice that if R-MCB is small, then only a relatively small number of branches are pruned. 

Therefore, if this approximate algorithm needs to be efficient (high degree of branch 

pruning), the guaranteed bound will be very low. For example, consider a single NN 

query for a given query Q, looking at the numbers from figure 40 if the user wants half of 

the tree to be pruned (not searched), then R-MCB will have to be set at a minimum of 0.5.  

This can be seen in figure 40, as around 50% of the nodes have the ratio Mindist / 

ActualSolution > 50%.  It should also be pointed out that the actual solution is always 

closer than the current solution, which implies R-MCB may have to be set even higher 

[66]. 

 

5.2.1.1.2 Heuristic R_MAX 

 

A variation on Heuristic R_MCB known as Heuristic R_MAX, takes into 

consideration two aspects of query point Q and a given MBR, involving Mindist and the 

approximate size of the MBR.  This heuristic computes the Mindist, and a new variable 

known as Maxdist, which is defined as the maximum distance from Q to the furthest 

corner of the hyper-rectangle see formula 8.  
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This heuristic considers how far Q is from the closest hyper-surface of the MBR 

(Mindist) and how much the hyper-sphere defined by Q and its current solution extends 

into the hyper-rectangle (MBR) as well as the size of the hyper-rectangle.  This can be 

summarized in figure 41, where  R_MAX  is a user defined parameter.   

 

Figure 41. Illustrating Heuristic R_MAX 

 

Like the previous heuristic a branch is pruned based on whether the (CurrentBest 

– MinDist) / (MaxDist – MinDist) is less then  R_MAX.  One can see from figure 41 that if 

Q is further from a given MBR (see MBR2) then the value returned from (CurrentBest – 

MinDist) / (MaxDist – MinDist) will be small and therefore not as likely to contain a 

better solution (improvement).  On the other hand if Q is very close to a given MBR such 

as MBR1 in figure 41, then the distance from Q to the current best solution becomes more 

important in deciding whether to prune this branch (MBR).  One can draw a simple 

conclusion that this formula is an attempt to estimate the overlap of the hyper-sphere 
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defined by Q and its current best solution and a given hyper-rectangle defined by a MBR.  

With this heuristic one can see, that the larger the intersection between a given MBR 

hyper-rectangle and Q’s hyper-sphere, the more likely that an improved NN might exist 

in a given MBR.  Still this heuristic like its predecessor does not guarantee that a better 

solution does not exist in MBR2. 

 

5.2.1.2 Estimation of Probability of Improvement 

 

If it were possible to better estimate how much the hyper-sphere defined by Q and 

its current best solution, overlaps a given MBR, then it might be a better estimate as to 

the likelihood of a better solution. One can easily see that simply traversing throughout 

the tree during a search is not useful in the sense that it does not improve the solution. A 

better estimate of which of the nodes is not likely to be helpful (most likely do not 

contain a better solution) could help reduce the search space. To put it in another way, if 

it was possible to make a prediction as to the probability that in a given node (with MBR) 

contains a point P such that dist (p, q) < CurrentBest then pruning could be based on this 

prediction. Any point that satisfies this condition lies in a region represented by the 

intersection of the hyper-rectangle and the hyper-sphere. This is shown in figure 42, 

where Q is the query point, CB is the current best solution, and the shaded intersection is 

the only region where a better solution may be found.  Therefore, accurate estimates of 

this intersection (volume) could be used as an estimated probability of improvement. 
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Figure 42. Estimation of volume for probability measures 

 

One can easily conclude within reason that if it were possible to estimate the 

volume of this intersection then an estimate to the likelihood that the MBR contains a 

better solution than the current best (CB) solution. 

 

5.2.1.2.1 Heuristic MC_R 

It is possible in theory to calculate the volume of the region defined by the 

intersection of the hyper-sphere and a given hyper-rectangle by integration, yet as the 

dimensionality increases this becomes intractable.  To estimate this volume another 

method that does not involve complex integration needs to be used, this can be found in 

the area of statistics, known as Monte Carlo approximation [50, 83].  To summarize this 

method, one generates K random points contained in the given MBR then computes the 

distance from Q to each of the K points, counting the number that are less then the 

current solution.  This provides an estimation of the volume (intersection of the hyper-

rectangle and hyper-sphere defined by Q and its current best solution) which can be used 

as a probability for the likelihood that the given MBR contains an improvement.   This 

Q 

CB MBR 
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can serve as a means to prune branches if the probability that a better solution exists in its 

descendents is too small.  For example, a given MBR is pruned if after generating K 

uniformly distribution random points, contained within the MBR, MC_R / K points 

generated are closer to Q than the current best solution.  In this case MC_R becomes the 

estimate of the intersection. 

This method does have a drawback in that it incurs extra CPU cost as points need 

to be generated and the distances from these points to Q need to be computed. If K is not 

too large, then the extra CPU cost is still likely to be small compared to the disk access 

cost. On the other hand, if K is too small, then the error in estimation can be significant 

enough, leading to very little pruning [66]. 

 

5.2.1.2.2 Heuristic MC_H 

Notice that in R-Tree based structures the bounding regions are minimum 

bounding rectangles.  Each branch of the tree is in turn bounding a sub-tree, which in turn 

bounds a set of sub-trees until the number points is less than or equal to that which can be 

stored in a leaf node is reached. If one considers the “Curse of Dimensionality” and the 

number of points that are stored in a leaf node, and applies some simple logic, namely the 

pigeon hole principle, one realizes that all the points contained in the lowest level MBR 

contribute to the overall definition of the MBR.  That is nearly every point contained in a 

leaf node helps to define one or more edges of the MBR. This means that most likely all 

the points must be on the hyper-surface of the MBR. This was verified by running a 

simple test counting the number of leaf nodes that have 1 or more points that do not lie on 

the MBR’s surface (meaning the point does not contribute to any edge of the MBR).  
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Table 4 shows the results for this test using a tree with a 4K page with a fan out 15 

(originally 15 was used as it corresponded to the fan out of the internal nodes), which was 

used for earlier testing.  This test showed that better than 99% of the points lie on the 

MBR’s surface with only around 7.5% of the leaf nodes having at least one point not on 

the surface. 

 

Table 4. Showing results for different data distributions, showing the number of leaf 

nodes with all points on the MBR, (fan out set to 15). 

 

 

Later it was realized that considerable space was being wasted in the leaf nodes 

(at least 50%), so to use this wasted the space, the leaf nodes were modified to store twice 

as many points, as described in Chapter 3.  Because of this change, the same tests were 

run using a fan out of 30, results of which can be seen in table 5.   This was done to verify 

that the hypotheses that most of the points were still on the MBR (hyper-surface).  Table 

5 shows that between 92.4% - 96.3% of the points lie on the MBR’s surface. This test 

shows that 22% or more of the leaf nodes now have at least one point not on the surface 

as compared to table 4, with only 7.5% of the leaf nodes had at least one point not on the 

surface. 
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Uniformed 100,000 8,229 7,804 94.84% 99,566 99.57% 

Clustered 100,000 8,244 7,663 92.95% 99,378 99.38% 

Gaussian 100,000 7,971 7,374 92.51% 99,377 99.38% 

Real 66,000 6,077 5,612 92.35% 65,459 99.18% 
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Table 5. Showing results for different data distributions, showing the number of leaf 

nodes with all points on the MBR, (fan out set to 30). 

 

 

 Closer examination of these two tables reveals that as the fan out increases the 

number of points that do not lie on the surface increases, this is supported by the 

pigeonhole principle, in that we have more points so each point will be less likely to 

contribute to an edge of the MBR.   

Based on the results from these tests it was realized that a modified version of 

heuristic MC_R could be derived known as heuristic MC_H.  Because 92% to 99% of the 

points, most likely lie on the hyper-surface of the leaf MBR one realizes that a volume 

estimate is not needed, but rather that an estimate of the size of the hyper-surface may 

suffice. If one can locate the hyper-surface closest to the query point and apply the Monte 

Carlo technique on the hyper-surface it would be possible to have an estimate of the area 

of the surface see figure 43.  With this in mind the following heuristic was defined, a 

MBR is pruned if after generating K random points from a uniform distribution from 

within the d-1 dimension hyper-surface closest to Q, less than MC_H / K points generated 

are closer to Q than the current best solution (where MC_H is a user-defined parameter). 
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Uniformed 100,000 4,266 1,465 34.34% 94,772 94.77% 

Clustered 100,000 4,277 1,187 27.75% 92,729 92.73% 

Gaussian 100,000 4,084 902 22.09% 92,461 92.46% 

Real 66,000 2,982 1,726 57.88% 63,512 96.23% 
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Figure 43. Illustration of heuristic MC_H 

 

Because the bounding regions in R-Tree are hyper-rectangles, finding the closest 

hyper-surface for a query point is straightforward. Since each d-dimensional MBR is 

represented by the two points at the opposite corner of the diagonal, a (d – l) - dimension 

hyper-plane is represented by equating the value of one of the d dimensions for the two 

corner points [66].  

As with heuristic MC_R, this method also suffers from the high cost of generating 

K random points, now on the surface, closest to Q and again computing the distance 

between the random points and Q.  Again if K is small then the error estimate will be 

high and little pruning will occur, whereas if K is too large then the CPU cost becomes an 

issue. 

 

5.2.1.3 Estimation using Maxdist and Mindist   

The main drawback of the heuristics that rely on Monte Carlo approach is the 

extra CPU cost that is needed to generate test points (especially when K is large – which 

is necessary to make the estimation more accurate) and the extra distance computation 

needed.  Therefore, I looked at alternate heuristics in an attempt to use other means to 

determine whether a certain node is worth visiting or not. 
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5.2.1.3.1 Alternate Heuristics Involving Maxdist and Mindist 

One additional approach would be to look at the range of possible distances 

between Q and all MBR contained in an internal node as well as minimum Mindist and 

Maxdist.  Given Mindist and Maxdist, it may be possible to evaluate how likely there will 

be an improvement by visiting a given node. If the current solution is much closer than 

Mindist then Maxdist, it implies a large portion of the bounding region is further away 

from the query point than the current best solution which is illustrated in figure 44.  

 

 

Figure 44. Illustration of heuristic using Maxdist and Mindist 

 

Here in figure 44 the hyper-sphere defined by Q and CB intersects both MBR1 

and MBR2, denoted by the shaded regions in figure 37 these are where a potential 

solution possibly exists. Notice that while the Mindist between Q and MBR1 and MBR2 

are the same, the proportion of the volume of the shaded intersection regions as compared 

to the volume of MBR1 and MBR2 is very different. In MBR2, the shaded region is much 

greater than half of the total volume, while in MBR1 it is less than 1/3. 
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5.2.1.3.2 Heuristic R_MINMAX 

Building on previous heuristics R_MAX (section 5.2.1.1.2) and the understanding 

of high dimensional space another heuristic can be derived.  If we take the previous 

heuristic R_MAX and the discussion above as well as part of the discussion from 

heuristic MC_H concerning the points being on the surface of the hyper-rectangle, and 

then consider the minimum Maxdist  (known as minMaxdist), defined as the upper bound 

of the minimum distance between a point in the node and the query point together it may 

be possible to derive a new heuristic. This makes use of the notion that the region is 

minimum bounding and that at least one point must be on the boundary.  Therefore 

instead of comparing Mindist and Maxdist, now compare Mindist and minMaxdist. This 

leads to the following heuristic known as RMINMAX illustrated in figure 45 and formula 

9.  A node is pruned if the value from formula 9 is smaller than a certain fraction 

R_MINMAX again defined by the user 

 

 

Figure 45. Illustration of heuristic R_MINMAX 

 

Q 

mindist(Q,MBR) 

CB 

MinMaxdist(q,MBR) 
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minmaxmin

min
R_MINMAX





distdist

disttCurrentBes
  (9) 

 

This heuristic looks at the surface closest to the query point Q, intersected by the 

hyper-sphere defined by Q and CB, this is seen in figure 45 (in 2-D) by the dashed line.  

It attempts to approximate the ratio of the length of the line that is outside the circle 

(denoting the current best solution) to that of the overall solution [66].  This heuristic, in 

turn, prunes only those branches that would not be as likely to improve the current 

solution.   

 

5.2.1.3.3 Heuristic R2_MINMAX 

 Building on the previous heuristics involving the ratio of Mindist and Maxdist 

with the current best solution, a second heuristic may prove to be useful.  Rather then 

attempting to factor in Mindist, consider only the ratio of current best to the minimum 

Maxdist.  Simply put, prune a node if CurrentBest / (minMaxdist) is less than a user 

defined parameter  known as R2_MINMAX. As seen in formula 10.  

 

MINMAXR

dist

tCurrentBes
_2

maxmin
   (10) 

 

This is basically a simplified version of heuristic R_MINMAX only the distance 

from Q to given MBR is no longer considered. While experimenting with this heuristic, I 

realized that Mindist was relatively small, most likely due to the high overlapping of 
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MBR, it was surmised the Mindist may have little effect on the pruning.  Most likely this 

heuristic will not perform very well. 

 

5.3 Search Heuristic Experiments 

 After implementing the above heuristics, I ran a number of experiments involving 

different dimensions, data set sizes and distributions.  These were run with randomly 

generated data sets for 4, 8, 16, and 32 dimensions respectively, of data set sizes ranging 

50,000 point, up to 250,000 points in increments of 50,000.  The data sets followed the 

distributions as described in chapter 3 Experimental/Implementation Results.  For all of 

the experiments the page size was fixed at 4KB with minimum space utilization (leaf, 

internal node storage) set to 40%.  For test data, I generated 50 query points from the 

appropriate dimensionality. Finally, I run the various algorithm with different parameters 

(for Monte Carlo heuristics, k = 2,000). For evaluation purpose, the averages of the 

performance data will be presented. 

In terms of results, I wanted to measure both efficiency and accuracy. For 

efficiency, I measured the number of leaf nodes visited (as it dominates the running 

time). For accuracy, I have three different ways of measuring accuracy: 

 Recall. This represents the proportion of the actual result that where actually found. 

For example, for a 100-NN query, it may be that an approximation algorithm 

returns 100 points, on which 45 actually belongs to the true 100-NN. Then the 

recall in this case is 45% [67] 

 Distance ratio. I measured the ratio of the distance between the solution found and 

the actual solution. For multiple NN queries, I return the result of the solution that 
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is furthest away from the query point. For example a 100-NN query, the distance 

ratio returns the ratio between following two numbers: the distance from Q to the 

100
th

 nearest neighbor that was located by the algorithm, and the distance from Q to 

the actual 100
th

 nearest neighbor.  

 Rank. The actual rank of the solution. For example in a 100-NN query, the 100
th

 

nearest neighbor returned from the approximate algorithm may actually be the 127
th

 

true nearest neighbor. Rank is a useful measure as it is less affected by the data 

distribution. 

I first examined the tradeoffs between efficiency and accuracy in the nearest 

neighbor search. It is very easy to see that the more pruning that is performed, the more 

likely a good solution is missed and thus accuracy decreases. The level of pruning is 

determined by the parameters set in the algorithms (namely ). So I vary  specific to 

each heuristic and repeated the experiments to see its effect. For this set of experiments, I 

will show only results for 8 dimensional and 32 dimensional data. Results obtained in 4 

dimensional and 16 dimensional are similar to that of 8 dimensional and 32 dimensional 

respectively. 
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Figure 46. Recall vs. Leaf access, 8 dimensional / 32 dimensional data, 1 NN query 
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Figure 47. Recall vs. Leaf access, 8 dimensional / 32 dimensional data, 100 NN query 

 

Figures 46 and 47 show the results of 1ANN and 100ANN queries for 8 

dimensional and 32 dimensional data sets (100,000 data points). Ideally, we would like to 

have points on the graph that is on the top left corner. This represents higher level of 

recall with few leaf accesses. As seen from the figure, all algorithms perform well at 8 

dimensional. However, in 32 dimensional we can see the trade-off between recall and 
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efficiency is more on a linear level. In this aspect, the algorithms do not provide 

significant advantages.  

In terms of comparing between the heuristics, we see that R_MAX performs the 

best. For instance, in 32 dimensional and 100NN query, the algorithm needs to access 

less than 40% of the data to reach about 70% recall. This is quite a reasonable result, 

especially if at times the algorithm goes wrong, it is not too far off. I examined this 

notion in the next set of results. 
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Figure 48.  Rank vs. Leaf Access, 8 dimensional / 32 dimensional data, 1NN query 
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Figure 49.  Rank vs. Leaf Access, 8 dimensional / 32 dimensional data, 100NN query 

 

Figure 48 shows the relationship between the actual ranks for the approximate 

nearest neighbor respectively found by the algorithm and the efficiency. Similar results 

are shown in figure 49, only that it looks at the approximate 100
th

 nearest neighbor 

instead. Notice that the rank drops very fast (improves) when the number of leaf nodes 

accessed increases. Thus, a little bit more effort in accessing data can reap much better 

results. As the query is a 100-ANN query, the rank of the 100
th

 approximate nearest 

neighbor cannot be less than 100. Given this fact, the figures show that even with not too 

much disk IO, most heuristics returns objects that are less than twice the rank of the 

solution. These plots indicate that the heuristics performed fairly well.  From the figures, 

again it can be seen that the R_MAX heuristic performs better than the others, returning 

objects with rank less than 200 with less than 40% of data accessed.  
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Figure 50. Distance ratio vs. leaf access, 8 dimensional / 32 dimensional data, 1NN query 

 

8D 100NN  Dist Ratio vers 

% Disk Access

1

1.02

1.04

1.06

1.08

1.1

1.12

0 5 10 15 20
% of Leaves Accessed (Data size 

100,000 pts)

D
is

t 
R

a
ti

o

R Max

MC R

R2 Minmax

R Minmax

MC H

32D 100NN  Dist Ratio vers 

% Disk Access

1

1.02

1.04

1.06

0 20 40 60 80 100
% of Leaves Accessed (Data size 

100,000 pts)

D
is

t 
R

a
ti

o
R Max

MC R

R2 Minmax

R Minmax

MC H

 

Figure 51. Distance ratio vs. leaf access, 8 dimensional / 32 dimensional data, 100NN 

query 

 

The third measure for the performance of the approximate nearest neighbor 

algorithm is the distance ratio. This corresponds to the (1 + ε) approximate nearest 

neighbor queries, where one would like to return an object within a certain given bound. 

Figure 49 and 50 shows the result for 8 dimensional / 32 dimensional data with 1NN and 

100NN queries. Notice the difference in the result between 8 and 32 dimensional data, 



97 

 

especially in the case of 100NN. In 8 dimensional, one can see the performance increase 

very quickly with increases in the number of leaf nodes accessed. This means that a little 

bit more effort will pay much more in the end. However, in 32 dimensional the figure 

shows the decrease in the distance ratio comes at a price of linear increase in the number 

of pages accessed. Thus in terms of distance ratio, the R-Tree based methods do not 

provide a good solution to drastically improve performance. Compare the change in 

distance ratio against the rank. It can be seen that the rank decreases much faster than 

distance ratio. This suggests that while many algorithms are looking for points within a 

certain bound, it may turn out that we can have much more efficient algorithms finding 

points within a certain rank of the result. This is also feasible as the distance ratio is very 

dependent on the dimensionality of data and data distribution.  

Another interesting observation is that algorithms that use minmaxdist 

(R_MINMAX, R2_MINMAX) do not perform well. It is a bit surprising, as one may 

think minmaxdist is a tighter bound and thus can prune more useful data and keep the 

useful ones.  

 

5.4 Initial Conclusion of Using Heuristics with Alpha  

A review of these experiments indicates that the heuristics given in this section 

perform very well given the nature of the problem.  Some, of course, better than others 

and still some with additional costs that have to be taken into consideration.  These 

experiments also show that these heuristics work for not only NN but also for KNN be it 

that they return approximate results, without any additional modifications.   
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5.5 Heuristic Parameter Selection 

One common feature of all the heuristic discussed in the previous sections is the 

parameter , specific to each heuristic, which was described as user defined.  Yet, this is 

misleading as to which user will know enough in advance to actually specify this value.  

In reality  is a parameter that would need to be specified to the heuristic at query time to 

get a desired performance result. 

 

5.5.1 Deriving Alpha for Heuristics and Data Distributions 

It should also be pointed out that the selection of  is dependent on three different 

factors common to all heuristics, these are the number of dimensions, number of points 

(size of the tree), and data distributions.  These, dependencies can be seen in the 

following figures, found during past research [66].   Figure 52 shows how  has to adjust 

for the different heuristics as the number of dimensions increases from 4 dimensional to 

32 dimensional for R-Trees with 100,000 points with uniformed data distribution.  Here 

 for each heuristic was chosen in such a way as to provide the same efficiency and 

accuracy for different dimensionality.  Figure 52 shows how  had to be varied for each 

heuristic, based on the number of dimensions. 
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Figure 52. Effect of increasing dimensionality on  selection. 

 

Figures 53, 54, 55 and 56 show how R_MAX for heuristic R_MAX changes for 

increasing number of data points, this change is less dramatic as one can see, but the 

effect is there.  To illustrate this, R-Trees with 5,000, 10,000, 20,000, 50,000 and 100,000 

32 dimensional points, were built, R_MAX was varied over a wide range for the different 

data distributions. Then the percent of tree access was plotted against R_MAX for the 

different sizes of R-Tree.  In these figures 53, 54, 55 and 56 the effect data set size has on 

the selection of R_MAX can be seen, although the effect is small, it is there (a large 

difference in data set sizes had to be used to see it).   
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Figure 53. Uniformed data ranging from 5,000 to 100,000 data set sizes, plot of percent 

of access against Alpha. 
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Figure 54. Clustered data ranging from 5,000 to 100,000 data set sizes, plot of percent of 

access against Alpha. 
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Figure 55. Gaussian data ranging from 5,000 to 100,000 data set sizes, plot of percent of 

access against Alpha. 

 

 

 

Figure 56. Real data ranging from 3,300 to 66,000 data set sizes, plot of percent of access 

against Alpha. 

 

Another conclusion that one can draw from these simple tests illustrated in figures 

53, 54, 55 and 56 is the effect of data distribution on the selection of R_MAX. Based on 

these figures one can plainly see that R_MAX for Heuristic R_MAX must be adjusted for 

each data distribution, simply put, R_MAX cannot be constant for all data set sizes of 
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varying dimension and data distributions. This leads to a question, how to determine 

R_MAX for a given query, even though the number of dimensions is known in advance, as 

well as, the initial data set size. The main issue involves the data distribution which may 

not be known or worst could be a combination of distributions.  Not only that but due to 

the dynamic nature of R-Tree the size could grow and shrink over time.  Deriving R_MAX 

becomes a very daunting task for heuristic R_MAX as well as the other heuristics. 

 

5.5.2 Accuracy vs. Efficiency 

 

It can be seen from previous sections that the selection of  for a given heuristic 

is dependent on the many factors, but what is not evident is the actual effect of  on the 

accuracy and efficiency.  In all of the heuristics discussed in the previous section,  is the 

main factor in determining the accuracy and efficiency of a given R-Tree comprised of a 

given data set.  The parameter  can be tuned or adjusted to a particular degree in turn 

trading efficiency for accuracy.  The more aggressive the pruning the more likely better 

solutions will be missed.  This can be seen in the following figure 57. Ideally, we would 

like to see results in the lower left corner of figure 57, basically low percent of accesses 

with low rank (accurate NN). 
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Figure 57.  Rank vs. Leaf Access, uniformed 32 dimensional data, 1NN query 

 

Figure 57 shows the relationship between the actual ranks for an approximate 

nearest neighbor found by the different heuristic and the efficiency. One can see that as 

the percent of access (leaf nodes read) decreases then the accuracy (rank) of the solution 

increases.  At first glance one wants to draw a conclusion that  could be arithmetically 

derived but recall the previous sections figures 53 through 56  using different data sizes 

and distributions, a comparison of all of these figures contradicts this conclusion.  Ideally 

one wants a low level of access with an exact NN solution, or an ANN solution within 

some given guarantee of accuracy.  Therefore,  needs to be selected to provide both of 

these requirements [66].   

 

5.6 ANN Search Heuristic Conclusion 

 

 In conclusion I have shown that relatively simple heuristics can be derived that 

will estimate the probability of a given branch improving the current solution found.  

Some of the heuristics when applied and tested on different data sets with increasing 
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dimensionality show an improvement that is reduced IO yet returned an ANN that was 

very close to exact NN.  The drawback to the uses of heuristics for ANN is the parameter 

 which needs to be provided to each heuristic but is difficult to derive. 

 

6. ANN R-Forest 

 

Even though R-Tree suffers from the “Curse of Dimensionality” and many other 

researchers have all but given up on it, I believe that it may still be useful and given it’s 

afore mentioned advantages (chapter 2 section 4) worth further research.  Looking at the 

work in the previous chapter, leads one to believe that R-Tree still has potential.  Using 

pruning heuristics I was able to get reasonable good results [66], which supported the 

premises that R-Tree is still a viable solution to ANN in high dimensional space.  But the 

previous work on pruning heuristics has its own complexity, for example how does one 

choose a value for  that provides both accuracy and efficiency, but also works well 

under all data distributions, increasing dimension and increasing number of points.  

While researching methods to derive , it was realized that R-Trees problems stem from 

its inability to partition the space even though it is a branch and bound data structure.  

The weakness of R-Tree comes from the “Curse of Dimensionality” as the 

number of dimensions increase, the ability of a single R-Tree to sub-divide the search 

space becomes nearly impossible.  For example, take an R-Tree being built with data 

points having 32 dimensions, since its leaf nodes hold a fixed number of points, they will 

need to be split into two nodes as they fill up when new points are inserted.  When a leaf 

node must be split an additional leaf node will be created typically having half the points 

of the original node. The two nodes will be split along a single dimension chosen by an 
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algorithm that attempts to evenly distribute the points [44].  This node splitting can 

trigger future splitting of parent MBR which will propagate up the tree to the root. Now 

as more points are inserted, split dimensions formed by a node split are allowed to grow, 

which means that any given MBR at the top of the tree can cover nearly the entire 

domain of the search space.  In figure 58 on the left, I have illustrated a search domain 

represented by the outer most edges of the three MBR rectangles, (represented by 

different dashed lines).  These three MBR are at the highest levels on the R-Tree and are 

the results of inserting the points into R-Tree (on the right).  They overlap each other and 

in this case each nearly covers the entire domain, thereby showing the limitations of R-

Tree. 

 

 

 

 

  

 

 

 

 

 

Figure 58. Illustration of a search domain, on the left and the corresponding R-Tree on 

the right  
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6.1 Forest of R-Trees   

The model I will present chapter continues to use R-Tree even with this apparent 

limitation, by using a set of indices each of which contains a sub-set of the points in the 

domain space.  Rather than building a single R-Tree index over the entire domain space I 

will now build a set of disjoint R-Trees each having a sub-set of points, which when 

taken as a whole (the union) covers the entire domain space.  Now given a 32 dimension 

example, with any number of points, the union of the root’s MBRs from all the R-Tree 

indices will cover the entire domain space.  This set of disjointed R-Trees will be known 

as a Forest of R-Trees or R-Forest, which is illustrated in figures 59 and 60 where labels 

0 to N, represent N
th

 R-Trees.  With this model, each R-Tree is now guaranteed to not 

overlap any other R-Tree in a few dimensions but not all.  In figure 59, I am showing the 

entire search domain which is sub-divided on one dimension into three sub-sets, with the 

points in each sub-set being stored in their respective R-Tree indices (labeled 0 to N). 

 

 

 

 

 

 

 

Figure 59. Search domain now divided into 3 regions disjointed on one dimension. 

 

In figure 60 below, I now have three R-Trees each with a sub-set of points disjointed on 

the split dimension. 

R-Tree Index 0 R-Tree Index 1 
R-Tree Index N 
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Figure 60. R-Forest over search domain, show splits on a single dimension 

 

By using this, it is highly likely that for any query point, at least one or more of 

the bounding regions at the top will have a “large” distance along the splitting dimension, 

making it more likely that pruning can take place, and giving me the ability to derive 

additional pruning heuristics and even provide feedback, with this I have the following 

advantages:  

 By having non-overlapping bounding regions at the top levels and internal to each 

R-Tree, pruning becomes feasible  

 Traversal of the indices is improved, as I can order the MBR based on the query 

point distance to the MBR.  

 I will be able to provide a bound on the quality of the ANN returned. 

 

6.2 Disjoint Sub-Set 

To build R-Forest, a set of R-Tree indices needs to be defined each over a sub-

space of the overall domain.  The first choice would be to split all dimensions but this 

would require 2
d
 R-Tree indices, which is exponential in the number of d dimensions.  I 

therefore must choose a sub-set of the dimensions and split each into B non-overlapping 

Index 0 Index 1 Index N 
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boundaries to keep the R-Tree indices growth rate manageable I chose a maximum of 

log(d) dimensions, which leads to a total of O(B
log(d)

) 
 
=  O(d) number of R-Trees.  For 

testing purposes the actual number of dimensions to split on is set as a parameter at R-

Forest creation, this gave me the ability to test different configurations without having to 

re-write the implementation. 

 

6.3 Construction of Forest  

 

Construction an R-Forest involves the following steps to be discussed in further 

detail in the next sections. 

 

 

 

 

 

 

 

Figure 61. Steps to Build R-Forest 

 

The first four are newly introduced to the R-Forest, their purpose is to define the 

disjointed R-Tree indices, select which index will house a given point and maintain the 

disjointed indices.  It should be noted that the first three steps need only be preformed 

once at the beginning of the initialization of the R-Forest, with the last two steps being 

repeated as new points are inserted. 

 

1. Dimension Selection 

2. Boundary Selection 

3. Maintaining the Disjoint Set 

4. Index Selection 

5. Insertion of points into an R-Tree index 
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6.3.1 Dimension Selection 

The first step in building R-Forest is selecting the set of dimensions to split on. If 

I have some domain knowledge I could select dimensions in such a way as to evenly 

distribute points between the indices. However it is better to have a generic system so I 

assume no domain knowledge is present.  At first thought, one could randomly choose 

the dimensions to split on, which under some distributions may work well, but I will be 

working toward a generic approach to this problem, therefore the dimension selection 

process needs to not depend on chance.  Because of this I choose to use correlation 

analysis to find a set of dimensions to split on. To do this I use the following method. 

First, select a random sample (for example 1,000 points) set form S the initial data set 

being loaded.  Then find the correlation of every pair of dimensions in the sample set and 

attempt to choose pairs of dimensions that are weakly correlated.  It seems reasonable to 

use weak correlation, as it should provide a means to evenly distribute points between 

indices in R-Forest, where as strongly correlated might have a tendency to unbalance the 

tree by pushing points into a few indices.  In the end I want at most log(d) dimensions 

that are pair wise weakly correlated, which will become the bases for the disjoint sub-

sets. 

 

6.3.2 Boundary Selection 

 

In the previous section I discussed selecting the number of dimensions to split on, 

the next question is how many splits per dimension, in other words do I split each 

dimension into two or more regions with each region having a fixed boundary.  For 

testing purposes I decided that the number of boundaries would not be fixed, meaning I 
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would not hard code this to say two regions per dimension, rather  I choose to implement 

variable number of regions as a parameter passed at the time the R-Forest is being 

created.  This parameter defines how many times I will split within each dimension, it 

should be noted all split dimensions have the same number of regions. There is support 

for using more than one boundary, for example if I use two boundaries then I have three 

regions, a point in one region will in most cases  have one other region further away, as 

illustrated in figure 62 therefore increasing the distance between a point and neighboring 

MBR.  This same concept bisecting versus trisecting can be found in mathematics and 

computer science [24, 46, 108] hence I chose to usually trisect split dimension. To define 

this boundary(s) per region, I use the same sample sub-set used to find the split 

dimensions, and within each split dimensions I locate B boundaries that evenly 

distributes points into the regions, in turn these become the fixed boundaries covering the 

entire domain of the split dimension.  In figure 61 dimension D1would be split into three 

regions (Region1 -∞ > and <= B1, Region2 B1 >  and <= B2 , Region3 B2 > and <=  ∞) 

having boundaries B1 and B2 which stored in R-Tree Index0, Index1 and Index2.  
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Figure 62. Dimension D1 split into three regions defined by B1 and B2 

 

With B1 and B2 being fixed for the given dimension for the lifetime of the R-Forest, also 

note the outer bounds of Region1 and Region3 extend to +/- ∞ even though the domain for 

the dimension may not.  For my implantation I fix the inner most boundaries but allow 

the outer most to grow as R-Tree must handle domains that may grow or shrink as points 

are inserted or deleted. This leads to O(B
log(d)

)
  
= O(d) number of R-Trees. 

 

6.3.3 Maintaining Disjoint Set 

 

These split dimensions and bounds are stored within the R-Forest as hard bounds 

for each R-Tree. This in turn becomes part of the MBR for each R-Tree index. At this 

point I have a set of R-Trees that are guaranteed not to overlap in maximum of D = O(log 

d) dimensions and B boundaries which means that each R-Tree has a root MBR that is 

disjointed on several dimensions. Because the boundaries are fixed, the split dimensions 

B1 B2 Dimension D1 

R-Tree Index 0 

Region1 -∞ > and <= B1 
R-Tree Index 1 

Region2 B1 > and <= B2 

R-Tree Index 2 

Region3 B2 > and <= ∞ 
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boundaries will remain the same the disjoint set is maintained. Finally the union of all R-

Tree indices will be the domain the entire data set.  

 

6.3.4 Space Requirements 

 

This approach using R-Forest does incur an increase in storage as compared to a 

single R-Tree. In the R-Tree implementation used each index has a header node 

occupying one page (typically 4KB). This header node contains basic index information, 

such as a root page pointer, deleted page pointer and free space pointer.  By using 

multiple R-Trees I now have multiple header nodes, as each R-Tree is an independent 

index, also the split dimensions and boundary values are now stored in the unused space 

in the header nodes.  Unlike other ANN methods (example LSB-Forest) points are not 

duplicated. R-Forest with 4 split dimensions and 3 boundaries will require 3
4 

= 81 R-Tree 

indices meaning I have an additional over head of 80 4KB pages for the header nodes 

versus a single R-Tree.  Whereas, the total number of internal nodes and leaf nodes in the 

R-Forest will remain approximately the same as compared to a single R-Tree over the 

same data (that is without the inclusion of MBR-Center point, which will be discussed 

shortly). R-Forest increased storage cost will be covered in section 6.6.2 with 

comparisons given in chapter 7.  

 

6.3.5 Inserting Points into R-Forest 

 

When inserting a new point, I must now choose which R-Tree index to insert into.  

This is done by choosing the index by which the new point would be within the boundary 

limits of the split dimensions.  Meaning the new point would belong to the sub-set of the 
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indices domain, because the boundaries within a split dimensions are fixed and never 

overlap, any given point will be a member of one and only one R-Tree index in the R-

Forest.  After the index is chosen, insertion into the R-Tree processed via the normal 

insertion algorithm used by R-Tree [44].   

 

6.3.6 Index Maintenance  

Like all other index based search methods maintenance must be addressed, in the 

case of R-Forest I have a set of R-Trees with no duplicate points.  Insertion of new points 

proceeds as previously described.  Whereas, updating an existing point would require 

locating the point in the appropriate index, traversing the index to locate the point and 

either deleting it and re-inserting the updated point or simply updating it, then updating 

parent MBRs as they may have changed.  As for deletion of a point it would again require 

locating the point in the appropriate index, traversing the index to locate the point and 

deleting the point, then updating parent MBRs.   In all cases, the maintenance cost has 

only increased by the cost of locating the appropriate R-Tree in R-Forest which is 

basically the cost of determining which index would contain the point, once the index is 

located the maintenance cost is no different than that of a single R-Tree. 

 

6.4 Query Process with R-Forest 

With R-Forest built and properly being maintained, attention now turns to how I 

can take advantage of the disjoint sub-sets when performing ANN queries.  With the set 

of disjoint R-Trees, I now know that any query point Q is within the subset of exactly one 

R-Tree based on the split dimensions and boundaries and using the same split dimensions 
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and boundaries, is not a sub-set of any other R-Trees.  This means I can now take 

advantage of what was originally a pruning heuristic illustrated in figure 37 (chapter 5 

section 5.1), only that it can be applied to an entire R-Tree, giving me the following 

advantages:  

 Initial R-Tree selection for ANN query, which most likely will contain a 

reasonably good result 

 Better ability to order of remaining R-Trees for searching 

 Ability to prune off an entire R-Tree 

These will be discussed in more detail in the next few sections, and summarized 

in the last section of this chapter with pseudo code for performing ANN queries on R-

Forest and for ANN query in R-Tree. 

 

6.4.1 Initial R-Forest Index Selection 

 

The first step to perform an ANN query using R-Forest involves selection of the 

first R-Tree index to search.  Because of the insertion method used it seems reasonable 

that searching should follow the same logic.  In this case I want to select the index by 

which the query point Q is in the set of split dimension’s boundaries, as seen in figure 63. 
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Figure 63. Illustration of use of Disjoint R-Trees 

 

In Figure 63, point Q belongs to the set contained in R-Tree2 using the split dimensions 

and boundaries, therefore this index will be searched first.  Once the initial search index 

is selected I processed to search the R-Tree, using pruning and search heuristics applied 

to a single R-Tree.   

 

6.4.2 Ordering Remaining R-Forest Indices 

 

After the first index is searched I have an ANN which I refer to as Q’s current 

best solution, the remaining R-Tree indices in the forest may contain better solutions. 

Therefore, I need to consider searching them as well.  At this point the query point Q is 

not in the sub-sets of any of the remaining R-Tree indices, because of this I use it to my 

advantage, by ordering the remaining indices based on mindist.  An important aspect of 

any branch-and-bound search is the order of how the nodes or in this case R-Trees are 

accessed. If the search can reach a good solution quickly then subsequent pruning will 

have very little negative effect on the quality of the ANN and may even eliminate entire 

R-Trees from the current search.   Looking at figure 64, one can see that based on 

R-Tree 2 R-Tree 1 

Mindist (Q, R-Tree1) 

Q 
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Mindist,  R-Tree4 is closer to Q then R-Tree3 and may be a better choice for improving 

Q’s ANN.  

 

 

Figure 64. Illustrates R-Tree index ordering based on MinDist. 

 

I should also point out that since Q is not in the subset of any R-Tree index other 

then the first index searched, it is also not in any of the MBR of any subsequent R-Tree 

indices to be searched, as seen in figure 65. 

Figure 65. Illustrates R-Tree MBR ordering  

 

Q’s Current best solution R-Tree 4 

 

 

Q 

MBR2 

MBR4 

MBR1 

MBR3 

Q’s Current best solution 

R-Tree 4 
R-Tree 3 

Mindist (Q, R-Tree3) 
Mindist(Q, R-Tree4) 

 

Q 
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Therefore, it will be possible to order MBR based on the same mindist to each MBR in an 

R-Tree and its nodes.  In figure 65, R-Tree4 has four MBR at its root, of these the initial 

search order would be MBR3, MBR1 and MBR4 with MBR2 being pruned because its 

Mindist (Q, MBR2) > Q' s current best solution (ANN) distance. 

 

 

6.4.3 Pruning of R-Trees 

Besides being able to order index selection and node selection it is also possible to 

prune entire indices because of the disjoint sub-sets.  As a search proceeds, Q’s current 

best ANN should improve, which means that in some cases I should be able to eliminate 

an entire R-Tree indices from a given search based on mindist from Q to the indices 

MBR as seen in figure 66.  

 

 

Figure 66. Illustrates R-Tree index pruning based on MinDist. 

 

In figure 66 as an example, R-Tree4 was selected and traversed, during the search Q’s 

current best ANN improved when I completed the search of R-Tree4, Q’s current best 

R-Tree 4 

Q’s Current best solution 

R-Tree 3 

Mindist (Q, R-Tree3) 
Mindist(Q, R-Tree4) 

 

Q 
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ANN is now less then Mindist of Q to R-Tree3, therefore R-Tree3 need no longer be 

considered thereby pruning the entire index. 

 

6.5 K-Factor and Feedback 

The use of disjoint sub-sets has allowed, for the introduction of a new pruning 

parameter and feedback on the quality of the results returned.  It attempts to minimize the 

error if a MBR is not searched.  For any MBR best possible ANN is Mindist therefore 

this is the worst possible error if I choose not to search a MBR.    This new pruning 

parameter known as K-Factor (K for short), works by pruning away nodes (MBR) and 

their sub trees, if the distance between the query point and the current solution is less than 

K times the minimum distance between the query point and the MBR of a node (MBR).  

This parameter will prune MBR with large Mindist (mindist (Q, MBR)) as it is thought 

these are much less likely to contain a better solution. Not only that, when pruning occurs 

with this parameter, it is possible to provide some feedback in terms of the quality of the 

results.  Details on K-Factor and its feedback will be discussed in the next few sub-

sections. 

 

6.5.1 K-Factor for Pruning 

This new pruning parameter K-Factor, takes advantage of the fact that for all but 

one R-Tree index in R-Forest, a point Q is not a sub-set of every MBR. K-Factor works 

by pruning away a node, (and its sub tree) if the minimum distance between the query 

point and the current solution is less than K times the minimum distance between the 

query point and the MBR of that node, (K is a user controlled parameter).  This can be 
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illustrated in figure 67 where query point Q has an ANN represented by CB, and K-

Factory pruning will be applied to one of the two MBR. 

 

 

Figure 67. Illustration of K-Factor pruning where K is 4.0 

 

In Figure 67 K-factor is used to examine two MBR1 and MBR2 and decide if either needs 

to be pruned or not leading to a search for an improved ANN.  In this case Mindist (Q, 

MBR2) * K-Factor is greater than current best ANN (CB) so prune MBR2 where as 

Mindist (Q, MBR1) * K-Factor is less then CB therefore search MBR1.  The larger the 

pruning factor (K), the more aggressive the heuristic will prune during the search, 

because Mindist (Q, MBR1) * K-Factor is more likely to be larger than CB. Whereas the 

smaller the pruning factor the less likely Mindist (Q, MBR1) * K-Factor will be larger 

than CB, therefore less pruning which will led to a more accurate solution but at higher 

access cost.  This heuristic should also return an ANN no more than K-Factor times 

further then Q’s exact NN. 

 

Q 

CB 

MBR1 

MBR2 

Mindist(Q, MBR2) 
Mindist(Q, MBR1) 

Mindist(Q, MBR2)*K-Factor 
Mindist(Q, MBR1)*K-Factor 

If   K-Factor * Mindist(Q, MBR2) > CB then prune MBR2 
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6.5.2 Providing Feedback on Lower Bound 

 

One advantage of using this pruning with the disjoint R-Forest is that it can 

provide a lower bound on the space not searched, in some cases.  When a MBR such as 

MBR2 (figure 67) is pruned then Mindist (Q, MBR2) becomes lower bound as it could 

have a better solution than Q’s current best solution which at best could be Mindist (Q, 

MBR2).  This value is preserved during a search and updated whenever a pruned MBR 

has a smaller Mindist (Q, MBR).  

This lower bound comes from the use of R-Forest whereby any given point is 

within the sub-set of exactly one R-Tree in R-Forest and is not in the sub-set of the rest.  

This fact is supported by the implementation and the maintenance of hard boundaries on 

the split dimension throughout the life time of all the indices.  Now that I can guarantee 

that a point is outside of all but one R-Tree index, I can define the lower bound on MBR 

not searched.  Mindist, defined as the minimum distance from Q to a MBR, is now the 

lower bound on the ANN results, but only for MBR pruned (not searched).  In figure 68, 

if a point in MBR2 were at Mindist (on the surface of the MBR) then it would be the new 

ANN of a Q if MBR2 were searched, were as if MBR2 is not searched then MinDist is the 

best possible ANN that could exist in MBR2 hence its lower bound.  This can best be 

seen in figure 68 whereby, for a given point Q the formula Mindist (Q, MBR2)* K-Factor  

> CB is true thereby pruning MBR2. Because, the heuristic pruned MBR2 its lower bound 

is Mindist (Q, MBR2).  To provide feedback, if this value is less than any other lower 

bound from already pruned MBR than I would update the lower bound on the results 

already discovered to this new value. 
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Figure 68. Illustration of Mindist as lower bound where K-Factor = 4. 

 

 

This lower bound gives the user an idea of the best possible ANN distance that could 

exist in the MBR not searched because of K-Factor and the disjoint nature of R-Forest.  If 

during a search K-Factor does not prune any MBR then the lower bound is undefined.  

This also assumes no restricted access or hard termination on the number of pages (to be 

discussed shortly), if I allow for restricted access then it is possible that a smaller lower 

bound on a future MBR may exist but never be accessed. 

 

6.6 MBR-Center Point 

 

As a further enhancement to R-Tree I decided to add an additional piece of 

information known as MBR-Center point.  This point which will be maintained for each 

MBR in each internal node is loosely defined as follows: for a leaf node, it corresponds to 

If   Mindist (Q, MBR2) * K-Factor  > CB then prune MBR2 

 

Mindist(Q, MBR2) 

Mindist(Q, MBR2) * K-Factor 

MBR2 

CB 

Q 
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the data point in the node that is closest to the center of the MBR and for internal MBR at 

higher levels it is defined as the children MBR-Center point closest to the MBR center.  

An example, seen in figure 69 below, MBR1 which has 6 points P1 to P6, would have P3 

as its MBR-Center point, this is due to its location, as it is closest to the center of MBR1. 

 

 

 

 

 

 

Figure 69. Illustrating MBR-Center point in a given MBR (point P3 in this example) 

 

 For the internal nodes higher in the tree, I find the MBR-Center point of the sub 

MBR (children) closest to the center current MBR and store that as the MBR-Center 

point.  This can be seen in figure 69, where MBR1 to MBR4 comprise the parent MBR 

and for these four sub MBR C4 would become the Parent MBR’s new MBR-Center point. 

P1 

P2 

P3 

P4 

P5 

P6 

MBR1  For  a 

Leaf  node 
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Figure 70. Showing Parent MBR’s MBR-Center point selection. 

 

With this new point I have the following possibilities: 

 If the MBR’s MBR-Center of the node is closer to the query point than the current 

solution, then the node should be accessed because there is at least a point in the 

sub-tree rooted there that has a better solution. 

 It is possible to use the distance from a query point Q to a MBR’s MBR-Center 

point as a means to order which MBR are searched. 

 

6.6.1 MBR-Center Point Selection 

 

To maintain the MBR-Center point I need only add it to the index structure of the 

internal nodes and then update it as points are inserted, updated or deleted.  During a 

point Q insertion into an R-Tree leaf node, check the Qs distance to the center of the 

MBR and if closer than the existing MBR-Center point than Q becomes the new MBR-

Center point. When this occurs I must also propagate the MBR-Center point change up 

the trees in the same fashion R-Tree updates parent MBR after an insertion.  For the 

C2 

C3 

C1 

C4 

Parent MBR Center 

MBR1   

 

MBR2   

 

MBR3   

 

MBR4  

 



124 

 

MBR-Center point to be useful it must be maintained for each parent MBR as changes in 

dimension domain will also cause the MBR-Center to change and thereby the MBR-

Center point closest to the center might change. 

 

6.6.2 Increased Storage Cost 

 

Adding a MBR-Center point to each MBR does incur an additional cost, in terms 

of storing the MBR-Center point per branch but with no additional cost in the leaf nodes.  

This means that the storage of each branch housing the MBR now has increased by 1/3, 

meaning that I now store the lower and higher corner of the MBR with the additional 

MBR-Center point.  This has the effect of reducing the fan out of the R-Tree by 1/3, 

which will cause the R-Tree’s height to increase.  In chapter 3 section 3.4, there was 

given an explanation on how to compute the R-Tree fan out, this now has to be extended 

to cover the addition of the MBR-Center point (seen in the following figure 71 page size 

of 4KB with 32 dimensional points). Now the total fan out or number of branches is 

calculated from the page size and number of dimensions.  
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Figure 71. Computing the internal node fan out based on a 4KB page size with additional 

MBR-Center point. 

 

I should reiterate that the leaf node storage cost stays the same as MBR-Center 

points are stored only in the internal nodes.  I should also point out that with a 4KB page 

size, R-Tree would reach its fan out lower limit sooner.  Given the example in figure 70, 

using a 4KB page and 171 dimensions, R-Tree would have fan out of 1 meaning it is no 

longer a tree it is a linked list.  To resolve this, the index page size would need to be 

increased so that more than one branch would exist per internal node. 

 

6.6.3 Index Ordering 

 

As discussed before, with R-Forest I must have a method to select the search 

order of the R-Tree indices.  Typically the Mindist of the query point Q to the root MBR 

of each R-Tree index is used to order the remaining indices to search.  Each R-Tree index 

has a root MBR (comprised of the union of the root nodes branch MBR) that covers the 

Fan out    =  (4KB – (4B + 4B))  /  (4B + (4B * 32D) + (4B * 32D)  +  (4B *  

  32D)) 

     = 4088B / 388B 

     = 10 

 

Fragmented space = 4KB – (4B + 4B) – (10 * 388B) 

             = 208Bytes 
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sub-set of points.  The root node’s branch MBR each have a MBR-Center point as seen in 

figure 72, which can be examined at little IO cost as the root nodes are already in 

memory.  

 

 

 

 

 

 

 

 

 

Figure 72. Example of Root MBR and 4 branch MBR-Center points 

 

 

In figure 72 see an example of four MBR (MBR1 to MBR4) each with a MBR-Center 

point C1 to C4, by computing the distance from the query point Q to C1 to C4, I have 

alternate method of ordering which MBR or R-Tree to search next as I can now order 

either MBR or entire R-Trees based on a distance to a physical point.   

 

6.6.4 Branch Selection 

 

This new MBR-Center point, which is a physical point, gives me the ability to 

select some branches to search which will have a guaranteed better solution.  If I find that 

a MBR-Center point of any MBR is closer than our current best ANN then I know that at 

least one point in that MBR is a better than the ANN discovered so far.  This condition 

C2 

C3 

C1 

C4 

MBR1   

 

MBR2   

 

MBR3   

 

MBR4  
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will not be met all the time but when it does, I know how to guide the search through the 

tree to an improved ANN and better solution.  

 

 

 

 

 

 

 

 

 

Figure 73. Showing example of one MBR with a MBR-Center Point that would be a 

better ANN. 

 

An example of this can be seen in figure 73, where Q is closer to MBR1 but the 

MBR-Center point C2 in MBR2 is within the radius defined by Q’s current best ANN 

which means C2 (which is a point in MBR2) is closer then Q’s current best ANN, 

therefore we should search MBR2 before MBR1.  It should be noted that when this 

condition is met as in figure 73, a MBR will be searched even if another condition would 

prune the MBR, and that I am not using the MBR-Center point to pruning any other 

MBR. 

 

 

  

Q 

Q’s Current best solution 

C1 

C2 

MBR1   

MBR2   
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6.6.5 Branch Ordering 

 

During a query within R-Tree I need to choose the best branch (MBR) to traverse, 

this is known as branch ordering.  The algorithm typically employed involves computing 

Mindist from Q to each MBR and ordering the search based on this distance.  This 

algorithm has one flaw in that Mindist is zero when the query point Q is inside a given 

MBR. This occurs on the first R-Tree searched in R-Forest as the query point is in the 

sub-set of the first R-Tree index, based on the split dimensions and boundaries, and is 

usually inside most of the MBR of the first R-Tree Index searched.  Because of this I 

chose a second method of ordering by using the distance to the MBR-Center point which 

is already being computed.  Therefore, if Mindist (Q, MBR) = 0 then use Q’s distance to 

the MBR’s MBR-Center point as a means to order the branches.  For the remaining R-

Trees in the forest Q will not be inside any MBR, so ordering by Mindist is used. 

 

6.7  Search Termination 

 

While working on this research and to compare to others it was decided to add a 

search termination parameter which the user can specify.  This parameter simply 

terminates the search when the number of pages read reaches the value set by this 

parameter.  It works by counting the total number of pages requested for all trees 

traversed and when the total exceeds the parameter by 1, searching is halted and results 

(ANN) found so far are returned. During previous research, it was observed that during 

an exact nearest neighbor search, most of the nodes visited do not improve the current 

best solution found before visiting them. Past experiments with a standard branch-and-

bound approach shows that during an (exact) NN search, on average 0.14% (with a max 
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0.33%) of the leaf nodes visited leads to an improvement over the current nearest 

neighbor found.  That is, instead of just pruning away nodes that cannot contain the 

nearest neighbor, I prune away nodes that are unlikely to contain the nearest neighbor. 

Thus I believe a more aggressive pruning scheme will lead to high efficiency of the 

search while maintaining a good solution.  Past and present research shows that a 

relatively good solution is arrived at very early on during a search and that traversing 

additional indices may lead to a better solution but at higher cost in terms of IO.  

Therefore, terminating the search with a hard cut off on the number of pages saves IO 

with only a small quality performance hit. Since this method in my dissertation is only 

looking for an ANN, and I am willing to trade accuracy for efficiency, adding a hard 

termination condition on the IO will only affect the accuracy. 

 

6.8 Summary of R-Forest Construction and ANN Queries 

 

 All the changes to R-Tree covered throughout this chapter are summarized below 

starting with the construction of R-Forest from a given data set, and ending with ANN 

queries of R-Forest. 

 

I. Initialization of R-Forest and construction. 

1. Initial R-Forest by random sampling of initial data set, find a sub-set of dimension 

to split then split each dimension into 2 to 3 regions (figure 74 below). 



130 

 

 

 

 

 

 

 

 

Figure 74. Defined Regions after single dimension is split and boundaries are defined 

 

2. Define N number of R-Trees with hard boundaries on the split dimension and 

boundaries based on the number of split dimensions and boundaries. 

3. Insert points into the appropriate R-Tree index within the R-Forest by locating 

which index the point is a set of, use standard insertion originally defined for R-

Tree figure 75.   

 

 

 

 

 

Figure 75. R-Tree indices that comprise R-Forest 

 

4. During the insertion of points into leaf nodes update the MBR-Center point and 

prorogate the changes up the tree as needed figure 75. 
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Figure 76. MBR-Center point discovery in a leaf node and internal node 

 

5. Maintain the split dimensions and boundaries when updating and deleting points. 

 

II. Querying R-Forest – Given a query point Q using the following steps (Pseudo 

code in Figure 77 and 78) 
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Figure 77. Pseudo code for R-Forest ANN query with R-Tree Ordering and termination 

condition 

R-Forest_ANN_Query (Point Q) 

 Select Initial R-Tree where Q is a SubSet of Boundaries 

 Initial R-Tree ANN_Query (R-Tree.Root, Q) 

If Page Access Count > Termination count then  

Goto Terminate_Search 

 

 For each R-Tree in R-Forest  

Compute Mindist (Q, MBR) 

 Sort R-Trees Based on Mindist to All MBR 

 

 For Each R-Tree in Sorted List 

  R-Tree ANN_Query (Q) 

If Page Access Count > Termination count then  

Goto Terminate_Search 

   

 Terminate_Search  

return Q’s CB ANN found and Lower Bound 
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Figure 78. Pseudo code for R-Tree ANN query (with K-Factor, MBR-Center Point and 

termination condition) 

 

 

ANN_Query (Parent.Node, Point Q) 

 

 If Node is Internal 

                    { /* Node is Internal Node */ 

 

  For each MBR in Parent.Node  

   Compute Mindist (Q, MBR) 

   If Mindist (Q, MBR) = 0  

    Compute Dist(Q, MBR-Center Point) 

 

   Sort MBR List on Mindist or MBR-Center Point Dist 

 

  For each Sorted MBR in Partent.Node 

 

If Q’s CB ANN distance  < Mindist (Q, MBR) then  

Prune MBR = True 

If K-Factor * Mindist (Q, MBR) > CB distance  then  

Prune MBR = True 

lower bound = Mindist (Q, MBR) 

  If Q’s CB distance > MBR-Center Point then  

Prune MBR = False 

  If Page Access Count > Termination count then  

Goto Terminate_Search 

 

  If Prune MBR = False then  

ANN_Query (MBR.Node, Q) 

          } 

 Else  

                    {  /* Node is Leaf Node */ 

 

  For each Point in Leaf Node  

   If Q’s CB ANN > Dist (Q, Point) then  

Q’s CB ANN = Dist (Q, Point) 

                    } 

 

 Terminate_Search  

 Return Q’s CB ANN found and Lower Bound 
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1. Determine which R-Tree index in the R-Forest, which Q is a set of, and select it 

as the initial tree to search. 

2. Starting at the Root. 

3. Within an internal node order the MBR based on Mindist and distance MBR-

Center distance. Choose the MBR Q is closest too, based on Mindist or MBR-

Center distance, access that node. 

4. Repeat Step 3 until I reach a leaf node then search the leaf establishing an ANN 

and updating this as I check all points in the Leaf. 

5. Once visit the first leaf the following pruning heuristics can be applied to leaf 

nodes and internal nodes figure 79 

 

 

 

 

 

 

 

 

 

 

 

Figure 79. Search heuristics used in R-Tree, including new conditions available with R-

Forest 

 

If Q’s CB distance  < mindist (Q, MBR) then  

Prune the MBR 

 

If Mindist (Q, MBR) * K-Factor > CB distance  then  

Prune MBR and update lower bound as Mindist(Q, MBR) 

 

 If Q’s CB distance > MBR Medina point then  

search MBR 

 

 If Page Access Count > Termination count then  

Terminate the search 
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6. Repeat step five for all MBR in the given nodes. 

7. Move up the tree and again repeat step 5. 

8. When finished searching the first R-Tree order the remaining based on Mindist 

and MBR-Center point, select the next closest and loop to step 3. 

9. If search termination is not used then terminate when all R-Trees have been 

accessed. 

10. The results returned at the end of a query would include the closest ANN point 

found and a lower bound on all the MBR pruned by K-Factor, whether the search 

was terminated with restricted access or not. 

 

In summary this section has covered the details on how to construct R-Forest and 

the modifications to searching R-Tree that take advantage of the forest and it’s disjoint 

nature.  I now have a new method for ordering searching the R-Trees, pruning heuristics 

and a new search termination function. The results returned at the end of a query would 

include the closest ANN point found and a lower bound on all the MBR pruned by K-

Factor.  It should be pointed out that a search terminated with restricted access or 

without, but with the use of K-Factor now has an additional termination function which 

eliminates MBR or entire R-Trees because they meet the condition Mindist (Q, MBR) * 

K-Factor > C.  
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7. Results 

 

In this section I present my testing data, experiment methods and results for both 

R-Forest and LSB-Forest. These results include a general set of tests using three data 

distributions with 99,000 to 2,500,000 points and seven real world sets, these were used 

to show how well my approach works with different types of data. Next I will show how 

my approach scales as the number of dimensions increases. Finally, I will show how my 

method scales as the number of points increases from 500,000 points to 2,500,000 points. 

In all three sets of experiments I will compare my results with LSB-Forest [111] as this 

has become one of the predominant ANN solutions. 

 

7.1 Data Sets 

 

For my experiments I tested my approach with different data distributions and 

include a real world data set.  To set up these experiments, I used a program that 

generates random data sets of any size (number of points), with different data distributes 

with varying number of dimensions.  Most of my work has focused on 32 dimensional 

data and above, as past research has shown this is where most high-dimension NN an 

ANN methods including single R-Tree, fails to provide anything better then a sequential 

scan. Using the data generation program, I generated multiple data sets with the 

following data distributions, uniform, clustered and Gaussian. Details on these data sets 

will be given in the following sections. 
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7.1.1 Uniform Data Set 

For uniform data, where each dimension is a random number with uniform 

probability distribution over domain of [0.0, 1.0], I generated 100,000 point set having 

32, 48, 64, 80 and 96 dimensions.  These sets were used for both general testing and 

dimensional scaling testing.  I also generated five additional sets of 32 dimensional data 

having point counts of 501,000, 1,001,000, 1,501,000, 2,001,000 and 2,501,000 points.  

The additional 1,000 points in each set were used as test data, to ensure that the test data 

follows the actual distribution of the data.  

 

7.1.2 Clustered Data Set 

 

For clustered data, I generated 100,000 point set having 32, 48, 64, 80 and 96 

dimensions and five 32 dimensional sets points ranging from 501,000 to 2,501,000 sets as 

discussed under the section for uniform data, over the domain of [0.0, 1.0] for each 

dimension.  It should be noted, this clustered data has 20 random clusters, build by 

randomly selecting 20 points as the cluster’s centroid and generating the remaining points 

around the centroids with a radius of 0.1, and attempting to make sure the clusters do not 

overlap in the dimensions but not guaranteed with each cluster have approximately the 

same number of points. 

 

7.1.3 Gaussian Data Set 

For Gaussian data, I generated 100,000 point set having 32, 48, 64, 80 and 96 

dimensions and five 32 dimensional sets points ranging from 501,000 to 2,501,000 sets as 

discussed under the section for uniform data, but over the domain of [-4.0, 4.0] where 
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each dimension is a random number with Gaussian probability distribution, with mean 

0.0 and standard deviation of 1.0. 

 

7.1.4 Real Data Sets 

For Real data sets I was able to locate seven different sets on the internet with 

different number of dimensions and number of points. The first was based on Corel 

images histograms from 

http://kdd.ics.uci.edu/databases/CorelFeatures/CorelFeatures.html made up of 68,040 

points (it should be noted I used the first 66,000 points in my test to compare to my 

previous research) [97].  For this data set each dimension has a domain [0.0 to 1.0] of 

unknown distribution and will be referred to as Corel. At 

http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm I located sets which were compressed 

of 269,648 images analyzed with five different methods giving me five real data sets with 

different number of dimensions to experiment with (minor details to be provided in later 

sections including data set names) for the time being this entire set will be known as 

NUSWIDE [76]. Finally I used a set from 

http://osmot.cs.cornell.edu/kddcup/datasets.html  which was used Knowledge Discovery 

and Data (KDD) Cup 2004 conference competitions, which had 145,751 points 

comprised of 74 dimension [55].  The sets from [76] and [55] had attributes in different 

ranges, because I am comparing my results to LSB-Forest which only works with 

integers, I normalized all the real sets to domain of [0.0 to 1.0] across all dimensions. 

 

 

http://kdd.ics.uci.edu/databases/CorelFeatures/CorelFeatures.html
http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
http://osmot.cs.cornell.edu/kddcup/datasets.html
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7.2 Experimental Setup 

 

In all of my data sets no matter the size or number of dimensions, I chose to split 

on 4 dimensions with 3 regions. Notice that I chose a number of split dimensions of 4 

instead of 5 = log2 32 because this provides me a reasonable number of trees 3
4
 = 81 with 

each tree having a height of 1-5 levels depending on the data set size. With larger data 

sets, the choice of 5 may yet become reasonable, for my initial testing of 100,000 points 

splitting on 5 dimensions with 3 regions would have led to 3
5
 = 241 R-Trees indices, 

which would be flattened out, leaving them comprised mostly of leaf nodes.  Listed 

below in table 6 are the parameters used for testing both R-Forest and LSB-Forest.  

Please note LSB-Forest parameters came directly from the authors paper [111].  For some 

of the data sets I tested with the page size had to be increased from 4KB to 12KB, which 

is noted in the results when need be. 

 

Table 6.  Parameters for R-Forest and LSB-Forest 

Parameter R-Forest  LSB-Forest  

Page size (KB) 4KB or 12KB 4KB or 12KB 

No. of DIM 32 – 225 32 – 225 

Split Dimension 4 N/A 

Regions per Dim 3 N/A 

K-Factor (query parameter) range 1 to 4 N/A 

R (restricted access, discussed 

in 6.7 Search Termination) 

90 pages 90 – 110 pages 

Number of Indices 81   20 

No. of Points stored N N * Number of 

Indexes 

Largest Integer T (specific to 

LSB-Forest) 

N/A 10,000 
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7.2.1 Index Construction  

  In the previous section I listed multiple data sets with different data distributions, 

these include three 99,000 points sets, seven real sets, twelve sets with dimension from 

48 to 96, and fifteen sets points from 500,000 to 2,500,000.  This gives me 37 data sets to 

work with.  For each, I used my R-Forest code to construct forests of R-Trees using the 

parameters given in table 6 (section 7.2).  As a comparison I used the code from Yufei 

web site http://www.cse.cuhk.edu.hk/~taoyf/paper/tods10-lsb.html [113] to build LSB-

Forest forest with the same 37 data sets using the parameters given in their paper, also 

summarized in table 6 (section 7.2). 

 

7.2.2 Test Points Used 

 

For testing I selected the last 1,000 points from each set (including the Real data 

sets) and used them as my test points.  By using the last 1,000 points I know the test 

points follows the same distribution as the data sets, which is important for Gaussian and 

clustered data.  Since Gaussian and clustered data have specific distribution it seems best 

that the test points have basically the same distribution otherwise the results might be 

skewed. 

 

7.3 Experimental Results with Comparison to LSB-Forest 

 

In my first set of experiments, I tested different data distributions and the affect of 

varying K-Factor from 1 to 4 to see how it affects the search. I am comparing my results 

with LSB-Forest. For LSB-Forest the page size was set to 4K (unless the number of 

dimensions required a larger page size), and the number of trees in LSB-Forest was set to 

http://kdd.ics.uci.edu/databases/CorelFeatures/CorelFeatures.html
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20, research clearly shows that at around 20 trees the results level off and do not improve 

much as the number of trees increases [111].  Also their research paper points out that 

they have a hard termination point at 90 pages (actually according to their code it is the 

number of trees multiplied by the height of a tree).  So for my method I set the access 

restriction to 90 pages as a comparison to LSB-Forest, therefore both methods will be 

using the same amount of IO, and both implementation count cost in terms of pages 

accessed, by keeping the page size the same I am comparing actual cost of both methods.  

For all of the experiments, I record the number of leaf node accessed, as well as 

the quality of the result by means of a sequential scan against the full set of points, and 

will measure the quality of the results using the following: 

 Distance ratio: Ratio of distance of retrieved point (ANN) from q to actual NN 

distance or ratio of how close the solution found is to the actual solution. 

 Percentage of exact matches: How often does the query search return the actual 

nearest neighbor, even though both methods are seeking only an ANN. 

 Percentage of better ANN: What percentage of the test results returned by R-Forest 

had an ANN with a distance ratio less than the same results from LSB-Forest. 

 Lower bounds: the value of the lower bound distance returned, and the ratio of it to 

the actual distance to the nearest neighbor. 

 

For each set of experiments, I present my results in a table that contains all the 

measures, as well as a histogram showing the distribution of distance ratios.  The tables 

will show the best, worst, and average case distance ratio. The histogram will provide a 

more detail picture of the performance. To make the histogram more presentable, I only 
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included the results where K equal 4.  Finally I wanted to add some details on the lower 

bound feedback, this was done by presenting the maximum ratio of K times minimum 

Mindist to Q’s actual NN for all 1,000 test.  This shows that minimum Mindist found so 

far could be used as feedback as to the bound on the ANN found when the query 

terminates.  

 

7.3.1 Uniform Data Set 

 

Starting with 32 dimensional uniform data distribution in table 7, I have 

summarized the parameters used by both methods, as well as the total size in MB of 

indices built. 

 

Table 7. Summary of Parameters (for 32 dimensional uniform data) 

 Page size 

(KB) 

# of pages 

accessed 

Number of 

indices 

Number of 

points 

Total size of 

index (in MB) 

R-Forest 4K 90 81 99,000 18MB 

LSB-Forest 4K 90 20 99,000 592MB 

 

 

In table 8 I have listed the results for R-Forest and LSB-Forest with increasing 

values for K-Factor (K) followed by figure 80, which shows a histogram for the test 

points distributions by increasing distance ratios. 
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Table 8. Comparison of R-Forest and LSB-Forest for uniform data 

Method k Distance Ratio % of 

exact 

match 

% of 

cases 

where R-

Forest 

outperfor

ms LSB-

Forest 

Lower 

bound 

ratio 

(exclu

de 

outlier

s -- see 

below) 

Min Mean Standard 

Deviation 

Maximum 

LSB-

Forest 

N/A 1 1.263103 0.12813 1.860324 1.3 N/A 4 

(guar.) 

R-

Forest 

1 1 1.098378 0.07802 1.484131 12.5 91.8 ∞ 

R-

Forest 

2 1 1.098011 0.07788 1.484131 12.6 91.8 1.487 - 

∞ 

R-

Forest 

3 1 1.091692 0.07673 1.484131 14.4 92.6 2.600 – 

3.000 

R-

Forest 

4 1 1.087586 0.07604 1.430819 16.8 93.4 3.591-

3.969 

 

 

 

Figure 80. Distance Ratio distribution for R-Forest and LSB-Forest using uniform data 

set, with K = 4 
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From Table 8, one can see that the R-Forest performs favorably over the LSB-

Forest, given the same amount of access as listed in Table 8.  The R-Forest locates 

significantly more exact nearest neighbor than the LSB-Forest (12.5-16.8% vs. 1.3%). 

Moreover, in more than 90% of the cases, R-Forest returns a better solution than the 

LSB-Forest in terms of distance ratio for the same test point. There is further support in 

figure 80 which shows distribution of the solutions found by both methods. For R-Forest, 

most of the solutions (nearly 85%) have a distance ratio less than 1.2 as compared to 

LSB-Forest.  

The authors of LSB-Forest offers a “guarantee” on the bounds in that the point 

returned will be C-Approximate of the NN.  For R-Forest (uniform data) I was able 

obtain better results but without “guarantee” bounds. However, in the last column of table 

8 (cases were K equal 3 or 4) shows the returned value of lower bound for the R-Forest 

will be within 3 to 4 of the actual solution, achieving the same lower bound as the LSB-

Forest. 

Looking at the results for varying the prune factor (K) shows some counter-

intuitive results. First, the quality of the results actually improves with larger value of K-

Factor  – i.e. the more aggressive the pruning, the more likely the R-Forest returns a 

better solution. This actually echoes back to my discussion earlier that very few nodes 

examined, actually improve the solution during the branch-and-bound search. If K is too 

small, then very few nodes will be pruned in the beginning and I reach the limit set by 

restricted access, which terminates the search.  If the NN solution to q, is somewhere later 

in the search path (which, interestingly, is quite often the case during a depth-first 

traversal), and I terminate too early, then the search will never reach NN. However, with 
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more aggressive pruning I am more likely to prune away nodes that do not improve on 

the solution, thus enable further searching and increasing the chances of reaching a better 

or actual solution.  

Secondly, the lower bound returned shows two interesting results that warrants 

explanation. For K equal 3 and 4, I notice that the actual lower bound ratio is slightly less 

than K in my experiments, even though there is no guarantee. However, when K is 2 or 

smaller, there are cases where R-Forest fails to return a lower bound. This is due to the 

fact that when K is small, very little pruning is done, and thus the search may never finish 

searching the first R-Tree – which contains overlapping regions within its sub-trees 

(access restriction terminates the search). Thus it is possible there are many nodes in the 

first R-Tree where their MBR contains q that the search does not reach (few nodes are 

pruned). This leads to a lower bound of 0 (and a lower bound ratio of infinity). However, 

for K equal 3 or 4, the search is able to prune enough nodes such that the search of the 

first tree is complete. Thus all nodes which MBR contains q have been searched, so a 

lower bound can be established, and in all of those cases, the lower bound ratio is actually 

less than K [75]. 

 

7.3.2 Clustered Data Set 

 

For 32 dimensional clustered data results, table 9 lists the parameters used by both 

methods, as well as the total size in MB of indices built. 
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Table 9. Summary of Parameters (for 32 dimensional clustered data) 

 Page size 

(KB) 

# of pages 

accessed 

Number of 

indices 

Number of 

points 

Total size of 

index (in MB) 

R-Forest 4K 90 81 99,000 18MB  

LSB-Forest 4K 90 20 99,000 591MB 

 

 

In table 10, I have listed the results for R-Forest and LSB-Forest with increasing 

values for K-Factor followed by figure 81, which shows a histogram for the test points 

distributions by increasing distance ratios. 

 

 

Table 10. Comparison of R-Forest and LSB-Forest for Clustered data. 

 

Method k Distance Ratio % of 

exact 

match 

% of cases 

where R-

Forest out 

performs 

LSB-

Forest 

Lower 

bound 

ratio 

 

Min Mean Standard 

Deviation 

Maximum 

LSB-

Forest 

N/A 1 

1.30401 0.13723 2.01258 0.8 

N/A 4 

(guar.) 

R-Forest 1 1 1.611245 2.23787 14.14206 48.8 92.1 ∞ 

R-Forest 2 1 

1.029058 0.04833 1.368558 51.8 

98.6 1.105 - 

∞ 

R-Forest 3 1 1.026273 0.04593 1.319137 55.2 98.7 1.961- 

3.000 

R-Forest 4 1 1.022165 0.04246 1.319137 60.9 99.0 3.293 – 

4.000 
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Figure 81. Distance Ratio distribution for R-Forest and LSB-Forest using clustered data 

set, K = 4 

 

Looking at Table 10 and Figure 81 one can see that when K-Factor pruning is 

used, at K equal 2 and above, I had over 500 correct NN returned out of a 1,000 tests, and 

as K increased I continued to see more correct NN returned, and at K equal 4, I reached 

over 600 tests (60%) with correct NN.  Also, out of all 1,000 clustered point test 98% - 

99% of the results R-Forest returned had a better distance ratio then the same 1,000 test 

results from LSB-Forest, see Figure 81.  Most likely this was due to the nature of the data 

being clustered, it is thought that the R-Forest found the clusters and organized the data 

accordingly; hence R-Forest was able to take advantage of the clustered data without any 

modification of the parameters, or prior knowledge of the data distribution. As for the 

lower bound on the results when K equal 3 and 4, all test cases were at or less then the 

desired bound. For cases where K equal 2, the upper range of the lower bound was 
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infinity this is due to the situation where K-Factor is not as aggressive at pruning and in 

some test case not being used to prune any MBR [75]. 

 

7.3.3 Gaussian Data Set 

 

Next I will present my experiment results for 32 dimensional Gaussian data 

results.  In table 11, the parameters used by both methods, as well as the total size in MB 

of indices built are listed. 

 

Table 11. Summary of Parameters (for 32 dimensional Gaussian data) 

 Page size 

(KB) 

# of pages 

accessed 

Number of 

indices 

Number of 

points 

Total size of 

index (in MB) 

R-Forest 4K 90 81 99,000 18MB  

LSB-Forest 4K 90 20 99,000 591MB 

 

 

In table 12 I have listed the results for R-Forest and LSB-Forest with increasing 

values for K-Factor (K) followed by figure 82, which shows a histogram for the test 

points distributions by increasing distance ratios. 
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Table 12, Comparison of R-Forest and LSB-Forest for Gaussian data. 

 

Method k Distance Ratio % of 

exact 

match 

% of 

cases 

where R-

Forest 

out 

performs 

LSB-

Forest 

Lower 

bound 

ratio 

 

Min Mean Standard 

Deviation 

Maximum 

LSB-

Forest 

N/A 1 

1.458489 0.19257 2.089663 0.2 

 

N/A 

 

4 (guar.) 

R-

Forest 

1 1 

1.098768 0.07186 1.381195 9.0 

 

97.7 

∞ 

R-

Forest 

2 1 

1.09835 0.07198 1.381195 9.4 

 

97.7 

1.407 - ∞ 

R-

Forest 

3 1 

1.092139 0.07069 1.360345 11.6 

 

98.1 

2.724 – 

3.000 

R-

Forest 

4 1 

1.08777 0.07218 1.365311 13.4 

 

98.2 

3.684 – 

4.000 

 

 

 

 

Figure 82. Distance Ratio distribution for R-Forest and LSB-Forest using Gaussian data 

set and K = 4. 
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Just as with the clustered data results, Gaussian data results fared just as good. As 

K increases, seen in Table 12, one can see an increase in the number of correct NN 

returned (9% for K equal 2 to 13.4% for K equal 4). Of course this was not as dramatic as 

it was for clustered, but still an improvement over LSB-Forest.  When I review the 

percentage of test results where my distance ratio was better than that of LSB-Forest, I 

see that 97.7% to 98.2% my results are better.  The lower bound was again held for 

Gaussian just as it was for clustered and uniformed when K was 3 or 4.  Finally for 

Gaussian at K equal to 2, I also saw cases where the upper range on the lower bound was 

infinity because K-Factor prune was not always used in every test point, hence infinity on 

the lower bound [75]. 

 

7.3.4 Real Data Set Corel 

 

Next I will present my experiment results for 32 dimensional Corel real data set 

results [97].  In table 13, the parameters used by both methods, as well as the total size in 

MB of indices built are listed (note the number of points is only 65,000 versus 99,000 as 

in previous experiments). 

 

Table 13. Summary of Parameters (for 32 dimensional Corel real data) 

 Page size 

(KB) 

# of pages 

accessed 

Number of 

indices 

Number of 

points 

Total size of 

index (in MB) 

R-Forest 4K 90 81 65,000 15MB  

LSB-Forest 4K 90 20 65,000 370MB 
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In table 14 I have listed the results for R-Forest and LSB-Forest with increasing 

values for K-Factor followed by figure 83, which shows a histogram for the test points 

distributions by increasing distance ratios. 

 

Table 14. Comparison of R-Forest and LSB-Forest for real data set Corel. 

Method k Distance Ratio % of 

exact 

match 

% of 

cases 

where R-

Forest 

out 

performs 

LSB-

Forest 

Lower 

bound 

ratio 

(exclude 

outliers 

-- see 

below) 

Min Mean Standard 

Deviation 

Maximum 

LSB-

Forest 

 

N/A 

 

1 1.450399 0.40365 3.294505 7.9 

 

N/A 

 

4 (guar.) 

R-

Forest 

 

1 

 

1 1.264915 0.29098 3.245898 23.1 

 

68.3 

∞ 

R-

Forest 

 

2 

 

1 1.200835 0.24498 2.766588 30.9 

 

73.0 

1.067 – 

2.000 

R-

Forest 

 

3 

 

1 

 

1.189478 

 

0.24496 

 

2.808308 

 

31.8 

 

74.8 

1.191 – 

3.000 

R-

Forest 

 

    4 

 

1 

 

1.190283 

 

0.2466 

 

2.766588 

 

31.1 

 

74.5 

1.148 – 

4.000 
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Figure 83. Distance Ratio distribution for R-Forest and LSB-Forest using real data set 

Corel, and K = 4. 

 

For real data set Corel Table 14 and Figure 83, again one can see a slight 

improvement in the average distance ratio, yet both R-Forest and LSB-Forest did have 

numerous cases where the maximum distance ratio was over 2.5.  For my method around 

70% of the test fell into the distance ratio range of 1 to 1.3 where as 70% of the LSB-

Forest tests fell into the range from 1 to 1.7. The noticeable improvement comes from the 

number of correct NN returned, for my approach as I increased prune factor (as seen in 

Table 14) I see improvement in the number of correct NN from 200 to 300 tests. Note, 

that in my tests, there are 4 cases that the actual nearest neighbor distance is extremely 

small. This tends to skew the lower bound (to nearly 0 if there is enough pruning, and to 

∞ if there is not). Thus, for the lower bound I remove those points to allow one to see the 

range more clearly but just for the lower bound column [75]. 
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7.3.5 Real Data Sets NUSWIDE Research Site 

 

This data set was comprised of 269,648 images, for each image 5 different 

analysis where run, generating 5 data sets with different number of dimensions but with 

no specific data distribution. These sets where located at 

http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm used as research data by 

researchers who maintained the site, this set again will be referred to as the NUSWIDE 

Set.  In Table 15, I have summarize the number of dimensions, analysis and assigned a 

name to each sub set that will be used though this paper further details can be found in 

[23]. 

 

Table 15. NUSWIDE Data sets listing name, dimension and a short description 

Data Set Name Number of 

Dimensions 

Short Description 

CH_64D 64 Color Histogram 

CORR_144D 144 Color Correlogram 

EDH_75D 75 Edge direction histogram 

WT_128D 128 Wavelet texture  

CM55_225D 225 Block-wise color moments 

 

 

All 5 data set were normalized to vales between 0.0 and 1.0, so it could be 

converted to integers as required by LSB-Forest, and so that accurate test point 

comparisons could be made between R-Forest and LSB-Forest.  For testing the last 1,000 

points of each set were taken as test points, leaving 268,648 points in each data set.  

Though out this chapter I have always used 4K pages for all of my testing, because three 

of the data sets have more than 120 dimensions the page size was increase to 12K, this 

was done because R-Tree needed a larger page size to increase fan out otherwise it would 

http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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be 2 to 4 depending on the number of dimensions.  When I adjusted the page size for R-

Forest the same adjustment was made for LSB-Forest so IO would be a fare comparison. 

 

7.3.5.1 Real CH_64D Data Set 

 

Next I will present my experiment results for 64 dimensional color histogram real 

set results referred to as CH_64D [76].  In table 16, the parameters used by both methods, 

as well as the total size in MB of indices built are listed.   

 

Table 16. Summary of Parameters (for 64 dimensional CH_64D real data) 

 Page size 

(KB) 

# of pages 

accessed 

Number of 

indices 

Number of 

points 

Total size of 

index (in MB) 

R-Forest 4K  90 81 268,648 169MB 

LSB-Forest 4K  90 20 268,648 2,980MB 

 

 

In table 17 I have listed the results for R-Forest and LSB-Forest with increasing 

values for K-Factor followed by figure 84, which shows a histogram for the test points 

distributions by increasing distance ratios. 
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Table 17. Comparison of R-Forest and LSB-Forest for real data set CH_64D. 

Method K Distance Ratio    

Min Mean Median Stand. 

Dev. 

Max. % of 

exact 

match 

% of 

cases 

where R-

Forest 

out 

performs 

LSB-

Forest 

Lower 

bound 

ratio 

LSB-

Forest 

 

N/A 

 

1 1.51277 

 

1.46135 

 

0.743195 13.7169 5.6 

 

N/A 

 

4.0 

R-Forest  

1 

 

1 2.95651  

 

1.44126 28.26309 885.7069 9.5 

 

54.9 

∞ 

R-Forest  

2 

 

1 2.87701 

 

 1.38330 28.25219 885.7069 10.5 

 

89.3 

0.0 – 

1.998 

R-Forest  

3 

 

1 

 

2.87888 

 

1.38059 

 

28.26095 

 

885.7069 

 

10.4 

 

89.3 

0.0 – 

2.999 

R-Forest  

    4 

 

1 

 

2.90062 

 

1.39476 

 

28.26003 

 

885.7069 

 

10.0 

 

57.1 

0.0 – 

3.997 

 

 

 

Figure 84. Distance Ratio distribution for R-Forest and LSB-Forest using real CH_64D 

data set, and K = 4. 
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 A first look at table 17 and figure 84 it appears nether method did all that well, 

turns out this data set was a little unique.  First there were 20-30 identical points, second 

the last 1,000 test points had several points that were identical to the existing points, and 

third several of these test points were very close to their nearest neighbor.  A review of 

table 17 maximum distance ratio shows that LSB-Forest had a case were the distance 

ratio was 13.71691, actually there were 7 case were the distance ratio was greater the 4.0 

which shows LSB-Forest appears to have broken its guarantee of retuning a point that 

was c-approximant.  In these cases the test point’s NN was very close and the ANN that 

LSB-Forest returned was far enough away that the distance ratio was greater than 4.0, 

this usually occurred when the distance from the test point to its NN was very small.  An 

example, the distance from test point 76 to its NN is 0.00002364 but LSB-Forest returned 

an ANN point who’s distance was 0.0001, yielding a distance ratio of 4.230119.  R-

Forest suffered from the same problem, there were numerous cases were the test point’s 

NN was very close and the ANN returned was far enough away that the distance ratio 

became large, with the worst case example being test point 215 who’s NN distance was 

0.000000101 and R-Forest returned a point who’s distance to test point 215 was 

0.00089747 leading to a distance ratio of 885.706738 (it should be pointed out that LSB-

Forest retuned a point who’s distance was 0.0 in this case possible indicating some 

rounding error occurred). 

 Because my average and maximum distance ratio were skewed do to a hand full 

of points, I added an additional column to table 17, the median distance ratio.  This was 

done to give a better picture of the distance ratio from the different sets of experiments.  
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From the median one can see that R-Forest did better in that for all four sets of 

experiments the median distance ratio was lower than LSB-Forest.  

A further review of the test data showed that for LSB-Forest had 106 cause were 

it returned a ANN distance less than the test points true NN, in turn making the distance 

ratio less than 1, this was most likely due to rounding error as the data set must converted 

from floating point values to integers, before building an LSB-Forest.  Finally LSB-

Forest also had numerous cases were a test points ANN returned had a distance of 0.0 

when its true NN was greater than 0.0, again most likely caused by rounding when the 

distance was very small. 

Looking at all of these details it appears that R-Forest did not do that well when 

compared to LSB-Forest for data set CH_64D, but looking at table 17 and 84 one can see 

that 57% - 89% of the time the ANN returned was better than results returned from LSB-

Forest.  Also as I examined the data from the 1,000 test I see that both methods did not do 

well when the distance from the test point to its NN where really small even 0.0.  One 

item I should point out is that with R-Forest I have better control of the amount of access, 

so I ran additional test on this data set and found out that my poor performance was due 

to restricted access, and as I increased the amount of allowed access the quality of the 

results improved. 

 

7.3.5.2 Real CORR_144D Data Set 

 

Next I will present my experiment results for144 dimensional color correlogram 

real data set [76].  In table 18, the parameters used by both methods, as well as the total 
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size in MB of indices built are listed, it should be noted that I set the page size 12KB for 

both methods because of the number of dimensions. 

 

Table 18. Summary of Parameters (for 144 dimensional CORR_144D real data) 

 Page size 

(KB) 

# of pages 

accessed 

Number of 

indices 

Number of 

points 

Total size of 

index (in MB) 

R-Forest 12K  90 81 268,648 302MB 

LSB-Forest 12K  90 20 268,648 5,510MB 

 

 

In table 19 I have listed the results for R-Forest and LSB-Forest with increasing 

values for K-Factor followed by figure 85, which shows a histogram for the test points 

distributions by increasing distance ratios. 

 

Table 19. Comparison of R-Forest and LSB-Forest for real data set CORR_144D. 

Method k Distance Ratio % of 

exact 

match 

% of 

cases 

where R-

Forest 

out 

performs 

LSB-

Forest 

Lower 

bound 

ratio 
Min Mean Standard 

Deviation 

Maximum 

LSB-

Forest 

 

N/A 

 

1 1.524554  0.365476 3.23035 1.9 

 

N/A 

 

N/A 

R-

Forest 

 

1 

 

1 1.43036  0.32154 4.761805 1.8 

 

62.3  

∞ 

R-

Forest 

 

2 

 

1 1.41324 0.32778 4.761805 1.9 

 

63.4 

1.006 – 

1.997 

R-

Forest 

 

3 

 

1 

 

1.408319 

 

0.33408 

 

4.761805 

 

2.1 

 

64.5 

1.062 – 

2.999 

R-

Forest 

 

    4 

 

1 

 

1.409956 

 

0.32538 

 

4.761805 

 

2.3 

 

64.6 

1.055- 

3.997 
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Figure 85. Distance Ratio distribution for R-Forest and LSB-Forest using real data set 

CORR_144D, and K = 4. 

 

 For this data set LSB-Forest did reasonable well, in that no test points had a 

distance ratio greater than 4.0.  Were as R-Forest had a maximum distance ratio of 

4.761805, turns out that of the 1,000 test points exactly 2 test points had distance ratio 

greater then 4.0, in both cases like the previous data set the true NN was relatively close 

so being off by a little amount created a large distance ratio.  Again I ran a second test 

with restricted access increased and found that the quality of these two points improved 

which means that limited access was the reason why R-Forest missed the better ANN 

causing a larger distance ratio.   

 Looking at figure 85, we see that for R-Forest nearly 50% of the test points had a 

distance ratio of less than 1.5, where as for LSB-Forest 70% of the points fell between 

1.0 and 1.7.  Finally in table 20 62% to 64% of the time R-Forest retuned an ANN point 

closer to the test point than the results returned by LSB-Forest. 
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7.3.5.3 Real EDH_75D Data Set 

 

Next I will present my experimental results for 75 dimensional EDH_75D real 

data set [76].  In table 20, the parameters used by both methods, as well as the total size 

in MB of indices built are listed. 

 

Table 20. Summary of Parameters (for 75 dimensional EDH_75D real data) 

 Page size 

(KB) 

# of pages 

accessed 

Number of 

indices 

Number of 

points 

Total size of 

index (in MB) 

R-Forest 4K 

 

90 81 268,468 222MB 

LSB-Forest 4K 90 20 268,468 3,680MB 

 

 

In table 21 I have listed the results for R-Forest and LSB-Forest with increasing 

values for K-Factor followed by figure 86, which shows a histogram for the test points 

distributions by increasing distance ratios. 

 

Table 21. Comparison of R-Forest and LSB-Forest for real data set EDH_75D. 

Method k Distance Ratio % of 

exact 

match 

% of 

cases 

where R-

Forest 

out 

performs 

LSB-

Forest 

Lower 

bound 

ratio  
Min Mean Standard 

Deviation 

Maximum 

LSB-

Forest 

 

N/A 

 

1 1.43604  0.291533 3.400322 1.5 

 

N/A 

 

N/A 

R-

Forest 

 

1 

 

1 1.22230  0.157674 2.341839 4.4 

 

79.3 

∞ 

R-

Forest 

 

2 

 

1 1.197081 0.132343 2.049986 5.7 

 

82.7 

1.096 – 

1.999 

R-

Forest 

 

3 

 

1 

 

1.214195 

 

0.145069 

 

2.11797 

 

4.9 

 

80.0 

1.394 – 

2.996 

R-

Forest 

 

    4 

 

1 

 

1.24519 

 

0.161797 

 

2.37321 

 

4.1 

 

74.8 

1.405 – 

3.992 
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Figure 86. Distance Ratio distribution for R-Forest and LSB-Forest using real data set 

EDH_75D, and K = 4. 

 

 Like the previous data set R-Forest preformed very well on EDH_75D when 

compared to LSB-Forest.  From the table 21 one can see that the average distance ratio 

was better and the maximum distance ratio was less than any test from LSB-Forest. 

Looking at the number of ANN points returned by R-Forest I find that 74% to 82% of the 

tests returned a better ANN then that returned by LSB-Forest.  This is further supported 

by the distance ratio histogram in figure 86 whereby approximately 90% of the ANN 

returned had a distance ratio less than 1.5 as compared to LSB-Forest. 

 

7.3.5.4 Real WT_128D Data Set 

Next I will present my experimental results for 128 dimensional WT_128D real 

data set [76].  In table 22, the parameters used by both methods, as well as the total size 
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in MB of indices built are listed, also note the use of 12KB page versus 4KB used for 

other data sets. 

 

Table 22. Summary of Parameters (for 128 dimensional WT_128D real data) 

 Page size 

(KB) 

# of pages 

accessed 

Number of 

indices 

Number of 

points 

Total size of 

index (in MB) 

R-Forest 12K  90 81 268,648 313MB 

LSB-Forest 12K 90 20 268,648 4,640MB 

 

 

In table 23 I have listed the results for R-Forest and LSB-Forest with increasing 

values for K-Factor followed by figure 87, which shows a histogram for the test points 

distributions by increasing distance ratios. 

 

Table 23. Comparison of R-Forest and LSB-Forest for real data set WT_128D. 

Method k Distance Ratio % of 

exact 

match 

% of 

cases 

where R-

Forest 

out 

performs 

LSB-

Forest 

Lower 

bound 

ratio 
Min Mean Standard 

Deviation 

Maximum 

LSB-

Forest 

 

N/A 

 

1 1.467389  0.329996 3.384279 2.6 

 

N/A 

 

N/A 

R-

Forest 

 

1 

 

1 1.219113  0.183563 3.634738 10.7 

 

77.3  

∞ 

R-

Forest 

 

2 

 

1 1.191621 0.176986 3.634738 13.9 

 

80.4 

1.009 – 

1.999 

R-

Forest 

 

3 

 

1 

 

1.19140 

 

0.17599 

 

3.634738 

 

13.8 

 

81.1 

1.073 – 

2.998  

R-

Forest 

 

    4 

 

1 

 

1.209311 

 

0.187608 

 

3.684613 

 

12.3 

 

80.0 

1.080 – 

3.999 
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Figure 87. Distance Ratio distribution for R-Forest and LSB-Forest using real data set 

WT_128D, and K = 4. 

 

For WT_128D we can see from table 23, that the average distance ratio was better 

in all cases (K = 1 to K = 4) although the max distance ratio was higher. After checking 

the test data in more detail it was found that only 1 point (test point 255) had a distance 

ratio greater than 3.6 (for all test K = 1 to K = 4), with 2 points above 2.0 and remaining 

997 points were below 2.0.  Were as LSB-Forest had over 50 points with distance ratio 

above 2.0, I only point this out because R-Forest maximum distance ratio was larger but 

for only 1 case.  Looking at table 23 and figure 87 we can see that 77% to 81% of the 

time R-Forest returned an ANN point closer to the test point’s NN as compared to the 

results returned by LSB-Forest. 
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7.3.5.5 Real CM55_225D Data Set 

 

Next I will present my experimental results for 225 dimensional CM55_225D real 

data set [76].  In table 24, the parameters used by both methods, as well as the total size 

in MB of indices built are listed, note the use of 12K page, versus 4K pages used in other 

test. I should also point out that of all experiments in this paper this set had the largest 

number of dimensions. 

 

Table 24. Summary of Parameters (for 225 dimensional CM55_225D real data) 

 Page size 

(KB) 

# of pages 

accessed 

Number of 

indices 

Number of 

points 

Total size of 

index (in MB) 

R-Forest 12K  90 81 268,648 655MB 

LSB-Forest 12K  90 20 268,648 8,730MB 

 

In table 25 I have listed the results for R-Forest and LSB-Forest with increasing 

values for K-Factor followed by figure 88, which shows a histogram for the test points 

distributions by increasing distance ratios. 
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Table 25. Comparison of R-Forest and LSB-Forest for real data set CM55_225D. 

Method K Distance Ratio % of 

exact 

match 

% of 

cases 

where R-

Forest 

out 

performs 

LSB-

Forest 

Lower 

bound 

ratio   
Min Mean Standard 

Deviation 

Maximum 

LSB-

Forest 

 

N/A 

 

1 1.396671  0.223590 2.97950 0.5 

 

N/A 

 

N/A 

R-

Forest 

 

1 

 

1 1.181420  0.115906 2.224905 2.1 

 

88.4  

∞ 

R-

Forest 

 

2 

 

1 1.174161 0.111315 2.268678 2.9 

 

88.5 

1.005 – 

1.995 

R-

Forest 

 

3 

 

1 

 

1.183311 

 

0.156851 

 

1.918851 

 

2.9 

 

87.0 

1.415 – 

2.999 

R-

Forest 

 

    4 

 

1 

 

1.205510 

 

0.118839 

 

2.415298 

 

2.2 

 

84.2 

1.643 – 

3.999 

 

 

 

Figure 88. Distance Ratio distribution for R-Forest and LSB-Forest using real data 

CM55_225D set, and K = 4. 
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Finally of all of the NUSWIDE real data sets CM55_225D performed the best, 

from figure 88 and table 25 we can see that around 900 points had a distance ratio less 

1.4 and that 84% to 88% of the ANN returned were closer to the correct NN than the 

results returned by LSB-Forest. The average and maximum distance ratio for R-Forest 

were better than that of LSB-Forest. 

 

7.3.5.6 Conclusion on NUSWIDE Sets 

 

 In conclusion these five real data sets derived from 269,648 images performed 

reasonably well when compared to LSB-Forest.  Looking at the data I see that 50% to 

88% of the experiments R-Forest returned an ANN point that was closer to the exact NN 

then results returned by LSB-Forest.  Both methods had trouble with duplicate points and 

points who’s exact NN distance was very small, in some cases causing the distance ratio 

to be skewed (mostly this happened in CH_64D data set).  One item that should be 

pointed out was the storage cost, in all cases LSB-Forest required 13 to 18 times as much 

storage as R-Forest for the same number of points and dimension.  In fact the total 

storage of all five R-Forests for all NUSWIDE sets was 2.29 GB which was less than the 

LSB-Forest storage requirements for the set with the fewest number of dimensions 

CH_64D which required 2.9GB. 

 

7.3.6 Real KDDCUP04BIO_74D Data Set 

 

Next I will present my experiment results for 74 dimensional 

KDDCUP04BIO_74D real data set [55].  In table 26, the parameters used by both 

methods, as well as the total size in MB of indices built are listed.  This set was used for 
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Knowledge Discovery and Data Cup competition in 2004, it is comprised of 145,751 

points which contain data about protein homology.  Like the other experiments the first 

144,751 points were used as data points and the last 1,000 for test points.  This set was 

also normalized to a range of 0 to 1.0 so that comparisons could be run with LSB-Forest. 

 

Table 26. Summary of Parameters (for 74 dimensional KDDCUP04BIO_74D real data) 

 Page size 

(KB) 

# of pages 

accessed 

Number of 

indices 

Number of 

points 

Total size of 

index (in MB) 

R-Forest 4K 90 81 144,751 118MB 

LSB-Forest 4K  90 20 144,751 1,750MB 

 

 

In table 27 I have listed the results for R-Forest and LSB-Forest with increasing 

values for K-Factor followed by figure 89, which shows a histogram for the test points 

distributions by increasing distance ratios. 
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Table 27. Comparison of R-Forest and LSB-Forest for real data set 

KDDCUP04BIO_74D. 

Method K Distance Ratio % of 

exact 

match 

% of 

cases 

where R-

Forest 

out 

performs 

LSB-

Forest 

Lower 

bound 

ratio   
Min Mean Standard 

Deviation 

Maximum 

LSB-

Forest 

 

N/A 

 

1 1.46818  0.28308 3.050342 1.0 

 

N/A 

 

N/A 

R-

Forest 

 

1 

 

1 1.23911       0.156667 2.151665 5.2 

 

81.2  

∞ 

R-

Forest 

 

2 

 

1 1.212235  0.141057 2.052110 7.1 

 

84.1 

 1.096 – 

1.999 

R-

Forest 

 

3 

 

1 

 

1.216396  

 

0.144005 

 

1.998548 

 

7.7 

 

84.4 

1.241 – 

2.999 

R-

Forest 

 

    4 

 

1 

 

1.241632 

 

0.152028 

 

2.064364 

 

7.0 

 

80.2 

 1.241 – 

3.998 

 

 

 

Figure 89. Distance Ratio distribution for R-Forest and LSB-Forest using real data set 

KDDCUP04BIO_74D, and K = 4. 
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 For this data set again from tables 27 and figure 89 one case see that for R-Forest 

the average distance ratio and maximum distance ratio were better than results returned 

by LSB-Forest. In fact a more detailed review of the data reviled that R-Forest had 2 

points with a distance ratio greater than 2.0 were as LSB-Forest over 40 points above 2.0.  

Again the majority of the ANN points returned by R-Forest 81% to 84% were closer to 

the test points exact NN then the results returned by LSB-Forest. 

 

7.4 Scaling 

 

 In this section I will present numerous experimental results to show how well R-

Forest scales in relation to increasing dimensionality and points.  These results will be 

compared to LSB-Forest using the same data sets and test points. 

 

7.4.1 Dimensional Scaling Results 

 

An additional question needed to be answered: does my approach to ANN scale 

with an increase in the number of dimensions. To test this, I need to look at how the 

distance ratio changes as the number of dimensions increase.  I generated four additional 

uniform, clustered and Gaussian data sets with increasing dimensionality (32, 48, 64, 80 

and 96 dimensions), each having 100,000 points (again I used the last 1,000 as test points 

and the first 99,000 as my data sets).  Using the same procedures and parameters as in my 

previous test, I generated results for each of the data sets, and then plotted the average 

distance ratio for each data set as I am only interested in how the distance ratio changes 

as the number of dimensions increase.  The results can be seen in Figure 90 to 92.  What I 

am looking for is the effect on the average distance ratio as the number of dimensions 
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increases.  As a comparison I ran the same test using LSB-Forest to see how my average 

distance ratio scaled with LSB-Forest distance ratio as the number of dimensions 

increased. 

 

  

Figure 90. Average distance ratio for uniform data versus increasing number of 

dimensions. 
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Figure 91. Average distance ratio for clustered data versus increasing number of 

dimensions. 

 

  

Figure 92. Average distance ratio for Gaussian data versus increasing number of 

dimensions. 
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In Figure 90 to 92 above, one can see a change in the average distance ratio for R-

Forest for all three data distributions does not change significant, which indicates that my 

method scales with an increase in the number of dimensions over different data 

distributions. Overall I can say from this test that this method remains consistent and does 

not appear to degrade as the dimensionality increases.  From these experiments one can 

see the LSB-Forest also performs relatively well as the number of dimension increases. 

 

7.4.2 Point Scaling Results 

 

The next I will present how well my method scales as the number of points 

increase.  To show this, five data sets for each of the three data distributions were created.  

These sets were of increasing size starting at 500,000 points through 2,500,000 points in 

increments of 500,000 points.  For each set, I ran R-Forest and LSB-Forest using the 

same parameters used in previous experiments, and again used 1,000 test points of the 

same distribution. I am looking for is any significant change in the minimum, average 

and maximum distance ratios for the test points as the number of data points increases.  

Does the distance ratio increase rapidly as the number of data points increase which 

would indicate that my method degrades or not as the number of points increases?  

Finally, as a comparison I wanted to look at how well Single R-Tree performs against R-

Forest, by comparing how well R-Forest performs with the minimal amount of work and 

access restriction as a percentage of the number of pages.  Details on these will be given 

in the experimental set up section. 
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7.4.2.1 Point Scale Experiment Set up 

 

 For point scale test I ran the four different tests on R-Forest, and one set of tests 

on LSB-Forest all using the same construction parameter, data sets and test points.  For 

R-Forest the four different tests are defined below, each is meant to test a different 

condition over an increasing number of points. 

 Single R-Tree – This is defined as exactly one R-Tree with no additional pruning, 

MBR-Center points, or disjoint sets.  It is basically an unmodified R-Tree, with 

one exception, code was added to restrict access, much as I do with R-Forest (R = 

90 pages) 

  Single Depth – This is defined as the minimal amount of work possible, it 

consists of picking the first R-Tree based on whether Q (our test point) is in the 

subset of split dimension and boundaries then traversing this index to a leaf node, 

search the points, return the best ANN in the leaf, then terminating the search.  

The total cost in pages accessed will be the height of the R-Tree index searched 

(typically 4-7 pages in these experiments). 

 R = 90 - Restrict access to 90 pages as was done in previous experiments.  It 

should be noted that page access will be fixed at 90 pages across all experiments 

even as the number of points increases. 

 Access as a Percentage of R-Forest (Access = 1.79%) – This is a variation on R 

limited to 90 pages.  Rather than limiting access to a fixed number as the number 

of points increases, increase the access as a percentage of the number of pages in 

each R-forest.  The percentage amount chosen was derived from previous 
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experiments whereby, 90 pages was equal to 1.79% access when R-Forest has 

99,000 points which requires around 5,000 pages. 

 

For LSB-Forest (labeled as LSB-Forest (20) in the following figures), I will be 

using the same parameters as other experiments, a forest of 20 trees for each set of test 

data and 4K page size. 

 

7.4.2.2 Point Scale Results 

 

 In the next three sections broken down by data distribution, I will provide a tables 

showing fixed, maximum and average number of pages accessed, the amount of storage 

required for each Forest (R-Forest and LSB-Forest), the minimum, average and 

maximum distance ratio, and the number of correct NN returned.   This table will be 

followed by a figure plotting the average distance ratio for five sets of experiments (four 

for R-Forest and one for LSB-Forest).   

 

7.4.2.2.1 Uniform Results 

 

 Starting with uniform data distribution, table 28 compares the storage 

requirements in megabytes (MB) for the raw input data files, a single R-Tree index 

(without any MBR-Center point storage), R-Forest comprised of 81 R-Tree indices with 

MBR-Center points, and LSB-Forest with 20 indices. 
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Table 28. Storage requirements for Uniform data 

No. Data 

Points 

Original 

file Size 

(MB) 

Single R-

Tree (MB) 

R-Forest 81 

R-Tree 

Indices (MB)  

LSB-Forest 

with 20 trees 

(MB) 

500,000 138.28 91.30 97.50 3,164.16 

1,000,000 276.56 177.34 194.00 6,338.56 

1,500,000 414.85 273.43 291.00 9,553.92 

2,000,000 553.13 365.95 389.00 13,414.40 

2,500,000 691.41 455.00 487.00 16,793.60 

 

 

 From table 28 one can see that single R-Tree and R-Forest require less storage 

then the original uniform input data file.  This seems counter intuitive as both data 

structures are comprised of leaf nodes (4K pages) storing points and internal nodes (4K 

pages) storing MBR, none of which are 100% full.  The reason for the difference has to 

do with the storage of each attribute for each point in the input data file.  The attributes 

are real point, carried to at least 7 decimal places and 1 digit to the left of the decimal, 

with each digit and even the decimal requiring 1 byte also, finally all attributes are 

delimited by a single space.  Therefore, in the raw data file a single attribute can require 

up to 10 bytes, where as in single R-Tree and R-Forest the attributes are floating point 

binary, requiring exactly 4 bytes with no delimiters.  Both Single R-Tree and R-Forest 

require less storage because of the use of binary floating point versus text, with remaining 

storage used by the internal nodes which defines the tree structure. In the tables one can 

see R-Forest is typically 7-10% larger then Single R-Tree, there are two reasons, mostly 

the additional storage of MBR-Center points in the internal nodes, which reduces the fan 

out of the tree and the extra trees in the forest (requiring additional root pages). 

 Finally from table 28 LSB-Forest requires significantly more storage then both 

Single R-Tree and R-Forest, this is because of duplication of points in each of the 20 
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indices.  One can surmise that the current LSB-Forest implementation will require at least 

20 times the storage of either single R-Tree or R-Forest, but according to table 28 LSB-

Forest actually consumes over 30 times the storage required by R-Forest. 

 The following five tables 29 to 33 give details on, Single R-Tree, R-Forest Single 

Depth traversal, R-Forest with restricted access R = 90, access limited to 1.79% and 

LSB-Forest for uniform data.  From these tables I am mainly interested in the effect on 

average distance ratio and maximum distance ratio as the number of data points 

increases. 

 

Table 29. Single R-Tree Uniform data (restricted access to 90 pages) 

No. Data 

Points 

Average 

Page 

Count 

Max 

Page 

Count 

Min. 

Dist. 

Ratio 

Average 

Dist. Ratio 

Max. Dist. 

Ratio 

Correct 

NN 

found 

Low 

Bound 

Ratio 

500,000 90 90  1  1.2357921 1.5722369 11 N/A 

1,000,000 90 90 1  1.2749728 1.6467464 3 N/A 

1,500,000 90 90 1  1.2796416 1.8361105 1 N/A 

2,000,000 90 90 1  1.2987328 1.6874301 4 N/A 

2,500,000 90 90  1  1.3080638 1.6823499 2 N/A 

 

 

Table 30. Single Depth traversal of R-Forest Uniform data 

No. Data 

Points 

Average 

Page 

Count 

Max 

Page 

Count 

Min. Dist. 

Ratio 

Average 

Dist. Ratio 

Max. Dist. 

Ratio 

Correct 

NN 

found 

Low 

Bound 

Ratio 

500,000 4 4 1 1.4047821 1.9991306 2 N/A 

1,000,000 5 5 1 1.4472568 1.9645486 3 N/A 

1,500,000 5 5 1 1.4682898 2.1272115 1 N/A 

2,000,000 5 5 1.089074 1.4651433 2.0519709 0 N/A 

2,500,000 5 5 1.081338 1.5045992 2.2149800 0 N/A 
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Table 31. R = 90 applied to R-Forest Uniform data 

No. Data 

Points 

Average 

Page 

Count 

Max 

Page 

Count 

Min. 

Dist. 

Ratio 

Average 

Dist. Ratio 

Max. Dist. 

Ratio 

Correct 

NN 

found 

Low 

Bound 

Ratio 

500,000 90  90  1  1.1449490  1.7055257  59  2.3399 -

3.9984 

1,000,000 90 90 1  1.1792920  1.5132410  28  2.4616 – 

3.9944 

1,500,000 90 90  1  1.2030123  1.5642070  27  2.472 – 

3.9998 

2,000,000 90 90  1  1.2116060  1.5294560  17  2.2693 – 

3.9943 

2,500,000 90 90  1  1.2249650  1.6962460  22  2.3281 – 

3.9864 

 

Table 32. Access 1.79% applied to R-Forest Uniform data 

No. Data 

Points 

Average 

Page 

Count 

Max 

Page 

Count 

Min. 

Dist. 

Ratio 

Average 

Dist. Ratio 

Max. Dist. 

Ratio 

Correct 

NN 

found 

Low 

Bound 

Ratio 

500,000 485  485  1  1.0752559  1.4326893  216  2.7778 – 

4.0000 

1,000,000 981 983 1  1.0657700  1.3459810  237  2.9581 – 

3.9999 

1,500,000 1,475 1,477  1  1.0695048  1.3982370  239  2.8605 – 

3.9999 

2,000,000 1,968 1,971  1  1.0639729  1.3240748  253  3.0169 – 

3.9999 

2,500,000 2,463 2,468  1  1.0615019  1.5754540  281  2.3589 – 

3.9999 

 

Table 33. LSB-Forest with 20 trees Uniform data 

No. Data 

Points 

Average 

Page 

Count 

Max 

Page 

Count 

Min. 

Dist. 

Ratio 

Average 

Dist. 

Ratio 

Max. 

Dist. 

Ratio 

Correct 

NN 

found 

Low 

Bound 

Ratio 

500,000 82  90  1.000003  1.3270760  2.1124630  0  N/A 

1,000,000 102 108 1  1.3585970  1.8127100  5  N/A 

1,500,000 102 108  1  1.3767020  1.8649410   3 N/A 

2,000,000 102 107   1 1.4044370  2.0268500  2  N/A 

2,500,000 102 107  1  1.4052360  2.1282670  3  N/A 
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 In figure 94 I have plotted distance ratio on the y-axis against the uniform data 

sets for all five tests as listed in tables 29 through 33. 

 

 

Figure 94,  Results of all five experiments for uniform data with increasing number of 

points 

 

 In Figure 94 point scaling test for uniform data observe that both R-Forest (labed 

as R = 90) and LSB-Forest (labed as LSB-Forest (20) performed very well as the number 

of points increased.  There was a change in the average distance ratio as the number of 

points increased but this slight increase appears to grow propotional to the increase in 

points.  Also included in this test was an experiment with Single Depth R-Forest and 

Single R-Tree with restricted access at 90 pages, in the case of Single Depth R-Forest one 

would expect it to do the worst as it is allowed to acces only a single leaf node. What is a 

little suprising is that Single R-Tree with restricted access at 90 pages acually does better 

the LSB-Forest.  Finally in the case of R-Forest with access limited to 1.79% of the 
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forest, we see the best results, but this would be expected because R-Forest was allowed 

to do more searching.  There is one interesting observation concerning access limieted to 

1.79% that needs to be pointed out, looking back at table 20 column “Average Page 

Count” which as the name suggest is the average page count of all the tests, we see that 

the average is less then the maximum allowed.  This means that from some of the test 

eithor K-Factor pruning or Mindist (Q, MBR) < CB actually terminate the search before 

the access restriction was reached. 

  

7.4.2.2.2 Clustered Results 

 

 With clustered data distribution table 34 compares, the storage requirements in 

megabytes (MB) for the raw input data files, to a single R-Tree index (without any MBR-

Center point storage), R-Forest with 81 indices with MBR-Center points, and LSB-Forest 

with 20 indices. 

 

Table 34. Storage requirements for Clustered data 

No. Data 

Points 

Original file 

Size (MB) 

Single R-

Tree (MB) 

R-Forest 81 R-

Tree Indices 

(MB)  

LSB-Forest 

with 20 trees 

(MB) 

500,000 138.00    91.40  97.70    3,164.16 

1,000,000 277.00  182.00  194.00 6,338.56 

1,500,000 414.00 274.00 294.00 9,553.92 

2,000,000 553.00 365.00 388.00 13,414.40 

2,500,000 690.00 457.00 485.00 16,793.60 

 

 From table 34 one can see that single R-Tree and R-Forest require less storage 

then the original cluster input data file.  Just as I saw in the uniform scale test in the 

previous section the storage requirements are about the same. 
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 The following five tables 35 to 39 give details on Single R-Tree with restricted 

access, R-Forest Single Depth traversal, R-Forest with restricted access R = 90, access up 

to 1.79% and LSB-Forest all using clustered data 

 

Table 35. Single R-Tree Clustered data (restricted access to 90 pages) 

No. Data 

Points 

Average 

Page 

Count 

Max 

Page 

Count 

Min. 

Dist. 

Ratio 

Average Dist. 

Ratio 

Max. Dist. 

Ratio 

Correct 

NN 

found 

Low 

Bound 

Ratio 

500,000 90 90 1  1.1092306 1.5521631 93 N/A 

1,000,000 90  90  1  1.1436697 1.6029472 48 N/A 

1,500,000 90  90 1  1.1574753 1.5694672 40 N/A 

2,000,000 90  90  1  1.1662114 1.6084118 25 N/A 

2,500,000 90  90  1  1.1688950 1.5523123 26 N/A 

 

 

Table 36. Single Depth traversal of R-Forest Clustered data 

No. Data 

Points 

Average 

Page 

Count 

Max 

Page 

Count 

Min. Dist. 

Ratio 

Average 

Dist. Ratio 

Max. Dist. 

Ratio 

Correct 

NN 

found 

Low 

Bound 

Ratio 

500,000 5  5  1  1.3285248  1.9750211  3  N/A 

1,000,000 5 5 1  1.3570832  1.8579776  5  N/A 

1,500,000 5  5  1  1.3982780  1.8855572  2  N/A 

2,000,000 5  5  1.043976  1.4116585  1.9274184  0  N/A 

2,500,000 5  5  1.011823  1.4122558  1.8363388  0  N/A 

 

Table 37. R = 90 applied to R-Forest Clustered data 

No. Data 

Points 

Average 

Page 

Count 

Max 

Page 

Count 

Min. 

Dist. 

Ratio 

Average 

Dist. Ratio 

Max. Dist. 

Ratio 

Correct 

NN 

found 

Low 

Bound 

Ratio 

500,000 90  90 1  1.0965226  1.5063106  151  2.4889 – 

3.9998 

1,000,000 90 90 1  1.1283862  1.4486867  86  2.6025 – 

3.9994 

1,500,000 90 90 1  1.1553972  1.5983523  62  2.4720 – 

3.9998 

2,000,000 90 90 1  1.1636150  1.5709365  29  2.439 – 

4.0000 

2,500,000 90 90 1  1.1787359  1.5098280  25  2.4533 – 

3.9991 
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Table 38. Access 1.79% applied to R-Forest Clustered data 

No. Data 

Points 

Average 

Page 

Count 

Max 

Page 

Count 

Min. 

Dist. 

Ratio 

Average 

Dist. Ratio 

Max. Dist. 

Ratio 

Correct 

NN 

found 

Low 

Bound 

Ratio 

500,000 497  501  1  1.0189910  1.4266880  649  2.7955 – 

4.0000 

1,000,000 970 1,003 1  1.0167810  1.2681640  665  3.1505 – 

4.0000 

1,500,000 1,438 1,509  1  1.0218775  1.3485930  628  2.9617 – 

4.0000 

2,000,000 1,900 2,002  1  1.0176131  1.4096250  662  2.8369 – 

4.0000 

2,500,000 2,445 2,515  1  1.0193330  1.3051853  663  3.0403 – 

4.0000 

 

Table 39. LSB-Forest with 20 trees Clustered data 

No. Data 

Points 

Average 

Page 

Count 

Max 

Page 

Count 

Min. 

Dist. 

Ratio 

Average 

Dist. Ratio 

Max. Dist. 

Ratio 

Correct 

NN 

found 

Low 

Bound 

Ratio 

500,000 82  87  1  1.3686350  1.8822250  5  N/A 

1,000,000 102 106 1  1.4093490  2.0534170  1  N/A 

1,500,000 102 107  1  1.4202570  1.9923040  3  N/A 

2,000,000 102 107  1  1.4275810  2.0136310  5  N/A 

2,500,000 102 106  1  1.4410270  2.0657070  1  N/A 

 

 In figure 94 I have plotted distance ratio on the y-axis against the clustered data 

sets for all five tests as listed in tables 35 through 39. 
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Figure 95.  Results of all five experiments for clustered data with increasing number of 

points 

 

 In figure 95 above there is one interesting annomally that requires further 

explanations that is results for Single R-Tree and R-Forest with 90 page restricted access.  

Here both performed about the same.  Which seems to indicate that R-Forest is not much 

of an improvement.  One explanation for this has to do with the clustered data, it turns 

out that for this data set the points are not equally distributed across the R-Tree indices in 

the forest, in fact several trees end up with 6-9% of the points, this is due to the clustered 

data.  Most likely both Single R-Tree and R-Forest are finding the clusters, thereby the 

points are being organized into simulare R-Tree. In turn these are always selected first 

during a query and access restriction cuts the search to about the same as single R-Tree, 

hence simular results.  What is interesting about these scaling tests for clusterd data are 

the LSB-Forest and Single Depth R-Forest results, unlike the same tests for uniformed 

data, LSB-Forest actually did worst then Single Depth R-Forest, a review of tables 36 and 
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39 show that even the “Max. Dist Ratio” for Single Depth R-Forest was better than LSB-

Forest. 

 

7.4.2.2.3 Gaussian Results 

 

 With Gaussian data distribution table 40 compares the storage requirements in 

megabytes (MB) for the raw input data files, to a single R-Tree index (without any MBR-

Center point storage), R-Forest with 81 indices with MBR-Center points, and LSB-Forest 

with 20 indices. 

 

Table 40. Storage requirements for Gaussian data 

No. Data 

Points 

Original file 

Size (MB) 

Single R-

Tree (MB) 

R-Forest 81 R-

Tree Indices 

(MB)  

LSB-Forest 

with 20 trees 

(MB) 

500,000  140.00   88.00  93.90    3,164.16 

1,000,000  281.00 176.00  186.00 6,338.56 

1,500,000 422.00 264.00 280.00 9,553.92 

2,000,000 562.00 352.00 372.00 13,414.40 

2,500,000 703.00 440.00 464.00 16,793.60 

 

 From table 40 one can see that single R-Tree and R-Forest require less storage 

then the original Gaussian input data file.  Just as we saw in the uniform scale test in the 

previous section the storage requirements are about the same. 

 The following five tables 41 though 45 give details on Single R-Tree with 

restricted access, R-Forest Single Depth traversal, R-Forest with restricted access R = 90, 

Access up to 1.79% and LSB-Forest for Gaussian data.  From these tables I am mainly 

interested in the effect on average distance ratio and maximum distance ratio as the 

number of data points increases. 
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Table 41. Single R-Tree Gaussian data (restricted access to 90 pages) 

No. Data 

Points 

Average 

Page 

Count 

Max 

Page 

Count 

Min. 

Dist. 

Ratio 

Average 

Dist. Ratio 

Max. Dist. 

Ratio 

Correct 

NN 

found 

Low 

Bound 

Ratio 

500,000 90 90  1  1.2128924 1.6002194 8 N/A 

1,000,000 90 90  1  1.2483582 1.7312400 6 N/A 

1,500,000 90 90  1  1.2658091 1.5902518 3 N/A 

2,000,000 90 90  1  1.2787363 1.6211771 1 N/A 

2,500,000 90 90  1  1.2863919 1.5891909 2 N/A 

 

Table 42. Single Depth traversal of R-Forest Gaussian data 

No. Data 

Points 

Average 

Page 

Count 

Max 

Page 

Count 

Min. Dist. 

Ratio 

Average 

Dist. Ratio 

Max. Dist. 

Ratio 

Correct 

NN 

found 

Low 

Bound 

Ratio 

500,000 4  4  1  1.3865899  1.7886287  2  N/A 

1,000,000 4 4  1.004998  1.4302894  1.9532247  0  N/A 

1,500,000 5  5  1  1.4401352  2.1044584  1  N/A 

2,000,000 5  5  1.051041  1.4638637  1.9889443  0  N/A 

2,500,000 5  5  1  1.4681421  1.9538078  1  N/A 

 

Table 43. R = 90 applied to R-Forest Gaussian data 

No. Data 

Points 

Average 

Page 

Count 

Max 

Page 

Count 

Min. 

Dist. 

Ratio 

Average 

Dist. Ratio 

Max. Dist. 

Ratio 

Correct 

NN 

found 

Low 

Bound 

Ratio 

500,000 90  90  1  1.1371187  1.4757850  54  2.6921 – 

3.9982 

1,000,000 90 90 1  1.1654481  1.7502172   31 2.1401 – 

3.9978 

1,500,000 90 90  1  1.1832530  1.5361650  28  2.1470 – 

3.9996 

2,000,000 90 90  1  1.1998810  1.5577043  12  2.3430 – 

3.9888 

2,500,000 90 90  1  1.2074802  1.5579109  13  1.9551 – 

3.9958 
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Table 44. Access 1.79% applied to R-Forest Gaussian data 

No. Data 

Points 

Average 

Page 

Count 

Max 

Page 

Count 

Min. 

Dist. 

Ratio 

Average 

Dist. Ratio 

Max. Dist. 

Ratio 

Correct 

NN 

found 

Low 

Bound 

Ratio 

500,000 473  478  1  1.0721158  1.3767850  191  2.7728 – 

3.9999 

1,000,000 945 972 1  1.0694699  1.5583096  194  2.5511 – 

3.9999 

1,500,000 1,420 1,463  1  1.0636808  1.3288630  218  3.0089 – 

3.9999 

2,000,000 1,897 1,952  1  1.0672356  1.3288760  218  2.9999 – 

3.9999 

2,500,000 2,371 2,443  1  1.0670222  1.3065228  195  3.0585 – 

4.0000 

 

Table 45. LSB-Forest with 20 trees Gaussian data 

No. Data 

Points 

Average 

Page 

Count 

Max 

Page 

Count 

Min. 

Dist. 

Ratio 

Average 

Dist. Ratio 

Max. Dist. 

Ratio 

Correct 

NN 

found 

Low 

Bound 

Ratio 

500,000 82  87  1  1.4327680  2.0359090  1  N/A 

1,000,000 102 106 1.00001  1.4630430  2.0486570  0  N/A 

1,500,000 102 106  1  1.4784300  2.2600310  1  N/A 

2,000,000 102 107  1  1.4044370  2.0268500  2  N/A 

2,500,000 102 107  1  1.4650130  2.0429830  2  N/A 

 

 

 In figure 96 I have plotted distance ratio on the y-axis against the Gaussian data 

points sets for five different tests as listed in tables 41 through 45. 
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Figure 96. Results of all five experiments for Gaussian data with increasing number of 

points 

 

For Gausian we observer simular results as seen in the clusterd results, Single 

Depth R-Forest performs better in 3 out of 5 data sets, with the exceptions being 

2,000,000 and 2,500,000 points sets where it did worst.  As for Single R-Tree and R-

Forest, I did consistantly better then LSB-Forest.   

 

7.4.2.2.4 Discussion of Scale Results 

 

There are several conclusions I can draw from the point scale results, for Single 

R-Tree, R-Forest and LSB-Forest.   

 All scale well and do not degrade in terms of distance ratio as the number of 

points increases and with different data distributions.  

 LSB-Forest performs worst in clustered and Gaussian point scale tests, and in 

most cases worst then Single Depth R-Forest (which is the minimum amount of 
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work possible). Only in the case of uniform data did Single Depth perform worst 

then LSB-Forest. 

 Consider the point scale experiments R-Forest with access restriction R = 90 and 

1.79% access restriction (tables 31, 32, 37, 38, 43, 44), all perform within the 

distance ratio as described by LSB-Forest paper [111].  Of course I cannot claim a 

guarantee on the bound, but looking at the tables of 30,000 tests all were within 

the bounds offered by paper.  

 Comparing R-Forest to LSB-Forest we can see that for the same amount of work 

in terms of page access, even as the number of points increase, R-Forest continues 

to outperform LSB-Forest. 

 In almost all cases of R-Forest Access restricted to 1.79% the average page count 

is less than the maximum page count, This means there were several cases where 

K-Factor or Mindist (Q, MBR) < CB terminated the search by pruning the 

remaining R-Trees in the forest.  

 

7.5 Unrestricted Access 

 

 On last set of experiments I will present involves removal of any restriction on the 

amount of IO, allowing R-Forest to run with only K-Factor and Mindist pruning.  This set 

of experiments was run to show the affect use of K-Factor and disjoint forest on large 

data set with increasing number of points.  Using the large uniform, clustered and 

Gaussian sets (500,000 to 2,500,000 points), I ran all 15 tests with unrestricted access, 

pages size 4KB and K-Factor equal 4.0.  These results can be seen in tables 46 to 48 and 

figures 97 to 99, it should be noted no comparison to LSB-Forest is given as search 
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termination is not controllable feature, without modifying their source code.  In tables 46 

to 48 I listed the maximum and average distance ratio, number of correct NN returned, 

average number of pages accessed, maximum number of pages accessed, finally average, 

median and maximum percentage of the forest accessed.  In figures 97 to 99 I plotted the 

maximum, average and median percentage of the forest accessed. 

 

Table 46. Results for uniform data unlimited access with increasing number of points 

Uniformed 500K 1,000K 1,500K 2,000K 2,500K 

Max. Dist. Ratio 1.278936 1.200821 1.24518 1.19897 1.2686 

Average Dist. Ratio 1.015265 1.014384 1.018435 1.014587 1.015364 

Min. Dist. Ratio 1.0 1.0 1.0 1.0 1.0 

No. Correct 651 652 650 679 671 

Aver. Page Access 2,165 3,923 5,668 7,039 8,396 

Max Page access 5,948 9,824 14,964 17,377 20,793 

Max. % Accessed 23.9% 19.7% 20.1% 17.5% 16.7% 

Aver. % Accessed 8.7% 7.88% 7.6% 7.07% 6.73% 

Median % Accessed 8.0% 7.85% 7.1% 6.5% 6.1% 

 

 

 

Figure 97.  Plot of maximum, average and median percent of R-Forest pages accessed for 

uniform data 

 



189 

 

 In table 46 the first item to point out are the number of test where R-Forest 

returned the correct NN, here 651 to 679 test points (65%- 67%). Of the remaining points 

the maximum and average distance ratio, were better than any of the previous test run on 

these data.  These results are to be expected as there was no hard termination on the 

number of pages accessed allowing more IO to occur.  Also included in the table are the 

results for maximum, average and median percentage of R-Forest accessed.  It is here that 

we can see the usefulness of disjoint forest and K-Factor.  First the maximum amount of 

the forest accessed was below 24% and actually declined as the number of points 

increased.  Second the average and median was between 8.7% and 6.1% which also 

declined as slightly as the number of points increased (this can be seen in figure 97).  

Most likely the slight decline in percentage of access was caused by the increased in the 

number of points there by increasing the density of the data space.   

 In table 47 and figure 98 I have presented the results for the same test using 

clustered data sets.  Here as in the previous test the results are very good with 88% to 

91% of the test returning a correct NN and the maximum amount of forest accessed 

between 4.2% and 3.9% with the average and median ranging between, 3.1% to 2.58%.   

 

Table 47. Results for clustered data unlimited access with increasing number of points 

Clustered 500K 1,000K 1,500K 2,000K 2,500K 

Max. Dist. Ratio 1.135895 1.98878 1.258626 1.183506 1.229128 

Average Dist. Ratio 1.003653 1.00326 1.005055 1.003856 1.004323 

Min. Dist. Ratio 1.0 1.0 1.0 1.0 1.0 

No. Correct 898 900 887 898 910 

Aver. Page Access 748 1,347 2,026 2,570 3,321 

Max Page access 1,051 2,026 3,007 3,969 4,832 

Max. % Accessed 4.2% 4.1% 4.0% 4.0% 3.9% 

Aver. % Accessed 2.99% 2.71% 2.71% 2.58% 2.67% 

Median % Accessed 3.1% 2.8% 2.9% 2.7% 2.8% 
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Figure 98.  Plot of maximum, average median percent of R-Forest pages accessed for 

clustered data (note scale change to 0 to 10%) 

 

 For the clustered data set again I have a slight decline in all three maximum, 

average and median percentage of access, as the number of points increases, as seen in 

table 47 and figure 98 (note the scale on the y-axis is 0% to 10%). 

 Finally, for my Gaussian data sets I have presented my results in table 48 and 

figure 99.   First we see that for Gaussian data only about 50% of the test points returned 

the exact NN, yet the average distance ratio of the ANN returned was lower than any 

other test run on these data sets.  Again, this is expected as I am allowing the R-Forest to 

run without any termination condition on the number of pages accessed.  With this set of 

tests,  I did have higher level of access up to 44.6% with the maximum holding between 

44.6% to 32.3% and the average between 9.34% and 7.38%.  Because of the higher 

maximum access I decided to include the median percentage of forest accessed to show 

that higher percentages were not as bad as one would think. 
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Table. 48 Results for Gaussian data unlimited access with increasing number of points 

Gaussian 500K 1,000K 1,500K 2,000K 2,500K 

Max. Dist. Ratio 1.374841 1.234803 1.277911 1.320243 1.23646 

Average Dist. Ratio 1.02502 1.024198 1.025251 1.02579 1.02599 

Min. Dist. Ratio 1.0 1.0 1.0 1.0 1.0 

No. Correct 518 536 500 512 507 

Aver. Page Access 2,238 3,987 5,633 7,033 8,811 

Max Page access 10,684 17,466 24,758 40,049 38,465 

Max. % Accessed 44.6% 36.7% 34.6% 42.1% 32.3% 

Aver. % Accessed 9.34% 8.37% 7.86% 7.38% 7.40% 

Median % Accessed 7.85% 7.1% 6.5% 5.8% 6.1% 

 

 

 

Figure 99.  Plot of maximum, average median percent of R-Forest pages accessed for 

Gaussian data 

 

 Looking at the average percentage of access in table 48 and figure 99 one can see 

that my average is well below the maximum for the same data set.  Also the median 

percent of access is 1% to 2% less than the average.  Because of these results I looked at 

the details of each set of test results and found that in every set I had 40 – 50 points that 

exceed 23% of total forest accessed with the maximum at 44.6%.  What these results 
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show is that at first the Gaussian results do not look as good as the other data distribution 

results, but in reality 95% of the test accessed 23% or less of the forest, meaning that I 

only had around 5% that were not good as compared to my previous results. 

 The one main conclusion that can be drawn from these three sets of experiments 

is that the use of disjoint sets and K-Factor was able to limit IO of the Forest, without 

degrading the quality of the results. Granted R-Forest still accessed up to 23% of the 

pages in 95% of all of the tests (5% in Gaussian where the exception), but when 

compared to other pruning methods for single R-Tree  (presented in chapter 5), I got 

much better results in terms of distance ratio.  

 

7.6 Conclusion  

 

In conclusion my use of R-Forest ANN performed very well.  Using a set of 

disjointed R-Trees over a given data set with some additional parameters I was able to 

achieve results better than current methods (LSB-Forest). Testing shows that subspace 

partitioning on a few dimensions helps to elevate some of the problems encountered by a 

single R-Tree index.  Not only that, but my method allowed for the implementation of a 

new pruning parameter (K-Factor) that improved my results, even when access is 

restricted equal to that of other methods (LSB-Forest).  Results presented show that I 

returned better or equal (in terms of distance ratio) ANN with the same amount of work 

(IO) as that of LSB-Forest.  

I have run experiments over different data distributions, increasing 

dimensionality, and number of points.  These experiments show that there is no 

dependence on any domain knowledge, meaning that parameters do not require any 
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adjusting to achieve better results with different data distributions, number of dimensions 

or number of points.  As the number of dimensions increases, I do not see any 

degradation of distance ratio, even as I perform the same amount of IO (work).  Finally, 

as the size of the data sets increase I am able to achieve reasonable results again without 

much lose in the quality of the results returned.  From these results one can see that in 

practice the R-Forest is a better choice than the LSB-Forest, and one can possibly argue 

the “lost” of guarantee bound is really not a significant issue. All of the results presented 

in the chapter support the use of R-Forest as solution for approximate nearest neighbor 

queries in high dimensional space. 

 

8. Future Work  

 

The work presented in my dissertation has led me to believe that there are 

additional avenues for improvement that need to be explored as well as future work in the 

lower bound data that can be returned after a ANN query using R-Forest.   

1. The addition of the MBR-Center point has opened up the possibility of some 

additional pruning heuristics, such as storing the MBR-Center point’s minimum 

and maximum distance to all points in a leaf node and average distance between 

points in the leaf.  It might be possible to use these to define additional pruning 

heuristics or to attempt to predict which node has a better chance of improving the 

current best ANN found. 

2. Revisit the R-Tree insertion algorithms now that I’m using disjoint sets and have 

the MBR-Center point for internal nodes could it be used to determine an 

insertion path for new points.   Rather than using the standard R-Tree algorithm 
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which attempts to minimize MBR growth why not attempt to insert closest to the 

MBR-Center point.  In my implementation the MBR-Center point is an actual 

point, so my thoughts are that insertion closer to the MBR-Center might improve 

the R-Trees in R-Forest in terms of query efficiency.  

3. I have done some work toward using K-Factor as a terminating condition, as it 

might be possible for it to provide a pseudo guarantee on the bounds of the results 

returned.  The work I have done was not fully tested and needs more research. 

4. The feedback that is now possible because of the disjointed sets needs to be 

researched further.  At this time I’m only providing the minimum distance to 

MBR pruned by K-Factor which is an estimate on the lower bound of the space 

not searched.  It is also possible to provide feedback on entire R-Trees that were 

not searched, the question here is how accurate are these and how useful.  This 

area needs further research. 
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