13 research outputs found

    Operational Forecasting of Wind Speed for an Self-Contained Power Assembly of a Traction Substation

    Get PDF
    Currently, the prospects of creating hybrid power assemblies using renewable energy sources, including wind energy, and energy storage systems based on hydrogen energy technologies are being considered. To control such an energy storage system, it is necessary to perform operational renewable sources generation forecasting, particularly forecasting of wind power assemblies. Their production depends on the speed and direction of the wind. The article presents the results of solving the problem of operational forecasting of wind speed for a hybrid power assembly project aimed at increasing the capacity of the railway section between Yaya and Izhmorskaya stations (Kemerovo region of the Russian Federation). Hourly data of wind speeds and directions for 15 years have been analyzed, a neural network model has been built, and a compact architecture of a multilayer perceptron has been proposed for short-term forecasting of wind speed and direction for 1 and 6 hours ahead. The model that has been developed allows minimizing the risks of overfitting and loss of forecasting accuracy due to changes in the operating conditions of the model over time. A specific feature of this work is the stability investigation of the model trained on the data of long-term observations to long-term changes, as well as the analysis of the possibilities of improving the accuracy of forecasting due to regular further training of the model on newly available data. The nature of the influence of the size of the training sample and the self-adaptation of the model on the accuracy of forecasting and the stability of its work on the horizon of several years has been established. It is shown that in order to ensure high accuracy and stability of the neural network model of wind speed forecasting, long-term meteorological observations data are required. Β© Belarusian National Technical University, 2023

    ΠžΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ скорости Π²Π΅Ρ‚Ρ€Π° для Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½ΠΎΠΉ энСргСтичСской установки тяговой ΠΆΠ΅Π»Π΅Π·Π½ΠΎΠ΄ΠΎΡ€ΠΎΠΆΠ½ΠΎΠΉ подстанции

    Get PDF
    Currently, the prospects of creating hybrid power assemblies using renewable energy sources, including wind energy, and energy storage systems based on hydrogen energy technologies are being considered. To control such an energy storage system, it is necessary to perform operational renewable sources generation forecasting, particularly forecasting of wind power assemblies. Their production depends on the speed and direction of the wind. The article presents the results of solving the problem of operational forecasting of wind speed for a hybrid power assembly project aimed at increasing the capacity of the railway section between Yaya and Izhmorskaya stations (Kemerovo region of the Russian Federation). Hourly data of wind speeds and directions for 15 years have been analyzed, a neural network model has been built, and a compact architecture of a multilayer perceptron has been proposed for short-term forecasting of wind speed and direction for 1 and 6 hours ahead. The model that has been developed allows minimizing the risks of overfitting and loss of forecasting accuracy due to changes in the operating conditions of the model over time. A specific feature of this work is the stability investigation of the model trained on the data of long-term observations to long-term changes, as well as the analysis of the possibilities of improving the accuracy of forecasting due to regular further training of the model on newly available data. The nature of the influence of the size of the training sample and the self-adaptation of the model on the accuracy of forecasting and the stability of its work on the horizon of several years has been established. It is shown that in order to ensure high accuracy and stability of the neural network model of wind speed forecasting, long-term meteorological observations data are required.Π’ настоящСС врСмя Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ пСрспСктивы создания Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½Ρ‹Ρ… энСргСтичСских установок с использованиСм возобновляСмых источников энСргии, Π² Ρ‚ΠΎΠΌ числС энСргии Π²Π΅Ρ‚Ρ€Π°, ΠΈ систСм накоплСния энСргии Π½Π° Π±Π°Π·Π΅ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½ΠΎΠΉ энСргСтики. Для управлСния Ρ‚Π°ΠΊΠΎΠΉ систСмой накоплСния энСргии Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ ΠΎΡ‚ возобновляСмых источников, Π² частности Π²Π΅Ρ‚Ρ€ΠΎΠ²Ρ‹Ρ… энСргСтичСских установок. Π˜Ρ… Π²Ρ‹Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° зависит ΠΎΡ‚ скорости ΠΈ направлСния Π²Π΅Ρ‚Ρ€Π°. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ прСдставлСны Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ΠΈ ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ прогнозирования скорости Π²Π΅Ρ‚Ρ€Π° для ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π° Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½ΠΎΠΉ энСргСтичСской установки, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠΉ Π½Π° ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ пропускной способности ΠΆΠ΅Π»Π΅Π·Π½ΠΎΠ΄ΠΎΡ€ΠΎΠΆΠ½ΠΎΠ³ΠΎ участка ΠΌΠ΅ΠΆΠ΄Ρƒ станциями Яя ΠΈ Π˜ΠΆΠΌΠΎΡ€ΡΠΊΠ°Ρ (ΠšΠ΅ΠΌΠ΅Ρ€ΠΎΠ²ΡΠΊΠ°Ρ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Российской Π€Π΅Π΄Π΅Ρ€Π°Ρ†ΠΈΠΈ). ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ почасовыС Π΄Π°Π½Π½Ρ‹Π΅ скоростСй ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΉ Π²Π΅Ρ‚Ρ€Π° Π·Π° 15 Π»Π΅Ρ‚, построСна нСйросСтСвая модСль ΠΈ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° компактная Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Π° многослойного ΠΏΠ΅Ρ€Ρ†Π΅ΠΏΡ‚Ρ€ΠΎΠ½Π° для краткосрочного прогнозирования скорости ΠΈ направлСния Π²Π΅Ρ‚Ρ€Π° Π½Π° 1 ΠΈ 6 Ρ‡ Π²ΠΏΠ΅Ρ€Π΅Π΄. Разработанная модСль позволяСт ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ риски пСрСобучСния ΠΈ ΠΏΠΎΡ‚Π΅Ρ€ΠΈ точности прогнозирования ΠΈΠ·-Π·Π° измСнСния условий Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΠΌΠΎΠ΄Π΅Π»ΠΈ со Π²Ρ€Π΅ΠΌΠ΅Π½Π΅ΠΌ. ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΡŒ Π΄Π°Π½Π½ΠΎΠΉ ΡΡ‚Π°Ρ‚ΡŒΠΈ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² исслСдовании устойчивости ΠΌΠΎΠ΄Π΅Π»ΠΈ, ΠΎΠ±ΡƒΡ‡Π΅Π½Π½ΠΎΠΉ Π½Π° Π΄Π°Π½Π½Ρ‹Ρ… ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅Ρ‚Π½ΠΈΡ… наблюдСний, ΠΊ долгосрочным измСнСниям, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π°Π½Π°Π»ΠΈΠ·Π΅ возмоТностСй ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ точности прогнозирования Π·Π° счСт рСгулярного дообучСния ΠΌΠΎΠ΄Π΅Π»ΠΈ Π½Π° вновь ΠΏΠΎΡΡ‚ΡƒΠΏΠ°ΡŽΡ‰ΠΈΡ… Π΄Π°Π½Π½Ρ‹Ρ…. УстановлСн Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ влияния Ρ€Π°Π·ΠΌΠ΅Ρ€Π° ΠΎΠ±ΡƒΡ‡Π°ΡŽΡ‰Π΅ΠΉ Π²Ρ‹Π±ΠΎΡ€ΠΊΠΈ ΠΈ самоадаптации ΠΌΠΎΠ΄Π΅Π»ΠΈ Π½Π° Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ прогнозирования ΠΈ ΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ Π΅Π΅ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π½Π° Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π΅ Π² нСсколько Π»Π΅Ρ‚. Показано, Ρ‡Ρ‚ΠΎ для обСспСчСния высокой точности ΠΈ устойчивости нСйросСтСвой ΠΌΠΎΠ΄Π΅Π»ΠΈ прогнозирования скорости Π²Π΅Ρ‚Ρ€Π° Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ Π΄Π°Π½Π½Ρ‹Π΅ ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅Ρ‚Π½ΠΈΡ… мСтСорологичСских наблюдСний

    ΠžΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ скорости Π²Π΅Ρ‚Ρ€Π° для Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½ΠΎΠΉ энСргСтичСской установки тяговой ΠΆΠ΅Π»Π΅Π·Π½ΠΎΠ΄ΠΎΡ€ΠΎΠΆΠ½ΠΎΠΉ подстанции

    Get PDF
    Π’ настоящСС врСмя Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ пСрспСктивы создания Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½Ρ‹Ρ… энСргСтичСских установок с использованиСм возобновляСмых источников энСргии, Π² Ρ‚ΠΎΠΌ числС энСргии Π²Π΅Ρ‚Ρ€Π°, ΠΈ систСм накоплСния энСргии Π½Π° Π±Π°Π·Π΅ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½ΠΎΠΉ энСргСтики. Для управлСния Ρ‚Π°ΠΊΠΎΠΉ систСмой накоплСния энСргии Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ ΠΎΡ‚ возобновляСмых источников, Π² частности Π²Π΅Ρ‚Ρ€ΠΎΠ²Ρ‹Ρ… энСргСтичСских установок. Π˜Ρ… Π²Ρ‹Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° зависит ΠΎΡ‚ скорости ΠΈ направлСния Π²Π΅Ρ‚Ρ€Π°. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ прСдставлСны Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ΠΈ ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ прогнозирования скорости Π²Π΅Ρ‚Ρ€Π° для ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π° Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½ΠΎΠΉ энСргСтичСской установки, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠΉ Π½Π° ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ пропускной способности ΠΆΠ΅Π»Π΅Π·Π½ΠΎΠ΄ΠΎΡ€ΠΎΠΆΠ½ΠΎΠ³ΠΎ участка ΠΌΠ΅ΠΆΠ΄Ρƒ станциями Яя ΠΈ Π˜ΠΆΠΌΠΎΡ€ΡΠΊΠ°Ρ (ΠšΠ΅ΠΌΠ΅Ρ€ΠΎΠ²ΡΠΊΠ°Ρ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Российской Π€Π΅Π΄Π΅Ρ€Π°Ρ†ΠΈΠΈ). ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ почасовыС Π΄Π°Π½Π½Ρ‹Π΅ скоростСй ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΉ Π²Π΅Ρ‚Ρ€Π° Π·Π° 15 Π»Π΅Ρ‚, построСна нСйросСтСвая модСль ΠΈ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° компактная Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Π° ΠΌΠ½ΠΎΠ³ΠΎ- слойного ΠΏΠ΅Ρ€Ρ†Π΅ΠΏΡ‚Ρ€ΠΎΠ½Π° для краткосрочного прогнозирования скорости ΠΈ направлСния Π²Π΅Ρ‚Ρ€Π° Π½Π° 1 ΠΈ 6 Ρ‡ Π²ΠΏΠ΅Ρ€Π΅Π΄. Разработанная модСль позволяСт ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ риски пСрСобучСния ΠΈ ΠΏΠΎΡ‚Π΅Ρ€ΠΈ точности прогнозирования ΠΈΠ·-Π·Π° измСнСния условий Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΠΌΠΎΠ΄Π΅Π»ΠΈ со Π²Ρ€Π΅ΠΌΠ΅Π½Π΅ΠΌ. ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΡŒ Π΄Π°Π½Π½ΠΎΠΉ ΡΡ‚Π°Ρ‚ΡŒΠΈ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² исслСдовании устойчивости ΠΌΠΎΠ΄Π΅Π»ΠΈ, ΠΎΠ±ΡƒΡ‡Π΅Π½Π½ΠΎΠΉ Π½Π° Π΄Π°Π½Π½Ρ‹Ρ… ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅Ρ‚Π½ΠΈΡ… наблюдСний, ΠΊ долгосрочным измСнСниям, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π°Π½Π°Π»ΠΈΠ·Π΅ возмоТностСй ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ точности прогнозирования Π·Π° счСт рСгулярного дообучСния ΠΌΠΎΠ΄Π΅Π»ΠΈ Π½Π° вновь ΠΏΠΎΡΡ‚ΡƒΠΏΠ°ΡŽΡ‰ΠΈΡ… Π΄Π°Π½Π½Ρ‹Ρ…. УстановлСн Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ влияния Ρ€Π°Π·ΠΌΠ΅Ρ€Π° ΠΎΠ±ΡƒΡ‡Π°ΡŽΡ‰Π΅ΠΉ Π²Ρ‹Π±ΠΎΡ€ΠΊΠΈ ΠΈ самоадаптации ΠΌΠΎΠ΄Π΅Π»ΠΈ Π½Π° Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ прогнозирования ΠΈ ΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ Π΅Π΅ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π½Π° Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π΅ Π² нСсколько Π»Π΅Ρ‚. Показано, Ρ‡Ρ‚ΠΎ для обСспСчСния высокой точности ΠΈ устойчивости нСйросСтСвой ΠΌΠΎΠ΄Π΅Π»ΠΈ прогнозирования скорости Π²Π΅Ρ‚Ρ€Π° Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ Π΄Π°Π½Π½Ρ‹Π΅ ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅Ρ‚Π½ΠΈΡ… мСтСорологичСских наблюдСний

    Π‘ΡƒΠ΄ΡƒΡ‰Π΅Π΅ радиоуправляСмых стрСлок с Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½Ρ‹ΠΌ ΠΏΠΈΡ‚Π°Π½ΠΈΠ΅ΠΌ

    Get PDF
    A promising control method for railways, that takes into account minimization of the number of outdoor technological facilities, use of wireless data transmission technologies, as well as use of renewable energy sources for decentralized switch systems is considered. It is proposed to implement all other commands through the use of cyber-protected radio channel while renouncing to discrete positioning of mobile units and discrete transmission of data on the speed patterns of train movement. The system of switches with autonomous power and use of a radio channel to manage and control the position of switch blades must be adapted in stages, starting from the local level and basing on availability of portable devices and going to comprehensive centralised control system within the station.ΠžΠΏΠΈΡΡ‹Π²Π°Π΅Ρ‚ΡΡ пСрспСктивный способ управлСния Π½Π° ΠΆΠ΅Π»Π΅Π·Π½ΠΎΠ΄ΠΎΡ€ΠΎΠΆΠ½ΠΎΠΌ транспортС, ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‰ΠΈΠΉ ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡŽ числа Π½Π°ΠΏΠΎΠ»ΡŒΠ½Ρ‹Ρ… тСхнологичСских ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ², использованиС бСспроводных Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ Π΄Π°Π½Π½Ρ‹Ρ…, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ источников возобновляСмой энСргии для Π΄Π΅Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… подсистСм стрСлочных ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄ΠΎΠ². ВсС ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΊΠΎΠΌΠ°Π½Π΄Ρ‹ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Ρ‹Π²Π°Ρ‚ΡŒ ΠΏΡƒΡ‚Ρ‘ΠΌ примСнСния ΠΊΠΈΠ±Π΅Ρ€Π·Π°Ρ‰ΠΈΡ‰Ρ‘Π½Π½ΠΎΠ³ΠΎ Ρ€Π°Π΄ΠΈΠΎΠΊΠ°Π½Π°Π»Π° с ΠΎΡ‚ΠΊΠ°Π·ΠΎΠΌ ΠΎΡ‚ дискрСтного позиционирования ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½Ρ‹Ρ… Π΅Π΄ΠΈΠ½ΠΈΡ† ΠΈ дискрСтной ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ Π΄Π°Π½Π½Ρ‹Ρ… ΠΎ скоростных Ρ€Π΅ΠΆΠΈΠΌΠ°Ρ… двиТСния ΠΏΠΎΠ΅Π·Π΄ΠΎΠ². БистСма стрСлок с Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½Ρ‹ΠΌ ΠΏΠΈΡ‚Π°Π½ΠΈΠ΅ΠΌ ΠΈ использованиСм Ρ€Π°Π΄ΠΈΠΎΠΊΠ°Π½Π°Π»Π° для управлСния ΠΈ контроля полоТСния остряков Π΄ΠΎΠ»ΠΆΠ½Π° Π°Π΄Π°ΠΏΡ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒΡΡ поэтапно, начиная с мСстного уровня ΠΈ наличия носимых устройств ΠΈ заканчивая глобальной Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠ΅ΠΉ Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… станции

    CognitiveCharge: disconnection tolerant adaptive collaborative and predictive vehicular charging

    Get PDF
    Electric vehicles (EVs) are rapidly becoming more common and ownership is set to rise globally in coming years. The potential impacts of increased EVs on the electrical grid have been widely investigated and in its current state, existing grid infrastructure will struggle to meet the high demands at peak charging hours. The limited range of electric cars compounds this issue. We therefore propose CognitiveCharge, a novel approach to predictive and adaptive disconnection aware opportunistic energy discovery and transfer for the smart vehicular charging. CognitiveCharge detects and reacts to individual nodes and network regions which are at risk of getting depleted by using implicit predictive hybrid contact and resources congestion heuristics. CognitiveCharge exploits localised relative utility based approach to adaptively offload the energy from parts of the network with energy surplus to depleting areas with non-uniform depletion rates. We evaluate CognitiveCharge using a multi-day traces for the city of San Francisco, USA and Nottingham, UK to compare against existing infrastructure across a range of metrics. CognitiveCharge successfully eliminates congestion at both ad hoc and infrastructure charging points, reduces the time that a vehicle must wait to charge from the point at which it identifies as being in need of energy, and drastically reduces the total number of nodes in need of energy over the evaluation period

    Optimal Scheduling of FTPSS With PV and HESS Considering the Online Degradation of Battery Capacity

    Get PDF

    Multitime-Scale Optimal Dispatch of Railway FTPSS Based on Model Predictive Control

    Get PDF

    A Highly Reliable Propulsion System with Onboard Uninterruptible Power Supply for Train Application:Topology and Control

    Get PDF
    Providing uninterrupted electricity service aboard the urban trains is of vital importance not only for reliable signaling and accurate traffic management but also for ensuring the safety of passengers and supplying emergency equipment such as lighting and signage systems. Hence, to alleviate power shortages caused by power transmission failures while the uninterruptible power supplies installed in the railway stations are not available, this paper suggests an innovative traction drive topology which is equipped by an onboard hybrid energy storage system for railway vehicles. Besides, to limit currents magnitudes and voltages variations of the feeder during train acceleration and to recuperate braking energy during train deceleration, an energy management strategy is presented. Moreover, a new optimal model predictive method is developed to control the currents of converters and storages as well as the speeds of the two open-end-windings permanent-magnet-synchronous-machines in the intended modular drive, under their constraints. Although to improve control dynamic performance, the control laws are designed as a set of piecewise affine functions from the control signals based on an offline procedure, the controller can still withstand real-time non-measurable disturbances. The effectiveness of proposed multifunctional propulsion topology and the feasibility of the designed controller are demonstrated by simulation and experimental results

    Recuperation of Regenerative Braking Energy in Electric Rail Transit Systems

    Full text link
    Electric rail transit systems are large consumers of energy. In trains with regenerative braking capability, a fraction of the energy used to power a train is regenerated during braking. This regenerated energy, if not properly captured, is typically dumped in the form of heat to avoid overvoltage. Finding a way to recuperate regenerative braking energy can result in substantial economic as well as technical benefits. Regenerative braking energy can be effectively recuperated using wayside energy storage, reversible substations, or hybrid storage/reversible substation systems. In this research study, we compare these recuperation techniques and investigate their application in New York City Transit (NYCT) systems, where most of the regenerative braking energy is currently being wasted. We have developed a detailed transient model to determine the applicability, feasibility, and pros and cons of deploying wayside energy storage, such as batteries, super capacitors or flywheels. This model has been validated using real measurement data on the 7-Line (Flushing), including:1) speed, current, voltage, power and energy train profiles; and 2) 24-hour interval metering data at substations. The validated model has been used to analyze and compare various ESS technologies, including Li-ion Battery, Supercapacitor and Flywheel. In addition, we have developed detailed transient models for reversible substations. A reversible substation, also known as bidirectional or inverting substation, provides a path through an inverter for regenerative braking energy to feedback to the upstream AC grid. This energy can be consumed by AC equipment within passenger stations (e.g., escalators) or fed back to the main grid based on legislations of the electric distribution utility. This study will provide crucial technical as well as financial guidelines for various stakeholders while making investment decisions pertaining to regenerative braking energy
    corecore