1,448 research outputs found

    Resilience of multi-robot systems to physical masquerade attacks

    Full text link
    The advent of autonomous mobile multi-robot systems has driven innovation in both the industrial and defense sectors. The integration of such systems in safety-and security-critical applications has raised concern over their resilience to attack. In this work, we investigate the security problem of a stealthy adversary masquerading as a properly functioning agent. We show that conventional multi-agent pathfinding solutions are vulnerable to these physical masquerade attacks. Furthermore, we provide a constraint-based formulation of multi-agent pathfinding that yields multi-agent plans that are provably resilient to physical masquerade attacks. This formalization leverages inter-agent observations to facilitate introspective monitoring to guarantee resilience.Accepted manuscrip

    09491 Abstracts Collection -- Graph Search Engineering

    Get PDF
    From the 29th November to the 4th December 2009, the Dagstuhl Seminar 09491 ``Graph Search Engineering \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Formal Methods for Autonomous Systems

    Full text link
    Formal methods refer to rigorous, mathematical approaches to system development and have played a key role in establishing the correctness of safety-critical systems. The main building blocks of formal methods are models and specifications, which are analogous to behaviors and requirements in system design and give us the means to verify and synthesize system behaviors with formal guarantees. This monograph provides a survey of the current state of the art on applications of formal methods in the autonomous systems domain. We consider correct-by-construction synthesis under various formulations, including closed systems, reactive, and probabilistic settings. Beyond synthesizing systems in known environments, we address the concept of uncertainty and bound the behavior of systems that employ learning using formal methods. Further, we examine the synthesis of systems with monitoring, a mitigation technique for ensuring that once a system deviates from expected behavior, it knows a way of returning to normalcy. We also show how to overcome some limitations of formal methods themselves with learning. We conclude with future directions for formal methods in reinforcement learning, uncertainty, privacy, explainability of formal methods, and regulation and certification

    Multi-Robot Symbolic Task and Motion Planning Leveraging Human Trust Models: Theory and Applications

    Get PDF
    Multi-robot systems (MRS) can accomplish more complex tasks with two or more robots and have produced a broad set of applications. The presence of a human operator in an MRS can guarantee the safety of the task performing, but the human operators can be subject to heavier stress and cognitive workload in collaboration with the MRS than the single robot. It is significant for the MRS to have the provable correct task and motion planning solution for a complex task. That can reduce the human workload during supervising the task and improve the reliability of human-MRS collaboration. This dissertation relies on formal verification to provide the provable-correct solution for the robotic system. One of the challenges in task and motion planning under temporal logic task specifications is developing computationally efficient MRS frameworks. The dissertation first presents an automaton-based task and motion planning framework for MRS to satisfy finite words of linear temporal logic (LTL) task specifications in parallel and concurrently. Furthermore, the dissertation develops a computational trust model to improve the human-MRS collaboration for a motion task. Notably, the current works commonly underemphasize the environmental attributes when investigating the impacting factors of human trust in robots. Our computational trust model builds a linear state-space (LSS) equation to capture the influence of environment attributes on human trust in an MRS. A Bayesian optimization based experimental design (BOED) is proposed to sequentially learn the human-MRS trust model parameters in a data-efficient way. Finally, the dissertation shapes a reward function for the human-MRS collaborated complex task by referring to the above LTL task specification and computational trust model. A Bayesian active reinforcement learning (RL) algorithm is used to concurrently learn the shaped reward function and explore the most trustworthy task and motion planning solution

    Formal methods paradigms for estimation and machine learning in dynamical systems

    Get PDF
    Formal methods are widely used in engineering to determine whether a system exhibits a certain property (verification) or to design controllers that are guaranteed to drive the system to achieve a certain property (synthesis). Most existing techniques require a large amount of accurate information about the system in order to be successful. The methods presented in this work can operate with significantly less prior information. In the domain of formal synthesis for robotics, the assumptions of perfect sensing and perfect knowledge of system dynamics are unrealistic. To address this issue, we present control algorithms that use active estimation and reinforcement learning to mitigate the effects of uncertainty. In the domain of cyber-physical system analysis, we relax the assumption that the system model is known and identify system properties automatically from execution data. First, we address the problem of planning the path of a robot under temporal logic constraints (e.g. "avoid obstacles and periodically visit a recharging station") while simultaneously minimizing the uncertainty about the state of an unknown feature of the environment (e.g. locations of fires after a natural disaster). We present synthesis algorithms and evaluate them via simulation and experiments with aerial robots. Second, we develop a new specification language for tasks that require gathering information about and interacting with a partially observable environment, e.g. "Maintain localization error below a certain level while also avoiding obstacles.'' Third, we consider learning temporal logic properties of a dynamical system from a finite set of system outputs. For example, given maritime surveillance data we wish to find the specification that corresponds only to those vessels that are deemed law-abiding. Algorithms for performing off-line supervised and unsupervised learning and on-line supervised learning are presented. Finally, we consider the case in which we want to steer a system with unknown dynamics to satisfy a given temporal logic specification. We present a novel reinforcement learning paradigm to solve this problem. Our procedure gives "partial credit'' for executions that almost satisfy the specification, which can lead to faster convergence rates and produce better solutions when the specification is not satisfiable

    Dynamic routing and service network design for less-than-truckload (LTL) motor carriers

    Get PDF
    This research tries to address the dynamic priority shipment routing problem and dynamic service network design problem for the less-than-truckload (LTL) carriers. First, described is a decision support tool to assist LTL managers in studying, analyzing and planning LTL operations so that scarce resources are used more effectively and efficiently. The decision support tool helps to understand the complicated interactions between the shipment route, closing rules, cost, and service level. Numerical experiments are done using the decision support tool to analyze the existing rules of LTL carriers and to understand their effect on the total cost of the system and the service level provided;Currently, LTL carriers route both regular and priority shipments through their service networks using some fixed route patterns known as load plans. In this research, an alternative routing strategy for routing priority shipments in LTL networks is proposed. This strategy exploits the stochasticity and dynamism embedded in the routing process and utilizes the real time information about terminals to determine the shipment routes adaptively. The research shows that this strategy can be formulated as the problem of finding a dynamic shortest path problem over a network with random arc costs. An efficient algorithm is developed that can solve this optimization problem in real-time. Numerical testing using real data sets suggests that the proposed strategy can improve the level of service for priority shipments;LTL carriers currently use ad hoc rules in deciding when there is enough capacity to close a trailer. In order to reduce the fixed and penalty costs incurred by the LTL carriers and to increase the service level provided by LTL carriers to customers, the decision should be optimized over time. In other words, the decision to dispatch a trailer should not only depend on the current shipment level, but should also vary dynamically based on time of day, day of the week, and seasonal effects. A dynamic control policy for dispatching a trailer over a single link is proposed in this research. This research provides an approach to estimate the shape of the recourse function. The dynamic control policy exploits the linearity of the recourse function estimated in solving the trailer dispatching problem efficiently. The algorithm is easy to implement and computationally fast and hence can be extended to solve large LTL networks. Experiments with the dynamic control policy show that the solutions obtained are very close to the optimal

    A Reminder of its Brittleness: Language Reward Shaping May Hinder Learning for Instruction Following Agents

    Full text link
    Teaching agents to follow complex written instructions has been an important yet elusive goal. One technique for enhancing learning efficiency is language reward shaping (LRS). Within a reinforcement learning (RL) framework, LRS involves training a reward function that rewards behaviours precisely aligned with given language instructions. We argue that the apparent success of LRS is brittle, and prior positive findings can be attributed to weak RL baselines. Specifically, we identified suboptimal LRS designs that reward partially matched trajectories, and we characterised a novel reward perturbation to capture this issue using the concept of loosening task constraints. We provided theoretical and empirical evidence that agents trained using LRS rewards converge more slowly compared to pure RL agents. Our work highlights the brittleness of existing LRS methods, which has been overlooked in the previous studies

    Physical internet-enabled hyperconnected distribution assessment

    Get PDF
    L'Internet Physique (IP) est une initiative qui identifie plusieurs symptômes d'inefficacité et non-durabilité des systèmes logistiques et les traite en proposant un nouveau paradigme appelé logistique hyperconnectée. Semblable à l'Internet Digital, qui relie des milliers de réseaux d'ordinateurs personnels et locaux, IP permettra de relier les systèmes logistiques fragmentés actuels. Le but principal étant d'améliorer la performance des systèmes logistiques des points de vue économique, environnemental et social. Se concentrant spécifiquement sur les systèmes de distribution, cette thèse remet en question l'ordre de magnitude du gain de performances en exploitant la distribution hyperconnectée habilitée par IP. Elle concerne également la caractérisation de la planification de la distribution hyperconnectée. Pour répondre à la première question, une approche de la recherche exploratoire basée sur la modélisation de l'optimisation est appliquée, où les systèmes de distribution actuels et potentiels sont modélisés. Ensuite, un ensemble d'échantillons d'affaires réalistes sont créé, et leurs performances économique et environnementale sont évaluées en ciblant de multiples performances sociales. Un cadre conceptuel de planification, incluant la modélisation mathématique est proposé pour l’aide à la prise de décision dans des systèmes de distribution hyperconnectée. Partant des résultats obtenus par notre étude, nous avons démontré qu’un gain substantiel peut être obtenu en migrant vers la distribution hyperconnectée. Nous avons également démontré que l'ampleur du gain varie en fonction des caractéristiques des activités et des performances sociales ciblées. Puisque l'Internet physique est un sujet nouveau, le Chapitre 1 présente brièvement l’IP et hyper connectivité. Le Chapitre 2 discute les fondements, l'objectif et la méthodologie de la recherche. Les défis relevés au cours de cette recherche sont décrits et le type de contributions visés est mis en évidence. Le Chapitre 3 présente les modèles d'optimisation. Influencés par les caractéristiques des systèmes de distribution actuels et potentiels, trois modèles fondés sur le système de distribution sont développés. Chapitre 4 traite la caractérisation des échantillons d’affaires ainsi que la modélisation et le calibrage des paramètres employés dans les modèles. Les résultats de la recherche exploratoire sont présentés au Chapitre 5. Le Chapitre 6 décrit le cadre conceptuel de planification de la distribution hyperconnectée. Le chapitre 7 résume le contenu de la thèse et met en évidence les contributions principales. En outre, il identifie les limites de la recherche et les avenues potentielles de recherches futures.The Physical Internet (PI) is an initiative that identifies several symptoms of logistics systems unsustainability and inefficiency and tackles them by proposing a novel paradigm called Hyperconnected Logistics. Similar to the Digital Internet, which connects thousands of personal and local computer networks, PI will connect the fragmented logistics systems of today. The main purpose is to enhance the performance of logistics systems from economic, environmental and social perspectives. Focusing specifically on the distribution system, this thesis questions the order of magnitude of the performance gain by exploiting the PI-enabled hyperconnected distribution. It is also concerned by the characterization of the hyperconnected distribution planning. To address the first question, an exploratory research approach based on optimization modeling is applied; first, the current and prospective distribution systems are modeled. Then, a set of realistic business samples are created, and their economic and environmental performance by targeting multiple social performances are assessed. A conceptual planning framework is proposed to support the decision making in the hyperconnected distribution system. Based on the results obtained by our investigation, it can be argued that a substantial gain can be achieved by shifting toward Hyperconnected Distribution. It is also revealed that the magnitude of the gain varies by business characteristics and the targeted social performance. Since the Physical Internet is a novel topic, chapter 1 briefly introduces PI and Hyperconnected Logistics. Chapter 2 discusses the research foundations, goal and methodology. It also describes the challenges of conducting this research and highlights the type of contributions aimed for. Chapter 3 presents the optimization models including a core distribution network design modeling approach. Influenced by the characteristics of the current and prospective distribution systems, three distribution system-driven models are developed. Chapter 4 engages with the characterization of the business samples, the modeling and calibration of the parameter that are employed in the models. The exploratory investigation results are presented in Chapter 5. Chapter 6 describes the hyperconnected distribution planning framework. Chapter 7 summarizes the content of the thesis and highlights the main contributions. Moreover, it identifies the research limitations and potential future research avenues
    • …
    corecore