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Abstract. From the 29th November to the 4th December 2009, the
Dagstuhl Seminar 09491 �Graph Search Engineering � was held in Schloss
Dagstuhl � Leibniz Center for Informatics. During the seminar, several
participants presented their current research, and ongoing work and open
problems were discussed. Abstracts of the presentations given during the
seminar as well as abstracts of seminar results and ideas are put together
in this paper. The �rst section describes the seminar topics and goals
in general. Links to extended abstracts or full papers are provided, if
available.

Keywords. Model Checking, Arti�cial Intelligence, AI Planning, State
Explosion Problem, Error Detection, Protocol Analysis, Software Veri�-
cation and Validation, Heuristics, Pattern/Abstraction Databases, I/O
E�cient Search, Solid State Disks, GPU

1 Introduction

Graph Search algorithms and their variants play an important role in many
branches of computer science. All use duplicate detection in order to recognize
when the same node is reached via alternative paths in a graph. This tradition-
ally involves storing already-explored nodes in random-access memory (RAM)
and checking newly-generated nodes against the stored nodes. However, the lim-
ited size of RAM creates a memory bottleneck that severely limits the range
of problems that can be solved with this approach. Although many clever tech-
niques have been developed for searching with limited RAM, all eventually are
limited in terms of scalability, and many practical graph-search problems are too
large to be solved using any of these techniques.

Over the past few years, several researchers have shown that the scala-
bility of graph-search algorithms can be dramatically improved by using ex-
ternal memory, such as disk, to store generated nodes for use in duplicate
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detection. However, this requires very di�erent search strategies to overcome
the six orders-of-magnitude di�erence in random-access speed between RAM
and disk. We consider recent work on external-memory graph search, including
duplicate-detection strategies (delayed, hash-based, and structured); integration
of these strategies in external-memory versions of breadth-�rst search, breadth-
�rst heuristic, and frontier search; the inclusion of a perfect hash function, as well
as combining parallel and disk-based search; external-memory pattern-database
heuristics; and applications of external-memory search to AI planning, auto-
mated veri�cation, and other search problems. Implicit graph search that is in
the scope of the seminar includes deterministic and non-deterministic models,
as well as game-theoretical and probabilistic models.

Moreover, the seminar is speci�cally concerned with algorithm designs for
implicit graph search on modern personal computer architectures, e.g. subject
to several processing units on the graphic card, and hierarchical memory includ-
ing solid state disks. Applications areas for new algorithm designs that exploit
modern hardware are found in the model checking community, but also in AI
planning and game-playing.

The industrial impact is located mostly in the area of software validation,
and to some extent in the area of hardware veri�cation.

Computational models for �ash memory devices

Deepak Ajwani (Aarhus University, DK)

Based on the characteristics of the �ash devices [1], we propose two new compu-
tation models [2] � the general �ash model and the unit-cost �ash model. The
general �ash model is similar to the I/O model, with the exception that read
and write block sizes are di�erent and that they incur di�erent costs. The unit-
cost �ash model augments the general �ash model with the assumption that the
throughput provided by sequential reads and writes is equal.

These models are generic (as they abstract away many device-speci�c char-
acteristics) and simple enough for meaningful algorithm design. In particular,
we show that a large body of existing external memory algorithms and data
structures based on the merging paradigm can be easily adapted to give e�cient
algorithms in the unit-cost �ash model.

References
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K*: A Heuristic Search Algorithm for Finding the k
Shortest Paths

Husain Aljazzar (Universität Konstanz, DE)

We present a new directed algorithm, called K∗, for �nding the k shortest paths
between a designated pair of vertices in a given directed weighted graph. As a
directed algorithm, K∗ has two advantages compared to current k-shortest-paths
algorithms. First, K∗ performs on-the-�y, which means that it does not require
the graph to be explicitly available and stored in main memory. Portions of the
graph will be generated as needed. Second, K∗ can be guided using heuristic
functions. This leads to signi�cant improvements in the memory and runtime
demands for many practical problem instances. We prove the correctness of K∗

and determine its asymptotic worst-case complexity as O(m+ n log n+ k) with
respect to both runtime and space, where n is the number of vertices and m
is the number of edges of the graph. We performed some experiments using
two case studies from two di�erent application domains namely route planning
and counterexample generation for stochastic model checking. The experimental
results illustrate the e�ciency and scalability of K∗ compared to most e�cient
k-shortest-paths algorithms known so far.

Key words: K∗, heuristic search, k-shortest-paths problem
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Massive-scale graph analytics

David A. Bader (Georgia Institute of Technology, US)

Graph abstractions are proving useful in solving real-world challenges in tra-
ditional and emerging computational sciences such as chemistry, biology, and
medicine, as well as applications in national security. A well-known centrality
metric, betweenness, has been used in the study of lethality in protein interaction
networks [1], the spread of disease through human contact [2], identifying key
actors in terrorist networks [3], and transportation networks [4]. Interestingly,
graphs originating from a number of unrelated disciplines, including computer
networks, biological networks, and social networks, exhibit common structural
characteristics such as a low diameter and a power-law distribution in the number
of neighbors [9]. These same topological properties increase the di�culty of ob-
taining balanced graph partitioning and performing fast analysis on distributed
memory, cache-based supercomputers.

The explosion of real-world graph data poses a substantial challenge: How
can we analyze constantly changing graphs with billions of vertices? Our ap-
proach uses multithreaded high-performance computers such as the Cray XMT
to scale to massive graphs. These machines utilize thousands of hardware threads
to tolerate the latency of memory accesses inherent in massive graph analysis.
We have demonstrated the Cray XMT's ability to analyze graphs several orders
of magnitude larger than standard social network analysis packages using algo-
rithms such as betweenness centrality [10,11] and clustering coe�cients [12]. A
new variation on a traditional analysis metric, k-betweenness centrality is more
resilient to the noisy data with false positives and false negatives inherent in
massive social networks and scales up to billions of vertices on a 128 processor
XMT [13]. We have studied compact graph representations for spatio-temporal
data [14] and have o�ered an extensible data structure for dynamic graph data
that is suitable for a wide variety of applications with little or no performance
penalty when compared to static representations [8].

In this talk, we will discuss several important problems in real-world graphs.
We will look at the use of centrality metrics, such as betweenness [7], to identify
important vertices in a graph, as well as techniques for understanding community
structure. These include algorithms for identifying communities [6] as well as key
metrics for characterizing a graph [5].

References

1. Jeong, H., Mason, S.P., Barabási, A.-L., Oltvai, Z.N., Lethality and centrality in
protein networks, Nature, 412, pages 41�42, 2001

2. Liljeros, F., Edling, C.R., Amaral, L.A.N., Stanley, H.E., Åberg, Y., The Web of
Human Sexual Contacts, Nature, 411, pages 907�908, 2001

3. Co�man, T., Greenblatt, S., Marcus, S., Graph-based technologies for intelligence
analysis, Commun. ACM, 47, pages 45�47, 2004



Graph Search Engineering 5

4. Guimerà, R., Mossa, S., Turtschi, A., Amaral, L.A.N., The worldwide air transporta-
tion network: Anomalous centrality, community structure, and cities' globalroles,
Proc. National Academy of Sciences USA, 102, 22, pages 7794�7799, 2005

5. Watts, D.J., Strogatz, S.H., Collective dynamics of small world networks, Nature ,
393, pages 440-442, 1998

6. Girvan, M., Newman, M.E.J., Community structure in social and biological net-
works, Proc. National Academy of Sciences USA, 99, 12, pages 7821�7826, 2002

7. Freeman, L.C., A set of measures of centrality based on betweenness, Sociometry,
40, 1, pages 35�41, 1977

8. Bader, D.A., Berry, J., Amos-Binks, Chavarría-Miranda, D., Hastings, C., Madd, K.,
STINGER: Spatio-Temporal Interaction Networks and Graphs (STING) Extensible
Representation, Georgia Institute of Technology, 2009

9. Newman, M.E.J., The structure and function of complex networks, SIAM Review,
45, 2, pages 167�256, 2003

10. Bader, D.A., Madduri, K., Parallel Algorithms for Evaluating Centrality Indices in
Real-world Networks, Proc. 35th Int'l Conf. on Parallel Processing (ICPP), 2006

11. Madduri, K.Ediger, D., Jiang, K., Bader, D.A., Chavarría-Miranda, D., A Faster
Parallel Algorithm and E�cient Multithreaded Implementations for Evaluating Be-
tweenness Centrality on Massive Datasets, Lawrence Berkeley National Laboratory,
2009

12. Ediger, D., Jiang, K., Riedy, J., Bader, D.A., Massive Streaming Data Analyt-
ics: A Case Study with Clustering Coe�cients, Proc. Workshop on Multithreaded
Architectures and Applications (MTAAP'10), 2010

13. Jiang, K., Ediger, D., Bader, D.A., Generalizing k-Betweenness Centrality Using
Short Paths and a Parallel Multithreaded Implementation, Proc. 38th Int'l Conf. on
Parallel Processing (ICPP), 2009

14. Madduri, K., Bader, D.A. Compact Graph Representations and Parallel Connec-
tivity Algorithms for Massive Dynamic Network Analysis, 23rd IEEE International
Parallel and Distributed, 2009

Keywords: Parallel algorithms, high-performance computing, social network
analysis

Challenges and perspectives of multi-core and GPU model
checking

Dragan Bosnacki (TU Eindhoven, NL)

Model checking is one of the most successful formal techniques for the veri�cation
of software and hardware systems. Developed in the beginning of the eighties,
nowadays it is used by major companies, like Microsoft, to improve the quality of
their products. So called explicit state model checking boils down to exhaustive
search of the state space of the system which is veri�ed. The state space can be
seen as a labeled graph and therefore many of the model checking algorithms
are essentially graph search algorithms. Since those graphs are usually huge,
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for practical applications of model checking it is essential to reduce as much as
possible the time and memory requirements of the algorithms.

In my talk I focus on runtime improvements in model checking by exploiting
the recent developments in the processor technology. In particular, the emphasis
will be on parallel algorithms for shared memory architectures, like multi-core
systems and general purpose graphic processing units (GPGPU). These research
directions are quite new - the �rst papers on multi-core and GPU model checking
were published in 2007 and 2009, respectively [2,1]. Therefore, there is still a lot
of uncharted territory which could be a fruitful ground for cooperation of experts
from di�erent computer science communities.

After presenting a brief history of the multi-core and GPU model checking,
I make an inventory of challenges and open problems in these new research
avenues. For instance, one of the main not yet achieved goals is to �nd an e�cient
(shared memory) parallel algorithm for �nding cycles in the state space graph.
As a topic this could be interesting also for the seminar participants who do
not work directly in model checking. For the people who are involved in model
checking there are challenges like compatibility of the new algorithms with the
state space reduction techniques, e.g. partial-order reduction. Such techniques
are the main weapon in model checking to cope with huge state spaces.

Also, I discuss some concrete ideas and directions for solutions to some of
these problems.

I wrap up with some avenues for future work within both multi-core and
GPU model checking.
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Roomy: A New Approach to Parallel Disk-based
Computation

Gene Cooperman (Northeastern Univ. - Boston, US)

Graph Search often runs into problems requiring large storage.
When such computations overrun available RAM, the traditional workarounds

have been:
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1. large-memory shared memory computers (expensive)
2. use of aggregate RAM of a computer cluster (needs parallel programming)
3. use of disk on a single computer (slower than RAM)

We discuss a fourth paradigm, disk-based parallel computing, and a new pro-
gramming language, Roomy, for this new paradigm. The aggregate bandwidth
of the disks of a local cluster (or of a SAN) is comparable to the bandwidth of
a single RAM subsystem. Hence, our goal is to replace large-memory sequential
programs by disk-based parallel programs.

The goal is not greater speed, but greater storage.
Prior to Roomy, our working group had several successes in computational

group theory, and in upper bounds on the number of moves needed to solve Ru-
bik's Cube. Each of these successes was accompanied by months of programming
pain. What do you do when on the third day of the computation, on the 23rd
computer node, the second thread of the application process discovers an error
in the 537th �le?

Roomy provides an easy-to-use mini-language (in fact, an API and run-time
library for C/C++) which emphasizes a streaming-compatible style of program-
ming. This does not eliminate latency issues, but the Roomy language naturally
biases users toward avoiding latency.

The Roomy software is available at: http://roomy.sourceforge.net

Keywords: Disk-based parallel computation, external memory

Joint work of: Cooperman, Gene; Kunkle, Daniel

Hash, Displace, and Compress

Martin Dietzfelbinger (TU Ilmenau, DE)

A hash function h, i.e., a function from the set U of all keys to the range [m] =
{0, . . . ,m − 1} is called a perfect hash function (PHF) for a subset S ⊆ U
of size n ≤ m if h is 1�1 on S. It is called a minimal perfect hash function
(MPHF) if in addition m is as small as possible, i.e., m = n. The important
performance parameters of a PHF are representation size (measured in bits per
key), evaluation time (which should be worst case constant) and construction
time (which should be expected linear).

In [1] a construction was presented that requires m = 1.23n, expected linear
construction time and storage space 1.97 bits per key. From this, using known
techniques for succinct data structures (see, e.g., [6]) one can obtain a construc-
tion of a MPHF with 2.61 bits per key. The central idea in this construction is
to use 3 fully random hash functions, and utilize the fact that if m > 1.23n the
probability is high that the 3-uniform hypergraph created by the n sets of hash
values for each key is acyclic.

In this contribution, we present an algorithm that makes it possible to obtain
PHFs and MPHFs with even less storage space. The expected representation size
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is not far from optimal while the expected construction time remains at O(n) and
the evaluation time remains O(1) in the worst case. In theory, there is a tradeo�
between construction time and space for the hash function. But especially in
experiments, our scheme works nicely and better than previous schemes. For
example in the case m = 1.23n we obtain a PHF that uses space 1.4 bits per
key (the information theory lower bound is 0.88 bits per key). For m = 1.01n
(�almost perfect�) we obtain space 1.98 bits per key, which was not achievable
with previously known methods. Using succinct data structure techniques, we
obtain MPHFs with 2.07 bits per key.

Our algorithm is inspired by several known algorithms; the main new feature
is that we combine a modi�cation of Pagh's [5] �hash-and-displace� approach
with data compression on a sequence of hash function indices, see e.g. [4,3].
That combination makes it possible to signi�cantly reduce space usage while
retaining linear construction time and constant query time.

For the analysis we assume that fully random hash functions are given for
free; such assumptions can be justi�ed and were made in previous papers. Our
algorithm can also be used for k-perfect hashing, where at most k keys may be
mapped to the same value.

In the context of graph search, perfect hash functions are useful for example
for semi-external searching algorithms, keeping in internal memory a �ag array
with only one bit of information for each key, as demonstrated in the paper [2]
by Edelkamp, Sanders, and �ime£ek, also in this seminar. A serious limitation is
that the graph has to be traversed once �rst to identify all nodes. So for this and
other applications it would be interesting to study (partly) dynamic versions of
the algorithm.
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Rank-Relaxed Weak Queues

Stefan Edelkamp (Universität Bremen, DE)

A run-relaxed weak queue by Elmasry et al. [2] is a priority queue data structure
with insert and decrease-key in O(1) as well as delete and delete-min in O(log n)
worst-case time. One further advantage is the small space consumption of 3n+
O(log n) pointers.

In this paper we propose rank-relaxed weak queues, reducing the number
of rank violations nodes for each level to a constant, while providing amortized
constant time for decrease-key. Compared to run- relaxed weak queues, the new
structure additionally gains one pointer per node.

An empirical evaluation shows that the implementation can out- perform
Fibonacci and pairing heaps in practice even on rather simple data types.
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Leveraging Local Structure in External-Memory Graph
Search

Eric Hansen (Mississippi State University, US)

This talk provides an overview of recent work on how to leverage graph structure
to improve the e�ciency of external-memory breadth-�rst search.
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I begin with a review of approaches to leveraging "interlayer locality" in
breadth-�rst search, where interlayer locality means that duplicate nodes are
more likely in adjacent layers of the graph. The focus of the talk, however, is on
approaches to leveraging "intralayer locality," which means that duplicates tend
to occur near each other in the sequence of nodes generated when expanding the
nodes within a layer. I point out that interlayer locality depends on the order
in which the nodes in a breadth-�rst layer are expanded, and then review two
approaches to external-memory breadth-�rst search that leverage this form of
local structure.

I begin with a review of structured duplicate detection, an approach to
external-memory graph search that uses an abstraction of the state space to
localize references to stored nodes, allowing immediate duplicate detection. Af-
ter pointing out that structured duplicate detection can be viewed as a kind of
perfect cache, I describe an alternative approach to leveraging intralayer locality
that uses an LRU hash table in RAM to detect most duplicates immediately,
relying on delayed duplicate detection as a backup. The search strategies de-
scribed in this talk have been applied to both arti�cial intelligence planning and
model checking using the Murphi veri�er, and preliminary results are reported.

Keywords: External-memory graph search, breadth-�rst search, model checking

Joint work of: Hansen, Eric; Lamborn, Peter

Landmarks, Critical Paths and Abstractions: What's the
Di�erence Anyway?

Malte Helmert (Universität Freiburg, DE)

Current heuristic estimators for classical domain-independent planning are usu-
ally based on one of four ideas: delete relaxation, abstraction, critical paths, and,
most recently, landmarks.

Previously, these di�erent ideas for deriving heuristic functions were largely
unconnected.

In my talk, I will show that these heuristics are in fact very closely re-
lated. Moreover, I will introduce a new admissible heuristic called the landmark
cut heuristic which exploits this relationship. In our experiments, the landmark
cut heuristic provides better estimates than other current admissible planning
heuristics, especially on large problem instances.

Keywords: Planning, heuristic search, heuristic functions

Joint work of: Helmert, Malte; Domshlak, Carmel

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2010/2432

Full Paper:
http://www.informatik.uni-freiburg.de/∼ki/papers/helmert-domshlak-icaps2009.pdf
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See also: In Proceedings of the 19th International Conference on Automated
Planning and Scheduling (ICAPS 2009), pp. 162-169. AAAI Press 2009.

Sparse Matrix Multiplication in the I/O-Model

Riko Jacob (TU München, DE)

Sparse matrix multiplication is a generalization of permuting, one of the fun-
damental problems that are optimally solved in the I/O-model using sorting
(Aggarwal/Vitter CACM 1988).

Hence, it is no surprise that also for this problem a sorting based approach is
optimal (Bender/Brodal/Fagerberg/Jacob/Vicari SPAA 2007), and this result
actually also covers the situation of map-reduce.

Further, there are some recently published results and ongoing work on par-
allel external memory models, (simultaneous) multiplication of several vectors,
and Sparse Matrix - Dense Matrix multiplication (Greiner/Jacob LATIN 2010).

BDDs in Planning and General Game Playing

Peter Kissmann (TU Dortmund, DE)

In this talk we will study symbolic algorithms to solve both planning problems
and general single- and two-player games.

For the planning domain we look at sequential optimal planning with action
costs with and without soft constraints. For the �rst case we use either symbolic
(bidirectional) BFS in case of no action costs, so that we come up with step-
optimal plans, or symbolic versions of Dijkstra's algorithm and A* in case of
non-uniform action costs, resulting in cost-optimal plans. In the second case, we
came up with an extension of a symbolic Branch-and-Bound algorithm, which
then returns plans achieving an optimal net-bene�t (rewards for achieving weak
goals minus total action-costs) [3].

General game playing might be seen as a generalization of planning: Where
planning typically concerns only one player, general game playing copes with
single-player as well as multi-player games. Here we will present symbolic algo-
rithms that can solve general single-player games [1] as well as two-player games
[2] � with the only restriction of the games being turn-taking.

References
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Speci�cation and Analysis with Hierarchical Graphs

Alberto Lluch Lafuente (1) IMT Institute for Advanced Studies Lucca 2) Com-
puter Science Department, University of Pisa)

Architectural Design Rewriting [1,4] conciliates algebraic and graph-based tech-
niques to o�er a �exible model for software systems (e.g. software architectures)
and their dynamics (e.g. architectural recon�guration). Roughly, ADR models
are rewrite theories interpreted over a particular class of hierarchical graphs.
The algebraic presentation of graphs [2] enables the use standard term rewriting
techniques to model system dynamics, while the graphical representation allows
us to enjoy intuitive visual notations.

The spirit of our work is to characterise classes of software systems with
many-sorted algebras, where each sort stands for a class of systems having a cer-
tain structure, and whose operations are well-typed compositions, i.e. the way
well-typed systems are composed into a well-typed system. In this view, each
system can be described by a well-typed term of the algebra, which denotes
how the system is composed and how it can be decomposed. Moreover, because
we can equip the algebra with structural axioms, we are actually dealing with
equivalence classes of terms which, means that for each system we are actually
given a set of possible decompositions that can be exploited to declare the dy-
namics of a system as rewrite rules. Moreover, terms are interpreted as graphs
and the term equivalence amounts to graph isomorphism. This o�ers an intu-
itive graphical representation of systems, since equivalent terms are represented
by isomorphic graphs. The �exibility of the approach has been validated over
a variety of heterogeneous software system topologies and their dynamics. For
instance, algebraic presentations and rewrite rules upon them can be used to
de�ne meta-models and model transformations, software architectures and ar-
chitectural recon�guration, network topologies and network recon�guration or
graphical presentations of states and semantics of process algebras. Besides the
strong mathematical foundation, our approach can be mapped into Rewriting
Logic, a kind of conditional rewrite systems enjoying an e�cient implementa-
tion in the Maude rewrite engine, which provides built-in tools such as a model
checker and a theorem prover [3].

Our current research e�orts are devoted to the development of appropriate
property speci�cation mechanisms and e�cient analysis techniques. For instance,
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one of the crucial inherent problems of the dynamics of the systems we are inter-
ested in is due to the non-deterministic nature of rewrite rules, which gives rise
to considerably large state spaces. In practice, we have to deal with large spaces
of possible software architectures, network con�gurations, software models, or
process terms. But in most cases we are just interested in �nding a good one
according to some quantitative criteria. For instance, network recon�gurations
ensuring a good load-balance but involving a low number of network disconnec-
tions, class diagram refactorings reducing the number of classes but not requiring
too many method pull-ups, or executions in a session-oriented calculus involving
few steps but resulting in high nesting depths.

Therefore one of the main problems we are interested in is a sort of plan-
ning problem, which, however, have some idiosyncrasies that makes them di�er-
ent from traditional approaches like action planning. First, states in traditional
planning tend to be �at, i.e. they typically consists of sets of ground predicates.
Instead, our states are structured, i.e. they are terms and hence we are dealing
with a more general notion of a state. Second, rules in traditional planning (i.e.
actions) are �rst order and unconditional. Instead, our rules are conditional term
rewrite rules, i.e. variables can stand for subterms and conditions can be rewrite
rules whose result we can use in the right-hand side. Moreover, our rules are typ-
ically equipped with labels that are used to coordinate and guide the rewriting
over the structure. Technically, our rules are in the style of Structural Opera-
tional Semantics. Last, we are interested in multi-criteria optimisation, i.e. we
would like to consider several dimensions to optimise and �nd non-dominated
optimal or near-to-optimal solutions. The criteria should be modelled with an
algebraic structure that decouples the planning algorithm from the particular cri-
teria instance. For instance, one possible choice are semi-rings, the mathematical
cost structure underlying Floyd-Warshall's all-pairs shortest paths algorithm.

Such planning problems can be modelled with rewrite systems in a declarative
way, for instance using terms to describe sets of states associated with their
quantitative attributes, equations to discard dominated states and a simple rule
to expand the set of states by applying a planning step. Then, the ordinary
exploration mechanisms of rewrite systems can be solved to explore this state
space of state sets. Declarative approaches approaches are usually very ine�cient.
We believe that there is space for the application of existing algorithms and
techniques and, possibly, for the development of new ones.

Acknowledgements. Joint work with Roberto Bruni, Ugo Montanari and Gen-
eroso Paolillo within the EU FET integrated projects Sensoria and the Italian
FIRB Project Tocai.It.
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On parallel UCT

Hartmut Messerschmidt (Universität Bremen, DE)

In game theory there are often very large game trees. It turned out, that Monte
Carlo Tree Search is an appropriate method for searching in these trees. Al-
most all good GO programs and many programs in the general game playing
community are using UCT (Upper Con�dence bounds applied on Trees).

UCT combines Monte Carlo Tree Runs (MCTR) with Upper Con�dence
Bounds (UCB, see [1]), a method to get the highest reward during a series of
games. In UCB an evaluation function is used to determine the next game to
play. This function depends on the number of plays and the current known
values of the games. There is a balance between exploration, that is exploring
other games than the best to see if they can do better, and exploitation (choose
the best known game). In UCT this method is used to construct a game tree and
in each step the evaluation function is used to determine which child to explore
further. Monte Carlo Tree Runs are used to determine the value of a leaf.

The UCT algorithm was �rst introduced by Kosics and Szepesvari (see [?]).
Each run starts from the root and chooses one child to expand next. This is

done by the evaluation function that depends on the values and the counters of
the children. If it reaches a leaf then a MCTR starts to determine the value of
that leaf. In the second phase this value is propagated back to the root. A node
stores for example the average or the maximum value. During this process the
counters of all visited nodes are increased by one, too.

As UCT turned out to be a good tool to explore game trees, and it becomes
even better with more computational power, it is natural to look for a way to
parallelize UCT. UCT is a sequential algorithm, so more precisely the question
is if a parallel algorithm exists that is somehow close to UCT?

The problem in parallelizing UCT is that if many threads run in a single
UCT tree, then, in the original UCT, all will expand the same nodes. This is the
case, because the move from the root to a leaf of the game tree is deterministic.

Cazenave and Jouandeau ([3] and [4]) presented three di�erent approaches
to do parallelization for UCT. But they either work on di�erent game trees, or
use one master to move through the game tree and do the MCTRs in parallel.
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Although these approaches lead to good results, the question is whether the
UCT algorithm can get a speed up from parallelization without altering it too
much.

Another approach comes from Enzenberger and Müller ([5]). They use one
game tree for all threads to improve the Fuego Go program. Unfortunately it is
not explained how the threads are controlled to move in di�erent paths.

The main idea here is to split the update process. While moving down to a
leaf the counters are increased and on the way back only the values are changed.
This ensures that di�erent threads take di�erent paths through the game tree.

As this leads to a speed up of the algorithm, the next question is how to
overcome the space limitations by freeing memory that belongs to unimportant
parts of the game tree. A part of the game tree becomes unimportant, when it
is completely explored, or it leads to a sure win or loss for one side.
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Via Detours to I/O-E�cient Shortest Paths

Ulrich Carsten Meyer (J.W. Goethe Universität Frankfurt, DE)

Large explicit graphs arise naturally in many real world applications. The actual
performance of simple RAMmodel algorithms for traversing these graphs (stored
as adjacency-lists in external memory) deviates signi�cantly from their linear or
near-linear predicted performance because of the large number of I/Os they
incur. In order to alleviate the I/O bottleneck, many external memory graph
traversal algorithms have been designed with provable worst-case guarantees.

Based on [1] we review some detours, dead-ends, and happy ends of our still
ongoing research on external-memory shortest-path algorithms.
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GPU Sample Sort

Vitaly Osipov (KIT - Karlsruhe Institute of Technology, DE)

We present the design of a sample sort algorithm for manycore GPUs. Despite be-
ing one of the most e�cient comparison-based sorting algorithms for distributed
memory architectures its performance on GPUs was previously unknown. For
uniformly distributed keys our sample sort is at least 25% and on average 68%
faster than the best comparison-based sorting algorithm [1], GPU Thrust merge
sort, and on average more than 2 times faster than GPU quicksort [2]. Moreover,
for 64-bit integer keys it is at least 63% and on average 2 times faster than the
highly optimized GPU Thrust radix sort [1] that directly manipulates the binary
representation of keys. Our implementation is robust to di�erent distributions
and entropy levels of keys and scales almost linearly with the input size. These
results indicate that multi-way techniques in general and sample sort in par-
ticular achieve substantially better performance than two-way merge sort and
quicksort.
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Graph Search Engineering in Formal Veri�cation

Kairong Qian (Synopsys Inc. - Mountain View)

Many formal veri�cation problems involve searching the graph for some goal
state(s). We present an industrial perspective of how graph search algorithms
are deployed to solve formal veri�cation problems. In particular, we discuss the
implicit graph search in model checking using a broad range of techniques. For
reachability search, we emphasize the blend of BDDs and Boolean SAT methods
to achieve both DFS and BFS. Finally, we also talk about how commercial formal
tools use the orchestration to utilize the strength of each individual technology.
We conclude by remarking the important research issues that still remains open
from a commercial stand point.

Best-�rst Graph Search on Multicore Machines

Wheeler Ruml (Univ. of New Hampshire - Durham, US)

Best-�rst graph search algorithms such as Dijkstra's algorithm and A* are of fun-
damental importance. I'll present recent work with Ethan Burns, Seth Lemons,
and Rong Zhou on adapting best-�rst graph search to shared-memory parallel
computers. Previous proposals for parallel best-�rst graph search either aban-
don a best-�rst search order or fail to exploit parallelism e�ciently. We've come
up with a simple approach that, in our experiments on a dual quad-core Intel
machine, seems quite e�ective [1].

It is based on dividing work using an abstraction of the search space, as in
structured duplicate detection [3]. Each thread acquires a portion of the search
space that allows it to expand nodes and check for duplicates without requiring
further syncronization. A heap holds those portions of the search space that are
available for searching, sorted by the f value of their best node. Threads greedily
acquire the most promising portion to expand. A simple implementation of this
scheme leads to livelock, but we have proved that a simple modi�cation su�ces
to avoid it.

The simplicity of our approach allows it to easily handle domains with
non-uniform or real-valued edge costs [2]. In addition, it extends naturally to
bounded-suboptimal search (in analogy to weighted A*) and anytime search (in
analogy to Anytime Weighted A*).

In this work, we assume a shared-memory machine, but our method should
combine well with other proposals for distributed search. It is an interesting
topic for future work to extend this method to use external memory.
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Exploiting the Locality of Transitions

Theo Ruys (University of Twente, NL)

We are concerned with the generation of states for concurrent models. More
speci�cally, the state space generation of explicit state, software model checkers.
Explicit state model checkers are controlled by interleaving semantics. That is,
the execution of processes is interleaved: statements of di�erent processes do not
occur at the same time.

Due to this interleaving semantics, a global transition of the system is typi-
cally only local: only one process performs an execution step. Most algorithms in
a model checker (e.g., SPIN), however, are global in nature and operate on the
complete representation of a state. For example: checking whether a state has
already been seen [1], algorithms for state compression, algorithms for storing
states, garbage collection algorithms [2], etc.

In this talk we focus on several well-known global algorithms and show how
these algorithms can be turned into incremental ones. Hence, we propose the
exploitation of local transitions within a model checker. This could lead to im-
provements in both space and time. This is especially the case for large software
models [3] which have huge state descriptors.
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Engineering Route Planning Algorithms � Current
Activities

Peter Sanders (KIT - Karlsruhe Institute of Technology, DE)

Computing an optimal route in a transportation network between speci�ed
source and target nodes is one of the showpieces of real-world applications of
algorithmics. We frequently use this functionality when planning trips with cars
or public transportation.

There are also many applications like logistic planning or tra�c simulation
that need to solve a huge number of shortest-path queries in transportation
networks.

In the last decade, new methods have been developed, that dramatically
speed up search in such situations without sacri�cing accuracy. These methods
vary with their appraoch: hierarchical, goal directed or based on distance tables.
Also, combinations make a lot of sense [3]. In particular, the hierarchy implicit
in road networks has helped a lot here. Depending on the preprocessing time and
space invested, these methods allow speedups of up to six orders of magnitude
compared to Dijkstra's algorithm on continental sized road networks [1]. A recent
overview paper [5] explains many of these methods.

In the last few years, research has focused on advanced models where the
graph changes dynamically, e.g., due to tra�c jams [8], where edge weights
depend on the time of travel [4,2], when there are multiple objective functions
[6], or when the route planning is done on a mobile device [7].

Major open problems are the extension of the most successful methods to
other graph families and more theoretical insights why and when speedup tech-
niques work well. We also need a more realistic treatment of tra�c jams. For
example, one could combine information about tra�c jams with real time tra�c
simulation in order to �nd out where secondary tra�c jams are likely.
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LTL Satis�ability Checking for Requirements Engineering

Viktor Schuppan (Fondazione Bruno Kessler - Trento, IT)

Linear Temporal Logic (LTL) is a popular variant for formally describing re-
quirements of hardware and software products. In that context tool support, in
particular, decision procedures, for LTL needs to address three issues: perfor-
mance, expressiveness, and feedback to the user. In this talk I address ongoing
research w.r.t. the �rst and third question. First I discuss preliminary experi-
mental results of comparing solvers for LTL satis�ability based on fairly diverse
techniques. In the second part I brie�y summarize notions of unsatis�able cores
for LTL, i.e., given an inconsistent speci�cation, how to point out parts of the
speci�cation that cause an inconsistency.

The �rst part of the talk is unpublished at the time of writing this abstract.
For more information contact schuppan@fbk.eu. For the second part see [Sch09].
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Comparison of algorithms for checking emptiness on Büchi
automata

Stefan Schwoon (TU München, DE)

We re-investigate the problem of LTL model-checking for �nite-state systems,
which reduces to checking the emptiness of a Büchi automaton.

Because of its importance, the problem has been intensively investigated, and
many di�erent solutions have been developed.

In this work, we concentrate on solutions of the type used in Spin [3], which
work on-the-�y, sequentially, exact (rather than approximative), and explicit
(rather than symbolic techniques using BDDs). A variety of linear-time algo-
rithms for this exist; nonetheless, subtle design decisions can make a great dif-
ference to their performance in practice.

We investigate known solutions and propose some improvements to them.
Algorithms are divided into two categories; nested-DFS algorithms and SCC-

based algorithms. The former use less memory than the latter; however, in our
setting this advantage becomes insigni�cant, and SCC-based algorithms, which
can �nd counterexamples more quickly, provide better solutions. Among these,
a modi�cation of Couvreur's algorithm [1], which can handle generalized Büchi
automata, dominates the competition. We also provide an improved nested-DFS
algorithm for cases in which memory usage does remain important (e.g., for
bitstate hashing).

We compare the algorithms experimentally on a large, representative bench-
mark suite, measuring their actual run-time performance. Di�erences between
the algorithms are arbitrarily large on individual counterexamples. When aver-
aging over the entire benchmark suite, the di�erences are less pronounced due
to the dominance of �easy� examples with weak Büchi automata. Still, the best
algorithm is faster by about 33 per cent on average. We therefore recommend
that, for on-the-�y explicit-state model checking, nested DFS should be replaced
by better solutions.

The results were published in [2] and improve on former work in [4].
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Semi-External LTL Model Checking

Pavel Simecek (Masaryk University, CZ)

In this presentation we establish c-bit semi-external graph algorithms, � i.e.,
algorithms which need only a constant number c of bits per vertex in the internal
memory. In this setting, we obtain new trade-o�s between time and space for
I/O e�cient LTL model checking: In comparison to former external memory
algorithms [1,2,3], the new algorithm presented in [4] is faster, but its internal
memory complexity is proportional to the size of a state space.

First, we design a c-bit semi-external algorithm for depth-�rst search. To
achieve a low internal memory consumption, we construct a RAM-e�cient per-
fect hash function from the vertex set stored on disk.

Perfect hash function construction is based on the algorithm invented by
Botelho and Ziviani [5]. With perfect hash function, the search itself stores only
one bit per vertex denoting which vertices have already been visited.

Since storage of the perfect hash function takes also only the constant number
of bits per state, the overall number of bits per state is constant.

We give a similar algorithm for double depth-�rst search, which checks for
presence of accepting cycles and thus solves the LTL model checking problem.
The I/O complexity of the search itself is proportional to the time for scanning
the search space. For on-the-�y model checking we apply iterative-deepening
strategy known from bounded model checking.
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Scalable Distributed-Memory External Sorting

Johannes Singler (KIT - Karlsruhe Institute of Technology, DE)

There are currently two main ways to handle huge inputs in a cost-e�cient man-
ner: keeping most data externally on low cost hard disks, and clustering many
inexpensive machines. And the most important nontrivial operation needed for
processing such huge data sets is sorting, useful for many applications.

Although there is a lot of previous work on distributed-memory external
sorting, the problem is not solved yet. In particular, algorithms used in practice
can have very bad behavior for worst-case inputs, whereas all previous theoretical
results lead to algorithms that need more than two passes even for easy inputs.
Here, we present two new algorithms.

DispersedMergeSort is a conceptually simple variant of multiway merge-
sort that needs two passes even for inputs whose size is close to the theoretical
limit for being sorted with two passes. Its �rst phase is run formation, where
runs of size of the cumulative memory of the parallel machine are loaded, sorted
in parallel, and written back to disk. Next follow one or more global merging
phases, in which we achieve e�cient operation within the memory bounds by us-
ing sophisticated prefetching and bu�ering techniques. However, this algorithm
has relatively large communication overhead and outputs the data in a globally
striped fashion, i. e., subsequent blocks of output are allocated on subsequent
PEs (processing elements).

CanonicalMergeSort in contrast, needs very little communication and
outputs the data in a format more conventional: the �rst PE gets the smallest
elements, the second PE the little larger ones, and so on. The �rst phase is as
in DispersedMergeSort, but phase 2 does the necessary (usually only little)
distribution, and phase 3 does fully local merging. At least on the average, and up
to small �clean up� costs, this algorithm needs only two passes and communicates
elements only once.

We have implemented CanonicalMergeSort in C++ using MPI, the
STXXL [1], and the parallel mode of the STL implementation of GCC, which is
based on the MCSTL [2]. It works in-place and supports hierarchical parallelism
and overlapping of computation and communication with I/O.

It sorts about 564GB/min on a cluster with 195 8-core nodes and 780 disks,
connected by In�niBand. This result won the �Indy GraySort� category of the
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renowned SortBenchmark in 2009. Yahoo's competing result of 578GB/min is
only 2.5% faster, but its e�ciency is much worse, since it used 17 times the
number of nodes.

The full paper can be found at [3].
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Problem-Sensitive Restart Heuristics for the DPLL
Procedure

Carsten Sinz (KIT - Karlsruhe Institute of Technology, DE)

Search restarts have shown great potential in speeding up SAT solvers based
on the DPLL procedure. However, most restart policies presented so far do not
take the problem structure into account. In this paper we present several new
problem-sensitive restart heuristics. They all observe di�erent search parameters
like con�ict level or backtrack level over time and, based on their development,
decide whether to perform a restart or not.

Keywords: SAT-Solving, search restarts, real-world problems

Full Paper:
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The Path�nding System of Dragon Age

Nathan Sturtevant (University of Alberta, CA)

BioWare shipped Dragon Age: Origins in November of 2009 to critical acclaim.
In this talk we describe the path�nding system used by the game, which was
developed at the University of Alberta [4].

BioWare had two primary criteria when looking for an improved design for
their path�nding engine. The �rst was speed: only a few milliseconds are available
for path�nding each frame. The second was memory: nearly all the memory
available for path�nding was already being used, so the memory footprint had
to be very small.

http://arxiv.org/pdf/0910.2582
http://www.springerlink.com/content/k9450j7717516373
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These criteria were ful�lled in several ways. Drawing on work on abstraction
for path�nding [2,1,3] we developed what eventually became a two-level abstrac-
tion on top of the low-level grid already present in the game. The abstraction is
a sparse graph which represents the connectivity between regions in the under-
lying map. Complete planning is performed at the highest level of abstraction.
At all levels below this, planning and smoothing are interleaved.

The memory overhead of this approach is around 100k on the largest maps.
An average planning step takes approximately 0.1ms in the engine, which means
that many units can plan in a single time step. Thus, this work represents the
successful conversion of research into a commercial product that will potentially
be enjoyed by millions of people.
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Model Checking on General Purpose Graphics Processors

Damian Sulewski (Universität Bremen, DE)

Given that during the last decade graphics processing units (GPUs) have become
very powerful, we accelerate model checking by executing complex operations on
the graphics card.

A considerable part of the challenges that arise in algorithms for GPUs is
due to the speci�c architectural di�erences between GPUs and CPUs. Therefore,
before describing our approaches in more detail, we give an overview of the
GPU architecture and the Compute Uni�ed Device Architecture (CUDA) [1]
programming model by the manufacturer NVIDIA.

We present an approach for parallel probabilistic model checking on GPU
described in [2]. For this purpose we exploit the fact that some of the basic al-
gorithms for probabilistic model checking rely on matrix vector multiplication.
Since this kind of linear algebraic operations are implemented very e�ciently
on GPUs, the new parallel algorithm can achieve considerable runtime improve-
ments compared to their counterparts on standard architectures.
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The second approach focuses on breadth-�rst search (BFS) to generate the
entire state space for explicit-state model checking using external memory, see [3]
for details. Sorting-based external BFS bares three computational intensive tasks,
all portable to the GPU. Though, our algorithm divides into three stages exe-
cuted on the GPU. First, it tests if the transitions for a set of states are enabled,
followed by generating all their successors in a parallel scan. Finally, it eliminates
duplicates delayed by compressing and sorting large state vector sets.
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Exploiting Transition Locality in Automatic Veri�cation of
Concurrent and Hybrid Systems

Enrico Tronci (Sapienza University of Rome, Italy)

We show experimentally that protocols exhibit transition locality [1]. That is,
with respect to levels of a Breadth�First state space exploration, state transi-
tions tend to be between states belonging to close levels of the transition graph.
We support our claim by measuring transition locality for the set of protocols
included in the Murϕ [2] veri�er distribution.

We present a disk�based veri�cation algorithm that exploits transition lo-
cality to decrease disk read accesses thus reducing the time overhead due to
disk usage [3]. We have implemented our algorithm within the Murϕ veri�er
and call CMurϕ the resulting veri�er. Our experimental results show that our
disk�based veri�cation algorithm is typically more than 10 times faster than pre-
viously proposed disk�based veri�cation algorithms and, even when using 10%
of the memory needed to complete veri�cation, CMurϕ is only between 1.5 and
5.3 times (3 times on average) slower than (RAM) Murϕ with enough memory
to complete the veri�cation task at hand.

Finally, we show how CMurϕ can be extended with �nite precision real num-
bers in order to support formal veri�cation of nonlinear Discrete Time Hybrid
Systems (DTHS) [4]. We show e�ectiveness of the proposed approach by pre-
senting experimental results on formal veri�cation of industrial size nonlinear
deterministic as well as stochastic DTHSs [5].
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The Causal Graph Revisited for Directed Model Checking

Martin Wehrle (Universität Freiburg, DE)

Directed model checking is a well-established technique to tackle the state ex-
plosion problem when the aim is to �nd error states in large systems. In this
approach, the state space traversal is guided through a function that estimates
the distance to nearest error states. States with lower estimates are preferably
expanded during the search. Overall, directed model checking has proved to be
a successful approach. However, its success crucially depends on the applied dis-
tance function to guide the search. The challenge is to develop distance functions
that are e�ciently computable on the one hand and as informative as possible
on the other hand.

In this work, we introduce the causal graph structure to the context of di-
rected model checking [1]. We model systems in terms of parallel processes with
global synchronization. The processes are given as directed labeled graphs, con-
sisting of local states and local transitions. In this model, the causal graph is a
dependency structure that represents how the processes depend on each other.
A process p depends on a process p′ if there might be a need to change a local
state in p′ in order to change a local state in p such that p and p′ can synchronize
on a common synchronization label.
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Based on causal graph analysis, we �rst propose a distance estimation func-
tion for directed model checking. This distance function is an adaptation of the
causal graph heuristic that has �rst been proposed by Helmert in the context
of AI planning [3,2]. The causal graph heuristic estimates distances to global
error states in the parallel system by computing cost estimates for each process
p from the current local state to a nearest local error state. In comparison to
earlier approaches, we take into account the synchronization behaviour of p with
processes on which p depends (i.e., p's predecessors in the causal graph). This
yields a more accurate distance estimate than, e.g., the plain graph distance,
as the change of one local state in p may depend on complex synchronization
behaviour with p's causal predecessors.

Furthermore, we investigate an abstraction technique called safe abstraction
that is guaranteed to preserve error states. The basic idea is to identify processes
of the system that do not depend on any other process on the one hand, and do
not have dead ends on the other hand. Such processes are safe in the following
sense. Abstract error traces π in systems where safe processes are abstracted
away can be extended to concrete error traces in polynomial time, as spurious
transitions in π can only be caused by safe processes. According to the de�nition
of a safe process, the local states needed to resolve the spurious transition are
always reachable.

We have implemented our approaches into the Mcta model checker [4]. The
experimental evaluation shows the practical potential of these techniques on
large and complex industrial case studies. The causal graph heuristic shows
to be competitive with previously proposed distance functions in the context
of directed model checking. Moreover, the model reduction obtained by safe
abstraction leads to strong performance gains when applicable, and needs only
little computation time.
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Hierarchical Adaptive State Space Caching based on Level
Sampling

Anton Wijs (INRIA Rhne-Alpes, FR)

In the past, several attempts have been made to deal with the state space
explosion problem by equipping a search algorithm with a state cache, or by
avoiding collision detection, thereby keeping the state hash table at a �xed
size [1,2,3,5,6,7,8,9,11,12,13,14].

Most of these attempts are tailored speci�cally for depth-�rst search (DFS),
and are often not guaranteed to terminate and/or to exhaustively visit all the
states.

In this paper [10], we propose a general framework of hierarchical caches
which can also be used by breadth-�rst searches (BFS).

Our method, based on an adequate sampling of BFS levels during the traver-
sal, guarantees that the BFS terminates and traverses all transitions of the state
space.

We de�ne several (static or adaptive) con�gurations of hierarchical caches
and we study experimentally their e�ectiveness on benchmark examples of state
spaces and on several communication protocols, using a generic implementation
of the cache framework that we developed within the CADP toolbox [4].
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Maintaining External Memory E�cient Hash Tables

Philipp Woelfel (University of Calgary)

We present randomized algorithms which maintain hash tables e�ciently under
circumstances typical for applications dealing with massive data. Consider a set
S of n keys from a �nite universe U . A hash function h :→ {0, . . . ,m − 1} is
called perfect for S if it is injective on S. If in addition m = |S|, then h is called
minimal perfect.

Fredman, Komlós, and Szemerédi [2] were the �rst to devise an algorithm
which constructs a perfect hash function (with O(n log n) bits) in expected linear
time, and since then minimal perfect hashing has been studied extensively. Pagh
[3] showed how to construct in linear time a minimal perfect hash function which
can be evaluated very e�ciently with simple arithmetics (essentially one or two
multiplications) and by probing only one word in external memory. The hash
function itself can be encoded in (2+ε) ·n · log n bits. Dietzfelbinger and Hagerup
[1] improved Pagh's scheme so that the resulting hash function can be encoded
with (1 + ε) · n · log n bits.

We present a dynamic variant of Pagh's scheme. Using exactly the same hash
functions, we show how to perform updates in expected amortized constant time.
In addition to the (2 + ε) · n · log n bits for encoding of the hash function, for
updates we need an auxiliary data structure which comprises (3 + ε) · n · log n
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bits. We also show that it is possible to reduce the encoding size of the hash
functions and the space for the auxiliary data structure to O(n log log n) bits. In
the dynamic case we obtain a utilization of 1 − ε, for arbitrary small ε > 0. In
the static case we still achieve 100% utilization. For both implicit versions the
corresponding hash functions can be evaluated in constant time and by probing
O(1) consecutive words from external memory.

References

1. M. Dietzfelbinger and T. Hagerup. Simple minimal perfect hashing in less space.
In Proc. of 9th ESA, volume 2161 of LNCS, pp. 109�120. 2001.

2. M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with O(1)
worst case access time. J. of the ACM, 31:538�544, 1984.

3. R. Pagh. Hash and displace: E�cient evaluation of minimal perfect hash functions.
In Proc. of 6th WADS, volume 1663 of LNCS, pp. 49�54, 1999.

Dynamic State-Space Partitioning in External-Memory
Graph Search

Rong Zhou (PARC - Palo Alto, US)

State-of-the-art external-memory graph search algorithms rely on a hash func-
tion, or equivalently, a state-space projection function, that partitions the stored
nodes of the state-space search graph into groups of nodes that are stored as
separate �les on disk. The scalability and e�ciency of the search depends on
properties of the partition: whether the number of unique nodes in a �le always
�ts in RAM, the number of �les into which the nodes of the state-space graph
are partitioned, and how well the partitioning of the state space captures local
structure in the graph. All previous work relies on a static partitioning of the
state space. In this paper, we introduce a method for dynamic partitioning of
the state-space search graph and show that it leads to substantial improvement
of search performance.
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