277 research outputs found

    Advanced Algebraic Concepts for Efficient Multi-Channel Signal Processing

    Get PDF
    Unsere moderne Gesellschaft ist Zeuge eines fundamentalen Wandels in der Art und Weise wie wir mit Technologie interagieren. Geräte werden zunehmend intelligenter - sie verfügen über mehr und mehr Rechenleistung und häufiger über eigene Kommunikationsschnittstellen. Das beginnt bei einfachen Haushaltsgeräten und reicht über Transportmittel bis zu großen überregionalen Systemen wie etwa dem Stromnetz. Die Erfassung, die Verarbeitung und der Austausch digitaler Informationen gewinnt daher immer mehr an Bedeutung. Die Tatsache, dass ein wachsender Anteil der Geräte heutzutage mobil und deshalb batteriebetrieben ist, begründet den Anspruch, digitale Signalverarbeitungsalgorithmen besonders effizient zu gestalten. Dies kommt auch dem Wunsch nach einer Echtzeitverarbeitung der großen anfallenden Datenmengen zugute. Die vorliegende Arbeit demonstriert Methoden zum Finden effizienter algebraischer Lösungen für eine Vielzahl von Anwendungen mehrkanaliger digitaler Signalverarbeitung. Solche Ansätze liefern nicht immer unbedingt die bestmögliche Lösung, kommen dieser jedoch häufig recht nahe und sind gleichzeitig bedeutend einfacher zu beschreiben und umzusetzen. Die einfache Beschreibungsform ermöglicht eine tiefgehende Analyse ihrer Leistungsfähigkeit, was für den Entwurf eines robusten und zuverlässigen Systems unabdingbar ist. Die Tatsache, dass sie nur gebräuchliche algebraische Hilfsmittel benötigen, erlaubt ihre direkte und zügige Umsetzung und den Test unter realen Bedingungen. Diese Grundidee wird anhand von drei verschiedenen Anwendungsgebieten demonstriert. Zunächst wird ein semi-algebraisches Framework zur Berechnung der kanonisch polyadischen (CP) Zerlegung mehrdimensionaler Signale vorgestellt. Dabei handelt es sich um ein sehr grundlegendes Werkzeug der multilinearen Algebra mit einem breiten Anwendungsspektrum von Mobilkommunikation über Chemie bis zur Bildverarbeitung. Verglichen mit existierenden iterativen Lösungsverfahren bietet das neue Framework die Möglichkeit, den Rechenaufwand und damit die Güte der erzielten Lösung zu steuern. Es ist außerdem weniger anfällig gegen eine schlechte Konditionierung der Ausgangsdaten. Das zweite Gebiet, das in der Arbeit besprochen wird, ist die unterraumbasierte hochauflösende Parameterschätzung für mehrdimensionale Signale, mit Anwendungsgebieten im RADAR, der Modellierung von Wellenausbreitung, oder bildgebenden Verfahren in der Medizin. Es wird gezeigt, dass sich derartige mehrdimensionale Signale mit Tensoren darstellen lassen. Dies erlaubt eine natürlichere Beschreibung und eine bessere Ausnutzung ihrer Struktur als das mit Matrizen möglich ist. Basierend auf dieser Idee entwickeln wir eine tensor-basierte Schätzung des Signalraums, welche genutzt werden kann um beliebige existierende Matrix-basierte Verfahren zu verbessern. Dies wird im Anschluss exemplarisch am Beispiel der ESPRIT-artigen Verfahren gezeigt, für die verbesserte Versionen vorgeschlagen werden, die die mehrdimensionale Struktur der Daten (Tensor-ESPRIT), nichzirkuläre Quellsymbole (NC ESPRIT), sowie beides gleichzeitig (NC Tensor-ESPRIT) ausnutzen. Um die endgültige Schätzgenauigkeit objektiv einschätzen zu können wird dann ein Framework für die analytische Beschreibung der Leistungsfähigkeit beliebiger ESPRIT-artiger Algorithmen diskutiert. Verglichen mit existierenden analytischen Ausdrücken ist unser Ansatz allgemeiner, da keine Annahmen über die statistische Verteilung von Nutzsignal und Rauschen benötigt werden und die Anzahl der zur Verfügung stehenden Schnappschüsse beliebig klein sein kann. Dies führt auf vereinfachte Ausdrücke für den mittleren quadratischen Schätzfehler, die Schlussfolgerungen über die Effizienz der Verfahren unter verschiedenen Bedingungen zulassen. Das dritte Anwendungsgebiet ist der bidirektionale Datenaustausch mit Hilfe von Relay-Stationen. Insbesondere liegt hier der Fokus auf Zwei-Wege-Relaying mit Hilfe von Amplify-and-Forward-Relays mit mehreren Antennen, da dieser Ansatz ein besonders gutes Kosten-Nutzen-Verhältnis verspricht. Es wird gezeigt, dass sich die nötige Kanalkenntnis mit einem einfachen algebraischen Tensor-basierten Schätzverfahren gewinnen lässt. Außerdem werden Verfahren zum Finden einer günstigen Relay-Verstärkungs-Strategie diskutiert. Bestehende Ansätze basieren entweder auf komplexen numerischen Optimierungsverfahren oder auf Ad-Hoc-Ansätzen die keine zufriedenstellende Bitfehlerrate oder Summenrate liefern. Deshalb schlagen wir algebraische Ansätze zum Finden der Relayverstärkungsmatrix vor, die von relevanten Systemmetriken inspiriert sind und doch einfach zu berechnen sind. Wir zeigen das algebraische ANOMAX-Verfahren zum Erreichen einer niedrigen Bitfehlerrate und seine Modifikation RR-ANOMAX zum Erreichen einer hohen Summenrate. Für den Spezialfall, in dem die Endgeräte nur eine Antenne verwenden, leiten wir eine semi-algebraische Lösung zum Finden der Summenraten-optimalen Strategie (RAGES) her. Anhand von numerischen Simulationen wird die Leistungsfähigkeit dieser Verfahren bezüglich Bitfehlerrate und erreichbarer Datenrate bewertet und ihre Effektivität gezeigt.Modern society is undergoing a fundamental change in the way we interact with technology. More and more devices are becoming "smart" by gaining advanced computation capabilities and communication interfaces, from household appliances over transportation systems to large-scale networks like the power grid. Recording, processing, and exchanging digital information is thus becoming increasingly important. As a growing share of devices is nowadays mobile and hence battery-powered, a particular interest in efficient digital signal processing techniques emerges. This thesis contributes to this goal by demonstrating methods for finding efficient algebraic solutions to various applications of multi-channel digital signal processing. These may not always result in the best possible system performance. However, they often come close while being significantly simpler to describe and to implement. The simpler description facilitates a thorough analysis of their performance which is crucial to design robust and reliable systems. The fact that they rely on standard algebraic methods only allows their rapid implementation and test under real-world conditions. We demonstrate this concept in three different application areas. First, we present a semi-algebraic framework to compute the Canonical Polyadic (CP) decompositions of multidimensional signals, a very fundamental tool in multilinear algebra with applications ranging from chemistry over communications to image compression. Compared to state-of-the art iterative solutions, our framework offers a flexible control of the complexity-accuracy trade-off and is less sensitive to badly conditioned data. The second application area is multidimensional subspace-based high-resolution parameter estimation with applications in RADAR, wave propagation modeling, or biomedical imaging. We demonstrate that multidimensional signals can be represented by tensors, providing a convenient description and allowing to exploit the multidimensional structure in a better way than using matrices only. Based on this idea, we introduce the tensor-based subspace estimate which can be applied to enhance existing matrix-based parameter estimation schemes significantly. We demonstrate the enhancements by choosing the family of ESPRIT-type algorithms as an example and introducing enhanced versions that exploit the multidimensional structure (Tensor-ESPRIT), non-circular source amplitudes (NC ESPRIT), and both jointly (NC Tensor-ESPRIT). To objectively judge the resulting estimation accuracy, we derive a framework for the analytical performance assessment of arbitrary ESPRIT-type algorithms by virtue of an asymptotical first order perturbation expansion. Our results are more general than existing analytical results since we do not need any assumptions about the distribution of the desired signal and the noise and we do not require the number of samples to be large. At the end, we obtain simplified expressions for the mean square estimation error that provide insights into efficiency of the methods under various conditions. The third application area is bidirectional relay-assisted communications. Due to its particularly low complexity and its efficient use of the radio resources we choose two-way relaying with a MIMO amplify and forward relay. We demonstrate that the required channel knowledge can be obtained by a simple algebraic tensor-based channel estimation scheme. We also discuss the design of the relay amplification matrix in such a setting. Existing approaches are either based on complicated numerical optimization procedures or on ad-hoc solutions that to not perform well in terms of the bit error rate or the sum-rate. Therefore, we propose algebraic solutions that are inspired by these performance metrics and therefore perform well while being easy to compute. For the MIMO case, we introduce the algebraic norm maximizing (ANOMAX) scheme, which achieves a very low bit error rate, and its extension Rank-Restored ANOMAX (RR-ANOMAX) that achieves a sum-rate close to an upper bound. Moreover, for the special case of single antenna terminals we derive the semi-algebraic RAGES scheme which finds the sum-rate optimal relay amplification matrix based on generalized eigenvectors. Numerical simulations evaluate the resulting system performance in terms of bit error rate and system sum rate which demonstrates the effectiveness of the proposed algebraic solutions

    Advanced tensor based signal processing techniques for wireless communication systems and biomedical signal processing

    Get PDF
    Many observed signals in signal processing applications including wireless communications, biomedical signal processing, image processing, and machine learning are multi-dimensional. Tensors preserve the multi-dimensional structure and provide a natural representation of these signals/data. Moreover, tensors provide often an improved identifiability. Therefore, we benefit from using tensor algebra in the above mentioned applications and many more. In this thesis, we present the benefits of utilizing tensor algebra in two signal processing areas. These include signal processing for MIMO (Multiple-Input Multiple-Output) wireless communication systems and biomedical signal processing. Moreover, we contribute to the theoretical aspects of tensor algebra by deriving new properties and ways of computing tensor decompositions. Often, we only have an element-wise or a slice-wise description of the signal model. This representation of the signal model does not reveal the explicit tensor structure. Therefore, the derivation of all tensor unfoldings is not always obvious. Consequently, exploiting the multi-dimensional structure of these models is not always straightforward. We propose an alternative representation of the element-wise multiplication or the slice-wise multiplication based on the generalized tensor contraction operator. Later in this thesis, we exploit this novel representation and the properties of the contraction operator such that we derive the final tensor models. There exist a number of different tensor decompositions that describe different signal models such as the HOSVD (Higher Order Singular Value Decomposition), the CP/PARAFAC (Canonical Polyadic / PARallel FACtors) decomposition, the BTD (Block Term Decomposition), the PARATUCK2 (PARAfac and TUCker2) decomposition, and the PARAFAC2 (PARAllel FACtors2) decomposition. Among these decompositions, the CP decomposition is most widely spread and used. Therefore, the development of algorithms for the efficient computation of the CP decomposition is important for many applications. The SECSI (Semi-Algebraic framework for approximate CP decomposition via SImultaneaous matrix diagonalization) framework is an efficient and robust tool for the calculation of the approximate low-rank CP decomposition via simultaneous matrix diagonalizations. In this thesis, we present five extensions of the SECSI framework that reduce the computational complexity of the original framework and/or introduce constraints to the factor matrices. Moreover, the PARAFAC2 decomposition and the PARATUCK2 decomposition are usually described using a slice-wise notation that can be expressed in terms of the generalized tensor contraction as proposed in this thesis. We exploit this novel representation to derive explicit tensor models for the PARAFAC2 decomposition and the PARATUCK2 decomposition. Furthermore, we use the PARAFAC2 model to derive an ALS (Alternating Least-Squares) algorithm for the computation of the PARAFAC2 decomposition. Moreover, we exploit the novel contraction properties for element wise and slice-wise multiplications to model MIMO multi-carrier wireless communication systems. We show that this very general model can be used to derive the tensor model of the received signal for MIMO-OFDM (Multiple-Input Multiple-Output - Orthogonal Frequency Division Multiplexing), Khatri-Rao coded MIMO-OFDM, and randomly coded MIMO-OFDM systems. We propose the transmission techniques Khatri-Rao coding and random coding in order to impose an additional tensor structure of the transmit signal tensor that otherwise does not have a particular structure. Moreover, we show that this model can be extended to other multi-carrier techniques such as GFDM (Generalized Frequency Division Multiplexing). Utilizing these models at the receiver side, we design several types for receivers for these systems that outperform the traditional matrix based solutions in terms of the symbol error rate. In the last part of this thesis, we show the benefits of using tensor algebra in biomedical signal processing by jointly decomposing EEG (ElectroEncephaloGraphy) and MEG (MagnetoEncephaloGraphy) signals. EEG and MEG signals are usually acquired simultaneously, and they capture aspects of the same brain activity. Therefore, EEG and MEG signals can be decomposed using coupled tensor decompositions such as the coupled CP decomposition. We exploit the proposed coupled SECSI framework (one of the proposed extensions of the SECSI framework) for the computation of the coupled CP decomposition to first validate and analyze the photic driving effect. Moreover, we validate the effects of scull defects on the measurement EEG and MEG signals by means of a joint EEG-MEG decomposition using the coupled SECSI framework. Both applications show that we benefit from coupled tensor decompositions and the coupled SECSI framework is a very practical tool for the analysis of biomedical data.Zahlreiche messbare Signale in verschiedenen Bereichen der digitalen Signalverarbeitung, z.B. in der drahtlosen Kommunikation, im Mobilfunk, biomedizinischen Anwendungen, der Bild- oder akustischen Signalverarbeitung und dem maschinellen Lernen sind mehrdimensional. Tensoren erhalten die mehrdimensionale Struktur und stellen eine natürliche Darstellung dieser Signale/Daten dar. Darüber hinaus bieten Tensoren oft eine verbesserte Trennbarkeit von enthaltenen Signalkomponenten. Daher profitieren wir von der Verwendung der Tensor-Algebra in den oben genannten Anwendungen und vielen mehr. In dieser Arbeit stellen wir die Vorteile der Nutzung der Tensor-Algebra in zwei Bereichen der Signalverarbeitung vor: drahtlose MIMO (Multiple-Input Multiple-Output) Kommunikationssysteme und biomedizinische Signalverarbeitung. Darüber hinaus tragen wir zu theoretischen Aspekten der Tensor-Algebra bei, indem wir neue Eigenschaften und Berechnungsmethoden für die Tensor-Zerlegung ableiten. Oftmals verfügen wir lediglich über eine elementweise oder ebenenweise Beschreibung des Signalmodells, welche nicht die explizite Tensorstruktur zeigt. Daher ist die Ableitung aller Tensor-Unfoldings nicht offensichtlich, wodurch die multidimensionale Struktur dieser Modelle nicht trivial nutzbar ist. Wir schlagen eine alternative Darstellung der elementweisen Multiplikation oder der ebenenweisen Multiplikation auf der Grundlage des generalisierten Tensor-Kontraktionsoperators vor. Weiterhin nutzen wir diese neuartige Darstellung und deren Eigenschaften zur Ableitung der letztendlichen Tensor-Modelle. Es existieren eine Vielzahl von Tensor-Zerlegungen, die verschiedene Signalmodelle beschreiben, wie die HOSVD (Higher Order Singular Value Decomposition), CP/PARAFAC (Canonical Polyadic/ PARallel FACtors) Zerlegung, die BTD (Block Term Decomposition), die PARATUCK2-(PARAfac und TUCker2) und die PARAFAC2-Zerlegung (PARAllel FACtors2). Dabei ist die CP-Zerlegung am weitesten verbreitet und wird findet in zahlreichen Gebieten Anwendung. Daher ist die Entwicklung von Algorithmen zur effizienten Berechnung der CP-Zerlegung von besonderer Bedeutung. Das SECSI (Semi-Algebraic Framework for approximate CP decomposition via Simultaneaous matrix diagonalization) Framework ist ein effizientes und robustes Werkzeug zur Berechnung der approximierten Low-Rank CP-Zerlegung durch simultane Matrixdiagonalisierung. In dieser Arbeit stellen wir fünf Erweiterungen des SECSI-Frameworks vor, welche die Rechenkomplexität des ursprünglichen Frameworks reduzieren bzw. Einschränkungen für die Faktormatrizen einführen. Darüber hinaus werden die PARAFAC2- und die PARATUCK2-Zerlegung in der Regel mit einer ebenenweisen Notation beschrieben, die sich in Form der allgemeinen Tensor-Kontraktion, wie sie in dieser Arbeit vorgeschlagen wird, ausdrücken lässt. Wir nutzen diese neuartige Darstellung, um explizite Tensormodelle für diese beiden Zerlegungen abzuleiten. Darüber hinaus verwenden wir das PARAFAC2-Modell, um einen ALS-Algorithmus (Alternating Least-Squares) für die Berechnung der PARAFAC2-Zerlegungen abzuleiten. Weiterhin nutzen wir die neuartigen Kontraktionseigenschaften für elementweise und ebenenweise Multiplikationen, um MIMO Multi-Carrier-Mobilfunksysteme zu modellieren. Wir zeigen, dass dieses sehr allgemeine Modell verwendet werden kann, um das Tensor-Modell des empfangenen Signals für MIMO-OFDM- (Multiple- Input Multiple-Output - Orthogonal Frequency Division Multiplexing), Khatri-Rao codierte MIMO-OFDM- und zufällig codierte MIMO-OFDM-Systeme abzuleiten. Wir schlagen die Übertragungstechniken der Khatri-Rao-Kodierung und zufällige Kodierung vor, um eine zusätzliche Tensor-Struktur des Sendesignal-Tensors einzuführen, welcher gewöhnlich keine bestimmte Struktur aufweist. Darüber hinaus zeigen wir, dass dieses Modell auf andere Multi-Carrier-Techniken wie GFDM (Generalized Frequency Division Multiplexing) erweitert werden kann. Unter Verwendung dieser Modelle auf der Empfängerseite entwerfen wir verschiedene Typen von Empfängern für diese Systeme, die die traditionellen matrixbasierten Lösungen in Bezug auf die Symbolfehlerrate übertreffen. Im letzten Teil dieser Arbeit zeigen wir die Vorteile der Verwendung von Tensor-Algebra in der biomedizinischen Signalverarbeitung durch die gemeinsame Zerlegung von EEG-(ElectroEncephaloGraphy) und MEG- (MagnetoEncephaloGraphy) Signalen. Diese werden in der Regel gleichzeitig erfasst, wobei sie gemeinsame Aspekte derselben Gehirnaktivität beschreiben. Daher können EEG- und MEG-Signale mit gekoppelten Tensor-Zerlegungen wie der gekoppelten CP Zerlegung analysiert werden. Wir nutzen das vorgeschlagene gekoppelte SECSI-Framework (eine der vorgeschlagenen Erweiterungen des SECSI-Frameworks) für die Berechnung der gekoppelten CP Zerlegung, um zunächst den photic driving effect zu validieren und zu analysieren. Darüber hinaus validieren wir die Auswirkungen von Schädeldefekten auf die Messsignale von EEG und MEG durch eine gemeinsame EEG-MEG-Zerlegung mit dem gekoppelten SECSI-Framework. Beide Anwendungen zeigen, dass wir von gekoppelten Tensor-Zerlegungen profitieren, wobei die Methoden des gekoppelten SECSI-Frameworks erfolgreich zur Analyse biomedizinischer Daten genutzt werden können

    EcoICA: Skewness-based ICA via Eigenvectors of Cumulant Operator

    Get PDF
    Independent component analysis (ICA) is an important unsupervised learning method. Most popular ICA methods use kurtosis as a metric of non-Gaussianity to maximize, such as FastICA and JADE. However, their assumption of kurtosic sources may not always be satisfied in practice. For weak-kurtosic but skewed sources, kurtosis-based methods could fail while skewness-based methods seem more promising, where skewness is another non-Gaussianity metric measuring the nonsymmetry of signals. Partly due to the common assumption of signal symmetry, skewness-based ICA has not been systematically studied in spite of some existing works. In this paper, we take a systematic approach to develop EcoICA, a new skewness-based ICA method for weak-kurtosic but skewed sources. Specifically, we design a new cumulant operator, define its eigenvalues and eigenvectors, reveal their connections with the ICA model to formulate the EcoICA problem, and use Jacobi method to solve it. Experiments on both synthetic and real data show the superior performance of EcoICA over existing kurtosis-based and skewness-based methods for skewed sources. In particular, EcoICA is less sensitive to sample size, noise, and outlier than other methods. Studies on face recognition further confirm the usefulness of EcoICA in classification. Keywords: Independent Component Analysis, Cumulant Operator, Skewness, Eigenvector

    Robust Iterative Fitting of Multilinear Models

    Get PDF

    Linear Transmit-Receive Strategies for Multi-user MIMO Wireless Communications

    Get PDF
    Die Notwendigkeit zur Unterdrueckung von Interferenzen auf der einen Seite und zur Ausnutzung der durch Mehrfachzugriffsverfahren erzielbaren Gewinne auf der anderen Seite rueckte die raeumlichen Mehrfachzugriffsverfahren (Space Division Multiple Access, SDMA) in den Fokus der Forschung. Ein Vertreter der raeumlichen Mehrfachzugriffsverfahren, die lineare Vorkodierung, fand aufgrund steigender Anzahl an Nutzern und Antennen in heutigen und zukuenftigen Mobilkommunikationssystemen besondere Beachtung, da diese Verfahren das Design von Algorithmen zur Vorcodierung vereinfachen. Aus diesem Grund leistet diese Dissertation einen Beitrag zur Entwicklung linearer Sende- und Empfangstechniken fuer MIMO-Technologie mit mehreren Nutzern. Zunaechst stellen wir ein Framework zur Approximation des Datendurchsatzes in Broadcast-MIMO-Kanaelen mit mehreren Nutzern vor. In diesem Framework nehmen wir das lineare Vorkodierverfahren regularisierte Blockdiagonalisierung (RBD) an. Durch den Vergleich von Dirty Paper Coding (DPC) und linearen Vorkodieralgorithmen (z.B. Zero Forcing (ZF) und Blockdiagonalisierung (BD)) ist es uns moeglich, untere und obere Schranken fuer den Unterschied bezueglich Datenraten und bezueglich Leistung zwischen beiden anzugeben. Im Weiteren entwickeln wir einen Algorithmus fuer koordiniertes Beamforming (Coordinated Beamforming, CBF), dessen Loesung sich in geschlossener Form angeben laesst. Dieser CBF-Algorithmus basiert auf der SeDJoCo-Transformation und loest bisher vorhandene Probleme im Bereich CBF. Im Anschluss schlagen wir einen iterativen CBF-Algorithmus namens FlexCoBF (flexible coordinated beamforming) fuer MIMO-Broadcast-Kanaele mit mehreren Nutzern vor. Im Vergleich mit bis dato existierenden iterativen CBF-Algorithmen kann als vielversprechendster Vorteil die freie Wahl der linearen Sende- und Empfangsstrategie herausgestellt werden. Das heisst, jede existierende Methode der linearen Vorkodierung kann als Sendestrategie genutzt werden, waehrend die Strategie zum Empfangsbeamforming frei aus MRC oder MMSE gewaehlt werden darf. Im Hinblick auf Szenarien, in denen Mobilfunkzellen in Clustern zusammengefasst sind, erweitern wir FlexCoBF noch weiter. Hier wurde das Konzept der koordinierten Mehrpunktverbindung (Coordinated Multipoint (CoMP) transmission) integriert. Zuletzt stellen wir drei Moeglichkeiten vor, Kanalzustandsinformationen (Channel State Information, CSI) unter verschiedenen Kanalumstaenden zu erlangen. Die Qualitaet der Kanalzustandsinformationen hat einen starken Einfluss auf die Guete des Uebertragungssystems. Die durch unsere neuen Algorithmen erzielten Verbesserungen haben wir mittels numerischer Simulationen von Summenraten und Bitfehlerraten belegt.In order to combat interference and exploit large multiplexing gains of the multi-antenna systems, a particular interest in spatial division multiple access (SDMA) techniques has emerged. Linear precoding techniques, as one of the SDMA strategies, have obtained more attention due to the fact that an increasing number of users and antennas involved into the existing and future mobile communication systems requires a simplification of the precoding design. Therefore, this thesis contributes to the design of linear transmit and receive strategies for multi-user MIMO broadcast channels in a single cell and clustered multiple cells. First, we present a throughput approximation framework for multi-user MIMO broadcast channels employing regularized block diagonalization (RBD) linear precoding. Comparing dirty paper coding (DPC) and linear precoding algorithms (e.g., zero forcing (ZF) and block diagonalization (BD)), we further quantify lower and upper bounds of the rate and power offset between them as a function of the system parameters such as the number of users and antennas. Next, we develop a novel closed-form coordinated beamforming (CBF) algorithm (i.e., SeDJoCo based closed-form CBF) to solve the existing open problem of CBF. Our new algorithm can support a MIMO system with an arbitrary number of users and transmit antennas. Moreover, the application of our new algorithm is not only for CBF, but also for blind source separation (BSS), since the same mathematical model has been used in BSS application.Then, we further propose a new iterative CBF algorithm (i.e., flexible coordinated beamforming (FlexCoBF)) for multi-user MIMO broadcast channels. Compared to the existing iterative CBF algorithms, the most promising advantage of our new algorithm is that it provides freedom in the choice of the linear transmit and receive beamforming strategies, i.e., any existing linear precoding method can be chosen as the transmit strategy and the receive beamforming strategy can be flexibly chosen from MRC or MMSE receivers. Considering clustered multiple cell scenarios, we extend the FlexCoBF algorithm further and introduce the concept of the coordinated multipoint (CoMP) transmission. Finally, we present three strategies for channel state information (CSI) acquisition regarding various channel conditions and channel estimation strategies. The CSI knowledge is required at the base station in order to implement SDMA techniques. The quality of the obtained CSI heavily affects the system performance. The performance enhancement achieved by our new strategies has been demonstrated by numerical simulation results in terms of the system sum rate and the bit error rate

    Diagonalisation conjointe de tenseurs d'ordre 3 Application à la séparation de signaux non-circulaires

    Get PDF
    On considère la diagonalisation conjointe de tenseurs complexes d'ordre trois symétriques. Nous proposons un algorithme de type Jacobi pour la réaliser et la solution optimale dans le cas 2 × 2 est donnée. Nous illustrons le lien entre cette décomposition conjointe et la séparation de sources non circulaires par l'intermédiaire d'une fonction de contraste. Des simulations illustrent l'approche proposée

    Algorithmes pour la diagonalisation conjointe de tenseurs sans contrainte unitaire. Application à la séparation MIMO de sources de télécommunications numériques

    Get PDF
    This thesis develops joint diagonalization of matrices and third-order tensors methods for MIMO source separation in the field of digital telecommunications. After a state of the art, the motivations and the objectives are presented. Then the joint diagonalisation and the blind source separation issues are defined and a link between both fields is established. Thereafter, five Jacobi-like iterative algorithms based on an LU parameterization are developed. For each of them, we propose to derive the diagonalization matrix by optimizing an inverse criterion. Two ways are investigated : minimizing the criterion in a direct way or assuming that the elements from the considered set are almost diagonal. Regarding the parameters derivation, two strategies are implemented : one consists in estimating each parameter independently, the other consists in the independent derivation of couple of well-chosen parameters. Hence, we propose three algorithms for the joint diagonalization of symmetric complex matrices or hermitian ones. The first one relies on searching for the roots of the criterion derivative, the second one relies on a minor eigenvector research and the last one relies on a gradient descent method enhanced by computation of the optimal adaptation step. In the framework of joint diagonalization of symmetric, INDSCAL or non symmetric third-order tensors, we have developed two algorithms. For each of them, the parameters derivation is done by computing the roots of the considered criterion derivative. We also show the link between the joint diagonalization of a third-order tensor set and the canonical polyadic decomposition of a fourth-order tensor. We confront both methods through numerical simulations. The good behavior of the proposed algorithms is illustrated by means of computing simulations. Finally, they are applied to the source separation of digital telecommunication signals.Cette thèse développe des méthodes de diagonalisation conjointe de matrices et de tenseurs d’ordre trois, et son application à la séparation MIMO de sources de télécommunications numériques. Après un état, les motivations et objectifs de la thèse sont présentés. Les problèmes de la diagonalisation conjointe et de la séparation de sources sont définis et un lien entre ces deux domaines est établi. Par la suite, plusieurs algorithmes itératifs de type Jacobi reposant sur une paramétrisation LU sont développés. Pour chacun des algorithmes, on propose de déterminer les matrices permettant de diagonaliser l’ensemble considéré par l’optimisation d’un critère inverse. On envisage la minimisation du critère selon deux approches : la première, de manière directe, et la seconde, en supposant que les éléments de l’ensemble considéré sont quasiment diagonaux. En ce qui concerne l’estimation des différents paramètres du problème, deux stratégies sont mises en œuvre : l’une consistant à estimer tous les paramètres indépendamment et l’autre reposant sur l’estimation indépendante de couples de paramètres spécifiquement choisis. Ainsi, nous proposons trois algorithmes pour la diagonalisation conjointe de matrices complexes symétriques ou hermitiennes et deux algorithmes pour la diagonalisation conjointe d’ensembles de tenseurs symétriques ou non-symétriques ou admettant une décomposition INDSCAL. Nous montrons aussi le lien existant entre la diagonalisation conjointe de tenseurs d’ordre trois et la décomposition canonique polyadique d’un tenseur d’ordre quatre, puis nous comparons les algorithmes développés à différentes méthodes de la littérature. Le bon comportement des algorithmes proposés est illustré au moyen de simulations numériques. Puis, ils sont validés dans le cadre de la séparation de sources de télécommunications numériques

    Tensor Analysis and Fusion of Multimodal Brain Images

    Get PDF
    Current high-throughput data acquisition technologies probe dynamical systems with different imaging modalities, generating massive data sets at different spatial and temporal resolutions posing challenging problems in multimodal data fusion. A case in point is the attempt to parse out the brain structures and networks that underpin human cognitive processes by analysis of different neuroimaging modalities (functional MRI, EEG, NIRS etc.). We emphasize that the multimodal, multi-scale nature of neuroimaging data is well reflected by a multi-way (tensor) structure where the underlying processes can be summarized by a relatively small number of components or "atoms". We introduce Markov-Penrose diagrams - an integration of Bayesian DAG and tensor network notation in order to analyze these models. These diagrams not only clarify matrix and tensor EEG and fMRI time/frequency analysis and inverse problems, but also help understand multimodal fusion via Multiway Partial Least Squares and Coupled Matrix-Tensor Factorization. We show here, for the first time, that Granger causal analysis of brain networks is a tensor regression problem, thus allowing the atomic decomposition of brain networks. Analysis of EEG and fMRI recordings shows the potential of the methods and suggests their use in other scientific domains.Comment: 23 pages, 15 figures, submitted to Proceedings of the IEE

    Geometric deep learning: going beyond Euclidean data

    Get PDF
    Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them. Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field

    Advanced array signal processing algorithms for multi-dimensional parameter estimation

    Get PDF
    Multi-dimensional high-resolution parameter estimation is a fundamental problem in a variety of array signal processing applications, including radar, mobile communications, multiple-input multiple-output (MIMO) channel estimation, and biomedical imaging. The objective is to estimate the frequency parameters of noise-corrupted multi-dimensional harmonics that are sampled on a multi-dimensional grid. Among the proposed parameter estimation algorithms to solve this problem, multi-dimensional (R-D) ESPRIT-type algorithms have been widely used due to their computational efficiency and their simplicity. Their performance in various scenarios has been objectively evaluated by means of an analytical performance assessment framework. Recently, a relatively new class of parameter estimators based on sparse signal reconstruction has gained popularity due to their robustness under challenging conditions such as a small sample size or strong signal correlation. A common approach towards further improving the performance of parameter estimation algorithms is to exploit prior knowledge on the structure of the signals. In this thesis, we develop enhanced versions of R-D ESPRIT-type algorithms and the relatively new class of sparsity-based parameter estimation algorithms by exploiting the multi-dimensional structure of the signals and the statistical properties of strictly non-circular (NC) signals. First, we derive analytical expressions for the gain from forward-backward averaging and tensor-based processing in R-D ESPRIT-type and R-D Tensor-ESPRIT-type algorithms for the special case of two sources. This is accomplished by simplifying the generic analytical MSE expressions from the performance analysis of R-D ESPRIT-type algorithms. The derived expressions allow us to identify the parameter settings, e.g., the number of sensors, the signal correlation, and the source separation, for which both gains are most pronounced or no gain is achieved. Second, we propose the generalized least squares (GLS) algorithm to solve the overdetermined shift invariance equation in R-D ESPRIT-type algorithms. GLS directly incorporates the statistics of the subspace estimation error into the shift invariance solution through its covariance matrix, which is found via a first-order perturbation expansion. To objectively assess the estimation accuracy, we derive performance analysis expressions for the mean square error (MSE) of GLS-based ESPRIT-type algorithms, which are asymptotic in the effective SNR, i.e., the results become exact for a high SNR or a small sample size. Based on the performance analysis, we show that the simplified MSE expressions of GLS-based 1-D ESPRIT-type algorithms for a single source and two sources can be transformed into the corresponding Cramer-Rao bound (CRB) expressions, which provide a lower limit on the estimation error. Thereby, ESPRIT-type algorithms can become asymptotically efficient, i.e., they asymptotically achieve the CRB. Numerical simulations show that this can also be the case for more than two sources. In the third contribution, we derive matrix-based and tensor-based R-D NC ESPRIT-type algorithms for multi-dimensional strictly non-circular signals, where R-D NC Tensor-ESPRIT-type algorithms exploit both the multi-dimensional structure and the strictly non-circular structure of the signals. Exploiting the NC signal structure by means of a preprocessing step leads to a virtual doubling of the original sensor array, which provides an improved estimation accuracy and doubles the number of resolvable signals. We derive an analytical performance analysis and compute simplified MSE expressions for a single source and two sources. These expressions are used to analytically compute the NC gain for these cases, which has so far only been studied via Monte-Carlo simulations. We additionally consider spatial smoothing preprocessing for R-D ESPRIT-type algorithms, which has been widely used to improve the estimation performance for highly correlated signals or a small sample size. Once more, we derive performance analysis expressions for R-D ESPRIT-type algorithms and their corresponding NC versions with spatial smoothing and derive the optimal number of subarrays for spatial smoothing that minimizes the MSE for a single source. In the next part, we focus on the relatively new concept of parameter estimation via sparse signal reconstruction (SSR), in which the sparsity of the received signal power spectrum in the spatio-temporal domain is exploited. We develop three NC SSR-based parameter estimation algorithms for strictly noncircular sources and show that the benefits of exploiting the signals’ NC structure can also be achieved via sparse reconstruction. We develop two grid-based NC SSR algorithms with a low-complexity off-grid estimation procedure, and a gridless NC SSR algorithm based on atomic norm minimization. As the final contribution of this thesis, we derive the deterministic R-D NC CRB for strictly non-circular sources, which serves as a benchmark for the presented R-D NC ESPRIT-type algorithms and the NC SSR-based parameter estimation algorithms. We show for the special cases of, e.g., full coherence, a single snapshot, or a single strictly non-circular source, that the deterministic R-D NC CRB reduces to the existing deterministic R-D CRB for arbitrary signals. Therefore, no NC gain can be achieved in these cases. For the special case of two closely-spaced NC sources, we simplify the NC CRB expression and compute the NC gain for two closely-spaced NC signals. Finally, its behavior in terms of the physical parameters is studied to determine the parameter settings that provide the largest NC gain.Die hochauflösende Parameterschätzung für mehrdimensionale Signale findet Anwendung in vielen Bereichen der Signalverarbeitung in Mehrantennensystemen. Zu den Anwendungsgebieten zählen beispielsweise Radar, die Mobilkommunikation, die Kanalschätzung in multiple-input multiple-output (MIMO)-Systemen und bildgebende Verfahren in der Biosignalverarbeitung. In letzter Zeit sind eine Vielzahl von Algorithmen zur Parameterschätzung entwickelt worden, deren Schätzgenauigkeit durch eine analytische Beschreibung der Leistungsfähigkeit objektiv bewertet werden kann. Eine verbreitete Methode zur Verbesserung der Schätzgenauigkeit von Parameterschätzverfahren ist die Ausnutzung von Vorwissen bezüglich der Signalstruktur. In dieser Arbeit werden mehrdimensionale ESPRIT-Verfahren als Beispiel für Unterraum-basierte Verfahren entwickelt und analysiert, die explizit die mehrdimensionale Signalstruktur mittels Tensor-Signalverarbeitung ausnutzt und die statistischen Eigenschaften von nicht-zirkulären Signalen einbezieht. Weiterhin werden neuartige auf Signalrekonstruktion basierende Algorithmen vorgestellt, die die nicht-zirkuläre Signalstruktur bei der Rekonstruktion ausnutzen. Die vorgestellten Verfahren ermöglichen eine deutlich verbesserte Schätzgüte und verdoppeln die Anzahl der auflösbaren Signale. Die Vielzahl der Forschungsbeiträge in dieser Arbeit setzt sich aus verschiedenen Teilen zusammen. Im ersten Teil wird die analytische Beschreibung der Leistungsfähigkeit von Matrix-basierten und Tensor-basierten ESPRIT-Algorithmen betrachtet. Die Tensor-basierten Verfahren nutzen explizit die mehrdimensionale Struktur der Daten aus. Es werden für beide Algorithmenarten vereinfachte analytische Ausdrücke für den mittleren quadratischen Schätzfehler für zwei Signalquellen hergeleitet, die lediglich von den physikalischen Parametern, wie zum Beispiel die Anzahl der Antennenelemente, das Signal-zu-Rausch-Verhältnis, oder die Anzahl der Messungen, abhängen. Ein Vergleich dieser Ausdrücke ermöglicht die Berechnung einfacher Ausdrücke für den Schätzgenauigkeitsgewinn durch den forward-backward averaging (FBA)-Vorverarbeitungsschritt und die Tensor-Signalverarbeitung, die die analytische Abhängigkeit von den physikalischen Parametern enthalten. Im zweiten Teil entwickeln wir einen neuartigen general least squares (GLS)-Ansatz zur Lösung der Verschiebungs-Invarianz-Gleichung, die die Grundlage der ESPRIT-Algorithmen darstellt. Der neue Lösungsansatz berücksichtigt die statistische Beschreibung des Fehlers bei der Unterraumschätzung durch dessen Kovarianzmatrix und ermöglicht unter bestimmten Annahmen eine optimale Lösung der Invarianz-Gleichung. Mittels einer Performanzanalyse der GLS-basierten ESPRIT-Verfahren und der Vereinfachung der analytischen Ausdrücke für den Schätzfehler für eine Signalquelle und zwei zeitlich unkorrelierte Signalquellen wird gezeigt, dass die Cramer-Rao-Schranke, eine untere Schranke für die Varianz eines Schätzers, erreicht werden kann. Im nächsten Teil werden Matrix-basierte und Tensor-basierte ESPRIT-Algorithmen für nicht-zirkuläre Signalquellen vorgestellt. Unter Ausnutzung der Signalstruktur gelingt es, die Schätzgenauigkeit zu erhöhen und die doppelte Anzahl an Quellen aufzulösen. Dabei ermöglichen die vorgeschlagenen Tensor-ESPRIT-Verfahren sogar die gleichzeitige Ausnutzung der mehrdimensionalen Signalstruktur und der nicht-zirkuläre Signalstruktur. Die Leistungsfähigkeit dieser Verfahren wird erneut durch eine analytische Beschreibung objektiv bewertet und Spezialfälle für eine und zwei Quellen betrachtet. Es zeigt sich, dass für eine Quelle keinerlei Gewinn durch die nicht-zirkuläre Struktur erzielen lässt. Für zwei nicht-zirkuläre Quellen werden vereinfachte Ausdrücke für den Gewinn sowohl im Matrixfall also auch im Tensorfall hergeleitet und die Abhängigkeit der physikalischen Parameter analysiert. Sind die Signale stark korreliert oder ist die Anzahl der Messdaten sehr gering, kann der spatial smoothing-Vorverarbeitungsschritt mit den verbesserten ESPRIT-Verfahren kombiniert werden. Anhand der Performanzanalyse wird die Anzahl der Mittellungen für das spatial smoothing-Verfahren analytisch für eine Quelle bestimmt, die den Schätzfehler minimiert. Der nächste Teil befasst sich mit einer vergleichsweise neuen Klasse von Parameterschätzverfahren, die auf der Rekonstruktion überlagerter dünnbesetzter Signale basiert. Als Vorteil gegenüber den Algorithmen, die eine Signalunterraumschätzung voraussetzen, sind die Rekonstruktionsverfahren verhältnismäßig robust im Falle einer geringen Anzahl zeitlicher Messungen oder einer starken Korrelation der Signale. In diesem Teil der vorliegenden Arbeit werden drei solcher Verfahren entwickelt, die bei der Rekonstruktion zusätzlich die nicht-zirkuläre Signalstruktur ausnutzen. Dadurch kann auch für diese Art von Verfahren eine höhere Schätzgenauigkeit erreicht werden und eine höhere Anzahl an Signalen rekonstruiert werden. Im letzten Kapitel der Arbeit wird schließlich die Cramer-Rao-Schranke für mehrdimensionale nicht-zirkuläre Signale hergeleitet. Sie stellt eine untere Schranke für den Schätzfehler aller Algorithmen dar, die speziell für die Ausnutzung dieser Signalstruktur entwickelt wurden. Im Vergleich zur bekannten Cramer-Rao-Schranke für beliebige Signale, zeigt sich, dass im Fall von zeitlich kohärenten Signalen, für einen Messvektor oder für eine Quelle, beide Schranken äquivalent sind. In diesen Fällen kann daher keine Verbesserung der Schätzgüte erzielt werden. Zusätzlich wird die Cramer-Rao-Schranke für zwei benachbarte nicht-zirkuläre Signalquellen vereinfacht und der maximal mögliche Gewinn in Abhängigkeit der physikalischen Parameter analytisch ermittelt. Dieser Ausdruck gilt als Maßstab für den erzielbaren Gewinn aller Parameterschätzverfahren für zwei nicht-zirkuläre Signalquellen
    • …
    corecore