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Abstract

Many observed signals in signal processing applications including wireless communications, biomed-

ical signal processing, image processing, and machine learning are multi-dimensional. Tensors pre-

serve the multi-dimensional structure and provide a natural representation of these signals/data.

Moreover, tensors provide often an improved identifiability. Therefore, we benefit from using tensor

algebra in the above mentioned applications and many more. In this thesis, we present the ben-

efits of utilizing tensor algebra in two signal processing areas. These include signal processing for

MIMO (Multiple-Input Multiple-Output) wireless communication systems and biomedical signal

processing. Moreover, we contribute to the theoretical aspects of tensor algebra by deriving new

properties and ways of computing tensor decompositions.

Often, we only have an element-wise or a slice-wise description of the signal model. This repre-

sentation of the signal model does not reveal the explicit tensor structure. Therefore, the derivation

of all tensor unfoldings is not always obvious. Consequently, exploiting the multi-dimensional struc-

ture of these models is not always straightforward. We propose an alternative representation of the

element-wise multiplication or the slice-wise multiplication based on the generalized tensor con-

traction operator. Later in this thesis, we exploit this novel representation and the properties of

the contraction operator such that we derive the final tensor models.

There exist a number of different tensor decompositions that describe different signal models

such as the HOSVD (Higher Order Singular Value Decomposition), the CP/PARAFAC (Canon-

ical Polyadic / PARallel FACtors) decomposition, the BTD (Block Term Decomposition), the

PARATUCK2 (PARAfac and TUCker2) decomposition, and the PARAFAC2 (PARAllel FAC-

tors2) decomposition. Among these decompositions, the CP decomposition is most widely spread

and used. Therefore, the development of algorithms for the efficient computation of the CP decom-

position is important for many applications. The SECSI (Semi-Algebraic framework for approxi-

mate CP decomposition via SImultaneaous matrix diagonalization) framework is an efficient and

robust tool for the calculation of the approximate low-rank CP decomposition via simultaneous

matrix diagonalizations. In this thesis, we present five extensions of the SECSI framework that

reduce the computational complexity of the original framework and/or introduce constraints to the

factor matrices. Moreover, the PARAFAC2 decomposition and the PARATUCK2 decomposition

are usually described using a slice-wise notation that can be expressed in terms of the generalized

tensor contraction as proposed in this thesis. We exploit this novel representation to derive explicit

tensor models for the PARAFAC2 decomposition and the PARATUCK2 decomposition. Further-

more, we use the PARAFAC2 model to derive an ALS (Alternating Least-Squares) algorithm for

the computation of the PARAFAC2 decomposition.

Moreover, we exploit the novel contraction properties for element-wise and slice-wise multiplica-

tions to model MIMOmulti-carrier wireless communication systems. We show that this very general
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model can be used to derive the tensor model of the received signal for MIMO-OFDM (Multiple-

Input Multiple-Output - Orthogonal Frequency Division Multiplexing), Khatri-Rao coded MIMO-

OFDM, and randomly coded MIMO-OFDM systems. We propose the transmission techniques

Khatri-Rao coding and random coding in order to impose an additional tensor structure of the

transmit signal tensor that otherwise does not have a particular structure. Moreover, we show

that this model can be extended to other multi-carrier techniques such as GFDM (Generalized Fre-

quency Division Multiplexing). Utilizing these models at the receiver side, we design several types

for receivers for these systems that outperform the traditional matrix based solutions in terms of

the symbol error rate.

In the last part of this thesis, we show the benefits of using tensor algebra in biomedical sig-

nal processing by jointly decomposing EEG (ElectroEncephaloGraphy) and MEG (MagnetoEn-

cephaloGraphy) signals. EEG and MEG signals are usually acquired simultaneously, and they

capture aspects of the same brain activity. Therefore, EEG and MEG signals can be decomposed

using coupled tensor decompositions such as the coupled CP decomposition. We exploit the pro-

posed coupled SECSI framework (one of the proposed extensions of the SECSI framework) for the

computation of the coupled CP decomposition to first validate and analyze the photic driving effect.

Moreover, we validate the effects of skull defects on the measurement EEG and MEG signals by

means of a joint EEG-MEG decomposition using the coupled SECSI framework. Both applications

show that we benefit from coupled tensor decompositions and the coupled SECSI framework is a

very practical tool for the analysis of biomedical data.

iv



Zusammenfassung

Zahlreiche messbare Signale in verschiedenen Bereichen der digitalen Signalverarbeitung, z.B. in der

drahtlosen Kommunikation, im Mobilfunk, biomedizinischen Anwendungen, der Bild- oder akusti-

schen Signalverarbeitung und dem maschinelles Lernen sind mehrdimensional. Tensoren erhalten

die mehrdimensionale Struktur und stellen eine natürliche Darstellung dieser Signale/Daten dar.

Darüber hinaus bieten Tensoren oft eine verbesserte Trennbarkeit von enthaltenen Signalkomponen-

ten. Daher profitieren wir von der Verwendung der Tensor-Algebra in den oben genannten Anwen-

dungen und vielen mehr. In dieser Arbeit stellen wir die Vorteile der Nutzung der Tensor-Algebra

in zwei Bereichen der Signalverarbeitung vor: drahtlose MIMO (Multiple-Input Multiple-Output)

Kommunikationssysteme und biomedizinische Signalverarbeitung. Darüber hinaus tragen wir zu

theoretischen Aspekten der Tensor-Algebra bei, indem wir neue Eigenschaften und Berechnungs-

methoden für die Tensor-Zerlegung ableiten.

Oftmals verfügen wir lediglich über eine elementweise oder ebenenweise Beschreibung des Si-

gnalmodells, welche nicht die explizite Tensorstruktur zeigt. Daher ist die Ableitung aller Tensor-

Unfoldings nicht offensichtlich, wodurch die multidimensionale Struktur dieser Modelle nicht trivial

nutzbar ist. Wir schlagen eine alternative Darstellung der elementweisen Multiplikation oder der

ebenenweisen Multiplikation auf der Grundlage des generalisierten Tensor-Kontraktionsoperators

vor. Weiterhin nutzen wir diese neuartige Darstellung und deren Eigenschaften zur Ableitung der

letztendlichen Tensor-Modelle.

Es existieren eine Vielzahl von Tensor-Zerlegungen, die verschiedene Signalmodelle beschreiben,

wie die HOSVD (Higher Order Singular Value Decomposition), CP/PARAFAC (Canonical Po-

lyadic/PARallel FACtors) Zerlegung, die BTD (Block Term Decomposition), die PARATUCK2-

(PARAfac und TUCker2) und die PARAFAC2-Zerlegung (PARAllel FACtors2). Dabei ist die CP-

Zerlegung am weitesten verbreitet und wird findet in zahlreichen Gebieten Anwendung. Daher ist

die Entwicklung von Algorithmen zur effizienten Berechnung der CP-Zerlegung von besonderer Be-

deutung. Das SECSI (Semi-Algebraic Framework for approximate CP decomposition via SImulta-

neaous matrix diagonalization) Framework ist ein effizientes und robustes Werkzeug zur Berechnung

der approximierten Low-Rank CP-Zerlegung durch simultane Matrixdiagonalisierung. In dieser Ar-

beit stellen wir fünf Erweiterungen des SECSI-Frameworks vor, welche die Rechenkomplexität des

ursprünglichen Frameworks reduzieren bzw. Einschränkungen für die Faktormatrizen einführen.

Darüber hinaus werden die PARAFAC2- und die PARATUCK2-Zerlegung in der Regel mit einer

ebenenweisen Notation beschrieben, die sich in Form der allgemeinen Tensor-Kontraktion, wie sie

in dieser Arbeit vorgeschlagen wird, ausdrücken lässt. Wir nutzen diese neuartige Darstellung, um

explizite Tensormodelle für diese beiden Zerlegungen abzuleiten. Darüber hinaus verwenden wir das

PARAFAC2-Modell, um einen ALS-Algorithmus (Alternating Least-Squares) für die Berechnung

der PARAFAC2-Zerlegungen abzuleiten.
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Weiterhin nutzen wir die neuartigen Kontraktionseigenschaften für elementweise und ebenen-

weise Multiplikationen, um MIMO Multi-Carrier-Mobilfunksysteme zu modellieren. Wir zeigen,

dass dieses sehr allgemeine Modell verwendet werden kann, um das Tensor-Modell des empfange-

nen Signals für MIMO-OFDM- (Multiple- Input Multiple-Output - Orthogonal Frequency Division

Multiplexing), Khatri-Rao codierte MIMO-OFDM- und zufällig codierte MIMO-OFDM-Systeme

abzuleiten. Wir schlagen die Übertragungstechniken der Khatri-Rao-Kodierung und zufällige Ko-

dierung vor, um eine zusätzliche Tensor-Struktur des Sendesignal-Tensors einzuführen, welcher

gewöhnlich keine bestimmte Struktur aufweist. Darüber hinaus zeigen wir, dass dieses Modell auf

andere Multi-Carrier-Techniken wie GFDM (Generalized Frequency Division Multiplexing) erwei-

tert werden kann. Unter Verwendung dieser Modelle auf der Empfängerseite entwerfen wir verschie-

dene Typen von Empfängern für diese Systeme, die die traditionellen matrixbasierten Lösungen in

Bezug auf die Symbolfehlerrate übertreffen.

Im letzten Teil dieser Arbeit zeigen wir die Vorteile der Verwendung von Tensor-Algebra in der

biomedizinischen Signalverarbeitung durch die gemeinsame Zerlegung von EEG- (ElectroEncepha-

loGraphy) und MEG- (MagnetoEncephaloGraphy) Signalen. Diese werden in der Regel gleichzeitig

erfasst, wobei sie gemeinsame Aspekte derselben Gehirnaktivität beschreiben. Daher können EEG-

und MEG-Signale mit gekoppelten Tensor-Zerlegungen wie der gekoppelten CP-Zerlegung analy-

siert werden. Wir nutzen das vorgeschlagene gekoppelte SECSI-Framework (eine der vorgeschla-

genen Erweiterungen des SECSI-Frameworks) für die Berechnung der gekoppelten CP-Zerlegung,

um zunächst den photic driving effect zu validieren und zu analysieren. Darüber hinaus validieren

wir die Auswirkungen von Schädeldefekten auf die Messsignale von EEG und MEG durch eine

gemeinsame EEG-MEG-Zerlegung mit dem gekoppelten SECSI-Framework. Beide Anwendungen

zeigen, dass wir von gekoppelten Tensor-Zerlegungen profitieren, wobei die Methoden des gekop-

pelten SECSI-Frameworks erfolgreich zur Analyse biomedizinischer Daten genutzt werden können.
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Chapter 1

Introduction and scope of the thesis

1.1 Motivation and state of the art

Tensors have been introduced for the first time at the end of the 19-th century and have been

mainly used in differential calculus and physics [Com14]. At that time, the concept of tensors

was not widely utilized because of the abstract tensor definition that tensors represent a mapping

from one linear space to another, whose coordinates transform multi-linearly under a change of

bases [Com14]. Later, this definition was simplified by considering multi-dimensional coordinate

systems. With respect to a multi-dimensional coordinate system, a tensor is a multi-dimensional

array of numbers whose dimensions correspond to the dimensions of the coordinate system [Com14].

Moreover, the concept of tensor decompositions has been introduced at the beginning of the 20-th

century [KB09]. A tensor decomposition decomposes a given tensor into its elementary underly-

ing components. Depending on the structure and the properties of these underlying components,

different tensor decompositions have been defined including the Tucker decomposition [Tuc63],

the CP/PARAFAC (Canonical Polyadic/PARallel FACtors) decomposition [CC70],[Kru77], the

PARAFAC2 (PARallel FACtors2) decomposition [Har72], and the DEDICOM (DEcomposition

into DIrectional COMponents) decomposition [Har78]. These tensor decompositions have been in-

troduced to model and solve problems in psychometrics. Thus, the first application area of tensors

and tensor decompositions is psychometrics. Since then, the number of tensor decompositions and

the number of tensor applications have constantly been increased. Today, tensor algebra has appli-

cation is thermometrics, statistics, image processing, signal processing for wireless communications,

biomedical signal processing, data analytics, machine learning, and many more.

The observed signals in the above mentioned applications are multi-dimensional. For instance,

in wireless communications the dimensions of the observed/measured signals correspond to time,

frequency, antennas, and users. Moreover, in biomedical signal processing the dimensions of the

measured signals correspond to time, space (channels), modality (electroencephalography, mag-

netoencephalography, electrocardiography), participant (volunteer), and experimental condition.

Certainly, it is possible to arrange these observations in a matrix and to use matrix methods

to analyze them. However, using this approach, we lose the interconnecting information that

exists between the different dimensions. On the other side, tensors preserve and exploit the

multi-dimensional structure while even providing an improved identifiability. In addition, the

different tensor decompositions open different and flexible ways to model the observed signals.
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The tensor decompositions that have been proposed in the more recent past include the HOSVD

(Higher-Order Singular Value Decomposition) [DLDMV00b], the BTD (Block Term Decomposi-

tion) [DL08a,DL08b,DLN08], the NTF (Non-negative Tensor Factorization i.e., CP decomposition

with non-negativity constraints) [CZPSI09], the HOGSVD (Higher-Order Generalized Singular

Value Decomposition) [Pon10, PSvA11], and the CONFAC (CONstrained FACtor) decomposi-

tion [dAFM08,FdA14b]. Note that the different tensor decompositions are unique up to a permuta-

tion and scaling ambiguity under different conditions that should be derived for each decomposition

separately. For instance, a sufficient condition for the uniqueness of the CP decomposition for 3-way

tensors is provided in [Kru77,Kru89]. Moreover, the authors of [Com14, SDLF+17] provide some

new results on the uniqueness of the CP decomposition. Note that we still study the theoretical

aspects of tensor algebra especially the uniqueness properties of the tensor decompositions.

Very often a tensor is decomposed into the minimum number of rank one components using

the CP decomposition. The CP decomposition is typically calculated via an iterative multi-linear

ALS (Alternating Least Square) algorithm [CC70,KB09]. ALS based algorithms require a lot of

iterations to calculate the CP decomposition and they have no convergence guarantee. Moreover,

ALS based algorithms are less accurate in ill-conditioned scenarios, for instance, if the columns of

the factor matrices are highly correlated. There are also ALS based algorithms for calculating the

CP decomposition such as the ones presented in [BSG99] and [RCH08] that either introduce con-

straints to reduce the number of iterations or are based on line search, respectively. Alternatively,

semi-algebraic solutions have been proposed in the literature based on SMDs (Simultaneous Matrix

Diagonalizations). Such examples include [DL05], [RH08], [LA11], [RH13a], [LA14], and [RSH12].

In contrast to the remaining SMD based algorithms, the SECSI (Semi-Algebraic framework for the

approximate CP decomposition) framework [RH08, RH13a, RSH12] calculates all possible SMDs

and then selects the best available solution in a final step via appropriate heuristics. Therefore,

it offers an efficient and robust computation of the approximate low-rank CP decomposition with

complexity-accuracy trade-off. However, especially for tensors with large dimensions the SECSI

framework might be computationally too expensive. Note that a closed-form solution for the com-

putation of the CP decomposition exists only for some special cases such as the computation of

the CP decomposition of a tensor with two slices and a tensor with rank two [RH13a]. Moreover,

different applications impose different constraints on the CP decomposition. Therefore, the existing

algorithms for the computation of the CP decomposition should be modified. For instance, non-

negativity constraints on the factor matrices are considered in blind estimation applications and

biomedical signal processing [CZPSI09]. Algorithms for the computation of the CP decomposition

with non-negativity constraints are proposed in [LS15,AALM16] and [CFC15], based on the ADMM

(Alternating Direction Method of Multipliers) and ALS, respectively. Note that the SECSI frame-

work proposed in [RH08,RH13a] considers only real-valued and symmetry constraints on the factor

matrices, but not non-negativity or sparsity constraints. Moreover, several combined signal pro-

cessing applications such as joint processing of biomedical signals [BCA12,RDGD+15,ABS15] and
array signal processing [SDDL18,SDL17a] benefit from coupled tensor decompositions. Therefore,

for these applications, we require a coupled CP decomposition and algorithms for its computation
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1.1. Motivation and state of the art

as proposed in [SDDL15,VDS+16]. However, these previous publications do not consider that the

coupled tensors might be corrupted by noise with different variances. The authors of [FCC16]

consider this, but they propose an ALS algorithm with normalization for which the noise variance

should be known or estimated beforehand. Moreover, the ALS algorithm proposed in [FCC16]

might lead to many iterations, and it is not robust in ill-posed scenarios for example, if the factor

matrices contain collinear columns.

In contrast to the CP decomposition, the PARATUCK2 decomposition [HL96] and the PARAFAC2

decomposition [Har72] are more flexible tensor decompositions. Both decompositions are gener-

alization of the CP decomposition, but the PARATUCK2 decomposition offers more flexibility in

terms of the number of sets of underlying components. On the other hand, the PARAFAC2 de-

composition allows the underlying components to vary along one of the tensor dimensions. Even

though these decompositions are more flexible than CP, they are not as often used as the CP

decomposition. However, lately there is an increased interest in these decompositions in vari-

ous applications such as biomedical signal processing and data analytics [WJG+10, FdA14a, XF-
dAS14,CHGH18,CSH18]. The smaller number of applications of PARATUCK2 and PARAFAC2

as compared to the CP decomposition might be due to the fact that there exist only some re-

sults on the uniqueness of these decompositions [Har72, HL96, FdA14b]. Moreover, in contrast

to the many algorithms for the computation of the CP decomposition, there exist only few algo-

rithms for the computation of the PARATUCK2 decomposition and the PARAFAC2 decomposi-

tion [Kie93,HL96,Bro98,KTBB99,Wei15]. The algorithms for the computation of the PARAFAC2

decomposition can be divided into two groups an indirect approach and a direct approach. The

indirect approach fits the cross product of the slices of the tensor instead of the tensor slices

in an ALS fashion [Kie93]. On the other hand, the direct fitting approach fits the tensor slices

directly in an ALS fashion, thereby using two loops that lead to a significant number of itera-

tions [Bro98,KTBB99,Wei15]. Furthermore, both decompositions PARATUCK2 and PARAFAC2

are defined using a slice-wise notation. Hence, there are no explicit tensor models that define these

decompositions.

Tensor and tensor decompositions are very practical tools for modeling wireless multi-carrier sys-

tems such as OFDM (Orthogonal Frequency Division Multiplexing) systems [HYW+09]. The au-

thors of [dAFX13] model a MIMO multi-carrier system using tensor algebra and the PARATUCK2

tensor decomposition resulting in a novel space, time, and frequency coding structure. Similarly,

trilinear coding in space, time, and frequency is proposed for MIMO-OFDM systems based on

the CP tensor decomposition in [dAF13b]. By exploiting tensor models, semi-blind receivers have

been introduced for multi-carrier communications systems in [FdA14a] and [LdCSdA13]. How-

ever, all these publications use additional spreading that leads to a significantly reduced spectral

efficiency to create the tensor structure. Moreover, previous publications on tensor models for

multi-carrier communications systems [dAFX13], [dAF13b], [LdCSdA13], and [FdA14a] do not ex-

ploit the channel correlation between the adjacent subcarriers. Furthermore, all these publications

rely on the subcarrier-wise description of the MIMO-OFDM system. Therefore, these models do
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not reveal the explicit tensor structure of the received signal in MIMO-OFDM systems. Note

that the OFDM is the most widely used multi-carrier technique in the many current wireless

communication systems [HYW+09]. However, several new multi-carrier transmission techniques

are considered as an alternative to OFDM for beyond 5G wireless communication systems. These

multi-carrier transmission techniques include FBMC (Filter Bank Multi-Carrier) [PNCZ+16,FB11],
UFMC (Universal Filtered Multi-Carrier) [SWC14], and GFDM (Generalized Frequency Division

Multiplexing) [MDK+17,MMG+14]. In general, the tensor models corresponding to MIMO-OFDM

can be extended to any of the multi-carrier techniques such as MIMO-FBMC, MIMO-UFMC, and

MIMO-GFDM. In spite of this fact, only the authors of [KCdA17] propose a tensor based model

for MIMO-FBMC systems. However, the authors of [KCdA17] derive the proposed semi-blind re-

ceiver using only slice-wise notation. An explicit tensor model is not proposed. Hence, we require

a general tensor model for MIMO multi-carrier systems that can be extended to any multi-carrier

technique. Moreover, the tensor structure of the FBMC, UMFC, and GFDM signals remain to be

explored.

As previously mentioned, the measured signals in biomedical signal processing are multi-dimensional.

In clinical studies, these signals are usually obtained using EEG (ElectroEncephaloGraphy) and

MEG (MagnetoEncephaloGraphy). Therefore, we can analyze these signals using tensor decomposi-

tions as shown in [CLK+15,BAC+14,HCS+14]. Moreover, an identification of the signal components

in EEG data based on the PARAFAC2 decomposition is performed in [WJG+10,WJR+10]. The

authors of [CHGH18] exploit also the PARAFAC2 decomposition for the analysis of somatosen-

sory evoked magnetic fields and somatosensory evoked electrical potentials. Typically, the EEG

and MEG signals used in biomedical studies are simultaneously acquired. Thus, these signals si-

multaneously capture aspects of the same electric activity and therefore can be jointly analyzed.

For instance, a joint EEG-MEG signal analysis can be performed using a coupled CP decompo-

sition [BCA12]. However, the authors of [BCA12] use simulated signals not measurement signals.

Similarly, the authors of [AKD11, ABS15] show that data fusion in metabolomics benefits from

coupled matrix-tensor decompositions. Hence, the biomedical signal processing applications bene-

fit from joint signal analysis using coupled tensor decompositions. Therefore, efficient algorithms

for the computation of the coupled tensor decompositions have yet to be developed. Note that

the coupling is only assumed, but not yet proven in all biomedical applications. This is because

in most of the biomedical applications, we have only measured observations and it is not possible

to generate simulated signals that confirm the coupling hypotheses. Therefore, the coupling of the

EEG and MEG signals in different biomedical applications has yet to be proven and efficiently

exploited.

1.2 Major contributions

Inspired by the previously presented state of the art, in this thesis we focus on the following

objectives.
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1.2. Major contributions

� Efficient and robust computation of the CP decomposition and the coupled CP decomposition

Efficient algorithms for the computation of the CP decomposition play an important role in

all signal/data analysis applications. We propose five extensions of the SECSI framework for

the computation of the CP decomposition and the coupled CP decomposition. These exten-

sions include T-SECSI (Truncated SECSI) that reduces the computational complexity of the

original SECSI framework, NS-SECSI (Non-Symmetric SECSI) that reduces the computa-

tional complexity of the original SECSI framework and computes the CP decomposition in

a closed-form fashion, S-SECSI (Symmetric SECSI) that considers symmetry constraints on

the factor matrices in a closed-form fashion, SECSI+ (SECSI for non-negative tensors) that

considers non-negativity constraints on the factor matrices, as well as C-SECSI (Coupled

SECSI) for the computation of the coupled CP decomposition. In the future, it is possible

to consider other constraints such as sparsity constraints on the factor matrices. Moreover,

we use the proposed C-SECSI framework for the joint analysis of EEG and MEG signals and

show its benefits in biomedical signal processing.

� Contraction properties for element-wise multiplication and slice-wise multiplication

In many tensor applications, we only have an element-wise description or a slice-wise descrip-

tion of the signal model. We propose to express these descriptions by using the generalized

tensor contraction operator. In contrast to the element-wise and slice-wise multiplications,

this novel representation leads to an explicit tensor model of the resulting tensor. The ex-

plicit tensor model reveals the complete tensor structure and allow us to derive all tensor

unfoldings. Among the perspectives for a future work, we should study the properties of the

Kronecker product between two tensors as it is a recurring structure when using the novel

representation of the slice-wise multiplications. Moreover, we should study the uniqueness

properties of the resulting models especially in the cases when the resulting tensor model is

a constrained CP decomposition.

� Derivation of explicit tensor models for the PARATUCK2 decomposition and the PARAFAC2

decomposition

Using the new properties for the slice-wise multiplication based on the generalized tensor

contraction, we derive explicit tensor models for the PARATUCK2 decomposition and the

PARAFAC2 decomposition. By substituting the individual structure of the tensors involved

in the contraction, we show that both decompositions satisfy constrained CP models. These

models can be used later to further study the uniqueness properties of PARATUCK2 and

PARAFAC2. Moreover, we can utilize these models for the derivation of new algorithms for

the computation of the PARATUCK2 decomposition and the PARAFAC2 decomposition. In

this thesis, we derive a single loop ALS algorithm for the computation of the PARAFAC2

decomposition.

� Derivation of explicit tensor models for wireless multi-carrier MIMO communication systems

It is evident that the typical description of multi-carrier systems using a subcarrier-wise
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notation, i.e., using a slice-wise notation, can be expressed in terms of the generalized tensor

contraction according to the new properties derived in this thesis. Hence, we exploit these

properties to derive a general tensor model of the received signal in multi-carrier MIMO

systems. We verify this model for MIMO-OFDM systems, such that we are able to derive

the traditional zero forcing receiver as a benchmark in addition to new improved receivers.

In this thesis, we also consider other transmission techniques for MIMO-OFDM that include

Khatri-Rao coding and random coding. Using these techniques, we impose a CP structure on

the transmitted signal. Note that the new general model for multi-carrier systems still holds

even though the transmitted signal has a different structure compared to the uncoded case.

Therefore, we exploit the same contraction based tensor model to design receivers for Khatri-

Rao coded MIMO-OFDM and randomly coded MIMO-OFDM systems. Moreover, we show

that the general tensor model can be used to model a MIMO-GFDM system and accordingly

can be utilized for an efficient receiver design. In the future, we should consider MIMO-

FBMC and MIMO-UFMC systems as well. Moreover, the general tensor model presented in

this thesis can be easily extended to one-way and two-way relaying systems. Hence, we can

use our tensor model to derive the explicit tensor model of the received signal in multi-carrier

relaying systems.

The structure of the thesis is visualized in Fig. 1.1. The rest of this thesis is organized in six

chapters. In Chapter 2, we review the fundamental concepts of tensor algebra, selected tensor

decompositions, and some applications of tensor algebra. In the section devoted to fundamental

concepts of tensor algebra, we review some basic definitions, basic properties of tensor algebra, the

properties of the Kronecker product, the properties of the Khatri-Rao product, and the proper-

ties of the Hadamard product. Moreover, in this section, we review the least-squares Kronecker

factorization of a matrix [VLP93,VLP97,dCFR18] and the least-squares Khatri-Rao factorization

of a matrix [RH09b] that can factorize these products in a least-squares sense in the case of noise

corrupted observations. Furthermore, we present our contributions to the theoretical aspects of

tensor algebra that include an alternative representation of the element-wise multiplication and

slice-wise multiplication between two arrays. We propose to represent these multiplications using

the generalized tensor contraction operator. These novel properties are used later in this thesis as

a fundamental first step. By substituting the individual tensor structure of the tensors involved in

the contraction, we are able to derive an explicit tensor model of the overall tensor. Some of the

aforementioned properties have been published in [NCdAH18]. In addition to the fundamentals of

tensor algebra, we review some tensor decompositions including the HOSVD, the CP decomposi-

tion, the BTD, the PARATUCK2 decomposition, and the PARAFAC2 decomposition in Chapter 2.

Finally, we list some of the many applications of tensor algebra with a special focus on applications

in wireless communication systems and biomedical signal processing that are in the main scope of

this thesis.

We devote Chapter 3 to the efficient computation of the CP decomposition and the coupled CP

decomposition that is the basis of many signal/data analysis applications. To be more precise, we

6



1.2. Major contributions

Figure 1.1.: Structure of the thesis.

propose extensions of the SECSI framework that reduce the computational complexity or introduce

constraints to the factor matrices. T-SECSI has a reduced computational complexity than the

original framework because it diagonalizes a core tensor of smaller dimensions. However, T-SECSI

still diagonalizes the core tensor using symmetric SMDs and computes six initial estimates of the

factor matrices for a 3-way tensor as the SECSI framework. Moreover, the NS-SECSI framework

additionally reduces the computational complexity by considering a non-symmetric SMD instead

of two symmetric SMDs. Hence, NS-SECSI computes only three initial estimates of the factor

matrices and thereby reduces also the complexity of the search for the final solution. Moreover,

considering a closed-form solution of the non-symmetric SMDs, we propose an NS-SECSI framework

that approximates the CP decomposition in a novel closed-form fashion, for the first time. Recall

that previous publications propose a closed-form solution of the CP decomposition only for special

cases that include tensors with rank two and tensors with two slices [RH13a]. We denote this

framework by NS-SECSI-NS-IDIEM, where NS-IDIEM (Non-Symmetric Improved DIagonalization

using Equivalent Matrices) is an extended version of the IDIEM (Improved DIagonalization using

Equivalent Matrices) algorithm [CB12], [CKM+14] that provides a closed-form solution for the

non-symmetric SMD problem. We also propose a closed-form solution of the CP decomposition

for symmetric tensors. We denote this framework by S-SECSI. Furthermore, by considering non-

negativity constraints on the factor matrices we derive the SECSI+ framework for the computation

of the CP decomposition for nonnegative tensors. Finally, for coupled tensors (tensors that have

at least one mode in common) we propose C-SECSI for the efficient and robust computation of
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the coupled CP decomposition. The NS-SECSI framework and the C-SECSI framework have been

published in [NHT+16] and [NH16], respectively.

In Chapter 4, we express the slice-wise multiplication between two tensors via the new properties

of the contraction operator to derive explicit tensor models for the PARATUCK2 decomposition

and the PARAFAC2 decomposition. First, we show that these two decompositions represent a

slice-wise multiplication between two tensors. Next, by substituting the individual tensor structure

of the tensors involved in the contraction, we derive novel explicit tensor models of the overall

tensor. The resulting tensor models correspond to constrained CP models, and they do not depend

on a chosen unfolding and capture all of the unfoldings at the same time. Using the constrained

CP model of the PARAFAC2 decomposition, we propose a single loop ALS algorithm for the

computation of the PARAFAC2 decomposition. In contrast to the state-of-the-art algorithms, the

proposed algorithm requires fewer iterations. This algorithm has been published in [NCdAH18].

We devote Chapter 5 to tensor based signal processing for wireless communication systems. In

this chapter, we express the received signal for MIMO-OFDM systems that traditionally has only

a subcarrier-wise (slice-wise) description via the generalized tensor contraction. The proposed

tensor model represents a contraction between a channel tensor and a transmit signal tensor, and

it provides a new, compact, and flexible formulation of the MIMO-OFDM system. The resulting

tensor model is then derived by substituting the structure of the channel tensor and the transmit

signal tensor. Moreover, this model represents a very general description that can be extended

to any transmission technique for MIMO-OFDM. For instance, in this chapter we present the

extension of this model to the Khatri-Rao coded MIMO-OFDM. In this case, the transmitted signal

tensor contains Khatri-Rao coded symbols and therefore it has an additional CP structure. Note

that this Khatri-Rao coding introduces an additional spreading of the data symbols. To increase

the spectral efficiency, we introduce a random coding such that the ”coding matrix” contains

random data symbols. Therefore, the proposed randomly coded MIMO-OFDM system has a higher

spectral efficiency than the Khatri-Rao coded MIMO-OFDM while retaining the CP structure of the

transmit signal tensor. In addition to MIMO-OFDM systems, we show that MIMO-GFDM systems

can also be modeled using the generalized tensor contraction. Exploiting the resulting tensor models

at the receiver facilitates the design of several types of receivers for MIMO-OFDM and MIMO-

GFDM systems. The aforementioned models and the proposed receivers with the exception of the

randomly coded MIMO-OFDM have already been published in [NHdA18], [NHdA17], and partially

in [NCH+17].

Furthermore, in Chapter 6 we focus on tensor based signal analysis for biomedical applications.

In particular, we show the benefits of using the C-SECSI framework proposed in Chapter 3 for the

joint analysis of EEG and MEG signals. It is assumed that the EEG and MEG signals can be

coupled because they are typically acquired simultaneously and capture the same brain activity.

In this chapter, we present two applications of the joint EEG-MEG signal analysis using the C-

SECSI framework for the analysis of measurement data. In the first application, we provide a

validation of the photic driving effect using the C-SECSI framework. The photic driving effect is
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1.2. Major contributions

represented by the resulting oscillations in the human brain that are caused by stimulation of the

brain by repetitive light flashes that is also known as IPS (Intermittent Photic Stimulation). The

measured EEG and MEG signals used in this thesis are result from an IPS experiment on twelve

healthy volunteers using twenty IPS frequencies [SSK+16]. IPS causes a frequency entrainment

that is indicated by the synchronization of the individual brain rhythm of each volunteer with the

photic stimulation frequency. In this thesis, we analyze the frequency entrainment after the joint

decomposition of the EEG and MEG signals based on the coupled CP decomposition. In the second

application, we present a validation of a controlled experiment based on a joint EEG-MEG signal

decomposition in order to show the effect of skull defects on the measurement signals. The effect

of the skull defects on the EEG and MEG signals in rabbits is studied in a controlled experimental

setup [LFH14] using a sinusoidal constant-current as a source. In this thesis, we analyze the signals

from the experimental setup described in [LFH14] using the coupled CP decomposition and show

that the tensor decomposition produces meaningful components with respect to the experimental

setup. Both applications considered in this thesis show that the joint EEG-MEG signal analysis

using the C-SECSI framework is a robust method for the extraction and separation of meaningful

components from multi-dimensional biomedical measurement signals. These applications have been

published in [NKHH17] and [NLA+17].

Finally, we conclude this thesis and present the future work in Chapter 7. In Appendix A, we list

the acronyms, the symbols, and the used notation. Some proofs and derivations that are required

on several occasions in this thesis are provided in Appendix B.
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Chapter 2

Tensor Algebra

A tensor represents a multi-dimensional array of numbers with respect to a multi-dimensional co-

ordinate system. Tensors preserve the multi-dimensional data structure and provide an improved

identifiability. Therefore, tensor algebra has a broad range of applications such as chemometrics,

psychometrics, numerical mathematics, image signal processing, signal processing for communica-

tions, biomedical signal processing, and many more [KB09,CMP+15].

This chapter contains three sections devoted to the fundamental concepts of tensor algebra, tensor

decompositions, and applications of tensor algebra. In the section about fundamental concepts of

tensor algebra, we review some basic definitions from tensor algebra, the properties of the Kronecker

product, the properties of the Khatri-Rao product, and the properties of the Hadamard product.

Moreover, in tensor algebra applications we often observe data that have a structure of a Khatri-Rao

product or a Kronecker product. In the case of noise corrupted data, we can factorize these products

in a least-squares sense in order to identify the underlying parameters. Therefore, in the section

fundamental concepts of tensor algebra we also review the least-squares Kronecker factorization

and the least-squares Khatri-Rao factorization of matrices. Furthermore, in some applications we

encounter data models described using a slice-wise multiplication or an element-wise multiplication.

This slice-wise or element-wise description does not reveal the tensor structure explicitly. As an

alternative, we propose to represent the slice-wise multiplication of two tensors by a generalized

contraction of two tensors. Therefore, in the section devoted to fundamental concepts of tensor

algebra, we present novel contraction properties for element-wise and slice-wise multiplications.

Moreover, there exist a number of different tensor decompositions. In the section tensor decompo-

sitions, we review the HOSVD (Higher Order Singular Value Decomposition), the CP/PARAFAC

(Canonical Polyadic/PARallel FACtors) decomposition, the BTD (Block Term Decomposition), the

PARATUCK2 (PARAFAC and TUCker2) decomposition, and the PARAFAC2 (PARAllel FACtors

2) decomposition. As previously mentioned, the tensor decompositions have many applications. In

the last section of this chapter, we list some of these applications.

2.1 Fundamental Concepts of Tensor Algebra

The goal of this section is to introduce the necessary notation and tensor algebra definitions used

throughout this thesis. Accordingly, first the fundamental concepts and tensor algebra definitions

are provided followed by some properties of the Kronecker product, Khatri-Rao product, Hadamard
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product, and operators like the vectorization and diagonalization operator. Moreover, we include

a brief overview of often used tools, i.e., the least-squares Khatri-Rao Kronecker factorization and

the least-squares Kronecker factorization. Our contribution to the tensor contraction operator and

its properties is presented at the end of this section. A detailed list of the used notation is available

in Appendix A.2.

2.1.1 Fundamental Concepts and Definitions

An N -way tensor represents an N -dimensional array of numbers. We denote an N -way tensor by

A ∈ CI1×I2...×IN . As a matrix is an element of an outer product of two linear spaces, a tensor is an

element from an outer product of N linear spaces [KB09,DLDMV00b,CMP+15,CLdA09,SDLF+17].

A = a1 ○ a2 ○ . . . ○ aN

Each of the linear spaces is represented by the column vector ai of length In, ∀n = 1,2, ...,N . The

symbol ○ denotes the outer product.

The n-mode vectors or fibers are obtained by fixing every index but one [DLDMV00b,KB09]. A

tensor of order three, A ∈ CI1×I2×I3 has 1-mode, 2-mode, and 3-mode vectors (column, row, and

tube fibers). They are denoted by A(.,i2,i3), A(i1,.,i3), and A(i1,i2,.). Moreover, the two dimensional

matrices resulting from varying two indices and fixing the rest are called slices [KB09]. For a tensor

of order three A ∈ CI1×I2×I3 , we can define horizontal, lateral, and frontal slices denoted by A(i1,.,.),
A(.,i2,.), and A(.,.,i3), respectively.

Moreover, a matricization (which means transforming a tensor into a matrix) is also called an

unfolding or flattening [KB09, DLDMV00b, CMP+15, CLdA09, SDLF+17]. There are three un-

foldings, 1-mode unfolding, 2-mode unfolding, and 3-mode unfolding for a tensor of order three,

A ∈ CI1×I2×I3 . We denote these tensor unfoldings by [A](1) ∈ C
I1×I2I3 , [A](2) ∈ C

I2×I1I3 and[A](3) ∈ CI3×I1I2 . The matricization is performed by arranging the corresponding n-mode vec-

tors into a matrix. Different orderings of the n-mode vectors lead to different tensor unfoldings.

According to the forward ordering, for the n-mode unfolding of an N -way tensor ([A](n)) the

n-mode vectors are ordered in increasing order. Hence, we vary the indices starting with the first

index (which varies the fastest) until the N -th index with the exception of the n-th index. A

visualization of the three different unfoldings of a tensor A ∈ CI1×I2×I3 using the forward ordering

is depicted in Fig. 2.1. Another common ordering is the reverse cyclical ordering. According to

the reverse cyclical ordering, the matricization [A](n) of an N -way tensor is performed such that

we first vary the (n − 1)-th index, then the (n − 2)-th, in a reverse order up to the first index.

Afterwards, we start over with the N -th index and keep varying the indices in decreasing order

until the (n + 1)-th index. The three unfoldings of a 3-way tensor A ∈ CI1×I2×I3 according to the

reverse cyclical ordering are visualized in Fig. 2.2. The different ordering types consecutively lead

to different definitions of the tensor operations. Therefore, one must be careful which ordering is

used and consistently use only one ordering while deriving new concepts or results. In general,
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2.1. Fundamental Concepts of Tensor Algebra

Figure 2.1.: 1-mode, 2-mode, and 3-mode unfoldings of a 3-way tensor A ∈ CI1×I2×I3 using forward
ordering of the n-mode vectors.

throughout this thesis we use the forward ordering unless stated otherwise.

In addition to the n-mode unfoldings, generalized matrix unfoldings can be defined by using two

subsets of any of the N dimensions [LA11,RSH12]. For instance, the set of modes (1,2, . . . ,N) of
an N -way tensor A can be divided into two non-overlapping, P and N − P dimensional subsets,

α(1) = [α1 . . . αP ] and α(2) = [αP+1 . . . αN ], respectively. This leads to the generalized unfolding[A](α(1),α(2)), where the indices contained in α(1) vary along the rows and the indices contained in

α(2) vary along the columns. Here, the index α1 varies the fastest between the rows, the index αP+1
varies the fastest between the columns, P is any number between one and N , and αn is any of the

tensor dimensions. For instance, let us assume a 4-way tensor A ∈ CI×J×M×N . In the generalized

unfolding [A]([1,2],[3,4]) the 1-st mode varies faster than the 2-nd mode along the rows and the

3-rd mode varies faster than the 4-th mode along the columns. A visualization of this generalized

unfolding and the index ordering is depicted in Fig. 2.3. Hence, the n-mode unfoldings defined

previously (Figs. 2.1 and 2.2) are special cases of the generalized unfoldings. For instance, the

2-mode unfolding of the tensor A ∈ CI×J×M×N according to the forward ordering and according to

the reverse cyclic ordering can be expressed as [A](2,[1,3,4]) and [A](2,[1,4,3]), respectively.
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Figure 2.2.: 1-mode, 2-mode, and 3-mode unfoldings of a 3-way tensor A ∈ CI1×I2×I3 using reverse
cyclical ordering of the n-mode vectors.

Figure 2.3.: Visualization of the generalized unfolding [A]([1,2],[3,4]).

We can define a linear and a bilinear function in terms of a vector or a matrix multiplication,

respectively. Assuming a column vector x ∈ CN with elements xn and a column vector a ∈ CN with

elements an, a linear function f(x) that is linear in all xn is defined as

f(x) = N

∑
n=1

an ⋅ xn = xT ⋅ a,

where T denotes vector/matrix transpose. Now, let us assume that the column vectors x ∈ CN and

y ∈ CM contain the elements xn and ym, respectively. For a bilinear function f(x,y) that is linear

14
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in all xn for fixed ym and linear in all ym for fixed xn, we have

f(x,y) = N

∑
n=1

M

∑
m=1

an,m ⋅ xn ⋅ ym = xT ⋅A ⋅ y,

where A ∈ CN×M and A(n,m) = an,m. Next, we assume that the column vectors x ∈ CN , y ∈ CM ,

and z ∈ CP contain the elements xn, ym, and zp, respectively. Moreover, we assume that the tensor

A ∈ CN×M×P contains the elements an,m,p. For a trilinear function f(x,y,z) that is linear in all

xn for fixed ym and zp, linear in all ym for fixed xn and zp, and linear in all zp for fixed xn and ym,

we have

f(x,y,z) = N

∑
n=1

M

∑
m=1

P

∑
p=1

an,m,p ⋅ xn ⋅ ym ⋅ zp. (2.1)

This trilinear function cannot be defined in terms of a vector or a matrix multiplication and therefore

an extension to multi-linear algebra is required. Hence, for an N -way tensor the tensor algebra

defines a multiplication along the n-th mode [KB09, DLDMV00b, CMP+15, CLdA09, SDLF+17].
This n-mode product between a tensor A ∈ CI1×I2...×IN and a matrix X ∈ CJ×In is denoted by

T =A×nX ∈ CI1×...×In−1×J×In+1...×IN . Using the element-wise notation for the n-mode product, we

have

(A ×n X)(i1,i2,...,in−1,j,in+1,...,iN) =
In

∑
in=1

A(i1,i2,...,iN ) ⋅X(j,in).

The n-mode product can also be defined by means of the tensor unfoldings. Accordingly, the

n-mode product can be computed using the n-mode unfolding of the tensor, i.e.,

T =A ×n X⇔ [T ](n) =X ⋅ [A](n) . (2.2)

Finally, the trilinear function in equation (2.1) can be expressed as

f(x,y,z) = N

∑
n=1

M

∑
m=1

P

∑
p=1

an,m,p ⋅ xn ⋅ ym ⋅ zp =A ×1 x ×2 y ×3 z,

using tensor notation. Accordingly, the tensor A ∈ CN×M×P has elements A(n,m,p) = an,m,p.

Assuming a tensor X and the matrices A, B, C, and D of compatible dimensions, the properties

for the n-mode product can be summarized as follows. First, the order of multiplication along

different modes is irrelevant, i.e.,

Y = X×mA ×n B = X ×n B ×m A

if m ≠ n.
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For the multiplication along the same mode, we get

Y = (X ×n A) ×n D = X ×n (D ⋅A).
Moreover, we assume the tensors Y ∈ CI1×I2×I3 and X ∈ CJ1×J2×J3 and the matrices A ∈ CI1×J1 ,
B ∈ CI2×J2 , and C ∈ CI3×J3 . If Y = X ×1 A ×2 B ×3 C using the forward ordering, we get the

following properties

[Y](1) =A ⋅ [X ](1) ⋅ (C ⊗B)T,
[Y](2) =B ⋅ [X ](2) ⋅ (C ⊗A)T, and

[Y](3) = C ⋅ [X ](3) ⋅ (B ⊗A)T,
where ⊗ denotes the Kronecker product (for the definition of the Kronecker product see Ap-

pendix A.2 equation (A.3)). In general, for Y ∈ CI1×I2...×IN , X ∈ CJ1×J2...×JN , and M (n) ∈ CIn×Jn ,
∀n = 1, . . . ,N , if

Y = X ×1 M (1) ×2 M (2) ×3⋯×N M (N) (2.3)

using the forward ordering of the n-mode vectors, we have

[Y](n) =M (n) ⋅ [X ](n) ⋅ (M (N) ⊗⋯⊗M (n+1) ⊗M (n−1) ⊗⋯⊗M (1))T . (2.4)

On the other hand, using the cyclic ordering, we have

[Y](n) =M (n) ⋅ [X ](n) ⋅ (M (n+1) ⊗⋯⊗M (N) ⊗M (1) ⊗⋯⊗M (n−1))T . (2.5)

Moreover, for the generalized unfolding [X ]([1,2,...L],[L+1,...,N]), we have

[Y]([1,2,...L],[L+1,...,N]) = (2.6)

= (M (L) ⊗⋯⊗M (2) ⊗M (1)) ⋅ [X ]([1,2,...L],[L+1,...,N]) ⋅ (M (N) ⊗M (N−1) ⊗⋯⊗M (L+1))T .

Furthermore, let us consider the vec (.) operator that transforms a tensor or a matrix into a column

vector, thereby the stacking of the elements is performed in an increasing order, starting from the

first mode, until the N -th mode for an N -way tensor. A vectorization of a tensor Y can also be

defined in terms of a tensor unfolding [FdA14b], where Y is given in (2.3).

vec (Y) = [Y]([1,2,...N],0) = (M (N) ⊗⋯⊗M (2) ⊗M (1)) ⋅ [X ]([1,2,...N],0) (2.7)

Note that for equation (2.3) we also use the shorthand notation Y = X
N⨉
n=1

nM
(n).

Similar to matrices, a Kronecker product between two tensors A ∈ CM×N×L and B ∈ CP×Q×R
can be defined as K =A⊗B ∈ CPM×QN×RL [Cic14]. Moreover, the Kronecker product between a
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2.1. Fundamental Concepts of Tensor Algebra

tensor A ∈ CM×N×L and a matrix B ∈ CP×Q equals K =A⊗B ∈ CPM×QN×L. For A ∈ C2×2×2 and

B ∈ C2×2, we depict the result in Fig. 2.4 in terms of the scalar elements.

A(1,1,2)B(1,1) A(1,1,2)B(1,2) A(1,2,2)B(1,1) A(1,2,2)B(1,2)
A(1,1,2)B(2,1) A(1,1,2)B(2,2) A(1,2,2)B(2,1) A(1,2,2)B(2,2)
A(2,1,2)B(1,1) A(2,1,2)B(1,2) A(2,2,2)B(1,1) A(2,2,2)B(1,2)
A(2,1,2)B(2,1) A(2,1,2)B(2,2) A(2,2,2)B(2,1) A(2,2,2)B(2,2)

A(1,1,1)B(1,1) A(1,1,1)B(1,2) A(1,2,1)B(1,1) A(1,2,1)B(1,2)
A(1,1,1)B(2,1) A(1,1,1)B(2,2) A(1,2,1)B(2,1) A(1,2,1)B(2,2)
A(2,1,1)B(1,1) A(2,1,1)B(1,2) A(2,2,1)B(1,1) A(2,2,1)B(1,2)
A(2,1,1)B(2,1) A(2,1,1)B(2,2) A(2,2,1)B(2,1) A(2,2,1)B(2,2)

Figure 2.4.: Kronecker product between a tensor A ∈ C2×2×2 and a matrix B ∈ C2×2 in terms of the
scalar elements.

The Khatri-Rao product between two matrices that is the column-wise Kronecker product we

denote by ◇ (see Appendix A.2 equation (A.4)).

Furthermore, the tensor contractionA●mn B between two tensorsA ∈ CI1×I2...×IN and B ∈ CJ1×J2...×JN
represents an inner product of the n-th mode of A with the m-th mode of B, provided that In = Jm

[Cic14,HRDG08,CGLM08].

T (i1,...,in−1,in+1,...,iN ,j1,...,jm−1,jm+1,...,jM) = (A ●mn B)(i1,...,in−1,in+1,...,iN ,j1,...,jm−1,jm+1,...,jM) (2.8)

T (i1,...,in−1,in+1,...,iN ,j1,...,jm−1,jm+1,...,jM) =
IN

∑
i=1

A(i1,...,in−1,i,in+1,...,iN) ⋅B(j1,...,jm−1,i,jm+1,...,jM) (2.9)

The resulting tensor T contains the remaining dimensions of both tensors. Hence, the dimensions

I1 × . . . × In−1 × In+1 × . . . × IN × J1 × . . . × Jm−1 × Jm+1 × . . . × JM , correspond to the dimensions of

the tensor A in an increasing order except for the contracted n-th dimension followed by the

dimensions of the tensor B in an increasing order except for the contracted m-th dimension.

In Fig. 2.5a, we depict an example of the tensor contraction T =A ●13 B ∈ CI×J×N×N×K between

the tensors A ∈ CI×J×M×N and B ∈ CM×N×K . Moreover, the contraction along several modes of

compatible dimensions is also possible, which is called generalized contraction. Accordingly, the

generalized contraction along two modes (double contraction) is denoted as A●m,l
n,k
B. In particular,

element-wise the contraction along two modes between the tensorsA ∈ CI×J×M×N and B ∈ CM×N×K
is defined as [Cic14],

(A ●1,23,4 B)(i,j,k) ≜ N

∑
n=1

M

∑
m=1

A(i,j,m,n) ⋅B(m,n,k) = T (i,j,k).
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(a) Tensor contraction A ●13 B between the
tensors A and B.

(b) Double tensor contraction A ●1,2
3,4
B be-

tween the tensors A and B.

Figure 2.5.: Generalized tensor contraction between the tensors A ∈ CI×J×M×N and B ∈ CM×N×K .

This example, A●1,23,4B is visualized in Fig. 2.5b. It represents a contraction of the 3-rd and the 4-th

mode of A with the 1-st and the 2-nd mode of B, respectively. Using the concept of generalized

unfoldings, it can be shown that the tensor contraction satisfies

[A ●1,23,4 B]([1,2],3) = [A]([1,2],[3,4]) ⋅ [B]([1,2],3) = (2.10)

[A ●2,14,3 B]([1,2],3) = [A]([1,2],[4,3]) ⋅ [B]([2,1],3). (2.11)

The equations (2.10) and (2.11) can be extended to any suitable set of modes and tensors. From

the definition of the contraction operator follows that the order of the tensors is irrelevant. The

resulting tensors have only different ordering of the dimensions. For instance, A ●1,23,4 B = T 1 and

B ●3,41,2 A = T 2. Both tensors T 1 ∈ C
I×J×K and T 2 ∈ C

K×I×J contain the same elements, but

their dimensions are permuted. Since we always specify which mode is unfolded or multiplied, the

permuted dimensions are irrelevant for us. Note that the tensor contraction is a generalization of

the n-mode product and matrix multiplication. To this end, the n-mode product between a tensor

A ∈ CI1×I2×...IN and a matrix X ∈ CJ×In defined in equation (2.2) can be express as a contraction,

i.e., A●2nX. Furthermore, the matrix products B ⋅X and BT ⋅X can also be expressed in terms

of contraction, i.e., B ⋅X =B●12X and BT ⋅X =B●11X.

Figure 2.6.: Tensor concatenation along the 1-mode, the 2-mode, and the 3-mode.

Let [A ⊔n B] denote the concatenation along the n-mode of two tensorsA ∈ CI1×I2×...×IN and B ∈

C
I1×...×In−1×J×In+1×...×IN of compatible dimensions [HRDG08]. A visualization of the concatenation

between two 3-way tensors A and B along mode one, mode two, and mode three is depicted
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2.1. Fundamental Concepts of Tensor Algebra

in Fig. 2.6.

A super-diagonal identity N -way tensor with dimensions R×R×. . .×R we denote as IN,R. All ele-

ments of an identity tensor are zeros except for the elements with all equal indices (i1 = i2 = . . . = iN ),

which equal one [KB09]. An identity tensor I3,3 has a structure depicted in Fig. 2.7.

0 0 0

0 0 0

0 0 1

0 0 0

0 1 0

0 0 0

1 0 0

0 0 0

0 0 0

Figure 2.7.: A 3-way identity tensor I3,3 with dimensions 3 × 3 × 3

Finally, an extension of the Frobenius norm to tensors is called higher-order norm. This higher-

order norm of the tensor A ∈ CI1×I2×...×IN is defined as [DLDMV00b,KB09]

∥A∥H =
¿ÁÁÁÀ I1

∑
i1=1

I2

∑
i2=1

. . .
IN

∑
iN=1

∣A(i1,i2,...,,iN)∣2 = ∥vec (A)∥2 = ∥[A](n)∥F ,∀n = 1,2, . . . ,N,

∥A∥H=√⟨A,A⟩
where ∥.∥H, ∥.∥2, and ∥.∥F denotes the higher-order norm, the Euclidean (two)-norm, and the

Frobenius norm, respectively. Moreover, ⟨⋅⟩ denotes the scalar product that is defined in (A.2).

2.1.2 Properties of Kronecker, Khatri-Rao, and Hadamard Products

The tensor unfoldings can be expressed in terms of Kronecker products as shown in (2.4), (2.5),

and (2.6). Therefore, during the derivation of new concepts using tensor algebra, the properties of

the Kronecker product and the Khatri-Rao product are essential tools. To this end, we summarize

the properties of the Kronecker product, the Khatri-Rao product, the Hadamard product, and the

vectorization operator in this section.

In the past, the Hadamard and Kronecker products have been studied and applied in matrix the-

ory, system theory, statistics, and many other fields. Thus, many references summarize and derive

new properties for these products. Such references include, [Neu69], [Bre78], [Liu99], [LT08], [PP08],

and many more.

For the matrices A ∈ C
M1×M2 , B ∈ C

N1×N2 , C ∈ C
M1×M2 , E ∈ C

N2×M2 , F ∈ C
M2×M2 , G ∈

C
N2×M2 , and H ∈ CN2×N2 of compatible dimensions hold the following properties [Bre78], [Liu99],
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[LT08], [PP08],

(A⊗B)H =AH ⊗BH (2.12)

(A⊗B)+ =A+ ⊗B+ (2.13)

∥A⊗B∥F = ∥A∥F ∥B∥F (2.14)

(A +C) ◇E =A ◇E +C ◇E (2.15)

(A ◇C) ◇E =A ◇ (C ◇E) (2.16)

(A⊗B)(F ⊗G) = (AF )⊗ (BG) (2.17)

(A⊗B)(F ◇G) = (AF ) ◇ (BG) (2.18)

(A ◇G)H(A ◇G) = (AHA)⊙ (GHG) (2.19)

(A ◇G)+ = [(AHA)⊙ (GHG)]+(A ◇G)H (2.20)

(A ◇G)⊙ (C ◇E) = (A⊙C) ◇ (G⊙E) (2.21)

(IN2
⊗F )(H ⊗ IM2

) = (H ⊗ IM2
)(IN2

⊗F ) (2.22)

where H and + denotes Hermitian transpose and matrix pseudo-inverse, respectively. We symbolize

the Hadamard (element-wise) product by ⊙.
The diag (.) operator transforms a vector into a diagonal matrix. On the other hand, by applying

diag (.) onto a matrix we transform the elements on the main diagonal into a column vector. The

properties of the vec (.) and diag (.) operator shown in [Neu69,Bre78,PP08,LT08] include

trace (AB) = trace (BA) = vec (AT)T vec (B) , (2.23)

vec (AXB) = (BT ⊗A)vec (X) , (2.24)

vec (ADB) = (BT ◇A)diag (D) , (2.25)

(A ◇C)diag (f) = (Adiag (f)) ◇C =A ◇ (C diag (f)) , and (2.26)

diag (g)Adiag (f) =A⊙ (gfT) , (2.27)

where A ∈ CM×N , B ∈ CN×M , C ∈ CK×N , D ∈ CN×N , f ∈ CN×1, g ∈ CK×1, and X ∈ CN×N are

compatibly partitioned matrices. Also, we assume that D is a diagonal matrix.

Moreover, the Khatri-Rao and the Hadamard products can be transformed into Kronecker prod-

uct by means of selection matrices [Liu99,LT08]. Let us take into account the matrices A ∈ CM×N ,

B ∈ CK×N , C ∈ CM×N , X ∈ CN×N , the two selection matrices JN ∈ R
N2×N and JM ∈ R

M2×M , and

an identity matrix IN with dimensions N ×N . Using the selection matrices with a structure (the

structure of this selection matrix is depicted in Appendix B.2.)

JN = IN ◇ IN = [I3,N ]T(1) = [I3,N ]T(2) = [I3,N ]T(3), (2.28)
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it can be shown that

A ◇B = (A⊗B)JN (2.29)

A⊙C = JT
M (A⊗C)JN´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶ (2.30)

A⊙C = JT
M(A ◇C) (2.31)

diag (X) = JT
N vec (X) (2.32)

Further details and references regarding the relation between the different products are available

in [Liu99,LT08]. However, most of the properties summarized in this section can be easily proven

by means of the selection matrix defined in (2.28). Note that this selection matrix also represents

1-mode unfolding, 2-mode unfolding, and 3-mode unfolding of a 3-way identity tensor. These

unfoldings are all equivalent to one another (see equation (2.28)).

2.1.3 Least-Squares Kronecker and Khatri-Rao factorizations

Very often in signal processing applications, we need to solve a so-called least-squares Kronecker

or Khatri-Rao factorization. In this section, we provide an overview of the algorithms for the

computation of these factorizations and their uniqueness properties.

Assume that A =X ⊗Y +N ∈ CKI×LJ , where X∈ CI×J and Y ∈ CK×L. The matrix N ∈ CKI×LJ
represents an uncorrelated ZMCSCG (Zero Mean Circularly Symmetric Complex Gaussian) noise,

thus A is a noisy observation of the Kronecker product between the matrices X and Y . The

LSKF (Least-Squares Kronecker Factorization) provides an estimate of the matrices X and Y in

an LS (Least-Squares) sense. To this end, the goal of a LSKF is the estimation of the matrices

X and Y from the matrix A ∈ C
KI×LJ that is an approximation of their Kronecker product

A ≈ X ⊗ Y ∈ CKI×LJ . Such an algorithm was first presented in [VLP93, VLP97]. The LSKF

is based on a rank one approximation and it is summarized in Algorithm 2.1. The rank one

approximation is computed from the truncated SVD (Singular Value Decomposition) that provides

the best rank-one approximation of the reshaped matrix Ā ∈ CKL×IJ in an LS sense. The reshaping

is performed by the means of the permutation matrix P [dCFR18].

P = IJ ⊗ ( I

∑
i=1

L

∑
l=1

eI,ie
T
L,l ⊗ eL,ie

T
I,i)⊗ IK ,
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P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, for I = 2, J = 1,L = 3,K = 2 (2.33)

Moreover, eI,i ∈ R
I×1 is a pinning vector corresponding to the i-th column of an identity matrix

of size I × I. Note that the operator unvecM×N (⋅) transforms a vector into a matrix (or a tensor)

of indicated size, i.e., M ×N . The unvecM×N (⋅) operator represents the inverse operation of the

vec (⋅) operator (Appendix A.2). Using the LSKF, we can estimate the unknown matrices X ∈ CI×J
and Y ∈ CK×L up to one complex scaling factor ambiguity, since X ⊗ Y = (cX) ⊗ (1

c
Y ), ∀c ∈ C,

c ≠ 0. Furthermore, in [dCFR18] LSKF algorithms based on ALS (Alternating Least-Squares) and

ALMS (Alternating Least Mean Squares) are considered. However, both of these algorithms are

iterative with no guarantee of convergence. In this thesis, the acronym LSKF always refers to the

Algorithm 2.1. The extension to a Kronecker product of multiple matrices X1 ⊗X2 ⊗ . . . ⊗XN

is also possible using the concept of N -way arrays and their rank one approximation. Such a

generalization of the SVD to the higher order SVD (HOSVD) [DLDMV00b] of an N -way tensor is

discussed in Section 2.2.

Algorithm 2.1: Least-Squares Kronecker Factorization (LSKF)

Data: Given a matrix A ∈ CKI×LJ that is an approximation of the Kronecker product
between the matrices X ∈ CI×J and Y ∈ CK×L, i.e., A ≈X ⊗Y ∈ CKI×LJ .

Reshape the input matrix A ∈ CKI×LJ into Ā = unvecKL×IJ (P ⋅ vec (A)), with
P = IJ ⊗ (∑I

i=1∑L
l=1 eI,ie

T
L,l ⊗ eL,ie

T
I,i) ⊗ IK in equation (2.33).

Compute the SVD of the matrix Ā = UΣV H.

Compute x̂ =
√
σ1 ⋅ v∗1 where σ1 =Σ(1,1) and v1 = V (∶,1) is the most dominant singular

value and the corresponding right singular vector, respectively.

Compute ŷ =
√
σ1 ⋅u1 where σ1 =Σ(1,1) and u1 = U (∶,1) is the most dominant singular

value and the corresponding left singular vector, respectively.

Result: X̂ = unvecI×J (x̂) and Ŷ = unvecK×L (ŷ)
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Algorithm 2.2: Least-Squares Khatri-Rao Factorization (LSKRF)

Data: Given a matrix B ∈ CPM×N that is an approximation of the Khatri-Rao product
between the matrices Z ∈ CM×N and W ∈ CP×N , i.e., B ≈ Z ◇W ∈ CKI×LJ

for n = 1 ∶ N do

Select the n-th column of the matrix B, i.e., B(.,n) ∈ CPM×1.

Reshape the vector B(.,n) into a matrix B̄n = unvecP×M (B(.,n)).

Compute the SVD of the matrix B̄n = UnΣnV
H
n .

Compute the n-th column of the matrix Ẑ, Ẑ(.,n) =
√
σn,1 ⋅ v∗n,1 where σn,1 =Σn(1,1)

and vn,1 = V n(.,1) is the most dominant singular value and the corresponding right

singular vector, respectively.

Compute the n-th column of the matrix Ŵ , Ŵ (.,n) =
√
σn,1 ⋅un,1 where σn,1 =Σn(1,1)

and un,1 = Un(.,1) is the most dominant singular value and the corresponding left

singular vector, respectively.

end

Result: Ẑ and Ŵ

Similar to the LSKF, the LSKRF (Least-Squares Khatri-Rao Factorization) provides an estimate

of the matrices Z ∈ CM×N and W ∈ CP×N given a matrix B ∈ CPM×N . The matrix B = Z ◇W +N
is a noisy observation of the Khatri-Rao product between the matrices Z and W . The matrix

N ∈ C
PM×N represents the noise matrix containing ZMCSCG noise. The LSKRF algorithm,

summarized in Algorithm 2.2 has been proposed and utilized in [RH09a,RH09b] and [RH10]. Since

the Khatri-Rao product is a column-wise Kronecker product, this LSKRF algorithm computes the

best rank-one approximation in a column-wise fashion. Using the LSKRF, the matrices Z ∈ CM×N
and W ∈ CP×N can be estimated up to one complex scaling factor ambiguity per column. Hence,

the estimated matrices are equal to Ẑ = ZΛ and Ŵ = WΛ−1, where Λ ∈ CN×N is a diagonal

matrix with diagonal elements equal to the N complex scaling ambiguities. The factorization of a

Khatri-Rao product of multiple matrices X1 ◇X2 ◇ . . . ◇XN using the concept of N -way tensors

is proposed in [RH13a].

2.1.4 New Contraction Properties for Element-wise and Slice-wise Multiplication

In many tensor applications, we only have an element-wise or a slice-wise description of our

data/signal model. For instance, there exist only a slice-wise description of the PARATUCK2

decomposition and the PARAFAC2 decomposition corresponding to a certain unfolding of the over-

all tensor [HL96,Har72]. In the same way, some proposed tensor based models for MIMO-ODFM

(Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing) communication sys-
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tems have only an element-wise or a slice-wise representation [dAFX13,FdA14a]. Further examples

include the slice-wise description of two-way relaying MIMO communication systems [ZNNH15,XF-

dAS14]. This description of the signal models does not reveal the tensor structure explicitly. Hence,

the derivation of all tensor unfoldings is not always obvious. Therefore, we propose to express the

slice-wise multiplication of two tensors in terms of the tensor contraction operator. In this section,

we summarize novel properties of the contraction operator for element-wise and slice-wise multipli-

cations [NCdAH18]. Later in this thesis, we exploit these properties for the representation of the

PARATUCK2 decomposition, the PARAFAC2 decomposition, and multi-carrier MIMO wireless

communication systems in terms of generalized tensor contraction. Next, by substituting the indi-

vidual tensor structure of the tensors involved in the contraction, we are able to derive novel explicit

models of the overall tensor. The resulting tensor models do not depend on a chosen unfolding and

capture all of the unfoldings at the same time.

Hadamard product via generalized tensor contraction

First, let us consider a Hadamard product (element-wise multiplication) between two vectors

a ∈ CM×1 and b ∈ CM×1, c(m) = a(m)b(m), ∀m = 1, . . . ,M (c ∈ CM×1). The Hadamard product can be

expressed via the multiplication of a diagonal matrix and a vector, i.e., a⊙b = diag (a)b = diag (b)a.
As explained in Section 2.1.1, the matrix multiplication is equivalent to the contraction ●12. There-
fore, we get

a⊙ b = diag (a) ●12b = diag (b)●12a.

Likewise, for a Hadamard product between two row vectors, we get aT ⊙ bT = aT●12 diag (bT) =
bT●12 diag (aT).

Next, for the Hadamard product between two matrices A ∈ CM×N and B ∈ CM×N , C(m,n) =
A(m,n)B(m,n), ∀m = 1, . . . ,M and n = 1, . . . ,N , we can show that C = A ⊙ B = DA●1,22,4B =

DB●1,22,4A. Here DA ∈ C
M×M×N×N and DB ∈ C

M×M×N×N are diagonal 4-way tensors with the non-

zero elements DA(m,m,n,n) =A(m,n) and DB(m,m,n,n) =B(m,n), respectively. As an alternative, we

also have

C =A⊙B =D(A)●1,32,3D
(B),

where the diagonal 3-way tensors have the following non-zero elements D(A)(m,m,n) = A(m,n) and
D(B)(m,n,n) = B(m,n). Moreover, these diagonal 3-way tensors can be either defined it terms of

slices,

D(A)(.,.,n) = diag (A(.,n)) ,∀n = 1, . . . ,N D(B)(m,.,.) = diag (B(m,.)) ,∀m = 1, . . . ,M

or using tensor notation D(A) = I3,M ×3 AT and D(B) = I3,N ×1 B. We depict the structure of

these two tensors in Fig. 2.8.
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2.1. Fundamental Concepts of Tensor Algebra

Figure 2.8.: A visualization of the diagonal structure of the tensors D(A) = I3,M ×3 AT ∈ CM×M×N and

D(B) = I3,N ×1 B ∈ CM×N×N , for M = 4 and N = 3.

Slice-wise multiplication via generalized tensor contraction

A slice-wise multiplication between two tensors A ∈ C
M×N×K and B ∈ C

N×J×K is defined as

T 1(.,.,k) = A(.,.,k)B(.,.,k), ∀k = 1, . . . ,K. We depict this slice-wise multiplication in Fig. 2.9. To

express this slice-wise multiplication we can diagonalize B to obtain

T 1 =A●1,42,3DB ∈ C
M×J×K ,

where DB ∈ C
N×J×K×K has non-zero elements DB(n,j,k,k) = B(n,j,k) or DB(n,j,.,.) = diag (B(n,j,.)),

for n = 1, . . . N and j = 1, . . . J . Further combinations are also possible that lead to the same result,

for instance, T 2 =DB●2,31,4A ∈ C
J×K×M or T 3 =DA●1,32,4B ∈ C

M×K×J with DA(m,n,k,k) =A(m,n,k) as
diagonal elements (non-zero elements of DA). Note that the tensors T 1, T 2, and T 3 contain the

same elements, but have permuted dimensions. However, the permuted order of the dimensions is

not relevant, because we always explicitly declare which dimension is multiplied or unfolded.

Figure 2.9.: A slice-wise multiplication between two tensors A ∈ C
M×N×K and B ∈ C

N×J×K ,
T 1(.,.,k) =A(.,.,k)B(.,.,k), ∀k = 1, . . . ,K.

Representation of diagonal matrices and diagonal tensors in terms of Khatri-Rao products

An explicit expression of the diagonalized tensor can be obtained by expressing its generalized

unfolding in terms of a Khatri-Rao product. First, let us consider the column vector a ∈ CM . It

can be easily shown that

diag (a) = IM ◇ aT.
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Now, let us consider the reshaping of the matrixA ∈ CM×N into a diagonal tensorD(A) = I3,M×3AT

(see Fig. 2.8). By studying the resulting tensor structure, the tensor unfoldings, and the properties

of the Khatri-Rao product, we get

[D(A)]([3,2],[1]) = IM ◇AT.

Likewise, for the tensor D(B) = I3,N ×1 B ∈ C
M×N×N and the matrix B ∈ C

M×N , we have[D(B)]([1,3],[2]) = IN ◇B. In Fig. 2.8, we show the diagonal structure of both tensors D(A) and
D(B). Moreover, in Fig. 2.10 we illustrate the block diagonal structure of the tensors’ unfoldings.

Figure 2.10.: A visualization of the block diagonal structure of the unfoldings for the tensors
D(A) = I3,M ×3 AT ∈ CM×M×N and D(B) = I3,N ×1 B ∈ C

M×N×N , for M = 4 and
N = 3.

dimensions non-zero elements generalized unfoldings

a ∈ CM×1,D ∈ CM×M D(m,m) = a(m) D = IM ◇ aT

A ∈ CM×N ,D ∈ CM×N×N D(m,n,n) =A(m,n) [D]([1,3],[2]) = IN ◇A
A ∈ CM×N ,D ∈ CM×M×N D(m,m,n) =A(m,n) [D]([3,2],[1]) = IM ◇AT

A ∈ CM×N ,D ∈ CM×M×N×N D(m,m,n,n) =A(m,n) [D]([1,3],[2,4]) = IM ◇ vec (A)T
A ∈ CM×N×K ,D ∈ CM×N×K×K D(m,n,k,k) =A(m,n,k) [D]([1,2,4],[3]) = IK ◇ [A]([1,2],[3])
A ∈ CM×N×K ,D ∈ CM×M×N×K D(m,m,n,k) =A(m,n,k) [D]([3,4,2],[1]) = IM ◇ [A]([2,3],[1])
Table 2.1.: Link between the diagonalized tensor structures and their generalized unfoldings.

The expression of the diagonalized tensor in terms of its generalized unfolding and the Khatri-

Rao product can also be obtained for N -way tensors. Hence, there exists a link between the

diagonalized tensor structures and their generalized unfoldings. This generalized unfolding can

always be expressed as a Khatri-Rao product between an identity matrix and a generalized unfolding

of the tensor to be diagonalized, where the dimensions that are diagonalized are in the columns of

the second matrix. This notation will be used later in this thesis and it is illustrated in Table 2.1.
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2.2. Tensor Decompositions

The element-wise or slice-wise multiplication between two arrays (vectors/matrices/tensors) of

the same order can be written in terms of a contraction if the unaffected mode vectors are trans-

formed into a diagonal matrix (by adding an additional array dimension). This diagonalization can

be performed using the Khatri-Rao product as shown in Table 2.1.

2.2 Tensor Decompositions

Tensor decompositions factorize a given tensor into a core tensor and factor matrices. Depending

on the structure of the core tensor, the factor matrices, the number of core tensors, or the number

of the factor matrices, different tensor decompositions/factorizations are defined. Many references,

such as [KB09,DLDMV00b,CMP+15,CLdA09], and [SDLF+17] provide an overview of the different

tensor decompositions, their properties, and applications. In this section, we review the basic tensor

decompositions relevant for this thesis. These tensor decompositions include the HOSVD, the CP

decomposition, the BTD, the PARATUCK2 decomposition, and the PARAFAC2 decomposition.

We can differentiate between an exact tensor decomposition and an approximate low-rank tensor

decomposition. For instance, let us consider a noisy observation of a low-rank tensorX 0 ∈ C
I1×I2...×IN 1

given as

X = X 0 +N ∈ CI1×I2...×IN , (2.34)

where N ∈ CI1×I2...×IN is a noise tensor. For the noisy tensor X we can compute an exact tensor

decomposition such as the HOSVD or the BTD. However, we can compute an approximate low-rank

tensor decomposition2 for the noisy tensor X . Depending on the statistical properties of the noise

tensor N , we can define different cost functions for the estimation of the low-rank tensor X 0 based

on equation (2.34). The different cost functions lead to different algorithms for the computation of

the low-rank tensor decompositions. In this thesis, we consider ZMCSCG noise and an estimation

of the low-rank tensor in an LS sense.

1 By low-rank tensor we mean that the tensor X 0 satisfies a low-rank tensor model such as the economy size
HOSVD, the CP decomposition, the BTD, the PARATUCK2 decomposition, or the PARAFAC2 decomposition.
Moreover, we assume that the number of the underlying components is smaller than the maximum of the tensor
dimensions.

2 In case of a noisy observation, we can compute an approximation of any of the low-rank tensor decompositions
including the truncated HOSVD, the CP decomposition, the BTD, the PARATUCK2 decomposition, and the
PARAFAC2 decomposition. The particular structure of the low-rank tensor decomposition depends on the struc-
ture of the noiseless tensor X 0. Note that we consider the BTD as an exact tensor decomposition and as a
low-rank tensor decomposition. This is due to the fact that BTD is a generalization of the Tucker and the CP
decomposition.
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2.2.1 Higher-Order Singular Value Decomposition

Noiseless data model

The Tucker tensor decomposition [Tuc63] factorizes a given tensor X ∈ CI1×I2...×IN into a core tensor

H ∈ Cr1×r2...×rN and factor matrices Gn ∈ C
In×rn , ∀n = 1, . . . N .

X =H ×1 G1 ×2 G2 . . . ×N GN

This tensor decomposition does not consider any constraints on the factors or the core tensor.

Therefore, it is the most general tensor decomposition. By considering orthogonality constraints for

the factor matrices and the core tensor, the Tucker decomposition is transformed into the HOSVD.

The HOSVD is also known as multi-linear SVD [DLDMV00b]. However, many authors refer to

the HOSVD as the Tucker decomposition [KB09,CMP+15]. Moreover, the HOSVD represents an

extension of the matrix SVD to multi-dimensional arrays/tensors. For a tensor X ∈ CI1×I2...×IN , we
get [DLDMV00b]

X = S ×1 U1 ×2 U2 . . . ×N UN = S
N

⨉
n=1

nUn.

The core tensor S ∈ CI1×I2...×IN has the property of all-orthogonality. In other words, the subtensors

Sin=α = S(...,α,...) ∈ CI1...×In−1×1×In+1...×IN obtained by fixing the n-th index to α and Sin=β = S(...,β,...)
∈ CI1...×In−1×1×In+1...×IN are orthogonal for all possible values of n, α, and β provided that α ≠ β, i.e.,⟨Sin=α,Sin=β⟩ = 0, where α ≠ β, ∀n,α,β, and ⟨⋅⟩ denotes the scalar product. The scalar product

between two tensors is defined in (A.2). Moreover, the subtensors are ordered in a decreasing order

of their higher-order norm, i.e., ∥Sin=1∥H ≥ ∥Sin=2∥H ≥ . . . ≥ ∥Sin=IN ∥H ≥ 0 [DLDMV00b]. The

matrices Un ∈ C
In×In are unitary matrices and they represent the basis of the n-mode space of

X [DLDMV00b]. Therefore, the loading matrices can be computed as the left singular vectors

from the SVDs of the n-mode unfoldings.

[X ](n) = UnΣnV
H
n ∈ C

In×In̄ , In̄ = I1 ⋅ I2 . . . In−1 ⋅ In+1 . . . IN (2.35)

The matrices Σn ∈ R
In×In̄ and V n ∈ R

In̄×In̄ correspond to the singular values and the right singular

vectors of the matrix [X ](n), respectively.
Exploiting the unitary property of the matrices Un,∀n = 1, . . . ,N , the core tensor can be cal-

culated as S = X
N⨉
n=1

nU
H
n . Moreover, the n-mode unfolding of the core tensor S is related to the

singular values of the n-mode unfolding of X , such that [S](n) ⋅ [S]H(n) = ΣnΣ
T
n ∈ R

In×In . The

HOSVD of a 3-way tensor is depicted in Fig. 2.11.

The rank of the n-mode unfolding indicates the n-rank of the tensor X , i.e., n-rank (X ) =
rank([X ](n)) ≤ In. The n-ranks of a tensor are not necessarily equal to one another. If a ten-

sor X ∈ CI1×I2...×IN has n-ranks (multi-linear ranks) smaller than the corresponding dimension,
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2.2. Tensor Decompositions

Figure 2.11.: HOSVD of a 3-way tensor X = S ×1 U1 ×2 U2 ×3 U3

dn = n-rank (X ) < In, we can define an economy size HOSVD. For the economy size HOSVD, we

have

X = S [s] ×1 U [s]
1 ×2 U [s]

2 . . . ×N U
[s]
N . (2.36)

The loading matrices U
[s]
n ∈ C

In×dn contain only the first dn columns of the matrices Un in equa-

tion (2.35). For the corresponding core tensor S[s] ∈ Cd1×d2×...×dN , we get S [s] = X
N⨉
n=1

nU
[s]
n

H
.

Noise corrupted data model

Let us assume a noise corrupted signal tensor X = X 0 +N ∈ CI1×I2...×IN , where X 0 is the noiseless

signal tensor and N is the noise tensor. The SVD of the n-mode unfolding of the noise corrupted

tensor X is given by

[X ](n) = [Û [s]

n Û
[n]

n
]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Un

⎡⎢⎢⎢⎢⎣
Σ̂

[s]

n 0dn×(In̄−dn)
0(In−dn)×dn Σ̂

[n]

n

⎤⎥⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Σn

⎡⎢⎢⎢⎢⎢⎣
V̂

[s]H

n

V̂
[n]H

n

⎤⎥⎥⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
V

H
n

, In̄ = I1 ⋅ I2 . . . In−1 ⋅ In+1 . . . IN ,

where Û
[s]

n ∈ C
In×dn , Û [n]

n ∈ C
In×(In−dn), Σ̂[s]

n ∈ R
dn×dn , Σ̂[n]

n ∈ R
(In−dn)×(In̄−dn), V̂ [s]

n ∈ C
In̄×dn , and

V̂
[n]

n ∈ C
In̄×(In̄−dn). We symbolize the unitary bases corresponding to the signal components by

the superscript (.)[s] and the ones corresponding to the noise components by the superscript

(.)[n]. Moreover, the matrix 0M×L denotes a matrix of zeros with dimensions M × L. The

dn = n-rank (X 0)≤In are the corresponding n-ranks of the noiseless signal tensor X 0. Furthermore,

the matrices Û
[s]

n ∈ C
In×dn and Û

[n]

n ∈ C
In×(In−dn) represent the estimated bases for the n-mode

signal space and its orthogonal complement, respectively. For the noiseless signal tensor, we can
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define a truncated HOSVD in the following way

X 0 ≈ Ŝ
[s] N

⨉
n=1

nÛ
[s]

n , (2.37)

where the corresponding truncated core tensor Ŝ
[s]
∈ Cd1×d2×...×dN is computed as Ŝ

[s]
= X

N⨉
n=1

nÛ
[s]
n

H

.

Hence, the truncated HOSVD is a practical tool for noise suppression and estimation of the signal

subspace.

Model order estimation

In order to compute the truncated HOSVD or to perform a denoising of a noisy tensor, the n-ranks

of the noiseless tensor (dn) should be known. Therefore, a multi-linear rank estimation from a

noisy observation is a very important task in tensor based signal processing and data analytics.

Naturally, the methods for the rank estimation of a matrix can be extended to tensors by using the

n-mode unfoldings. For instance, the MDL (Minimum Description Length) model order estimation

method proposed in [Ris78] can be used for each of the tensor unfoldings. Let us assume the noisy

observation of the tensor X 0 ∈ C
I1×I2...×IN given by X = X 0 +N ∈ CI1×I2...×IN , where the elements

of the noise tensor N are i.i.d. ZMCSCG distributed with variance σ2
N . For the n-mode unfolding,

we have [X ](n) = [X 0](n) + [N ](n). The covariance matrix Rn = E{[X ](n) [X ]Hn} ∈ CIn×In is also

equal to Rn =R0,n +σ2
N ⋅IIn , where R0,n = E{[X 0](n) [X 0]Hn} ∈ CIn×In . Therefore, the eigenvalues

of Rn are

λi =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

λ0,i + σ2
N , if 1 ≤ i ≤ dn

σ2
N , if dn + 1 ≤ i ≤ In

,

where dn is the n-rank of X 0 and the eigenvalues λ0,i correspond to the eigenvalues of R0,n. If

these eigenvalues are plotted in a decreasing order, the curve has an “L” shape. In practice, we only

have an estimate of the covariance matrix, R̂n =
1
In̄
[X ](n) [X ]Hn with In̄ = I1 ⋅ I2 . . . In−1 ⋅ In+1 . . . IN .

Therefore, we can compute the estimated eigenvalues. To this end, dn can be estimated based on

the MDL criterion as [Ris78,YLC17,dCHRDG07]

d̂n = argmin
r
−2In̄(In − r)log⎧⎪⎪⎨⎪⎪⎩

∏In
i=r+1 λ

1/(In−r)
i

1
In−r ∑In

i=r+1 λi

⎫⎪⎪
⎬
⎪⎪⎭
+ r(2In − r) log In̄.

Other methods exist for model order estimation of tensors. Such methods include the evaluation of

an “L”-shaped curve [QBLH06,VDS+16] or the MEET (Modified Eigenvalues Estimator for Tucker

rank determination) algorithm and the SCORE algorithm [YLC17]. The MEET and the SCORE

algorithms exploit the HOSVD decomposition and therefore they are more robust against noise than

the matrix based solutions. Moreover, robust and enhanced methods for model order estimation

for N -way tensors that exploit the tensor structure are also proposed in [dCHRDG07,dCRHdS13]
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2.2. Tensor Decompositions

and [CH13].

Computation of the HOSVD

As previously mentioned, the loading matrices of the HOSVD are easily computed from the left

singular vectors of the tensor unfoldings. Afterwards, the core tensor is estimated using the loading

matrices [DLDMV00b, KB09]. The truncated HOSVD can be computed from the HOSVD by

means of truncation, i.e., by taking into account only the first dn columns of the loading matrices Un

leading to Û
[s]
n ∈ C

In×dn and computing the truncated core tensor as explained after equation (2.37).

However, the truncated HOSVD is not the optimal low rank approximation in the Frobenius norm

sense. The accuracy can be increased with iterative algorithms such as the algorithm proposed in

[DLDMV00a]. This HOOI (Higher-order Orthogonal Iteration) algorithm computes the left singular

vectors of a representative matrix of the corresponding unfolding, instead of the actual tensor

unfolding. For time-varying applications, once a previous estimate of the HOSVD is available,

an efficient update of the decomposition can be computed according to [MSK09]. Moreover, in

[YFLZ16] an iterative method for the computation of the Tucker decomposition for tensors with

missing entries is proposed. This method is also capable of determining the multi-linear ranks

and it is initialized using the HOSVD. The HOSVD with n-rank= 1, ∀n = 1, . . . ,N is equivalent

to the rank one CP decomposition. Therefore, for rank one tensors the efficient estimate of the

factors presented in [dSCdA15b] can be used to compute the HOSVD, even though it was originally

developed for the computation of the CP decomposition.

Coupled truncated HOSVD

Coupled tensors are tensors that have at least one mode in common. Such tensors have a coupled

HOSVD decomposition. In the noisy case, an approximate coupled truncated HOSVD can be

computed. This coupled truncated HOSVD for two noise corrupted tensors X (1) ∈ CM1×M(1)
2
×M(1)

3

and X (2) ∈ CM1×M(2)
2
×M(2)

3 that have the mode one in common is given by

X (1) = X (1)0 +N (1) ≈ Ŝ[s],(1) ×1 Û [s]1 ×2 Û [s],(1)2 ×3 Û [s],(1)3 (2.38)

X (2) = X (2)0 +N (2) ≈ Ŝ[s],(2) ×1 Û [s]1 ×2 Û [s],(2)2 ×3 Û [s],(2)3 . (2.39)

In (2.38) and (2.39), it is assumed that all multi-linear ranks for both noiseless tensors X
(1)
0 and

X
(2)
0 are equal to R, where R is less or equal than the minimum of the tensor dimensions. The

tensors Ŝ
[s],(1)

∈ CR×R×R and Ŝ
[s],(2)

∈ CR×R×R are the truncated core tensors and the loading

matrices Û
[s]
1 ∈ C

M1×R, Û
[s],(i)
2 ∈ CM

(i)
2
×R and Û

[s],(i)
3 ∈ CM

(i)
3
×R have unitary columns and span

the column space of the n-mode unfolding of X
(i)
0 , for n = 1,2,3 and i = 1,2, respectively. Note

that the matrix Û
[s]

1 spans the column space of the 1-mode unfolding of the tensors X
(1)
0 and X

(2)
0 .

The common factor matrices corresponding to the truncated HOSVD of the tensors X (1) and
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X (2) can be approximated jointly, using the economy size SVD,

[ [X (1)](1) [X (2)](1) ] ≈ Û [s]1 ⋅ Σ̂[s]1 ⋅ V̂ [s]H1 ∈ CM1×M(1)
2

M
(1)
3
+M(2)

2
M
(2)
3 .

The remaining matrices Û
[s],(i)
2 and Û

[s],(i)
3 are computed separately, using the economy size SVD

of each of the unfoldings, i.e., [X (i)](n) ≈ Û [s],(i)n ⋅Σ̂[s],(i)n ⋅V̂ [s],(i)n

H

, for n = 2,3 and i = 1,2. Moreover,

the core tensors are also computed separately, Ŝ
[s],(1)

= X (1) ×1 Û [s]1
H ×2 Û [s],(1)2

H ×3 Û [s],(1)3

H

and

Ŝ
[s],(2)

= X (2) ×1 Û [s]1
H ×2 Û [s],(2)2

H ×3 Û [s],(2)3

H

.

Applications of the truncated HOSVD

The truncated HOSVD is a practical tool for dimensions reduction, signal subspace estimation,

and noise suppression. For instance, we can use the truncated HOSVD as an initial step when

computing the CP decomposition [RH08, RSH12, RH13a]. Thus, we use the truncated HOSVD

to reduce the problem dimensionality and to suppress noise. For a tensor with missing entries

the algorithm proposed in [YFLZ16] can be used as an alternative initial step for the SECSI

framework instead of the HOSVD. Tensor based subspace estimation using the truncated HOSVD

is performed in [HRDG08,RH13b,CRKH14, SDLF+17]. Moreover, the truncated HOSVD has an

application in time-varying multi-dimensional harmonic retrieval for source separation [CRKH14,

RH13b]. Many applications in compressed sensing, such as the recovery of signals from compressed

measurements for MRI signals, hyper-spectral imaging, deblurring via image filtering, and tensor

completion problems exploit the truncated HOSVD [CC13b,CC13a]. The truncated HOSVD can be

utilized in video processing for tracking motion trajectories [MSK09] and image denoising [YLC17].

Furthermore, it can be used in speech or text processing applications for topic modeling [SDLF+17]
or for chemical analysis, psychometrics [CC70], and many other applications [KB09].

2.2.2 Canonical Polyadic Decomposition

The CP decomposition and tensor rank

In addition to the HOSVD, the CP decomposition is another extension of the SVD to multi-linear

arrays. Some authors refer to the CP decomposition as PARAFAC (Parallel Factors) analysis, CAN-

DECOMP (CANonical DECOMPosition), or CAND (CANonical Decomposition) [CC70,KB09]. It

decomposes a tensor into a sum of the minimum number R of rank one components. The CP de-

composition of a tensor X ∈ CM1×M2×M3 is defined as [KB09,CLdA09,CMP+15,Kru77]

X =
R

∑
r=1

f
(r)
1 ○ f (r)2 ○ f (r)3 = I3,R ×1 F 1 ×2 F 2 ×3 F 3, (2.40)
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where the column vectors f
(r)
1 , f

(r)
2 , and f

(r)
3 represent the r-th columns of the matrices F 1 ∈

C
M1×R, F 2 ∈ C

M2×R, and F 3 ∈ C
M3×R, respectively. The tensor rank is the minimum number of

rank one components that generate X . According to equation (2.40) the tensor rank equals R.

The CP decomposition for a 3-way tensor with rank R = 3 is visualized in Fig. 2.12. Note that

the factor matrices are not unitary, meaning that the R underlying parallel components are not

necessarily mutually orthogonal. Therefore, the CP decomposition is a very practical tool for many

applications.

Figure 2.12.: CP decomposition of a 3-way tensor with rank R = 3.

The Kruskal rank of a matrix F is the largest number k such that any combination of k columns

of the matrix F are linearly independent [Kru77]. We denote the Kruskal rank by k-rank. A

sufficient condition for the uniqueness of the CP decomposition can be derived using the Kruskal

rank [Kru77,Kru89,Com14]. This sufficient condition for the uniqueness of the CP decomposition

for 3-way tensors is given by [Kru77,Kru89,Com14]

k-rank(F 1) + k-rank(F 2) + k-rank(F 3) ≤ 2R + 2. (2.41)

Using the properties of the Kronecker and Khatri-Rao product from Section 2.1.2 equation (2.29),

for the unfoldings defined in equation (2.4) it is easy to show that

[X ](1) = F 1 ⋅ (F 3 ◇F 2)T, [X ](2) = F 2 ⋅ (F 3 ◇F 1)T, and [X ](3) = F 3 ⋅ (F 2 ◇F 1)T. (2.42)

The extension of the CP decomposition to N -way tensors is straightforward. For instance, for a

4-way tensor X ∈ CM1×M2×M3×M4 with rank R, we have

X = I4,R ×1 F 1 ×2 F 2 ×3 F 3 ×4 F 4,

where F 1 ∈ C
M1×R, F 2 ∈ C

M2×R, F 3 ∈ C
M3×R, and F 4 ∈ C

M4×R. For the unfoldings of the 4-way
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tensor, we get

[X ](1) = F 1 ⋅ (F 4 ◇F 3 ◇F 2)T, [X ](2) = F 2 ⋅ (F 4 ◇F 3 ◇F 1)T,
[X ](3) = F 3 ⋅ (F 4 ◇F 2 ◇F 1)T, and [X ](4) = F 4 ⋅ (F 3 ◇F 2 ◇F 1)T.

Similar, for the generalized unfolding [X ]([1,2],[3,4]) from equations (2.29) and (2.6), we get [RSH12]

[X ]([1,2],[3,4]) = (F 2 ◇F 1) ⋅ (F 4 ◇F 3)T.
In the same fashion, other generalized unfoldings can be defined. Some of them, their index

ordering, and definition in terms of the factor matrices are depicted in Fig. 2.13.

Figure 2.13.: Generalized unfoldings of a 4-way tensor with a CP structure.

The tensor rank is the minimum number of rank one components leading to the exact decompo-

sition of a given low-rank tensor. This corresponds to the definition of the matrix rank for matrices.

However, the tensor rank can only be revealed by the CP decomposition and it does not have to

equal the n-ranks. The n-ranks defined in Section 2.2.1 correspond to the ranks of the unfoldings,

not to the tensor rank. Moreover, a given tensor can have different ranks over C and R [CLdA09].

A maximal tensor rank is the maximum achievable rank. It can exceed the tensor dimensions.

On the other hand, a typical rank is any rank that appears with a non-zero probability if the

tensor elements are drawn randomly from a continuous distribution. Unlike matrix, a tensor can

have several typical ranks and these do not always equal the maximal rank. If for a given tensor

size there is only one typical rank, this one is called generic rank [CLdA09]. Tensors often have

no generic rank over R, but they always have one over C [KB09,Kru89,CLdA09]. The maximal

rank of a tensor X ∈ CM1×M2×M3 is upper bounded by min (M1M2,M1M3,M2M3) [Kru89]. Some

useful results on maximal rank and typical rank of tensors are available in [KB09, SDLF+17] and
[LC10]. Also, note that the typical rank may change when the tensor is constrained in some way,

for instance, if the frontal slabs are symmetric [SDLF+17]. The authors in [LS01,SDLF+17] proved
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the following upper and lower bound for the tensor rank R.

max(R1,R2,R3) ≤ R ≤min(R1R2,R2R3,R1R3)
Here, R1, R2, and R3 denote the n-ranks (n = 1,2,3) for a tensor X ∈ CM1×M2×M3 .

The CP decomposition is unique up to a permutation and scaling ambiguity under mild condi-

tions, i.e., if the sufficient condition in (2.41) is satisfied. Recognize that equation (2.40) still holds

for either

X = I3,R ×1 F 1P ×2 F 2P ×3 F 3P or X = I3,R ×1 F 1Λ1 ×2 F 2Λ2 ×3 F 3Λ3,

provided that the matrix P ∈ R
R×R is a permutation matrix3, and the matrices Λ1 ∈ C

R×R,
Λ2 ∈ C

R×R, and Λ3 ∈ C
R×R are diagonal matrices such that Λ1Λ2Λ3 = IR. Therefore, the factor

matrices of a CP decomposition can be identified up to permutation and one complex scaling

ambiguity per column. The uniqueness of the CP decomposition is investigated even nowadays.

Basic uniqueness results are included in [DDL13a] and [DDL13b]. Further uniqueness results,

including two-slab tensors and symmetric cases are available in [SDLF+17]. Moreover, uniqueness

results for the CP decomposition with correlated factor matrices are available in [LC10].

Computation of the CP decomposition

The computation of the CP decomposition is considered to be an NP-hard problem4, but the praxis

proves to be easier. However, the computation of the CP decomposition is more expensive than

the computation of the HOSVD. There are many different types of algorithms for the computation

of the CP decomposition and they can be categorized as follows. In case of noisy observations, we

can compute only an approximate low-rank CP decomposition.

� ALS is a very simple iterative algorithm for the computation of the CP decomposition [CC70,

Bro97,KB09,SvBDL13,dSCdA15b,SDLF+17]. In every iteration, a factor matrix is computed

from the tensor unfoldings (cf. equation (2.42)) in an LS sense assuming that the other factor

matrices are known. The ALS algorithm has no guarantee of convergence and the number

of iteration can be very high. Some versions of the ALS algorithm include dimensionality

reduction [Bro97], for instance, based on the truncated HOSVD [BSG99,CFC16]. Moreover,

it is possible to introduce constraints (e.g., correlation constraints on the factor matrices) to

the ALS algorithm in order to reduce the number of iterations [FGC18].

� Enhanced line search algorithms exploit the multi-dimensional structure of the tensor while

computing the CP decomposition. The line search based algorithms have an improved accu-

3 A permutation matrix P ∈ RR×R contains R elements equal to ones and the remaining elements are zeros. Moreover,
every row and column contain only a single element equal to one. A permutation matrix is obtained by permuting
the rows or the columns of an identity matrix according to some permutation.

4 An NP-hard problem is a problem for which there exist no known polynomial algorithm that can solve this
problem. Therefore, the complexity to find a solution to this problem grows exponentially with the problem size.
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racy, but they are computationally more expensive than ALS [RCH08,SDLF+17].

� GD (Gradient descent) methods for the computation of the CP decomposition compute each

of the factor matrices from the tensor unfoldings. Unlike ALS, the GD algorithms use a step

in the opposite direction of the gradient instead of computing an LS fit. Another option is the

usage of CG (Conjugate Gradient) based algorithms, which are faster than the well known

gradient descent based algorithms [dSCdA15b]. In case of very large tensors, and/or large

rank, using GD can be computationally very expensive. Therefore, as an alternative an SGD

(Stochastic Gradient Descent) can be used [SDLF+17].

� Quasi-Newton and NLS (Nonlinear Least Squares) methods can also be used for fitting a CP

model [SDLF+17,SvBDL15,SvBDL13,VDS+16]. The Quasi-Newton algorithms are iterative

algorithms that compute the update of the factor matrices based on a Newton descent that

includes the computation of the gradient and an approximation of the Hessian of the cost

function. Similar, the NLS algorithms use Gauss-Newton or Levenberg-Marquardt methods

and a linear approximation of the Hessian. Moreover, an efficient algorithm for the computa-

tion of the CP decomposition based on damped Gauss-Newton and an inverse approximate

Hessian in a block form that can handle collinear factors is proposed in [PTC13].

� A deflation-based computation of the CP decomposition is based on rank one approximations

[dSCdA15a, dSCdA15b]. The algorithm proposed in [dSCdA15a, dSCdA15b] computes the

rank one components sequentially and computes a residual in an iterative matter. The authors

in [dSCdA15b] propose both, an iterative and an algebraic solution for a deflation-based

algorithm for rank one tensors. The extension of the deflation-based algorithm to the rank

R CP decomposition is provided in [dSCdA15a].

� Semi-algebraic computation and algebraic computation of the CP decomposition involve con-

version of the CP model into an SMD (Simultaneous Matrix Diagonalization) and then using

diagonalization algorithms in order to obtain the factor matrices [DL05,LA11,LA14,RH13a].

The SECSI (Semi-Algebraic framework for approximate CP decomposition via SImultaneaous

matrix diagonalization) framework is an efficient tool for the computation of the CP decompo-

sition based on matrix diagonalizations. It calculates all possible SMDs and then selects the

best available solution in a final step via different heuristics [RH08,RSH12,RH13a,NHT+16].
For N -way (N > 3) tensors it is recommended to use the SECSI framework based on gener-

alized unfoldings SECSI-GU (SECSI-Generalized Unfoldings) [RSH12].

Further details regarding the computation of the approximate CP decomposition are provided in

Chapter 3, where we also present our contributions to the computation of the CP decomposition.

All of the above mentioned algorithms for the computation of the CP decomposition assume that

the tensor rank is known. The estimation of the tensor rank from a noisy observation is an ill-posed

problem, even more difficult than the estimation of the n-ranks. Some authors propose to estimate

the tensor rank by fitting a CP decomposition for different ranks and choosing the rank that leads to

the smallest residual. However, this method is not always reliable. An algorithm for the estimation
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of the tensor rank known as CORCONDIA that is based on a core consistency check is proposed

in [BK03]. More recently, its extension to sparse tensors was presented in [PF15]. Less complex

algorithms for rank estimation are proposed in [HRDG08,dCHRDG07,dCRHdS13,LdCS+16] based
on the minimum description length applied onto the eigenvalues of the generalized tensor unfoldings.

The authors of [HAK+17] propose a method that estimates both the tensor rank and the factor

matrices of the CP decomposition, by introducing a group sparsity constraint on the factor matrices.

The advantage of this method is that it cannot overestimate the tensor rank. Thus, the resulting

CP decomposition does not contain artificial components.

A CR-bound (Cramér-Rao-bound) is the lower bound on the variance of an unbiased estimator of

a deterministic parameter [Cra46]. The CR-bound of the approximate low-rank CP decomposition

for 3-way and 4-way arrays is provided in [LS01,SDLF+17]. A CRI-bound (Cramér-Rao-Induced-

bound) for the approximate low-rank CP decomposition of a noisy tensor is derived in [TPK13].

This CRI-bound represents the angular error between the estimated and true components.

Symmetry, non-negativity, real-valued, and sparsity constraints for the CP decomposition

Different applications impose different constraints on the CP decomposition [SDLF+17]. We can

summarize them as follows.

� Symmetry or Hermitian (conjugate) symmetry arises in higher order statistics, higher-order

derivatives, and blind source identification. Two symmetric cases can be considered. One,

if just two of the tensor modes are symmetric and another, if all modes are symmetric. For

instance, for a 3-way tensor with a CP structure X = I3,R ×1 F 1 ×2 F 2 ×3 F 3, we can have a

symmetric case such that F 1 = F 2, or F 1 = F 2 = F 3. A method for the efficient computation

of a symmetric CP decomposition is proposed in Section 3.4.

� Non-negativity constraints are often considered in data analytics such as biomedical data, im-

age processing, and blind estimation applications. Also, the power spectral density of signals

does not have negative values. The non-negativity constraints can improve the identifiability

of a tensor. The CP tensor decomposition with non-negativity constraints is also known as

NTF (Non-negative Tensor Factorization) [CZPSI09]. It can be approximated using ADMM

(Alternating Direction Method of Multipliers) [LS15]. An extension of the SECSI frame-

work [RH13a] for the computation of a CP decomposition with non-negativity constraints is

presented in Section 3.5.

� Real-valued factor matrices are a common constraint in chemistry and communications when

dealing with power spectral density. The real valued constraints are easy to incorporate. How-

ever, the tensor rank over complex-valued and real-valued fields can be different. Therefore,

we have to take into account if the factor matrices are real-valued or complex-valued.

� Sparsity constraints are also applied in data analysis applications for social network data

or rating sites data [PFS12] and image processing [CC13a,CC13b]. The authors of [PFS12]

propose a ParCube algorithm for the computation of the CP decomposition for big sparse
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tensors. Moreover, in [HAK+17], the authors propose a computation of the CP decomposition

by imposing group sparsity on the factor matrices that does not require a priori knowledge

of the tensor rank.

In general, constraints have a positive influence on the computation of an approximate CP decom-

position. They can restore the identifiability in otherwise non-identifiable cases [dAFM08,CZPSI09,

SDLF+17]. The constraints can also improve the accuracy of the estimated factors in ill-posed sce-

narios like barely identifiable (highly correlated columns of the factor matrices) scenarios, and/or

low SNR (Signal to Noise Ration) scenarios. For instance, the authors of [FGC18] show that the

convergence of the ALS approach can be improved be introducing mutual correlation constraints

of the modes. Moreover, the constraints ensure a reasonable physical interpretation and physical

meaning of the factor matrices. How to impose constraints on the CP decomposition depends on the

specific algorithm for the computation of the CP decomposition. In this thesis, we present exten-

sions of the SECSI framework [RH13a] to the robust computation of the approximate low-rank CP

decomposition with non-negativity and symmetry constraints. These extensions are presented in

Section 3.5 and Section 3.4, respectively. The SECSI framework [RH13a,RSH12,NHT+16] already
considers real-valued and complex valued factor matrices.

Coupled CP decomposition

Furthermore, two different tensors X (1) ∈ CM1×M(1)
2
×M(1)

3 and X (2) ∈ CM1×M(2)
2
×M(2)

3 have a coupled

CP decomposition if they have at least one common factor matrix. Assuming that the two tensors

have the first factor matrix as a common one, the coupled CP decomposition is defined as

X (1) = I3,R ×1 F 1 ×2 F (1)2 ×3 F (1)3 ,

X (2) = I3,R ×1 F 1 ×2 F (2)2 ×3 F (2)3 ,

where the tensor rank of both tensors is equal to R. The factor matrices have dimensions F 1 ∈

C
M1×R, F (i)2 ∈ CM

(i)
2
×R, and F

(i)
3 ∈ C

M
(i)
3
×R, for i = 1,2. In order to jointly decompose the tensors,

the existing algorithms for the computation of the CP decomposition have to be modified. The

computation of the coupled CP decomposition based on ALS is analyzed in [FCC16] and [CFC16].

An extension of the SECSI framework for the calculation of the coupled CP decomposition is

proposed in [NH16] and in Section 3.6.

Applications of the CP decomposition

The CP decomposition has a broad range of applications including diverse branches of signal pro-

cessing, audio processing, speech processing, biomedical engineering, chemometrics, and machine

learning [KB09,CMP+15]. The rank one components of the CP decomposition capture the essential

properties of complex signals, therefore the CP decomposition is an efficient tool for data analytics

[CMP+15]. To this end, the coupled CP decomposition is also a valuable tool for data/signal anal-
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ysis in biomedical applications [NKHH17,NLA+17]. The estimation of emission factors in amino

acids fluorescence data or fluorescence spectroscopy can be performed in terms of the CP decompo-

sition [HAK+17,LA14]. The CP decomposition is also widely used in wireless communication. For

instance, the signals transmitted by different users correspond to rank one components. CP based

applications also include harmonic retrieval [CMP+15, SDLF+17], estimation and tracking of the

direction of arrival or the direction of departure [CMP+15,NS09], near field localization [PHT+18],
CDMA (Code-Division Multiple Access) [SGB00], OFDM communications systems type applica-

tions [dAF13a,NHdA17,NHdA18], and many more. Moreover, the CP decomposition can be used

for the imputation of missing entries [AKDM11,BMG13,SDLF+17], the joint identification and ex-

traction of multiple sources from noisy observations [LC10,CL11,SDLF+17], and subspace tracking

[NS09, NAMLT16]. The CP decomposition can be used for the analysis of rating websites such

as movie websites [SDLF+17] and for Gaussian mixture parameter estimation [SDLF+17]. Fur-

thermore, the CP decomposition has many dictionary based applications like chat or conversation

topic modeling from previously defined sets of topics [SDLF+17]. The identification of the esti-

mated sources according to a known dictionary can also be achieved using the CP decomposition

[CG18]. Finally, data mining and structured data fusion can also benefit from the CP decomposition

[SvBDL15,KB09].

2.2.3 Block Term Decomposition

The BTD is a generalization of the CP decomposition and the Tucker decomposition. It decomposes

a higher order tensor in block terms of lower ranks [DL08a, DL08b, DLN08]. The BTD and its

uniqueness properties are presented in [DL08b]. Depending on the different block term ranks,

three different decompositions in block terms are defined, the decomposition in rank-(Lr,Lr,1)
terms, the decomposition in rank-(L,M,N) terms, and the decomposition in rank-(L,M, .) terms

[DL08b,DLN08]. In this section, we provide a brief overview of these three decompositions.

Decomposition in rank-(Lr,Lr,1) terms

The decomposition in R rank-(Lr,Lr,1) terms of a tensor T ∈ CI×J×K is defined as

T =
R

∑
r=1

(Ar ⋅BT
r ) ○ cr, (2.43)

where the matrices Ar ∈ C
I×Lr and Br ∈ C

J×Lr have ranks Lr = rank (Ar) = rank (Br) and

cr ∈ C
K is a rank one column vector, ∀r = 1, . . . ,R [DL08b,DLN08]. If we define the block matrices

A = [A1, . . . ,AR], B = [B1, . . . ,BR], and C = [c1, . . . ,cR], for the following matrix representations
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of the tensor T , we have

[T ]([2,1],3) = [(A1 ◇B1) ⋅ 1L1
, . . . , (AR ◇BR) ⋅ 1LR

] ⋅CT,

[T ]([3,2],1) = (B ⊠R C) ⋅AT, and

[T ]([1,3],2) = (C ⊠R A) ⋅BT. (2.44)

The symbol ⊠R denotes the partition-wise Kronecker product. For the partitioned matrices A =[A1, . . . ,AR] and B = [B1, . . . ,BR], the partition-wise Kronecker product between these two ma-

trices is defined as A ⊠R B = [A1 ⊗B1, . . . ,AR ⊗BR] [DL08a,DL08b]. It is obvious that the R

terms in (2.43) can be arbitrary permuted and the matrix Ar can be multiplied from the right hand

side by a nonsingular matrix Fr ∈ C
Lr×Lr provided that the matrix BT

r is multiplied from the left

hand side by F −1r . The decomposition is essentially unique when it is subject only to these trivial

indeterminacies. The mild conditions under which the BTD in rank-(Lr,Lr,1) terms is essentially

unique are proven in [DL08b]. The BTD in rank-(Lr,Lr,1) terms can be computed based on ALS

using the tensor unfoldings in equation (2.44). The corresponding updates are provided in [DLN08].

Decomposition in rank-(L,M,N) terms

The BTD in rank-(L,M,N) terms decomposes a given tensor T ∈ CI×J×K into a sum of R rank-(L,M,N) terms [DL08b].

T =
R

∑
r=1

Dr ×1 Ar ×2 Br ×3 Cr (2.45)

The tensor Dr ∈ C
L×M×N has 1-rank, 2-rank, and 3-rank equal to L, M , and N , respectively.

Moreover, the matrices Ar ∈ C
I×L, Br ∈ C

J×M , and Cr ∈ C
K×N have full column rank. The BTD

in rank-(L,M,N) terms is depicted in Fig. 2.14. When R = 1, the BTD in rank-(L,M,N) terms

is equivalent to the Tucker decomposition (see Section 2.2.1). On the other hand, the BTD in R

terms with rank-(L,M,N), for L = M = N = 1 is the equivalent to the CP decomposition (see

Section 2.2.2). Therefore, the BTD represents a generalization of the CP decomposition and the

Tucker decomposition that offers more flexibility in terms of the model order (in comparison to the

multi-linear ranks and the tensor rank of the CP decomposition).

Figure 2.14.: BTD in rank-(L,M,N) terms
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Figure 2.15.: Block diagonal structure of the BTD in rank-(L,M,N) terms

Using the partitioned matrices A = [A1, . . . ,AR] ∈ CI×LR, B = [B1, . . . ,BR] ∈ CJ×MR, C =[C1, . . . ,CR] ∈ CK×NR, and the block diagonal tensor D ∈ CLR×MR×NR that is built from the

tensors Dr, the BTD can be rewritten as T = D ×1 A ×2 B ×3 C. The BTD in this format and

the corresponding partitioned matrices and tensors are depicted in Fig. 2.15. This block diagonal

formulation is more compact and practical. Therefore, it can be used to derive any of the tensor

unfoldings. Using the unfolding properties (2.4)-(2.7) the following unfoldings of the tensor T can

be derived [DLN08]

[T ]([3,2],1) = (B ⊗C) ⋅ [D]([3,2],1) ⋅AT = (B ⊠R C) ⋅ blkdiag([D1]([3,2],1) , . . . , [DR]([3,2],1)) ⋅AT,

[T ]([1,3],2) = (C ⊗A) ⋅ [D]([1,3],2) ⋅BT = (C ⊠R A) ⋅ blkdiag([D1]([1,3],2) , . . . , [DR]([1,3],2)) ⋅BT,

[T ]([2,1],3) = (A⊗B) ⋅ [D]([2,1],3) ⋅CT = (A ⊠R B) ⋅ blkdiag([D1]([2,1],3) , . . . , [DR]([2,1],3)) ⋅CT,

and [T ]([3,2,1],0) = (A⊗B ⊗C) ⋅ [D]([3,2,1],0) = (A ⊠R B ⊠R C)
⎡⎢⎢⎢⎢⎢⎢⎣
[D1]([3,2,1],0)

⋮[DR]([3,2,1],0)
⎤⎥⎥⎥⎥⎥⎥⎦
.

The block diagonalization operator denoted by blkdiag (.) is defined in (A.1). The authors of

[DLN08] propose an ALS algorithm for the computation of the BTD in rank-(L,M,N) terms

based on the above given tensor unfoldings. The BTD in rank-(L,M,N) terms is essentially

unique under mild conditions. Accordingly, the uniqueness properties of the decomposition are

presented in [DL08b]. The BTD in rank-(L,N,M) terms can be easily generalized to higher order

tensors. This generalization and the corresponding unfoldings are used later in this thesis (see

Chapter 4 and Chapter 5).
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Decomposition in rank-(L,M, .) terms

The decomposition in rank-(L,M, .) terms is also referred to as type-2 BTD. The name type-2

corresponds to the Tucker2 decomposition (the Tucker2 decomposition of a 3-way tensor assumes

that one of the factor matrices is an identity matrix). For a tensor T ∈ CI×J×K , the BTD in

rank-(L,M, .) terms is defined as [DL08b,DLN08]

T =
R

∑
r=1

Dr ×1 Ar ×2 Br,

where Dr ∈ C
L×M×K has 1-rank and 2-rank equal to L and M , respectively. Moreover, Ar has

dimensions I ×L (I ≥ L) and Br has dimensions J ×M (J ≥M). Both matrices have full column

rank. When R = 1, the BTD in rank-(L,M, .) terms is equivalent to the Tucker2 decomposition.

The BTD in rank-(L,M, .) terms is essentially unique under mild conditions. The uniqueness

results are provided in [DL08b].

The decomposition can be computed based on ALS [DLN08]. The ALS updates are easily derived

from T =D ×1 A ×2 B, where A = [A1, ...,AR], B = [B1, ...,BR], and D is a block diagonal tensor

build from the tensors Dr, for r = 1, ...R.

Computation of the BTD

As previously explained, the BTD can be computed based on ALS [DLN08]. Moreover, the authors

of [SvBDL13] develop nonlinear least squares methods which are memory efficient, gradient-based

methods for the computation of the BTD. A complexity analysis of the algorithms for the com-

putation of both the BTD and the CP decomposition is provided in [SvBDL13]. The BTD has a

higher computational complexity than the CP decomposition.

Applications of the BTD

The BTD as a generalization of the CP decomposition and the Tucker decomposition has many

applications such as blind source separation [CMP+15] and data fusion [SvBDL13]. In [ZNH14], the

BTD is used for channel estimation in two-way relaying MIMO systems with multiple amplify-and-

forward relays. Moreover, the BTD has applications in biomedical signal processing. For instance,

the BTD can be used for modelling epileptic seizures from EEG (ElectroEncephaloGraphy) record-

ings [HCS+14]. The authors of [RdAZ16] also exploit the BTD for the identification of a cardiac

arrhythmia from ECG (ElectroCardioGram) signals.

2.2.4 PARATUCK2

The PARATUCK2 decomposition is a very flexible tensor decomposition representing a mixture of

the CP decomposition also known as PARAFAC and the Tucker decomposition (see Section 2.2.2
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and Section 2.2.1, respectively). Let A ∈ CI×J and B ∈ CT×P be two matrices containing the

elements ai,j and bt,p and representing two different sets of latent components, respectively. The

PARATUCK2 tensor decomposition of a tensor X ∈ CI×T×K containing these matrices is defined

as [HL96]

X (.,.,k) =A ⋅D(A)(.,.,k) ⋅R ⋅D(B)(.,.,k) ⋅BT, ∀k = 1,2, . . . ,K, (2.46)

where the matrix R ∈ C
J×P indicates the interaction between the two different sets of latent

components. The 3-mode slices of the two tensors D(A) ∈ CJ×J×K and D(B) ∈ CP×P×K are diagonal

matrices with diagonal elements equal to d
(A)
j,k

and d
(B)
p,k

, respectively. The PARATUCK2 tensor

decomposition is illustrated in Fig. 2.16.

Figure 2.16.: Slice-wise visualization of the PARATUCK2 decomposition for a tensor X ∈ CI×T×K with
slices X (.,.,k) =A ⋅D(A)(.,.,k) ⋅R ⋅D(B)(.,.,k) ⋅BT.

Even though the PARATUCK2 decomposition has been proposed a long time ago [HL96], there

exist no explicit tensor model for this decomposition. As depicted in Fig. 2.16 the PARATUCK2

decomposition represents a slice-wise multiplication between two tensors. Recall that we have

proposed an alternative representation of the slice-wise multiplication based on generalized tensor

contraction in Section 2.1.4. In Section 4.1, we exploit this representation to derive a new tensor

model for the PARATUCK2 decomposition. By substituting the structure of both tensors involved

in the contraction, we show that the PARATUCK2 decomposition fits a constrained CP model.

The uniqueness properties of PARATUCK2 are proven in [HL96], but only for cases where

J = P . The PARATUCK2 decomposition is unique up to a permutation and scaling ambiguity.

For instance, in [HL96] it is shown that the PARATUCK2 decomposition is unique if A, B, and R

have full column rank,R has no zero elements, J = P = 2, andK ≥ 9. For J = P = 3 the tensor should

have at least K = 36 slices in order the decomposition to be unique. Also, the authors of [HL96]

prove the uniqueness of the PARATUCK2 for a symmetric case, i.e., D(A) =D(B). In this case, the

decomposition is unique ifA, B, andR have full column rank,R has no zero elements, for J = P = 2,

and K ≥ 5, or for J = P = 3 and K ≥ 15. Even more, the authors of [HL96] include uniqueness

results for the DEDICOM (DEcomposition into DIrectional COMponents) [Har78, KB09]. The

DEDICOM is a symmetric PARATUCK2 decomposition, where D(A) =D(B) and A =B.

Based on the PARATUCK2 decomposition, it is possible to analyze a large amount of user

information, such as user’s behavior on social websites, shopping websites, profiling smart con-
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tracts, etc. This then leads to the prediction of the user’s behavior in the future [CSH18]. More-

over, PARATUCK2 describes various wireless communication systems [SGB00,FdA14a] (see Sec-

tion 2.3). Similarly, the authors of [dAFX13] propose a space-time-frequency model for MIMO

communication systems based on the PARATUCK2 decomposition. These applications assume

MIMO-OFDM communication systems. In addition, to tensor based modeling of OFDM systems,

we have proposed a PARATUCK2 based model for MIMO-GFDM (Generalized Frequency Division

Multiplexing) systems in [NCH+17]. Furthermore, a semi-blind receiver for a relay assisted MIMO

communication system based on the CP decomposition and the PARATUCK2 decomposition is

proposed in [ZNNH15,XFdAS14].

2.2.5 PARAFAC2

The PARAFAC2 decomposition is a generalization of the PARAFAC/CP tensor decomposition.

According to [Har72], the PARAFAC2 decomposition of a tensor X ∈ RI×J×K is defined in the

following slice-wise fashion,

X (.,.,k) =Xk =A ⋅ diag (C(k,.)) ⋅BT
k , ∀k = 1, . . . ,K. (2.47)

It can be interpreted as a coupled matrix decomposition of K matrices Xk ∈ R
I×J ,5 where the

matrix A ∈ RI×R is the coupled mode. The rows of the matrix C ∈ RK×R contain the weights that

correspond to the R underlying components. The second mode is not coupled and therefore each

Xk matrix has a different loading factor BT
k ∈ R

R×J . In general, the PARAFAC2 decomposition

is not unique. However, in [Har72] it has been shown that it is essentially unique under mild

conditions, i.e., if BT
k ⋅Bk = F

T ⋅ F such that BT
k = F

T ⋅ V k and V k ⋅ V T
k = IR, where F ∈ RR×R

and V k ∈ R
R×J . This is known as the Harshman constraint [Har72].

The slice-wise description of PARAFAC2 is visualized in Fig. 2.17, where it is obvious that the

PARAFAC2 decomposition can be regarded as a slice-wise multiplication of two tensors. This

slice-wise multiplication can be expressed in terms of the generalized contraction as proposed in

Section 2.1.4. Exploiting the tensor contraction properties and the structure of the tensors involved

in the contraction, we get a new tensor model for PARAFAC2. In Section 4.2, we show that

PARAFAC2 fits a constrained CP model. The resulting tensor structure enables a simultaneous

view of all dimensions, leading to an efficient computation of the PARAFAC2 decomposition.

The PARAFAC2 tensor decomposition has many applications in multi-dimensional data analyt-

ics. For instance, it can be used in biomedical applications when analyzing time-shifted signals.

In [WJR+10] and [WJG+10], the PARAFAC2 decomposition is used for the identification of the

dominant signal components in EEG signals resulting from visual-evoked potentials for each of

the different time-shifted channels. Moreover, in [CHGH18], PARAFAC2 is used for the analysis

5 Note that in general each matrix Xk can have different dimensions, i.e., Xk ∈ R
Ik×Jk . However, we assume that

all matrices have the same dimensions for notation simplicity, I1 = . . . = Ik = I and J1 = . . . = JK = J . The tensor
notation introduced later in this thesis (see Section 4.2) still holds for different dimensions of the matrices Xk if
we zero pad the matrices to the maximum dimension, i.e., I =max(I1, . . . , IK) and J =max(J1, . . . , JK).
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2.3. Applications of Tensor Algebra

Figure 2.17.: Slice-wise visualization of the PARAFAC2 decomposition for a tensor X ∈ RI×J×K with
slices Xk =A ⋅ diag (C(k,.)) ⋅BT

k , ∀k = 1, . . . ,K.

of somatosensory evoked magnetic fields and somatosensory evoked electrical potentials. The au-

thors of [BAK99] present a model of chromatograhic data with time shifts based on PARAFAC2.

Furthermore, an algorithm for the computation of the coupled PARAFAC2 decomposition is pro-

posed in [CNH+18] for the joint analysis of somatosensory evoked magnetic fields and electrical

potentials.

2.3 Applications of Tensor Algebra

Tensor based signal processing offers an improved identifiability, uniqueness, and more efficient

denoising compared to matrix based techniques. A good overview of some tensor based signal

processing applications is provided in [CMP+15], [KB09], and [Cic14]. In this section, we summarize

some of the applications of tensor algebra.

Applications in wireless communication systems

Tensors are used to model wireless communication systems due to the multi-dimensional structure

of the signals (time, frequency, space, users, etc.). For instance, a signal separation in wireless

communications can be performed based on the CP decomposition [CMP+15, SDLF+17]. Using

the CP structure, the authors of [SB02] propose Khatri-Rao space-time codes for MIMO wireless

communication systems. Later, the authors of [dAF13a] propose a space-time-frequency coding

technique using nested CP models for MIMO-OFDM systems. A model based on the generalized

PARATUCK decomposition for MIMO-OFDM-CDMA wireless systems is presented in [FdA14a]

using a 4-way tensor. Utilizing this generalized tensor structure, the authors in [FdA14a] propose

two types of semi-blind receivers, an ALS based receiver and an LSKRF based receiver. Moreover, a

semi-blind receiver for MIMO communication systems based on the PARATUCK2 decomposition is

proposed in [dAFX13]. Furthermore, the authors in [dAFM08] derive new precoding and transmit

techniques for MIMO systems based on a constrained CP model. In [NHdA17, NHdA18], we

show that the received signal in MIMO-OFDM satisfies a constrained CP model (see Section 5.1).

The utilization of the model proposed in [NHdA17] leads to an improved receiver design based
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on the Khatri-Rao factorization. In addition to tensor based modeling for OFDM systems, a

PARATUCK2 based model for MIMO-GFDM systems is presented in [NCH+17] (see Section 5.2).

All of the previously mentioned references exploit the tensor structure for the design of semi-blind

receivers. Note that using tensor algebra, we can estimate both the channel and the data symbols

without any prior knowledge (this corresponds to a blind receiver). However, we can estimate the

channel and the transmitted data symbols up to a scaling and permutation ambiguity. To resolve

the scaling ambiguity we require an initial estimate of the communication channel and/or pilot

symbols (this corresponds to a semi-blind receiver). In this thesis, we present the tensor models for

MIMO-OFDM and MIMO-GFDM systems [NHdA17,NHdA18,NCH+17]. The details are described
in Section 5.1 and Section 5.2, respectively.

In [SGB00], a multi-user communication system is modeled in terms of the CP decomposition.

The proposed tensor model leads to the design of a semi-blind receiver for CDMA systems. Sim-

ilarly, in [dAF13b], a Khatri-Rao coding in space and frequency for multi-user MIMO-OFDM

systems is proposed based on the CP tensor decomposition.

Moreover, tensor models are often exploited for modeling two-way relaying systems. Such CP

based algorithms are presented in [RH10] and [RKX12] for channel estimation in a two-way wireless

relaying system. A semi-blind receiver for a relay assisted MIMO communication system based on

the CP and the PARATUCK2 decomposition is proposed in [ZNNH15, XFdAS14]. Moreover, a

nested Tucker model is used in [SdAH17] to model two-hop MIMO relaying systems. We show

in [ZNH14] that a two-way relaying system with multiple relays can be modeled according to the

BTD. These tensor based techniques provide an improved estimation accuracy and require less

training data as compared to the traditional matrix based solutions.

Tensor based subspace estimation is usually performed using the truncated HOSVD for noise

reduction [CRKH14, RH13b, SDLF+17]. Using the CP decomposition, we can also perform joint

identification and extraction of multiple sources from noisy observations [LC10,CL11, SDLF+17],
and subspace tracking [NS09, NAMLT16] for the estimation of the underlying features. More-

over, tensor algebra is a practical tool for source separation in time-varying applications such as

multi-dimensional harmonic retrieval [HRDG08,RH13b,CRKH14]. The authors of [NS09,CMP+15,
SDLF+17] present CP based applications for the estimation and tracking of the directions of arrival

or the directions of departure. A near field localization based on the CP decomposition is performed

in [PHT+18]. Moreover, the coupled CP tensor decomposition is suitable for several combined signal

processing applications such as multirate sampling for array signal processing [SDL17a,SDL17b].

Applications in biomedical engineering

Tensors and tensor decompositions are widely used in neuroscience for the analysis of EEG and/or

MEG (MagnetoEncephaloGraphy) signals [KB09]. In [CLK+15, BAC+14], tensor decompositions

are applied for the analysis of EEG signals. Blind source separation for event related sources can

be performed based on signal subspace tracking using the CP decomposition. For instance, in
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2.3. Applications of Tensor Algebra

[NBR+14], an extraction of event related sources is tested on EEG, ECG, and MEG data, and it

is also shown that the CP based analysis is more robust against outliers. The CP decomposition

is also used for the imputation of missing entries in big tensors resulting from MRI (Magnetic

Resonance Imaging) images [MMG15]. The authors in [BMG13] also introduce a BSUM (Block

Successive Upper Bound Minimization) algorithm for tensor imputation, which is applied on MRI

images as well as RNA (RiboNucleic Acid) sequencing.

Moreover, in [CHGH18] the authors exploit the PARAFAC2 decomposition for the analysis of

somatosensory evoked magnetic fields and somatosensory evoked electrical potentials. An extension

of this method is proposed in [CNH+18], where the authors propose a coupled PARAFAC2 decom-

position for the joint analysis of somatosensory evoked magnetic fields and electrical potentials. An

identification of the signal components in EEG data based on the PARAFAC2 decomposition is

also performed in [WJG+10,WJR+10]. The authors of [AKD11,ABS15] show that data fusion in

metabolomics benefits from coupled matrix-tensor decompositions. Furthermore, a coupled CP is

a valuable tool for data/signal analysis in biomedical applications for the joint analysis of EEG and

MEG signals [BCA12,NKHH17,NLA+17]. In Section 6.1 and Section 6.2, we present our contri-

bution to the joint analysis of EEG and MEG signals using the C-SECSI (Coupled-Semi-Algebraic

framework for approximate coupled CP decomposition via SImultaneaous matrix diagonalization)

framework for the computation of the coupled CP decomposition.

Other applications

In addition to the applications of tensor algebra in wireless communication systems and biomedical

signal processing, tensor algebra has many more applications. These include data analytics in

chemical analysis, psychometrics, image processing, video processing, topic modelling, etc.

A recovery of missing entries is performed using the HOSVD decomposition in [YFLZ16]. On

the other hand, an imputation of missing entries based on the CP decomposition is presented

in [AKDM11, BMG13, MMG15, SDLF+17]. The CP decomposition is applicable for data ana-

lytics from rating websites such as movie websites and Gaussian mixture parameter estimation

[SDLF+17]. The coupled CP decomposition is applicable for data fusion of heterogeneous data sets

of multiple sources, e.g., data from social websites and review websites can be processed jointly

[AKD11]. Clustering of heterogeneous data sets is also proposed in [ABS15] based on the coupled

CP decomposition.

Moreover, the authors of [CC70] propose one of the first applications of the CP decomposition in

psychometrics. The estimation of the emission factors in amino acids fluorescence data or fluores-

cence spectroscopy can be performed in terms of the CP decomposition as shown in [HAK+17,LA14].
Furthermore, using the PARAFAC2 decomposition we describe data models that additionally vary

along one of the tensor dimension (e.g., time shifts). The authors of [BAK99] present a model of a

chromatograhic data based on PARAFAC2.

Dimensionality reduction can be performed using the truncated HOSVD. For instance, the SECSI
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framework exploits the truncated HOSVD for dimensionality reduction as an initial step of the com-

putation of the CP decomposition [RH13a]. The truncated HOSVD is also used in applications such

as image processing, including hyper-spectral imaging, deblurring via image filtering, and tensor

completion problem [CC13a,CC13b]. Moreover, the HOSVD is often utilized in video processing

for tracking motion trajectories [MSK09].

Furthermore, speech or text processing applications for topic modeling using the CP decompo-

sition are presented in [SDLF+17]. Similar, an identification of estimated sources according to a

known dictionary can be achieved using the CP decomposition [CG18].

Naturally, tensors and tensor decompositions play an important role in big data applications.

In [SPF14], the authors propose a novel approach for parallel and distributed computation of

low-rank tensor decompositions for data analytics and data compression. As shown in [CSH18],

based on PARATUCK2 it is also possible to analyze large amounts of users information and to

predicted the user’s behavior in the future. For instance, the PARATUCK2 decomposition models

smart contracts activities such that it highlights the time dependent latent parameters [CSH18].

These latent parameters are then modeled by the long short term memory network for predictive

analytics [CSH18].

2.4 Conclusions

In this chapter, we provide the used notation and fundamental concepts of tensor algebra including

the required definitions, properties of the Kronecker product, properties of the Khatri-Rao product,

properties of the Hadamard product, LSKF (Least-Squared Kronecker Factorization), and LSKRF

(Least-Squared Khatri-Rao Factorization). Moreover, we present our contribution to the funda-

mental concepts of tensor algebra for the generalized tensor contraction operator. In particular, we

propose an alternative representation of the element-wise multiplication and slice-wise multiplica-

tion between two arrays (vector/matrices/tensors) based on generalized contraction. In contrast to

the element-wise or slice-wise representations, this novel representation facilitates the derivation of

the explicit tensor structure and all corresponding tensor unfoldings as we show in Chapter 4 and

Chapter 5 of this thesis. Some parts of our contributions for the element-wise and slice-wise mul-

tiplications via generalized unfoldings has already been published in [NCdAH18]. Furthermore, in

this chapter we review the basic tensor decompositions that will be used in the sequel the HOSVD,

the CP decomposition, the BTD, the PARATUCK2 decomposition, and the PARAFAC2 decompo-

sition. We also list some of the many applications of tensor algebra mainly including applications

to wireless communication systems and biomedical signal processing that are the main scope of

this thesis.
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Chapter 3

Computation of the CP decomposition and the

coupled CP decomposition

The CP decomposition decomposes a tensor X 0 ∈ C
M1×M2×M3 into R rank one components.

X 0 = I3,R ×1 F 1 ×2 F 2 ×3 F 3 (3.1)

The matrices F 1 ∈ C
M1×R, F 2 ∈ C

M2×R, and F 3 ∈ C
M3×R are the factor matrices containing the

signatures for each of the modes, and R is the tensor rank. The construction of the tensor unfold-

ings, the uniqueness properties of the CP decomposition, the extension to N -way arrays, and other

details have already been discussed in Section 2.2.2. In Section 2.2.2, we also briefly discuss the

computation of the CP decomposition. The algorithms for the computation of the CP decomposi-

tion can be categorized as ALS based algorithms, line search algorithms, GD based algorithms, NLS

based algorithms, deflation-based algorithms, and semi-algebraic algorithms. The semi-algebraic

algorithms exploit the CP tensor structure and convert the CP decomposition into an SMD. The

link between the CP decomposition and an SMD was introduced in [DL05]. Later a complete

semi-algebraic algorithm for the computation of CP is proposed in [LA11]. An improvement of

this algorithm is then proposed in [LA14]. The semi-algebraic algorithm [LA11, LA14] known as

DIAG (DIrect AlGorithm for canonical polyadic decomposition) considers only the diagonalization

of the tensor along one mode, and therefore it solves only one SMD. The earlier version of the

algorithm [LA11] is denoted by SALT (Semi-ALgebraic Tensor decomposition). The algorithms

SALT and DIAG use different algorithms for the computation of the SMD. The SALT algorithm

utilizes Jacobi-like algorithm called JET (Joint Eigenvalue decomposition algorithm based on Tri-

angular matrices). The DIAG algorithm utilizes the JDTM (Joint Diagonalization algorithm based

on Targeting hyperbolic Matrices) algorithm that uses a polar matrix factorization to compute the

SMD. On the other hand, the SECSI framework proposed in [RH08, RH13a] considers the diag-

onalization of the tensor along all modes and thereby it solves all possible SMDs. An improved

extension of the framework for an N -way (N > 3) tensor based on generalized unfoldings is pro-

posed in [RSH12], SECSI-GU. The SECSI framework computes multiple initial estimates of the

factor matrices. Then, in a subsequent step a final estimate is chosen based on different heuristics.

The different heuristics lead to a complexity-accuracy trade-off of the SECSI framework [RH13a].

In this chapter, we present extensions of the SECSI framework [RH08,RH13a,RSH12] that reduce

the computation complexity and/or introduce constraints. These extensions include the truncated
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SECSI (T-SECSI) [NHT+16], non-symmetric SECSI (NS-SECSI) [NHT+16], SECSI for symmetric

tensors (S-SECSI), SECSI for non-negative tensors (SECSI+), and an extension of SECSI to the

coupled SECSI (C-SECSI) [NH16] for the computation of the coupled CP decomposition. We devote

a section of this chapter to each of the proposed extensions of the SECSI framework, Sections 3.2-

3.6, respectively. For simpler differentiation of our contributions for the proposed SECSI extensions

and the original SECSI framework, we briefly review the link between the CP decomposition and

the SMD and the SECSI framework proposed in [RH13a] in the following section.

3.1 Introduction to the SECSI framework

In practice, we have a noisy observation of the signal tensor X 0 ∈ C
M1×M2×M3 , i.e., X = X 0+N . The

tensorN represents ZMCSCG noise with variance σ2
N. From this noisy observation we can compute

only a low-rank approximation of the observed signal X 0. For notation simplicity we consider

the noiseless case first. In the presence of noise, all following relations still hold approximately.

Moreover, we assume that R ≤min(M1,M2,M3). However, the SECSI framework can also compute

the CP decomposition of rank deficient tensor if the 3-way tensor is rank deficient in up to two

modes [RH13a].

First, consider the link between the CP decomposition and the truncated HOSVD given by

X 0 = I3,R ×1 F 1 ×2 F 2 ×3 F 3 = S
[s] ×1 U [s]

1 ×2 U [s]
2 ×3 U [s]

3 , (3.2)

where the truncated core tensor S [s] ∈ CR×R×R and the matrices U
[s]
1 ∈ C

M1×R, U [s]
2 ∈ C

M2×R, and
U

[s]
3 ∈ C

M3×R correspond to the truncated HOSVD (for its definition see equation (2.37)). The

factor matrices, F 1 ∈ C
M1×R, F 2 ∈ C

M2×R, and F 3 ∈ C
M3×R correspond to the CP decomposition

in (3.1). The 1-mode unfolding of the tensor X 0 satisfies

[X 0](1) = U [s]
1 ⋅ ([S [s]](1) ⋅ [U [s]

3 ⊗U
[s]
2 ]T)

= F 1 ⋅ ([I3,R](1) ⋅ [F 3 ⊗F 2]T) .
Note that the matrices U

[s]
1 and F 1 span the column space of [X 0](1). Hence, there exists an

invertible matrix T 1 ∈ C
R×R such that F 1 = U

[s]
1 ⋅ T 1. Similarly, for the other two modes, we have

F 2 = U
[s]
2 ⋅ T 2 and F 3 = U

[s]
3 ⋅ T 3. By substituting these matrices in equation (3.2), we have

X 0 = I3,R ×1 U [s]
1 ⋅ T 1 ×2 U [s]

2 ⋅ T 2 ×3 U [s]
3 ⋅ T 3 = S

[s] ×1 U [s]
1 ×2 U [s]

2 ×3 U [s]
3 .

The above equation represents the fundamental link between the truncated HOSVD and the CP

decomposition. Hence, for the truncated core tensor, we get S[s] = I3,R×1T 1×2T 2×3T 3. Moreover,
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3.1. Introduction to the SECSI framework

observing

S[s] ×1 T −11 ×2 T −12 ×3 T −13 = I3,R, (3.3)

we see that the invertible matrices T −11 , T −12 , and T −13 diagonalize the core tensor S[s]. The

extensions of the SECSI framework presented in the remainder of this chapter differ in the way of

solving this diagonalization problem and the different constraints imposed on the factor matrices

F 1, F 2, and F 3. The original SECSI framework diagonalizes the truncated core tensor based

on symmetric SMDs. After the 3-mode multiplication of the core tensor in (3.3) by U
[s]
3 , i.e.,

S3 = S
[s] ×3 U [s]

3 , we get

S3 ×1 T −11 ×2 T −12 = I3,R ×3 U [s]
3 T 3´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
F 3

. (3.4)

Figure 3.1.: Diagonalization of the tensor S
[s]
3 ∈ C

R×R×M3 along the 3-mode.

In Fig. 3.1, we visualize the above equation (3.4). We see that the invertible transform matrices

T 1 and T 2 diagonalize the matrices S3(.,.,m3) (the 3-mode slides of S3) jointly for all m3 = 1, . . . ,M3.

Note that we can obtain

T −11 ⋅S3(.,.,m3) ⋅ T −T2 = diag (F 3(m3,.)) (3.5)

by multiplying the equation (3.4) along the 3-mode with the transpose of a pinning vector em3
∈ RM3×1,

∀m3 = 1, . . .M3. The superscript
−T denotes transposition and matrix inversion. The equation (3.5)

reveals the link between the CP decomposition and an SMD. To be more precise, equation (3.5)

represents a non-symmetric SMD. The original SECSI framework [RH13a] proposes to convert this

non-symmetric SMD into two symmetric SMDs. By eliminating one of the transform matrices from

the right-hand side, we have

S rhs
3 (.,.,m3) = S3(.,.,m3) ⋅S3

−1(.,.,p) = T 1 ⋅ diag (F 3(m3,.)) ⋅ TT
2 ⋅ T −T2 ⋅ diag (F 3(p,.))−1 ⋅ T −11

= T 1 ⋅ diag (F 3(m3,.) ⊘F 3(p,.)) ⋅ T −11 . (3.6)

By eliminating one of the transform matrices from the left-hand side, we have

S lhs
3 (.,.,m3) = (S3

−1(.,.,p) ⋅S3(.,.,m3))T = T 2 ⋅ diag (F 3(m3,.)) ⋅ TT
1 ⋅ T −T1 ⋅ diag (F 3(p,.))−1 ⋅ T −12

= T 2 ⋅ diag (F 3(m3,.) ⊘F 3(p,.)) ⋅ T −12 . (3.7)
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The symbol ⊘ denotes the inverse Hadamard product (element-wise division). In general, the

pivoting slice S3(.,.,p) can be chosen randomly, however, a clever choice is based on the condition-

ing number, i.e., p = arg min
m3=1,...,M3

cond{S3(.,.,m3)}. Note that the resulting diagonal elements are

scaled version of the m3-th row of the factor matrix F 3. However, this scaling corresponds to the

scaling ambiguity of the CP decomposition introduced in Section 2.2.2. The authors of [RH13a]

recommend the algorithm proposed in [FG06] for the computation of the symmetric SMDs. Af-

ter the diagonalization of the tensors S lhs
3 and S rhs

3 along the 3-mode we obtain the transform

matrices T 1 and T 2 and two estimates of the matrix F 3. Therefore, from equation (3.6) and the

link between the truncated HOSVD and the CP decomposition, we obtain F 1 = U
[s]
1 ⋅ T 1 from the

transform matrix T 1 and F 3 from the diagonal elements of the diagonalized tensor. The remaining

factor matrix is then estimated based on an LS fit, i.e., F 2 = [X 0](2) (F 3 ◇F 1)−T. Similarly, from

the diagonalization of the tensor S lhs
3 in (3.7) and the link between the truncated HOSVD and the

CP decomposition we compute F 2 = U
[s]
2 ⋅ T 2, F 3 from the diagonal elements, and F 1 via an LS

fit. Hence, we obtain two sets of estimates for the factor matrices. However, the truncated core

tensor S [s] (see equation (3.3)) can also be diagonalized along the 1-mode and the 2-mode after the

multiplication along the corresponding mode with U
[s]
1 and U

[s]
2 , respectively. The diagonalization

of the core tensor along the remaining two modes results in four additional sets of estimates of the

factor matrices.

The resulting six initial sets of estimates of the factor matrices are depicted in Fig. 3.2 for a

3-way tensor X ∈ CM1×M2×M3 with rank R. Each of these initial estimates is depicted by one

parallel branch. Moreover, in Fig. 3.2 we indicate whether the factor matrices are estimated from

a transform matrix, from the diagonal elements, or via an LS fit. The final estimate can then be

chosen based on different heuristics. The authors of [RH13a] propose the following criteria, BM

(Best Matching), REC PS (REConstruction criterion Paired Solutions), RES (RESiduals criterion),

and CON PS (CONditioning criterion Paired Solutions). The BM solves all SMDs and all different

combinations of the factor matrices that can be selected, while searching for the best available

solution (an exhaustive search). According to BM, the final estimate is the one that leads to the

lowest reconstruction error. The reconstruction error is calculated according to

REC =
∥X̂ −X ∥2

H∥X ∥2H , (3.8)

where X̂ denotes the estimated tensor and X denotes the noisy input tensor. The heuristic REC

PS also solves all SMDs, but only considers combinations originating from the same SMD. For

instance, for a 3-way tensor the heuristic REC PS choses one of the six initial estimates that leads

to the smallest REC error as a final estimate. Moreover, RES also solves all SMDs, but as a final

estimate we choose the factor matrices corresponding to the symmetric SMD that results in the

smallest residual error after the diagonalization. On the other hand, the CON PS solves only two

SMDs chosen based on the conditioning number of the slices prior to the diagonalization. Hence,

the most computationally expensive selection criterion is the BM, followed by REC PS, and RES.
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3.1. Introduction to the SECSI framework

The least computational expensive criterion is the CON PS.

The authors of [CBW+17,CBC+17] present the performance analysis of the SECSI framework.

This performance analysis is obtained using a first-order perturbation analysis. The closed-form

expressions of the relative mean square error are derived for each of the estimated factor matrices

and they are formulated in terms of the noise variance. Moreover, the authors of [CCH+18] present
a performance analysis of SECSI-GU based on a first-order perturbation analysis. The authors

of [RSH12] recommend the SECSI-GU framework for the computation of the CP decomposition

for N -way (N > 3) tensors.

53



C
o
m

p
u
te

 tru
n
c
a
te

d
 H

O
S
V
D

C
o
m

p
u
te

E
lim

in
a
te

 o
n
e
 o

f th
e
 tra

n
s
fo

rm
 m

a
tric

e
s
, 

E
s
tim

a
te

 th
e
 tra

n
s
fo

rm
 m

a
tric

e
s
 v

ia
S
M

D
 

E
s
tim

a
te

 th
e
 fa

c
to

r m
a
tric

e
s
 

S
e
le

c
tio

n
 o

f th
e
 fin

a
l e

s
tim

a
te

is
 th

e
 

-th
 s

lic
e
 a

lo
n
g
 th

e
 

-th
 m

o
d
e
 o

f th
e
 te

n
s
o
r

Figure 3.2.: The SECSI framework for the computation of the CP decomposition of a tensor
X ∈ CM1×M2×M3 with rank R.
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3.2 Truncated Semi-Algebraic framework for the approximate CP de-

composition via SImultaneaous matrix diagonalization (T-SECSI)

As summarized in the beginning of this chapter, the SECSI framework [RH08, RSH12, RH13a]

calculates all possible SMDs, and then selects the best available solution in a final step via appro-

priate heuristics. The different heuristics offer a complexity-accuracy trade-off. However, for some

tensor applications like biomedical signal processing and big data applications the tensor dimen-

sions M1 ×M2 ×M3 are very large. For such applications even the least computationally expensive

heuristics (CON) might still be computationally too expensive to solve. That is because SECSI

diagonalizes a tensor of dimension R ×R ×Mn, where R is the tensor rank and Mn corresponds to

one of the tensor dimensions M1, M2, or M3 (the dimension along which the diagonalization takes

place). Therefore, we propose a truncated SECSI (T-SECSI) framework [NHT+16] that reduces

the computational complexity of the original SECSI framework [RH08,RSH12,RH13a].

Considering equation (3.3), we define the tensor T 3 = I3,R ×3 T 3 ∈ C
R×R×R such that we get

S[s] ×1 T −11 ×2 T −12 = T 3. (3.9)

Note that T 3 contains diagonal slices along the third mode. Hence, we need to diagonalize the

truncated core tensor S [s] along the 3-mode, or in other words we need to estimate the matrices T 1

and T 2 that diagonalize the tensor S
[s] along the 3-mode. As compared to the equation (3.4) where

the tensor that is diagonalized has dimensions R×R×M3 (also depicted in Fig. 3.1) here the tensor

that is diagonalized S [s] has dimensions R×R×R. Thus, we diagonalize only the truncated tensor

that has reduced dimensions, R≪Mn (for low-rank tensors with large dimensions), for n = 1,2,3.

In order to obtain the set of matrices for the symmetric SMD, one of the transform matrices has

to be eliminated and the truncated core tensor has to be sliced accordingly. When we use the third

mode of the tensor as presented up to now, the diagonal matrices are aligned along the 3-mode of

the tensor. In order to select the 3-mode slices, we multiply along the 3-mode with the transpose

of a pinning vector er that is the r-th column of an R × R identity matrix. Thus, each of the

corresponding slices is defined as S[s](.,.,r) = S[s] ×3 eTr and T 3(.,.,r) = T 3 ×3 eTr = diag (T 3(r,.)), for
the left-hand and the right-hand side of equation (3.9). The elimination of one of the transform

matrices is similar to the original SECSI framework. For the inversion, from the right-hand side

and from the left-hand side, we have

S rhs(.,.,r) = S[s](.,.,r) ⋅S[s]−1(.,.,p) = T 1 ⋅ diag (T 3(r,.)) ⋅ TT
2 ⋅ T −T2 ⋅ diag (T 3(p,.))−1 ⋅ T −11

= T 1 ⋅ diag (T 3(r,.) ⊘ T 3(p,.)) ⋅ T −11 , and

S lhs(.,.,r) = (S[s]−1(.,.,p) ⋅S[s](.,.,r))T = T 2 ⋅ diag (T 3(r,.)) ⋅ TT
1 ⋅ T −T1 ⋅ diag (T 3(p,.))−1 ⋅ T −12

= T 2 ⋅ diag (T 3(r,.) ⊘ T 3(p,.)) ⋅ T −12 ,
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respectively. The pivoting slice S[s](.,.,p) is chosen based on the conditioning number like in the

original SECSI framework. The above equations represent two symmetric SMDs. Note that we have

a set of R equations instead of the M3 (M3 ≥ R) equations of the original SECSI framework, which

reduces the computational complexity of the symmetric SMD. For the computation of the SMD we

consider two algorithms which are proposed in [FG06] and [LA10,LA14]. The JD (Joint eigenvalue

Decomposition) algorithm proposed in [FG06] computes the SMD based on unitary and non-unitary

similarity transformations. The JDTM algorithm uses a polar matrix factorization to compute the

SMD. The authors of [BCW+17] perform a performance analysis of these algorithms based on first-

order perturbation analysis. Using these algorithms, an estimate of the matrix T 1 is achieved from

the diagonalization of S lhs(.,.,r) and T 3 is calculated from the diagonal elements of T 3. Hence, the

first set of the estimates of the factor matrices corresponding to the CP decomposition is obtained

according to

F̂ 1,I = U
[s]
1 ⋅ T 1 F̂ 3,I = U

[s]
3 ⋅ T 3 F̂ 2,I = [X ](2) (F̂ 3 ◇ F̂ 1)−T .

Moreover, from the diagonalization of S rhs(.,.,r) we estimates T 2 and calculate T 3 from the diagonal

elements. As a result, we obtain the second set of factor matrices.

F̂ 2,II = U
[s]
2 ⋅ T 2 F̂ 3,II = U

[s]
3 ⋅ T 3 F̂ 1,II = [X ](1) (F̂ 3 ◇ F̂ 2)−T .

Moreover, similar to the original SECSI framework the two additional tensor modes can be exploited

such that four more sets of factor matrices are estimated. Accordingly, the core tensor should be

sliced along its 1-mode and 2-mode, one of the transom matrices should be eliminated, and then

diagonalized via symmetric SMDs. The remaining steps of choosing the final solution are identical

as in the original SECSI framework. The T-SECSI framework can be visualized similarly to the

original SECSI framework in Fig. 3.2 with the exception of the second step and the fact the SMDs

have reduced dimensions as previously explained.

3.2.1 Simulation Results

In this subsection, we compare the proposed truncated extension of SECSI, denoted by T-SECSI,

with the original SECSI framework [RH13a]. More specifically, we compare the accuracy of SECSI

using the JD algorithm [FG06], SECSI using the JDTM algorithm [LA14], T-SECSI using the

JD algorithm, and T-SECSI using the JDTM algorithm. All of the algorithms exploit the REC

PS heuristic. We denote these algorithms by SECSI REC PS, SECSI-JDTM REC PS, T-SECSI-

JD REC PS, and T-SECSI-JDTM REC PS. For the comparisons, we generate tensors X 0 with

rank R according to the CP decomposition in equation (3.1). The factor matrices F 1, F 2, and

F 3 have i.i.d. zero mean Gaussian distributed random entries with variance one for real-valued

tensors or ZMCSCG random entries with variance one for complex-valued tensors. Moreover, for

some simulation scenarios we use tensors that have correlated factor matrices. Therefore, we add
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correlation using a correlation matrix R(ρn) ∈ RR×R

F n ← F n ⋅R(ρn) (3.10)

R(ρn) = (1 − ρn) ⋅ IR×R + ρn

R
⋅ 1R×R,

where ρn is the correlation factor corresponding to the n-th factor matrix and 1R×R denotes a

matrix of ones. Afterwards, we add i.i.d. zero mean Gaussian noise with variance σ2
N. The noisy

observation of the tensor is X = X 0 +N , where N is the noise tensor. The resulting SNR in dB is

SNR = 10 log10 (∥X (1)0 ∥2H/∥N (1)∥2H).
In order to evaluate the accuracy of the estimated factor matrices F̂ n, we define the TSFE (Total

Squared Factor Error) as

TSFE =
1

N

N

∑
n=1

min
P ∈MPD(R)

∥F̂ n ⋅P −F n∥2F∥F n∥2F , (3.11)

whereMPD(R) is a set of permutation matrices of size R ×R, R is the tensor rank, and N is the

tensor dimensionality. The permutation matrix P resolves the permutation ambiguity that arises

from the computation of the CP decomposition.

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2
TSFE 10-5
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SECSI REC PS
SECSI-JDTM REC PS
T-SECSI-JD REC PS
T-SECSI-JDTM REC PS

Figure 3.3.: CCDF of the TSFE for a real-valued tensor with dimensions 40×40×40, tensor rank R = 3,
and SNR = 20 dB.

In Fig. 3.3, we depict the CCDF (Complementary Cumulative Distribution Function) of the

TSFE for 3000 realizations. The decomposed tensor is real-valued with dimensions 40 × 40 × 40
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and rank R = 3. The results depicted in Fig. 3.3 correspond to SNR = 20 dB. By depicting the

CCDF of the TSFE we visualize the outliers in addition to the resulting TSFE. Moreover, we depict

the mean of the TSFE by the vertical lines in Fig. 3.3. In Fig. 3.3, all algorithms SECSI REC

PS, SECSI-JTDM REC PS, T-SECSI-JD REC PS, and T-SECSI-JDTM REC PS have the same

accuracy. Note that for both algorithms JD and JDTM the maximum number of iterations is set

to 50.
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T-SECSI-JD REC PS
T-SECSI-JDTM REC PS

Figure 3.4.: CCDF of the TSFE for a complex-valued tensor with dimensions 30 × 30 × 30, tensor rank
R = 3, and SNR = 20 dB. The first factor matrix F 1 has mutually correlated columns with
a correlation coefficient 0.9.

Next, we consider a complex-valued tensor with dimensions 30 × 30 × 30, tensor rank R = 3, and

SNR = 20 dB. Moreover, the first factor matrix F 1 has mutually correlated columns with correlation

coefficient ρ1 = 0.9. The correlation is added as described in (3.10). In Fig. 3.4, we show the CCDF

of the resulting TSFE for 3000 realizations. Both versions of the T-SECSI framework T-SECSI-JD

and T-SECSI-JDTM have even an improved accuracy as compared to the SECSI framework.

Moreover, in Figs. 3.5 and 3.6 we depict the TMSFE (Total Mean Squared Factor Error) that is

the averaged TSFE in equation (3.11) over 3000 realizations as a function of the SNR. In Fig. 3.5,

we depict the TMSFE for SNR values between 0 dB and 40 dB. The synthetic tensor is real-valued

with dimensions 4 × 7 × 3 and tensor rank R = 3. Unlike the first two examples, here we observe a

decreased accuracy of the T-SECSI framework as compared to the SECSI framework. Moreover,

the accuracy gap increases with the increased SNR.

In Fig. 3.6, we illustrate the TMSFE for SNR values between 0 dB and 45 dB of a complex-valued
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Figure 3.5.: TMSFE as a function of the SNR for a real-valued tensor with dimensions 4 × 7 × 3 and
tensor rank R = 3.

tensor. The tensor has dimensions 4 × 7 × 3 and tensor rank R = 3. The first factor matrix is

F 1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1

1 0.95 0.95

1 0.95 1

1 1 0.95

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Notice that this matrix F 1 has highly correlated columns. The computation of the CP decomposi-

tion of the tensor with the 1-mode defined by the matrix F 1 represents an ill-conditioned scenario.

This is due to the fact that the three components are very similar to each other and therefore

difficult to separate. The difficulty of this scenario is also reflected in Fig. 3.6. In this case, a higher

SNR is required to achieve reasonable accuracy as compared to the uncorrelated case presented in

Fig. 3.5. Moreover, the SECSI framework provides more accurate estimates of the factor matrices

than T-SECSI according to Fig. 3.6.

3.2.2 Summary

The T-SECSI framework computes six independent, initial sets of estimates of the factor matrices

for a 3-way tensor. Compared to the SECSI framework that also computes six initial solutions

(these solutions are depicted in Fig. 3.2), T-SECSI has a lower computational complexity. The

reduced computational complexity is due to the dimensionality reduction of the SMD problems.

59



0 5 10 15 20 25 30 35 40 45
SNR in dB

10-2

10-1

100

T
M

S
F

E

SECSI REC PS
SECSI-JDTM REC PS
T-SECSI-JD REC PS
T-SECSI-JDTM REC PS

Figure 3.6.: TMSFE as a function of the SNR for a complex-valued tensor with dimensions 4 × 7 × 3
and tensor rank R = 3. The first factor matrix F 1 has mutually correlated columns.

The SECSI framework diagonalizes a set of Mn matrices jointly, where Mn is any of the tensor

dimensions M1, M2, or M3. On the other hand, the T-SECSI framework diagonalizes a set of R

matrices jointly, where R is the tensor rank. The reduced computational complexity becomes more

pronounced with the increase of the tensor dimensions. The final solution is chosen in a subsequent

step using the same heuristics as in the SECSI framework. Our simulation results show that if

the tensor dimensions exceed the tensor rank, i.e., Mn > R, ∀n = 1,2,3 the T-SECSI framework

has same performance as the SECSI framework. The T-SECSI framework is even more robust

in critical scenarios. However, if the tensor dimensions are not larger than the tensor rank i.e.,

Mn ≤ R, T-SECSI has a lower accuracy than SECSI. This variation of the performance accuracy

based on the tensor dimensions can be explained by the performance analysis of the truncated

HOSVD [BCS+16]. The authors of [BCS+16] show that the accuracy of the tensor representation

by the truncated HOSVD depends directly on the tensor dimensions. The noise reduction is more

effective for larger tensor dimensions. Hence, the truncated core tensor that is diagonalized via

SMDs contains less noise. To this end, only a few slices are required to diagonalize the truncated

core tensor when it is properly estimated. On the other hand, if the truncated core tensor is

noise corrupted, the increased number of slices provides an advantage in terms of the accuracy.

Therefore, we recommend the T-SECSI framework for the computation of the CP decomposition

of low rank tensors with tensor dimensions larger than the tensor rank. It offers the same accuracy

as the original SECSI framework with a reduced computational complexity.
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3.3 Semi-Algebraic framework for the approximate CP decomposition

via Non-Symmetric SImultaneaous matrix diagonalization (NS-SECSI)

The algorithms for the computation of the CP decomposition based on an SMD including [DL05],

[RH08], [LA11], [RH13a], and [RSH12] consider symmetric SMDs [FG06,LA10]. In this section, we

propose a semi-algebraic framework for approximate CP decompositions via non-symmetric SMDs

[NHT+16] to reduce the number of SMDs. This extension of the original SECSI framework we

denote by NS-SECSI (Non-Symmetric SECSI). Moreover, we consider two different algorithms to

calculate the non-symmetric SMDs, the TEDIA (TEnsor DIAgonalization) algorithm [TPC15] and

an extended version of the IDIEM (Improved DIagonalization using Equivalent Matrices) algorithm

[CB12], [CKM+14] that provides a closed-form solution for the non-symmetric SMD problem. In

this work, we consider the computation of the CP decomposition for a three-way tensor. It is easy

to generalize this concept to higher order tensors by combining the presented SECSI framework

with generalized unfoldings as discussed in [RSH12].

The SECSI framework computes an approximate CP decomposition for a rank R tensor X 0 ∈

C
M1×M2×M3 . Note that the SECSI framework converts the CP decomposition into a HOSVD as

a first step. In the following step, it diagonalizes the core tensor multiplied by one of the unitary

matrices as shown in (3.4). In the final step, a final solution is selected from all of the available

solutions. For the NS-SECSI framework as for the T-SECSI framework (see Section 3.2), we

propose to diagonalize the truncated core tensor in equation (3.3) directly [NHT+16]. For the

diagonalization along the 3-mode, NS-SECSI computes non-symmetric SMD of (3.9), whereas the

original SECSI framework diagonalizes equation (3.4) based on symmetric SMDs. The NS-SECSI

framework diagonalizes the truncated core tensor in a similar way as in the T-SECSI framework.

However, NS-SECSI solves non-symmetric SMD problems, whereas T-SECSI solves symmetric

SMD problems.

In order to obtain the set of matrices that we can use for the non-symmetric SMD, the truncated

core tensor has to be sliced. Therefore, we multiply with a transpose of the pinning vector er along

the 3-mode. To this end, we define each of the corresponding slices as S
[s]
(.,.,r) = S

[s] ×3 eTr and

T 3(.,.,r) = T 3 ×3 eTr for the left and right hand side of equation (3.9) and r = 1, . . . R.

The described slicing of the truncated core tensor results in the following set of equations,

T −11 ⋅S [s]
(.,.,r) ⋅ T −12 = T 3(.,.,r)= diag (T 3(r,.)), r = 1,2, . . . R. (3.12)

Equation (3.12) represents a non-symmetric SMD problem. Note that we have a set of R equations

instead of the M3 (M3 ≥ R) equations of the original SECSI framework, which reduces the compu-

tational complexity of the non-symmetric SMD. In this NS-SECSI framework, we use algorithms

for the non-symmetric SMD, which are presented later in this section. Thereby, an estimate of the

matrices T 1 and T 2 is obtained from the left-transform matrix and the right-transform matrix,

respectively. The matrix T 3 is calculated from the diagonal elements of the resulting tensor T 3.
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Finally, from the knowledge of these three matrices, the factor matrices of the CP decomposi-

tion can be estimated, which is our final goal. From the link between the HOSVD and the CP

decomposition in equation (3.2), we get

F̂ 1,I = U
[s]
1 ⋅ T 1, F̂ 2,I = U

[s]
2 ⋅ T 2, and F̂ 3,I =U

[s]
3 ⋅ T 3.

The two additional tensor modes can be exploited such that two more sets of factor matrices are

estimated. Accordingly, the core tensor is sliced along its 1-mode and 2-mode, and then diagonalized

via non-symmetric SMDs. Therefore, we get three sets of estimated factor matrices F̂ 1,I, F̂ 1,II,

F̂ 1,III, F̂ 2,I, F̂ 2,II, F̂ 2,III, F̂ 3,I, F̂ 3,II, and F̂ 3,III. These sets of estimated factor matrices from a

noisy observation X are illustrated in Fig. 3.7.

Compute truncated HOSVD

Select

Estimate the transform matrices via non-symmetric SMD 

Estimate the factor matrices  

Selection of the final estimate

Figure 3.7.: The NS-SECSI framework for the computation of the approximate CP decomposition of a
tensor X ∈ CM1×M2×M3 .

From the N sets (for a N -way tensor) of estimated factor matrices different combinations can

be selected, while searching for the best available solution. The heuristics for NS-SECSI are not
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different than the SECSI heuristics [RH13a]. However, all together NS-SECSI has a reduced com-

putational complexity compared to SECSI. This reduction is threefold. For an N -way tensor,

there is a computational complexity reduction due to solving only N SMDs (as compared to 2N

for SECSI), solving smaller SMD problems containing R matrices (Mn ≥ R, ∀n = 1, . . . ,N), and

searching for the final solution over N sets of initial solutions (2N for SECSI).

For the computation of the non-symmetric SMDs, we propose the algorithms TEDIA [TPC15]

and NS-IDIEM (Non-Symmetric-Improved DIagonalization using Equivalent Matrices) [CKM+14].
The goal of TEDIA is to find non-orthogonal matrices AL ∈ C

R×R and AR ∈ C
R×R that diagonalize

the set of matrices Mk ∈ C
R×R, resulting in a set of diagonal matrices Dk ∈ C

R×R, for k = 1,2, . . . K.

Dk =A
−1
L ⋅Mk ⋅A−1R , ∀k = 1,2, . . . K. (3.13)

Note that the matrices AL, AR, Dk and Mk, correspond to T 1, T 2, T 3(.,.,r) and S [s]
(.,.,r) in equation

(3.12), respectively. TEDIA does not try to minimize the off diagonal elements but rather to achieve

a block-revealing condition, ideally leading to a diagonalized tensor. The algorithm is based on a

search for elementary rotations that are applied to the matrices AL and AR and minimize the off-

diagonal elements of Mk based on a damped Gauss-Newton method. The TEDIA algorithm can

be implemented in either a sequential or a parallel fashion and its main computational complexity

comes from the different sweeps and the calculation of the Hessian matrix.

Although the IDIEM algorithm [CB12] was initially proposed for symmetric approximate diag-

onalizations, it can deal with a non-symmetric problem as well [CKM+14]. IDIEM provides an

approximate closed-form solution for the minimization of the following so-called direct LS cost

function

K

∑
k=1

∣∣Mk −ALDkAR∣∣2F, (3.14)

where the matrices AL and AR of size R ×R are the left and right-transform matrix, respectively.

The inverse of these two matrices diagonalize the set of matrices Mk ∈ C
R×R, resulting in a set of

diagonal matrices Dk ∈ C
R×R, for k = 1,2, ...,K. The NS-IDIEM algorithm computes in the first

step the R most representative matrices Rr from the K original target matrices Mk in an LS sense.

The matrix Rr represents the r-th eigenvector (rr) of M = ∑K
k=1 vec(Mk)vec(Mk)H by means of

an inverse vector operation, i.e., Rr = vec−1(rr). In the second step, a column-wise scrambling

is performed such that a new set of R matrices is build from the r-th columns of the matrices

Rr, i.e., R′r = [R(r)1 ,R
(r)
2 , . . . ,R

(r)
R ]. In the third step, the left-transform matrix is estimated

using the two most representative matrices (V 1,V 2) from the R matrices R′r in an LS sense. The

matrices V 1 = vec
−1(r′1) and V 2 = vec

−1(r′2) are built from the eigenvectors r′1 and r′2 of the matrix

R′ = ∑K
k=1 vec(R′k)vec(R′k)H corresponding to the 2 largest eigenvalues. The left-transform matrix

is then computed as AL = V 2V
−1
1 . Since the algorithm does not assume any explicit link between

the two transform matrices, the right-transform matrix is simply obtained by using the rows of

the R matrices Rr instead of the columns in the second step. We propose to use this algorithm,
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NS-IDIEM because it is not iterative and therefore very fast and computationally efficient. Its

closed-form solution is a very practical choice for the non-symmetric SECSI framework. Hence,

NS-SECSI based on the NS-IDIEM algorithm provides a closed-form solution for the computation

of an approximate low-rank CP decomposition.

3.3.1 Simulation Results

In this section, we evaluate the performance of the proposed non-symmetric extension of the SECSI

framework with its two implementations based on the TEDIA algorithm and the NS-IDIEM algo-

rithm. We denote these two extensions by NS-SECSI-TEDIA and NS-SECSI-NS-IDIEM, respec-

tively. Since the SECSI framework has already been compared to the state-of-the-art algorithms

for various scenarios, we only compare our proposed framework to the original SECSI framework

[RH13a,RH08]. Therefore, we provide an accuracy comparison and computational time comparison

of NS-SECSI-TEDIA, NS-SECSI-NS-IDIEM, SECSI, and T-SECSI from Section 3.2 (we consider

the two implementations of T-SECSI, T-SECSI-JD and T-SECSI-JDMT).
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Figure 3.8.: CCDF of the TSFE for a real-valued tensor with dimensions 40×40×40, tensor rank R = 3,
and SNR = 25 dB.

For simulation purposes, tensors of size M1 ×M2 ×M3 with tensor rank R have been designed

according to the CP decomposition in equation (3.1). The factor matrices F 1, F 2, and F 3 have

i.i.d. zero mean Gaussian distributed random entries with variance one for real-valued tensors or

ZMCSCG random entries with variance one for complex-valued tensors. Moreover, if we want the

tensors to have correlated factor matrices, we add correlation via a correlation matrix as shown
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in equation (3.10). Finally, we add i.i.d. zero mean Gaussian (or ZMCSCG for complex-valued

tensors) noise with variance σ2
N to the synthetic low-rank data. The resulting SNR for the noisy

tensor X = X 0 +N is SNR = 10 log10 (∥X 0∥2H/∥N ∥2H) in dB. We use the TSFE defined in equation

(3.11) as an accuracy measure. The vertical lines correspond to the mean value of the TSFE.

In Fig. 3.8, we depict the CCDF of the TSFE for a real-valued tensor with uncorrelated factor

matrices, for SNR = 25 dB and 3000 realizations. The tensor has dimensions 40×40×40 and tensor

rank R = 3. All algorithms in Fig. 3.8 use the REC PS heuristic. Notice that all of the algorithms

are equally accurate. Only NS-SECSI-NS-IDIEM has a few additional outliers as compared to the

remaining algorithms.
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Figure 3.9.: CCDF of the TSFE for a complex-valued tensor with dimensions 30 × 30 × 30, tensor rank
R = 3, and SNR = 25 dB.

In Fig. 3.9, we present the CCDF of the TSFE for a complex-valued tensor with dimensions

30 × 30 × 30, tensor rank R = 3, and SNR = 25 dB. The curves depicted in Fig. 3.9 result from

3000 realizations. Similar to the real-valued case depicted in Fig. 3.8, all algorithms have a similar

accuracy in terms of the TSFE. The frameworks T-SECSI-JDMT and NS-SECSI-NS-IDIEM have

several outliers as compared to the other algorithms. However, the difference in the mean TSFE is

very small, considering the values on the horizontal axis. Note that in our simulation results, we

have noticed outliers of T-SECSI-JDMT as compared to T-SECSI-JD only in the complex-valued

cases.

Moreover, in Figs. 3.10 and 3.11 we consider a complex-valued tensor with dimension 30×30×30
and tensor rank R = 3. The first factor matrix has mutually correlated columns with correla-

tion factor ρ1 = 0.9 (see equation (3.10)). In Fig. 3.10, we depict the CCDF of the TSFE for
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Figure 3.10.: CCDF of the TSFE for a complex-valued tensor with dimensions 30× 30× 30, tensor rank
R = 3, and SNR = 10 dB. The first factor matrix F 1 has mutually correlated columns
with a correlation coefficient of 0.9.
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Figure 3.11.: Average required time in seconds for the computation of the CP decomposition of a
complex-valued tensor with dimensions 30 × 30 × 30 and tensor rank R = 3. The first
factor matrix F 1 has mutually correlated columns with a correlation coefficient of 0.9.
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SNR = 10 dB. Observe that T-SECSI has a higher accuracy as compared to SECSI even for small

SNRs. NS-SECSI-TEDIA and NS-SECSI-NS-IDIEM have a lower accuracy than T-SECSI and

SECSI. In Fig. 3.10, the reduced accuracy of NS-SECSI-NS-IDIEM is more evident. However,

NS-SECSI-NS-IDIEM provides a closed-form solution that can be efficiently computed regardless

of how large the tensor dimensions are. To confirm the efficiency of the computation of the CP

decomposition using NS-SECSI-NS-IDIEM, we have investigated the average required time for the

computation of the CP decomposition. Therefore, in Fig. 3.11 we depict the average time in seconds

required for the computation of the CP decompositions as a function of the SNR. First, observe

that there is no significant dependence between the averaged required time and the SNR. Next,

NS-SECSI-NS-IDIEM outperforms the rest of the algorithms with respect to the computational

time. On the other hand, NS-SECSI-TEDIA requires more computational time than all of the

considered algorithms. Moreover, we observe a gain with respect to the computational time for

T-SECSI-JD in comparison with SECSI. Both frameworks T-SECSI-JD and SECSI utilize the same

JD algorithm [FG06]. Therefore, this gain is only due to the dimensionality reduction achieved by

using T-SECSI-JD. Note that the computation time is not always a direct measure of the computa-

tional complexity. For instance, T-SECSI-JDTM has less computational complexity than SECSI as

explained in Section 3.2, but it requires more computational time than SECSI. The computational

time also depends on the implementation of the algorithms.
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Figure 3.12.: CCDF of the TSFE for a complex-valued tensor with dimensions 8 × 8 × 8, tensor rank
R = 3, and SNR = 15 dB. The first factor matrix F 1 has mutually correlated columns
with a correlation coefficient of 0.9.

Furthermore, in Figs. 3.12 and 3.13 we analyze the performance of the frameworks SECSI, T-

SECSI, and NS-SECSI for a complex-valued tensor with dimensions 8×8×8 and tensor rank R = 3.
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Figure 3.13.: Average required time in seconds for the computation of the CP decomposition of a
complex-valued tensor with dimensions 8 × 8 × 8 and tensor rank R = 3. The first factor
matrix F 1 has mutually correlated columns with a correlation coefficient of 0.9.

The first factor matrix F 1 has mutually correlated columns with correlation factor of ρ1 = 0.9.

Also, here, we observe that with NS-SECSI we sacrifice accuracy, but we reduce the computational

complexity. Moreover, with NS-SECSI-NS-IDIEM we reduce the computational time required to

compute the CP decomposition. Note that in our simulation results with have observed higher

accuracy for real-valued tensors as compared to complex-valued tensors when decomposing these

tensors using NS-SECSI-TEDIA. Further results are also available in [NHT+16].

Finally, in Fig. 3.14, we compare the different heuristics for the NS-SECSI framework. In

Fig. 3.14, we depict the CCDF of the TSFE for a real-valued tensor with dimensions 8 × 8 × 8,
tensor rank R = 3, and SNR = 20 dB. The first factor matrix F 1 has mutually correlated columns

with a correlation coefficient of ρ1 = 0.9. We consider 3000 realization of this scenario and the

heuristics REC PS, BM, and RES. As for the original SECSI framework [RH13a], we observe the

highest accuracy for BM that is the most computational expensive solution. Moreover, we observe

the lowest accuracy for RES that is computationally much cheaper than BM. The heuristics REC

PS offers high accuracy for an acceptable complexity.

3.3.2 Summary

In this section, we have presented an extension of the SECSI framework, by solving non-symmetric

SMDs based on the TEDIA and the NS-IDIEM algorithm. The NS-SECSI-NS-IDIEM framework

offers a very fast approximation for the CP decomposition with a reasonable accuracy. Notice
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Figure 3.14.: CCDF of the TSFE for a real-valued tensor with dimensions 8 × 8 × 8, tensor rank R = 3,
and SNR = 20 dB. The first factor matrix F 1 has mutually correlated columns with a
correlation coefficient of 0.9.

that NS-SECSI-NS-IDIEM provides a closed-form solution for the CP decomposition, since the

non-symmetric SMDs can be calculated in closed-form [CKM+14], [TPC15]. NS-SECSI-TEDIA is

more accurate than NS-SECSI-NS-IDEM, in particular, it is more accurate for real-valued tensors.

As for the T-SECSI framework, the accuracy of the NS-SECSI framework depends on the tensor

dimensions. For small tensor dimensions (i.e., comparable to the tensor rank) the core tensor ob-

tained from a truncated HOSVD is noisy [BCS+16]. Therefore, for small tensor dimensions, the

diagonalization algorithms benefit from the larger number of slices in the original SECSI frame-

works. In contrast to the original framework for an N -way tensor, NS-SECSI calculates N sets

of non-symmetric SMDs instead of 2N sets of symmetric SMDs for a smaller number of matrices

(R ≤Mn,∀n = 1, . . . ,N). The computational advantages provided by the truncations become more

pronounced as the tensor size increases. Therefore, we recommend NS-SECSI-NS-IDIEM and the

REC PS heuristic for the computation of the CP decomposition for tensors with large dimension

Mn > R,∀n = 1, . . . ,N . Moreover, we recommend NS-SECSI-NS-IDIEM for applications where a

fast and an efficient solution is required. Note that, we can increase the accuracy and thereby re-

duce the computational complexity of NS-SECSI-TEDIA if we use the transform matrices resulting

from the NS-IDIEM algorithm to initialize the TEDIA algorithm.
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3.4 Semi-Algebraic framework for the approximate CP decomposition

via SImultaneaous matrix diagonalization for Symmetric Tensors

(S-SECSI)

A tensor is symmetric if its entries are invariable under the permutation of its modes [Kol15,Com14].

We can differentiate between a fully symmetric tensor and partially symmetric tensor depending

on the number of modes that do not change under permutation. A 3-way tensor X 0 ∈ C
M×M×M3

is partially symmetric (symmetric along the 1-mode and 2-mode) if [CGLM08,Kol15]

X 0(i,j,k) = X 0(j,i,k),∀i, j = 1, . . . ,M, k = 1, . . .M3.

On the other hand, a 3-way tensor X 0 ∈ C
M×M×M is fully symmetric if

X 0(i,j,k) = X 0(i,k,j) = X 0(j,i,k) = X 0(k,i,j) = X 0(j,k,i) = X 0(k,j,i),∀i, j, k = 1, . . . ,M.

A review of fully symmetric tensors and their uniqueness properties is provided in [CGLM08]. An

extensive discussion and some results for the typical rank of symmetric tensors are available in

[SDLF+17]. The typical rank of symmetric tensors is equal or smaller than the typical rank of

non-symmetric tensors of the same size [SDLF+17].

Symmetric tensors can be associated to statistics, for instance, cumulant tensors that are deriva-

tives of the characteristic function [McC87]. Also, higher-order derivatives of multivariate functions

and homogeneous polynomials can be related with symmetric tensor [McC87,Com14]. The authors

of [SDLF+17] review applications of symmetric tensors such as speech signal separation using an

array of microphones, Gaussian mixture parameter estimation, and topic modeling applications.

Blind source identification applications of symmetric tensors include the estimation of directional

vectors without a prior knowledge of the array manifold [Car91]. Furthermore, the authors of

[DLCC07] exploit symmetric tensors for blind source identification based on fourth order cumu-

lants.

A partially symmetric tensor X 0 ∈ C
M×M×M3 has partially symmetric CP decomposition. This

decomposition is also known as INDSCAL (INdividual Differences in SCALing) [CC70]

X 0 = I3,R ×1 F ×2 F ×3 F 3, (3.15)

where F ∈ CM×R and F 3 ∈ C
M3×R are the factor matrices corresponding to the symmetric CP

decomposition. The authors of [CC70] propose an ALS algorithm for the computation of partially

symmetric CP. The proposed algorithm computes all factors separately in the same fashion as

the traditional ALS algorithm for the computation of the CP decomposition defined in (3.1).

When the algorithm converges, the symmetric modes are set to be explicitly equal (i.e., F 1 = F 2

from equation (3.1)) and the remaining mode F 3 is computed once again. Hence, this algorithm

ignores the symmetry constraints until the last step. The advantages of ignoring the symmetry
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constraints is that we can use the same algorithms for the computation of the CP decomposition.

The authors of [Kol15] propose an algorithm that resolves the scaling ambiguity while converting a

not explicitly symmetric CP into a symmetric CP. Therefore, for the computation of the symmetric

CP decomposition, we can use any other algorithm for the computation of the CP decomposition

(see Section 2.2.2) and then use the algorithm proposed in [Kol15] as a second (final) step. However,

the challenging symmetry constraints can be easily incorporated in the SECSI framework. In this

section we propose a S-SECSI (Symmetric SECSI) for the computation of the CP decomposition

of symmetric and fully symmetric tensors. Note that the authors of [RH13a] already consider

symmetric cases. The S-SECSI framework proposed here provides a closed-form solution based

on IDIEM and NS-IDIEM. Therefore, it represents an extension of NS-SECSI-NS-IDIEM with

symmetry constraints.

As in the previously presented SECSI extensions, here we derive the S-SECSI framework for

3-way tensors. An extension to N -way tensors is straightforward. Note that an extension using

the generalized unfoldings similar to the SECSI-GU framework [RSH12] can also be considered.

Moreover, for derivation simplicity we assume a noiseless case. In the presence of noise all following

relations still hold approximately. Let us consider the CP decomposition defined in (3.15) of a

symmetric tensor X 0 ∈ C
M×M×M3 , where the first and the second mode are equivalent. Following

the derivation of the original SECSI framework [RH13a], we start by comparing the symmetric

CP decomposition and the truncated HOSVD. Thereby, we assume that M ≥ R and M3 ≥ R even

though S-SECSI as the original SECSI framework can handle degenerate cases (see Section 3.1).

X 0 = I3,R ×1 F ×2 F ×3 F 3 = S
[s] ×1 U [s] ×2 U [s] ×3 U [s]

3

The matrices F ∈ CM×R and F 3 ∈ C
M3×R correspond to the symmetric CP decomposition with

rank R. The tensor S [s] ∈ CR×R×R and the matrices U [s] ∈ CM×R and U
[s]
3 ∈ C

M3×R correspond to

the truncated HOSVD. Similar to the derivations following equation (3.2), for the core tensor S[s],

we have

S [s] = I3,R ×1 T ×2 T ×3 T 3.

Hence, the invertible transform matrices T and T 3 diagonalize the truncated core tensor S [s]. By

slicing the tensor S[s] along the 3-mode, we get an SMD problem given by

T 3(.,.,r) = T −1S [s]
(.,.,r)T

−T = diag (T (r,.)) ,∀r = 1, . . . ,R,

where the tensor T 3 = I3,R×3T 3 ∈ C
R×R×R. The above relations correspond to symmetric SMD. To

solve this symmetric SMD we recommend the IDIEM algorithm [CB12] in order to achieve a closed-

form solution. The IDIEM algorithm provides a closed-form solution for the transform matrix T .

Furthermore, we compute the matrix T 3 from the diagonal elements of the tensor T 3. Using the

estimated transform matrices and the link between the CP decomposition and the HOSVD, we
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estimate the first set of the factor matrices.

F I = U
[s] ⋅ T F 3,I = U

[s]
3 ⋅ T 3

At this point, we have obtained only one set of estimates by diagonalizing the 3-mode slices of

the truncated core tensor S [s]. In a similar fashion, we can diagonalize the remaining modes. Thus,

for the diagonalization along the 2-mode and the 1-mode, we have

T 2 = S
[s] ×1 T −1 ×3 T −13 ⇔ T −1S [s]

(.,.,r)T
−T
3 = diag (T (r,.)) ,∀r = 1, . . . ,R, and (3.16)

T 1 = S
[s] ×2 T −1 ×3 T −13 ⇔ T −1S [s]

(.,.,r)T
−T
3 = diag (T (r,.)) ,∀r = 1, . . . ,R, (3.17)

respectively. For the tensors T 2 ∈ C
R×R×R and T 1 ∈ C

R×R×R, we have T 2 = I3,R ×2 T and

T 1 = I3,R ×1 T . Both equations (3.16) and (3.17) represent non-symmetric SMDs and in the noise-

free case as well as the case of symmetric noise (that is usually the case in many applications)

represent an identical diagonalization problem, i.e., provide identical estimates of the transform

matrices. Therefore, we consider only one of these SMDs. For solving this non-symmetric SMD,

we recommend the non-symmetric version of the IDIEM algorithm, NS-IDIEM [CKM+14]. Recall

that NS-SECSI utilizes also the NS-IDIEM algorithm for the computation of the transform ma-

trices that diagonalize the core tensor S[s]. The above non-symmetric SMD results into two sets

of estimates of the factor matrices because the transform matrix T is estimated twice. The first

estimate of the matrix T is obtained from the left-transform matrix and the second one is obtained

from the resulting diagonal matrices (see equation (3.16)). Thereby, we obtain the matrices F II,

F III, F 3,II, and F 3,III from equation (3.16). The second estimate of the factor matrix F 3 can be

estimated via an LS fit. Hence, with S-SECSI for a 3-way tensor we solve two SMDs, but obtain

three initial estimates of the factor matrices. In Fig. 3.15, we depict the S-SECSI framework for

the computation of an approximate low-rank CP decomposition of a symmetric (along the 1-mode

and 2-mode) tensor X ∈ CM×M×M3 that represents a noisy observation of a low-rank tensor rank

with R.

Now, let us consider a symmetric CP decomposition of a fully symmetric tensor X 0 ∈ C
M×M×M

with rank R.

X 0 = I3,R ×1 F ×F ×F

In this case, all three diagonalization problems T 1 = S
[s] ×2 T −1 ×3 T −1, T 2 = S

[s] ×1 T −1 ×3 T −1,
and T 3 = S

[s] ×1 T −1 ×2 T −1 are equivalent. The three diagonalization problems differ only in the

index along which mode the diagonalization is performed, i.e., along the 1-mode, the 2-mode, or the

3-mode, respectively. Also, all three diagonalization problems represent a symmetric SMD. Thus,

using the IDIEM algorithm we solve only one of these SMDs and obtain one set of estimates of

the factor matrices. The visualization of S-SECSI for fully symmetric tensor is comparable to the

first branch of S-SECSI for symmetric tensors depicted in Fig. 3.15. The S-SECSI framework for a
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Compute truncated HOSVD

Select

Estimate the transform matrices via non-symmetric SMD 

Estimate the factor matrices  

Selection of the final estimate

Figure 3.15.: The S-SECSI framework for the computation of the approximate CP decomposition of a
symmetric tensor X ∈ CM×M×M3 . The symmetry is with respect to the 1-mode and the
2-mode.

3-way tensor for fully symmetric tensor solves one SMD resulting in one initial set of estimates of

the factor matrices.

As for SECSI, T-SECSI, and NS-SECSI, the final estimates of the factor matrices for S-SECSI

of symmetric tensors (the fully symmetric case provides only one (final) solution) can be selected

based on the different criteria, namely BM, REC PS, CON PS, and RES that are introduced at the

beginning of this chapter [RH13a]. The S-SECSI framework exploits the closed-form algorithms

IDIEM and NS-IDIEM to compute the SMDs. Therefore, the S-SECSI framework provides a

closed-form solution for the approximate computation of the symmetric CP decomposition.
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3.4.1 Simulation Results

To analyze the performance of the S-SECSI framework, we compare S-SECSI with NS-SECSI-NS-

IDIEM (see Section 3.3) [NHT+16] and the original SECSI framework [RH13a]. Both frameworks

NS-SECSI and SECSI ignore the symmetry constraints. In the comparisons, we include the original

SECSI framework as a benchmark algorithm, because it has already been compared to other state-

of-the-art algorithms in the past [RH08, RSH12, RH13a]. Moreover, we include NS-SECSI-NS-

IDIEM in the comparisons because both extensions S-SECSI and NS-SECSI-NS-IDIEM exploit

the same diagonalization algorithm, IDIEM [CB12]. Therefore, the comparison of S-SECSI and

NS-SECSI-NS-IDIEM intends to show the importance of taking the symmetry constraints into

account while computing the symmetric CP decomposition. We compare S-SECSI, NS-SECSI, and

SECSI by means of the TSFE defined in (3.11) and the averaged required time for the computation

of the CP decomposition. We indicate the heuristic used for the selection of the final solution in

the legends.
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Figure 3.16.: CCDF of the TSFE for a complex-valued tensor with dimensions 30 × 30 × 30, tensor
rank R = 3, and SNR = 30 dB. The symmetry is along the 1-mode and the 2-mode, i.e.,
F 1 = F 2 from equation (3.1).

For simulation purposes, we generate rank R tensors that have two symmetric modes according

to equation (3.15). The factor matrices have either i.i.d. zero mean Gaussian random entries or

ZMCSCG random entries depending on whether we generate real-valued or complex-valued tensor,

respectively. Additional correlation between the columns of the factor matrices is added according

to (3.10). A noisy observation is obtained by adding zero mean i.i.d. random Gaussian noise (or
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Figure 3.17.: CCDF of the TSFE for a complex-valued tensor with dimensions 30× 30× 30, tensor rank
R = 3, and SNR = 30 dB. The symmetry is along the 1-mode and the 2-mode. The third
factor matrix F 3 has mutually correlated columns with a correlation coefficient 0.9.
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Figure 3.18.: Average required time in seconds for the computation of the CP decomposition of a
complex-valued tensor with dimensions 30 × 30 × 30 and tensor rank R = 3. The third
factor matrix F 3 has mutually correlated columns with a correlation coefficient of 0.9.
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ZMCSCG noise for complex valued tensors) with variance σN. Therefore, the resulting SNR in dB

is equal to 10 log10 (∥X 0∥2H/∥N ∥2H).
In Fig. 3.16, we depict the CCDF of the TSFE for a complex-valued tensor and SNR = 30 dB.

The tensor has dimensions 30 × 30 × 30 and tensor rank R = 3. The averaged required time for

the computation of the CP decomposition is 0.06 s, 0.0101 s, and 0.01 s for SECSI, NS-SECSI-

NS-IDIEM, and S-SECSI, respectively. The advantage of considering the symmetry constraint is

obvious in Fig. 3.16. S-SECSI has a higher accuracy than NS-SECSI-NS-IDIEM, while requiring

the same time to compute the CP decomposition. S-SECSI has the same accuracy performance as

SECSI. Hence, it compensates even the loss of accuracy due to the closed-form solution that was

observed in the NS-SECSI-NS-IDIEM framework (see Section 3.3).

Next, we consider a complex-valued tensor with dimensions 30 × 30 × 30, tensor rank R = 3.

The third factor matrix F 3 has mutually correlated columns with a correlation factor ρ3 = 0.9. In

Fig. 3.17, we depict the CCDF of the TSFE, for SNR = 30 dB. Similar to the uncorrelated scenario

previously presented (see Fig. 3.16), we gain from the consideration of the symmetry constraints.

This is reflected by the improved accuracy performance of S-SECSI as compared to NS-SECSI-

NS-IDIEM. Moreover, Fig. 3.18 depicts the average required time for the computation of the CP

decomposition for SNR values between 0 dB and 45 dB. With the S-SECSI framework we achieve

the same accuracy as SECSI while requiring less computational time. Moreover, S-SECSI is a

closed-form solution and it has less computational complexity than SECSI.
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Figure 3.19.: CCDF of the TSFE for a real-valued tensor with dimensions 7 × 7 × 4, tensor rank R = 3,
and SNR = 35 dB. The symmetry is along the 1-mode and the 2-mode. The third factor
matrix F 3 has mutually correlated columns.
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Figure 3.20.: CCDF of the TSFE for a complex-valued tensor with dimensions 8 × 8 × 8, tensor rank
R = 3, and SNR = 30 dB. The symmetry is along the 1-mode and the 2-mode. The third
factor matrix F 3 has mutually correlated columns with a correlation coefficient of 0.9.
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Figure 3.21.: Average required time in seconds for the computation of the CP decomposition of a
complex-valued tensor with dimensions 8 × 8 × 8 and tensor rank R = 3. The symmetry is
along the 1-mode and the 2-mode. The third factor matrix F 3 has mutually correlated
columns with a correlation coefficient of 0.9.
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Moreover, in Fig. 3.19 we consider a very difficult scenario. The synthetic real-valued tensor has

dimensions 7 × 7 × 4 and tensor rank R = 3. The third factor matrix is

F 3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1

1 0.95 0.95

1 0.95 1

1 1 0.95

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Hence, the three components are highly correlated along the 3-mode. The CCDF of the TSFE

is depicted in Fig. 3.19. All three algorithms use the REC PS heuristics and have a very similar

performance. S-SECSI has a higher accuracy than NS-SECSI-NS-IDIEM even in this ill-posed

scenario.

Furthermore, we study the performance of the different heuristics for S-SECSI. Therefore, we

depict in Fig. 3.20 the CCDF of the TFSE for a complex-valued tensor and SNR = 30 dB. The

tensor has dimensions 8 × 8 × 8 and tensor rank R = 3. The third factor matrix F 3 has mutually

correlated columns with a correlation coefficient of 0.9. REC PS and BM have a similar performance

in terms of the TFSE. The heuristic RES has lower accuracy than REC PS, but higher accuracy

than CON PS. In Fig. 3.21, we illustrate the average time in seconds required to compute the CP

decomposition for different SNRs. We observe a constant average required time for SNR between

0 dB and 45 dB. This is expected because S-SECSI diagonalizes a tensor of size R × R × R in

a closed-form fashion. As observed in [RH13a], where the different heuristics are proposed, we

see that the CON PS requires the smallest amount of computational time followed by RES and

REC PS. The time required to compute the CP decomposition using BM is always the longest.

The computational time is consistent with the computational complexity of the different heuristics.

3.4.2 Summary

We propose a closed-form extension of the SECSI framework to the computation of the symmetric

CP decomposition. The S-SECSI framework exploits the IDIEM algorithm and the NS-IDIEM

algorithm for the computations of all possible initial estimates of the factor matrices. Note that for

fully symmetric tensors only one set of estimates is computed. A final solution for symmetric ten-

sors (not fully symmetric tensors) is chosen using the different heuristics BM, REC PS, RES, and

CON PS. With the simulation results presented in this section we show the benefits of considering

the symmetry constraints while computing the CP decomposition. In all considered scenarios, we

observe that S-SECSI has a higher accuracy than NS-SECSI-NS-IDIEM in terms of the TSFE.

NS-SECSI-NS-IDIEM also exploits the closed-form diagonalization algorithm NS-IDIEM. There-

fore, NS-SECSI-NS-IDIEM and S-SECSI compute the CP decomposition in the same closed-form

fashion. Only, NS-SECSI-NS-IDIEM ignores the symmetry constraints, whereas S-SECSI takes

them into account.
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3.5 Semi-Algebraic framework for the approximate CP decomposition

via SImultaneaous matrix diagonalization for Non-Negative Ten-

sors (SECSI+)

In some applications such as biomedical signal processing, image processing, and hyperspectral im-

age processing the underlying components and the signal/data tensors are non-negative [CZPSI09,

VCF+16] (see also Section 2.2.2). For these applications, we have to impose non-negativity con-

straints on the CP decomposition to ensure that the factor matrices have a reasonable physical

interpretation.

The non-negative CP decomposition can be approximated using ADMM as proposed in [LS15].

The authors of [AALM16] exploit this concept for the computation of an SMD for positive semi-

definite matrices. This algorithm is denoted by JEVD+ (Joint EigenValue Decomposition+), and

it is also based on ADMM. In contrast to the ADMM algorithm proposed in [LS15], the JEVD+

algorithm imposes non-negativity constraints only on the resulting diagonal elements not on the

transform matrices. Moreover, the authors of [AALM16] combine the JEVD+ algorithm with the

DIAG algorithm [LA14] leading to the DIAG+ algorithm (DIrect AlGorithm for canonical polyadic

decomposition+) that computes the CP decomposition of non-negative tensors. Furthermore, the

authors of [CFC15] propose an ALS based algorithm for the computation of the CP decomposi-

tion for large non-negative tensors, where the fitting of the non-negative tensor is performed in a

compressed domain. In this section, we propose an extension of the SECSI framework for the com-

putation of an approximate CP decomposition for non-negative tensors. We denote this extension

by SECSI+.

The uniqueness properties of a non-negative CP decomposition are studied in [QCL16]. Some

results regarding the rank of the CP decomposition with non-negativity constraints are provided

in [CCG17].

Let us consider a non-negative tensor X 0 ∈ R
M1×M2×M3+ with rank R, where R+ denotes a set of

non-negative real numbers. The tensor X 0 has a non-negative CP decomposition given by

X 0 = I3,R ×1 F 1 ×2 F 2 ×3 F 3, (3.18)

where F 1 ∈ R
M1×R+ , F 2 ∈ R

M2×R+ , and F 3 ∈ R
M3×R+ are the factor matrices. Moreover, we assume that

the tensor X 0 has a NTD (Non-negative Tucker Decomposition) [CZPSI09]. The NTD is a Tucker

decomposition with non-negativity constraints (for the definition of the Tucker decomposition see

Section 2.2.1). For the NTD of the tensor X 0, we have

X 0 =H ×1 G1 ×2 G2 ×3 G3,

whereH ∈ RR×R×R+ is the core tensor andG1 ∈ R
M1×R+ , G2 ∈ R

M2×R+ , andG3 ∈ R
M3×R+ are the loading

matrices. Similar to the derivation of the SECSI framework [RH13a] described at the beginning of
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this chapter, we assume that there exist invertible transform matrices, T 1 ∈ R
R×R+ , T 2 ∈ R

R×R+ , and

T 3 ∈ R
R×R+ such that

X 0 = I3,R ×1 G1 ⋅ T 1´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
F 1

×2G2 ⋅ T 2´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
F 2

×3G3 ⋅ T 3´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
F 3

=H ×1 G1 ×2 G2 ×3 G3. (3.19)

Hence, for the tensor H, we get H = I3,R ×1 T 1 ×2 T 2 ×3 T 3. As in the original SECSI framework,

after the multiplication of the tensor H by G3 along the 3-mode, i.e., H3 =H ×3 G3 ∈ R
R×R×M3+ ,

we have

H3 = (I3,R ×3 F 3) ×1 T 1 ×2 T 2. (3.20)

Equation (3.20) represents a non-symmetric SMD with positivity constraints on the transform

matrices and the diagonalized tensor. The visualization of equation (3.20) is identical to the

visualization of equation (3.4) depicted in Fig. 3.1. Note that equation (3.20) also represents a

CP decomposition of a non-negative tensor that can be solved by the ADMM algorithm proposed

in [LS15]. Alternatively, we propose to follow the derivation of the original SECSI framework and

first to slice the tensor along the 3-mode, i.e.,

H3(.,.,m3) = T 1 ⋅ diag (F 3(m3,.)) ⋅ TT
2 ∀m3 = 1 . . .M3.

Next, by eliminating one of the transform matrices from the right-hand side, we have

H rhs
3 (.,.,m3) =H3(.,.,m3) ⋅H−13 (.,.,p) = T 1 ⋅ diag (F 3(m3,.)) ⋅ TT

2 ⋅ T −T2 ⋅ diag (F 3(p,.))−1 ⋅ T −11
= T 1 ⋅ diag (F 3(m3,.) ⊘F 3(p,.)) ⋅ T −11 . (3.21)

By eliminating one of the transform matrices from the left-hand side, we have

H lhs
3 (.,.,m3) = (H3

−1(.,.,p) ⋅H3(.,.,m3))
T
= T 2 ⋅ diag (F 3(m3,.)) ⋅ TT

1 ⋅ T −T1 ⋅ diag (F 3(p,.))−1 ⋅ T −12
= T 2 ⋅ diag (F 3(m3,.) ⊘F 3(p,.)) ⋅ T −12 . (3.22)

For the selection of the pivoting slice H3(.,.,p) we use the clever choice based on the condition-

ing number proposed in [RH13a], i.e., p = arg min
m3=1,...,M3

cond {H3(.,.,m3)}. The equations (3.21)

and (3.22) represent two symmetric SMDs with non-negative constraints on the transform matrices

and the diagonalized matrices. We propose to solve these constrained SMDs based on the ADMMD

method similar to [LS15,AALM16]. We describe the proposed ADMMD+ (Alternating Direction

Method of Multipliers for non-negative simultaneous matrix Diagonalization) algorithm later in this

section. Note that the authors of [AALM16] propose to solve similar SMDs as in equations (3.21)

and (3.22). However, they do not impose non-negativity constraints on the transform matrices,

but only on the resulting diagonal elements, i.e., the matrix F 3.

As explained at the beginning of this chapter and in [RH13a], by solving the constrained SMDs
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in equations (3.21) and (3.22) we obtain the matrices, T 1, T 2, and F 3. Until now we have assumed

a noiseless tensor X 0. However, in practice we have a noisy observation of the signal tensor. From

this noisy observation, we can compute only an approximation of the factor matrices. Therefore,

from equation (3.21) and (3.19), we obtain F̂ 1 = Ĝ1 ⋅T̂ 1 using the transform matrix T̂ 1 and F̂ 3 from

the resulting diagonal elements. Moreover, from equation (3.22) and (3.19), we obtain F̂ 2 = Ĝ2 ⋅ T̂ 2

using the transform matrix T̂ 2 and F̂ 3 from the resulting diagonal elements. The remaining factor

matrices F̂ 1 and F̂ 2 can be then computed via a constrained LS fit [BdJ97]. Hence, we have

obtained two sets of estimates of the factor matrices. Moreover, we can diagonalize the core tensor

H along the 1-mode and the 2-mode, after the multiplication by Ĝ1 and Ĝ2 along the corresponding

mode exactly like it is proposed for the original SECSI framework [RH13a]. The diagonalization

along the 1-mode and the 2-mode results into four additional sets of estimates of the factor matrices.

Hence, we obtain six initial sets of estimates of the constrained factor matrices. These six estimates

can be depicted via six parallel branches as for the SECSI framework in Fig. 3.2. The selection

of the final solution can be done based on the different criteria BM, REC PS, RES, and CON PS

defined at the beginning of this chapter and in [RH13a].

For the computation of the NTD (the first step of the SECSI+ framework), we have chosen an

algorithm that is based on block-coordinate decent [XY13] and available in the Tensor Toolbox

from Sandia National Laboratories [BKS+12].

Alternating Direction Method of Multipliers for non-negative simultaneous matrix Diagonal-

ization (ADMMD+)

As previously mentioned, we propose the ADMMD+ algorithm for the computation of a symmetric

SMD with non-negative constraints given by

M = I3,R ×1 A ×2 A−T ×3 C⇔M(.,.,k) =A ⋅ diag (C(k,.)) ⋅A−1 ∀k = 1 . . . K,

where M ∈ R
R×R×K+ , A ∈ R

R×R+ , and C ∈ R
K×R+ . The goal of the ADMMD+ algorithm is to

diagonalize the 3-mode slices of the tensor M (set of K matrices M(.,.,k)) jointly such that the

transform matrix A and the resulting diagonal elements that can be collected into a matrix C do

not contain negative elements. Therefore, we define the following cost function

min
A,B,C

Ψ(A,B,C) s.t. A = Ã,C = C̃,

Ψ(A,B,C) = 1

2
f(A,B,C) + α

2
∥ABT − IR∥2F + g(Ã) + g(C̃)
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where B =A−T (recall that the superscript −T denotes matrix transposition and matrix inversion)

and α ∈ [0,1] is a penalty factor. Moreover,

f(A,B,C) = ∥[M](1) −A(C ◇B)T∥2F = ∥[M](2) −B(C ◇A)T∥
2

F
= ∥[M](3) −C(B ◇A)T∥2F

(3.23)

and for a matrix F ∈ RI×J , we have

g(F̃ ) = g(F̃ (i,j)) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if F̃ (i,j) ≥ 0
∞, otherwise

, ∀i = 1, . . . , I, j = 1, . . . , J.

Next, for the augmented Lagrangian [LS15,AALM16], we get

Lp(A,B,C, Ã, C̃,ΛA,ΛC) = Ψ(A,B,C) + ∥ΛA ⊙ (A − Ã)∥2F + ρA

2
∥A − Ã∥2F

+ ∥ΛC ⊙ (C − C̃)∥2F + ρC

2
∥C − C̃∥2F ,

where the matrices ΛA of size R ×R and ΛC of size K ×R represent the Lagrangian multipliers.

The values ρA and ρC are penalty factors. The ADMM is then given by [LS15]

L = 1

2
argmin
A,B,C

f(A,B,C) + α

2
∥ABT − IR∥2F + ∥ΛA ⊙ (A − Ã)∥2F + ρA

2
∥A − Ã∥2F

+ ∥ΛC ⊙ (C − C̃)∥2F + ρC

2
∥C − C̃∥2F , (3.24)

The authors of [LS15] propose to solve the above Lagrangian using an alternating optimization

scheme by substituting the different expressions given in equation (3.23). Hence, for the matrix A,

we get

LA = 1

2
argmin

A

∥[M](1) −A(C ◇B)T∥2F +
α

2
∥ABT − IR∥2F + ∥ΛA ⊙ (A − Ã)∥2F + ρA

2
∥A − Ã∥2F

+ ∥ΛC ⊙ (C − C̃)∥2F + ρC

2
∥C − C̃∥2F ,

By computing the partial derivative with respect toA and setting it to zero, we obtain the minimum

of LA and with that the matrix A.

−([M](1) −A(C ◇B)T)(C ◇B)) + α(ABT − IR)B +ΛA + ρA(A − Ã) = 0
− [M](1) (C ◇B) +A(C ◇B)T(C ◇B) + αABTB − αB +ΛA + ρAA − ρAÃ = 0
A [(C ◇B)T(C ◇B) +αBTB + ρA] = [M](1) (C ◇B) + αB −ΛA + ρAÃ
A = [[M](1)(C ◇B) +αB −ΛA + ρAÃ] [(C ◇B)T(C ◇B) + αBTB + ρAIR]−1 (3.25)

Next, we substitute the second expression and the third expression from equation (3.23) into (3.24)

and compute the partial derivatives with respect to B and C, respectively. After setting the partial
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3.5. Semi-Algebraic framework for the approximate CP decomposition via SImultaneaous matrix
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derivatives to zero, we obtain the matrices B and C.

−[M](2)(C ◇A) +B(C ◇A)T(C ◇A) + αBATA −αA = 0
B[(C ◇A)T(C ◇A) +αATA] = [M](2)(C ◇A) + αA
B = [[M](2)(C ◇A) + αA] [(C ◇A)T(C ◇A) +αATA]−1 (3.26)

−([M](3) −C(B ◇A)T)(B ◇A) +ΛC + ρC(C − C̃) = 0
−[M](3)(B ◇A) +C(B ◇A)T(B ◇A) +ΛC + ρCC − ρCC̃ = 0
C [(B ◇A)T(B ◇A) + ρCIR] = ([M](3)(B ◇A) −ΛC + ρCC̃)
C = [[M](3)(B ◇A) −ΛC + ρCC̃] [(B ◇A)T(B ◇A) + ρCIR]−1 (3.27)

Moreover, from equation (3.24) we can compute the matrices Ã and C̃ by computing the par-

tial derivative of the argument with respect to Ã and C̃, respectively. By setting these partial

derivatives to zero, we get

Ã =A + 1

ρA
ΛA (3.28)

C̃ = C + 1

ρC
ΛA (3.29)

Finally, using the updates in equations (3.25)-(3.29), we can iterate in an ALS fashion until the

algorithm converges. The convergence of this algorithm, its stopping criteria, and an optimal choice

for the penalty factors are discussed in [LS15] (We use the results provided in [LS15,AALM16] in

our implementation). Moreover, in each iteration the Lagrangian multipliers are updated according

to ΛA + ρA(A− Ã) and ΛC + ρC(C − C̃). Note that the elements of the matrices A and C are not

necessarily non-negative. They become non-negative upon convergence, or at least the negative

values are very small. Note that the derivation shown here is very similar to [LS15, AALM16],

however, we consider different constraints. The ADMM+ algorithm considers that all three factors

differ and have non-negative elements [LS15]. On the other hand, the JEVD+ algorithm considers

that B =A−T, but only the factor C has non-negative elements.

3.5.1 Simulation Results

In this section, we use simulation results to compare the proposed SECSI+ framework with the

ADMM+ algorithm [LS15]. Therefore, we generate synthetic tensors according to equation (3.18).

The entries of the factor matrices are first drawn as i.i.d. zero mean Gaussian distributed ran-

dom values. In a subsequent step, we take the absolute values of these entries, such that all

elements of the factor matrices are non-negative. Moreover, we add i.i.d. zero mean Gaussian

noise with variance σ2
N to the synthetic tensors. The resulting SNR of the noisy tensor is SNR =

10 log10 (∥X 0∥2H/∥N ∥2H) in dB, where the tensor N represents the noise tensor.

We use the TSFE defined in equation (3.11) as an accuracy measure. We depict the CCDF of
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Figure 3.22.: CCDF of the TSFE for a real-valued tensor with dimensions 20 × 20 × 20, tensor rank
R = 3, and SNR = 10 dB.

the TSFE for real-valued tensor with dimensions 20 × 20 × 20 and tensor rank R = 3 in Fig. 3.22.

These results are representing 1500 realizations and correspond to an SNR = 10 dB. The vertical

lines correspond to the mean values of the TSFE for each algorithm. In addition to the ADMM+

algorithm [LS15], in Fig. 3.22 we depict the TSFE of the SECSI+ framework with its different

heuristics. The criteria for the selection of the final solution are indicated in the legend. Even

thought the SECSI+ framework (using REC PS, BM, or RES as a selection criterion) computes six

initial estimates and choses the best available solution, it has a lower accuracy than the ADMM+

algorithm. We have also analyzed the accuracy performance of the proposed ADMMD+ and the

algorithm for the computation of the NTD [BKS+12] independently of the SECSI+ framework. The

proposed ADMMD+ algorithm has a comparable accuracy to the JEVD+ algorithm [AALM16].

On the other hand, the algorithm for the computation of the NTD [BKS+12] has a limited accuracy

even in noiseless cases. Hence, the compression of the tensor X based on the NTD is not as effective

as the compression based on the HOSVD in the SECSI framework. The authors of [CCG17] provide

some similar results for the compression and noise suppression of non-negative tensors.

3.5.2 Summary

We propose an extension of the SECSI framework [RH13a] to the computation of the approximate

CP decomposition of non-negative tensors denoted by SECSI+. The proposed SECSI+ framework

utilizes the NTD for a tensor compression and noise suppression. In a subsequent step, we diago-

nalize the compressed core tensor based on constrained symmetric SMDs. For the computation of
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these SMDs, we propose an ADMMD+ algorithm based on ADMM [LS15]. SECSI+ computes six

initial estimates of the factor matrices for a 3-way tensor. In a final step using different heuristics, it

selects the best available solution as a final solution. However, the SECSI+ framework has no higher

accuracy than other state-of-the-art algorithms. Therefore, to potentially increase the accuracy of

SECSI+, we propose the following ideas as a future work. First, we can consider other algorithms

for the computation of the NTD in addition to the algorithm proposed in [BKS+12]. Moreover,

we can compute a non-symmetric SMD from equation (3.20) using the ADMM+ algorithm [LS15]

resulting in three initial sets of estimates of the factor matrices (similar to the NS-SECSI framework

from Section 3.3).

3.6 Semi-Algebraic framework for the approximate Coupled CP de-

composition via SImultaneaous matrix diagonalization (C-SECSI)

Several combined signal processing applications such as the joint processing of EEG and MEG data

can benefit from coupled tensor decompositions, for instance, the coupled CP decomposition. The

coupled CP decomposition jointly analyzes heterogeneous data sets or signals and identifies their

shared underling components. The facts that the heterogeneous signals can have a different nature

make the coupled CP decomposition a very practical tool for signal analysis. This has already been

shown in many applications such as array signal processing [SDL15, SDDL18, SDL17a, SDL17b],

audio signal processing [ZCJW17], and biomedical signal progressing [BCA12, ARS+13, PMS14,

ABS15,RDGD+15,NKHH17,NLA+17,vEHDLvH17].

Assume two low rank 3-way tensors X
(1)
0 ∈ C

M1×M(1)
2
×M(1)

3 and X
(2)
0 ∈ C

M1×M(2)
2
×M(2)

3 . Moreover,

the two tensors have only one common mode and that is the 1-mode. These two tensors have a

coupled CP decomposition defined as (see also Section 2.2.2)

X
(1)
0 = I3,R ×1 F 1 ×2 F (1)2 ×3 F (1)3 (3.30)

X
(2)
0 = I3,R ×1 F 1 ×2 F (2)2 ×3 F (2)3 , (3.31)

where, F 1 ∈ C
M1×R, F (i)2 ∈ CM

(i)
2
×R and F

(i)
3 ∈ C

M
(i)
3
×R, i = 1,2 are the factor matrices and R is the

rank of both tensors. The coupled CP decomposition has even more relaxed uniqueness conditions

as compared to the CP decomposition. Some uniqueness results for the coupled CP decomposition

are available in [SDL15] and [ZCJW17]. The coupled CP decomposition is essentially unique under

mild conditions, which means that the factor matrices (i.e., F 1, F
(1)
2 , F

(2)
2 , F

(1)
3 , and F

(2)
3 ), can

be identified up to a permutation and scaling ambiguity.

In order to compute the factors corresponding to the coupled CP decomposition, the existing

algorithms for the computation of the CP decomposition have to be modified. For instance, the

ALS algorithm can be simply extended to the C-ALS (Coupled-ALS) by taking into account that

the common factor matrix can be computed jointly by means of concatenation. Similar to ALS,
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the C-ALS also takes into account all unfoldings of the tensor and iteratively updates each of the

factor matrices starting from a random initialization. The three unfoldings for the given 3-way

tensors X
(1)
0 and X

(2)
0 , that have the first factor matrix in common, are

[X (i)0 ](1) = F 1 ⋅ (F (i)3 ◇F (i)2 )T [X (i)0 ](2) = F (i)2 ⋅ (F (i)3 ◇F 1)T [X (i)0 ](3) = F (i)3 ⋅ (F 2 ◇F (i)1 )T

where, i = 1,2 denotes the two different tensors. From these unfoldings, the estimates of the factor

matrices can be defined as follows. For the coupled mode (1-mode in our assumption), the u-th

update of the corresponding factor matrix using the previous updates (u−1) of the factor matrices

is jointly calculated according to

F̂ 1,u = [ [X (1)0 ](1) [X (2)0 ](1) ] ⋅ [ (F̂ (1)3,u−1 ◇ F̂ (1)2,u−1)T (F (2)3,u−1 ◇ F̂ (2)2,u−1)T ]+ .
Note that the above equation could lead to an improved identifiability of the coupled CP decompo-

sition. Hence, the coupled CP decomposition can have relaxed uniqueness conditions as compared

to the CP decomposition. As previously mentioned, some uniqueness results for the coupled CP

decomposition are available in [SDL15] and [ZCJW17]. Moreover, the u-th update for the other

two factor matrices is given by

F̂
(i)
2,u = [X (i)0 ](2) ⋅ ((F̂ (i)3,u−1 ◇ F̂ 1,u−1)T)+

F̂
(i)
3,u = [X (i)0 ](3) ⋅ ((F̂ (i)2,u−1 ◇ F̂ 1,u−1)T)+ .

The C-ALS algorithm is an iterative algorithm with no guarantee of convergence that requires

stopping criteria. The stopping criteria are defined as follows. If the difference between the factor

matrices of the previous and current update is smaller than a predefined error then the current

factor matrices are the final estimate, or simply if the number of iterations exceeds a predefined

maximum number of iterations the algorithm will stop. The C-ALS algorithm computes the factor

matrices such that the coupled or common mode will always have the same estimate for the two

tensors.

Another weighted version of coupled ALS using normalization is proposed in [FCC16] that can

even support a hybrid and a noisy coupling. For the purpose of dimensionality reduction, a com-

pression based on the truncated HOSVD can be incorporated with ALS [CFC16]. The ALS based

algorithms are easy to implement, however, they have no convergence guarantee and can require

many iterations. Alternatively, the coupled CP decomposition can be computed based on a line

search. A line search based algorithm referred to as CCP-MINF (Coupled CP-Minimum Fac-

tors) is available in Tensorlab [VDS+16]. An NLS based algorithm for the computation of the

coupled CP denoted by CCP-NLS (Coupled CP-Nonlinear Least-Squares) is also available in Ten-

sorlab [VDS+16]. The CCP-NLS algorithm is an iterative algorithm that computes the update of

the factor matrices based on Newton descent that includes linear approximation of the Hessian.
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Furthermore, similar to the CP decomposition the coupled CP decomposition can be solved us-

ing semi-algebraic algorithms. A semi-algebraic computation of the coupled CP decomposition is

proposed in [SDDL15]. However, the algorithm proposed in [SDDL15] considers only one of the

full set of possible SMDs. The SECSI framework is an efficient tool for the calculation of the CP

decomposition based on matrix diagonalizations (see Section 3.1) [RH13a]. Moreover, SECSI pro-

vides a semi-algebraic solution for the approximate CP decomposition even in ill-posed scenarios,

e.g., if the columns of a factor matrix are highly correlated. Furthermore, the SECSI framework

provides an adjustable complexity-accuracy trade-off. In this section, we present an extension of

the SECSI framework to the efficient computation of an approximate coupled CP decomposition

and show its advantages compared to other state-of-the-art algorithms [NH16]. This extension of

the SECSI framework we denote by C-SECSI (Coupled SECSI). The C-SECSI framework proposed

here uses the tensor structure to construct not only one but the full set of possible SMDs jointly

for both tensors [NH16].

Another, tensor decomposition which is much easier to calculate is the HOSVD [DLDMV00b].

The HOSVD of the tensors X
(1)
0 and X

(2)
0 is given by (see also Section 2.2.1)

X
(1)
0 = S(1) ×1 U1 ×2 U (1)2 ×3 U (1)3

X
(2)
0 = S(2) ×1 U1 ×2 U (2)2 ×3 U (2)3 ,

where S(1)∈ CM1×M(1)
2
×M(1)

3 and S(2) ∈ CM1×M(2)
2
×M(2)

3 are the core tensors. The matricesU1 ∈ C
M1×M1 ,

U
(i)
2 ∈ C

M
(i)
2
×M(i)

2 , and U
(i)
3 ∈ C

M
(i)
3
×M(i)

3 (i = 1,2), are unitary matrices.

Moreover, the coupled truncated HOSVD is defined as (see also Section 2.2.1)

X
(1)
0 = S[s],(1) ×1 U [s]1 ×2 U [s],(1)2 ×3 U [s],(1)3 (3.32)

X
(2)
0 = S[s],(2) ×1 U [s]1 ×2 U [s],(2)2 ×3 U [s],(2)3 , (3.33)

where S[s],(1) ∈ C
R×R×R and S[s],(2) ∈ C

R×R×R are the truncated core tensors and the loading

matrices U
[s]
1 ∈ C

M1×R, U [s],(i)2 ∈ CM
(i)
2
×R, and U

[s],(i)
3 ∈ CM

(i)
3
×R have unitary columns and span

the column space of the n-mode unfolding of X
(i)
0 , for n = 1,2,3 and i = 1,2, respectively. Note that

the matrices U
[s]
1 and F 1 in (3.30) span the same column space of [X (1)0 ](1). Due to the fact that

the tensors X
(1)
0 and X

(2)
0 have the factor matrix F 1 in common the unitary matrix U

[s]
1 spans

the column space of [X (2)0 ](1) as well.
In practice, we can only observe a noise corrupted version of the low rank tensors, i.e., X (i) = X (i)0 +N (i),

where N (i) contains uncorrelated zero mean circularly symmetric complex Gaussian noise. Hence,

we have to calculate a rank R approximation of X (i)

X (i) ≈ S[s],(i) ×1 U [s]1 ×2 U [s],(i)2 ×3 U [s],(i)3 . (3.34)

Note that (3.34) holds exactly in the absence of noise and if R is the true rank of the tensor X (i).
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For the following derivations, we assume that this is true and hence write equalities. In the presence

of noise, all following relations still hold approximately.

Next, we derive the C-SECSI framework for two tensors of order three denoted by X (i), i = 1,2,
which have the first factor matrix in common. An extension to tensors of order N is possible.

Moreover, an extension to multiple common modes is straightforward. Our goal is to jointly provide

an estimate of the factor matrices for both tensors. The C-SECSI framework starts by computing

the truncated HOSVD. Since the first factor matrix is common for both tensors, the column space

of the corresponding 1-mode unfolding is calculated jointly, and independently for the rest of the

modes (i.e, n = 2,3) via the following SVDs (see also Section 2.2.1)

[ [X (1)](1) [X (2)](1) ] = U [s]1 ⋅Σ[s]1 ⋅V [s]H1 ,

[X (i)](n) = U [s],(i)n ⋅Σ[s],(i)n ⋅V [s],(i)Hn , n = 2,3, i = 1,2.

Inserting equations (3.32) and (3.33) into (3.30) and (3.31), we get

X (i) = (S[s],(i) ×3 U [s],(i)3 ) ×1 U [s]1 ×2 U [s],(i)2 (3.35)

=

⎛⎜⎜⎜⎜⎝
I3,R ×3 (U [s],(i)3 ⋅ T (i)3 )´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

F
(i)
3

⎞⎟⎟⎟⎟⎠
×1 (U [s]1 ⋅ T 1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

F 1

) ×2 (U [s],(i)2 ⋅ T (i)2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F
(i)
2

) (3.36)

The equations (3.35) and (3.36) represent the fundamental link between the HOSVD and the CP

decomposition, and the coupling between the two tensors. The invertible matrices T 1, T
(i)
2 , and

T
(i)
3 of size R×R diagonalize the core tensors S[s],(i), for i = 1,2, respectively, as previously shown

at the beginning of this chapter and in [RH08, RH13a]. Therefore, after multiplying equations

(3.35) and (3.36) by ×1U [s]H1 ×2 U [s],(i)H2 , we obtain the following tensors

S
(i)
3 = F

(i)
3 ×1 T 1 ×2 T (i)2 i = 1,2, (3.37)

where S
(i)
3 = S

[s],(i) ×3U [s],(i)3 ∈ CR×R×M(i)
3 and F

(i)
3 = I3,R ×3F (i)3 ∈ CR×R×M(i)

3 . Equation (3.37) is

visualized in Fig. 3.23.

Equation (3.37) represents a non-symmetric SMD. Here, we recommend to diagonalize the core

tensors via symmetric SMDs, for instance, using the JD algorithm proposed in [FG06]. The exten-

sion of the SECSI framework based on non-symmetric SMDs is presented in Section 3.3, [NHT+16].
However, instead of non-symmetric SMDs we recommend using symmetric SMDs so that the cou-

pling between the two tensors can be better exploited. Therefore, we convert the non-symmetric

SMD problem in equation (3.37) into two symmetric SMDs. In order to do so one of the transform

matrices has to be eliminated. Hence, as shown in [RH08] and in Section 3.1 we multiply equation
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Figure 3.23.: Diagonalization of the tensors S
(1)
3 ∈ CR×R×M(1)

3 and S
(2)
3 ∈ CR×R×M(2)

3 along the 3-mode.

(3.37) by one pivoting slice from the right-hand and left-hand side, respectively.

S
rhs,(i)
3(.,.,ki) = S

(i)
3(.,.,ki) ⋅S

(i)−1
3(.,.,pi) = T 1 ⋅ diag(F (i)3(ki,.) ⊘F

(i)
3(pi,.)) ⋅ T −11 (3.38)

S
lhs,(i)
3(.,.,ki) = (S(i)−13(.,.,pi)S

(i)
3(.,.,ki))T = T (i)2 ⋅ diag(F (i)3(ki,.) ⊘F

(i)
3(pi,.)) ⋅ T (i)−12 (3.39)

where S
(i)
3(.,.,ki) is the ki-th slice of the tensor S

(i)
3 and ki = 1, . . . ,M

(i)
3 . Moreover, F

(i)
3(ki,.) represents

the ki-th row of the factor matrix F
(i)
3 . Furthermore, pi can be any arbitrary pivoting slice,

pi ∈ {1,2, . . . ,M (i)
3 }. However, since this slice has to be inverted, the best choice is to choose the

slice with the smallest conditioning number [RH13a]. Note that a different pivoting slice pi can be

chosen for the different tensors. Hence, equation (3.38) represents two symmetric SMDs, for each of

the two tensors S
(1)
3 and S

(2)
3 . Moreover, the two SMDs have the same transform matrices, which

means that we can concatenate the two equations and solve one diagonalization problem instead.

Hence,

⎧⎪⎪⎨⎪⎪⎩
S

rhs,(1)
3(.,.,k1)
S

rhs,(2)
3(.,.,k2)

⎫⎪⎪⎬⎪⎪⎭
= T 1 ⋅

⎧⎪⎪⎨⎪⎪⎩
diag(F (1)(k1,.) ⊘F

(1)
3(p1,.))

diag(F (2)
3(k2,.) ⊘F

(2)
3(p2,.))

⎫⎪⎪⎬⎪⎪⎭
⋅ T −11 (3.40)

is a coupled symmetric SMD, which allows as to diagonalize both core tensors jointly. From this

coupled SMD, we can estimate the first factor matrix as F̂ 1,I = U
[s]
1 ⋅T 1 guaranteeing that even in

a noisy scenario the common mode will have the same factor matrix estimate for the tensors X (1)

and X (2). Next, from the diagonal elements of the diagonalized tensor the factor matrices F̂
(1)
3,I

and F̂
(2)
3,I are estimated [RH13a]. Finally, using the corresponding estimates of the other two factor

matrices, the last factor matrices are estimated based on an LS solution F̂
(1)
2,I and F̂

(2)
2,I .

Note that equation (3.39) does not depend on the common mode. Therefore, the two SMDs

cannot be combined and they have to be solved separately. Similarly, to the coupled SMD, an

estimate of the matrices F̂
(1)
2,II, F̂

(2)
2,II, F̂

(1)
3,II and F̂

(2)
3,II is provided from the transform matrix T

(i)
2

and the resulting diagonal elements, respectively. The common factor matrix is then estimated

89



from the following joint LS problem

F̂ 1,II = [ [X (1)](1) [X (2)](1) ] ⋅ [ (F̂ (1)2,II ◇ F̂ (1)3,II)T (F̂ (2)2,II ◇ F̂ (2)3,II)T ]+ . (3.41)

Up to this point, we have diagonalized the tensors along the 3-mode as depicted in Fig. 3.23, but

the rest of the modes can also be used in order to obtain more estimates as explained in [RH13a].

Another two sets of estimates can be obtained by diagonalizing the tensors along the 2-mode based

on the following SMDs

⎧⎪⎪⎨⎪⎪⎩
S

rhs,(1)
2,(.,k1,.)
S

rhs,(2)
2,(.,k2,.)

⎫⎪⎪⎬⎪⎪⎭
= T 1 ⋅

⎧⎪⎪⎨⎪⎪⎩
diag(F (1)

2(k1,.) ⊘F
(1)
2(p1,.))

diag(F (2)
2(k2,.) ⊘F

(2)
2(p2,.))

⎫⎪⎪⎬⎪⎪⎭
⋅ T −11 (3.42)

and

S
lhs,(i)
2,(.,ki,.) = T

(i)
3 ⋅ diag(F (i)2(ki,.) ⊘F

(i)
2(pi,.)) ⋅ T (i)−13 . (3.43)

The estimates obtained from (3.42) are given by F̂ 1,III = U
[s]
1 ⋅ T 1 from the transform matrix,

F̂
(1)
2,III, F̂

(2)
2,III from the diagonal elements of the diagonalized tensor, and F̂

(1)
3,III and F̂

(2)
3,III based

on an LS solution using the corresponding estimates of the other two factor matrices. Moreover,

from (3.43) the following estimates are obtained. The factor matrices F̂
(1)
3,IV = U

[s],(i)
3 ⋅ T (i)3 and

F̂
(2)
3,IV = U

[s],(i)
3 ⋅ T (i)3 are obtained from the transform matrices. Furthermore, F̂

(1)
2,IV and F̂

(2)
2,IV are

obtained from the diagonal elements of the diagonalized tensor and F̂ 1,IV is estimated based on

the following joint LS problem.

F̂ 1,IV = [ [X (1)](1) [X (2)](1) ] ⋅ [ (F̂ (1)2,IV ◇ F̂ (1)3,IV)T (F̂ (2)2,IV ◇ F̂ (2)3,IV)T ]+ . (3.44)

Finally, the following SMDs are defined for the tensor’s diagonalization along the first mode.

S
rhs,(i)
1,(ki,.,.) = T

(i)
2 ⋅ diag(F (i)1(ki,.) ⊘F

(i)
1(pi,.)) ⋅ T (i)−12

S
lhs,(i)
1,(ki,.,.) = T

(i)
3 ⋅ diag(F (i)1(ki,.) ⊘F

(i)
1(pi,.)) ⋅ T (i)−13

The coupled mode is in the diagonal elements of the diagonalized tensor, therefore a joint SMD

cannot be calculated. From the four SMDs presented above (recall that i = 1,2), four different

estimates of the coupled mode are obtained. The estimates obtained from the diagonalization

along the first mode and their origin are summarized in Table 3.1.

Transform Matrix F̂
(i)
2,V F̂

(i)
2,VI = F̂

(i)
2,V F̂

(i)
3,VII F̂

(i)
3,VIII = F̂

(i)
3,VII

Diagonalized Tensor F̂ 1,V F̂ 1,VI F̂ 1,VII F̂ 1,VIII

LS F̂
(i)
3,V F̂

(i)
3,VI F̂

(i)
2,VII F̂

(i)
2,VIII

Table 3.1.: Estimates of the factor matrices obtained from the diagonalization along the first mode.
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Figure 3.24.: The C-SECSI framework for the computation of the coupled CP decomposition of two
tensors X (1) and X (2) that have the 1-mode in common.
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To summarize, the C-SECSI framework for two tensors of order three with Nc common modes,

i.e., Nc = 1,2, will result in 6+2Nc sets of estimates of the factor matrices. For the scenario that we

have presented in this section, two tensors of order three with one mode in common, eight different

initial sets of estimates are obtained with the C-SECSI framework. These eight different sets of

estimates are depicted in Fig. 3.24. As a comparison, the original SECSI framework calculates six

sets of estimates, [RH13a]. The two additional sets are obtained from the diagonalization along

the coupled mode. The estimate of the common mode that results from the tensor X (1) can be

considered as a possible solution for the tensor X (2) as well (see Table 3.1). However, when using

the common factor matrix that is estimated from another tensor and for calculating the joint LS

according to equations (3.41) and (3.44), the permutation and scaling ambiguity has to be taken

into account. The estimates that are obtained from different SMDs have an arbitrary permutation,

which can be eliminated via a comparison if one estimate is taken as a reference.

From the eight initial estimates of the factor matrices (see Fig. 3.24) the first four estimates of

the common factor matrix (from F̂ 1,I to F̂ 1,IV) are obtained either from the common transform

matrices or via a joint LS fit. On the other hand, the last four estimates (from F̂ 1,V to F̂ 1,VIII)

are separately obtained from the diagonal elements of the diagonalized tensor. Therefore, the

first four solutions are coupled, and the last four solutions are uncoupled. The final solution is

then chosen for each of the tensors separately based on the chosen heuristics [NH16,RH13a]. The

different heuristics BM, REC PS, and RES offer accuracy-complexity trade-off (see Section 3.1).

Note that the heuristic CON if applied for C-SECSI offers no guarantee that a coupled solution will

be computed. Therefore, the heuristic CON is not suitable for C-SECSI. In general, we recommend

using the heuristic REC PS with which the final solution (one of the eight possible solutions I−VIII)
is chosen based on the reconstruction error [RH13a], where the reconstruction error is calculated

according to (3.8). Note that when X (i) is a noisy observation, i.e. X (i) = X 0
(i) +N (i) we also

refer to this error as a residual and denote it by RES.

Moreover, in [NKHH17] we propose a reliability measure for the C-SECSI framework that checks

whether the same (coupled) solution is chosen for both tensors. Therefore, a reliability in percent-

age,

REL =

⎛⎜⎜⎜⎝
1 − 1

2
⋅
∣∣F̂ (2)1 ⋅P − F̂ (1)1 ∣∣2

F

∣∣F̂ (1)1 ∣∣2
F

⎞⎟⎟⎟⎠
⋅ 100%, (3.45)

is defined as a similarity measure of the final estimates of the common factor matrices. Here, P is a

permutation matrix of size R×R that resolves the permutation ambiguity of the CP decomposition.

The matrices F̂
(1)
1 and F̂

(2)
1 are the final estimates of the common mode assigned to the tensors

X (1) and X (2), respectively. This reliability measure has a maximum if the final estimates result

from a coupled solution and the assumed rank is correctly chosen. Therefore, the reliability can

be used to control the tensor rank of the coupled approximate CP decomposition. Note that for

tensor rank one the reliability is always 100%. This is due to the fact that for rank one tensors the
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C-SECSI framework does not calculate any SMD. In this case, only one final estimate of the factor

matrices is provided directly from the coupled truncated HOSVD.

3.6.1 Simulation Results

In this section, the proposed extension of SECSI for coupled CP decompositions, denoted by

C-SECSI, is compared to the original SECSI framework [RH13a] and other state-of-the-art algo-

rithms for the computation of coupled CP. These algorithms include C-ALS, CCP-NLS [VDS+16],
and CCP-MINF [VDS+16]. For simulation purposes, we generate two different tensors with tensor

rank R and first factor matrix in common according to equations (3.30) and (3.31), where the

factor matrices F 1, F
(i)
2 , and F

(i)
3 have i.i.d. zero mean Gaussian distributed random entries (or

ZMCSCG distributed random entries for complex-valued tensors) with variance one. Moreover, for

some simulation scenarios, we want the tensors to have correlated factor matrices. Therefore, we

add correlation via a correlation matrix as shown in (3.10). Additionally, a zero-mean Gaussian

distributed (or ZMCSCG for complex-valued tensors) noise with variance σ2
N is added resulting in

SNR1 and SNR2.

SNR1 = 10 log10

⎛⎜⎜⎝
∥X (1)0 ∥2H∥N (1)∥2

H

⎞⎟⎟⎠[dB] SNR2 = 10 log10

⎛⎜⎜⎝
∥X (2)0 ∥2H∥N (2)∥2

H

⎞⎟⎟⎠[dB]
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Figure 3.25.: Reliability as a function of the assumed rank R̂ for different SNRs.
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Figure 3.26.: Reliability as a function of the assumed rank R̂ for different ranks.

In Fig. 3.25, we visualize the typical reliability as a function of the assumed rank R̂. These curves

result from Monte Carlo simulations with 1000 realizations, for real-valued tensors with dimensions

8×8×8. The true tensor rank and the corresponding SNRs are indicated in the legend in Figs. 3.25

and 3.26, whereas the assumed rank R̂ was varied from two to six. The true tensor rank for each

curve is additionally indicated with a marker above the curves. In Fig. 3.25, it is obvious that

we have maximum reliability when the assumed rank equals the exact tensor rank. Moreover, as

expected the SNR influences the reliability measure due to the estimates dependency of the SNR.

However, even in a low SNR regime (blue curve corresponding to SNR1 = SNR2 = −0.5 dB) the

reliability is more than 95% when the assumed rank equals the true rank.

Moreover, in Fig. 3.26 we depict the reliability for two tensors that share different numbers of

components. For instance, for the light blue curve (the first curve indicated in the legend), the

first tensor has rank R1 = 4, whereas the second tensor has rank R2 = 2. This implies that the

tensors share only two components and the first tensor with tensor rank R1 = 4 has two additionally

components. For the remaining curves, the first tensor has rank R1 = 4, whereas the second tensor

has rank R2 = 3, R2 = 4, R2 = 5, and R2 = 6, respectively. The ranks of the second tensor for each

scenario are additionally indicated using a marker at the top of the Fig. 3.26. Details for the true

tensor ranks and the SNRs are available also in the legend. In Fig. 3.26, we see that the reliability

has local maxima for both ranks R1 and R2.

When performing signal analysis using the CP decomposition, we are typically interested in the

factor matrices, as their columns represent the signatures of the underlying components for the
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Figure 3.27.: CCDF of the TSFE for real-valued tensors with dimensions 40 × 4 × 10, tensor ranks
R1 = R2 = 3, factor matrices with mutually correlated columns designed as sine functions,
and SNR1 = SNR2 = 25 dB.
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Figure 3.28.: CCDF of the TSFE for real-valued tensors with dimensions 80 × 80 × 80, tensor ranks
R1 = R2 = 4, and SNR1 = SNR2 = 30 dB. The first (common) factor matrix has mutually
correlated columns with a correlation coefficient ρ1 = 0.98.
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corresponding dimension. Therefore, an important measure for algorithm comparison is the TSFE

defined in (3.11). In Fig. 3.27, we compare the performance of the C-SECSI [NH16], SECSI [RH13a],

C-ALS , CCP-NLS [VDS+16] and CCP-MINF [VDS+16] for two real-valued tensors of size 40×4×10,
R1 = R2 = 3, and first mode in common. The SECSI framework and the C-SECSI framework select

the final solution based on the heuristic REC PS. The three signatures of the first factor matrix

represent the first 40 samples of sine functions, sin(2πtf1 + π
3 ), sin(2πtf2)e10t, and sin(2πtf3)e−3t

with f1 = 10 Hz, f2 = 20 Hz, and f3 = 30 Hz. The second and the third factor matrices were drawn

from zero mean Gaussian random process with variance one. Moreover, the third factor matrices

have collinear columns with a correlation coefficient ρ3 = 0.9. The correlation is added according

to equation (3.10). The CCDF of the TSFE for SNR equal to 25 dB is depicted in Fig. 3.27. The

vertical lines represent the mean TSFE value for each curve. SECSI and C-SECSI do not have

outliers even for such an ill-conditioned scenario in contrast to the other algorithms. Note that

from all considered algorithms only SECSI is not a coupled algorithm and we are able to observe

an accuracy gain of the C-SECSI framework compared to the uncoupled SECSI framework. The

C-SECSI framework outperforms the rest of the algorithms in terms of mean the TSFE.
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Figure 3.29.: CCDF of the TSFE for complex-valued tensors with dimensions 4 × 8 × 7, tensor rank
R1 = R2 = 3, and SNR1 = SNR2 = 45 dB. The first (common) factor matrix has mutually
correlated columns.

Next, we compare the performance of the six algorithms for two real-valued tensors, X 1 and X 2

of size 80 × 80 × 80. The two tensors have the first factor matrix in common, and additionally the

common factor matrix has collinear columns with a correlation factor ρ1 = 0.98. The CCDF of the
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TSFE for SNR1 = SNR2 = 30 dB is presented in Fig. 3.28. In Fig. 3.28, we observe that C-SECSI

outperforms the rest of the algorithms, however it has the same accuracy as the original SECSI

framework. Here, both frameworks SECSI and C-SECSI use the BM criterion to choose the final

solution.

In Fig. 3.29, the CCDF of the TSFE is presented for two tensors of size 4× 8× 7 with a common

1-mode. For this scenario, the common factor matrix is chosen as

F 1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1

1 0.95 0.95

1 0.95 1

1 1 0.95

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This factor matrix is ill-conditioned and has highly correlated columns, and the CP decomposition

containing this factor matrix is very difficult to calculate. From the Fig. 3.29 it is noticeable that C-

ALS fails in most of the attempts to decompose the given tensors. However, the SECSI framework

and the C-SECSI framework using BM are still able to decompose the tensors. Moreover, C-SECSI

shows a better performance than CCP-MINF and CCP-NLS.
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Figure 3.30.: CCDF of the TSFE for complex-valued tensors with dimensions 7 × 8 × 4, tensor ranks
R1 = R2 = 3, and SNR1 = SNR2 = 45 dB. The third factor matrices have mutually corre-
lated columns.

Similarly, in Fig. 3.30 we compare the performance of the above discussed algorithms for an
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ill-conditioned scenario, where the third factor matrices are chosen as F
(1)
3 and F

(2)
3 from (3.46).

F
(1)
3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1

1 0.95 0.95

1 0.95 1

1 1 0.95

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
F
(2)
3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.95 1 0.95

1 1 1

0.95 1 1

1 1 0.95

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.46)

The two tensors are complex-valued with dimensions 7 × 8 × 4 and they have the first mode in

common. The CCDF of the TSFE for SNR1 = SNR2 = 45 dB is depicted in Fig. 3.30. In this

scenario, where the ill-conditioned factor matrix is not the common mode, we are able to observe

an accuracy gain compared to the uncoupled SECSI framework.

10-4 10-2 100

TSFE

10-3

10-2

10-1

100

C
C

D
F

SECSI BM X
1

C-SECSI BM X
1

C-ALS X
1

C-SECSI BM + 1xC-ALS X
1

CCP-NLS X
1

CCP-MINF X
1

SECSI BM X
2

C-SECSI BM X
2

C-ALS X
2

C-SECSI BM + 1xC-ALS X
2

CCP-NLS X
2

CCP-MINF X
2

Figure 3.31.: CCDF of the TSFE for complex-valued tensors with dimensions 7 × 3 × 4, tensor ranks
R1 = R2 = 4, and SNR1 = SNR2 = 30 dB. Both tensors are degenerate with respect to the
2-modes, i.e., R1 >M2

(1) and R2 >M2
(2).

Moreover, since the SECSI framework is able to estimate the factor matrices even in a degenerate

case, when the rank of the tensor exceeds the tensor size in at least one of the modes, we have

also simulated such a scenario. The tensors are of size 7 × 3 × 4 with ranks R1 = R2 = 4, hence

the two tensors are degenerate in mode two, but still have the first factor matrix in common. The

CCDF of the TSFE for SNR1 = SNR2 = 30 dB is visualized in Fig. 3.31. Moreover, in this figure

we show the performance of the C-SECSI framework plus one C-ALS iteration, denoted by C-

SECSI BM + 1xC-ALS. In this case, the C-SECSI framework outperforms the SECSI framework.

If they converge, the C-ALS, CCP-NLS, and CCP-MINF provide a more accurate estimate, but in

some cases they do not converge at all. Therefore, the mean error is larger than for the C-SECSI
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3.6. Semi-Algebraic framework for the approximate Coupled CP decomposition via SImultaneaous
matrix diagonalization (C-SECSI)
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Figure 3.32.: CCDF of the TSFE for complex-valued tensors with dimensions 7 × 7 × 7, tensor ranks
R1 = R2 = 3, SNR1 = SNR2 = 30 dB, and the factor matrices have mutually correlated
columns with correlation coefficients ρ1 = 0.1, ρ2 = 0.9, and ρ3 = 0.1.
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Figure 3.33.: TMSFE as a function of the SNR for complex-valued tensors with dimensions 4 × 8 × 7,
tensor ranks R1 = R2 = 3, where the second tensor has third factor matrix with mutually
correlated columns with correlation coefficient of 0.98.
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framework. Furthermore, in Fig. 3.31 we observe that already a single iteration of C-ALS improves

the accuracy of the C-SESCI framework additionally.

In Fig. 3.32, we compare the accuracy of the different heuristics. Therefore, we depict in

Fig. 3.32 the CCDF of the TSFE for complex-valued tensors with dimensions 7 × 7 × 7, tensor

ranks R1 = R2 = 3, and SNR1 = SNR2 = 30 dB. Moreover, the factor matrices have mutually cor-

related columns with correlation coefficients ρ1 = 0.1, ρ2 = 0.9, and ρ3 = 0.1, for both tensors.

According to Fig. 3.32, the BM and REC PS have comparable accuracy in terms of TSFE, but

REC PS has lower computational complexity. The heuristic RES has the lowest computational

complexity and the lowest accuracy.

Moreover, in Fig. 3.33 we depict the TMSFE (i.e., mean TFSE) for different SNRs. Both tensors

X 1 and X 2 with common first mode have dimensions 40 × 4 × 10 and tensor ranks R1 = R2 = 3.

However, only the third factor matrix of the second tensor X 2 has mutually correlated columns,

with a correlation coefficient of 0.98. This highly correlated factor matrix causes the tensor X 2

to be ill-conditioned. The Fig. 3.33 shows that using the coupled algorithm improves the estimate

accuracy of the ill-conditioned tensor without corrupting the good conditioned tensor.
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Figure 3.34.: Probability of selecting the final estimate for the C-SECSI framework using the REC PS
heuristic. The decomposed complex-valued tensors have dimensions 4 × 7 × 8, common
1-mode, ranks R1 = R2 = 3, SNR1 = SNR2 = 30 dB, and correlated factor matrices with
correlation coefficients ρ1, ρ2, and ρ3.

As observed in Figs. 3.27, 3.30-3.33 when the common matrix is not ill-conditioned, i.e., its

columns are not mutually correlated, C-SECSI has a higher accuracy than SECSI. On the other

hand, Figs. 3.28 and 3.29 show that C-SECSI is as accurate as SECSI in terms of TSFE when the

common matrix is ill-conditioned. In order to investigate the reason which leads to the improved

accuracy, we study the REC PS heuristics and selection of the final solution. Recall that C-SECSI

computes eight sets of initial estimates of the factor matrices that are depicted in Fig.3.24 and
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3.6. Semi-Algebraic framework for the approximate Coupled CP decomposition via SImultaneaous
matrix diagonalization (C-SECSI)

accordingly numbered I-VIII. In Fig. 3.34, we depict the histogram of the probability that one of

the I-VIII solutions is chosen as a final solution, for the tensor X 1. Moreover, we consider two

scenarios illustrated in Figs. 3.34a and 3.34b. For both scenarios, we consider complex-tensors

with dimensions 4 × 7 × 8, common 1-mode, ranks R1 = R2 = 3, and SNR1 = SNR2 = 30 dB. The

tensors in the first scenario depicted in Fig. 3.34a have correlated factor matrices with correlation

coefficients ρ1 = 0.1, ρ2 = 0.1, and ρ3 = 0.9. The tensors in the second scenario depicted in Fig. 3.34b

have correlated factor matrices with correlation coefficients ρ1 = 0.9, ρ2 = 0.1, and ρ3 = 0.1. Hence,

Fig. 3.34a depicts the probability of choosing the final solution when the common mode is not

ill-conditioned, whereas Fig. 3.34b depicts the probability of choosing the final solution when the

common mode is ill-conditioned. The solutions I, VI and VII are chosen with the highest probability

when the 3-mode is ill-conditioned. Comparing to Fig. 3.24, these most frequently chosen solutions

are corresponding to the initial solutions that have either the ill-conditioned factor matrix or the

coupled one in the diagonal elements. Solution I is the coupled solution that leads to an improved

accuracy. On the other hand, in Fig. 3.34b the solutions V and VI are chosen as final solution

with the highest probability. Hence, the most frequently chosen solutions are when the common

factor matrix is in the diagonal elements, that is at the same time the ill-conditioned matrix. These

most frequently chosen solutions are not coupled. Therefore, the performance is equivalent to the

original SECSI framework for scenarios when the common mode has correlated columns.
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Figure 3.35.: TMSFE as a function of the SNR2 for complex-valued tensors with dimensions 3 × 8 × 7,
tensor ranks R1 = R2 = 3, and SNR1 = 30 dB.

Furthermore, in Fig. 3.35 we show that the C-SECSI framework unlike other algorithms can

jointly decompose coupled tensors even if they are affected by noise with different variance. The
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tensors X 1 and X 2 with common first mode have dimensions 3× 8× 7, and tensor ranks R1 = R2 =

3. The factor matrices have complex valued values drawn from ZMCSCG random process with

variance one. The first tensor has a constant SNR1 of 30 dB, while the SNR2 is varied from 0 to

60 dB. These results are averaged over 3000 realizations. The C-ALS normalized denotes the C-ALS

algorithm with additional normalization with respect to the different noise variances. Note that in

order to perform the normalization the noise variance has to be priorly estimated or known. For the

results presented in Fig. 3.35, the noise variance was estimated. Further details on the importance of

normalization and compression with truncated HOSVD for ALS are available in [CFC16]. However,

normalization with respect to the noise variance is not required when computing the coupled CP

decomposition using the C-SECSI framework. Therefore, C-SECSI is a very suitable and robust

tool for applications when the coupled tensors have a different nature and different SNRs.

3.6.2 Summary

In this section, we present the C-SECSI framework for the efficient computation of an approximate

coupled CP decomposition. For 3-way tensors, the C-SECSI framework results in 6 + 2Nc initial

sets of estimates of the factor matrices, where Nc = 1,2 is the number of common modes. The final

estimate can be selected based on different heuristics that lead to different complexity-accuracy

trade-offs of the C-SECSI framework. C-SECSI computes the coupled CP decomposition under

the constraint that one of the modes is coupled, but it still computes uncoupled estimates as well.

This is very practical for the analysis of biomedical data, were the coupling is assumed, but not

yet proven. Moreover, for comparing the independently chosen final estimates we have defined

the coupling reliability. With simulations we show that the reliability can be used to control the

rank of the coupled decomposition. This is a very important feature of C-SECSI because the rank

estimate is a very challenging problem, especially for noisy measurement signals. Moreover, we have

compared the C-SECSI framework with the original SECSI framework as well as with other state-

of-the-art algorithms and shown that it outperforms these algorithms. The C-SECSI framework

has a higher accuracy in ill-conditioned scenarios such as computing the coupled CP decomposition

with factors with correlated columns. Even more, we observe an accuracy gain as compared to the

traditional SECSI framework proposed in [RH13a]. This accuracy gain originates from the coupled

solutions. Another advantage of the C-SECSI framework is that it can decompose tensors that are

corrupted by noise with different variances without any additional normalization or estimation of

the SNRs. Future work includes extensions to coupled matrix-tensor decompositions and coupling

of more than two tensors that are straightforward. The C-SECSI framework has been published

in [NH16,NKHH17].
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3.7. Conclusions

3.7 Conclusions

The SECSI framework [RH08,RSH12,RH13a] is a robust semi-algebraic framework for the computa-

tion of an approximate low-rank CP decomposition. It computes all possible symmetric SMDs that

lead to six initial estimates of the factor matrices, for a 3-way tensor. The final estimate is then

selected based on different heuristics as discussed in [RH13a], that lead to different complexity-

accuracy trade-off of the SECSI framework. In this chapter, we have proposed five extensions

of the SECSI framework that reduce the computational complexity of the original framework

or introduce constraints to the factor matrices. These extensions include T-SECSI (Truncated-

SECSI), NS-SECSI (Non-Symmetric-SECSI), S-SECSI (Symmetric-SECSI/SECSI for symmetric

tensors), SECSI+ (Non-negative SECSI/SECSI for non-negative tensors), and C-SECSI (Coupled-

SECSI/SECSI for coupled tensors). The T-SECSI framework has lower computational complexity

than SECSI because it diagonalizes a compressed core tensor for size R × R × R, where R is the

tensor rank. This gain is more pronounced as the tensor dimensions increase. Therefore, we recom-

mend the T-SECSI framework for the computation of the CP decomposition for tensors with large

dimensions. The NS-SECSI framework exploits non-symmetric SMDs for the computation of the

CP decomposition. We consider two algorithms for the computation of the non-symmetric SMDs

the TEDIA [TPC15] and the NS-IDIEM [CB12,CKM+14] algorithms. The NS-SECSI-NS-IDIEM

framework is a closed-form (algebraic) solution for the computation of an approximate low-rank

CP decomposition. Therefore, it has even lower computational complexity than the T-SECSI.

Moreover, NS-SECSI computes only three initial sets of estimates of the factor matrices that

additionally reduces the computational complexity of the selection of the final solution. The NS-

SECSI-NS-IDIEM framework has lower accuracy than the original SECSI framework, for tensors

with dimensions comparable to the tensor rank. Therefore, we recommend NS-SECSI-NS-IDIEM

for the computation of an approximate CP decomposition for large tensors or for applications in

which the CP decomposition has to be approximated very fast and very efficiently. The S-SECSI

framework is a closed-form solution for the computation of the CP decomposition of symmetric ten-

sors or fully symmetric tensors. In a way, it represents an extension of the NS-SECSI-NS-IDIEM

framework because it exploits the same closed form solution for the computation of the SMDs,

namely the algorithms IDIEM and NS-IDIEM [CB12,CKM+14]. Therefore, it computes a symmet-

ric CP very fast in a closed form fashion. The computational advantages provided by the truncation

(included in T-SECSI and NS-SECSI-TEDIA) and the closed form solution (included in NS-SECSI-

NS-IDIEM and S-SECSI) are more pronounced as the tensor dimensions increase. The SECSI+
framework computes an approximated CP decomposition of non-negative tensors under the con-

straint that the factor matrices are also non-negative. We propose to compress the non-negative

tensor based on NTD (Non-negative Tucker Decomposition) and then to compute a symmetric

SMDs with non-negative constraints. Therefore, we also propose an ADMMD+ diagonalization

algorithm for the computation of SMDs with non-negative constraints. However, this C-SECSI

framework has no advantages over the state-of-the-art algorithms. In order to potentially increase

its accuracy, we propose to further investigate the proposed solution, to consider other NTD algo-
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rithms, and to consider non-symmetric SMDs as proposed in the NS-SECSI framework. Finally, the

C-SECSI framework computes the coupled CP decomposition in a robust semi-algebraic fashion.

The C-SECSI framework outperforms the state-of-the-art algorithms especially in ill-conditioned

scenarios. It does not require prior normalization of the tensors even if they a corrupted by noise

with different variances. Moreover, we propose a reliability that controls the rank of the coupled

tensor decomposition. In the future, it is possible to extent the C-SECSI framework to coupled

matrix-tensor decompositions and to coupled CP for more than two tensors. A closed-form solution

of C-SECSI can also be obtained based on the IDIEM [CB12] algorithm. Note that, in the future

the SECSI framework and the C-SECSI framework can be extended by considering sparse tensors

and tensors with missing entries by utilizing the algorithm proposed in [YFLZ16] as a first step

instead of the truncated HOSVD. The NS-SECSI framework and the C-SECSI framework have

already been published in [NHT+16,NKHH17] and [NH16], respectively.

104



Chapter 4

PARATUCK2 and PARAFAC2 via constrained CP

model

In this chapter, we consider the PARATUCK2 and the PARAFAC2 decomposition. The PARATUCK2

decomposition represents a mixture of two basic decompositions, the CP decomposition and the

HOSVD. Therefore, it offers more flexibility than the CP decomposition. The PARAFAC2 de-

composition is a generalization of the PARAFAC/CP tensor decomposition. This tensor decom-

position represents a set of coupled matrix decompositions with one mode in common, i.e., one

of the components varies along the set of matrices (tensor slices), whereas the second compo-

nent stays constant. Compared to CP, PARAFAC2 allows a variation of the two-mode factors

over the three-mode dimension and thus has an increased flexibility. Both tensor decompositions

PARATUCK2 and PARAFAC2 have many applications including the analysis of chromatographic

data, data clustering, modeling of wireless communication systems, and biomedical signal process-

ing [dAFX13,CHGH18] (see also Sections 2.2.4, 2.2.5, and 2.3). Typically, these two decomposi-

tions are described by means of a slice-wise multiplication between two tensors. In this chapter,

we develop new tensor models for the PARATUCK2 decomposition and the PARAFAC2 decom-

position using the generalization of the slice-wise multiplication based on the tensor contraction

operator proposed in Section 2.1.4. In Section 4.1 and Section 4.2, we express the PARATUCK2

decomposition and the PARAFAC2 decomposition in terms of these new tensor models resulting

in constrained CP models. Moreover, we show that these new models open efficient ways for the

computation of these decompositions. For instance, we show that this new description leads to an

efficient single loop algorithm to compute the PARAFAC2 decomposition. The novel tensor models

proposed in this chapter describe the noiseless tensor. The algorithms that estimate the noiseless

tensor from noise corrupted measurements depend on the noise model (see also equation (2.34)).

Here, we assume Gaussian noise. Therefore, the algorithm proposed in this chapter estimates the

low-rank tensor from noisy observations in an LS sense. However, the tensor models proposed here

can also be used as a starting point in the derivation of other more advanced algorithms.

4.1 PARATUCK2

The PARATUCK2 decomposition [HL96] is a very flexible decomposition that is usually described

using slice-wise or element-wise notation. However, these descriptions do not reveal the explicit ten-

sor structure. In Section 2.2.4, we have reviewed the PARATUCK2 decomposition, its uniqueness
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properties, and its applications.

We visualize the slice-wise notation from equation (2.46) of the PARATUCK2 decomposition in

Fig. 4.1.

Figure 4.1.: Slice-wise visualization of the PARATUCK2 decomposition for a tensor X ∈ CI×T×K with
slices X (.,.,k) =A ⋅D(A)(.,.,k) ⋅R ⋅D(B)(.,.,k) ⋅BT.

Using an element-wise notation, the PARATUCK2 tensor decomposition defined in Section 2.2.4

equation (2.46) of a tensor X ∈ CI×T×K is defined as [HL96]

X (i,t,k) =
J

∑
j=1

P

∑
p=1

ai,jd
(A)
j,k

rj,pd
(B)
p,k

bt,p.

Let us now define the matrices A ∈ CI×J , B ∈ CT×P , R ∈ CJ×P , U ∈ CJ×K , and V ∈ CP×K with

elements, A(i,j) = ai,j, B(t,p) = bt,p, R(j,p) = rj,p, U (j,k) = d
(A)
j,k

, and V (p,k) = d
(B)
p,k

, respectively.

Moreover, we define the tensors D(A) = I3,J ×3 UT and D(B) = I3,P ×3 V T.

Derivation of the structure illustrated at the top of Fig. 4.1

Next, we define T 1 = I3,J ×1 A ×3 UT and T 2 = I3,P ×1 R ×2 B ×3 V T as illustrated in Fig. 4.1.

This definition follows directly from the element-wise notation and the above defined matrices.

Considering the tensors T 1 ∈ C
I×J×K and T 2 ∈ C

J×T×K , the tensor X can be expressed as

X (.,.,k) = T 1(.,.,k) ⋅ T 2(.,.,k).

Hence, PARATUCK2 can be interpreted as a slice-wise multiplication between the two tensors

T 1 and T 2. In Section 2.1.4, we have proposed an alternative representation of the slice-wise

multiplication based on generalized tensor contraction. More precisely, we propose to substitute

the slice-wise multiplication by a double contraction. The first contraction is defined along the

modes that are multiplied and the second contraction is defined along the slices k = 1, . . . ,K (the

dimension that is unaffected). Moreover, as shown in Section 2.1.4, one of the two tensors should
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4.1. PARATUCK2

be diagonalized beforehand along the unaffected dimension. Hence, for the tensor X , we have

X ′ = T 1,D●1,32,3T 2 ∈ C
I×K×T or X = T 1●1,32,3T 2,D ∈ C

I×T×K, (4.1)

where T 1,D ∈ C
I×J×K×K and T 2,D ∈ C

J×T×K×K are the diagonalized tensors with non-zero elements

T 1,D(i,j,k,k) = T 1(i,j,k) and T 2,D(j,t,k,k) = T 2(j,t,k). The diagonal structure of these tensors can

be expressed by the means of the Khatri-Rao product between an identity matrix and a gener-

alized unfolding as shown in Table 2.1. Hence, we have [T 1,D]([1,2,3],[4]) = IK ◇ [T 1]([1,2],3) and

[T 2,D]([1,2,3],[4]) = IK ◇ [T 2]([1,2],3). Note that the two tensors X ′ and X in (4.1) contain the same

elements, but have permuted dimensions due to the definition of the contraction operator in equa-

tion (2.9). The different permutation can be easily resolved for the final results by permuting the

modes of the resulting tensor.

First, let us derive the resulting tensor structure of the tensorX beginning fromX ′ = T 1,D●1,32,3T 2 ∈

C
I×K×T . By substituting the structure of T 1 into the unfolding of the diagonalized tensor, we get

[T 1,D]([1,2,3],[4]) = IK ◇ [T 1]([1,2],3) = IK ◇ [(IJ ◇A) ⋅U ] .
Next, by considering the tensor structure of T 1,D, it can be shown that the tensor T 1,D satisfies

a BTD. In Appendix B.1, we show that the diagonalized tensor satisfies a BTD, if the tensor that

is diagonalized has a CP structure. The result used here can be directly deduced from the results

presented in Appendix B.1 taking into account that T 1 = I3,J ×1 A ×3 UT. Hence, for the tensor

T 1,D, we get

T 1,D =
K

∑
k=1

(I4,1 ⊗ I3,J) ×1 A ×2 IJ ×3 (ek ⊗UT(.,k)) ×4 ek. (4.2)

The tensor (I4,1 ⊗ I3,J) has dimensions J × J × J × 1 and the operator ⊗ corresponds to the

tensor Kronecker product that was introduced in Section 2.1.1 (see Fig. 2.4). Also, as shown in

Section 2.2.3 (see Fig. 2.15) the sum can be replaced by a block diagonal core and factor matrices

partitioned accordingly. Moreover, the block diagonal structure of the core tensor built from the K

tensors (I4,1 ⊗I3,J) in equation (4.2) can be defined as (I4,K ⊗ I3,J) ∈ CJK×JK×JK×K. Similarly,

the structure of the partitioned matrix [A A . . . A] can be represented by 1TK ⊗A. For the

partitioned matrix [(e1 ⊗UT(.,1)) (e2 ⊗UT(.,2)) . . . (eK ⊗UT(.,K))] we can show that it equals(IK ◇U)T (see Fig. B.2 in Appendix B.1). Using all of the matrices defined above and the core

tensor, for the tensor T 1,D, we have

T 1,D = (I4,K ⊗ I3,J) ×1 (1TK ⊗A) ×2 (1TK ⊗ IJ) ×3 (IK ◇U)T ×4 IK .

Utilizing the structure of both tensors T 1,D and T 2, the double contraction between these two ten-

sors can be rewritten using the generalized unfoldings. According to the property of the generalized
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unfoldings in equation (2.10), we get

[X ′]([1,2],3) = [T 1,D]([1,4],[2,3]) ⋅ [T 2]([1,3],2)
= [IK ⊗ 1TK ⊗A] ⋅ [I4,K ⊗ I3,J]([1,4],[2,3]) ⋅ [(IK ◇U)T ⊗ (1TK ⊗ IJ)]T´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶∗

⋅ [V T ◇R] ⋅BT

(4.3)

After reordering and consideration of the sparse structure, similar to equation (2.22), for the first

part of equation (4.3) denoted by *, we have

[IK ⊗ 1TK ⊗A] ⋅ [I4,K ⊗I3,J]([1,4],[2,3]) ⋅ [(IK ◇U)T ⊗ (1T
K ⊗ IJ)]T =

[[IK ⊗ 1T
K ⊗ IJ] ⋅ [I4,K ⊗I3,J]([1,4],[2,3]) ⋅ [(IK ◇U)T ⊗ (1T

K ⊗A)]T]T =
[[IJK ◇ IJK]T ⋅ [(IK ◇U)T ⊗ (1T

K ⊗A)]T]T = [(IK ◇U)T ⊗ (1TK ⊗A)] [IJK ◇ IJK] =
[(IK ◇U)T ◇ (1T

K ⊗A)] .
In Appendix B.2, we show the structure of the selection matrix JJK = IJK ◇IJK . In Appendix B.2,

we also show that this selection matrix equals JJK = [I4,K ⊗I3,J]([2,3],[1,4]) ⋅[IK ⊗ 1T
K ⊗ IJ]T. By

substituting the last results into the tensor unfolding [X ′]([1,2],3), we get

[X ′]([1,2],3) =
⎡⎢⎢⎢⎢⎢⎣
(IK ◇U)T ◇ (1T

K ⊗A)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶∗∗

⎤⎥⎥⎥⎥⎥⎦
⋅ [V T ◇R] ⋅BT. (4.4)

This tensor unfolding represents an unfolding of a constrained CP model that is degenerate in

all modes X ′ = I3,JK ×1 (1TK ⊗ A) ×2 (IK ◇ U)T ×3 B(V T ◇ R)T ∈ C
I×K×T . Moreover, using

the properties of the Kronecker product (c.f. Section 2.1.2, equations (2.12)-(2.22)), for part of

equation (4.4) denoted by **, we have

1TK ⊗A = 1 ⋅ 1TK ⊗A ⋅ IJ = (1⊗A)(1T
K ⊗ IJ) =A(1TK ⊗ IJ).

Taking into account this property and that we can correct for the permuted dimensions X ′ by
simple permutation of the modes, the PARATUCK2 decomposition in equation (2.46) is equivalent

to

X = I3,JK ×1 A(1T
K ⊗ IJ) ×2 B(V T ◇R)T ×3 (IK ◇U)T ∈ CI×T×K . (4.5)

Derivation of the structure illustrated at the bottom of Fig. 4.1

Moreover, we show an alternative derivation of the PARATUCK2 data model. Thus, let us define

T 3 = I3,J ×1 A ×2 RT ×3 UT ∈ CI×P×K and T 4 = I3,P ×2 B ×3 V T ∈ CP×T×K as illustrated at the
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4.1. PARATUCK2

bottom of Fig. 4.1. In this case, for the PARATUCK2 tensor, we get

X = T 3●1,32,3T 4,D ∈ C
I×T×K , (4.6)

where [T 4,D]([1,2,3],[4]) = IK ◇[(B ◇ IP ) ⋅V ]. Similar to the first case, the tensor T 4,D ∈ C
P×T×K×K

is modeled according to the BTD (see Appendix B.1).

T 4,D = (I4,K ⊗I3,P ) ×1 (1T
K ⊗ IP ) ×2 (1T

K ⊗B) ×3 (IK ◇V )T ×4 Ik

From the structure of tensors T 3 and T 4,D, the unfolding of (4.6) leads to

[X ](1,[2,3]) = [T 3](1,[2,3]) [T 4,D]([1,3],[2,4])
=A ⋅ [UT ◇RT]T ⋅ [(IK ◇V )T ⊗ (1T

K ⊗ IP )] ⋅ [I4,K ⊗ I3,P ]([1,3],[2,4]) ⋅
[IK ◇ (1TK ⊗B)]T .

As in the derivation shown before (the derivation beginning from X ′ = T 1,D●1,32,3T 2), we get

[X ](1,[2,3]) =A ⋅ (UT ◇RT)T [(IK ◇V )T ◇ (1T
K ⊗B)]T ,

which represents an unfolding of a degenerate constrained CP model.

X = I3,PK ×1 A ⋅ (UT ◇RT)T ×2 B(1TK ⊗ IP ) ×3 (IK ◇V )T ∈ CI×T×K (4.7)

Both equations (4.5) and (4.7) represent a constrained CP model of the PARATUCK2 decom-

position with rank JK and PK, respectively. As previously mentioned, PARATUCK2 defines the

mutual relationship between two different sets of latent components of rank J and P that vary

along the K slices. There are obvious similarities and differences between the two versions of the

derived constrained CP models in equations (4.5) and (4.7). The first version in equation (4.5)

isolates the matrices A and U in separate modes. On the other hand, the second version in (4.7)

isolates the matrices B and V in separate modes. The remaining modes themselves correspond

to unfoldings of CP models of ranks P and J , for (4.5) and (4.7), respectively. The link between

the PARATUCK2 decomposition and the CP decomposition is indicated also in [FdA14b], where

it is shown that PARATUCK2 is equivalent to constrained CP with rank JP . Note that we have

not exploit all possible combinations of representing PARATUCK2 based on generalized contrac-

tions. For instance, the development of X = T 1●1,32,3T 2,D ∈ C
I×T×K from equation (4.1) might

lead to another constrained CP based representation of the PARATUCK2 model. The constrained

CP decomposition is also called CONFAC (CONstrained FACtor) decomposition in [dAFM08],

which is a special case of the PARALIND (PARAllel profiles with LINear Dependences) model

[BHSL09], [SdA10]. The PARALIND model is equivalent to the PARATUCK2 decomposition if

D
(A)
(.,.,k) = IJ ,∀k = 1, . . . ,K or U = 1J×K . As shown in [SdA10], CONFAC/PARALIND models en-

joy uniqueness (or partial uniqueness) under mild conditions, depending on their linear dependence
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structure. Therefore, these new tensor models can be used to study the uniqueness properties of

the PARATUCK2 decomposition based on the available results of general CP models (see Sec-

tion 2.2.2). An extension of PARATUCK2 to more than three dimensions is possible following the

above shown derivation.

Unlike CP, for the computation of the PARATUCK2 decomposition there exist almost no al-

gorithms. The only ALS based algorithm is proposed in [Bro98]. This algorithm is based on the

algorithm for the computation of DEDICOM [Kie93] as explained in Section 2.2.4. Another adap-

tation of the same algorithm is proposed in [BHS07] for the PARALIND decomposition. Recently,

the authors in [CSH18] have proposed an extension of the ALS algorithm proposed in [Bro98] by

introducing positivity constraints on all factor matrices. Exploiting equations (4.5) and (4.7), it is

possible to derive an alternative ALS based algorithm for the PARATUCK2 decomposition. For

instance, from equation (4.5) we can compute the following factor matrices

AT = [[(IK ◇U)T ◇B(V T ◇R)T](1K ⊗ IJ)]+ [X ]([2,3],1)
U (.,k) = [P1

T(.,.,k) ◇A]+ vec (X (.,.,k)) , ∀k = 1, . . . ,K,

where P = I3,P ×1R×2B×3V T ∈ CJ×T×K . Moreover, the remaining matrices can then be computed

from the unfoldings of P assuming that the matrices A and U are known.

4.1.1 Summary

In this section, we use the alternative representation of the slice-wise multiplication via generalized

tensor contraction proposed in Section 2.1.4. Based on this generalization, we derive two explicit

tensor models of the PARATUCK2 decomposition. Both models represent constrained CP decom-

positions. These models capture the entire PARATUCK2 structure and can be used to further

study the uniqueness properties of the PARATUCK2 decomposition. Moreover, these models can

be used to develop new algorithms for the computation of the PARATUCK2 decomposition from

noise corrupted observations.

4.2 PARAFAC2

The PARAFAC2 decomposition of a tensor X ′ ∈ RI×J×K is defined in a slice-wise fashion as depicted

in Fig. 4.2. We have reviewed the PARAFAC2 decomposition, discussed its uniqueness properties

and applications in Section 2.2.5.
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4.2. PARAFAC2

Figure 4.2.: Slice-wise visualization of the PARAFAC2 decomposition for a tensor X ′ ∈ RI×J×K with
slices X ′k =A ⋅ diag (C(k,.)) ⋅BT

k , ∀k = 1, . . . ,K .

PARAFAC2 via constrained CP model

Let us consider the PARAFAC2 decomposition of a tensor X ′ ∈ RI×J×K defined in Section 2.2.5

equation (2.47). First, we define

X ′(.,.,k) =A ⋅ C(.,.,k) ⋅B(.,.,k) ∈ RI×J×K , (4.8)

where X ′(.,.,k) = Xk ∈ R
I×J , C = I3,R ×3 C ∈ RR×R×K (C ∈ RK×R), and B(.,.,k) = BT

k (B ∈ RR×J×K ,

B ∈ RR×J). Using the Harshman constraint defined in Section 2.2.5 and defining V(.,.,k) = V k

(V ∈ RR×J×K), we get

B = V ×1 FT,

B●2,32,3B =KFTF ∈ RR×R,and
V●2,32,3V =KIR ∈ R

R×R.

Using the generalized tensor contraction, we can rewrite the PARAFAC2 decomposition of the

tensor X (permuted version of the tensor X ′) as

X = (DC ×1 A)●1,32,4(V ×1 F T) ∈ RI×K×J , (4.9)

where DC ∈ R
R×R×K×K has only the following non-zero elements DC(r,r,k,k) = C(r,r,k). According

to Table 2.1 for the generalized unfolding of the diagonalized tensor, we have [DC]([1,2,4],[3]) =
IK ◇ [C]([1,2],[3]). Note that the tensor X has permuted dimensions as compared to (2.47) and

(4.8) due to the definition of the contraction operator. The diagonalized tensor DC ∈ C
R×R×K×K

has also a BTD structure given by

DC =
K

∑
k=1

(I4,1 ⊗ I3,R) ×3 ((ek ⊗C(k,.))) ×4 ek.
We derive the BTD structure of the diagonalized tensor in Appendix B.1, where we assume that

the tensor to be diagonalized has a general CP structure. The result used in this section is easily

deduced from the general result presented in Appendix B.1. Replacing the sum by a block diagonal
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tensor and partitioned factor matrices, we get

DC =blkdiag ((I4,1 ⊗ I3,R))Kk=1 ×1 [IR, . . . ,IR] ×2 [IR, . . . ,IR]
×3 [(e1 ⊗C(1,.), . . . , (eK ⊗C(K,.))] ×4 IK

Next, as shown in Appendix B.1, we can express the block diagonal structure of the core tensor

and partitioned factor matrices by means of the Kronecker product. Hence, we have

DC = (I4,K ⊗I3,R) ×1 (1TK ⊗ IR) ×2 (1TK ⊗ IR) ×3 ((IK ⊗ 1TR) ◇ vec (CT)T) .
Using equation (4.9), the property [X ]([1,2],3) = [DC ×1 A]([1,3],[2,4]) [B]([1,3],2), and the structure

of the tensor DC , we get

[X ]([1,2],3) = [((IK ⊗ 1TR) ◇ vec (CT)T)⊗ (A (1TK ⊗ IR))] ⋅
[I4,K ⊗ I3,R]([1,3],[2,4]) ⋅ (IK ⊗ 1TK ⊗ IR)T ⋅
(IK ⊗F T) ⋅ [V]([1,3],2) .

Note that the matrix [I4,K ⊗ I3,R]([1,3],[2,4]) ⋅ (IK ⊗ 1TK ⊗ IR)T = IRK ◇ IRK is a selection ma-

trix that converts the Kronecker product into a Khatri-Rao product (c.f. equation (2.28) and

Appendix B.2). Using this property and the unfolding of a CP decomposition, we have

[X ]([1,2],3) = [((IK ⊗ 1TR) ◇ vec (CT)T) ◇ (A (1T
K ⊗ IR))] ⋅ (IK ⊗FT) ⋅ [V]([1,3],2) .

Hence, the tensor X ∈ CI×K×T can be expressed in the following CP format

X = I3,RK ×1 A (1TK ⊗ IR) ×2 ((IK ⊗ 1TR) ◇ vec (CT)T) ×3 ((IK ⊗FT) ⋅ [V]([1,3],2))T
= I3,RK ×1 Ā ×2 C̄ ×3 B̄, (4.10)

where Ā = A (1TK ⊗ IR) ∈ RI×RK , C̄ = (IK ⊗ 1TR) ◇ vec (CT)T ∈ RK×RK, and B̄ = [B](2,[1,3]) =
((IK ⊗FT) ⋅ [V]([1,3],2))T ∈ RJ×RK . Equation (4.10) shows that PARAFAC2 is equivalent to a

constrained CP decomposition [FdA14b], which is degenerate in all three modes. This decomposi-

tion is also referred to in the literature as the CONFAC decomposition [dAFM08]. It is a special

case of the PARALIND model [BHSL09], [SdA10] as discussed in Section 4.1. The CONFAC

model enjoys uniqueness (or partial uniqueness) under mild conditions depending on their linear

dependence structure [SdA10].

Computation of the PARAFAC2 decomposition

The computation of the PARAFAC2 decomposition can be performed based on indirect fitting

algorithms and direct fitting algorithms. The indirect fitting approach originally proposed in [Kie93]
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4.2. PARAFAC2

tries to fit the cross product Xk ⋅XT
k instead of Xk from equation (2.47). The cross product

Xk ⋅XT
k =A ⋅ diag (C(k,.)) ⋅BT

k ⋅Bk ⋅ diag (C(k,.)) ⋅AT

=A ⋅ diag (C(k,.)) ⋅H ⋅ diag (C(k,.)) ⋅AT

with H = FTF ∈ RR×R is equivalent to a symmetric PARATUCK2 decomposition [HL96] that is

also known as DEDICOM. Using a generalized tensor contraction, we have shown in Section 4.1

that the PARATUCK2 decomposition is also equivalent to a constrained CP. Similarities between

the CP decomposition and the PARATUCK2 decomposition are also presented in [FdA14b]. On

the other hand, the authors of [KTBB99] propose a direct fitting algorithm for the computation

of the PARAFAC2 decomposition. This direct fitting approach is initialized with an initial guess

of A,C , and F and it consists of two loops. In the outer loop, using the solution of the OPP

(Orthogonal Procrustes Problem) V is estimated [Sch99]. Utilizing the orthogonality of the 3-

mode slices of V , we can convert the PARAFAC2 decomposition into a CP model. In the inner

loop, we fit this CP model by estimating the factor matrices A,C , and F based on ALS. Instead

of ALS, for the inner loop we can use other methods for fitting the CP model such as line search

or SMD [CH19]. The author of [Wei15] proposes a direct fitting algorithm for the computation

of the PARAFAC2 decomposition, where the inner loop uses an SMD. In addition, the authors

of [KTBB99] show that the direct fitting approach is more efficient than the indirect approach.

Therefore, in this section we propose a single loop direct fitting algorithm for PARAFAC2 that has

been derived via generalized tensor contractions [NCdAH18]. The proposed single loop algorithm

requires fewer iterations than to the algorithms with two loops.

Assume that the matrices A, C, and F are known. From the PARAFAC2 tensor model defined

in equation (4.10) we can estimate V, in an LS sense, as

[V]([1,3],2) = ((C̄ ◇ Ā) ⋅ (IK ⊗FT))+ ⋅ [X ]([1,2],3) .
This LS estimate does not take into account the orthogonality constraints of the tensor V . There-

fore, it is not applicable in this case. However, it is applicable if the Harshman constraint is not

considered. Alternatively, we can estimate the unfolding of the tensor B

B̄ = [B](2,[1,3]) = [X ](3,[1,2]) ⋅ ((C̄ ◇ Ā)T)+ ,
followed by an estimate of V via a solution of the OPP using

[B](1,[2,3]) = F T ⋅ [V](1,[2,3]) .
Simulation results, though, have shown that this approach is less accurate in the noisy case than

solving directly the OPP. Therefore, we propose to estimate the tensor V via OPP using directly
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equation (4.9). Using the orthogonality properties of V , it can be shown that

X̃ = X ●2,32,3DV = I3,R ×1 A ×2 FT ×3 C (4.11)

has a CP structure, where DV ∈ R
R×J×K×K and [DV ]([1,2,4],[3]) = IK ◇ [V]([1,2],[3]) according to

Table 2.1. As shown in [Sch99] the best orthogonal estimate of the 3-mode slices of V is provided

from Q =X ●1,31,3DX̃ , where [DX̃
]([1,2,4],[3]) = IK ◇ [X̃ ]([1,2],[3]). Then, V is obtained from

V(.,.,k) = (QT(.,.,k) ⋅Q(.,.,k))− 1

2

QT(.,.,k), ∀k = 1, . . . ,K.

Next, an estimate of the matrix A is obtained from the unfolding [X ](1,[2,3]).
A = [X ](1,[2,3]) ⋅ ((1TK ⊗ IR) ⋅ (B̄ ◇ C̄)T)+

Utilizing the orthogonality of V , an estimate of F follows from equation (4.11).

F = [X̃ ](2,[1,3]) ⋅ ((C ◇A)T)+
The tensor B is then computed by B = V ×1 FT. Finally, C is estimated based on the unfolding[X ](2,[3,1]) of equation (4.10)

[X ](2,[3,1]) = ((IK ⊗ 1TR) ◇ vec (CT)T) ⋅ (Ā ◇ B̄)T.
This unfolding represents also an unfolding of a 4-way CP tensor. Hence

X = I4,RK ×1 Ā ×2 (IK ⊗ 1TR) ×3 B̄ ×4 vec (CT)T ,

which leads to

vec (CT) = (B̄ ◇ (IK ⊗ 1TR) ◇ Ā)+ ⋅ vec (X ) .
Based on these estimates, we propose an ALS based direct fitting algorithm with only one loop

for the computation of the PARAFAC2 decomposition. The proposed algorithm is initialized

with a initial values of A chosen based on the SVD of [X ](1,[2,3]), C is chosen randomly, and F

as identity matrix. The algorithm is stopped if it exceeds the predefined maximum number of

iterations, reaches a predefined minimum of the cost function er = ∥X̂ −X ∥2H/∥X ∥2H, where X̂ is the

reconstructed tensor after the decomposition, or the error er has not significantly changed within

two consecutive iterations. The proposed algorithm that we denote by “P2-ALS” is summarized in

Algorithm 4.1.
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Algorithm 4.1: PARAFAC2 via ALS (“P2-ALS”)

Data: Given the initial matrices A based on SVD, C randomly chosen, and F = IR.
while does not exceed the maximum number of iterations, does not reach a predefined
minimum, or the error of the cost function has not changed within two consecutive
iterations do

Estimate V by solving the OPP from X = (DC ×1 A)●1,32,4(V ×1 FT) as explained after

equation (4.11).

Update A = [X ](1,[2,3]) ⋅ ((1TK ⊗ IR) ⋅ (B̄ ◇ C̄)T)+.
Utilizing the orthogonality of V , update F = [X̃ ](2,[1,3]) ⋅ ((C ◇A)T)+, where
X̃ = X ●2,32,3DV = I3,R ×1 A ×2 FT ×3 C and [DV ]([1,2,4],[3]) = IK ◇ [V]([1,2],[3]).
Compute B = V ×1 FT.

Update C via
vec (CT) = (B̄ ◇ (IK ⊗ 1T

R) ◇ Ā)+ ⋅ vec (X ).
end

Result: A, C, F , and V

4.2.1 Simulation Results

In this section, we provide comparisons between the direct fitting approaches for the computation of

the PARAFAC2 decomposition based on simulation results. The single loop ALS based algorithm

proposed in Section 4.2 and in [NCdAH18] is denoted as “P2-ALS”. The ALS algorithm [KTBB99]

that consists of two ALS loops, an inner and an outer loop is denoted by “P2-ALS, two loops”.

Finally, “P2-SMD” [Wei15] denotes the algorithm similar to the ”P2-ALS, two loops” algorithm, but

the second loop utilizes a single SMD similar to [RH08,RH13a]. A distinctive difference between

the “P2-SMD” and the SECSI framework [RH13a] is that the “P2-SMD” solves only one SMD

instead of all possible SMDs.

For the purpose of comparing the algorithms, “P2-ALS”, “P2-ALS, two loops”, and “P2-SMD”

we generate synthetic data according to equation (2.47). The elements of the matrices, A, C, and

F are randomly drawn from a zero mean Gaussian distribution with variance one. The tensor V

is also randomly generated, such that each slice has orthogonal rows. Next, we add zero mean

additive white Gaussian noise with variance σ2
N to the generated signal tensor, X = X 0 +N . The

tensors X 0, N , and X represent the noiseless signal tensor, the noise tensor, and the noisy tensor

respectively. Therefore, the instantaneous SNR equals 10 log10 (∥X 0∥2H/∥N ∥2H).
As an accuracy measure, we use the SRE (Squared Reconstruction Error)

SRE =
∥X̂ −X 0∥2H∥X 0∥2H , (4.12)
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Figure 4.3.: MSRE as a function of the SNR = 0, . . . ,40 dB for a real-valued tensor with dimensions
8 × 10 × 12, and 3 components. The results are averaged over 2000 realizations. All
algorithms are initialized with the same initial factor matrices.

where X̂ is the reconstructed tensor using the estimated factor matrices. All algorithms are initial-

ized with the same initial factor matrices. The maximum number of iterations for all algorithms is

set to 2000 iterations as discussed in the last section. Moreover, the maximum number of iterations

for the inner loop, of the algorithm “P2-ALS, two loops” and “P2-SMD” is set to 5 and 50 itera-

tions, respectively. The algorithms are stopped if they reach the maximum number of iterations,

if they reach the minimum error of the cost function equal to 10−7, or if the difference of the error

between two consecutive iterations is smaller than 10−7.

In Fig. 4.3, we illustrate the MSRE (Mean Squared Reconstruction Error) as a function of the

SNR. Here, the MSRE is the SRE from equation (4.12) averaged over 2000 realizations. A real-

valued tensor with dimensions 8 × 10 × 12 and R = 3 components is generated. The accuracy of

the three algorithms is very similar with the exception of the “P2-SMD” for high SNRs, where its

accuracy is slightly lower as compared to “P2-ALS” and “P2-ALS, two loops”.

Moreover, in order to provide a more detailed comparison in Fig. 4.4, we depict the CCDF of the

SRE for SNR = 20 dB. These results are the same 2000 realizations which average is presented in

Fig. 4.3. Here, the CCDF depicts each of the 2000 SREs corresponding to the different realizations.

The vertical lines represent the mean values for each curve. These mean values are identical with

the mean SREs depicted in the Fig. 4.3 for SNR = 20 dB. Fig. 4.4 confirms the similar accuracy

for the “P2-ALS” and “P2-ALS, two loops”. On the other side, the “P2-SMD” shows a slightly

116



4.2. PARAFAC2

10
-3

10
-2

SRE

10
-3

10
-2

10
-1

10
0

C
C

D
F

P2-ALS

P2-ALS, two loops

P2-SMD

Figure 4.4.: CCDF of the SRE for a real-valued tensor with dimensions 8 × 10 × 12, 3 components,
and SNR = 20 dB. All algorithms are initialized with the same initial factor matrices. The
vertical lines correspond to the mean values also depicted in Fig. 4.3.
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Figure 4.5.: CCDF of the number of iterations for a real-valued tensor with dimensions 8 × 10 × 12, 3
components, and SNR = 20 dB. All algorithms are initialized with the same initial factor
matrices. The vertical lines represent the average number of iterations equal to 122, 137,
and 157 for “P2-ALS”, “P2-ALS, two loops”, and “P2-SMD”, respectively.
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lower accuracy that is not obvious in Fig. 4.3. Also, the “P2-SMD” algorithm has more outliers

than to the ALS based algorithms which is visible in Fig. 4.4. Additionally, in Fig. 4.5 we visualize

the CCDF of the number of iterations corresponding to SREs from Fig. 4.4. Note that in this

figure we include only the number of iterations required for the outer loop not the inner loop.

The maximum number of iterations for the inner loop, for the algorithm “P2-ALS, two loops”

and “P2-SMD” is set to 5 and 50 iterations, respectively. The vertical lines represent the average

number of iterations, that is equal to 122, 137, and 157 for “P2-ALS”, “P2-ALS, two loops”, and

“P2-SMD”, respectively. According to Fig. 4.5, the “P2-ALS” algorithm requires fewer iterations

than “P2-ALS” with two loops and “P2-SMD”.
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Figure 4.6.: CCDF of the SRE for a real-valued tensor with dimensions 8× 10× 12, 3 components, and
SNR = 30 dB. The matrix C has collinear columns with a correlation coefficient 0.8. All
algorithms are initialized with the same initial matrices. The vertical lines represent the
mean values.

Furthermore, in Figs. 4.6 and 4.7 we depict the CCDF of the SRE and the number of iterations,

respectively, for a real-valued tensor with correlation. The decomposed tensor consists of R = 3

components and it has dimensions 8 × 10 × 12. As previously mentioned, its factor matrices A,

C, and F are drawn from a zero mean Gaussian distribution with variance one. However, the

matrix C has correlated columns with a correlation coefficient of 0.8. We add correlation using a

correlation matrix R(ρc) ∈ RR×R

C ←C ⋅R(ρc)
R(ρc) = (1 − ρc) ⋅ IR×R + ρn

R
⋅ 1R×R,
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Figure 4.7.: CCDF of the number of iterations for a real-valued tensor with dimensions 8 × 10 × 12, 3
components, and SNR = 30 dB. The matrix C has mutually correlated columns with a
correlation coefficient of 0.8. All algorithms are initialized with the same initial matrices.
The vertical lines represent the average number of iterations equal to 278, 466, and 95 for
“P2-ALS”, “P2-ALS, two loops”, and “P2-SMD”, respectively.

where ρc is the correlation factor corresponding to the matrix C. The SREs presented in Fig. 4.6

correspond to an SNR of 30 dB and 2000 realizations. In Fig. 4.7, we depict the CCDF of the number

of iterations for these 2000 realizations. As previously mentioned, all algorithms are initialized

with the same initial matrices. For the “P2-ALS with two loops” and “P2-SMD” we only count

the number of iterations of the outer loop, not of the inner one. This results in an average number

of iterations equal to 278, 466, and 95 for “P2-ALS”, “P2-ALS with two loops”, and “P2-SMD”,

respectively. The algorithms “P2-ALS” and “P2-ALS, two loops” have the same accuracy even

though the “P2-ALS” requires fewer iterations. According to Fig. 4.7 the “P2-SMD” requires the

lowest number of iterations for the outer loop, but the inner loop was set to a maximum number

of 50 iterations and it has a lower accuracy.

To summarize, “P2-ALS” and “P2-ALS, two loops” have similar accuracy. The “P2-SMD” has

a lower accuracy than the ALS based algorithms. The accuracy of the “P2-SMD” algorithm can

be improved if all possible SMDs are taken into account as it was proposed in [RH13a] for the

computation of the CP decomposition [CH19]. The “P2-ALS” requires fewer number of iterations

than “P2-SMD” and “P2-ALS, two loops”.
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4.2.2 Summary

In this section, we exploit a novel tensor representation derived using the generalized contraction

between two tensors for a slice-wise (matrix) multiplication. This representation leads to a new

tensor model that reveals the complete tensor structure of the PARAFAC2 tensor decomposition.

We show that PARAFAC2 is equivalent to a constrained, degenerate CP model. Unitizing this

model, we derive a direct fitting, single loop ALS algorithm (“P2-ALS”). This “P2-ALS” algo-

rithm has the same accuracy, but requires fewer iterations than the state-of-art direct fitting ALS

algorithm with two loops.

4.3 Conclusions

In this chapter, we consider the PARATUCK2 decomposition and the PARAFAC2 decomposition.

For both decompositions, we first show that they represent a slice-wise multiplication between two

tensors. We then exploit the novel representations of the slice-wise multiplication proposed in Sec-

tion 2.1.4 based on the generalized tensor contraction. By substituting the individual structure

of the tensors involved in the contraction, we derive new tensor models for both decompositions

PARATUCK2 and PARAFAC2. For the PARATUCK2 decomposition we derive two alternatives

of a constrained CP model that can be used to study the uniqueness of the PARATUCK2 decom-

position and to develop new algorithms for its computation. The novel tensor representation leads

also, to a constrained CP model of the PARAFAC2 decomposition that can be used to study its

uniqueness properties. Moreover, we exploit this novel PARAFAC2 model to derive an efficient

single loop ALS algorithm for the computation of the PARAFAC2 decomposition that requires

fewer iteration than the state-of-the-art algorithms. This algorithm has already been published

in [NCdAH18].
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Chapter 5

Application of Tensor Algebra to Wireless Com-

munication Systems

Traditionally, an OFDM system is described on a subcarrier-wise basis, i.e., using a slice-wise

notation, if we consider that each tensor slice represents a different subcarrier. In this chapter,

we exploit the generalized tensor contraction operator to model wireless communication systems.

The generalized tensor contraction as introduced in Section 2.1.1 defines an inner product between

two tensors with compatible dimensions. Here, we show that this tensor operator is useful to

model multi-carrier MIMO communication systems. In Section 5.1.1, we show that the MIMO-

OFDM received signal can be modeled by means of the tensor contraction operator. This tensor

model is obtained without requiring additional spreading and provides a new, compact, and flexible

formulation of a MIMO-OFDM system. Moreover, exploiting it at the receiver side facilitates the

design of several types of receivers based on iterative LS or recursive LS [NHdA18]. In Section 5.1.2,

we extend this novel model to MIMO-OFDM systems with Khatri-Rao coded symbols. In this

application, the transmit signal tensor contains Khatri-Rao coded symbols that can be modeled

using the CP decomposition. This new tensor based model facilitates the design of a receiver based

on the LSKRF that jointly estimates the channel and the data symbols [NHdA17]. Moreover,

in Section 5.1.3 we show that the spectral efficiency of the Khatri-Rao coded MIMO-OFDM can

be increased by introducing ”random coding” such that the ”coding matrix” also contains random

symbols. In Section 5.1.3, we derive a tensor model for the proposed randomly coded MIMO-OFDM

using the generalized tensor contraction and two types of receivers. Furthermore, in Section 5.2 we

show that our tensor model based on generalized contraction can also be extended to MIMO-GFDM

systems. Based on this derived model, we design an iterative ALS receiver that simultaneously

estimates the channel and the transmitted data in MIMO-GFDM systems.

5.1 Orthogonal Frequency Division Multiplexing (OFDM)

OFDM is the most widely used multi-carrier technique in current wireless communication systems.

It is robust in multipath propagation environments and has a simple and efficient implementation

[HYW+09], [FB11]. Using the FFT (Fast Fourier Transform), the complete frequency band is

divided into smaller frequency subcarriers. The use of the cyclic prefix mitigates the ISI (Inter-

Symbol Interference) and the ICI (Inter-Carrier Interference). Typically, the OFDM receiver is

implemented in the frequency domain based on a ZF (Zero Forcing) filter. More advanced solu-
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tions are proposed in [SFFM99]. Optimal training and channel estimation for OFDM systems are

proposed in [BLM03], [HYSH06].

Tensor based signal processing offers an improved identifiability, uniqueness, and more efficient

denoising compared to matrix based techniques. In [dAFX13], a MIMO multi-carrier system is

modeled using tensor algebra and the PARATUCK2 tensor decomposition resulting in a novel

space, time, and frequency coding structure. Similarly, in [dAF13b], trilinear coding in space,

time, and frequency is proposed for MIMO-OFDM systems based on the CP tensor decomposition.

By exploiting tensor models, semi-blind receivers have been introduced for multi-carrier communi-

cations systems in [FdA14a] and [LdCSdA13]. All these publications use additional spreading that

leads to a significantly reduced spectral efficiency to create the tensor structure. Moreover, previ-

ous publications on tensor models for multi-carrier communications systems [dAFX13], [dAF13b],

[LdCSdA13], and [FdA14a] do not exploit the channel correlation between the adjacent subcarriers.

All these publications rely on the subcarrier-wise description of the MIMO-OFDM system. In this

thesis, we present a tensor structure of the received signal that includes the frequency (subcarrier)

mode.

In Section 5.1.1, we present the contraction between an uncoded signal tensor and a channel

tensor for OFDM systems, yielding the same spectral efficiency as matrix based approaches (since

no additional spreading is used) [NHdA18]. Since we do not use the Khatri-Rao coding structure

as in [NHdA17], we do not get the corresponding CP structure for the transmit signal tensor. By

exploiting this new tensor structure, we can reshape it into the factorization of a sum of Khatri-Rao

products. This problem can be solved by means of iterative and recursive least squares originally

proposed for blind source separation.

Moreover, in Section 5.1.2, an application of the generalized contraction operator to Khatri-

Rao coded MIMO-OFDM systems is presented [NHdA17]. Due to the Khatri-Rao coding, we can

use a CP model for the signal tensor. Khatri-Rao space-time coding was introduced in [SB02].

Later, it was extended in [dAF13a] to Khatri-Rao space-time-frequency coding. In contrast to

the state of the art, we exploit the structure of the channel and the contraction properties using

the transmit signal tensor and the known coding matrix to propose a receiver based on the LS-

KRF in Section 5.1.2. Furthermore, we reduce the number of required pilot symbols by exploiting

the correlation of the channel in the frequency domain. In Section 5.1.3, we propose ”random

coding” for MIMO-OFDM systems. We propose to keep the CP structure of the Khatri-Rao coded

transmit signal [NHdA17], but the ”coding matrix” contains random data symbols. Thus, the

proposed randomly coded MIMO-OFDM system has higher spectral efficiency than Khatri-Rao

coded MIMO-OFDM system. By exploiting the derived tensor structure of the received signal, we

also, derive two types of receivers for randomly coded MIMO-OFDM systems in Section 5.1.3.
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5.1. Orthogonal Frequency Division Multiplexing (OFDM)

5.1.1 MIMO-OFDM via generalized tensor contraction

We assume a MIMO-OFDM system with MT transmit and MR receive antennas. One OFDM

block consists of N samples, which equals the DFT (Discrete Fourier Transform) length, using the

assumption that all N subcarriers are used for data transmission. If guard subcarriers are used,

i.e., not all subcarries are used for data transmission, the number of OFDM samples is smaller that

the DFT length. All signals and equations used for the following derivation are in the frequency

domain. Moreover, N is the number of subcarriers and K denotes the number of transmitted

frames. The received signal in the frequency domain Ỹ ∈ CN×MR×K after the removal of the cyclic

prefix is defined by means of the contraction operator

Ỹ = H̃ ●1,22,4 S̃ + Ñ = Ỹ0 + Ñ . (5.1)

We use ∼ to distinguish the frequency domain from the time domain, i.e., Ỹ = Y ×1 FN , where

FN ∈ C
N×N is the DFT matrix (defined in Appendix A.2 equation (A.5)) and Y is the received

signal in time domain. The transmit signal tensor is denoted as S̃ ∈ CN×MT×K and Ñ ∈ CN×MR×K
represents the additive white Gaussian noise in the frequency domain. The tensor Ỹ0 ∈ C

N×MR×K
represents the noiseless received signal in frequency domain after the removal of the cyclic prefix.

The frequency-selective propagation channel is represented by a channel tensor H̃ ∈ CN×N×MR×MT

as we propose in [NHdA17] and can be explained as follows.

Channel tensor

A frequency-selective channel has an impulse response h
(mR,mT)
L ∈ C

L×1, for each receive-transmit

antenna pair, (mR,mT), and a maximum of L taps. After the removal of the cyclic prefix, the

channel matrix in the frequency domain is a diagonal matrix for each receive-transmit antenna pair,

H̃
(mR,mT)

= diag (FN×L ⋅h(mR,mT)
L ) ∈ CN×N [BLM03,HYSH06]. Here, the matrix FN×L ∈ CN×L

contains the first L columns of the DFT matrix of sizeN×N (see also Appendix A.2 equation (A.5)).

Collecting all of the channel matrices in a 4-way channel tensor H̃, we get

H̃(.,.,mR,mT) = diag (FN×L ⋅h(mR,mT)
L

) = diag(h̃(mR,mT)) . (5.2)

For each receive-transmit antenna pair the channel transfer matrix is a diagonal matrix that is

represented by the corresponding slice of the tensor H̃ as shown in (5.2). The vector h̃
(mR,mT)

∈

C
N×1 contains the frequency domain channel coefficients. An example of a MIMO system with

MT = 2 transmit antennas and MR = 3 receive antennas and the corresponding channel vectors are

depicted in Fig. 5.1. We assume that the channel stays constant during the K frames. Note that

only in case of cyclic prefix OFDM the channel tensor in the frequency domain contains diagonal

matrices for each receive-transmit antenna pair. In a general multi-carrier system, the frequency

domain channel matrix is not necessarily diagonal. However, equation (5.1) is still satisfied which

means our model remains valid for non-orthogonal multi-carrier systems.
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Figure 5.1.: A MIMO system with MT = 2 transmit antennas and MR = 3 receive antennas.

In equation (5.2), we have defined the channel tensor. However, we have not revealed the explicit

tensor structure, yet. In order to do so, let us first assume that all channel transfer matrices for

the mT-th transmit and all receive antennas are collected in a diagonal tensor, H̃
(mT)
R ∈ C

N×N×MR .

H̃
(mT)
R(.,.,mR) = diag(h̃(mR,mT)) mR = 1, . . . ,MR,mT = 1, . . . ,MT (5.3)

Based on this diagonal structure, the tensor H̃
(mT)
R has the following CP decomposition

H̃
(mT)
R = I3,N ×1 IN ×2 IN ×3 H̃(mT)

R , (5.4)

where H̃
(mT)
R = [h̃(1,mT)

h̃
(2,mT)

. . . h̃
(MR,mT)]T ∈ CMR×N .

Figure 5.2.: Visualization of the channel tensors H̃
(1)
R and H̃

(2)
R as well as the channel matrices H̃

(1)
R

and H̃
(2)
R for a MIMO system withMT = 2 transmit antennas andMR = 3 receive antennas.

The MIMO system is depicted in Fig. 5.1.

In Fig. 5.2, we depict the structure of the channel tensors H̃
(1)
R and H̃

(2)
R as well as the channel

matrices H̃
(1)
R and H̃

(2)
R for the MIMO system given in Fig. 5.1. This exemplary MIMO system

has MT = 2 transmit antennas and MR = 3 receive antennas. The complete 4-way channel tensor,

defined in equation (5.2) can be obtained by concatenating the H̃
(mT)
R tensors along the fourth
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5.1. Orthogonal Frequency Division Multiplexing (OFDM)

dimension (the concatenation between two tensors is defined in Fig. 2.6). Hence, the 4-way channel

tensor H̃ can be expressed as

H̃ = [H̃(1)R ⊔4 H̃
(2)
R ⊔4 . . . H̃

(MT)
R

]
= [H̃(1)R ⊔4 H̃

(2)
R ⊔4 . . . H̃

(MT)
R ] ×4 IMT

=

MT

∑
mT=1

H̃
(mT)
R ○ emT

=

MT

∑
mT=1

D ×1 IN ×2 IN ×3 H̃(mT)
R ×4 emT

. (5.5)

Note that H̃ satisfies a very special BTD, where D(.,.,.,1) = I3,N ∈ R
N×N×N×1 (D = I4,1 ⊗ I3,N )

and emT
∈ R

MT×1 is a pining vector. We prove the BTD structure of the channel tensor H̃ in

Appendix B.3. In Appendix B.3, we also show that the ([1,3], [2,4]) generalized unfolding of the

channel tensor can be expressed as

[H̃]([1,3],[2,4]) = H̃ ◇ (1TMT
⊗ IN) ∈ CNMR×NMT , (5.6)

where H̃ ∈ CMR×NMT is a matrix containing all non-zero elements of the tensor H̃ and it is defined

as,

H̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
h̃
(1,1)T

h̃
(1,2)T

. . . h̃
(1,MT)T

⋮ ⋮ ⋮ ⋮
h̃
(MR,1)T

h̃
(MR,2)T

. . . h̃
(MR,MT)T

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= [ H̃

(1)
R H̃

(2)
R . . . H̃

(MT)
R ] ∈ CMR×NMT .

(5.7)

Fig. 5.3 depicts the structure of the generalized unfolding [H̃]([1,3],[2,4]) for a MIMO-OFDM system

with parameters MT = 2, MR = 3, and N = 3.

Figure 5.3.: Visualization of the generalized unfolding [H̃]([1,3],[2,4]) for a MIMO-OFDM system with
parameters MT = 2, MR = 3, and N = 3.

125



Data transmission

The signal tensor S̃ in equation (5.1) contains all symbols in the frequency domain that are trans-

mitted on N subcarriers, MT transmit antennas, and K frames. For notational simplicity, we define

the following block matrix S̃ as the transpose of the 3-mode unfolding of S̃

S̃ = S̃
T
([1,2],[3]) = [ S̃

(1)
S̃
(2)

. . . S̃
(MT) ] ∈ CK×NMT, (5.8)

where S̃
(mT)

∈ C
K×N contains the symbols transmitted via the mT-th antenna.

Moreover, we assume that the symbol matrix consists of data and pilot symbols, S̃ = S̃d+S̃p. The

matrices S̃d and S̃p represent the data symbols and the pilot symbols, respectively. The matrix S̃d

contains zeros at the positions of the pilot symbols. Accordingly, the matrix S̃p contains non-zero

elements only at the pilot positions. Typically, there are three ways of arranging the pilot symbol

within the OFDM blocks (block, comb, and lattice-type) [HYW+09]. We assume a comb-type

arrangement of the pilot symbols with equidistant positions in the time and the frequency domain,

for each antenna. The spacing in the time domain is denoted by ∆K. Moreover, we send pilots only

with subcarrier spacing of ∆F between two pilot symbols. In Fig. 5.4, we show the positions of the

pilot symbols and the data symbols for the first antenna, whereMT = 2, K = 4, F = 16, ∆K = 2, and

∆F = 5. Furthermore, there are positions where neither pilot symbols or data symbols are allowed

to be transmitted. These positions are marked in black color in Fig. 5.4, and are reserved for the

pilot symbols corresponding to the remaining antennas. In Fig. 5.5, we illustrate the distribution of

the pilot symbols for MT = 2 transmit antennas with respect to the subcarriers, for K = 4, F = 16,

∆K = 2, and ∆F = 5. This results in MT⌊ N
∆F
⌋ pilot symbols per frame. In comparison, other

publications such as [dAFX13], [dAF13b], [LdCSdA13], and [FdA14a] use NMT pilot symbols per

frame. By exploiting the channel correlation among adjacent subcarriers, a reduced number of pilot

symbols can be used for channel estimation.

Receiver design

Using the property of the generalized unfoldings in equation (2.10), the received signal in equa-

tion (5.1) becomes

[Ỹ]([1,2],[3]) = [H̃]([1,3],[2,4])S̃([1,2],[3]) + [Ñ ]([1,2],[3]) ∈ CNMR×K . (5.9)

Next, by substituting the corresponding tensor unfoldings in equation (5.9), we get

[Ỹ]([1,2],[3]) = (H̃ ◇ (1T
MT
⊗ IN)) ⋅ S̃T + [Ñ ]([1,2],[3]). (5.10)

The above equation satisfies an unfolding of a noisy observation of a low-rank tensor with a CP

structure. By applying an inverse unfolding for the received signal in the frequency domain after
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5.1. Orthogonal Frequency Division Multiplexing (OFDM)
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Figure 5.4.: Visualization of the arrangement of the pilot symbols and the data symbols for the first
antenna with respect to the frame number and the subcarrier number for a MIMO-OFDM
system with parameters MT = 2, K = 4, F = 16, ∆K = 2, and ∆F = 5.
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Figure 5.5.: Visualization of the arrangement of the pilot symbols and the data symbols in the first
frame with respect to the antenna number and the subcarrier number for a MIMO-OFDM
system with parameters MT = 2, K = 4, F = 16, ∆K = 2, and ∆F = 5.

the removal of the cyclic prefix, we get

Ỹ = I3,NMT
×1 (1TMT

⊗ IN) ×2 H̃ ×3 S̃ + Ñ ∈ CN×MR×K . (5.11)

Our goal is to jointly estimate the channel and the symbols, i.e., H̃ and S̃ in equation (5.11). Note

that all factor matrices are flat resulting in a degenerate CP model in all three modes. Therefore,

it is difficult to estimate the channel and the symbols by simply fitting a CP model of the received

signal tensor in (5.11).

Using the prior knowledge of the pilot symbols and their positions, the channel in the frequency

domain can be estimated. Naturally, the channel is estimated only at those subcarrier positions

where the pilot symbols are located. Afterwards, an interpolation is applied to get the complete

channel estimate. Moreover, as shown in [BLM03, HYSH06] the channel can be first estimated

in the time domain and then transformed into the frequency domain. Either way, this leads to

a pilot based channel estimate that we denote as ˆ̃
Hp, or H̃p

1. The pilot based channel estimate

is then used to estimate the data symbols. In the remainder of this section, we discuss different

ways to estimate the symbols. We use the pilot based channel estimate to initialize the proposed

algorithms.

Traditionally, the estimate of the symbols is obtained in the frequency domain with a ZF receiver.

In this case, the symbols are calculated by inverting the channel matrix for each subcarrier indi-

1In our simulations, we use the pilot based channel estimate obtained in the time domain.
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vidually. This ZF receiver using the above defined tensor notation is summarized in Algorithm 5.1.

Algorithm 5.1: ZF receiver

initialization H̃p

for n = 1 ∶ N do
ˆ̃
S(n,.,.) ≈ ˆ̃

H+p(n,n,.,.)Ỹ(n,.,.)
end

Result:
ˆ̃S

Alternatively, if we compute the 1-mode unfolding of the tensor Ỹ in equation (5.11), we get

[Ỹ]([1],[2,3]) = (1TMT
⊗ IN) ⋅ (S̃ ◇ H̃)T + [Ñ ]([1],[3,2]) ∈ CN×MRK .

Taking into account the structure of the matrices (1TMT
⊗ IN) ∈ RN×NMT , H̃ in (5.7), and S̃ in

(5.8), the above unfolding becomes

[Ỹ]([1],[2,3]) = MT

∑
mT=1

(S̃(mT) ◇ H̃(mT)
R )T + [Ñ ]([1],[3,2]).

After transposition and omitting the noise term, we get

[Ỹ]([2,3],[1]) ≈ MT

∑
mT=1

(S̃(mT) ◇ H̃(mT)
R ) ∈ CMRK×N .

This sum of Khatri-Rao products can be resolved in a column-wise fashion. Let ỹn ∈ C
MRK×1 denote

the n-th column of [Ỹ]([2,3],[1]) ∈ CMRK×N . After reshaping this vector into matrix Ỹ n ∈ C
MR×K ,

such that ỹn = vec(Ỹ n), it is easy to see that this matrix satisfies

Ỹ n ≈ H̃n ⋅ S̃n, (5.12)

where H̃n and S̃n are the n-th slices of H̃(n,n,.,.) ∈ CMR×MT and S̃(n,.,.) ∈ CMT×K , respectively. Note

that Ỹ n is the n-th slice of Ỹ(n,.,.). Using the pseudo-inverse of the channel, we get the traditional

ZF receiver as summarized in Algorithm 5.1. This shows that our model in (5.11) is a very general

model based on which we can derive even the traditional receivers.

Moreover, the channel and the symbols on each subcarrier can be estimated by means of iter-

ative or recursive LS algorithms. Similar algorithms were proposed in [TVP94] and [TVP96] for

blind source separation on a single subcarrier. We have extended the four algorithms presented in

[TVP96] to our application.

The algorithms ILSP (Iterative Least-Squares with Projection) and ILSE (Iterative Least-Squares

with Enumeration) summarized in Algorithm 5.2 and Algorithm 5.3, respectively, are iterative

algorithms based on LS. Both algorithms are initialized with the pilot based channel estimate,
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5.1. Orthogonal Frequency Division Multiplexing (OFDM)

Algorithm 5.2: Iterative Least-Squares with Projection (ILSP)

initialization H̃p, maxIteration, minErr
for n = 1 ∶ N do

set i = 1, e =∞
while i < maxIteration or e < minErr do

¯̃
S
(i)
n = (H̃(i−1)H

n H̃
(i−1)
n )−1H̃(i−1)H

n Ỹ n

S̃
(i)
n = proj( ¯̃S(i)n )

if rank(S̃(i)n ) =MT then

H̃
(i)
n = Ỹ nS̃

(i)H
n (S̃(i)n S̃

(i)H
n )−1

else

H̃
(i)
n = H̃

(i−1)
n

end

i = i + 1, e = ∥H̃(i−1)
n − H̃(i)

n ∥2F
end

end

Result: S̃ and H̃

Algorithm 5.3: Iterative Least-Squares with Enumeration (ILSE)

initialization H̃p, maxIteration, minErr
for n = 1 ∶ N do

set i = 1, e =∞
while i < maxIteration or e < minErr do

for k = 1 ∶K do

ŝ = arg min
s(j)∈Ω

∥Ỹ n(.,k) − H̃
(i−1)
n s(j)∥, ∀j = 1, . . .Mo

MT

S̃
(i)
n(.,k) = ŝ

end

if rank(S̃(i)n ) =MT then

H̃
(i)
n = Ỹ nS̃

(i)H
n (S̃(i)n S̃

(i)H
n )−1

else

H̃
(i)
n = H̃

(i−1)
n

end

i = i + 1, e = ∥H̃(i−1)
n − H̃(i)

n ∥2F
end

end

Result: S̃ and H̃

the maximum number of iterations (maxIteration), and the minimum error difference between

two consecutive updates (minErr). The ILSP algorithm is essentially an iterative version of the ZF

algorithm, where in each iteration the estimated symbols are projected onto the finite alphabet Ω of

the transmitted symbols. This finite alphabet depends on the modulation type and the modulation
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order Mo. Details regarding the convergence for different finite alphabets are discussed in [TVP96].

To estimate the symbols, we compute a pseudo-inverse of the channel which leads to the condition

MR ≥MT. On the other hand, the ILSE algorithm does not require this condition as it estimates

the symbols based on enumeration. Equation (5.13) represents the enumeration or the exhaustive

search over the final alphabet of symbols Ω.

ŝ = arg min
s(j)∈Ω

∥Ỹ n(.,k) − H̃ns
(j)∥, j = 1, . . .Mo

MT (5.13)

Both algorithms update the channel only if it is possible, i.e., if the rank of the symbol matrix

S̃n ∈ C
MT×K is MT, K ≥ MT. Note that this is not possible for all values of MT, K, and for all

patterns of random data symbols from a finite distribution.

Algorithm 5.4: Recursive Least-Squares with Projection (RLSP)

initialization H̃p, 0 ≤ α ≤ 1
for n = 1 ∶ N do

¯̃
Sn = (H̃H

n H̃n)−1H̃H
n Ỹ n

S̃n = proj( ¯̃Sn)
set P (0) = IMT

, H̃
(0)
n = H̃n, α = 1

for k = 1 ∶K do

s = S̃n(.,k)

H̃
(k)
n = H̃

(k−1)
n + (Ỹ n(.,k)−H̃(k−1)

n s)
α+sHP

′(k−1)
s

sHP ′(k−1)

P ′(k) = 1
α
(P ′(k−1) − P

′(k−1)
ss

H
P
′(k−1)

α+sHP
′(k−1)

s
)

end

end

Result: S̃ and H̃

The remaining two algorithms, namely RLSP (Recursive Least-Squares with Projections) and

RSLE (Recursive Least-Squares with Enumeration) are recursive implementations of ILSP and

ISLE, respectively. We summarize these two algorithms in Algorithm 5.4 and Algorithm 5.5,

respectively. In both algorithms, the channel is estimated based on RLS (Recursive Least Squares),

where α is the weighting coefficient and P ′ denotes the inverse correlation matrix. Due to the

computation of the pseudo-inverse of the channel matrix for the algorithm RLSP, MR ≥MT should

hold. On the other hand, the RLSE algorithm is suitable for any values of MT, MR, and K.

ILSP has the same computational complexity as traditional ZF receivers with the added com-

plexity of the additional iterations if the symbol matrix has full rank. The ILSE algorithm does

not compute a pseudo-inverse of the channel matrix. However, its computational complexity comes

from the enumeration and it depends on the number of antennas and the modulation order. The

recursive algorithms, RLSP and RLSE require a finite number of iterations that is equal to NK.

The RLSP algorithm still computes the pseudo-inverse of the channel, however, RLSE does not
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Algorithm 5.5: Recursive Least-Squares with Enumeration (RLSE)

initialization H̃p, 0 ≤ α ≤ 1
for n = 1 ∶ N do

set P (0) = IMT
, H̃

(0)
n = H̃n, α = 1

for k = 1 ∶K do

ŝ = arg min
s(j)∈Ω

∥Ỹ n(.,k) − H̃
(k−1)
n s(j)∥, ∀j = 1, . . .Mo

MT

S̃n(.,k) = ŝ

H̃
(k)
n = H̃

(k−1)
n + (Ỹ n(.,k)−H̃(k−1)

n ŝ)
α+ŝHP

′(k−1)
ŝ

ŝHP ′(k−1)

P ′(k) = 1
α
(P ′(k−1) − P

′(k−1)
ŝŝ

H
P
′(k−1)

α+ŝHP
′(k−1)

ŝ
)

end

end

Result: S̃ and H̃

compute any matrix pseudo-inverse. The computational complexity of the RLSE algorithm comes

from the enumeration (exhaustive search).

5.1.1.1 Simulation Results

We compare the performance of the five algorithms, ZF, ILSP, ILSE, RLSP, and RLSE (i.e.,

Algorithms 5.1-5.5) using Monte Carlo simulations and 5000 realizations. First, we consider a 2×2
OFDM system, with K frames, and N = 128 subcarriers. The pilot symbols are transmitted on

every third subcarrier such that ∆F = 3 and only during the first frame, i.e., ∆K =K. Using these

pilots we obtain a pilot based channel estimate with which we initialize all of the algorithms. The

transmitted data symbols are independent and modulated using 4-QAM (Quadrature Amplitude

Modulation). The frequency selective propagation channel is modeled according to the 3GPP (3rd

Generation Partnership Project) Pedestrian A channel (Ped A) [ITU97]. The duration of the cyclic

prefix is 32 samples and the weighting factor α = 1, for the recursive LS. The maximum number of

iterations for the iterative algorithms is set to 7. In Fig. 5.6 and 5.7, we depict the SER (Symbol

Error Rate) as a function of the Eb/N0 (energy per bit/ noise power spectral density) in dB for

K = 2 andK = 8, respectively. Both algorithms based on enumeration, ILSE and RLSE outperform

the rest of the algorithms. The performance of ILSP and RLSP is similar to the ZF performance

and it depends on the number of frames. As shown in Fig. 5.7, increasing the number of frames

leads to a slightly better SER than using a ZF receiver. Note that the transmitted data symbols

are independent and randomly drawn with no guarantee that the matrices S̃n are of rank MT.

Therefore, in many cases the number of iterations is equal to one. In all of the other simulated

cases, the algorithms converge after 3 iterations.

As in [TVP96], we also observe that the iterative algorithms have a better performance than the

recursive ones for an increased number of frames. However, the recursive algorithms, RSLP and
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Figure 5.6.: SER for a 2 × 2 OFDM system with parameters ∆K = 2,∆F = 3,N = 128,K = 2.

RLSE, require less computational complexity than the iterative ones, ILSP and ILSE. Moreover,

for the same simulation parameters as in Fig. 5.7, but taking into account only 100 realizations

and Eb/N0 = 10 dB we depict the computational time required for each algorithm in Table 5.1.

The ILSP algorithm requires the smallest amount of time, because additional iterations will not be

computed when the symbol matrix does not have a full row rank. The RLSP algorithm requires

the longest time as it performs iterations and computes a pseudo-inverse of the channel matrix.

The RLSE algorithm has a smaller computational complexity than ILSE and requires a moderate

amount of time.

Algorithm ILSP ILSE RLSP RLSE

Total Time [s] 2.815 6.910 7.962 4.810

Table 5.1.: Computational time required for each algorithm.

Furthermore, in Fig. 5.8, we show the SER as a function of Eb/N0 in dB for 4 × 4 and 4 × 2
MIMO-OFDM systems, respectively. Here, we compare only the recursive algorithms with respect

to the ZF receiver, as they are less complex and have a comparable performance as the respective

iterative versions. The RLSE outperforms the rest of the algorithms and it is capable of estimating

the data symbols even if MT >MR without additional spreading as in [NHdA17].

132



5.1. Orthogonal Frequency Division Multiplexing (OFDM)

0 2 4 6 8 10 12 14 16 18
10log

10
(E

b
/N

0
) [dB]

10-4

10-3

10-2

10-1

100

S
E

R

ZF
ILSP
ILSE
RLSP
RLSE

Figure 5.7.: SER for a 2 × 2 OFDM system with parameters ∆K = 8,∆F = 3,N = 128,K = 8.
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Figure 5.8.: SER for an OFDM system with parameters ∆K = 2,∆F = 4,N = 512,K = 2, andMT×MR

antennas depicted in the legend.

5.1.1.2 Summary

In this section, we have presented a tensor model for MIMO-OFDM systems based on the general-

ized tensor contraction operator. The derivation of this model facilitates the design of several types
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of receivers based on iterative and recursive LS algorithms. We have compared these algorithms

with and without enumeration with the traditional ZF receiver. ILSP and RLSP show a simi-

lar performance as the ZF algorithm. Due to the projection, the algorithms based on projection

require only a few iterations to converge. The other two algorithms, ISLE and RLSE based on

enumeration, outperform the rest of the algorithms at the cost of an increased complexity. Both

recursive algorithms, RLSE and RLSP have less computational complexity as compared to their

iterative versions ILSE and ILSP, respectively. The RLSE algorithm does not perform matrix

inversion. Therefore, the RLSE algorithm is suitable for any configuration setup. It is capable

of estimating the data symbols even for MT >MR without additional spreading. In the future,

recursive algorithms can be used to exploit the correlation of the channel tensor, especially in time

varying scenarios. Moreover, the system can be modified such that only specific codewords leading

to rank MT symbol matrices are used. This transmit strategy would guarantee that each symbol

matrix is invertible to improve the channel estimates. In addition, we can exploit coding strate-

gies for the transmission of the OFDM symbols over MIMO system, such as Khatri-Rao codes.

Finally, it is worth mentioning that our generalized tensor contraction formalism presented here

is very general and can be extended to any other multi-carrier system, such as GFDM or FBMC

leading to tensor based improvement of these multi-carrier systems. In the following sections, we

present the extension of this model to Khatri-Rao coded MIMO-OFDM systems, randomly coded

MIMO-OFDM systems, and MIMO-GFDM systems.

5.1.2 Khatri-Rao Coded MIMO-OFDM via generalized tensor contraction

In this section, we model a Khatri-Rao coded MIMO-OFDM communication system as a generalized

tensor contraction between a channel and a signal tensor. This generalized tensor contraction is

essentially equivalent to the model in (5.1). However, we assume that the signal tensor contains

Khatri-Rao coded symbols.

As in the previously presented MIMO-OFDM model without coding (see Section 5.1.1), we

assume a MIMO-OFDM communication system with MT transmit and MR receive antennas. One

OFDM block consists of N samples, which equals the DFT length. Moreover, all N subcarriers are

used for data transmission. Furthermore, we assume a frequency-selective channel model that stays

constant over the transmission of P frames. In contrast to the model presented in the previous

section (Section 5.1.1), here, we assume that the P frames are divided into K groups of Q blocks

(Q corresponds to the spreading factor), P =K ⋅Q.

Accordingly, the received signal in the frequency domain is given by

Ỹ = H̃ ●1,22,4 X̃ + Ñ = Ỹ0 + Ñ ∈ CN×MR×K×Q, (5.14)

where H̃ ∈ CN×N×MR×MT is the channel tensor and X̃ ∈ CN×MT×K×Q is the signal tensor. The

tensor Ñ ∈ C
N×MR×K×Q contains additive white Gaussian noise and Ỹ0 ∈ C

N×MR×K×Q is the

noiseless received signal.
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Channel tensor

In this section, we use the model of the channel tensor H̃ defined in equation (5.5). Moreover,

we have defined the generalized unfolding [H̃]([1,3],[2,4]) in equation (5.6). Using a permutation

matrix, it can be shown that the generalized unfolding [H̃]([1,3],[4,2]) of the channel is equal to

[H̃]([1,3],[4,2]) = H̄ ◇ (IN ⊗ 1TMT
), (5.15)

where

H̄ = [H̃(1)
R . . . H̃

(MT)
R ]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

H̃

⋅P ∈ CMR×MTN .

The permutation matrix P ∈ R
NMT×MTN reorders the columns such that the faster increasing

index is MT instead of N and it is defined as [H̃]([1,3],[4,2]) = [H̃]([1,3],[2,4]) ⋅ P . Recognize that

the matrices H̃ ∈ C
MR×NMT and H̃

(mT)
R ∈ C

MR×N are previously defined in equation (5.7). The

structure of the 4-way channel tensor in the frequency domain H̃ and its unfoldings are derived in

Appendix B.3.

Data transmission

We can impose a CP structure on the transmit signal tensor, if we assume Khatri-Rao coded

symbols [SB02,dAF13a]. The coding is proportional to the number of transmit antennas if we use

a spreading factor Q =MT, for each subcarrier n = 1,2, . . . ,N . Hence, the generalized unfolding of

the signal tensor is

[X̃ ]([2,1],[4,3]) = [S̃1 ◇C1 S̃2 ◇C2 . . . S̃N ◇CN]T = IMTN(S̄ ◇ C̄)T, (5.16)

where the matrix S̃n ∈ C
K×MT contains modulated data symbols and Cn ∈ C

Q×MT is a Van-

dermonde coding matrix as defined in [SB02]. The matrices S̄ = [S̃1 . . . S̃N] ∈ CK×MTN and

C̄ = [C1 . . . CN] ∈ CQ×MTN contain all symbol and coding matrices for each subcarrier, respec-

tively. Note that S̄ = S̃ ⋅P , where the matrix S̃ is defined in equation (5.8) and P ∈ RNMT×MTN is

the above mentioned permutation matrix that reorders the columns such that the faster increasing

index is MT instead of N . Moreover, we assume that S̃ contains pilot symbols as explained after

equation (5.8). As shown in [SB02] and as directly follows from (5.16), the tensor [X̃ ]([2,1],3,4)
satisfies the following CP decomposition2

[X̃ ]([2,1],3,4) = I3,MTN ×1 IMTN ×2 S̄ ×3 C̄.

2 For the definition of the 4-way signal tensor we need to define a selective Kronecker product between two tensors,
where only selected modes are involved in the Kronecker product.
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The structure of the tensor [X̃ ]([2,1],3,4) resulting from the Khatri-Rao coding is depicted in Fig. 5.9,

where Θ ∈ C
MTN×MTN is the precoding matrix and A ∈ CMTN×K is the symbol matrix. The

precoding matrix Θ suitable for QAM constellations with modulation order Mo is given by [SB02]

Θ =
1√
Mo

F ′Mo
diag (1, α, . . . , αMo−1) ,

where F ′Mo
is an inverse DFT matrix and α = e

j2π

4Mo . Moreover, as previously mentioned, the

coding matrices for each subcarrier Cn (n = 1, . . . ,N) are chosen to be a Vandermonde matrix with

elements Cn(q,mT) = ej2π(mT−1)(q−1)/MT [SB02]. Hence, the coding matrices have full row rank, as

required for achieving maximum diversity gain [SB02].

Figure 5.9.: Visualization of the Khatri-Rao coding.

Receiver Design

Using equations (2.10), (2.11), and (5.14), the noiseless received signal can be expressed as

[Ỹ0]([1,2],[4,3]) = [H̃]([1,3],[4,2]) ⋅ [X̃ ]([2,1],[4,3]).
Inserting the corresponding unfoldings of the channel and the signal tensor, in equation (5.15) and

(5.16), respectively, the noiseless received signal in the frequency domain is given by

[Ỹ0]([1,2],[4,3]) = (H̄ ◇ (IN ⊗ 1T
MT
)) ⋅ (S̄ ◇ C̄)T.

The above equation represents an unfolding of a 4-way tensor with a CP structure. Therefore, the

noiseless received signal tensor can be expressed as

Ỹ0 = I4,MTN ×1 (IN ⊗ 1T
MT
) ×2 H̄ ×3 S̄ ×4 C̄∈ CN×MR×K×Q. (5.17)

Equation (5.17) represents the received signal in the frequency domain, for all N subcarriers, MR

receive antennas, and P frames after the removal of the cyclic prefix. Depending on the available a

priori knowledge at the receiver side, channel estimation, symbol estimation, or joint channel and

symbol estimation can be performed.

Let us compare the MIMO-OFDM tensor model and the Khatri-Rao coded MIMO-OFDM tensor
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model in equations (5.11) and (5.17), respectively. First, the factor matrices in these equations

have different index ordering. In equation (5.11), the faster increasing index is N , whereas in

equation (5.17) the faster increasing index is MT along the columns of the factor matrices. We use

∼ and − to distinguish the different index orderings of the factor matrices. Recall that we have

defined a permutation matrix P that considers the reordering of the columns of the factor matrices.

Moreover, equation (5.17) has an additional tensor dimension (the 4-mode) corresponding to the

coding technique and the spreading factor Q. Furthermore, taking into account the permutation

matrix P , we get equation (5.11) from equation (5.17) for Q = 1 and C̄ = 1TMTN (i.e., no coding

and the spreading factor equals one).

Using equation (5.17), the channel and the data symbols can be jointly estimated from the([1,4], [3,2]) generalized unfolding of the noise corrupted received signal

[Ỹ]([1,4],[3,2]) ≈ (C̄ ◇ (IN ⊗ 1TMT
)) ⋅ (H̄ ◇ S̄)T.

Under the assumption that Q =MT, (C̄ ◇ (IN ⊗ 1TMT
)) ∈ CNQ×MTN is a block diagonal, left invert-

ible matrix and known at the receiver, and using the properties of the coding matrices defined in

[SB02], i.e., CH
nCn =MTIMT

, we have

Ȳ ≜
1

MT
(C̄ ◇ (IN ⊗ 1TMT

))H ⋅ [Ỹ]([1,4],[3,2]) ≈ (H̄ ◇ S̄)T.
After transposition, Ȳ

T
≈ H̄ ◇ S̄ can be approximated by the Khatri-Rao product between the

channel and the data symbols. Therefore, the channel and the data symbols can be jointly estimated

based on the LSKRF as in Algorithm 2.2.

Using the LSKRF, the matrices H̄ and S̄ can be identified up to one complex scaling factor

ambiguity per column. Hence, the estimated matrices are equal to

ˆ̄H = H̄ ⋅Λ, (5.18)

ˆ̄S = S̄ ⋅Λ−1, (5.19)

where Λ ∈ CMTN×MTN is a diagonal matrix with diagonal elements equal to the MTN complex

scaling ambiguities. The simplest way to resolve the scaling ambiguity is by using one row of the

matrix S̄ ∈ CK×MTN . This corresponds to MTN pilot symbols, one pilot symbol per transmit

antenna and subcarrier. Since traditional MIMO-OFDM communication systems use less pilot

symbols than MTN , we propose to use the same amount of pilot symbols and exploit the channel

correlation between adjacent subcarriers in order to estimate the scaling matrix. As illustrated in

Figs. 5.4 and 5.5, we transmit pilot symbols on positions with equidistant spacing in the frequency

and the time domain. The spacing in the frequency domain is denoted by ∆F and the spacing in

the time domain by ∆K. With the prior knowledge of the pilot symbols and their positions, we

can obtain an initial channel estimate as in traditional MIMO-OFDM systems (see Section 5.1.1).

We denote this pilot based channel estimate by H̃p. The pilot based channel estimate is then used
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to estimate the scaling ambiguity Λ in equation (5.18) as

Λ̂ = diag
⎛⎝ 1

MR

MR

∑
mR=1

ˆ̄H(mR,.) ⊘ ˆ̄Hp(mR,.)
⎞⎠ .

By multiplying the solution of the LSKRF with the diagonal matrix Λ̂, the scaling ambiguity

in equation (5.19) is resolved and the data symbols can be demodulated. Note that the proposed

Khatri-Rao receiver estimates the channel and the symbols in a semi-blind fashion. First, the

channel and the symbols are jointly estimated without any a priory information. The pilot based

channel estimate is then used to resolve the scaling ambiguity affecting the columns of ˆ̄H and
ˆ̄S. Therefore, the optimal length and repetition of the piloting sequences are identical as for the

traditional OFDM systems. We summarize the steps of the proposed Khatri-Rao (KR) receiver in

Algorithm 5.6.

Algorithm 5.6: Khatri-Rao (KR) receiver

initialization H̃p and C̄

Compute Ȳ = 1
MT

(C̄ ◇ (IN ⊗ 1TMT
))H ⋅ [Ỹ]([1,4],[3,2]).

Compute the LSKRF of Ȳ
T
using Algorithm 2.2 that results in ˆ̄H and ˆ̄S.

Compute the scaling matrix Λ̂ = diag ( 1
MR
∑MR

mR=1
ˆ̄H(mR,.) ⊘ ˆ̄Hp(mR,.)). The matrix

ˆ̄Hp(mR,.) is defined as in equation (5.15) using the channel tensor H̃p that results from

the pilot based channel estimation.

Resolve the scaling ambiguity H̄ = ˆ̄H ⋅ Λ̂−1 and S̄ = ˆ̄S ⋅ Λ̂.
Result: S̄ and H̄

Furthermore, the channel estimate resulting from the KR receiver can be used for channel tracking

in future transmission frames if the channel has not changed drastically. If the channel estimate is

used for tracking, it could be improved by means of an additional LS estimate from [Ỹ]([2,4,1],[3])
with the knowledge of the estimated and projected symbols onto the finite alphabet Ω, i.e., Q(S̄) =
proj(S̄). The finite alphabet Ω depends on the modulation type and the modulation order Mo.

ˆ̄HT
LS = ((IN ⊗ 1T

MT
) ◇ C̄ ◇Q(S̄))+ ⋅ [Ỹ]([2,4,1],[3])

However, we can also use this improved channel estimation to improve the performance of the KR

receiver. Using this updated channel estimate an improved estimate of the diagonal scaling matrix

Λ̂ can be calculated and with that an enhanced estimate of the symbols, ˆ̄SLS, using equation

(5.19). Note that, instead of just one LS estimate of the channel and the symbols the performance

can be even more enhanced with additional iterations leading to an iterative receiver. Note that

the symbol matrix ˆ̄SLS can be estimated in the least squares sense from the 3-mode unfolding of
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equation (5.17), but the estimation of Λ̂ is computationally cheaper. The KR receiver with its

enhancement via LS is summarized in Algorithm 5.7.

Algorithm 5.7: Khatri-Rao receiver and its enhancement via Least-Squares (KR+LS)

initialization H̃p and C̄

Compute Ȳ = 1
MT

(C̄ ◇ (IN ⊗ 1TMT
))H ⋅ [Ỹ]([1,4],[3,2]).

Compute the LSKRF of Ȳ
T
using Algorithm 2.2 that results in ˆ̄H and ˆ̄S.

Compute the scaling matrix Λ̂ = diag ( 1
MR
∑MR

mR=1
ˆ̄H(mR,.) ⊘ ˆ̄Hp(mR,.)). The matrix

ˆ̄Hp(mR,.) is defined as in equation (5.15) using the channel tensor H̃p that results from

the pilot based channel estimation.

Resolve the scaling ambiguity H̄ = ˆ̄H ⋅ Λ̂−1 and S̄ = ˆ̄S ⋅ Λ̂.

Project the symbols onto the finite alphabet Ω, i.e., Q(S̄) = proj(S̄).
Compute an enhancement of the channel estimate
ˆ̄HT

LS = ((IN ⊗ 1TMT
) ◇ C̄ ◇Q(S̄))+ ⋅ [Ỹ]([2,4,1],[3]).

Improve the estimate of the diagonal scaling matrix

Λ̂LS = diag ( 1
MR
∑MR

mR=1
ˆ̄H(mR,.) ⊘ ˆ̄HLS(mR,.)).

Compute an enhancement of the estimate of the symbols ˆ̄SLS = S̄ ⋅ Λ̂LS.

Result: ˆ̄SLS and ˆ̄HLS

5.1.2.1 Simulation Results

Based on Monte-Carlo simulations, we compare the performance of the traditional frequency do-

main zero forcing (ZF) receiver (see Algorithm 5.1), the proposed Khatri-Rao (KR) receiver (see

Algorithm 5.6) and the proposed Khatri-Rao receiver with one additional LS iteration (see Algo-

rithm 5.7). In the simulations, 5000 realizations and Ped A channel [ITU97] are employed.

In Fig. 5.10, we depict the SER is as a function of Eb/N0 for different numbers of transmitted

blocks. Thereby, we consider a MIMO system with the following parameters N = 128, Q = 2, MT =

2, MR = 2, ∆K =K, ∆F = 4 and different numbers of blocks K (the number of blocks is indicated

in the legend). Note that, the KR and the KR+LS receivers benefit from the increased number

of frames as the channel has been kept constant during the P = Q ⋅K frames. Moreover, as the

number of frames increases, the advantages of the enhancement via LS become more pronounced.

Moreover, the SER comparison for N = 128, Q = MT, K = 2, ∆K = 2, ∆F = 4, and different
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Figure 5.10.: SER comparison for different numbers of transmitted blocks.
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Figure 5.11.: SER comparison for different numbers of transmit and receive antennas.

numbers of antennas is depicted in Fig. 5.11. The KR and KR-LS receivers benefit from an increased

number of transmit antennas due to the increased spreading factor, Q = MT. The performance

enhancement with the additional LS estimate plays a role only for K > 2. However, the KR receiver

has a better performance that ZF even without the LS enhancement in terms of the SER.
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Figure 5.12.: NMSE of the channel matrix for different scenarios after the LSKRF

0 5 10 15
10 log

10
(E

b
/N

0
) [dB]

10-4

10-3

10-2

10-1

N
M

S
E

Err Symbols, Scenario 1
Err Symbols, Scenario 2
Err Symbols, Scenario 3
Err Symbols, Scenario 4
Err Symbols, Scenario 5

Figure 5.13.: NMSE of the symbol matrix for different scenarios after the LSKRF

Next, we consider the scenarios listed in Table 5.2. In Figs. 5.12 and 5.13, we evaluate the

performance of the KR receiver for the five different scenarios defined in Table 5.2. Figs. 5.12

and 5.13 illustrate the estimation error of the channel matrix and the symbol matrix after the

LSKRF, respectively. We assume that the scaling matrix is known for both Figs. 5.12 and 5.13.
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MT MR K Q ∆F ∆K N

Scenario 1 2 2 2 2 4 2 128

Scenario 2 2 2 2 2 8 2 128

Scenario 3 2 2 4 2 4 4 128

Scenario 4 4 2 2 4 4 2 128

Scenario 5 4 4 2 4 4 2 128

Table 5.2.: Parameters for Figs. 5.12, 5.13, and 5.14

The NMSE (Normalized Mean Squared Error) of the channel matrix is calculated as

NMSE =
∥ ˆ̄H − H̄∥2F∥H̄∥2F .

In Fig. 5.12, we see that the channel estimate provided by the LSKRF becomes more accurate with

the increase of the number of slices K and/or the increase of the spreading factor Q. Hence, larger

P =K ⋅Q leads to more accurate estimate of the channel matrix ˆ̄H. Fig. 5.13 visualizes the NMSE

of the symbol matrix that is computed according to ∥ ˆ̄S − S̄∥2F/∥S̄∥2F. In contrast to the estimate of

the channel matrix, the estimate of the symbol matrix after the LSKRF benefits from the increased

number of antennas (receive or transmit antennas).
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Figure 5.14.: Channel estimation error for different scenarios.

Moreover, in Fig. 5.14, we show the NMSE of the channel estimate for the five scenarios in
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5.1. Orthogonal Frequency Division Multiplexing (OFDM)

Table 5.2. In both figures (Figs. 5.12 and 5.14), the curves in magenta are identical. We can see

that the channel estimate based on the LSKRF assuming a perfect estimate of the scaling ambiguity

has a better performance than the ZF solution in the low SNR regime. From both figures, we can

confirm that the previous findings for the SER and for the channel estimation error are true. The

channel estimate is more accurate as the number of transmit blocks K increases or with increased

spreading factor Q. On the other hand, the channel estimate using conventional techniques, for

instance, [BLM03,HYSH06] strictly depends on the amount of pilot symbols. In order to resolve

the scaling ambiguity of the estimated symbol matrix, the channel estimate is required. Therefore,

the SER is influenced by both, the accuracy of the pilot based channel estimate and the accuracy

of the estimate of the symbols using LSKRF.
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Figure 5.15.: SER for 2× 2 OFDM and KR coded OFDM systems, N = 128 and ∆F = 10. The OFDM
system has the following parameters K = 10, ∆K = 10, and the symbols are modulated
using 4-QAM. The KR coded OFDM system has the following parameters K = 5, ∆K = 5,
Q = 2, P =KQ = 10 and the symbols are modulated using 16-QAM. Hence, both systems
transmit 2 Bits/Symbol.

Finally, we compare the receivers proposed in Section 5.1.1 (ILSP, ILSE, RLSP, and RLSE) for

a MIMO-OFDM system with the receivers proposed in this section for Khatri-Rao coded MIMO-

OFDM system. We assume that both systems have N = 128 subcarriers, MT = 2 transmit antennas,

MR = 2 receive antennas. Moreover, for both systems we assume that ∆F = 10 is the subcarrier

spacing between two pilot symbols in the frequency domain and ∆K = K is the spacing between

two pilot symbols in the time domain. The OFDM system has the following parameters K = 10,

∆K = 10, and the symbols are modulated using 4-QAM. The KR coded OFDM system has the

143



following parameters K = 5, ∆K = 5, Q = 2, P =KQ = 10 and the symbols are modulated using 16-

QAM. Hence, we transmit 2 Bits/Symbol with both systems. In Fig. 5.15, we depict the SERs for

these two systems. It is obvious that the algorithms ILSE and RLSE from Section 5.1.1 outperform

the rest of the algorithms. However, recall that these algorithms are based on enumeration, i.e.,

they are based on exhaustive search and therefore have much higher computational complexity

than the rest of the algorithms. This computation complexity increases with the dimensionality

of the system, for instance, increased numbers of antennas or subcarriers. The KR receiver has

similar accuracy to the ILSP and the RLSP algorithms that improves with the increased SNR. The

KR+LS receiver outperforms the ILSP algorithm, the ILSE algorithm, and the KR algorithm in

terms of SER. Recall that the KR coded OFDM model in equation (5.17) has more structure than

the OFDM model in equation (5.11) due to the coding. The KR algorithm and KR-LS algorithm

exploit this structure to estimate the channel and the symbols. Note that the KR-LS algorithm

computes an improved estimate of the scaling matrix. Therefore, KR-LS leads to lower SER than

the algorithms ILSP, ILSE, and KR.

5.1.2.2 Summary

In this section, we have shown that the generalized contraction operator can be used to model

KR coded MIMO-OFDM communication systems. Using the properties of the contraction and by

imposing a CP structure on the signal tensor with Khatri-Rao coding, we derive a novel tensor model

for the received signal. By exploiting this model, we propose a receiver for MIMO-OFDM based on

the LSKRF. Even though the proposed KR receiver requires the same amount of training symbols

as traditional OFDM techniques, it has an improved performance in terms of the SER. Moreover,

we propose an enhancement of the KR receiver by means of an additional LS iteration (KR+LS).

Moreover, we compare the proposed receiver and its enhancement via LS to the receivers for the

uncoded OFDM proposed in Section 5.1.1 and show that the KR coded OFDM system benefits

from the additional tensor structure. Among the perspectives for future work, we should consider

the use of optimally designed orthogonal pilot sequences, which should enhance the performance of

the proposed KR receiver. Moreover, the KR receiver can be extended to an iterative receiver that

performs several LS iterations not just one as in the proposed KR+LS receiver. Furthermore, to

increase the spectral efficiency of the Khatri-Rao coded MIMO-OFDM system we can consider a

system where the coding matrices have random data symbols as entries instead of the Vandermonde

structure proposed in [SB02]. This extension of the Khatri-Rao coded MIMO-OFDM system is

presented in the following section of this chapter.

5.1.3 Randomly Coded MIMO-OFDM via generalized tensor contraction

In the previous section (Section 5.1.2), we have proposed a tensor model for KR coded MIMO-

OFDM systems that introduces an additional CP structure to the signal tensor. Moreover, we have

shown the benefits of the additional CP structure of the signal tensor (as compared to the projec-
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5.1. Orthogonal Frequency Division Multiplexing (OFDM)

tion based receivers for MIMO-OFDM systems without coding that have moderate computational

complexity, see Section 5.1.1) by proposing a KR receiver based on the LSKRF that outperforms

the iterative receivers based on projection for MIMO-OFDM. Recall that the receivers based on

enumeration are significantly more computationally expensive that the algorithms based on pro-

jection. In Section 5.1.2, the additional CP structure of the signal tensor is achieved by means

of a Khatri-Rao coding. However, using the Khatri-Rao coding, we add additional spreading that

reduces the spectral efficiency of the system. Therefore, in this section we propose to keep the

CP structure of the signal tensor proposed in Section 5.1.2, but to introduce random coding. We

introduce the random coding, by using a ”coding matrix” that contains data symbols (i.e., the

coding matrix C̄ in (5.16) contains also data symbols).

As in Section 5.1.2, the received signal in the frequency domain after the removal of the cyclic

prefix is given by

Ỹ = H̃ ●2,14,2 X̃ + Ñ = Ỹ0 + Ñ ∈ CN×MR×K×Q, (5.20)

where H̃ ∈ CN×N×MR×MT is the channel tensor and X̃ ∈ CN×MT×K×Q is the signal tensor. The

tensor Ñ contains additive white Gaussian noise and Ỹ0 is the noiseless received signal. As for the

KR coded MIMO-OFDM system, we transmit P =KQ frames that are divided into K groups of Q

blocks (”spreading factor”). The number of subcarriers is N , and MR and MT denote the number

of receive and transmit antennas, respectively.

Channel tensor

We model the channel tensor H̃ according to equation (5.5). Details regarding this model are

also provided in Appendix B.3. In this section, we use the generalized unfolding [H̃]([1,3],[4,2]) =
H̄ ◇ (IN ⊗ 1TMT

) that is defined in (5.15).

Data Transmission

As previously mentioned, we impose a CP structure on the signal tensor X̃ similar to the Khatri-

Rao coding proposed in Section 5.1.2. For the generalized unfolding ([2,1], [4,3]) of the signal

tensor, we have

[X̃ ]([2,1],[4,3]) = [S̄1 ◇C ′1 S̄2 ◇C ′2 . . . S̄N ◇C ′N]T = IMTN(S̄ ◇ C̄ ′)T, (5.21)

where the matrix S̄n ∈ C
K×MT contains modulated data symbols. In contrast to the Khatri-Rao

coding in Section 5.1.2, here, we assume that the first row of the matrix C ′n ∈ CQ×MT contains

only ones, whereas the remaining Q− 1 rows contain modulated data symbols. Hence, the “coding

matrix” (the matrix Cn in (5.16) represents the coding matrix) contains also random entries. We

refer to this transmission technique as random coding. Moreover, the matrices S̄ = [S̄1 . . . S̄N ] ∈
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C
K×MTN and C̄

′
= [C′1 . . . C′N] ∈ CQ×MTN contain all symbol and random coding matrices for

each subcarrier, respectively. Note that S̄ is defined as in Section 5.1.2, i.e., S̄ = S̃ ⋅P , where the

matrix S̃ is defined in equation (5.8) and P ∈ RNMT×MTN is the permutation matrix that reorders

the columns such that the faster increasing index is MT instead of N . Moreover, we assume that S̃

contains pilot symbols as explained after equation (5.8). As shown in [SB02] and as directly follows

from (5.21), the tensor [X̃ ]([2,1],3,4) satisfies the following CP decomposition 3

[X̃ ]([2,1],3,4) = I3,MTN ×1 IMTN ×2 S̄ ×3 C̄′.

Receiver Design

Using equations (2.10) and (5.20), for the noiseless received signal, we get

[Ỹ0]([1,2],[4,3]) = [H̃]([1,3],[4,2]) ⋅ [X̃ ]([2,1],[4,3]). (5.22)

Inserting the corresponding unfoldings of the channel tensor and the signal tensor, i.e., inserting

(5.15) and (5.21) into (5.22), we get

[Ỹ0]([1,2],[4,3]) = (H̄ ◇ (IN ⊗ 1TMT
)) ⋅ (S̄ ◇ C̄ ′)T.

The above equation represents an unfolding of a 4-way tensor with a CP structure. Therefore, it

can be expressed as

Ỹ0 = I4,MTN ×1 (IN ⊗ 1T
MT
) ×2 H̄ ×3 S̄ ×4 C̄ ′∈ CN×MR×K×Q. (5.23)

Equation (5.23) represents the noiseless received signal in the frequency domain for all N subcar-

riers, MR receive antennas, and P frames after the removal of the cyclic prefix for MIMO-OFDM

system with RC (Random Coding). Note that the CP decomposition in (5.23) is degenerate in all

four modes.

Depending on the available a priori knowledge at the receiver side, channel estimation, symbol

estimation, or joint channel and symbol estimation can be performed. For instance, from the

3-mode unfolding of the tensor Y0 in (5.23), we can obtain

S̄ = [Y0](3) ⋅ [(C̄′ ◇ H̄ ◇ (IN ⊗ 1T
MT
))T]+ , (5.24)

provided that MRQ ≥MT. Moreover, from the 4-mode unfolding and 2-mode unfolding of tensor

3 For the definition of the 4-way signal tensor, we need to define a selective Kronecker product between two tensors,
where only selected modes are involved in the Kronecker product.
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Y0 in (5.23), we can obtain C̄
′
and H̄ , respectively.

C̄
′
= [Y0](4) ⋅ [(S̄ ◇ H̄ ◇ (IN ⊗ 1TMT

))T]+ (5.25)

H̄ = [Y0](2) ⋅ [(C̄ ′ ◇ S̄ ◇ (IN ⊗ 1TMT
))T]+ (5.26)

Note that we can compute C̄
′
via a pseudo-inverse if MRK ≥MT.

For noisy observations such as (5.20), the equations (5.24)-(5.26) hold approximately. In this

case, we can use the equations (5.24)-(5.26) to estimate the symbols and the channel in an ALS

fashion. However, there is no guarantee of convergence if we initialize the ALS algorithm randomly.

Therefore, we propose to use the pilot based channel estimate H̄p to obtain initial estimates of

the matrices S̄ and C̄
′
based on LSKRF. This pilot based channel estimated is obtained from the

pilot symbols in S̄ and the first row of C̄
′
that has entries equal to one. From the ([3,4], [1,2])

generalized unfolding of the noisy observation Y , we get

[Ỹ]([3,4],[1,2]) ≈ [C̄ ′ ◇ S̄] ⋅ [H̄p ◇ (IN ⊗ 1TMT
)]T .

Algorithm 5.8: Random Coding-Khatri-Rao (RC-KR) receiver

initialization H̄p

Compute Ȳ = [Y]([3,4],[1,2]) ⋅ [(H̄p ◇ (IN ⊗ 1TMT
))T]+.

Compute the LSKRF of Ȳ using the Algorithm 2.2 that results in ˆ̄C ′ and ˆ̄S.

Compute the scaling matrix Λ̂ = diag ( ˆ̄C ′(1,.) ⊘ C̄
′
(1,.)). (The first row of the matrix C̄

′

contains only ones.)

Resolve the scaling ambiguity C̄
′
=
ˆ̄C′ ⋅ Λ̂−1 and S̄ = ˆ̄S ⋅ Λ̂.

Result: S̄ and C̄
′

Given H̄p and MR ≥ MT, from [Ỹ]([3,4],[1,2]) ⋅ [(H̄p ◇ (IN ⊗ 1TMT
))T]+ ≈ [C̄′ ◇ S̄] based on

LSKRF, we obtain ˆ̄S and ˆ̄C ′. However, the matrices ˆ̄S and ˆ̄C′ are estimated up to one complex

scaling ambiguity per column. We exploit the first row of the matrix C̄
′
to estimate this ambi-

guity (recall that the elements of the first row of the matrix C̄
′
are set to one). After resolving

the scaling ambiguity, we propose to iterate between the equations (5.24)-(5.26) to enhance the

accuracy of the receiver. Hence, we propose two receivers RC-KR (Random Coding-Khatri-Rao)

and RC-KR+ALS (Random Coding-Khatri-Rao+Alternating Least-Squares) for randomly coded

MIMO-OFDM systems. These two algorithms are summarized in Algorithm 5.8 and Algorithm 5.9,

respectively. The RC-KR receiver exploits the LSKRF to compute an estimate of the symbol ma-

trices S̄ and C̄
′
, assuming that MR ≥MT, the first row on the matrix C̄

′
contains only ones, and a
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Algorithm 5.9: Random Coding-Khatri-Rao + ALS (RC-KR+ALS) receiver

initialization H̄p

Compute Ȳ = [Y]([3,4],[1,2]) ⋅ [(H̄p ◇ (IN ⊗ 1TMT
))T]+.

Compute the LSKRF of Ȳ using the Algorithm 2.2 that results in ˆ̄C′ and ˆ̄S.

Compute the scaling matrix Λ̂ = diag ( ˆ̄C ′(1,.) ⊘ C̄
′
(1,.)). (The first row of the matrix C̄

′

contains only ones.)

Resolve the scaling ambiguity ˆ̄C′ = ˆ̄C ′ ⋅ Λ̂−1 and ˆ̄S = ˆ̄S ⋅ Λ̂.
while does not exceed the maximum number of iterations, does not reach a predefined
minimum, or the error of the cost function has not changed within two consecutive
iterations do

if rank ([C̄′ ◇ S̄ ◇ (IN ⊗ 1T

MT
)]T) =MTN then

Update ˆ̄H = [Y0](2) ⋅ [( ˆ̄C ′ ◇ ˆ̄S ◇ (IN ⊗ 1TMT
))T]+

else

keep the previous estimate of ˆ̄H
end

Update ˆ̄C′ = [Y0](4) ⋅ [( ˆ̄S ◇ ˆ̄H ◇ (IN ⊗ 1TMT
))T]+.

Project ˆ̄C′ = proj( ˆ̄C ′) onto the finite alphabet Ω.

Update ˆ̄S = [Y0](3) ⋅ [( ˆ̄C′ ◇ ˆ̄H ◇ (IN ⊗ 1TMT
))T]+.

Project Q( ˆ̄S) = proj( ˆ̄S) onto the finite alphabet Ω.

end

Result: ˆ̄S, ˆ̄C ′, and ˆ̄H

pilot based channel estimate H̄p is already available. The initial steps of the RC-KR+ALS receiver

are equivalent to the RC-KR receiver. In the following steps using the RC-KR+ALS receiver, we

estimate the channel matrix and both symbol matrices in an ALS fashion. Therefore, the RC-

KR+ALS receiver exploits LSKRF to initialize the ALS algorithm. The ALS algorithm is stopped

if it exceeds the number of iterations that is set to 5, reaches a predefined minimum of the cost

function ∥Ỹ − I4,MTN ×1 (IN ⊗ 1TMT
) ×2 ˆ̄H ×3 ˆ̄S ×4 ˆ̄C ′∥2

H
/ ∥Ỹ∥2

H
, or if the error of the cost function

has not changed within two consecutive iteration.

5.1.3.1 Simulation Results

In this section, we evaluate the performance of the proposed RC-KR and RC-KR+ALS receivers for

randomly coded MIMO-OFDM systems using Monte-Carlo simulations. We consider 2×2 systems,
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with N = 128 subcarriers, P =KQ frames. Moreover, the spacing between two pilot symbols in the

time domain and in the frequency domain is denoted by ∆K and ∆F , respectively. The frequency

selective propagation channel is modeled according to the 3GPP Pedestrian A channel [ITU97].

The duration of the cyclic prefix is 32 samples. In the simulations, we use 5000 realizations.
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Figure 5.16.: SER for a 2×2 randomly coded OFDM system with parameters N = 128, Q = 2, K, ∆K,
∆F , and the symbols are modulated using 4-QAM. The parameters K, ∆K and ∆F are
indicated in the legend.

In Fig. 5.16, we provide an SER comparison for two scenarios. For both scenarios, we assume 2×2
randomly coded OFDM system, Q = 2, and the symbols are modulated using 4-QAM modulation.

Moreover, K = 5, ∆F = 10, and ∆K = 5, for the first scenario, whereas for the second scenario

K = 3, ∆F = 5, and ∆K = 3. Hence, in the first scenario we estimate more symbols than in the

second scenario, using less pilot symbols. As expected, we achieve a lower SER if more pilot symbols

are used because they lead to a more accurate initial pilot based channel estimate. Moreover, in

Fig. 5.16, we see that the RC-KR+ALS receiver outperforms the RC-KR receiver. Thus, we benefit

from the additional iterations and from exploiting the complete tensor structure. In contrast to

RC-KR, RC-KR+ALS also estimates the channel matrix. Furthermore, the accuracy gain of the

RC-KR+ALS receiver is more pronounced if we initialize the RC-KR+ALS with a less accurate

pilot based channel estimate (the gain is more pronounced for the solid lines than for the dashed

lines in Fig. 5.16).

Moreover, in Fig. 5.17, we depict the SER comparison for a 2×2 OFDM system (see Section 5.1.1),

Khatri-Rao coded OFDM system (see Section 5.1.2), and randomly coded OFDM system. More

precisely, we compare the ILSP receiver, the RLSP receiver, the KR receiver, the KR-LS receiver,
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the RC-KR receiver, and the RC-KR+ALS receiver summarized in Algorithms 5.2, 5.4, 5.6, 5.7, 5.8,

and 5.9, respectively. In order to assure a fair comparison the following parameters that lead to

similar spectral efficiency are selected. The KR coded OFDM system has the following parameters

N = 128, ∆F = 10, K = 5, ∆K = 5, Q = 2, P = KQ = 10, and the symbols are modulated

using 16-QAM. The RC coded OFDM system has the following parameters N = 128, ∆F = 10,

K = 5, ∆K = 4, Q = 2, P = KQ = 10, and the symbols are modulated using 4-QAM. Finally,

the OFDM system has the following parameters N = 128, ∆F = 10, K = 10, ∆K = 10, and the

symbols are modulated using 4-QAM. Hence, all systems have equal number of pilots and transmit

2 Bits/Symbol (not excluding the pilot symbols). In Fig. 5.17, we see that the RC-KR receiver has

the same performance as the ILSP algorithm, even though the second one is an iterative algorithm.

The RC-KR+ALS algorithm outperforms the rest of the algorithms especially in the low SNR

regime. The KR and KR-LS receivers for KR coded OFDM have different slopes than the uncoded

OFDM and the randomly coded OFDM. Note that with the Khatri-Rao coding we achieve maximal

diversity [SB02]. Moreover, we observe that larger tensor dimensions lead to larger tensor gain.
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Figure 5.17.: SER for 2 × 2 KR coded OFDM, randomly coded OFDM, and traditional OFDM systems
for N = 128 and ∆F = 10. The KR coded OFDM system has the following parameters
K = 5, ∆K = 5, Q = 2, P = KQ = 10 and the symbols are modulated using 16-QAM.
The randomly coded OFDM system has the following parameters K = 5, ∆K = 5, Q = 2,
P = KQ = 10 and the symbols are modulated using 4-QAM. The OFDM system has the
following parameters K = 10, ∆K = 10, and the symbols are modulated using 4-QAM.
Therefore, all systems transmit 2 Bits/Symbol.
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5.1.3.2 Summary

In this section, we have proposed a randomly coded transmission technique for MIMO-OFDM

systems. This transmission technique imposes a CP structure on the signal tensor similar to the

Khatri-Rao coded MIMO-OFDM (proposed in Section 5.1.2), but it has higher spectral efficiency.

We achieve this higher spectral efficiency such that the ”coding matrix” contains random data

symbols. Moreover, we show that the received signal for randomly coded MIMO-OFDM can also

be expressed in terms of a generalized tensor contraction between the channel tensor and the signal

tensor. Exploiting the structure of the resulting receive signal tensor, we propose two receivers RC-

KR and RC-KR+ALS for randomly coded MIMO-OFDM systems. The RC-KR receiver estimates

the symbol matrices based on the LSKRF using a pilot based channel estimate. However, to resolve

the scaling ambiguity that arises from the LSKRF, the first row of the random ”coding matrix”

has to be known (we set its values to ones). The RC-KR+ALS receiver is an iterative receiver

that estimates the symbol matrices and the channel matrix in an ALS fashion. This iterative

algorithm requires only a few iterations to converge due to the projection of the estimated symbol

matrices on the finite alphabet of modulated symbols. Note that we initialize the RC-KR+ALS

receiver with the estimates of the symbol matrices that are obtained using the RC-KR receiver.

Therefore, both receivers assume that MR ≥ MT, the first row of the random ”coding matrix”

is known and there is a pilot based channel estimate available beforehand. The proposed RC-

KR+ALS outperforms the iterative receivers for MIMO-OFDM because it exploits the additional

tensor structure of the signal tensor. Furthermore, the system can be modified such that both

symbol matrices contain symbols from different constellations. This will lead to a resulting signal

tensor with more diverse entries. These diverse entries will potentially increase the rank of the

matrices that will provide more accurate estimates via a pseudo-inverse. In the future, we should

investigate the optimal combinations of modulation order and modulation type for different SNRs,

for both symbol matrices.

5.2 Generalized Frequency Division Multiplexing (GFDM)

GFDM is one of the multi-carrier transmission techniques considered as an alternative to OFDM for

beyond 5G wireless communication systems. GFDM is a flexible multi-carrier scheme that spreads

the data symbols in a time-frequency block [MMG+14]. Compared to OFDM, in GFDM each

subcarrier is additionally filtered with a circular pulse shaping filter. OFDM requires a significant

signaling overhead due to its strict synchronization requirements, which is a major drawback for

the application scenarios being considered for beyond 5G systems. In contrast to OFDM, GFDM

has less stringent synchronization requirements. On the other hand, GFDM introduces ISI due to

the fact that (unlike OFDM) not all symbols are transmitted on orthogonal subcarriers. There-

fore, especially for frequency selective channels, ISI cancellation has to be included, as presented

in [AMGG13].
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Tensor algebra efficiently describes multi-dimensional signals, preserves their structure, and pro-

vides an improved identifiability. Moreover, in the past, communication systems have been mod-

eled using tensor algebra and often showed a tensor gain compared to matrix based receivers. For

instance, tensors and tensor decompositions have been used to describe various communication sys-

tems as discussed in [dAFX13, SGB00,FdA14a]. In these works, wireless communication systems

are modelled using the PARATUCK2 or the generalized PARATUCK2 decomposition. Similarly, in

[NCH+17], we show that the GFDM transmit signal can also be defined as a PARATUCK2 model.

Furthermore, in Section 5.1 and in [NHdA17, NHdA18], we propose a model for MIMO-OFDM

systems based on the generalized contraction operator that can be extended to any multi-carrier

technique. In this section, we present the extension of this model to MIMO-GFDM systems. We

also exploit this model for the design of a very simple iterative receiver that has better performance

than ZF receivers.

The GFDM modulated signal is given by [MMG+14]

xn =
R

∑
r=1

M

∑
m=1

dr,mpr,ngm,n, ∀ n = 1, . . . ,N, (5.27)

where M is the number of complex time subsymbols to be transmitted on R subcarriers, N = R ⋅M
is the block length in the time domain, and dr,m are the complex modulated data symbols. Note

that the notation used in this section is different than the notation in Section 5.1 dedicated to

OFDM systems. The data symbols are filtered with the filter coefficients gm,n (for example, a root

raised cosine filter) and are accordingly shifted to the corresponding subcarrier pr,n = exp (j2π r
N
n)

as explained in [MMG+14].

Next, we assume a MIMO-GFDM system with MT transmit and MR receive antennas [EMZF16,

CNA+16]. The GFDM modulated signal for each transmit antenna mT = 1, . . . ,MT and for each

sample n = 1, . . . ,N is defined as

xn,mT
=

R

∑
r=1

M

∑
m=1

dr,m,mT
pr,ngm,n, (5.28)

where dr,m,mT
are the complex GFDM modulated data symbols for each transmit antenna mT.

Note that the GFDM modulated signal can be represented by a matrix X ∈ CN×MT with elements

X(m,mT) = xn,mT
. Moreover, using the DFT, we can transform the transmitted signal X into the

frequency domain, i.e., X̃ = FN ⋅X, where FN is a DFT matrix of size N ×N defined in (A.5).

Note that the model proposed in equation (5.1) is a general model that describes the received

signal for multi-carrier MIMO systems. Hence, for the received signal in the frequency domain

after the removal of the cyclic prefix, we have

Ỹ = H̃ ●1,22,4 X̃ + Ñ = Ỹ 0 + Ñ . (5.29)

The matrices, Ỹ ∈ CN×MR , Ỹ 0 ∈ C
N×MR , and Ñ ∈ CN×MR , represent the noisy received signal, the
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5.2. Generalized Frequency Division Multiplexing (GFDM)

noiseless received signal, and the noise matrix, respectively.

Channel tensor

We model the frequency selective channel using the 4-way channel tensor H̃ ∈ CN×N×MR×MT defined

in (5.2). We derive the structure of the 4-way channel tensor in the frequency domain and its

unfoldings in Appendix B.3. Hence, the generalized unfolding [H̃]([1,3],[2,4]) is given by

[H̃]([1,3],[2,4]) = H̃ ◇ (1TMT
⊗ IN) ∈ CNMR×NMT , (5.30)

where the matrix H̃ ∈ CMR×NMT as defined in (5.7) contains all channel coefficients in the frequency

domain. Moreover, the matrix H ∈ CMR×LMT represents the channel matrix in the time domain.

Hence, the matrix H contains all channel impulse responses h
(mR,mT)
L

∈ C
L×1, for mR = 1, . . . ,MR,

mT = 1, . . . ,MT, and L is the number of channel taps as explained in Section 5.1.1.

H =

⎡⎢⎢⎢⎢⎢⎢⎣
hL
(1,1)T hL

(1,2)T . . . hL
(1,MT)T

⋮ ⋮ ⋮ ⋮
hL
(MR,1)T hL

(MR,2)T . . . hL
(MR,MT)T

⎤⎥⎥⎥⎥⎥⎥⎦
(5.31)

The relationship between the channel matrix in the time domain and the frequency domain is given

by

H̃
T
= (IMT

⊗FN×L)HT, (5.32)

where the matrix FN×L ∈ CN×L contains the first L columns of the DFT matrix FN .

Data Transmission

Recall that the GFDM modulated signal for each transmit antenna mT = 1, . . . ,MT and for each

sample n = 1, . . . ,N is defined as

xn,mT
=

R

∑
r=1

M

∑
m=1

dr,m,mT
pr,ngm,n, (5.33)

where dr,m,mT
are the complex modulated data symbols for each transmit antennamT. Let us define

the data tensor D ∈ CR×M×MT that contains the elements D(r,m,mT) = dr,m,mT
. Moreover, we define

the matrices P ∈ CR×N with elements P (r,n) = pr,n, G ∈ CM×N with elements G(m,n) = gm,n, and

X ∈ C
N×MT with elements X(n,mT) = xn,mT

. The elements of these matrices are defined at the

beginning of this section. Hence, the matrices P , G, and X contain the subcarriers, the filter

coefficients, and the GFDM modulated symbols, respectively. From equation (5.33), we define the
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tensor T ∈ CR×N×MT as

T (r,n,mT) =
M

∑
m=1

dr,m,mT
gm,n⇔ T =D ×2 GT.

Using the defined tensor T , the matrices X and P , and the definition of the contraction operator

in (2.9), for equation (5.28), we get

X =DP ●1,21,2T ,

where DP = I3,N ×1 P ∈ CR×N×N . Inserting the structure of the tensors DP and T into the above

equation, the transmit signal becomes

X = (I3,N ×1 P ) ●1,21,2 (D ×2 GT) .

Next, using the property (2.10), we have

X = [I3,N ×1 P ](3,[1,2]) ⋅ [D ×2 GT]([1,2],3)
= (IN ◇P )T ⋅ (GT ⊗ IR) ⋅ [D]([1,2],3)

Transposing the above equation and using property (2.18), we have

XT
= [D](3,[1,2]) ⋅ (GT ⊗ IR)T ⋅ (IN ◇P )
= [D](3,[1,2]) ⋅ (G⊗ IR) ⋅ (IN ◇P )
= [D](3,[1,2]) ⋅ (G ◇P )

Finally, by transposing XT, we get

X = (G ◇P )T ⋅ [D]([1,2],3) ∈ CN×MT . (5.34)

Hence, the GFDM modulation matrix denoted by A in [AMGG13,MMG+14, EMZF16,CNA+16]
equals A = (G ◇P )T [NCH+17].

The transmit signal in the frequency domain is then given by

X̃ = FN ⋅ (G ◇P )T ⋅ [D]([1,2],3) ∈ CN×MT . (5.35)

Moreover, we assume that the data tensor consists of data and pilot symbols, D = Dd + Dp.

The unfoldings Dd and Dp represent the data symbols and the pilot symbols, respectively. We

assume that the pilot symbols are placed on equidistant positions in the frequency domain, for

each antenna. This spacing in the frequency domain is denoted by ∆F . Moreover, in order to

separate the different transmit antennas, the pilot symbols corresponding to the different antennas

should be orthogonal to each other. Therefore, assuming two transmit antennas, the pilot positions
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5.2. Generalized Frequency Division Multiplexing (GFDM)

dedicated to antenna one are forbidden as pilot positions for the antenna two or to transmit data.

We explain the piloting sequences in Section 5.1.1 and we visualize them in Fig. 5.5. Note that in

Section 5.1.1 we transmit K frames, whereas here, we transmit only one frame, i.e., K = 1.

Receiver Design

Using the property (2.10), for the noiseless part of the received signal in the frequency domain

given in (5.29), we get

[Ỹ 0]([1,2],0)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= [H̃]([1,3],[2,4]) ⋅ [X̃]([1,2],0)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

vec (Ỹ 0) = [H̃]([1,3],[2,4]) ⋅ vec (X̃) . (5.36)

After substituting equation (5.30) into equation (5.36), we have

vec (Ỹ 0) = [H̃ ◇ (1T
MT
⊗ IN)] ⋅ vec (X̃) . (5.37)

The above equation of the received signal in the frequency domain represents a CP model that is

degenerate in all modes, and it is given by

Ỹ 0 = I3,NMT
×1 (1T

MT
⊗ IN) ×2 H̃ ×3 vec (X̃)T ∈ CN×MR . (5.38)

Equation (5.38) has a similar structure as the OFDM received signal in (5.11) if we consider only

one frame (K = 1 in (5.11)). Moreover, in equation (5.38) the symbols are GFDM modulated. Fur-

thermore, equation (5.38) can be easily extended to multiple frames (k = 1, . . . ,K) by concatenating

multiple rows of GFDM modulated symbols along the 3-mode, i.e.,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

vec (X̃1)T
⋮

vec (X̃K)T

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

For the received signal containing K frames, we get

Ỹ0 = I3,NMT
×1 (1T

MT
⊗ IN) ×2 H̃ ×3

⎡⎢⎢⎢⎢⎢⎢⎢⎣

vec (X̃1)T
⋮

vec (X̃K)T

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ C

N×MR×K .

We can estimate the GFDM modulated symbols from equation (5.38) using a ZF filter as de-

scribed in Algorithm 5.1. Note that the ZF receiver requires a prior pilot based channel estimate

H̃p. The pilot based channel estimate is obtained from the pilot symbols within the tensor D as

explained beforehand and in Section 5.1.1. Additionally, we demodulate the data symbols based

155



on a ZF filter according to equation (5.34), i.e., [(G ◇P )T]+ ⋅X = [D]([1,2],3) [MDK+17]. Another
alternative for the demodulation of the GFDM symbols is a matched filter [MDK+17]. However, the
ZF filter is more accurate than the matched filter. Therefore, we use the ZF receiver to demodulate

the GFDM symbols as a benchmark.

Moreover, we propose an iterative receiver that is initialized with the pilot based channel estimate

H̃p. Note that this pilot based channel estimate is also used to initialize the ZF algorithm (see

Algorithm 5.1). Considering the noisy observation of the received signal in equation (5.29) and

the structure of the noiseless tensor in (5.38), we can estimate the transmitted data symbols in an

LS sense. Recall that equation (5.37) represents the [Ỹ 0]([1,2],0) unfolding of the noiseless tensor.

Similarly, for the noisy received signal, we have

vec (Ỹ ) = [H̃ ◇ (1TMT
⊗ IN)] ⋅ vec (X̃) + vec (Ñ) . (5.39)

Taking into account that X̃ is a GFDM modulated signal in the frequency domain with a structure

given in (5.35) and the property (2.24), the noisy received signal is given by

vec (Ỹ ) = [H̃ ◇ (1TMT
⊗ IN)] ⋅ vec (FN ⋅ (G ◇P )T ⋅ [D]([1,2],3)) + vec (Ñ)

= [H̃ ◇ (1TMT
⊗ IN)] ⋅ vec (FN ⋅ (G ◇P )T ⋅ [D]([1,2],3) ⋅ IMT

) + vec (Ñ)
= [H̃ ◇ (1TMT

⊗ IN)] ⋅ [IMT
⊗ (FN ⋅ (G ◇P )T)]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶∗

⋅vec ([D]([1,2],3)) + vec (Ñ) . (5.40)

Recall that the GFDM modulated symbols are not orthogonal since they are spread over R subcar-

riers and M time subsymbols. Therefore, the block diagonal channel matrix in the part denoted by

* in equation (5.40) is additionally multiplied by IMT
⊗ (FN ⋅ (G ◇P )T) as compared to OFDM.

Fig. 5.18 depicts the structure of the matrix denoted by * in equation (5.40) for a MIMO-GFDM

system with parameters MT = 2, MR = 3, and N = 3. Recognize that in contrast to the block diag-

onal structure of the channel matrix depicted in Fig. 5.3 for MIMO-OFDM systems, the matrix in

Fig. 5.18 is a full matrix.

Figure 5.18.: Visualization of the matrix [H̃ ◇ (1TMT
⊗ IN)] ⋅ [IMT

⊗ (FN ⋅ (G ◇P )T)] for a MIMO-
GFDM system with parameters MT = 2, MR = 3, and N = 3.

156



5.2. Generalized Frequency Division Multiplexing (GFDM)

Using the assumption MR ≥MT, for equation (5.40), we get the LS estimate of the data symbols

according to

vec ([D̂]([1,2],3)) = [[H̃ ◇ (1T
MT
⊗ IN)] ⋅ [IMT

⊗ (FN ⋅ (G ◇P ))T]]+ ⋅ vec (Ỹ ) .
Next, we project the estimated symbols on the finite alphabet Ω that depends on the modulation

order and the modulation type. Afterwards, we exploit these projected symbols to compute an

improved estimate of the channel tensor H̃. For the 2-mode unfolding of the noisy received signal

Ỹ (the transpose of Ỹ ), we have

[Ỹ ](2,[1,3]) = Ỹ T
= H̃ ⋅ [vec (X̃) ◇ (1T

MT
⊗ IN)]T + ÑT

(5.41)

However, the structure of the matrix [vec (X̃) ◇ (1T
MT
⊗ IN)]T ∈ CNMT×N does not allow us to

compute an LS estimate of the channel in the frequency domain. The authors of [EMZF16] also

show this. We can compute an improved estimate of the channel in the frequency domain if we

transmit multiple frames K ≥MT. Moreover, we can compute the estimate of the channel in the

time domain using equation (5.32). Here, we propose to compute the channel estimate in the time

domain because in the time domain there are less unknowns that should be estimated (in the time

domain, we estimate L ≪ N unknowns per receive-transmit antenna pair, where L denotes the

number of channel taps and N denotes the number of samples/channel coefficients in the frequency

domain). Therefore, we consider equation (5.32) and the transpose of equation (5.41) that is given

by

Ỹ = [vec (X̃) ◇ (1TMT
⊗ IN)] ⋅ H̃T + Ñ

= [vec (X̃) ◇ (1TMT
⊗ IN)] ⋅ (IMT

⊗FN×L) ⋅HT + Ñ , (5.42)

where the matrix FN×L ∈ CN×L contains the first L columns of the DFT matrix FN and L denotes

the number of channel taps. Moreover, the matrix H ∈ CMR×LMT represents the channel matrix in

the time domain as previously defined is equation (5.31). From equation (5.42), we can compute

an LS estimate of the matrix H , i.e.,

Ĥ
T
= Ỹ [[vec (X̃) ◇ (1TMT

⊗ IN)] ⋅ (IMT
⊗FN×L)]+

The proposed ALS algorithm for the joint channel estimation and symbols estimation for GFDM

systems is summarized in Algorithm 5.10. This ALS algorithm is stopped if it exceeds the num-

ber of iterations that is set to 5, reaches a predefined minimum of the cost function given by

∥Ỹ − H̃ ●1,22,4 X̃∥2F / ∥Ỹ∥
2

F
, or if the error of the cost function has not changed within two consecutive

iteration. Note that we have proposed this receiver in [NCH+17], however, here it has been derived

by means of the generalized tensor contractions.
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Algorithm 5.10: Alternating Least-Squares (ALS) receiver

initialization H̃p

while does not exceed the maximum number of iterations, does not reach a predefined
minimum, or the error of the cost function has not changed within two consecutive
iterations do

Update vec ([D̂]([1,2],3)) = [[H̃ ◇ (1T
MT
⊗ IN)] ⋅ [IMT

⊗ (FN ⋅ (G ◇P ))T]]+ ⋅ vec (Ỹ ).
Project D̂ = proj (D̂) onto the finite alphabet Ω.

Compute ˆ̃
X = FN ⋅ (G ◇P )T ⋅ [D̂]([1,2],3).

Update Ĥ
T
= Y [[vec ( ˆ̃X) ◇ (1TMT

⊗ IN)] ⋅ (IMT
⊗FN×L)]

+
.

Compute the channel in the frequency domain ˆ̃
H = Ĥ ⋅ (IMT

⊗FN×L)T.
end

Result: D̂ and ˆ̃H

5.2.1 Simulation Results

For simulation purposes, we have considered a 2 × 2 GFDM system with a frequency selective

channel, more precisely the 3GPP Pedestrian A channel (Ped A) [ITU97]. For this simulations

results, we use 3000 realizations. The data symbols are modulated using 4-QAM or 16-QAM. The

modulated data symbols are transmitted on 32 subcarriers (R = 32) with subcarrier spacing of 240

kHz and 15 subsymbols (M = 15). The filter is a root raised cosine with roll off factor 0.3 and the

duration of the cyclic prefix is 32 samples. The performance of the iterative receiver proposed in

this section is compared in terms of the SER with a ZF receiver (we use Algorithm 5.1 to estimate

the GFDM modulated symbols followed by a ZF filter to demodulate the data symbols). Moreover,

we assume a perfect synchronization and no coding. We assume pilot symbols that are distributed

on equidistant positions denoted by ∆F . The ALS algorithm is stopped if the error of the cost

function is smaller than 10−4, if the error difference in two consecutive iterations is smaller than

10−4, or the number of iterations exceeds five.

First, we compare the proposed ALS receiver and the ZF receiver for different amounts of pilot

symbols ∆F = 20 and ∆F = 40. The results are presented in Fig. 5.19. The iterative receiver

outperforms the ZF receiver. As expected, a larger amount of pilot symbols leads to a more

accurate pilot based channel estimate and therefore, to a lower SER. Moreover, the gain of the

additional iterations becomes more pronounced with an increase of the SNR and if the initial pilot

based channel estimate is less accurate.

Next, we compare the ALS receiver and the ZF receiver for different modulation orders. In

Fig. 5.20, we depict the SERs for GFDM systems using 4-QAM and 16-QAM to modulate the data

symbols. The total transmit power in both cases is equal. Hence, the SER is higher if we modulate

the data symbols using 16-QAM because the minimum Euclidean distance between the symbols is

smaller.
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Figure 5.19.: Comparison of the SER for different pilot positions spacings in the frequency domain.
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Figure 5.20.: Comparison of the SER for different modulation order.

5.2.2 Summary

In this section, we have first shown that the GFDM transmit signal can also be modeled based on

the generalized tensor contraction. Thereby, we show that the tensor contraction is a very practical
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operator. Using this model of the transmit signal, we first provide more insides on the structure

of the GFDM modulation matrix. Moreover, we show that the received signal tensor for MIMO-

GFDM can also be described by a generalized tensor contraction between the transmit signal and

the channel tensor in the frequency domain. The extension of our model to a system with several

frames is straightforward and leads to a higher tensor gain. Moreover, our model provides new

opportunities for the GFDM filter bank, such as finding the best pilot sequences while studying

the structure of the channel matrix under the assumption that the subcarriers are not orthogonal,

investigating more general GFDM systems when not all subcarriers or subsymbols are used for

data transmission and investigating new closed form solutions by adding coding or random coding.

Furthermore, we have presented a simple iterative ALS receiver. By comparison with a ZF receiver,

we show that the proposed iterative receiver is able to estimate the channel impulse response and

the data symbols within only a few iterations. The fast convergences of the algorithm is due to the

projection of the estimated symbols onto the finite alphabet that depends on the modulation type

and the modulation order.

5.3 Conclusions

In this chapter, we have first presented a tensor model for MIMO-OFDM systems using the gen-

eralized tensor contraction operator between a channel tensor and a transmit signal tensor. This

model is a very general and flexible way of describing the received signal in MIMO-OFDM sys-

tems for all subcarriers jointly. We have also proposed a new representation of the channel tensor

using a 4-way tensor with a special BTD structure. The resulting tensor model of the received

signal enables the design of the traditional ZF receiver and facilitates the design of two iterative

LS receivers based on projections and enumeration, respectively. Moreover, we have also proposed

recursive versions of the two iterative receivers ILSP and ILSE denoted by RLSP and RLSE, respec-

tively. The algorithms based on enumeration outperform the rest of the algorithms at the cost of an

increased complexity. The RLSE algorithm is suitable for estimating the channel and the symbols

for any configuration setup without additional coding. The algorithms based on projections have

a better performance than the ZF receiver if the number of transmitted frames is large enough.

Moreover, the accuracy of the ILSP algorithm depends on the rank of the transmitted symbol

matrices. Therefore, its performance in terms of the SER depends on the chosen modulation order

and the modulation scheme. Hence, the system can be modified such that only specific code words

are used. Moreover, the recursive algorithms can be modified such that they exploit the channel

correlation in time varying scenarios. Note that we already exploit the correlation of the channel

among adjacent subcarriers that leads to a reduced number of pilot symbols as compared to other

tensor models. The aforementioned model and results have been published in [NHdA18].

Next, we have used Khatri-Rao coding for the transmission of the OFDM symbols leading to

Khatri-Rao coded MIMO-OFDM systems. The generalized tensor model using the contraction

operator has been extended to the Khatri-Rao coded MIMO-OFDM system in a straightforward
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5.3. Conclusions

way. In this case, the transmit signal tensor has a CP structure. By exploiting the overall tensor

model, we propose a receiver based on the LSKRF. This receiver requires the same amount of

training symbols as traditional OFDM techniques, but it has an improved performance in terms

of the SER. Hence, we benefit from the additional tensor structure of the transmitted signal to

achieve a tensor gain. In addition, we propose to even more improve the performance of this

receiver by means of an additional LS iteration. In the future, we can consider not just one

additional LS iteration, but several iterations leading to an ALS based receiver initialized using

the LSKRF. We should also consider the design of optimal orthogonal pilot sequences specific

to the KR receiver. The tensor model and the proposed receiver for Khatri-Rao coded MIMO-

OFDM systems have been published in [NHdA17]. Note that the Khatri-Rao coding strategy

has a reduced spectral efficiency than the uncoded MIMO-OFDM system. Therefore, we propose

an alternative transmission technique where the ”coding matrices” contain random data symbols.

Thereby, this transmission technique also imposes a CP structure on the transmit signal tensor.

Using the resulting received signal tensor, we propose two receivers for randomly coded MIMO-

OFDM systems. The first proposed receiver RC-KR estimates the symbol matrices based on

the LSKRF. The second proposed RC-KR+ALS receiver is an ALS algorithm initialized with

the estimates of the symbol matrices using the RC-KR receiver. The proposed RC-KR+ALS

algorithm outperforms the iterative receivers for MIMO-OFDM because it exploits the additional

tensor structure of the signal tensor. Unlike the receivers for Khatri-Rao coded MIMO-OFDM,

both receivers for the randomly coded MIMO-OFDM assume that MR ≥MT. In the future, we can

consider a recursive LS instead of LS in order to relax this condition. However, the randomly coded

system has a higher spectral efficiency than the Khatri-Rao coded system. In the future, the system

can be modified such that both symbol matrices contain symbols from different constellations

and/or different modulation orders. This will lead to a resulting transmit signal tensor with diverse

entries and potentially improved performance for the receivers in terms of the SER. We should

investigate which combinations of modulation orders and modulation types are suitable for different

SNRs.

Moreover, in this chapter, we have shown that our general model using tensor contraction for

MIMO-OFDM systems can be extended to MIMO-GFDM systems in a straightforward fashion.

Thus, we have shown the flexibility and importance of this model. In the case of MIMO-GFDM sys-

tems, the transmit signal tensor can also be expressed in terms of the generalized tensor contraction.

Therefore, we also use the properties of the tensor contraction operator to provide more insides

into the structure of the GFDM modulation matrix. Based on the overall received signal, we have

proposed an ALS receiver for MIMO-GFDM systems. Note that for the MIMO-GFDM system, in

this chapter we have assumed only one frame (K = 1). However, the extension to multiple frames

is straightforward and leads to an additional tensor gain. Using the proposed model, we can study

the structure of the resulting channel tensor for MIMO-GFDM systems, where the subcarriers are

not orthogonal. Moreover, our model provides new opportunities for the GFDM systems, such as

finding the best pilot sequences, investigating more general GFDM systems when not all carriers

or subsymbols are used for data transmission, and investigating new closed form solutions for the
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receiver by adding coding or random coding. The presented iterative ALS receiver has already

been published in [NCH+17]. However, we have derived the ALS receiver in [NCH+17] based on the

PARATUCK2 decomposition. In contrast to the derivation based on the PARATUCK2 decompo-

sition in [NCH+17], the solution presented in this thesis based on the generalized tensor contraction

is more elegant, shorter, and practical, as well as it provides more physical insides.

In the future, the general tensor model for multi-carrier systems proposed in this chapter can be

extended to other multi-carrier techniques such as UFMC and FBMC. Even more, this model can

be straightforwardly extended to relay-assisted systems and multi-user systems.
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Chapter 6

Application of Tensor Algebra to Biomedical Sig-

nal Processing

EEG (ElectroEncephaloGraphy) and MEG (MagnetoEncephaloGraphy) are methods for recording

the brain activity. We use these methods to investigate the function and organization of the human

brain. They, respectively, measure the magnetic flux and the electric potential at the head surface.

The EEG and MEG signals are typically multi-dimensional, and their dimensions correspond to

time, space (channels), participant, and experimental condition. Moreover, EEG and MEG signals

used in biomedical studies a typically acquired simultaneously. Thus, these signals simultaneously

capture aspects of the same electric activity and therefore can be coupled.

The multi-dimensional signals can be decomposed into rank one components according to the CP

decomposition [KB09]. The authors of [RH08] and [RH13a] propose the SECSI framework for the

efficient computation of the approximated CP decomposition (see Section 3.1). Moreover, many

combined signal processing applications benefit from a coupled analysis based on the coupled CP

decomposition [SDL17a,ZCJW17,BCA12,ARS+13,ABS15,RDGD+15]. The coupled CP decompo-

sition jointly decomposes heterogeneous tensors that have at least one factor matrix in common. A

detailed analysis of the computation of the coupled CP decomposition based on ALS is presented

in [FCC16,CFC16], where it is shown that tensor have to be normalized before the computation

of the coupled CP decomposition based on ALS if the coupled tensors contain noise with different

noise variances. We propose the coupled SECSI (C-SECSI) framework in Section 3.6 and in [NH16]

as an extension of the SECSI framework [RH08, RH13a] for the computation of the coupled CP

decomposition. The C-SECSI framework efficiently approximates the coupled CP decomposition

of two noisy tensors that have at least one mode in common even in ill-posed scenarios, e.g., if

the columns of the factor matrices are highly correlated. Moreover, the C-SECSI framework offers

adjustable complexity-accuracy trade-offs and efficiently decomposes tensors with different noise

variances without performance degradation. Furthermore, in Section 3.6 and in [NKHH17] a reli-

ability measure for the C-SECSI framework is proposed. This reliability test allows us to control

the rank of the coupled CP decomposition.

In this chapter, we present two applications of the C-SECSI framework proposed in Section 3.6

for the joint analysis of EEG and MEG signals. In the first section of this chapter, we provide a

validation of the photic driving effect using C-SECSI [NKHH17]. In the second section, we present

a validation of a controlled experiment based on a joint EEG-MEG signal decomposition in order
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to show the effects of skull defects on the measurement signals [NLA+17].

6.1 Validation of the photic driving effect based on the coupled CP

decomposition

In the past, it has been shown that the human brain activity contains several typical frequencies

(oscillators) [Wol99,Her01]. These frequencies include the alpha frequency, the beta frequency, the

theta frequency, and the gamma frequency. The alpha frequency is typically in the range between

7.5 Hz and 12.5 Hz, the beta frequency is in the range between 12.5 Hz and 30 Hz, the theta

frequency is in the range between 4 Hz and 7.5 Hz, and the gamma frequency is in the range

between 30 Hz and 40 Hz [Wol99, Her01]. However, these ranges/bands are not strict as they

vary from individual to individual. Moreover, the author of [Wol99] shows that the power and

synchronization of some of these frequencies varies with the state of the individual volunteer. For

instance, the awakeness state of the volunteer, the age of the volunteer, the health of the volunteer,

and other environmental factors.

An IPS (Intermittent Photic Stimulation) is a stimulation of the brain by repetitive light flashes

that can induce oscillations in the human brain. This effect is called the PD (Photic Driving)

effect. IPS can cause a frequency entrainment that is indicated by the synchronization of the

individual brain rhythm with the photic stimulation frequency. The PD effect is widely used to

assess effects of medicaments and for diagnosis. The studies of the PD effect provide evidence

for the frequency selectivity of the neural oscillator network in the human brain [dS91, NKH16].

The authors of [LPdA09] use the PD effect for the investigation of neurophysiological mechanisms

underlying autistic symptoms. Moreover, in [KPVLdS02], the PD effect of epileptic patients is

investigated on the basis of simultaneously recorded EEG and MEG signals. The first investigation

of frequency entrainment using simultaneously recorded EEG and MEG signals during the IPS with

frequency, which is adapted to the individual alpha rhythm is performed in [SLJ+06]. Furthermore,

the authors of [SSK+16] analyze a rod-driven PD effect and show that strong alpha resonance

phenomena exist for a rodinput at stimulation frequencies around the individual alpha rhythm

and the first subharmonic (note that the first subharmonic corresponds to a frequency in the

theta band, i.e., theta rhythm). Moreover, based on a spectral analysis, the authors of [SLJ+06]
show an entrainment of the alpha frequency. Furthermore, the frequency entrainment is analyzed

in [SSK+16] using both time analysis and frequency analysis. Also, a combined time-frequency

analysis is utilized in [WGP+11] to study the frequency entrainment.

In this section, we consider the same study as in [SSK+16]. Here, we present a combined time-

frequency-channel analysis by utilizing tensor decompositions. We evaluate numerically and visually

all resulting components for each volunteer and stimulation frequency.

164



6.1. Validation of the photic driving effect based on the coupled CP decomposition

6.1.1 Measured EEG-MEG Signals

In order to investigate the synchronization effect of the alpha rhythm, an experiment has been

conducted on twelve healthy volunteers at the Biomagnetic Center of the University Hospital in

Jena, Germany. The study has been approved by the Ethics Committee of the Faculty of Medicine

of the Friedrich-Schiller-University Jena. Within this work we number the different volunteers

from 1 to 12, for distinguishing reasons. In the course of the experiment, the volunteers have been

exposed to a flickering light. The stimulus has been transmitted using optical fibers from light

emitting diodes outside the recording room. Light diffusers at approximately 10 cm in front of the

volunteer’s eyes have provided a luminance of 0.0003 cd/m2. Throughout the exposure, the eyes of

the volunteers have been closed. Their brain activity has been recorded simultaneously with EEG

and MEG. The EEG and MEG signals have been measured using 128 channels and 306 channels,

respectively.

In the first step of the experiment, the individual alpha rhythm has been measured during 60 s

of resting MEG. The individual alpha frequencies (fα) have been then calculated by means of the

averaged Fourier transform from the occipital MEG channels. The resulting alpha frequencies in

Hz for each volunteer are listed in Table 6.1.

Volunteer 1 2 3 4 5 6 7 8 9 10 11 12

fα 9.6 10.7 10.4 10.8 10.7 10.8 7.5 10.8 11.0 10.7 12.2 10.3

Table 6.1.: Individual alpha frequency fα in Hz for each volunteer.

As an IPS, twenty different stimulation frequencies with irregular step size have been used,

i.e., the fs frequencies listed in Table 6.2. Each stimulation frequency has been performed in 30

stimulation trains, each consisting of 40 periods with a pulse/cycle duration of 0.5. Therefore, the

measured signals contain only odd harmonics. Between each train there has been a resting period

of 3 s. From one frequency block to the next one, there has been a resting period of 30 seconds.

To avoid an ordering effect, the sequential arrangement of the stimulation frequencies has been

chosen randomly. Further details regarding the experiment are available in [SSK+16]. Moreover,

Condition 1 2 3 4 5 6 7 8 9 10

fα ratio 0.40 0.45 0.50 0.55 0.60 0.70 0.80 0.90 0.95 1.00

Condition 11 12 13 14 15 16 17 18 19 20

fα ratio 1.05 1.10 1.30 1.60 1.90 1.95 2.00 2.05 2.10 2.30

Table 6.2.: Stimulation frequencies in fα rations for the particular conditions.

the authors of [SSK+16] report no evidence of entrainment for stimulation frequencies larger than

1.30 ⋅ fα. Therefore, we analyze the measurement results only for the first thirteen stimulation

frequencies, i.e., from 0.40 ⋅ fα until 1.30 ⋅ fα.

165



F
re

q
u
e
n
c
y

sime tu
vn

ne
ls

F
re

q
u
e
n
c
y

wime xy
zn

ne
ls

Figure 6.1.: Visualization of the EEG and MEG tensors per volunteer and stimulation frequency

6.1.2 Joint EEG-MEG Signal Decomposition

In our analysis, we first average the MEG and EEG signals for each stimulation frequency and

we exclude all faulty EEG and MEG channels. In addition to the usual preprocessing, a complex

Morlet wavelet decomposition is used to obtain an estimate of the time-frequency distribution of

the EEG and MEG signals for each channel and stimulation frequency. The wavelet coefficients

between 3.77 Hz and 15.15 Hz are selected for the further analysis, thereby including only the

alpha band and theta band in this analysis. The complex wavelet coefficients for each of the EEG

and MEG channels are then arranged as frontal slices in 3-way tensors as depicted in Fig. 6.1.

As a result, we have different complex-valued tensor with dimensions frequency×time×channels
for each stimulation frequency, measurement type (EEG or MEG), and volunteer. The frequency

mode and the time mode correspond to the discretized values resulting from the wavelet transform.

Therefore, the frequency mode contains two hundred discrete frequency values from 3.77 Hz until

15.15 Hz. The time mode, however, varies from around 5000 ms up to 20000 ms depending on the

corresponding stimulation frequency. Furthermore, the channels mode corresponds to the numbers

of EEG and the MEG channels, which can also vary from volunteer to volunteer and condition.

This is because as previously mentioned, in this analysis taken into account are only the channels

that do not contain artifacts and are perfectly intact, meaning that the sensors corresponding to

those channels had have perfect connection during the measurement (i.e., the faulty channels are

excluded from this analysis).

Next, the EEG and MEG signal tensors are jointly analyzed using the C-SECSI framework, for

each volunteer and stimulation frequency, respectively. The coupled CP decomposition has been

originally computed for different ranks. However, the reliability and residual have indicated that

the tensor rank is overestimated for values equal to or larger than three [NKHH17]. Therefore, in

this thesis, we present the result for tensor rank R̂ = 2. Moreover, it is assumed that the frequency

mode is common for both the EEG and MEG signal tensors. Before the computation of the coupled

CP decomposition, each of the tensors is normalized to norm one, i.e.,

T EEG

∥T EEG∥H and
T MEG

∥T MEG∥H .

This normalization of the tensors is due to the different amplitude scales and units of the EEG and

MEG tensors values (fT and µV ).
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6.1.3 Analysis

The joint EEG-MEG signal decomposition based on the coupled CP decomposition using the C-

SECSI framework (see Section 3.6) results in three factor matrices for the EEG and three factor

matrices for the MEG signal tensor (see equations (3.30) and (3.31)), per volunteer and per stimu-

lation frequency. Each factor matrix, consist of two columns corresponding to the two components,

due to the assumed rank R̂ = 2.

The resulting components are then visually and numerically analyzed. The visual analysis cor-

responds to the analysis of the field-maps in order to identify the recordings and components that

contain a successfully evoked response of the visual cortex. The measured MEG and EEG signals

are converted to field-maps by calculating the RMS (Root Mean Square) of the values for each

channel. All field-maps are accordingly labeled using three categories namely (1) if they contain

only clear visual response patterns, (2) contain visual response patterns and some other activity, or

(3) contain no visual response patterns. The labeling of the field-maps has been performed by three

experienced professionals (Stephan Lau (SL), Uwe Graichen (UG) and Daniel Strohmeier (DS)).

Their individual labeling results have been cross-referenced and unified by a majority vote. This

labeling of the field-maps assures that the obtained components and frequencies are not artificial.

Also, the labeling confirms a visual response of the photic driving effect in the occipital region in

every data set as compared to other state-of-the-art studies where often this has not been done.

The numerical analysis includes search of the maxima in the frequency components, comparing

the weights of the components, and computing the reliability and the residual. To the maxima

of the frequency signatures we refer to as the obtained frequencies. Selected for further analysis,

however, are only frequencies which field-map show only clear visual response (category (1)). These

frequencies are then further rearranged into two groups. The first group represents the recruited

frequencies, whose frequency is very close to the stimulation frequency and/or its second harmonic

with a maximum difference of ±0.05fs and ±0.05 ⋅ 2 ⋅ fs, respectively. Similar to our work, the

higher order harmonics are also analyzed and confirmed in [Her01]. The second group, i.e., the not-

recruited group contains all remaining obtained frequencies. Moreover, all frequencies are expressed

in fractions of the individual alpha frequency of the volunteer to account for the inter-individual

differences. Furthermore, the weights represent the power of each component. The reliability is

defined in (3.45) as a similarity measure of the final estimates of the common factor matrices. To

this end, the residual is computed according to

RES =
∣∣X̂ −X ∣∣2

H

∣∣X ∣∣2H
, (6.1)

where X is the noisy tensor to be decomposed using the C-SECSI framework, and X̂ is the recon-

structed tensor after the decomposition. Details for the computation of the coupled CP decompo-

sition via C-SECSI, the reliability, and the residual are provided in Section 3.6.
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6.1.4 Results

Statistics from the labeling of the field-maps

The labeling of the visual response topographies in the RMS field-maps show that in 89.4% of

the measured EEG signals and in 73.5% of the measured MEG signals some visual response of

the photic driving is present (i.e., category(2)). After the decomposition, in at least one of the

components there is some visual response in 96.03% and 72.85%, for EEG and MEG, respectively.

Clear photic driving visual response (i.e., category(1)) is observed in 41.72% of the MEG signals

before and 62.91% after the decomposition. Clear photic driving visual response (i.e., category(1))

is observed in 72.18% of the EEG signals before and 84.77% after the decomposition. This shows the

benefit of using tensor decomposition for extracting the signal components, rather than analyzing

directly the measured signals. Moreover, from the 84.77% of the EEG results with visual response,

after the decomposition 49% correspond to the recruited frequencies, and from the 62.91% of the

MEG results with visual response, after the decomposition 31.79% correspond to the recruited

frequencies. Altogether visual pattern is more often present in the EEG signals than in the MEG

signals. However, a larger percentage of the MEG frequencies with a visual pattern are recruited

(31.79% of 62.91%) as compared to EEG (49% of 84.77%).

Visualization of the estimated components

Recall that the joint EEG-MEG signal decomposition based on the coupled CP decomposition

results in three factor matrices for the EEG signal tensor and three factor matrices for the MEG

signal tensor (c.f. equations (3.30) and (3.31)), per volunteer and per stimulation frequency. Each

factor matrix consists of two columns corresponding to the two components.

In Fig. 6.2, we visualize the estimated factor matrices from the coupled CP decomposition for

volunteer 1 and stimulation frequency 1.1fα. Additionally to the estimated components, in Fig. 6.2

depicted are the field-maps of the RMS of the measured signal values per channel for both MEG

and EEG signals (first column). These RMS field-maps represent the power distribution of the

measured signals before the decompositions. Next, depicted are the field-maps for the channel

signatures for component one and two, respectively (second and third column). The frequency

and the time signatures are depicted in Fig. 6.2 as a function of the frequency in Hz and as a

function of the time in s, respectively. The topographic visualization of the channel signatures for

both components depicts the occipital area where the photic driving effect is expected to occur.

Comparing the resulting frequency signatures for EEG and MEG, it is obvious that they are not

identical. Note that it has been assumed that the frequency mode is the common mode. In this

example, with the C-SECSI framework we are able to extract two underlying components. Both

components occurred in the occipital area and are represented by two different frequencies. The

component 2 is common for the EEG and the MEG signals. On the other hand, component 1 has

a different but similar frequency (not-recruited) that is closer to the individual alpha frequency.
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Figure 6.2.: RMS, channel, frequency, and time signatures for volunteer 1, and stimulation frequency
1.1fα.
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Figure 6.3.: RMS, channel, frequency, and time signatures for volunteer 1, and stimulation frequency
0.55fα.
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Figure 6.4.: RMS, channel, frequency, and time signatures for volunteer 1, and stimulation frequency
0.7fα.

Similar, the RMS, channel, frequency, and time signatures for volunteer 1 and stimulation fre-

quency 0.55fα are depicted in Fig. 6.3. Note that this stimulation frequency is in the range of

frequencies corresponding to the theta band. The two components show visual response in the

occipital region, and both components have comparable amplitudes over the time course. Here,

extracted are two underlying components, and they are represented by two different frequencies,

around 0.5fα and fα (i.e., theta frequency and alpha frequency).

Moreover, the RMS, channel, frequency, and time signatures for volunteer 1 and stimulation

frequency 0.7fα are depicted in Fig. 6.4. In contrast to the previous two examples, the field-map

of the measured EEG signal contains only clear visual response pattern, but has a lower power.

Moreover, the measured MEG signal contains no visual response pattern. Despite this, the tensor

decomposition is able to extract two components of which only component 2 is shared between

the EEG and the MEG signals. The MEG component 1, however, does not contain any visual

response. The EEG component 2 contains visual response and some other activity. Both resulting

EEG components are corresponding to the theta band.

Analysis of the obtained frequencies

Moreover, we analyze the obtained frequencies (the maxima of the frequency signatures) corre-

sponding to field-maps that contain clear visual response patterns (category (1)). As previously

mentioned in Section 6.1.3, we differentiate between two groups of obtained frequencies, recruited
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Figure 6.5.: Normalized frequencies obtained from the analysis, weights, reliability, and residual corre-
sponding to the EEG signals.

and not-recruited frequencies.

The normalized frequencies obtained from the analysis, for EEG and MEG are visualized using

scatter plots in Fig. 6.5 and Fig. 6.6, respectively. Figs. 6.5 and 6.6 correspond to volunteer 1.

In addition to the scatter plots, in these figures, we depict the weights of the components, the

reliability, and the residual for each stimulation frequency. Moreover, we depict two reference curves

representing the obtained frequencies equal to the stimulation frequency fs and 2fs. Figs. 6.5 and 6.6

show that the recruited frequencies are equivalent to the stimulation frequency. The not-recruited

frequencies correspond to 0.5fα and fα frequencies. Note that the frequency 0.5fα = 4.8 Hz is in the

theta band. The recruited frequencies are mainly more dominant than the not-recruited frequencies

that can be seen from the weights of these recruited and not-recruited frequencies. For stimulation

frequencies around 0.5fα, the EEG and MEG signals have two components (one component in the

theta band and another component in the alpha band) in common. On the other hand, for the rest
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Figure 6.6.: Normalized frequencies obtained from the analysis, weights, reliability, and residual corre-
sponding to the MEG signals.

of the stimulation frequencies, the signals are represented by only one component.

Next, we analyze the obtained frequencies jointly for all volunteers. The scatter plot of the

normalized frequencies obtained from the EEG frequency signatures for all volunteers is depicted

in Fig. 6.7. The scatter plot of the normalized frequencies obtained from the MEG frequency

signatures for all volunteers is depicted in Fig. 6.8. In addition to the scatter plots, Figs. 6.7

and 6.8 contain violin plots of the weights of the components, violin plots of the reliability, and

violin plots of the residual for each stimulation frequency. The violin plots are an alternative to the

box plots, that depict the median and the estimate of the distribution of the available data [HN98].

In Figs. 6.7 and 6.8, we depict two reference curves representing the obtained frequencies equal

to the stimulation frequency fs and 2fs. The recruited EEG and MEG frequencies follow these

reference curves. The median of the not-recruited frequencies, however, for stimulation frequencies

between 0.4fα −1.0fα is around (0.4±0.1)fα, and for stimulation frequencies between 1.0fα −1.3fα
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6.1. Validation of the photic driving effect based on the coupled CP decomposition

Figure 6.7.: Scatter plot of the normalized frequencies obtained from the analysis for EEG, violin plots
of the weights of the recruited and not-recruited components, reliability, and residual as a
function of the normalized stimulation frequency.

it increases towards (1±0.1)fα. The violin plots of the weights in Fig. 6.7 and Fig. 6.8 show that the

recruited frequencies are mainly more dominant than the not-recruited frequencies. The reliability

and the residual show that for stimulation frequencies around 0.5fα and fα the EEG and MEG

signals have two components in common. Note that if two components are active, one component

has a frequency in the theta band and the other one has a frequency in the alpha band. For the

rest of the stimulation frequencies, the EEG and MEG signals are represented by only one common

component.
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Figure 6.8.: Scatter plot of the normalized frequencies obtained from the analysis for MEG, violin plots
of the weights of the recruited and not-recruited components, reliability, and residual as a
function of the normalized stimulation frequency.

6.1.5 Discussion and Summary

Coupled CP decomposition and C-SECSI

We have applied a coupled CP decomposition on simultaneously recorded EEG-MEG signals for

differentiating cortical oscillators during photic driving. The coupled CP decomposition allows

us to decompose these multi-dimensional heterogeneous signals into their underlying components.

The parallel underlying components are extracted while preserving the original multi-dimensional

structure of the signals (frequency × time × channels, see Fig. 6.1) under the assumption that they

have the frequency mode in common. This is possible because the frequency entrainment has similar

behavior in the frequency domain for both EEG and MEG signals as shown in [SLJ+06, SSK+16,
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6.1. Validation of the photic driving effect based on the coupled CP decomposition

NKHH17]. Moreover, the benefits of coupled decompositions have been shown in many other

biomedical signal progressing applications such as [BCA12, ARS+13, PMS14, ABS15, RDGD+15,
NKHH17, NLA+17, vEHDLvH17]. We use the C-SECSI framework to compute the coupled CP

decomposition (see Section 3.6). The C-SECSI framework for 3-way tensors with one mode in

common computes eight initial estimates, four of which are coupled solutions and four are uncoupled

solutions. The final estimate is then chosen based on the minimum reconstruction error for both

tensors independently. Therefore, C-SECSI computes the coupled CP decomposition under the

constraint that one of the modes is coupled, but it still computes uncoupled estimates. This is

very piratical for the analysis of biomedical data, were the coupling is assumed, but not yet proven.

Moreover, for comparing the independently chosen final estimates we define a coupling reliability

in equation (3.45). As shown in Section 3.6, the reliability can be used to control the rank of the

coupled decomposition. We present similar results in [NKHH17]. The C-SECSI framework has

a higher accuracy in ill-conditioned scenarios such as computing the coupled CP decomposition

of tensors with collinear factors. Furthermore, another advantage of the C-SECSI framework is

that it can decompose tensors corrupted by noise with different variances without any additional

normalization or estimation of the SNRs.

Analysis of the signal components

In this section, we consider simultaneously recorded EEG-MEG signals resulting from a photic

driving study. Details regarding the experiment are described in Section 6.1.1 and in [SSK+16]. In
this experiment, as IPS are used high density frequencies, which are portions of the individual alpha

frequency. The authors of [SLJ+06] and [SSK+16] show that frequency entrainment is more likely to

occur if the stimulation frequency is a portion of the individual alpha frequency. A frequency domain

analysis is used in [SLJ+06] in order to show the entrainment of the alpha frequency. The frequency

entrainment is analyzed using both time and frequency analysis in [SSK+16]. Also, the authors of

[WGP+11] show that a combined time-frequency analysis is important while studying the frequency

entrainment. Here, we present a combined time-frequency-channel analysis by utilizing the coupled

CP tensor decomposition. We study all of the components resulting from the decomposition, for

twelve volunteers and 13 stimulation frequencies. By analyzing the frequency signatures, we observe

that for some of the volunteers the estimated alpha frequency varies with ±1 Hz as compared to the

estimated one during the measured resting state before the stimulation. Resembling findings are

reported in [SLJ+06] and [SSK+16]. Moreover, we observe that EEG and MEG signals do not always

have two frequency components in common. For instance, for volunteer 1, stimulation frequencies

1.1fα and 0.7fα EEG and MEG have only one frequency component in common, whereas for

stimulation frequency 0.55fα they have two components in common (one component corresponds

to the theta band and another one to the alpha band). We also observe in [NKHH17] and [NLA+17]
that EEG and MEG not always share the same components. In the estimated time signatures, we

can mainly recognize three cases, one when both components have an obvious plateau, second,

only one of the components has a plateau, and third, when there is an on-off switching between the
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two components. A detailed analysis of the time signatures is not included in this work. However,

a time domain investigation for frequency entrainment for the same experiment is presented in

[SSK+16] and [WGP+11]. Here, we focus on the channel signatures and if they contain visual

response pattern in the occipital area or not. Using tensor decomposition, we are able to extract

meaningful components even if the RMS of the measured signal contains no clear visual response

pattern. Such an example is illustrated in Fig. 6.4, where for volunteer 1 and stimulation frequency

0.7fα, the measured EEG signal contains some visual pattern, but the MEG signal contains no

visual pattern. The tensor decompositions, however, results in two meaningful components for

EEG and one for MEG corresponding to the entrained frequency. The visual response pattern is

studied for the purpose of photic driving effect at stimulation frequency fα and the on-off-response

for the stimulation with fα in [SSK+16]. Despite that, it is not reported if visual response pattern

is observed for all entrained frequencies. The authors of [HGS+11] perform a time-analysis of the

stimuli and they as well have presented the field-maps for different stimulation frequency, but an

entrainment is accounted even if there is no visual response. In this work, we take into account

only the results for which a clear visual response pattern of the photic driving effect is present. The

labeling of all field-maps has been performed by three experienced professionals (SL, UG, DS).

Analysis of the obtained frequencies

Further, we analyze which of the obtained frequencies are entrained and contain clear visual re-

sponse pattern. We denote these frequencies as recruited frequencies (defined in section 6.1.3).

The authors of [SLJ+06,WGP+11,HGS+11] and [SSK+16] show that the entrainment is more ef-

fective in the MEG measurement rather the EEG measurement as it is in our case. Nonetheless,

it should not be neglected that our results show that a visual pattern of the phonic driving effect

is existent in considerably less cases of MEG data rather than EEG. We have found entrainment

in frequencies equal to the stimulation frequency fs and its harmonic 2fs. Higher harmonics of

the entrainment are also reported in [Her01]. Moreover, we have found no entrainment after 1.1fα

same as in [SSK+16], where it is argued that above 15 Hz, photic stimuli cannot be differentiated

any more due to slow processing. Note that the preprocessing of the measurement signals included

filtering with a Butterworth band-pass filter with bandwidth 2-30 Hz. With that an entrainment

of higher harmonics or gamma oscillators cannot be expected in our results. In addition to the re-

cruited frequencies at the stimulation frequencies and their harmonic, we have observed a presence

of a theta and/or alpha frequency as a second not-recruited component. The presence of the alpha

frequency when stimulating with other frequencies (not the alpha frequency) is also reported in

[Her01]. The presence of an additional pick around the theta frequency band for significant number

of volunteers is reported in [LSSd01]. The authors of [KDRP96] and [Wol99] observe a coexistent

correlation between the alpha frequency and the theta frequency. Moreover, the alpha frequency

and theta frequency interchangeably have more power depending on the age or awakened status

of the volunteers [Wol99]. However, to the best of our knowledge the presence of the theta oscil-

lator has been determined as an additional component during photic driving only in [MPCB93].
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6.2. Validation of a controlled experiment based on Joint EEG-MEG signal decomposition using the
coupled SECSI framework

The coexistence of several components corresponding to the different oscillators, theta, alpha and

gamma is shown in [MPCB93] using principal component analysis. In our analysis, we use rank

two decomposition. Therefore, we can show a coexistence of two oscillators (alpha and theta). The

theta or alpha oscillators are present in all decomposition results when there is no entrainment, but

visual response in the field-maps has either the recruited frequency or the not-recruited theta/alpha

frequency. Moreover, our numerical analysis based on the reliably (REL) and the residual (RES)

are in accordance with the labeling of the field-maps. Therefore, we propose that labeling of the

field-maps should be considered in future analyses as a confirmation of the photic driving effect.

6.2 Validation of a controlled experiment based on Joint EEG-MEG

signal decomposition using the coupled SECSI framework

Recall that EEG and MEG measure the electric potential and the magnetic flux density, respec-

tively, at the head surface that is generated by the electric currents of neuronal activity inside the

brain. The head tissues act as a volume conductor that influences the measured signals. MEG and

EEG signals can be measured simultaneously and complement each other’s information content.

Therefore, a coupled analysis of EEG-MEG data using C-SECSI (see Section 3.6) could be of great

benefit (see also Section 6.1). A conducting skull defect in the weakly conducting skull, e.g., af-

ter a surgery, is a volume conductor condition that can strongly influence MEG and EEG signals

in characteristic ways [CGC79,LTS+10,LFH14,LGF+16]. Therefore, EEG-MEG recordings above

skull defects are a suitable case for validating signal decomposition algorithms.

In this section, our objective is to decompose simultaneously recorded MEG and EEG signals

above intact skull and above two conducting skull defects in a controlled experimental setup using

C-SECSI in order to determine how skull defects are reflected in the tensor decomposition. The

C-SECSI framework is presented in Section 3.6.

6.2.1 Measured EEG-MEG Signals

In a previous study [LFH14], a miniaturized electric dipole has been implanted in vivo into a rabbit’s

brain and connected to a 20 Hz sinusoidal constant-current source. Simultaneous recording using

64-channel EEG and 16-channel MEG has been conducted, first without defect (WOD) and then

with two skull defects (WD). Skull defects have been filled with agar gels, which had been formulated

to have a time-stable conductivity of approximately 1.0 S/m. The dipole has been moved under the

skull defects, and measurements have been taken at regularly spaced points (i.e., dipole positions).

The signals have been sampled using a sampling frequency of 1 kHz and band-pass filtered (15-

25 Hz). Approximately 300 consecutive trials have been measured, which later have been averaged.

All MEG and EEG recordings, respectively, have been co-registered and resampled to a common

set of virtual channels. We arrange these measurements in two 4-way tensors T MEG and T EEG

with dimensions channel × time point × defect state (WOD = 1, WD = 2) × dipole position. A
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visualization of the experimental setup from the study [LFH14] is presented in Fig. 6.9.

Figure 6.9.: Visualization of the experimental setup for the skull defect study in [LFH14].

6.2.2 Joint EEG-MEG Signal Decomposition

In a subsequent step, we construct the following tensors.

T MEG,WOD = T MEG(.,.,1,.) T EEG,WOD = T EEG(.,.,1,.)
T MEG,WD = T MEG(.,.,2,.) T EEG,WD = T EEG(.,.,2,.)

All of the tensors are normalized to norm one, for instance T EEG,WOD/ ∣∣T EEG,WOD∣∣H. The

indices MEG and EEG represent the MEG and EEG signal tensors, respectively. The tensors

T EEG,WOD and T EEG,WD, represent the EEG signal tensors for all available positions, without

skull defect (WOD) and with skull defect (WD), respectively. Accordingly, the tensors T MEG,WOD

and T MEG,WD, represent the MEG signal tensor without and with skull defect, respectively, for

all available positions. Therefore, the tensors T EEG,WOD, T EEG,WD, T MEG,WOD, and T MEG,WD

are 3-way tensors with dimensions channel × time point × dipole position.

For all of the above defined tensors, a coupled EEG-MEG CP decomposition based on the C-

SECSI framework (see Section 3.6) is computed for different tensor ranks, R = 1,2,3.

T EEG = I3,R ×1 F 1,EEG ×2 F 2 ×3 F 3,EEG

T MEG = I3,R ×1 F 1,MEG ×2 F 2 ×3 F 3,MEG
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6.2. Validation of a controlled experiment based on Joint EEG-MEG signal decomposition using the
coupled SECSI framework

The coupled CP decomposition is computed for the two pairs (WOD and WD) of EEG-MEG

signal tensors assuming that the time is the common mode. The EEG and MEG signals have

been simultaneously recorded for the same input signal in the time domain. Therefore, the coupled

EEG-MEG signal decomposition is justified.

6.2.3 Results

Rank and Residual

For the numerical evaluation, we use the metrics residual and reliability introduced in Section 3.6.

The residual is calculated according to equation (6.1). The reliability in percentage is defined

in equation (3.45). Small residual after fitting the coupled CP decomposition indicates that the

given tensor is correctly approximate via the estimated components. The reliability indicates how

similar are the estimated factor matrices corresponding to the common mode. The residual for each

of the MEG and EEG signal estimates using the C-SECSI framework are depicted in Table 6.3.

The residual decreases as the assumed rank increases indicating that the rank of the tensors is

larger than one. Moreover, in Table 6.3 the reliability for each of the coupled CP decompositions

is depicted. Based on these errors, the MEG and EEG signals with defects have one identical

component in the time mode and additional not common components. The MEG and the EEG

signal tensors without defects share one component in the time mode. Considering the results in

Table 6.3, more components can be extracted for the MEG signal with skull defect then for the

rest of the signals.

To present our results, we depict some of the factor matrices resulting from the tensor decom-

positions. In Fig. 6.10, we illustrate the components of the MEG signal without skull defect as

a result of the coupled EEG-MEG signal decomposition for tensor rank R = 1,2,3. By analyzing

the signature of the positions in this figure, we can see that for R = 3 each of the components is

related to one of the positions, i.e., position 12, positions 14, and position 16. The components of

the MEG signal with skull defect as a result of the coupled EEG-MEG signal decomposition for

tensor rank R = 1,2,3 are depicted in Fig. 6.11. Based on the signature of the dipole position it

R = 1 R = 2 R = 3

Residual for the MEG signal tensors

MEG WD 0.029 0.007 0.001

MEG WOD 0.128 8.5 ⋅ 10−4 3.1 ⋅ 10−9
Residual for the EEG signal tensors

EEG WD 0.065 0.0034 6.9 ⋅ 10−4
EEG WOD 0.335 0.004 0.013

Reliability of the coupled CP decomposition

WD (EEG-MEG) 100 % 99.9994 % 99.9973 %

WOD (EEG-MEG) 100 % 92.5 % 90.3 %

Table 6.3.: Residual for the MEG and EEG signal tensors and reliability of the coupled CP decomposition.
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6.2. Validation of a controlled experiment based on Joint EEG-MEG signal decomposition using the
coupled SECSI framework
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is noticeable that the changes in the signature of the channels correspond to the position changes.

Therefore, for the MEG signal tensors with defect, more signal components can be extracted, as it

was expected based on the residual and reliability in Table 6.3.

Moreover, in Figs. 6.12 and 6.13, we illustrate the components for the EEG signal without and

with skull defect resulting from the EEG-MEG coupled CP decomposition for rank R = 1,2,3,

respectively. In contrast to the MEG signals without defect, for the EEG signals without defect,

the extracted components do not represent only one position, but a linear combination of them.

For the EEG signal with defect (Fig. 6.13) similar to MEG, the three components represent the

dipole positions under, before, and after the skull defect.

Figure 6.14.: Measured MEG signals above two skull defects (row 1) and components of rank 3 coupled
decomposition (rows 2-4) shown at selected source positions (columns) at the first peak
in the time dimension. The iso-line increment is uniform within measurements and within
components, respectively. The components are arranged in a meaningful sequence. The
dipolar source is indicated with a black bar with two spheres marking the poles. Skull
defects are marked by closed black lines indicating the inner, middle and outer boundaries
of the defects.
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6.2. Validation of a controlled experiment based on Joint EEG-MEG signal decomposition using the
coupled SECSI framework

Figure 6.15.: Measured EEG signals above two skull defects (row 1) and components of rank 3 coupled
decomposition (rows 2-4) shown at selected source positions (columns) at the first peak
in the time dimension. Formatting and markings equivalent to Fig. 6.14.

MEG Signal Components

Fig. 6.14 shows the rank 3 components computed based on the coupled decomposition of the

MEG signals above the two skull defects. The measured MEG signals (top row) of the tangential

source experience changes in position, orientation, and amplitude [LFH14]. Component 2 (second

row) of the tensor decomposition reflects primarily the MEG signals at the lowest source positions.

Component 3 (third row) models the mid-range of source positions. The highest source positions are

represented by a combination of component 1 (row 4) and component 2. The gradual transition

of component amplitudes is also reflected in the lower right diagram of Fig. 6.11. The rank 2

decomposition in row 2 of Fig. 6.11 models the measurements with one or two components, but the

difference in source position is not as well differentiated as with rank 3. With rank 1 (see row 1 in

Fig. 6.11), the one component represents the mid-range source positions best with errors increasing

towards low and high source positions. Hence, the best available representation of the MEG signal

with defect is using three components.

Without skull defects, the coupled decomposition is based on three available measurements (pos.

183



12, 14, and 16). Therefore, the rank 3 result trivially represents each measurement with one

component, which can be seen in the lower right diagram of Fig. 6.10. Assuming rank 2, the

two components represent primarily the lowest and highest source position, respectively, whereas

position 14 is represented by both components (see Fig. 6.10). Using rank 1, the single component

represents the middle source position best with errors increasing towards low and high positions

(see Fig. 6.10).

EEG Signal Components

Fig. 6.15 shows the components from the rank 3 coupled decomposition of the EEG signals above

the two skull defects. The measured EEG signals (top row) of the tangential source experience a

reversal of polarity above defect 1 depending on which pole is closer to it [LFH14]. When the source

is approximately central under the defect 1, the overall topography is bipolar, but with distortions

above that skull defect. Component 3 represents the defect-related monopolar signal at the lowest

positions of both defects. Component 1 represents the source positions close to the center of the

defect and bipolar aspects related to defect 2. Component 2 captures the monopolar signal increase

above defect 1 at middle and high positions. The strength of the components transitions across

the position range. This can also be observed in the position signatures in Fig. 6.13.

Without skull defects, a rank 3 coupled decomposition represents the measured EEG signals

primarily with one component only (see Fig. 6.12 where the positions are not clearly separated

from one another). This matches the fact that the three source positions only span 0.7 mm along

the shift axis and, therefore, are very similar if the skull is intact. However, the decomposition

has separated the common signal from an instance of noise in the measurement at position 12 (see

component 2 row 3 in Fig. 6.12). Assuming rank 2 or rank 1, none of the positions are separated.

6.2.4 Discussion and Summary

The decomposition of the measured EEG and MEG signals using C-SECSI produces meaningful

components with respect to the experimental setup. The main mode to be decomposed is the

source position, along which the signal changes due to the presence of skull defects. Based on the

experimental results [LFH14], the range of source positions can be broadly divided into three cases,

the positions under defect 1 and the positions on either side of defect 1. This is reflected in the

three components of the rank 3 decomposition of MEG and EEG signals, respectively. The gradual

transition between the cases along the source position series is modeled by the combination of two

components. The defect-related EEG signals are up to 10 times as strong as the intact skull EEG

signals, whereas the amplitude difference in the MEG signals is only approximately 24 % [LFH14].

Consequently, the components of the EEG signals reflect mostly defect-related aspects and the

MEG signal components reflect changes in source position jointly with the defect-related changes.

The measurements without defects show a difference in rank between EEG and MEG signals.
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6.3. Conclusions

The EEG measurements are primarily represented by one component only (rank 1), whereas the

simultaneously measured MEG signals are estimated with three components (rank 3). This may

be due to the stronger topographic difference of the MEG signals between source positions as well

as the higher topographic complexity in this experimental setup.

The experimental setup with skull defects involves even more than three conceptual components.

For example, defect 1 and defect 2 may be differentiated and the intact skull signal component could

be isolated in the defect measurements. However, the available data samples do not span these di-

mensions with sufficiently many data points. Consequently, the rank estimation and decomposition

identify only the three components in the data.

Using the C-SECSI framework, coupled EEG-MEG signals above intact skull and above two

conducting skull defects have been decomposed in order to determine the influence of the skull

defects in the tensor decomposition. Meaningful components have been successfully extracted

representing the three characteristic signal topographies for the source position. The C-SECSI

framework is a very promising method for blind source separation, signal decomposition within

the source reconstruction workflow, and for signal artifact extraction. The multimodal integration

of EEG and MEG signals through their coupling can improve the localization accuracy in clinical

diagnostics, pre-surgical planning, and functional mapping of the human brain.

6.3 Conclusions

In this chapter, we focus on applications of the coupled CP decomposition in biomedical signal pro-

cessing. Under the assumption that the frequency mode is common for EEG and MEG signals, we

provide a validation of the photic driving effect using the C-SECSI framework. Moreover, we show

that the model order estimation for coupled tensors can be controlled using the reliability of the

C-SECSI framework. Our analysis results show that the EEG and MEG tensors do not necessarily

have the same tensor rank. The frequency entrainment is more evident after the decompositions

than before the decompositions. When there was no evident frequency entrainment, a frequency

in the alpha band or in the theta band becomes noticeable. In the future, we should consider to

extend the analysis to wider frequency band e.g., from 1 Hz to 40 Hz in order to investigate the

existence of other brain oscillators.

Furthermore, we perform a coupled analysis of EEG-MEG signals above skull defects resulting

for a controlled experiment based on the C-SECSI framework. Also, in this application, meaningful

components are successfully extracted under the assumption the that time domain is common for

EEG and MEG signals. These components represent the three characteristic signal topographies

of the source positions that include before, above, and after skull defects. Note that the common

mode (time) contains highly correlated columns resulting in an ill-posed scenario. Even thought,

we have been able to extract meaningful components using the C-SECSI framework, we should

consider to analyze these signals in the future using coupled BTD decompositions in rank-(L,L,1)
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terms and compare the results.

As shown in this chapter, the coupled CP decomposition computed using the C-SECSI frame-

work is a robust method for the unsupervised extraction and separation of meaningful components

from multi-dimensional biomedical measurement signals. By considering and utilizing the tensor

structure, the signal features are effectively extracted from the measured observations. Therefore,

this approach may improve our insight into the brain’s function and organization. Consequently,

leading to an improved treatment outcome of brain disorders, for example, by locating epileptic

network nodes in the epileptic brain.
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Chapter 7

Conclusions and Future Work

This thesis focuses on two application areas namely signal processing for wireless communication

system and biomedical signal processing. The observed/measured signals in these two applica-

tions are multi-dimensional. Their dimensions typically correspond to time, frequency, antennas

(space), and users as well as time, channels (space), modality (electroencephalography, magnetoen-

cephalography, electrocardiography), participant (volunteer), and experimental condition, respec-

tively. With the goal of preserving the multi-dimensional structure, we use tensor based methods

to model and analyze these signals. In this thesis, we develop new theoretical aspects, efficient

algorithms for the computation of tensor decompositions, and new flexible models for multi-carrier

wireless communication systems. As shown in this thesis, these aspects lead to an improved receiver

design for multi-carrier wireless communication systems and efficient extraction of meaningful sig-

nal features in biomedical signal processing. Moreover, the novel aspects and results presented in

this thesis open new research directions in these fields.

Chapter 2 is dedicated to the fundamental concepts of tensor algebra, tensor decompositions,

and applications of tensor algebra. Moreover, we present our contribution to the fundamental

concepts of tensor algebra for the generalized tensor contraction operator in Section 2.1.4. In

particular, we propose an alternative representation of the element-wise multiplication and slice-

wise multiplication between two arrays using the generalized tensor contraction. In contrast to

the element-wise or slice-wise representations, this novel representation facilitates the derivation of

the explicit tensor structure and all corresponding tensor unfoldings as shown in Chapter 4 and

Chapter 5 of this thesis. In the future, we should study the uniqueness properties of the overall

tensor after the contraction that may lead to new identifiability results.

Chapter 3 is devoted to the efficient computation of the CP decomposition and the coupled

CP decomposition that is the basis of many signal/data analysis applications. The SECSI frame-

work [RH08,RSH12,RH13a] is a robust and efficient framework for the computation of an approxi-

mate low-rank CP decomposition. It computes all possible symmetric SMDs that lead to six initial

estimates of the factor matrices, for a 3-way tensor. The final estimate is then selected based on

different heuristics as discussed in [RH13a] that lead to different complexity-accuracy trade-offs in

the SECSI framework. In Chapter 3, we propose five extensions of the SECSI framework that re-

duce the computational complexity of the original framework or introduce constraints to the factor

matrices. In this thesis, we show the derivations for 3-way tensors. However, the presented results

can be easily extended to N -way tensors. The extensions of the SECSI framework include T-SECSI
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(Truncated-SECSI), NS-SECSI (Non-Symmetric-SECSI), S-SECSI (Symmetric-SECSI/SECSI for

symmetric tensors), SECSI+ (Non-negative SECSI/SECSI for non-negative tensors), and C-SECSI

(Coupled-SECSI/SECSI for coupled tensors). The T-SECSI framework and the NS-SECSI frame-

work have a lower computational complexity than SECSI because they diagonalize a compressed

core tensor for size R×R×R, whereR is the tensor rank. This gain is more pronounced as the dimen-

sions of the low-rank tensor increase. In addition, the NS-SECSI framework exploits non-symmetric

SMDs for the computation of the CP decomposition. The NS-SECSI-NS-IDIEM framework rep-

resents a closed-form (algebraic) solution for the computation of the approximate low-rank CP

decomposition. Recall that previous publications propose closed-form solutions for the CP decom-

position only in special cases (for tensors with rank two, and tensors with two slices) [RH13a],

whereas we propose a closed-form solution for the general case. Moreover, NS-SECSI computes

only three initial sets of estimates of the factor matrices that additionally reduces the computational

complexity of the selection of the final solution. Therefore, NS-SECSI has even lower computational

complexity than T-SECSI. Hence, we recommend the closed-form NS-SECSI framework for the

computation of the CP decomposition for low-rank tensors with large dimensions. The S-SECSI

framework provides a closed-form solution for the computation of the CP decomposition of symmet-

ric tensors or fully symmetric tensors. The SECSI+ framework computes an approximation of the

CP decomposition for non-negative tensors under the constraint that the factor matrices are non-

negative. In the first step of the SECSI+ framework, we compress the non-negative tensor based on

NTD, and then we compute symmetric SMDs with non-negativity constraints. To this end, we also

propose an ADMMD+ diagonalization algorithm for the computation of SMDs with non-negativity

constraints. However, this SECSI+ framework has no advantages over the state-of-the-art algo-

rithms. In the future, we should consider to investigate the compression step further, to consider

other NTD algorithms than the one proposed in [BKS+12], and to consider non-symmetric SMDs

as proposed in the NS-SECSI framework. It can also be considered the derivation of SECSI+ for

tensors where only some of the factor matrices have non-negativity constraints. Furthermore, the

C-SECSI framework computes the coupled CP decomposition in a robust semi-algebraic fashion.

It outperforms the state-of-the-art algorithms especially in ill-conditioned scenarios. In addition,

it does not require prior normalization of the tensors even if they are corrupted by noise with

different variances. In combination with the C-SECSI framework, we propose a reliability measure

that controls the rank of the coupled tensor decomposition. The C-SECSI framework is utilized in

Chapter 6 for the joint analysis of EEG and MEG signals. In the future, it is possible to extent the

C-SECSI framework to coupled matrix-tensor decompositions and to coupled CP for more than

two tensors. A closed-form solution of C-SECSI can also be obtained based on the IDIEM [CB12]

algorithm. Note that, it is possible to further extend the SECSI framework and the C-SECSI

framework by considering sparse tensors and tensors with missing entries if in the first step we use

an appropriate compression technique that can handle missing entries such as [YFLZ16] instead of

the truncated HOSVD. The NS-SECSI framework and the C-SECSI framework have already been

published in [NHT+16,NH16] and [NKHH17], respectively.

In addition to the CP decomposition, we consider the PARATUCK2 decomposition and the
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PARAFAC2 decomposition in Chapter 4. We first show that these decompositions can be inter-

preted as a slice-wise multiplication between two tensors. Using the novel representations of the

slice-wise multiplication proposed in Section 2.1.4 based on the generalized tensor contraction and

by substituting the individual structure of the tensors involved in the contraction, we derive new

tensor models for both decompositions PARATUCK2 and PARAFAC2. For the PARATUCK2

decomposition, we derive two alternatives of a constrained CP model that can be used to study

the uniqueness of the PARATUCK2 decomposition. Note that we have not yet derived all overall

models that result from different combinations of the tensors involved in the contraction. In the

future, we can derive and exploit these models as well. The overall tensor models can also be used

to develop new efficient algorithms for the computation of the PARATUCK2 decomposition. In

addition, it is possible to extend these models to the generalized PARATUCK decompositions for

N -way (N > 3) tensors [FdA14b]. The novel tensor representation also leads to a constrained CP

model of the PARAFAC2 decomposition that can be used to study its uniqueness properties. We

exploit this novel representation of the PARAFAC2 model to derive an efficient single loop ALS

algorithm for the computation of the PARAFAC2 decomposition that requires fewer iteration than

the state-of-the-art algorithms. This algorithm has already been published in [NCdAH18]. Note

that the proposed algorithm estimates the low-rank tensor from a noisy observation in an LS sense.

However, the tensor models proposed in this thesis can be used as a starting point in the derivation

of other algorithms. The derivation of these models for the PARATUCK2 and the PARAFAC2

decomposition opens up interesting research areas. For instance, in our derivations we often en-

counter a Kronecker product between two tensors. Therefore, we should inquire into the properties

of the Kronecker product between two tensors. In the future, these properties can help us to theo-

retically derive new structures. To this end, the derived overall tensor structure recurrently fits a

constrained CP model or a constrained BTD model. Hence, it is of a great importance to study the

uniqueness properties of these models. These uniqueness properties may consequently lead to novel

identifiability results. For instance, we observe at the end of Appendix B.1 that by studying the

uniqueness properties of the constrained BTD decomposition, we can derive identifiability results

concerning a matrix factorization.

Chapter 5 focuses on the modeling of multi-carrier wireless communication systems using tensor

algebra. We first present a tensor model for MIMO-OFDM systems based on the generalized

contraction between a channel and a transmit signal tensor. This model is a general and flexible

way of describing the received signal in MIMO-OFDM systems for all subcarriers jointly. Moreover,

together with this model we propose a new representation of the channel tensor using a 4-way tensor

with a special BTD structure. Using the general tensor model and the properties of the contraction

operator, we are able to derive an explicit tensor model of the overall received signal that facilities

the design of several iterative and recursive receivers for MIMO-OFDM systems. The accuracy of

the ILSP algorithm depends on the rank of the transmitted symbol matrices. Hence, the system

can be modified such that only specific code words are used in the future. Moreover, the recursive

algorithms can be modified such that they exploit the temporal channel correlation in time varying

scenarios. Note that the proposed algorithms already exploit the correlation of the channel among
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adjacent subcarriers that leads to a reduced number of pilot symbols as compared to other tensor

models. Next, we show that the generalized tensor model using the contraction operator can

straightforwardly be extended to Khatri-Rao coded MIMO-OFDM systems. In this model, we

exploit the Khatri-Rao coding strategy that imposes a CP structure on the transmit signal tensor.

The overall tensor model leads to a receiver based on LSKRF that can be more improved by means

of an additional LS iteration. Moreover, we can consider not just one additional LS iteration, but

several iterations leading to an ALS based receiver initialized using the LSKRF. In the future,

we can consider the design of optimal orthogonal pilot sequences specific to the proposed KR

receiver. Recognize that the Khatri-Rao coding strategy has a reduced spectral efficiency than

the uncoded MIMO-OFDM system. Therefore, we propose an alternative transmission technique

where the ”coding matrices” contain random data symbols. Thereby, this transmission technique

also imposes a CP structure on the transmit signal tensor while having higher spectral efficiency

than the Khatri-Rao coding technique. We propose two types of receivers for randomly coded

MIMO-OFDM systems based on the overall structure of the resulting receive signal tensor denoted

by RC-KR and RC-KR+ALS. The RC-KR receiver estimates the symbol matrices based on LSKRF,

whereas the RC-KR+ALS receiver uses the LSKRF estimates to initialize an ALS algorithm to

further enhance the accuracy of the receiver. In contrast to the receivers for Khatri-Rao coded

MIMO-OFDM, the receivers for randomly coded MIMO-OFDM systems assume that MR ≥ MT.

To relax this condition, we can consider recursive LS instead of LS to estimate the symbol matrices.

In the future, the system can be modified such that both symbol matrices contain symbols from

different constellations and/or different modulation order. This will lead to a resulting transmit

signal tensor with diverse entries and potentially improved performance for the receivers in terms of

SER. The aforementioned models for MIMO-OFDM and Khatri-Rao coded MIMO-OFDM systems

and their corresponding receivers have been published in [NHdA18] and [NHdA17], respectively.

Moreover, in Chapter 5 we show that the proposed general model using tensor contraction for

MIMO-OFDM systems can be straightforwardly extended to MIMO-GFDM systems. The transmit

signal tensor in the case of MIMO-GFDM systems can also be expressed in terms of generalized

tensor contraction. Therefore, we also use the properties of the tensor contraction to provide

more insides of the structure of the GFDM modulation matrix. Using on the resulting received

signal, we derive an ALS receiver for MIMO-GFDM systems. Note that the number of frames

in this model is set to one (K = 1). However, the extension of the model to multiple frames is

straightforward and leads to an additional tensor gain. Using the proposed model, we can study

the structure of the resulting channel tensor for MIMO-GFDM systems, where the subcarriers are

not orthogonal. Moreover, the proposed model opens up new opportunities for the GFDM systems,

such as finding the best pilot sequences, investigating more general GFDM systems when not all

carriers or subsymbols are used for data transmission, and investigating new closed form solutions by

adding coding or random coding. The presented iterative ALS receiver has already been published

in [NCH+17] where the ALS receiver is derived based on the PARATUCK2 decomposition. Recall

that many references dedicated to relay-assisted MIMO communication systems either assume a

single carrier system or use subcarrier-wise description of the system. The proposed general model
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based on tensor contraction can be simply extended to systems with multiple hops by contracting

the received signal of the first hop with the channel tensor of the following hop. Therefore, the

tensor model proposed in this thesis provides an inspiring way of exploiting the benefits of tensor

contraction in relay-assisted multi-carrier systems. Even more, the proposed tensor model can be

extended to multi-user system in a straightforward fashion. Furthermore, the general tensor model

for multi-carrier systems proposed in Chapter 5 can be extended to other multi-carrier techniques

such as UFMC and FBMC. Another promising perspective is to assume a low-rank structure of

the channel tensor, which will be a more realistic assumption for millimeter wave MIMO-OFDM

systems. Exploiting the generalized tensor contraction model and the additional structure of the

low-rank channel tensor would lead to new blind receivers.

The last chapter of this thesis is dedicated to applications of the coupled CP decomposition

in biomedical signal processing. First, we analyze the photic driving effect using the C-SECSI

framework under the assumption that the frequency mode is common for the EEG and the MEG

signals. This analysis shows that using the reliability measure of the C-SECSI framework, the

model order of the coupled tensor decompositions can be controlled. Moreover, our analysis results

show that the EEG and MEG tensors do not necessarily have equal tensor ranks. We are also able

to observe that the frequency entrainment is more evident after the decompositions than before

the decompositions. However, when there was no evident frequency entrainment, a frequency in

the alpha band or in the theta band becomes noticeable. In the future, we should consider to

extend the analysis to wider frequency band e.g., from 1 Hz to 40 Hz in order to investigate

the existence of other brain oscillators. The analysis presented in this thesis is for frequencies

between 3.77 Hz and 15.15 Hz, i.e., in the theta band and alpha band. Note that the analysis

presented here is restricted to 3-way tensors. However, from the available signals it is possible to

construct even 5-way tensors (frequency × time × channels × stimulation frequency × volunteer).

Therefore, we should consider analyzing these 5-way tensors directly and comparing the results

to the analysis presented here. Moreover, we perform a coupled analysis of EEG-MEG signals

above skull defects resulting for a controlled experiment based on the C-SECSI framework. In

this application, meaningful components are also successfully extracted under the assumption the

that time domain is common for the EEG and the MEG signals. The extracted components

correspond to the three characteristic signal topographies of the source positions that include

before, above, and after skull defects. Note that in this application, the columns of the common

mode (time) are highly correlated resulting in an ill-posed scenario. Despite this, using the C-SECSI

framework, we were able to extract meaningful components. However, we can analyze in the future

these signals using coupled BTD decompositions in rank-(L,L,1) terms and compare the results.

In both applications, we observe that the EEG and MEG tensors do not necessarily share the

same number of components. Therefore, flexible coupled models are more suitable for biomedical

signal processing rather than exact coupled models. Hence, we require robust algorithms for the

computation of the CP decomposition such as the C-SECSI framework. Recall that C-SECSI

computes several coupled and uncoupled estimates for the factor matrices, thus it is able to handle

flexible coupled models. As shown in this chapter, the coupled CP decomposition computed using
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the C-SECSI framework is a robust method for the unsupervised extraction and separation of

meaningful components from multi-dimensional biomedical measurement signals. By considering

and utilizing the tensor structure, the EEG and MEG signal features are effectively extracted from

the measured observations. Hence, this approach may improve our insight into the brain’s function

and organization.
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Appendix A

Acronyms, Symbols, and Notation

A.1 Acronyms

3GPP 3rd Generation Partnership Project

ADMM Alternating Direction Method of Multipliers

ADMMD+ Alternating Direction Method of Multipliers for non-negative simultaneous

matrix Diagonalization

ALMS Alternating Least Mean Squares

ALS Alternating Least-Squares

BM Best Matching

BSUM Block Successive Upper bound Minimization

BTD Block Term Decomposition

C-ALS Coupled Alternating Least-Squares

CAND CANonical Decomposition

CANDECOMP CANonical DECOMPosition

CCDF Complementary Cumulative Distribution Function

CCP-MINF Coupled Canonical Polyadic - MINimum Factors

CCP-NLS Coupled Canonical Polyadic - Nonlinear Least Squares

CDMA Code-Division Multiple Access

CG Conjugate Gradient

CON PS CONditioning criterion Paired Solutions

CONFAC CONstrained FACtor

CP Canonical Polyadic

CR-bound Cramér-Rao-bound

CRI-bound Cramér-Rao-Induced-bound

C-SECSI Semi-Algebraic framework for the approximate Coupled CP decomposition via

SImultaneaous matrix diagonalization

DEDICOM DEcomposition into DIrectional COMponents

DFT Discrete Fourier Transform

DIAG DIrect AlGorithm for canonical polyadic decomposition

DIAG+ DIrect AlGorithm for canonical polyadic decomposition+

EEG ElectroEncephaloGraphy
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FBMC Filtered Bank MultiCarrier

FFT Fast Fourier Transform

FT Fourier Transform

GD Gradient Descent

GFDM Generalized Frequency Division Multiplexing

HOGSVD Higher-Order Generalized Singular Value Decomposition

HOOI Higher-Order Orthogonal Iteration

HOSVD Higher-Order Singular Value Decomposition

ICI Inter-Carrier Interference

IDIEM Improved DIagonalization using Equivalent Matrices

IDSCAL INdividual Differences in SCALing

ILSE Iterative Least Squares with Enumeration

ILSP Iterative Least Squares with Projection

IPS Intermittent Photic Simulation

ISI Inter-Symbol Interference

JD Joint eigenvalue Decomposition

JDTM Joint Diagonalization algorithm based on Targeting hyperbolic Matrices

JET Joint Eigenvalue decomposition algorithm based on Triangular matrices

JEVD+ Joint EigenValue Decomposition+

KR Khatri-Rao

KR+LS Khatri-Rao receiver and its enhancement via Least-Squares

LMMSE Linear Minimum Mean Square Error

LS Least-Squares

LSKF Least-Squares Kronecker Factorization

LSKRF Least-Squares Khatri-Rao Factorization

MDL Minimum Description Length

MEET Modified Eigenvalues Estimator for Tucker rank determination

MEG MagnetoEncephaloGraphy

MIMO Multiple-Input Multiple-Output

MMSE Minimum Mean Squared Error

MRI Magnetic Resonance Imaging

MSRE Mean Squared Reconstruction Error

NLS Nonlinear Least-Squares

NMSE Normalized Mean Squared Error

NS-IDIEM Non-Symmetric-Improved DIagonalization using Equivalent Matrices

NS-SECSI Semi-Algebraic framework for the approximate Canonical Polyadic (CP)

decomposition via Non-Symmetric SImultaneaous matrix diagonalization

NTF Non-negative Tensor Factorization

OFDM Orthogonal Frequency Division Multiplexing
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A.1. Acronyms

OPP Orthogonal Procrustes Problem

PARAFAC PARAllel FACtors

PARAFAC2 PARAllel FACtors2

PARALIND PARAllel profiles with LINear Dependences

PARATUCK2 PARAfac and TUCKer2

PD Photic Driving

Ped A Pedestrian A

QAM Quadrature Amplitude Modulation

RC Random Coding

RC-KR Random Coding-Khatri-Rao

RC-KR+ALS Random Coding-Khatri-Rao + Alternating Least-Squares

REC PS REConstruction criterion Paired Solutions

REL RELiability

RES RESidual

RLSE Recursive Least-Squares with Enumeration

RLSP Recursive Least-Squares with Projection

RMS Root Mean Square

RNA RiboNucleic Acid

SALT Semi-ALgebraic Tensor decomposition

SECSI Semi-Algebraic framework for approximate CP decomposition via

SImultaneous matrix diagonalization

SECSI+ Semi-Algebraic framework for the approximate CP decomposition via

SImultaneaous matrix diagonalization for non-negative tensors

SECSI-GU SECSI-Generalized Unfoldings

SER Symbol Error Rate

SGD Stochastic Gradient Descent

SMD Simultaneous Matrix Decomposition

SNR Signal to Noise Ratio

SRE Squared Reconstruction Error

S-SECSI Semi-Algebraic framework for the approximate Canonical Polyadic (CP)

decomposition via SImultaneaous matrix diagonalization for symmetric tensors

/Symmetric SECSI

SVD Singular Value Decomposition

TEDIA TEnsor DIAgonalization

TMSFE Total Mean Squared Factor Error

T-SECSI Truncated Semi-Algebraic framework for the approximate CP decomposition

via SImultaneaous matrix diagonalization

TSFE Total Squared Factor Error

UFMS Universal Filtered MultiCarrier
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WD With Defect

WOD WithOut Defect

ZF Zero Forcing

ZMCSCG Zero Mean Circularly Symmetric Complex Gaussian
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A.2. Symbols and Notation

A.2 Symbols and Notation

 Imaginary unit,
√−1

e Euler number

π Pi

........................... ........................................................................................................

R Set of real numbers

C Set of complex numbers

R+ Set of non-negative real numbers

........................... ........................................................................................................

a, b, c Scalars

a, b, c Column vectors

A, B, C Matrices

A, B, C Tensors

........................... ........................................................................................................

a(i) The i-th element of the column vector a ∈ CI

A(i,j) The (i, j)-th element of the matrix A ∈ CI×J

A(i,j,k) The (i, j, k)-th element of the tensor A ∈ CI×J×K

........................... ........................................................................................................

eI,i, ei eI,i ∈ R
I×1 is a pinning vector of all zeros and one at the i-th position. When

not ambiguous the subscript denoting the vector length can be skipped, i.e., ei.

0M×N Matrix of zeros of size M ×N
1M×N Matrix of ones of size M ×N
IM Identity matrix of size M ×M
IN,R Identity N -way tensor with dimensions R ×R × . . . ×R
........................... ........................................................................................................

arg (x) Argument (phase) of a complex variable x

diag (⋅) Transforms a vector into a square diagonal matrix. Moreover, the operator

diag (⋅) extracts the main diagonal of a square matrix and places its elements

into a vector, when the argument is a matrix.

blkdiag (An)Nn=1 Transforms the matrices A1, . . . ,AN into a block diagonal matrix. The

operator blkdiag (⋅) is defined as

blkdiag (An)Nn=1 = blkdiag (A1, . . . ,AN) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 0 . . . 0

0 A2 . . . 0

⋮ ⋮ ⋮ ⋮
0 0 . . . AN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.1)

vec (⋅) Transforms a matrix or a tensor into a column vector. The stacking is
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performed in an increasing order, i.e., begins with first index, then proceed to

second index, third index, etc.

unvecM×N (⋅) Transforms a vector into a matrix/tensor of indicated size, i.e., M ×N . It is the

inverse operation of the vec (⋅) operator.
rank (⋅) Rank of a matrix or a tensor

n-rank (⋅) n-rank (⋅) (multi-linear rank) of a tensor

k-rank (⋅) Kruskal rank of a matrix

min (⋅) Minimum

max (⋅) Maximum

E{⋅} Expected value, expectation operator

........................... ........................................................................................................

∥⋅∥2 Euclidean (two-) norm

∥⋅∥F Frobenius norm

∥⋅∥H Higher-Order norm

........................... ........................................................................................................

z∗ Complex conjugate of z

(⋅)T Matrix transpose

(⋅)H Hermitian transpose

(⋅)−1 Matrix inverse

(⋅)+ Moore-Penrose pseudo-inverse [Moo20,Pen55] of a matrix A ∈ CM×N which we

can compute via

� A+ = (AH ⋅A)−1 ⋅AH for a full column rank matrix

� A+ =AH ⋅ (A ⋅AH)−1 for a full row rank matrix

� based on the economy size SVD of A = U [s]Σ[s]V [s]H , A+ = V [s]Σ[s]−1U [s]H

(⋅)−T Matrix transpose and inverse

(⋅)−H Hermitian transpose and inverse

........................... ........................................................................................................

≜ Definition

≈ Approximate

........................... ........................................................................................................

⟨⋅⟩ Scalar/Inner Product. Scalar product between two tensors A ∈ CM1×M2...×MN

and B ∈ CM1×M2...×MN is defined as

⟨A,B⟩ = M1

∑
m1=1

M2

∑
m2=1

. . .
MN

∑
mN=1

A∗(m1,m2,...,mN )B(m1,m2,...,mN) =A●1,2,...,N1,2,...,NB (A.2)

○ Outer product
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A.2. Symbols and Notation

⊗ Kronecker product between A ∈ CM×N and B ∈ CP×Q defined as

A⊗B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,1 ⋅B a1,2 ⋅B . . . a1,N ⋅B
a2,1 ⋅B a2,2 ⋅B . . . a2,N ⋅B
⋮ ⋮ ⋮ ⋮

aM,1 ⋅B aM,2 ⋅B . . . aM,N ⋅B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ C

PM×QN (A.3)

Similarly, Kronecker product between two tensors A ∈ CM×N×L and

B ∈ CP×Q×R is defined as K =A⊗B ∈ CMP×NQ×LR (Section 2.1.1).

◇ Khatri-Rao (column-wise Kronecker) product between A ∈ CM×N and

B ∈ CP×N defined as

A ◇B = [a1 ⊗ b1 a2 ⊗ b2 . . . aN ⊗ bN] ∈ CPM×N (A.4)

⊠R If the matrices A and B are partitioned in R blocks as A = [A1, . . . ,AR] and
B = [B1, . . . ,BR], a partition-wise Kronecker product between these matrices

is defined as A ⊠R B = [A1 ⊗B1, . . . ,AR ⊗BR]. Note that if R equals the

number of columns of A and B (i.e., if the partitioning is in a column-wise

fashion), the partition-wise Kronecker product equals the Khatri-Rao product.

⊙ Hadamard (element-wise) product between two vectors/matrices/tensors of

equal dimensions, for instance, A ∈ CM×N and B ∈ CM×N .

⊘ Inverse Hadamard product (element-wise division) between two

vectors/matrices/tensors of equal dimensions, for instance, A ∈ CM×N and

B ∈ CM×N .

........................... ........................................................................................................

A ×n U n-mode product between a tensor A and a matrix U (Section 2.1.1).

A
N⨉
n=1

nUn Repeated n-mode products along the modes n = 1, . . . ,N , shorthand notation

for A ×1 U1 . . . ×N UN (Section 2.1.1)

[A ⊔n B] Tensor concatenation along the n-mode of the tensors A and B (Section 2.1.1)

[A](n) n-mode unfolding of tensor A (Section 2.1.1).

[A]([α(1),α(2)]) Generalized matrix unfolding of an N -way tensor A. The set of indices is

divided into P and N − P non-overlapping subsets, α(1) = [α1 . . . αP ] and
α(2) = [αP+1 . . . αN ] (Section 2.1.1).

A●mn B Tensor contraction between tensors A ∈ CI1×...×IN and C ∈ CJ1×...×JM that it is

represented as an inner product of the n-mode of A with the m-mode of B,

provided that In = Jm (Section 2.1.1).

A●m,l
n,k
B Double tensor contraction. The n-mode and k-mode of A is contracted with

the m-mode and l-mode of B, respectively (Section 2.1.1).

........................... ........................................................................................................

(⋅)[s] Denotes the signal component
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(⋅)[n] Denotes the noise component

(⋅) rhs The superscript rhs denotes right-hand side

(⋅) rhs The superscript lhs denotes left-hand side

x̂ Denotes an estimate of x

........................... ........................................................................................................

FN Denotes a DFT matrix of size N ×N

FN =
1√
N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 . . . 1

1 wN . . . w
(N−1)
N

1 w2
N . . . w

2(N−1)
N

⋮ ⋮ ⋮ ⋮
1 wN−1

N . . . w
(N−1)2
N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, where wN = e
− 2π

N (A.5)

Moreover, a matrix FN×L ∈ CN×L contains the first L columns of the DFT

matrix FN .

u(t)○Ð→●U(f) Denotes Fourier transform, where u(t) and U(f) represents the signal in the

time and the frequency domain, respectively, or a DFT for discreet signals.

s̃, S̃, S̃ We use ∼ to distinguish the frequency domain from the time domain signal

vector, matrix, or tensor, i.e., s○Ð→●s̃, S○Ð→●S̃, or S○Ð→●S̃
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Appendix B

Proofs and derivations

B.1 Derivation of the explicit tensor structure of a diagonalized tensor

In Section 2.1.4, we show that an element-wise or a slice-wise multiplication between two arrays

can be expressed as a generalized tensor contraction, where one of the arrays is diagonalized along

the unaffected dimension. Next, the diagonalized array can be expressed in terms of its generalized

unfolding as a Khatri-Rao product between an identity matrix and a generalized unfolding of the

tensor to be diagonalized. The link between the diagonalized array structures and their generalized

unfoldings is given in Table 2.1. Here, we derive the explicit tensor structure of a diagonalized

tensor T D ∈ C
I×J×K×K with non-zero elements T D(i,j,k,k) = T (i,j,k). Moreover, we assume that the

tensor to be diagonalized has a CP structure T = I3,R ×1 A ×2 B ×3 C ∈ CI×J×K , where A ∈ CI×R,
B ∈ CJ×R, C ∈ CK×R, and R is the tensor rank. According to Table 2.1, we have

[T D]([1,2,3],[4]) = IK ◇ [T ]([1,2],[3]) .
By substituting the assumed CP structure of the tensor T into the above unfolding, we get

[T D]([1,2,3],[4]) = IK ◇ [(B ◇A)CT] .
However, the above equation does not reveal the tensor structure. Therefore, let us consider the

non-zero elements of the diagonalized tensor T D(i,j,k,k) = T (i,j,k) and its diagonal slices T D(i,j,.,.) =
diag (T (i,j,.)). We can also express the tensor T D by the means of concatenation along the 4-mode

T D = [T 1 ⊔4 T 2 ⊔4 . . . T K] , (B.1)

where the tensors T k = T D(.,.,.,k) ∈ C
I×J×K. From the CP structure of the tensor T , we get

T k = I3,R×1A×2B×3 (ek⊗C(k,.)) taking the k-th row of C. The pinning vector ek represents the

k-th column of an identity matrix IK . We visualize the structure of the matrices C and (ek⊗C(k,.))
as well as the tensor I3,R ×3 (ek ⊗C(k,.)), for K = 3, R = 2, and k = 1 in Fig. B.1.

Now, we can substitute these T k tensors in equation (B.1). Moreover, the equation (B.1) can

be multiplied along the 4-mode with an identity matrix without changing the result.

T D = [T 1 ⊔4 T 2 ⊔4 . . . T K] ×4 IK = [T 1 ⊔4 T 2 ⊔4 . . . T K] ×4 [e1 e2 . . . eK]
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Figure B.1.: Visualization of the structure of the matrices C and (ek ⊗ C(k,.)) and the tensor
I3,R ×3 (ek ⊗C(k,.)), for K = 3, R = 2, and k = 1.

Next, this concatenation in (B.1) can be described as

T D =

K

∑
k=1

T k ○ ek =
K

∑
k=1

(I3,R ×1 A ×2 B ×3 (ek ⊗C(k,.))) ○ ek

Here, the outer product can be represented by a 4-mode product, if we add a singleton dimension

as a fourth dimension to the core identity tensors, i.e.,

T D =

K

∑
k=1

(I4,1 ⊗I3,R) ×1 A ×2 B ×3 (ek ⊗C(k,.)) ×4 ek. (B.2)

The tensor I4,1 ⊗ I3,R ∈ R
R×R×R×1 is essentially an identity tensor, only its fourth dimension is

a singleton dimension. We add the singleton dimension by means of a Kronecker product with a

4-way tensor I4,1 ∈ R
1×1×1×1. Naturally, it is not necessary to explicitly add the singleton dimension,

but it simplifies the rest of our derivation. The tensor in (B.2) corresponds to a special BTD of K

rank-(R,R,R,1) terms. Moreover, the terms differ only in the 3-mode and the 4-mode.

In Section 2.2.3, we show that the BTD can be rewritten in a block diagonal structure. According

to Fig. 2.15, we have

T D = blkdiag (I4,1 ⊗ I3,R)Kk=1 ×1 [A . . . A] ×2 [B . . . B]
×3 [e1 ⊗C(1,.) . . . eK ⊗C(K,.)] ×4 [e1 . . . eK].

In Fig. B.2, we depict the structure of the matrix [e1 ⊗C(1,.) . . . eK ⊗C(K,.)] = (IK ◇CT)T,
where the matrix C is depicted in Fig. B.1.

Figure B.2.: Visualization of the structure of the matrix (IK ◇CT)T, for K = 3 and R = 2.
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B.2. Structure of the selection matrix

Finally, considering the block diagonal structure of the core tensors and the factor matrices, we

obtain the tensor structure of the diagonalized tensor

T D = (I4,K ⊗I3,R) ×1 (1TK ⊗A) ×2 (1T
K ⊗B) ×3 (IK ◇CT)T ×4 IK ,

where I4,K ⊗ I3,R ∈ R
RK×RK×RK×K . To depict the structure of the diagonalized tensor T D we

should reduce its dimensionality to a 3-way tensor. Therefore, we assume that the matrix to be

diagonalized is given by T = I2,R ×1 B ×2 C ∈ CJ×K (T =B ⋅CT), where B ∈ CJ×R and C ∈ CK×R.
For the corresponding diagonalized tensor, we get

T D = (I3,K ⊗I2,R) ×1 (1TK ⊗B) ×2 (IK ◇CT)T ×3 IK ∈ C
J×K×K, (B.3)

where I3,K ⊗I2,R ∈ R
RK×RK×K . We visualize the diagonal structure of this tensor in Fig. B.3, for

J = 4, K = 3, and R = 2.

Figure B.3.: Visualization of the structure of the tensor T D ∈ C
J×K×K in (B.3), for J = 4, K = 3, and

R = 2.

Note that the tensor T D in equation (B.3) also has a CP structure given by T D = I3,K ×1BCT.

In contrast to this CP structure, the constrained BTD structure in equation (B.3) separates the

two matrices B and C in two modes. Therefore, by studying the uniqueness properties of the

constrained BTD, we can derive results for the identifiability of the matrix factorization BCT.

B.2 Structure of the selection matrix

Often in our derivations, we use the selection matrix JMK ∈ R
MKMK×MK that transforms a

Kronecker product of two matrices into a Khatri-Rao product of two matrices as shown in (2.29).

According to (2.28), this selection matrix can be represented by a Khatri-Rao product between

the matrices IMK and IMK or by a transpose of any unfolding of the identity tensor I3,MK ∈

R
MK×MK×MK.

JMK = IMK ◇ IMK = [I3,MK]T(1) = [I3,MK]T(2) = [I3,MK]T(3)
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For M = 2 and K = 2, the selection matrix JMK has the following elements

JMK =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

.

Moreover, we get the very same selection matrix JMK from the following multiplication of two

matrices.

JMK = [I4,K ⊗ I3,M ]([2,3],[1,4]) ⋅ [IK ⊗ 1T
K ⊗ IM ]T (B.4)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B.3 Derivation of the 4-way channel tensor in the frequency domain

and its unfoldings

Let us assume a MIMO-OFDM system with MT transmit antennas and MR receive antennas.

Such a system is depicted in Fig. 5.1, for MT = 2 and MR = 3. As shown in Section 5.1.1,

we can define a 4-way channel tensor H̃ ∈ CN×N×MR×MT in equation (5.2) by concatenating the

channel tensors for each transmit antenna, i.e., H̃
(mT)
R ∈ C

N×N×MR along the 4-mode. The tensors

H̃
(mT)
R ∈ C

N×N×MR contain the channel vectors for the mT-th transmit antenna and all receive

antennas as defined in equation (5.3), for mT = 1, . . .MT. Recall that these tensors have a CP

structure, i.e. H̃
(mT)
R = I3,N ×3 H̃(mT)

R , for mT = 1, . . .MT. The matrices H̃
(mT)
R (mT = 1, . . .MT)

are defined in equation (5.4). The tensors H̃
(mT)
R and the matrices H̃

(mT)
R are depicted in Fig. 5.2.
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B.3. Derivation of the 4-way channel tensor in the frequency domain and its unfoldings

Hence, the 4-way channel tensor is

H̃ = [H̃(1)R ⊔4 H̃
(2)
R ⊔4 . . . H̃

(MT)
R

]
= [H̃(1)R ⊔4 H̃

(2)
R ⊔4 . . . H̃

(MT)
R ] ×4 IMT

We can rewrite this concatenation by means of an outer product with a pining vector emT
. More-

over, if we substitute the CP structure of the tensor H̃
(mT)
R , we get

H̃ =
MT

∑
mT=1

H̃
(mT)
R ○ emT

=

MT

∑
mT=1

(I3,N ×1 IN ×2 IN ×3 H̃(mT)
R ) ○ emT

.

Now, replacing the outer product by an n-mode product, we have

H̃ =
MT

∑
mT=1

D ×1 IN ×2 IN ×3 H̃(mT)
R ×4 emT

, (B.5)

where D(.,.,.,1) = I3,N . Note that the tensor D ∈ RN×N×N×1 is a 4-way tensor, but its 4-mode is

a singleton dimension. We can define this tensor in terms of a Kronecker product, which yields

D = I4,1⊗I3,N . Equation (B.5) represents a very special BTD, where the block terms are equivalent

in all modes, but the 3-mode and the 4-mode. As shown in Fig. 2.15, we can replace the sum in (B.5)

with a block diagonal core tensor and factor matrices partitioned accordingly.

H̃ = blkdiag (I4,1 ⊗I3,N)MT

mT=1
×1 [IN . . . IN] ×2 [IN . . . IN]
×3 [H̃(1)

R . . . H̃
(MT)
R ] ×4 [e1 . . . eMT

]

Next, we rewrite the block diagonal structure and the partitioned factor matrices using Kronecker

products

H̃ = (I4,MT
⊗I3,N) ×1 (1TMT

⊗ IN) ×2 (1TMT
⊗ IN) ×3 [H̃(1)

R . . . H̃
(MT)
R

]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

H̃

×4IMT
. (B.6)

This last equation explicitly reveals the structure of the channel tensor H̃. Exploiting this structure,

we can define any of the tensor unfoldings.

For the generalized unfolding [H̃]([1,3],[2,4]), from equation (B.6), we get

[H̃]([1,3],[2,4]) = [H̃ ⊗ (1T
MT
⊗ IN)] [I4,MT

⊗ I3,N ]([1,3],[2,4]) [IMT
⊗ 1T

MT
⊗ IN]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶∗

(B.7)

Considering the results from Appendix B.2, we have

[I4,MT
⊗ I3,N ]([1,3],[2,4]) [IMT

⊗ 1TMT
⊗ IN] = INMT

◇ INMT
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for the * part in equation (B.7). Recognize that INMT
◇INMT

= JNMT
is the selection matrix that

converts a Kronecker product into a Khatri-Rao as shown in property (2.29). Using this property,

equation (B.7) becomes

[H̃]([1,3],[2,4]) = H̃ ◇ (1T
MT
⊗ IN). (B.8)

Moreover, the generalized unfolding [H̃]([1,3],[4,2]) can also be derived directly from equation (B.6).

However, to simplify the final result is not straightforward because N is the faster rising index along

the columns of the factor matrix H̃ in equation (B.6). On the other hand, MT varies faster than

N along the columns in the generalized unfolding [H̃]([1,3],[4,2]). Therefore, we derive this gener-

alized unfolding by means of a permutation matrix P ∈ RNMT×MTN . The permutation matrix P

reorders the columns such that the faster increasing index is MT instead of N and is defined as

[H̃]([1,3],[4,2]) = [H̃]([1,3],[2,4]) ⋅P . Hence,

[H̃]([1,3],[4,2]) = [H̃ ◇ (1TMT
⊗ IN)] ⋅P . (B.9)

Considering that the permutation matrix P reorders the columns in equation (B.9) and the Khatri-

Rao product is a column-wise operator (Khatri-Rao product is column-wise Kronecker product),

the following equality holds

[H̃]([1,3],[4,2]) = [H̃ ◇ (1T
MT
⊗ IN)] ⋅P = [H̃ ⋅P ] ◇ [(1TMT

⊗ IN) ⋅P ] .
The permutation matrix for MT = 2 and N = 3 is given by

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Finally, using (1T
MT
⊗ IN) ⋅P = (IN ⊗ 1TMT

) and defining H̄ = H̃ ⋅P , for the generalized unfolding

([1,3], [4,2]), we get

[H̃]([1,3],[4,2]) = H̄ ◇ (IN ⊗ 1TMT
).
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311–320, 2010. [Online]. Available: http://arxiv.org/pdf/1002.4935v3

[LdCS+16] K. Liu, J. P. C. L. da Costa, H. C. So, L. Huang, and J. Yea, “Detection of Number
of Components in CANDECOMP/PARAFAC models via Information Theoretic
Criterion,” Digital Signal Processing, vol. 51, pp. 110–123, 2016.

[LdCSdA13] K. Liu, J. P. C. L. da Costa, H. C. So, and A. L. F. de Almeida, “Semi-blind
receivers for joint symbol and channel estimation in space-time-frequency MIMO-
OFDM systems,” IEEE Transactions Signal Processing, vol. 61, no. 21, pp. 5444–
5457, 2013.

[LFH14] S. Lau, L. Flemming, and J. Haueisen, “Magnetoencephalography signals are influ-
enced by skull defects,” Clinical Neurophysiology, vol. 125, pp. 1653 – 1662, 2014.

[LGF+16] S. Lau, D. Guellmar, L. Flemming, D. B. Grayden, M. J. Cook, C. H. Wolters, and
J. Haueisen, “Skull defects in finite element head models for source reconstruction
from magnetoencephalography signals,” Frontiers in Neuroscience, vol. 10, article
141, 2016.

[Liu99] S. Liu, “Matrix results on the Khatri-Rao and Tracy-Singh products,” Linear Al-
gebra and its Applications, vol. 289, pp. 267–277, 1999.

[LPdA09] V. V. Lazarev, A. Pontes, and L. de Azevedo, “EEG photic driving: Right-
hemisphere reactivity deficit in childhood autism. a pilot study,” International Jour-
nal of Psychophysiology, vol. 71, pp. 177 – 183, 2009.

[LS01] X. Liu and N. D. Sidiropoulos, “Cramer-Rao lower bounds for low-rank decomposi-
tion of multidimensional arrays,” IEEE Transactions on Signal Processing, vol. 49,
no. 9, pp. 2074–2086, 2001.

[LS15] A. P. Liavas and N. D. Sidiropoulos, “Parallel Algorithms for Constrained
Tensor Factorization via the Alternating Direction Method of Multipliers,” IEEE
Transactions on Signal Processing, vol. 63, no. 20, pp. 5450–5463, 2015. [Online].
Available: http://arxiv.org/pdf/1409.2383v2

[LSSd01] V. V. Lazarev, D. M. Simpson, B. M. Schubsky, and L. C. de Azevedo, “Photic
driving in the electroencephalogram of children and adolescents: harmonic struc-
ture and relation to the resting state,” Brazilian Journal of Medical and Biological
Research, vol. 34, pp. 1573–1584, 2001.

[LT08] S. Liu and G. Trenkler, “Hadamard, Khatri-Rao, Kronecker and other matrix prod-
ucts,” International Journal of Information and Systems Sciences, vol. 4, no. 1, pp.

217

http://arxiv.org/pdf/1002.4935v3
http://arxiv.org/pdf/1409.2383v2


160–177, 2008.

[LTS+10] J. W. Lee, N. Tanaka, H. Shiraishi, T. A. Milligan, B. A. Dworetzky, S. Khoshbin,
S. M. Stufflebeam, and E. Bromfield, “Evaluation of postoperative sharp waveforms
through EEG and magnetoencephalography,” Journal of Clinical Neurophysiology,
vol. 27, pp. 7–11, 2010.

[McC87] P. McCullagh, Tensor Methods in Statistics. Chapman and Hall London, 1987.

[MDK+17] N. Michailow, R. Datta, S. Krone, M. Lentmaier, and G. Fettweis, “Generalized
Frequency Division Multiplexing: A Flexible Multi-Carrier Modulation Scheme for
5th Generation Cellular Networks,” Mobile Communications, 2017.

[MMG+14] N. Michailow, M. Matthe, I. Gaspar, A. Caldevilla, L. Mendes, A. Festag, and
G. Fettweis, “Generalized frequency division multiplexing for 5th generation cellular
networks,” IEEE Transactions on Communications, vol. 62, no. 9, pp. 3045–3061,
2014.

[MMG15] M. Mardani, G. Mateos, and G. B. Giannakis, “Subspace Learning and
Imputation for Streaming Big Data Matrices and Tensors,” IEEE Transactions
on Signal Processing, vol. 63, no. 10, pp. 2663–2677, 2015. [Online]. Available:
http://arxiv.org/pdf/1404.4667v1

[Moo20] E. H. Moore, “On the reciprocal of the general algebraic matrix,” Bulletin of the
American Mathematical Society, vol. 26, pp. 394–395, 1920.

[MPCB93] G. L. Mangan, O. Pellett, I. M. Colrain, and T. C. Bates, “Photic driving and
personality,” Personality and Individual Differences, vol. 15, no. 3, pp. 329–340,
1993.

[MSK09] X. Ma, D. Schonfeld, and A. Khokhar, “Dynamic updating and downdating matrix
SVD and tensor HOSVD for adaptive indexing and retrieval of motion trajectories,”
in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2009, pp. 1129–1132.

[NAMLT16] V.-D. Nguyen, K. Abed-Meraim, and N. Linh-Trung, “Fast adaptive PARAFAC
decomposition algorithm with linear complexity,” in Proc. IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), 2016, pp. 6235–6239.

[NBR+14] M. Niknazar, H. Becker, B. Rivet, C. Jutten, and P. Comon, “Blind source separa-
tion of underdetermined mixtures of event-related sources,” Signal Processing, vol.
101, pp. 52–64, 2014.

[Neu69] H. Neudecker, “Some theorems on matrix differentiation with special reference
to Kronecker matrix products,” Journal of the American Statistical Association,
vol. 64, pp. 953 – 963, 1969.

[NKH16] A. Notbohm, J. Kurths, and C. Herrmann, “Modification of brain oscillations via
rhythmic light stimulation provides evidence for entrainment but not for superpo-
sition of event-related responses,” Frontiers in Human Neuroscience, vol. 10, 2016.

[NS09] D. Nion and N. D. Sidiropoulos, “Adaptive Algorithms to Track the PARAFAC
Decomposition of a Third-Order Tensor,” IEEE Transactions on Signal Processing,
vol. 57, no. 6, pp. 2299–2310, 2009.

[Pen55] R. Penrose, “A generalized inverse for matrices,” Proceedings of the Cambridge
Philosophical Society, vol. 51, pp. 406–413, 1955.

218

http://arxiv.org/pdf/1404.4667v1


Bibliography

[PF15] E. E. Papalexakis and C. Faloutsos, “Fast efficient and scalable Core Consistency
Diagnostic for the PARAFAC decomposition for big sparse tensors,” in Proc. IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
2015, pp. 5441–5445.

[PFS12] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, “ParCube: Sparse Paral-
lelizable Tensor Decompositions,” in Machine Learning and Knowledge Discovery
in Databases, P. A. Flach, T. De Bie, and N. Cristianini, Eds. Springer Berlin
Heidelberg, 2012, pp. 521–536.

[PHT+18] I. Podkurkov, L. Hamidullina, E. Traikov, M. Haardt, and A. Nadeev, “Tensor-based
near-field localization in bistatic MIMO radar systems,” in Proc. 22-nd International
ITG Workshop on Smart Antennas (WSA), 2018.

[PMS14] E. E. Papalexakis, T. M. Mitchell, and N. D. Sidiropoulos, “Turbo-SMT Accel-
erating Coupled Sparse Matrix-Tensor,” in Proc. of the 2014 SIAM International
Conference on Data Mining, 2014.

[PNCZ+16] A. I. Perez-Neira, M. Caus, R. Zakaria, D. Le Ruyet, E. Kofidis, M. Haardt,
X. Mestre, and Y. Cheng, “MIMO signal processing in Offset-QAM based filter
bank multicarrier systems,” IEEE Transactions on Signal Processing, vol. 64, pp.
5733–5762, 2016.

[Pon10] S. P. Ponnapalli, “Higher-Order Generalized Singular Value Decomposition: Com-
parative Mathematical Framework with Applications to Genomic Signal Process-
ing,” Doctoral Thesis, The University of Texas at Austin, 2010.

[PP08] K. B. Petersen and M. S. Pedersen, “The Matrix Cookbook,”
http://matrixcookbook.com (version 2012), 2008.

[PSvA11] S. P. Ponnapalli, M. A. Saunders, C. F. van Loan, and O. Alter, “A higher-order
generalized singular value decomposition for comparison of global mRNA expression
from multiple organisms,” PloS one, vol. 6, no. 12, p. e28072, 2011.
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