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Abstract
Independent component analysis (ICA) is an important unsupervised learning method. Most

popular ICA methods use kurtosis as a metric of non-Gaussianity to maximize, such as FastICA and
JADE. However, their assumption of kurtosic sources may not always be satisfied in practice. For
weak-kurtosic but skewed sources, kurtosis-based methods could fail while skewness-based meth-
ods seem more promising, where skewness is another non-Gaussianity metric measuring the non-
symmetry of signals. Partly due to the common assumption of signal symmetry, skewness-based
ICA has not been systematically studied in spite of some existing works. In this paper, we take
a systematic approach to develop EcoICA, a new skewness-based ICA method for weak-kurtosic
but skewed sources. Specifically, we design a new cumulant operator, define its eigenvalues and
eigenvectors, reveal their connections with the ICA model to formulate the EcoICA problem, and
use Jacobi method to solve it. Experiments on both synthetic and real data show the superior perfor-
mance of EcoICA over existing kurtosis-based and skewness-based methods for skewed sources.
In particular, EcoICA is less sensitive to sample size, noise, and outlier than other methods. Studies
on face recognition further confirm the usefulness of EcoICA in classification.
Keywords: Independent Component Analysis, Cumulant Operator, Skewness, Eigenvectors

1. Introduction

Independent component analysis (ICA) is a popular unsupervised learning method with many ap-
plications (Hyvärinen and Oja, 2000). In order to estimate independent components (ICs), ICA
assumes that the sources are mutually independent, where such independence can be measured by
non-Gaussianity. The mainstream approach for maximizing non-Gaussianity is based on kurto-
sis,1 which is the fourth-order univariate cumulant (Hyvärinen, 1999). FastICA (Hyvärinen, 1999)
(with contract function pow3) employs kurtosis as a measure of non-Gaussianity and explicitly max-
imizes a kurtosis-based objective function. The joint approximate diagonalization of eigenmatrices
(JADE) (Cardoso and Souloumiac, 1993) jointly diagonalizes the eigenmatrices derived from the
fourth-order cumulant tensor (the multivariate version of kurtosis) to recover the sources.

Kurtosis-based ICA methods have two implicit assumptions: 1) the non-Gaussianity of random
process mainly comes from kurtosis; and 2) many random processes are naturally symmetric so
their skewness would decay to zero (Nikias and Mendel, 1993). In other words, they assume that
the probability density functions (PDFs) of sources are kurtosic and highly symmetric. The former

1. Kurtosis/skewness can be positive or negative. When talking about largeness/smallness, we refer to absolute values.
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(a) Four weak-kurtosic source images.

mixed 1 mixed 2 mixed 3 mixed 4

(b) Mixed images via a 4×4 random matrix.
FastICA:0.22636 est 2 est 3 est 4

(c) Separated images by FastICA.

JADE:0.33451 est 2 est 3 est 4

(d) Separated images by JADE.

Figure 1: A typical weak-kurtosic image separation case where both FastICA and JADE fail. The source
kurtosis are small: 0.44, 0.39, 0.14, and 0.41. In contrast, the source skewness (absolute value)
are large: -1.48, -1.34, -1.35, and -1.45. Thus, these sources are weak-kurtosic but skewed.
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Figure 2: Histograms of kurtosis (left) and skewness (right) of all 30,607 Caltech256 images. About 48.08%
have small kurtosis (|kurtosis|<1), among which 22.70% have large skewness (|skewness|>1).

assumption leads to the popularity of kurtosis-based approach, while the latter one discourages
skewness-based approach.

However, both assumptions can be violated in real applications. On one hand, there are weak-
kurtosic sources such as about 48.08% images from the Caltech256 database (Griffin et al., 2006).
Intuitively, if the non-Gaussianity of the sources is not mainly from kurtosis, kurtosis-based ICA
methods can hardly perform well. For illustration, we show the performance of FastICA and JADE
in recovering weak-kurtosic source images of Fig. 1(a) from their mixtures in Fig. 1(b). As seen
from Fig. 1(c) and Fig. 1(d), neither FastICA nor JADE can separate the mixed images. On the
other hand, some real-world data such as the fMRI data (Stone et al., 2002) are shown to be non-
symmetric, for which skewness can be exploited to improve the recovery performance.

Therefore, this paper focuses on ICA for weak-kurtosic but skewed sources, for which kurtosis-
based ICA methods are expected to fail and the skewness-based ones are more promising. To give an
example for such weak-kurtosic but skewed data, we depict the histograms of kurtosis and skewness
for all Caltech256 images in Fig. 2: Out of the total 30,607 images, around 48.08% (14,717 images)
have small kurtosis (|kurtosis|<1); out of these weak-kurtosic images, 22.70% (3,341 images) have
large skewness (|skewness|>1). Hence, skewness-based ICA could best suit these 3,341 images,
which violate the assumptions of kurtosis-based ICA. This motivates us to explore skewness for
ICA problem with weak-kurtosic but skewed sources, where kurtosis-based ICA is expected to fail.

Several existing works have studied skewness-based ICA. However, most of them (Choi et al.,
1998; Lathauwer et al., 2001; Geng et al., 2014) focused on efficiency improvement, and none of
them was shown to outperform FastICA/JADE in accuracy. FastICAskew (Ollila, 2010) (classical
FastICA with contrast function skew) is another state-of-the-art skewness-based method, but it has a
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stability issue and is sensitive to noise. Furthermore, none of existing skewness-based methods pro-
vides a systematic treatment in terms of spectral analysis as in JADE (Cardoso, 1999). On the other
hand, a few ICA methods study the third-order cumulants, the multivariate version of skewness.
However, rather than working with a linear operator in a systematic way as we do, existing third-
order cumulant-based ICA methods mainly involve diagonalizing the cumulant tensors (Comon,
1994b; Moreau, 2000, 2007; Lathauwer et al., 2001; Moreau, 2001; Blaschke and Wiskott, 2004;
Wang and Lu, 2005). In particular, some of them focus on the mixed cumulants of different orders.
For instance, Moreau (2001) combines the third-order cumulant tensor with the fourth one and op-
timizes them simultaneously, while Blaschke and Wiskott (2004) minimize a weighted summation
based on the third- and fourth-order tensors.

Based on the above, we propose EcoICA, a new skewness-based ICA method for weak-kurtosic
but skewed sources. We develop EcoICA in a systematic way with two main contributions: (1) We
design a new cumulant operator T based on the third-order cumulant tensor Qx. To explore the
spectral properties of T , we further define its eigenvalues as well as eigenvectors, and reveal their
connections with the ICA model. This new cumulant operator enables a systematic approach to ex-
plore the third-order cumulants and other higher-order cumulants. (2) We compute the eigenvectors
of cumulant operator to tackle the ICA problem (EcoICA), which can be solved by the Jacobi
method. Experimental results show that EcoICA outperforms kurtosis-based and skewness-based
methods for skewed sources, and it is less sensitive to sample size, noise, and outlier in particular.

2. Preliminaries

2.1. Cumulants

The r-th order cumulants are conventionally denoted by κr(x) for random variable x, and (Qx)i1,··· ,ir
or cum(xi1 , · · · , xir) for random vector x, where i1, · · · , ir are the mode-wise indices. In particu-
lar, the third/fourth cumulants of a zero-mean random variable are the skewness/kurtosis; κr(xi) =
cum(xi, · · · , xi) (r times) is the r-th cumulant of xi.

Cumulants of a random vector x have the following properties: (1) symmetry: (Qx)i1,··· ,ir =
(Qx)iσ(1),··· ,iσ(r)

for any permutation σ; (2) linearity: cum(x1, · · · , xi+y, · · · , xr) = cum(x1, · · · , xr)
+cum(x1, · · · , y, · · · , xr) and cum(x1, · · · , αxi, · · · , xr) = α ·cum(x1, · · · , xr) for any random
variable y and scalar α; (3) independence: if ∃p, q ∈ {1, · · · , r} where xip and xiq are independent,
(Qx)i1,··· ,ir = 0; (4) vanishing Gaussian: if x is Gaussian, (Qx)i1,··· ,ir = 0 for any order r ≥ 3.

2.2. The ICA Model

The standard ICA model is formulated as x = As, where x = [x1, · · · , xN ]T denotes the observed
mixture variables, s = [s1, · · · , sN ]T are the independent components (ICs), N is the number
of sources or observations (usually assumed to be equal), and A is the unknown constant matrix,
namely mixing matrix. The aim of ICA is to estimate sources s and the mixing matrix A simultane-
ously using observations x only, assuming that the source components are mutually independent.

2.2.1. BASIC ICA PROCEDURES

There are three steps for ICA. (1) Centering: remove the first-order statistics from the data by
shifting the sample mean to the origin. (2) Whitening: remove the second-order statistics from the
data. Suppose the observed data in the ICA model is whitened by matrix W such that z = WAs =
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Us, where U = WA is the whitened mixing matrix. Since I = E{zzT } = E{UssTUT } = UUT ,
the whitened mixing matrix U is orthogonal. (3) ICA Estimation: use higher-order statistics of the
data to estimate ICs. It is the core step of ICA, and different ICA methods do it differently.

2.2.2. THE WHITENED ICA MODEL

For simpler notation, we keep using x for the centred and whitened observations in the remaining
of this paper. The whitened ICA model is

x = Us =
N∑
i=1

uisi, (1)

where U = [u1, · · · ,uN ] is the whitened mixing matrix and ui is the i-th column of U. The whitened
ICA model (1) satisfies the following equations for ∀i, j ∈ {1, · · · , N}:

(1) xi =
∑

k Uiksk;
(2) uT

i uj =
∑

k UkiUkj =
∑

k UikUjk = δij due to the orthogonality of U.

3. Eigenvectors of Cumulant Operator for ICA (EcoICA)

In this section, we first define and systematically study a new cumulant operator T based on the
third-order cumulant tensor Qx. Then we derive a novel ICA method based on the eigenvectors of
this newly designed operator.

3.1. A New Cumulant Operator T

Definition 1 The cumulant operator T is defined by the third-order cumulant tensor Qx of mixture
components in the whitened ICA model (1):

T : RN → RN×N

v → T (v),Tij(v) :=
∑

k(Qx)ijk · vk.

Theorem 1 The cumulant operator T is linear and symmetric.

Proof (i) For ∀α ∈ R and ∀i, j ∈ {1, · · · , N}, we have

Tij(αv) =
∑
k

(Qx)ijk(αvk) = α
∑
k

(Qx)ijk(vk) = αTij(v).

The second equality is due to the constancy of α with respect to the summation over k. So T (αv) =
αT (v) holds.

(ii) For ∀v,w ∈ RN and ∀i, j ∈ {1, · · · , N}, we have

Tij(v + w) =
∑
k

(Qx)ijk · (v + w)k =
∑
k

(Qx)ijk · (vk + wk) = Tij(v) + Tij(w).

So it is proved that T (v + w) = T (v) + T (w).

(iii) Linear operator T is symmetric due to the symmetry of the cumulant tensor (Qx)ijk where
the order of the indices makes no difference.
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3.2. Eigenvalues and Eigenvectors of T

Definition 2 If a unit vector v ∈ RN and a scalar λ satisfy the following condition:

T (v) = λvvT , where ||v|| = 1, (2)

i.e. Tij(v) = λ(vvT )ij for ∀i, j ∈ {1, · · · , N}, we call v the eigenvector and λ the corresponding
eigenvalue of the cumulant operator T .

Note that the condition ||v|| = 1 is important to avoid the ambiguity of scale. Given an eigen-
vector v and its eigenvalue λ, denote w = αv (∀α ̸= 0 and α ̸= 1), we have T (w) = T (αv) =
αT (v) = αλvvT = λ

αwwT , which is identical to Eq. (2) in formula. However, w is not an eigen-
vector of T as ||w|| = |α| · ||v|| = |α| ̸= 1.

Lemma 1 Given the whitened ICA model (1), the third-order cumulant tensor Qx satisfies the fol-
lowing equation:

(Qx)ijk =
∑
p

UipUjpUkpκ3(sp),

where κ3(sp) represents the skewness of the p-th source component sp.
Proof This lemma can be easily proved via properties of cumulants in Sec. 2.1.

Theorem 2 Given the whitened ICA model (1), the columns of the whitened mixing matrix U consist
of the full eigenvector space of the cumulant operator T . In other words, (i) any column um

(∀m ∈ {1, · · · , N}) of U is an eigenvector of T ; and (ii) {um}Nm=1 are T ’s full eigenvectors.

Proof We will prove this theorem in two parts (i) and (ii).
(i) We first prove that any column of U is an eigenvector of T . From the orthogonality of U,

||um|| = 1 satisfies the unit length requirement. By Def. 1, we have:

Tij(um) =
∑

k cum(xi, xj , xk)(um)k =
∑

k cum(
∑

p Uipsp,
∑

q Ujqsq,
∑

r Ukrsr)Ukm

=
∑

k Ukm

∑
p,q,r UipUjqUkrcum(sp, sq, sr).

Due to the independence of {si}, only those cumulants with p = q = r are nonzero. Thus, we have

Tij(um) =
∑
k

Ukm

∑
p

UipUjpUkpκ3(sp) =
∑
p

κ3(sp)UipUjp(
∑
k

UkmUkp).

Since U is orthogonal,
∑

k UkmUkp = δmp holds and only those with p = m are nonzero. Thus,

Tij(um) =
∑
p

κ3(sp)UipUjpδmp = κ3(sm)UimUjm = κ3(sm)(umuTm)ij .

According to Def. 2, we have shown that {um} are T ’s eigenvectors, and their eigenvalues {κ3(sm)}
are the skewness of the independent components {sm}.

Since columns of U are orthogonal, they can be a full basis of the RN space, i.e. RN =
span{u1, · · · ,uN}. In conventional linear algebra, it indicates {um} are the full eigenvectors. We
prove the similar property of {um} for the cumulant operator T in the second part of this proof.

(ii) We now prove that {um} are T ’s full eigenvectors by showing that any eigenvector of T
is indeed one of {um}. Given T ’s any eigenvalue λ and eigenvector v ∈ RN = span{u1, ..., uN},
there are α1, · · · , αN ∈ R such that

v =
1

γ

N∑
k=1

αkuk, (3)
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where γ =
√∑N

k=1 α
2
k > 0. Thus, we have ||v|| = 1.

Before continuing the proof, we need to derive an alternative form of γ for the following deriva-
tion. Since ||v||2 = vT v = γ−2(

∑
m αmuT

m)(
∑

m αmum), we have

γ2 =
∑
m,n

αmαnuT
mun =

∑
m,n

αmαn(
∑
k

UkmUkn) =
∑
k

(
∑
m

αmUkm)2. (4)

Therefore, γ satisfies the following equation:

γ2 =
∑
k

α2
k =

∑
k

(
∑
m

αmUkm)2 > 0. (5)

Let us return the proof. On one hand, we have

T (v) = T (γ−1
∑
k

αkuk) = γ−1
∑
k

αkT (uk) = γ−1
∑
k

αkκ3(sk)ukuTk .

That is to say, for ∀i, j, the following equality holds

Tij(v) = γ−1
∑
k

αkκ3(sk)(ukuT
k )ij = γ−1

∑
k

αkκ3(sk)UikUjk. (6)

On the other hand, according to Eq. (3),

λvvT = λ/γ2(
∑
m

αmum)(
∑
n

αnun)T = λ/γ2
∑
m,n

αmαnumuTn .

In other words, it holds for ∀i, j that

(λvvT )ij = λ/γ2
∑
m,n

αmαn(umuT
n )ij = λ/γ2(

∑
m

αmUim)(
∑
m

αmUjm). (7)

Since v is an eigenvector, we have for ∀i, j

Tij(v) = (λvvT )ij .

Substituting (6) and (7) into the above equation, we have

γ2
∑
m

αmκ3(sm)UimUjm = λγ(
∑
m

αmUim)(
∑
m

αmUjm). (8)

For i = j, Eq. (8) can be simplified to

γ2
∑
m

αmκ3(sm)U2
im = λγ(

∑
m

αmUim)2.

Summing across all indices i, based on Eq. (5) and the orthogonality of U, we have∑
i γ

2
∑

m αmκ3(sm)U2
im =

∑
i λγ(

∑
m αmUim)2

γ2
∑

m αmκ3(sm)
∑

i U
2
im = λγ

∑
i(
∑

m αmUim)2

γ2
∑

m αmκ3(sm)δmm = λγγ2 .

Therefore, λ satisfies
λγ =

∑
m

αmκ3(sm). (9)
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Substituting λ of Eq. (9) into Eq. (8) and using Eq. (5), we get

(
∑

m α2
m)[

∑
m αmκ3(sm)UimUjm] = [

∑
m αmκ3(sm)](

∑
m αmUim)(

∑
m αmUjm). (10)

To guarantee the equality of (10), the coefficient of the LHS of the entry κ3(sm)UimUjm should
equal to the RHS of this entry for ∀i, j,m. Formally, we have

(
∑
k

α2
k)αm = αmαmαm.

Thus, we conclude that either αm = 0 or α2
m =

∑
k α

2
k = α2

m +
∑

k ̸=m α2
k for αm ̸= 0. That is

to say, there exists and only exists one nonzero coefficient αk where k ∈ {1, · · · , N}. In this case,
eigenvector v is indeed some u ∈ {u1, ..., uN}. Therefore, we have proved that {um} constitute the
full eigenvector space of the cumulant operator T .

3.3. The Objective Function of EcoICA

According to Theorem 2, once the full eigenvectors of the cumulant operator T are known, we
can recover the whitened mixing matrix U and the independent components. Thus, computing
eigenvectors of cumulant operator is the core of our ICA method, and we name it EcoICA. How-
ever, their exact computation is not always feasible because the ICA model does not hold exactly
in real applications (Hyvärinen et al., 2001). Inspired by JADE, we further convert computing T ’s
eigenvectors by minimizing the off-diagonal entries of several matrices based on Theorem 3 below.

Theorem 3 Given the whitened ICA model (1), the matrix UTT (v)U is diagonal for ∀v ∈ RN .

Proof For ∀i, j ∈ {1, · · · , N} and ∀v ∈ RN , by the definition of matrix multiplication, we have

[UTT (v)U]ij =
∑
p,q

UT
ipTpq(v)Uqj =

∑
p,q

UpiUqj [
∑
k

vkcum(xp, xq, xk)].

We reformulate the above based on Lemma 1 as

[UTT (v)U]ij =
∑

p,q UpiUqj{
∑

k vk[
∑

r UprUqrUkrκ(sr)]}
=

∑
r κ3(sr)

∑
k vkUkr(

∑
p UpiUpr)(

∑
q UqjUqr) =

∑
r κ3(sr)

∑
k vkUkrδirδjr.

The last equality is due to U’s orthogonality. Only those with i = j = r are nonzero so we have

[UTT (v)U]ij =

{
0 for i ̸= j
κ3(si)

∑
k vkUki for i = j.

We further notice that the diagonal entries can be neater:

[UTT (v)U]ii = κ3(si)[
∑
k

vk(ui)k] = κ3(si) ⟨ui, v⟩ . (11)

If we view the columns of U as one full basis of the RN space, ⟨ui, v⟩ can be interpreted as the i-th
coordinate of the vector v under this basis.

Based on Theorem 3, we can take a set of vectors {vn} and make matrix set {UTT (vn)U} as
diagonal as possible. In this paper, we use the standard basis {en}Nn=1 of the RN space as {vn}.
The diagonality of a symmetric matrix Q = UTT (v)U can then be measured by the sum of the
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Algorithm 1 EcoICA: ICA for skewed sources
1: Input: Observation matrix X: rows correspond to mixture components and columns are samplings.
2: Preprocessing: Centering X and whitening X.
3: Estimation:
4: (1) Compute the empirical third-order cumulant tensor Qx.
5: (2) Compute {T (en)}Nn=1 based on Def. 1, where {en} are the full standard basis of RN .
6: (3) Align the matrices {T (en)} to form the matrix M = [T (e1), ...,T (eN )].
7: (4) Apply the Jacobi method on M to obtain rotation matrices.
8: (5) Get U−1 by multiplication of these Jacobi rotation matrices.
9: (6) Invert U−1 to get U.

10: Output: the whitened mixing matrix U.

squares of off-diagonal entries:
∑

i ̸=j q
2
ij (Comon, 1994a). Since for a given vector v, the square

sum over all elements of the matrix is preserved under an orthogonal transformation, minimizing the
sum of squares of off-diagonal elements is equivalent to maximizing the sum of squares of diagonal
elements (Deco and Obradovic, 1996). We formulate our objective function based on this property.

The objective function: For the set of standard basis {en}Nn=1 of the RN space, we maximize
the following objective with respect to the orthogonal matrix U

FEcoICA(U) =

N∑
n=1

||diag(UTT (en)U)||2, (12)

where ||diag(·)||2 denotes the sum of squares of the diagonal.

3.4. The EcoICA Algorithm

Similar to JADE, we apply the Jacobi method to optimize our objective function (12) and compute
the whitened mixing matrix U. Specifically, we first align the set of matrices {T (en)}Nn=1 into an
extended matrix M = [T (e1), · · · ,T (eN )]. Then, we apply the Jacobi method on M to conduct
a series of Jacobi rotations, each of which handles two rows and two columns at a time (Clarkson,
1988). We then obtain U−1, the inverse of the whitened mixing matrix, by multiplying the rotation
matrices. Subsequently, we get U. The EcoICA algorithm is summarized in Algorithm 1.

EcoICA is based on the third-order cumulant tensor, whereas JADE is based on the fourth-order
one. Thus, EcoICA has lower computational load than JADE, which is verified in experiments.

3.5. Further Extensions and Application Guidelines

EcoICA is endowed with a new third-order cumulant operator, which is, to our best knowledge, the
first known extension of the fourth-order cumulant operator in JADE. This allows the exploitation of
spectral structures for ICA and further extensions to higher-order cumulant operators. For instance,
we can define the fifth-order cumulant operator as a mapping from a third-order tensor to a matrix,
and then develop a new algorithm based on it.

As a skewness-based method, EcoICA is designed for problems with skewed sources. On one
hand, when the nature of sources is known to be kurtosic or skewed, we can apply kurtosis-based
ICA or EcoICA respectively for good performance. On the other hand, when the nature of sources is
unknown, we can determine whether EcoICA is appropriate by examining the kurtosis and skewness
of the observed data (the mixtures), which indicate those of the sources due to linear mixing (as to
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be shown in the end of Sec. 4.2). Specifically, we suggest to apply EcoICA when the observed data
have larger skewness (in magnitude) than kurtosis, and apply kurtosis-based ICA when they are
more kurtosic. Furthermore, it may be useful to develop hybrid models considering both kurtosis
and skewness (Moreau, 2001; Blaschke and Wiskott, 2004). With a new systematic approach for
ICA based on linear operator, EcoICA offers a new approach to combine cumulant operators of
different orders, which could be an interesting future direction.

4. Experiments

Since EcoICA is based on skewness, it works best for skewed sources. In this section, we evaluate
EcoICA against FastICA (Hyvärinen, 1999), its skewness version FastICAskew (Ollila, 2010), JADE
(Cardoso, 1999), and Infomax (Bell and Sejnowski, 1995) using the codes provided by the authors.
We mainly study the blind source separation (BSS) problem and compute the Amari error (Amari
et al., 1996) of the demixing matrices (i.e., the inverse of the mixing matrices).

We consider three experimental settings: (1) BSS on synthetic data, where source skewness and
kurtosis can be fully controlled. Thus, we can set up a perfect simulating environment for evalu-
ation. We also study the sensitivity against sample size, noise, and outlier. (2) Image separation,
where we can mildly control the experiments by calculating the skewness and kurtosis of source im-
ages and selecting those of our interest. (3) Face recognition, where the ground-truth of the sources
and the mixing matrix are unknown so we can only evaluate EcoICA via recognition rate indirectly.

4.1. Blind Source Separation on Synthetic Data

We first design four source scenarios to verify the conditions for EcoICA to work: (a) skewed and
kurtosic sources, (b) skewed but non-kurtosic sources, (c) non-skewed but kurtosic sources, and
(d) non-skewed and non-kurtosic sources. Next, we focus on scenarios (a) and (b) where EcoICA
is designed for to study recovery performance versus the number of sources. Third, the effects of
sample size, noise, and outlier are investigated.

Take scenario (b) as an example, to simulate skewed but non-kurtosic sources, we set source
skewness to one and source kurtosis to zero and randomly generate the sources via MATLAB func-
tion pearsrnd(). To guarantee the invertibility of mixing matrices, they are generated in three steps:
(i) uniformly generate a N ×N matrix with each entry between zero and one, where N represents
the number of sources; (ii) normalize the generated matrix by column; (iii) add an identity matrix
to the one in (ii).

4.1.1. BSS WITH TWO SOURCES

For easy visualization, we investigate BSS with two sources, and each source has 5000 noise-free
random samples. We aim to verify the situations where skewness/kurtosis-based methods work.

Figure 3 depicts one example of source recovering processes by Infomax, FastICA, JADE,
FastICAskew, and EcoICA. Note that ICA estimation is only unique up to sign and permutation.
We can clearly see that (1) when sources are both skewed and kurtosic, all ICA methods can suc-
cessfully recover the source probability density function (PDF); (2) when sources are skewed but
non-kurtosic, skewness-based methods, i.e. EcoICA and FastICAskew, succeed in recovering the
source PDF, but neither kurtosis-based methods nor Infomax can recover; (3) when sources are
non-skewed but kurtosic, kurtosis-based methods, i.e. FastICA and JADE, can recover the source
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(a) Skewed and kurtosic sources. Amari errors of Infomax, FastICA, JADE,
FastICAskew , and EcoICA are 0.055, 0.0665, 0.007, 0.017, and 0.0036 re-
spectively.
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(b) Skewed but non-kurtosic sources. Amari errors of Infomax, FastICA, JADE,
FastICAskew , and EcoICA are 0.6361, 0.1164, 0.1175, 0.0117, and 0.0085
respectively.
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(c) Non-skewed but kurtosic sources. Amari errors for Infomax, FastICA,
JADE, FastICAskew , and EcoICA are 0.9708, 0.0214, 0.0128, 0.195, and
0.2809 respectively.
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(d) Non-skewed and non-kurtosic sources. Amari errors for Infomax, FastICA,
JADE, FastICAskew , and EcoICA are 0.5901, 0.4635, 0.4017, 0.8282, and
0.9101 respectively.

Figure 3: One example of source recovery processes under different source scenarios. The randomly gen-
erated mixing matrix is [1.8703, 0.8058; 0.4925, 1.5922]. The first three images of each row
are, from left to right: the PDFs of the source, mixed signals, and whitened signals; the rest five
of each row are the PDFs of recovered sources via Infomax, FastICA, JADE, FastICAskew, and
EcoICA. Their Amari errors are listed in the respective subfigure captions with the best (second-
best) results in bold (underline).

Table 1: Amari errors (multiplied by 100) for 2-source noise-free BSS with 5000 samples, demonstrating
the conditions where skewness/kurtosis-based methods work. Each entry is the mean±std of 100
repetitions. The four scenarios are: (a) skewed and kurtosic sources, (b) skewed but non-kurtosic
sources, (c) non-skewed but kurtosic sources, and (d) non-skewed and non-kurtosic sources. The
best (second-best) Amari errors are highlighted in bold (underline).

Amari Infomax FastICA JADE FastICAskew EcoICA
(a) 7.10±5.63 4.66±3.81 3.46±2.72 1.71±1.09 1.27±0.81
(b) 80.00±12.55 44.97±28.55 44.51±27.32 1.45±0.91 1.01±0.55
(c) 97.57±0.96 1.07±0.67 0.77±0.46 44.04±28.39 47.10±28.39
(d) 43.67±28.25 39.72±27.46 38.64±26.50 40.43±28.33 42.51±28.96

PDF, but both skewness-based methods and Infomax fail the recovery; (4) when sources are neither
skewed nor kurtosic, none of the investigated ICA methods can recover.

Next, we repeat 100 times for each scenario with different mixing matrices. Table 1 reports
the average performance. The systematic results are consistent with the previous observation: for
skewed sources (a) and (b), skewness-based ICA methods, i.e. EcoICA and FastICAskew, can
succeed in recovering the sources, but they fail when the sources are non-skewed in (c) and (d)
where kurtosis-based methods, i.e. FastICA and JADE, play their role.
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Table 2: Amari errors (multiplied by 100) for m-source noise-free BSS with 5000 samples, demonstrat-
ing the recovery performance w.r.t. the number of sources. Each entry is the mean±std of 100
repetitions. The two scenarios are the same as Table 1. The best (second-best) Amari errors are
highlighted in bold (underline).

Amari m-source Infomax FastICA JADE FastICAskew EcoICA

(a) ⇑s, ⇑k

2 7.10±5.63 4.66±3.81 3.46±2.72 1.71±1.09 1.27±0.81
4 23.81±16.37 24.89±18.36 19.90±15.41 23.31±17.00 23.70±17.03
8 33.44±20.27 36.20±20.92 35.18±17.58 33.06±18.04 31.90±17.95
16 39.98±17.22 42.22±16.01 37.16±17.16 39.15±18.09 38.63±19.32

(b) ⇑s, ⇓k

2 80.00±12.55 44.97±28.55 44.51±27.32 1.45±0.91 1.01±0.55
4 41.50±19.37 43.51±19.02 44.87±17.21 22.06±18.20 20.14±14.85
8 37.20±17.19 47.43±15.08 44.32±17.09 34.40±16.36 34.77±19.96
16 40.61±15.12 44.27±23.65 44.51±14.96 40.05±19.17 37.87±18.73

4.1.2. BSS WITH MORE SOURCES

We tested the algorithms in simulations with more components (i.e. 4, 8, and 16) for scenario (a) and
(b) where skewness-based methods are designed for. The other experimental settings are the same to
two-source BSS simulation. We report the average Amari errors across 100 repetition with different
mixing matrices in Table 2. We can observe that, though all ICA methods deteriorate with more
sources, EcoICA achieves the best performance overall. Especially for skewed but non-kurtosic
sources, EcoICA can often yield the smallest Amari errors.

4.1.3. SENSITIVITY STUDIES

We further investigate the sensitivity of ICA algorithms with respect to sample size, noise, and out-
lier. Without loss of generalization, we study two-source BSS where the sources are both skewed
and kurtosic so all ICA methods can recover the mixture to some extent. For each study, we gener-
ated 100 mixing matrices with 100 corresponding ICA data sets, and report the mean performance.

Effect of sample size: We compare algorithms at various sample sizes for noise-free BSS. The
mean performance of each ICA method is shown in Fig. 4(a). We can see that the performance
of Infomax, FastICA and JADE drastically deteriorate with small samples, possibly due to their
heavier dependence on estimate accuracy of the statistics than skewness-based methods. We also
note that EcoICA is superior to FastICAskew constantly especially for smaller sample size.

Effect of noise: Figure 4(b) shows the performance of ICA methods on different noise levels.
The observed data are drawn from the noisy ICA model x = As+η, where cov(η) = pI, matrix I is
identity, and the parameter p (p > 0) controls the noise power (Voss et al., 2015). Each noisy source
has 5000 samples to avoid the influence of sample size, and is normalized to have zero mean and
unit variance. We can see that EcoICA is much less sensitive to noise compared with FastICAskew

and always outperforms others. This superiority is more obvious with small sample size.
Effect of outlier: We simulate outliers by randomly choosing up to 25 source samples to cor-

rupt, where the total sample size is 5000. This is done by adding Gaussian noise with very large
power (p = 10) to the selected sampling points. Figure 4(c) illustrates the degrading performance of
ICA methods with more outliers. We can see that skewness-based methods are significantly less sen-
sitive to outliers than kurtosis-based ones, where EcoICA performs slightly better than FastICAskew.
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Figure 4: Sensitivity studies for two-source BSS with skewed and kurtosic sources. Each point is the aver-
age Amari across 100 repetition. We show errors below 0.2 for more details.

source 1 source 2 source 3 source 4

(a) Four weak-kurtosic source images.

Infomax:0.50398 est 2 est 3 est 4

(b) Separated images by Infomax, Amari error:
0.504.

FastICA:0.22636 est 2 est 3 est 4

(c) Separated images by FastICA, Amari error:
0.226.

JADE:0.33451 est 2 est 3 est 4

(d) Separated images by JADE, Amari error:
0.335.

skewFastICA:0.19682 est 2 est 3 est 4

(e) Separated images by FastICAskew , Amari
error: 0.197.

EcoICA:0.069241 est 2 est 3 est 4

(f ) Separated images by EcoICA, Amari error:
0.069.

Figure 5: Images separated from mixtures in Fig. 1(b) by Infomax, FastICA, JADE, FastICAskew, and
EcoICA. Only skewness-based methods succeed, and EcoICA yields the best Amari error.

4.2. Blind Image Separation

First, we separate the mixed images in Fig. 1(b). Figure 5 shows the separated images by Infomax,
FastICA, JADE, FastICAskew, and EcoICA. We can see that only skewness-based ICA methods, i.e.
EcoICA and FastICAskew, can separate the mixed images successfully, for which EcoICA achieves
the smallest Amari error.

Four scenarios: For more extensive studies, we investigate the following four scenarios of
image separation that differ in source skewness and kurtosis: [s1] skewed and kurtosic images,
[s2] skewed but weak-kurtosic images, [s3] weak-skewed but kurtosic images, and [s4] randomly
selected images without considering skewness and kurtosis. We do not report the sources that are
both weak-skewed and weak-kurtosic, where all investigated ICA methods perform badly.

Image data: The source images are from the Caltech256 repository (Griffin et al., 2006). The
images whose skewness (kurtosis) are among top 20% are considered as skewed (kurtosic); the
images whose skewness (kurtosis) are among bottom 20% are weak-skewed (weak-kurtosic). We
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Table 3: The mean±std Amari errors (multiplied by 100) of 100 repetitions on four image separation. Each
four images are mixed and then estimated by 100 mixing matrices. The best (second-best) Amari
errors are highlighted in bold (underline).

Amari Infomax FastICA JADE FastICAskew EcoICA
[s1] ⇑s ⇑k 22.95±10.20 23.89±9.16 25.18±8.19 21.99±7.22 22.68±7.58
[s2] ⇑s ⇓k 31.81±13.03 39.19±16.28 44.70±13.97 25.08±5.46 24.96±6.30
[s3] ⇓s ⇑k 32.53±13.03 24.23±6.21 30.37±10.50 45.86±18.13 44.36±14.77
[s4] ∀s ∀k 31.20±14.11 25.00±10.47 26.91±10.39 24.48±10.79 24.89±7.31

classify the Caltech256 images into three categories, each of which corresponds to one of scenarios
[s1]∼[s3]. For scenario [s4], we randomly select images from the entire Caltech256.

Experimental settings: For each scenario from [s1]∼[s4], we randomly choose four source
images, mix them with 100 different mixing matrices, and separate the mixtures via ICA methods.
The average Amari errors for these four source images are computed accordingly. We repeat the
above calculation with 100 groups of randomly selected source images (i.e. 100×100 mixtures in
total), and report the average Amari errors in Table 3.

Image separation results: Table 3 shows that for skewed source images ([s1] and [s2]) and
randomly selected source images ([s4]), FastICAskew and EcoICA achieve the best or second-best
results. However, FastICAskew is a fixed-point method that is sensitive to starting points (Ollila,
2010) so we often require restarts to estimate all the four source images; in contrast, EcoICA does
not suffer from this problem and is more stable. Moreover, neither FastICAskew nor EcoICA work
for weak-skewed source images ([s3]). For kurtosic source images ([s1] and [s3]), FastICA gives
good results, while the performance of JADE is much inferior to FastICA for [s3]. Infomax does
not explicitly make use of kurtosis or skewness so it has the smallest performance variance over
source kurtosis or skewness.

Source statistics prediction from mixtures: Next, we study the prediction of source statistics
from the observed data (the mixtures) when we do not know whether the sources are more kurtosic
or skewed in practice. We examine whether the dominance of kurtosis or skewness in the mixtures
can predict that in the sources accurately. For all the images in [s2] and [s3] above, we compute
the mean kurtosis and the mean skewness across all the four mixtures in each BSS experiment. We
then examine their magnitudes (absolute values). If the magnitude of the mean skewness (kurtosis)
is greater than that of the mean kurtosis (skewness), we predict that the sources are more skewed
(kurtosic) and skewness-based (kurtosis-based) ICA is more appropriate and promising. In this
prediction task, we achieve 96.9% accuracy for mixtures in [s2] and 98.8% accuracy for mixtures
in [s3]. This indicates that we can indeed choose skewness/kurtosis-based methods via comparing
the skewness and kurtosis of the mixtures.

4.3. Face Recognition

ICA methods can be used to extract features for face recognition (FR) (Bartlett et al., 2002; Fernan-
des and Bala, 2013; Lu, 2013). In this subsection, we evaluate the usefulness of EcoICA on FR,
where the ground-truth sources (and their kurtosis and skewness) are unknown. FR is not a typical
BSS problem, and the performance measure is classification accuracy rather than Amari error.
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Data: We use a subset of medium difficulty from the CMU PIE database (Sim et al., 2003),
with five frontal poses (C05, C07, C09, C27, C29) under 14 illumination conditions (05 to 14 and
18 to 21). This subset has 4,754 face images from 68 subjects. All the face images were manually
cropped, aligned and normalized to 32× 32 pixels, with 256 gray levels per pixel. Face recognition
performance is tested under varying numbers of training samples per subject, denoted by L.

Algorithms and settings: For all studied ICA methods, we keep Q% (Q = 85, 90) energy in
PCA preprocessing. Then, we extract ICs as features and sort them in descending class discrim-
inability (Duda et al., 2000). We test various numbers of features and report the best results. For
classification, we use the simple nearest neighbour classifier with Euclidean distance. We test the
two ICA architectures in (Bartlett et al., 2002). For each subject, L(= 2, 4, 6, 8, 10, 20) samples
are randomly selected as training data, and the rest are used for testing. We study the average
performance of each Q over 10 repetitions.

Face recognition results: All studied ICA methods achieve very similar performance in recog-
nizing faces. For instance, with Architecture I (II): the average recognition rate gain of EcoICA over
FastICA across all values of L is 0.0022±0.0060 (0.0050±0.0046 ) for Q = 85 and 0.0003±0.0043
(−0.0005 ± 0.0035) for Q = 90; the average recognition rate gain of EcoICA over JADE across
all values of L is 0.0017 ± 0.0058 (−0.0002 ± 0.0050) for Q = 85 and −0.0036 ± 0.0060
(−0.0003± 0.0033) for Q = 90. These results indicate that the EcoICA features, though capturing
different statistics of face images, can yield useful information for recognition. Further studies on
other type of data (e.g. fMRI) may give more interesting results.

Computing the statistics of the face data shows that they are more kurtosic so kurtosis-based
ICA has advantages over skewness-based ICA. Nevertheless, EcoICA obtains similar performance.

5. Conclusion

Kurtosis-based ICA methods have difficulty in recovering weak-kurtosic sources. In this paper, we
proposed a new skewness-based ICA in a systematic way to deal with weak-kurtosic but skewed
sources. We first designed a new cumulant operator T based on the third-order cumulant tensor
Qx. We further defined its eigenvalues and eigenvectors, and revealed their connections with the
columns of the whitened mixing matrix. Next, we proved that we can compute T ’s eigenvectors
via joint diagonalization of the images of this operator on a set of basis vectors. Based on this
proof, we constructed the objective function and solved it with the Jacobi method. Experimental
results on both synthetic BSS and blind image separation confirmed EcoICA’s overall superiority
on skewed sources over existing kurtosis-based and skewness-based ICA methods. In particular,
EcoICA showed less sensitivity to sample size, noise, and outlier over FastICAskew. Studies on
face recognition demonstrated competitive performance of EcoICA features in classification. We
hope these positive outcomes could encourage further studies into skewness-based ICA and higher-
order cumulant operators.
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