176 research outputs found

    Cross-Points in Domain Decomposition Methods with a Finite Element Discretization

    Full text link
    Non-overlapping domain decomposition methods necessarily have to exchange Dirichlet and Neumann traces at interfaces in order to be able to converge to the underlying mono-domain solution. Well known such non-overlapping methods are the Dirichlet-Neumann method, the FETI and Neumann-Neumann methods, and optimized Schwarz methods. For all these methods, cross-points in the domain decomposition configuration where more than two subdomains meet do not pose any problem at the continuous level, but care must be taken when the methods are discretized. We show in this paper two possible approaches for the consistent discretization of Neumann conditions at cross-points in a Finite Element setting

    A New Domain Decomposition Method for the Compressible Euler Equations

    Get PDF
    In this work we design a new domain decomposition method for the Euler equations in 2 dimensions. The basis is the equivalence via the Smith factorization with a third order scalar equation to whom we can apply an algorithm inspired from the Robin-Robin preconditioner for the convection-diffusion equation. Afterwards we translate it into an algorithm for the initial system and prove that at the continuous level and for a decomposition into 2 sub-domains, it converges in 2 iterations. This property cannot be preserved strictly at discrete level and for arbitrary domain decompositions but we still have numerical results which confirm a very good stability with respect to the various parameters of the problem (mesh size, Mach number, ....).Comment: Submitte

    Effective transmission conditions for domain decomposition methods applied to the time-harmonic curl-curl Maxwell's equations

    Get PDF
    The time-harmonic Maxwell equations describe the propagation of electromagnetic waves and are therefore fundamental for the simulation of many modern devices we have become used to in everyday life. The numerical solution of these equations is hampered by two fundamental problems: first, in the high frequency regime, very fine meshes need to be used in order to avoid the pollution effect well known for the Helmholtz equation, and second the large scale systems obtained from the vector valued equations in three spatial dimensions need to be solved by iterative methods, since direct factorizations are not feasible any more at that scale. As for the Helmholtz equation, classical iterative methods applied to discretized Maxwell equations have severe convergence problems.We explain in this paper a family of domain decomposition methods based on well chosen transmission conditions. We show that all transmission conditions proposed so far in the literature, both for the first and second order formulation of Maxwell's equations, can be written and optimized in the common framework of optimized Schwarz methods, independently of the first or second order formulation one uses, and the performance of the corresponding algorithms is identical. We use a decomposition into transverse electric and transverse magnetic fields to describe these algorithms, which greatly simplifies the convergence analysis of the methods. We illustrate the performance of our algorithms with large scale numerical simulations

    Robin Schwarz algorithm for the NICEM Method: the Pq finite element case

    Get PDF
    In Gander et al. [2004] we proposed a new non-conforming domain decomposition paradigm, the New Interface Cement Equilibrated Mortar (NICEM) method, based on Schwarz type methods that allows for the use of Robin interface conditions on non-conforming grids. The error analysis was done for P1 finite elements, in 2D and 3D. In this paper, we provide new numerical analysis results that allow to extend this error analysis in 2D for piecewise polynomials of higher order and also prove the convergence of the iterative algorithm in all these cases.Comment: arXiv admin note: substantial text overlap with arXiv:0705.028

    Domain decomposition algorithms for the two dimensional nonlinear Schrödinger equation and simulation of Bose-Einstein condensates

    Get PDF
    International audienceIn this paper, we apply the optimized Schwarz method to the two dimensional nonlinear Schrödinger equation and extend this method to the simulation of Bose-Einstein condensates (Gross-Pitaevskii equation). We propose an extended version of the Schwartz method by introducing a preconditioned algorithm. The two algorithms are studied numerically. The experiments show that the preconditioned algorithm improves the convergence rate and reduces the computation time. In addition, the classical Robin condition and a newly constructed absorbing condition are used as transmission conditions
    corecore