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CONDITION NUMBER ESTIMATES FOR THE NONOVERLAPPING
OPTIMIZED SCHWARZ METHOD AND THE 2-LAGRANGE
MULTIPLIER METHOD FOR GENERAL DOMAINS AND CROSS
POINTS*

SEBASTIEN LOISEL'

Abstract. The optimized Schwarz method and the closely related 2-Lagrange multiplier method
are domain decomposition methods which can be used to parallelize the solution of partial differential
equations. Although these methods are known to work well in special cases (e.g., when the domain is
a square and the two subdomains are rectangles), the problem has never been systematically stated
nor analyzed for general domains with general subdomains. The problem of cross points (when three
or more subdomains meet at a single vertex) has been particularly vexing. We introduce a 2-Lagrange
multiplier method for domain decompositions with cross points. We estimate the condition number
of the iteration and provide an optimized Robin parameter for general domains. We hope that this
new systematic theory will allow broader utilization of optimized Schwarz and 2-Lagrange multiplier
preconditioners.
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1. Introduction. In mathematics, physics, and engineering, it is useful to solve
elliptic PDEs, such as the Laplace problem

(1.1) Au = fin Q and v = 0 on 0f.

Such problems are often solved numerically. The discretized problem has the form
(1.2) Au=f{,

where A is a large invertible n X n matrix, f is a given n-dimensional vector, and u is

the desired solution.
One way to obtain this discretization is to use the finite element method; to

fix ideas, we use piecewise linear elements. We then have a set ¢1(z),...,¢n(z) of
piecewise linear basis functions, and the solution u(x) is approximated by wup(z) =
> rei ukd(z), where the vector u = [ur ... un}T is the solution of (1.2). The

“stiffness matrix” A has entries A;; = fQ V¢; - V¢; while the “forcing” has entries

When A is large, it may be desirable to solve it iteratively, by breaking it up
into smaller pieces using a domain decomposition method. Such methods are readily
made parallel, since each subdomain can be assigned to a separate processor. At the
geometric level, a nonoverlapping domain decomposition is a partition of the domain
2 into nonoverlapping parts ,...,€Q,. From this partition, we can further define
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the “artificial interface”

r=an <O§Qi>.

i=1

The set 01 is called the natural boundary, since it is an intrinsic part of the original
problem definition. In the present paper, there is a Dirichlet condition on the natural
boundary. The interface I is artificial in that it bears no relationship to the “physical”
problem (1.1). Indeed, it is introduced purely for the purpose of calculation.

The partition £21,...,€Q, can be used to assign the n degrees of freedom of u to
the various subdomains. Although the geometric domain decomposition is nonover-
lapping, from the algebraic point of view there is a kind of overlap since degrees
of freedom along interfaces may have to be shared between two or more adjacent
subdomains. The current article is concerned mainly with such methods, which are
nonoverlapping in the geometric (or PDE) interpretation, while at the algebraic level,
the degrees of freedom along I" are shared between the adjacent subdomains.

The main idea of the 2-Lagrange multiplier (2LM) method is to replace the large
coupled system (1.2) with many local problems with Robin boundary conditions on the
artificial interface. This idea is very similar to the finite element tearing and intercon-
necting (FETI) method, where Neumann boundary conditions are called “Lagrange
multipliers” since they can be regarded as arising from the relaxation of continuity
constraints. In the 2LM method, at each vertex of the artificial interface I', there are
multiple Robin values (one per adjacent subdomain). At a typical “regular” inter-
face vertex, there are two adjacent subdomains, which motivates the terminology of
“2-Lagrange multiplier.”

A precursor to the 2LM method was introduced in [11] for solving the Helmholtz
problems using two Lagrange multipliers with imaginary Robin parameters. In [36],
the method was adapted to elliptic problems with positive Robin parameters. The
existing literature does not treat the case of cross points, and there is no analysis of
condition numbers or convergence properties.

The 2LLM method is known to be closely related to the nonoverlapping optimized
Schwarz method (OSM). We now briefly outline the history of the OSM; refer to
[13] and [14] for details. The OSM was introduced in [12], but we also mention the
earlier work [3], [32], [33]. Attempts have been made to find optimized transmission
conditions for various differential equations or suitable domains; see, e.g., [18], [21],
[22], [23], [24].

For some simple problems and domains, optimized transmission conditions can
be found by Fourier analysis. In addition to the Laplace and Helmholtz problems,
this Fourier method can be used for various other canonical problems; see [2], [9], [16],
[17], [29], [30] for convection-diffusion problems, [15], [19] for the wave equation, [1],
[5] for Maxwell’s equations, [6] for fluid dynamics, and [31], [34] for the shallow water
equation.

Proofs of convergence for more general situations have been recently obtained [25],
[28]; but the techniques used are not amenable to finding the optimal parameters.
A proof of convergence for the nonoverlapping algorithm without cross points was
provided in [26], using energy estimates. (This proof does not provide condition
number estimates or optimized parameter values.) We mention in passing that one
way of obtaining convergence of the nonoverlapping algorithm is to define a relaxation
of the method [4]. There is an ongoing effort to estimate the spectral radius of the
optimized Schwarz iteration with cross points; see [20].

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/26/15 to 137.195.101.233. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

3064 SEBASTIEN LOISEL

All of these methods have been described for domain decompositions without cross
points, but the presence of cross points poses a difficulty. OSMs have seen limited
deployment in applications. We surmise that this is because of the poorly understood
performance of the OSM when there are cross points. It is difficult for practitioners
to use the method when it is not even clearly defined. Our major innovation in the
present article is to introduce and analyze a systematic method to deal with cross
points. Our new methods generalize the nonoverlapping OSM or 2LLM method to
general domains and subdomains with cross points.

We have three main results. Our first main result is to give a nonoverlapping
OSM, or a 2LM system, defined even when there are cross-points. We show that
we can recover the solution to the system Au = f from the unique solution to this
nonoverlapping OSM. This main result is important because the 2LM method, or the
nonoverlapping OSM, has never been formulated systematically in the presence of
cross points with general subdomains.

Our second main result gives the optimized Robin parameter and a condition
number estimate for the nonoverlapping OSM in terms of the spectral properties of
local Schur complements. We apply this estimate to a PDE to obtain our third main
result. The idea that the condition number could be estimated from the spectral
properties of the local Schur complements occurred to us when we were reading [10].
Our original contributions consist of our three main results, including the technically
challenging proofs of Lemma 3.2 and 3.6.

Our paper is organized as follows. In section 2, we introduce the 2LM method
and show that (1.2) and the 2LM method are equivalent, even if A is nonsymmetric.
In section 3, we provide condition number estimates for the 2LM method in terms
of algebraic properties of A. In section 4, we give condition number estimates for
the case when A is the discretization of an elliptic PDE. In section 5, we verify our
estimates with numerical experiments. We end with some conclusions in section 6,
which is followed by an appendix.

2. Solving Au = f using Robin subproblems. We assume that the domain
Q2 is in R? or R? and is discretized using some grid of points {x1,...,%,}, as in Fig-
ure 2.1. The domain is further partitioned into nonoverlapping subdomains €y, ..., 2,
with artificial interface I'.

To fix ideas, in the remainder of the present paper, we will assume that the
vertices are arranged as follows:

<195 €Qo €Qp er

X1y Xnr s Xnpp+ls -9 Xnpi4np oy -+ s Xnp—np+ls- -9 Xnp s Xnr+1s---5Xn ;3

see Figure 2.1.

2y
X13 X7  X§
) [}

X12 ‘x14 -x15

Fig. 2.1. A discretized rectangular domain with 15 grid points. The artificial interface is
I' = {x9,...,x15}. The interface vertex xi12 is a cross point. The first subdomain is Q1 =
{x1,%2,%9,X10,%11, X12}.
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Throughout the present article, we will use (1.1) as a model problem. Neverthe-
less, we do not use any of the special features of (1.1) until section 3. For instance,
our first main result (at the end of section 2) does not require that the matrix A be
symmetric or positive definite.

2.1. Restriction matrices and traces. We now consider n-dimensional vec-
tors. We interpret such a vector u as a function defined at each vertex x;. To each
subdomain 2;, we may define a restriction matrix R;, which restricts an arbitrary
n-dimensional vector u to an mj-dimensional vector R;u, which contains only the
components of u corresponding to €; and its artificial boundary 9Q; NT".

Ezxample 2.1. The restriction matrix R; corresponding to £2; in Figure 2.1 is

(1 0 00 00OOOOOOUOUO OGO 0] 'R'
01 0000O0UO0O0OUOO0OO0O0O00 n
R1:000000001000000:
0000O0DO0OO0OOT1O0UO0U0GO00 R
0000O0DO0OO0OO OGO OT1O0UO0GO00 i
000 00O000O0O0ODOGO0OT11O000O0]| [ |

The top two rows, labeled Rji, correspond to the restriction to the interior vertices
{x1,X2}, while the bottom four rows, labeled Rri, correspond to the restriction to
the interface vertices {xg, X190, X11, X12}.

We similarly partition Ra,..., R, into interior parts Ry; (top) and artificial in-
terface parts Rr; (bottom).

We further partition the finite element coefficient vector u; so that the top part
uy; corresponds to the vertices of €2; \ I', while the bottom part ur; corresponds to
the vertices of 02, NT, i.e.,, u; = [Eéﬂ . We can think of the vector (u7,... ,ug) as a
function which is defined on §2, and which is continuous inside of each €;, but which
has jump discontinuities across I'. For such a function, we define the multivalued or
many-sided trace

(2.1) ug =
uryp

of dimension ng. The ng degrees of freedom of ug correspond to vertices {x,,;+1, - - -,
X, } onT', but ug contains multiple degrees of freedom for each x; (one per subdomain
adjacent to x;). For each interface x; € I', we let m; be the number of subdomains
adjacent to x;. We say that x; is a regular interface vertex if m; = 2, and we say
that x; is a cross point if m; > 3.

The many-sided trace ug has multiple function values per interface vertex x € I'.
If u is a (single-valued finite element) function on 2, we may write u = [a’ ], where
uy corresponds to the points on Q \ " and ur corresponds to the points on I'. Note
that ug is able to respresent functions disctontinuous across I' and hence ug has more

degrees of freedom than ur.

2.2. Continuous many-sided traces. Although in general the many-sided
trace ug corresponds to a discontinuous function, it may happen that ug corresponds
in fact to a continuous function. This occurs precisely when the degrees of freedom
of ug associated with the interface vertices x; all agree for each j = ny +1,...,n.
We now make this concept more explicit. To that end, we define II to be the permu-
tation matrix that reorders the entries of the many-sided trace ug so that all degrees
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of freedom associated with the first interface vertex x,,+1 appear first, followed by
the degrees of freedom associated with the second interface vertex xy, 42, and so on.
Then, for k =n; +1,...,n, we let

1 _ 1 _ 1
1 mkfl e mklfl
_ 1 —
~ mp—1 T mip—1
(2.2) M, = * , _ * € R™k Xk
1 1
i I 1

Note that the kernel of Mj, is spanned by the vector of ones. Finally, let
(2.3) M =17 diag{ M, 41, ..., M, }IL

By the construction of M, we have that ug is a continuous many-sided trace if and
only if

(2.4) Mug = 0.

We also define the ng X ng symmetric matrix G of “interface interactions” by
RriRE, ... Rle%p
(2.5) G=|
RrpRL, ... RrpRI:Cp
The entries of G are all either 0 or 1. The rows (or columns) of G precisely span the

space ofvcontinuous many-sided traces, and hence we have that MG = GM = 0. The
matrix II can be used to block-diagonalize G, and we obtain

(2.6) G =11" diag{1m,, 1 xmn,11s- -+ Loy,

where 1, xm,; denotes the m; x m; matrix of ones.

We define the orthogonal projection matrix K (i.e., K? = K and K7 = K) whose
range is the space of continuous many-sided traces. It can be given succinctly using
the matrix II:

1

mn1+1><mn1+17 R ] m 1mn><mn}H'
n

1

(2.7) K =117 diag {
m?’LI—‘rl

If uy,...,u, are given and if the many-sided trace ug is continuous, then there
is a unique u such that

(2.8) uy, = Rgu, k=1,...,p.

This u is given by “gluing together” the local functions uy, ..., u,.

2.3. Decomposition of the matrix A. We now consider the n x n linear
system (1.2), where A and f are given and u is the unknown quantity. We assume
that the invertible “global stiffness matrix” A is decomposed into “local stiffness

matrices” An1,..., Anp, one per subdomain, and likewise for the data f, such that
P P
(29) A= Z R?ANJ‘RJ‘ and f= Z R?fj
j=1 j=1
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For j = 1,...,p, the matrix Ay; acts on the subdomain €2; and hence can be
partitioned into blocks that act on the interior of 2; and on artificial interface vertices
of 2;. We can likewise partition fi,...,f, to obtain

Arr;  Arrj fn
An; = J J d f;,= .
A [ Arr; Arrj } el { fr; }

In the case of the model problem (1.1), the local stiffness matrices correspond to
problems with Neumann boundary conditions on the artificial interface, with bilinear
forms

(2.10) a;(u,v) == / Vu-Vuv forj=1,...,p,
Q;

where u,v € H}(Q) N HY(Q;). The vector f = (f;) is obtained from the functional
v fQj fv using, e.g., the finite element method [35].

2.4. Robin subproblems. We multiply the PDE —Aw; = f in Qj by a test
function ¢ and we integrate by parts to obtain the variational form ka Vug - Vo —
faﬂmr D,ur¢, where D, denotes the directional derivative in the direction of the
outwards pointing normal v of 9. We assume we are given Robin data A\, and we
use the equation (a + D, )ui = A on the artificial interface and discretize to obtain
the following “local problems.”

Given Robin data Aj, ..., A, and transmission condition matrices By, ..., B,, we
can compute “local solutions” uy,...,u, using
uy
——
Arre Arrk Uurg 15
2.11 = for k=1,...,p.
(2.11) Arre Arrk + By ury fri + i P

We can eliminate interior nodes from (2.11) by using Schur complements. For each
Neumann matrix Ay, we define the Schur complement and “condensed right-hand
side”

Sy = Arri — ArrkAr A and  gr = fri, — Arme AL Fre-

In order for these Schur complements to be well defined, we further assume that Ay is
invertible for k = 1,...,p. If Ay; is obtained from (2.10), then A;y; is automatically
invertible (it is the stiffness matrix of a Dirichlet problem for ;). We will further
need to solve the Robin problems, and so we require that the matrices Sy + By are
nonsingular.

We define S and B to be the block-diagonal matrices S = diag{S1,...,Sp} and
B = diag{By,..., By}, respectively, and we define g to be the column vector g =

[gf, e ,gg]T . The system (2.11) is then equivalent to the Schur relation
(2.12) (S+B)ug =g+ A
In the domain decomposition parlance, the Schur complements Si,...,S, are

known as (discrete) Dirichlet-to-Neumann maps. For the model problem (1.1), it is
known that each S; is nonsingular if 0€2; intersects the natural boundary 0. If
0f); does not intersect OS2, then the kernel of S; is spanned by the vector 1 of ones.
We then say that €; floats. This characterization of the kernel of S will be used in
section 3 and onward.
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We also mention that each B; is a mass matrix for the artificial interface 9Q; NI,
and hence Bj is symmetric and positive definite. In particular, B; and S; + B; are
invertible.

2.5. The equivalence of (1.2) and the 2LM method. In the present sub-
section, we show that the ng X ng system

(2.13) Aot v = h,
where
(2.14) Agm = (BM —GB)(S+B)'+G and h=—(BM — GB)(S + B) 'g,

is equivalent to (1.2). The solution X of (2.13) is a many-sided trace A = [A] ..., )\g]T.

Our reasoning can be summarized as follows. Reasoning in terms of continuous
functions, the Robin data A is a linear combination of Dirichlet data ug and “fluxes”
D, u. The fluxes should cancel in some suitable sense, and the Dirichlet data should
be continuous. We see that averaging the Robin data (which are combinations of
fluxes and Dirichlet data) ought to give something proportional to ug. Adapting this
continuous reasoning to the discrete setting using the finite element discretization, we
now describe the relationship between the Dirichlet and the Robin data.

LEMMA 2.2. Assume that A is invertible. Let Rr be the matrixz which restricts u
to its single-valued traceur: Rp =[ 0 I ]| € R(=nDXn There is unique solution
Ui, ..., Up, A1,..., Ay to (2.4), (2.11), and

(2.15) ZRFngAk = ZRFngBkqu-
k k

Furthermore, the solution u to (2.8) solves (1.2).

Proof. Assume we have A1,..., A, as well as uy,...,u, satisfying (2.11), (2.4),
(2.15). By (2.4), the local solutions uy, ..., u, meet continuously and we obtain a u
such that (2.8) is satisfied. We see that, for this u,

(2.9) | Ak Ak
Au = Zk:Rk [ Arre Arrk }Rku

_ [ Arrur + Arur }

2.16
(2.16) >w RrRL Arppur, + Y, RrRL, Arriurg

where we have used (2.8). Equation (2.11) further yields

Au = fr 215 ¢
~ | fo+ X, ReRE AL — X, RrR{y, Brury -

where we have partitioned the matrix 4 = [ ﬁg ﬁg] into interior and interface (I")
blocks. From (2.15), we see that any solution uy,...,up, A1,...,Ap to the system

(2.11), (2.4), (2.15) yields u, via (2.8), which is the unique solution to Au = f, as
required.

We now show the uniqueness of uy,...,up, A1,..., Ap. Assume that uj,..., uy,
AL -5 A, is a different solution of (2.11), (2.4), (2.15). If u; = uj fori = 1,...,p,
then (2.11) gives that A; = A} for i = 1,...,p. Hence, we may assume that u; # uj}
for some i. We then obtain u* satisfying (2.8), for which again Au* = f. Since A is

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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invertible, it must be that u* = u. Hence, u} = R;u* = R;u = u;, which contradicts
ul # u;. Hence, the solution to the system (2.11), (2.4), (2.15) is unique. O

Using (2.12), the systems (2.4) and (2.15) (with (2.11) having been eliminated)
become

(2.17) M(S+B)"'A=-M(S+B)'g and
p p
(2.18) Z Rpng(I — Bk(Sk + Bk)il))\k = Z RrR?kBk(Sk + Bk)ilgk,
k=1 k=1

respectively. Since M is a square matrix, the system (2.17) is already square and hence
the system (2.17), (2.18) is rectangular (taller than it is wide). By construction, any
solution A1,..., A, can be turned into a solution u of Au = f using (2.11) and then
(2.8). It is more convenient to solve a square nonsingular system. This is achieved
by picking some matrices C; and C> and finding the system C;(2.17) + C5(2.18). We
now make the choices C; = B and

RriRE
(2.19) Ch = :
RrpRE

These choices C; and Cy give (2.13) and (2.14). (See section 2.6 for some motivation
for these choices of C; and C.) We are now able to show our first main result.

THEOREM 2.3. Assume that A and S + B are invertible and B~' is positive
definite. The system (2.13) is equivalent to solving (1.2).

Proof. It suffices to show that the rows of the left-hand side of (2.17) and (2.18)
lie in the linear span of the rows of (2.14). We begin by recovering the rows of (2.18).

We left-multiply Aora by GB~!. By construction, the rows of G are continuous
many-sided traces, and hence GM = 0. Therefore,

(2.20) GB 'Ayy =GB 'G(I — B(S+ B)™1).

We will now show that the range of GB™'(G is precisely the range of G. This will
allow us to recover (2.18) from the rows of (2.20).

Let k = rank G. Since B! is positive definite, there is a real number o > 0
such that vI'B~1v > avTv for all vectors v. Let U be a matrix such that GU has
orthonormal columns. We get that

vIuTGB'GUv > avTUTGGUv = avTv for any v.

Hence, X = UTGB™'GU is positive definite. Since X is a k x k matrix, we get that
the rank of X is k. But,

k =rank X = rank UGB 'GU < rank GB™'G < k.

Hence, rank GB~'G = k = rank G and the range of GB~!G is the entire range of G.
Therefore, there is a matrix Y such that YGB™1G = G. Left-multiplying (2.20)
by Y, we obtain

(221) YGBilAQLM = G(I - B(S + B)il).

We can now recover (2.18) by selecting suitable rows of (2.21). We now show how to
do this.
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Note that each row of Rr coincides with some row of some Rr;. Therefore, there
is a matrix V', which selects the appropriate rows of

R
G=| : [ R, ... RE, ],
Rr,
such that VG = Rr [lel . Rlifp} . For this matrix V', we have
VYGB 'Aspm=Rr [ RL, ... Rf, |(I—-B(S+B)™),

which is the matrix on the left-hand side of (2.18).
Now that we have recovered the matrix on the left-hand side of (2.18), we may
recover (2.17) via the relation (2.13) = C41(2.17) 4+ C3(2.18), as required. O
Remark 2.4. For Theorem 2.3, we have not assumed that A is symmetric nor
positive definite.

2.6. Motivation for the 2LM method. When the subdomains are arranged
in a strip (and there are no cross points), it is known [36] that the Richardson iteration
applied to (2.13) is equivalent to the OSM. This is interesting because the convergence
properties of OSM [27] for special domains using Fourier transforms suggest that the
condition number of Ayp varies in the grid parameter h like O(h™ %). The remainder
of the present article will show that this is true in general (cf. (4.3)) and will further
elucidate the dependence of the condition number on the number of subdomains.

The choice of C; = B and C5 given by (2.19) was arrived at in the following way.
We were aware of the relationship between OSM and 2LM for simple cases, which
was shown in [36]. We looked for simple combinations of the matrices at hand, e.g.,
B, Rj, etc., which would generalize the example of [36], and this choice of C1,Ca
achieves our objective.

3. The symmetric and positive definite case; condition number esti-
mates. Assume that A is symmetric and positive definite and S is symmetric and
semidefinite, and that the kernel of S is spanned by the indicator functions of the
subdomains that float. (We will recapitulate all such assumptions in Definition 3.8.)

From (2.2), (2.6), (2.7), we see that (M — G)K = MK — GK = —G. Since the
range of G is precisely the kernel of M, we also conclude that M — G is invertible.
Hence,

(3.1) (M —-G)'G=-K.
Therefore, we take B = al (where a > 0 is a parameter to be chosen) and we left-
multiply (2.13) by (M — G)~! to obtain an equivalent symmetric system:

Q Q
——

—N—
(32) Agor M = hg, where Agor v = a(S + aI)_l —K and hg = — CL(S + ClI)_l g.

The matrix @ is interpreted as the Robin-to-Dirichlet map, scaled by the tuning
parameter a. Since condition numbers are submultiplicative,

(3.3) K(Azrm) < MoK(Asgorm) and K(Asorm) < MoK (Azrm),

where My = K(M — G) and where K denotes the spectral condition number (the
ratio of the largest to smallest singular values). We say that Aopy and Asopm are
spectrally equivalent. (We will see in section 3.1 that, under some conditions, M is
not too large.)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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In order to estimate the condition number of Agor i, we prove a matrix analytical
result which allows us to bound the modulus of the eigenvalues of Agory below and
above. We will make repeated use of the weighted Young inequality

1

S
3.4 <224 (2
(3.9 lécl < 52+ ¢

DEFINITION 3.1 (splitting of Agorm). Let Q be a symmetric and positive definite
matriz with eigenvalues 0 < ¢ < q@ < -+ < g, < 1. Let K be an orthogonal
projection and define

Let P =1 — @ and denote the k nonzero eigenvalues of P by 1 > p1 > pg > -+ >
pr > 0. Let N = ker P be the nullspace of P. Define E to be the orthogonal projection
onto N'.

LEMMA 3.2. Assume we have a splitting of Asarm as per Definition 3.1. Assume
that there is a real number 0 < r < 1 such that

(3.6) [Ec|l < rllc]

for every ¢ such that Kc = ¢, where || - || denotes the Euclidian norm. Assume that
0 < min{q1,pr} < 0.5 is and 0.5 < r < 1. Then, the spectrum of Agarm = Q — K
satisfies

(3.7) o (Asarm)| C [min{pg, g1} (1 —7), 1.
In particular, the condition number K(Asarm) is bounded by
(3.8) K(Asorm) < (min{pg, 1 }(1 — 7))~ L.

The proof of Lemma 3.2 is highly technical and can be found in the appendix.

We now give an example that shows that, for our purpose, (3.7) cannot be im-
proved meaningfully without additional assumptions on Agarm-.

Ezample 3.3 (0min(Asorm) with n = 2). For given parameters § € R and 0 <
q1 < 1, we set

| cosd
~ | sind

2 o
} [ cosf sinf } = [ cos™ 0 cosfsin ]’

cos fsin 0 sin® 6

—cosfsinf cos? 6

0= [ qn ] and  Aspin = Q — K = { g1 —cos’f —cosfsind ]
= ) = =

Note that we have chosen n = 2 and £ = 1, and we have that pp, =p; =1—¢. We
then have that » = sinf, or § = arcsinr. Direct calculations give

(pe — 1) + /(pr + 1)2 — 4r2py,
2 9

(3.9) Omin(As2Lm) =

from which we find
Omin(As2rM)
pr(l—r)
A series expansion further shows that omin(Asorm) =~ 2pk(l — 7) near pr = 0 and
r=1.
In dimensions n > 3, one can find examples of () and K such that the condition

number K(Q — K) is much smaller than (px(1 — 7))~!, but Example 3.3 shows that
the estimate (3.8) cannot be improved without further assumptions on Agop.

(3.10) 1<

1
<4 for all O<pk<§ and 0<r<l1.
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3.1. Domain decomposition of radius £. Since c is in the range of K, we
interpret r as the spectral norm ||EK|| of EK. Hence, we are looking for the square
root of the spectral radius of EK E. This can be easily computed by choosing a matrix
J whose columns form an orthonormal basis for the range of F, and we get that

r=||JTKJ|?.

The range of E consists of piecewise constant many-sided traces, and hence we take

ST -
mri
- Lo
3.11 J =
(3.11) = |,
0 0
| 0 0 |

where mpj is the number of vertices on 0€); for each floating subdomain. Since the
kernel of F is zero on the natural boundary, we construct J by deleting those columns
of J corresponding to nonfloating subdomains.

LEMMA 3.4. Fori # j, we have

| #{xi € 09109}
/TTiT; '

Furthermore, the row sums of I — JTKJ are zero.

Proof. We begin by showing that the rows sums of I — JTKJ € R¥** are zero.
Let e, € R¥ be the column vectors of ones. From (3.11) we see that Jep = e, € R”
is the n-dimensional vector of ones. Regarded as a multivalued trace, the constant
vector e, of ones is continuous, and hence Ke, = ¢,. As a result, (I — JTK.J e =
e — jTKen =ep — jTen = e — e = 0, and hence the row sums of I — JTKJ are
zero, as required.

We now compute the off-diagonal entries of I — JTK.J. For i # 7, we find that

(3.12) (I-J'KJ); =

(I— jTKj)ij = —eijKJEj = —(Kjei)T(Kjej),

where e; and e; are the usual canonical basis vectors of R¥. Note that Je; is simply
the jth column of J, which is a function whose value is the constant 1/ Vy/mrj on ;.
Multiplying this function by K produces a continuous multivalued trace whose value
at vertex xj € 0§); is ﬁm, where my, is the number of subdomains adjacent to
Xk, which gives (3.12). O

Lemma 3.4 states that I — JTKJ is a topological Laplacian for the graph of
the domain decomposition, with weights on the edges corresponding to the number
of vertices on the artificial interfaces of the subdomains. Because the row sums are
zero, this topological Laplacian has Neumann boundary conditions. Thus, matrix
I—JTK J, which is obtained by deleting rows and columns of I —J7 K .J corresponding
to nonfloating subdomains, is a topological Laplacian with homogeneous Dirichlet
conditions on the nonfloating subdomains. We not estimate the smallest eigenvalue
of this topological Laplacian.
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DEFINITION 3.5 ((a, b, ¢) path decomposition). An Li-path of length ¢ is a vector
v = (i1,d2,...,30) € {1,...,p} which describes a path (i, Qi,,...,Q,) of adjacent
subdomains, such that Qa, ..., Q all float but Q1 is a nonfloating subdomain and such
that

< #{Xk S 89@71 n 6Qij}
- /Mri; ;i

An (L1, ¢) path decomposition (y1,...,7q) is a partition of the domain decomposition
Qy,...,Q, into disjoint paths {v}, each of which is an L1-path of length at most L.

LEMMA 3.6. Assume that the domain decomposition admits an (a,b,?) path de-
composition. Then,

Ly

fori=2 ... 4.

L17T2
202

Proof. We write the path decomposition as 71,...,7, with v = (Y1, -, Ve, )
and ¢ < (¢ for every k. The path decomposition allows us to write Y ¢_, X, <

I — JTKJ, where each matrix X}, is given by the symmetric and semidefinite matrix
given by

(3.13) r<1-

where /j, is the length of the path vy. The smallest eigenvalue of I—.J T K J is estimated
by considering the Rayleigh quotient u” (I — JT K J)u, where u is restricted to be zero
on the natural boundary. Hence,

4q T
o X
Amin( I — JTET) > min YL

u=0 on 0 “— ulu
We have that
1 -1 T
12 -1 uo
— _ Vk2
WX =L [0 Uy oon Uy, ] 12 -1 |
_i 2. u'Yklk
2 -1 -
-1 2 -1 Uryga
= Ll [u'}’kz AP u%[k}
—1 2 u%zk_
Ly,
> L1(2 = 2cos(n/(tx + 1)) Y a3, -
j=1

Because each j is in some path of length ¢;, < ¢, we obtain

Amin(I — JTKJ) > L1(2 — 2cos(n/¢)).
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Fic. 3.1. A domain decomposition with £ = 4.

Hence,

L17T2

r= IR < (1= La(2 = 2eos(r/(C+ D)) < 1- T

as required. 0

Remark 3.7. In a typical situation where 2 has unit diameter and all the subdo-
mains are approximately the same size, the Euclidian diameter H of the subdomains
is roughly 1/¢. If the coarse grid has some regularity (e.g., edges and faces separating
subdomains all have comparable number of vertices), then L; is also bounded away
from 0. An example of such a domain decomposition is displayed in Figure 3.1. Fur-
thermore, from (2.2) and (2.6) one finds that My = maxy my — 1, which is only large
in degenerate cases where grid vertices have large degrees.

3.2. Condition numbers of Azt and Agarnv. Our second main result is
algebraic.

DEFINITION 3.8 (regular algebraic domain decomposition). We say that an alge-
braic domain decomposition is reqular if the following properties hold. Assume that A
is symmetric and positive definite. We let {2 be a domain and Qq, ..., be a domain
decomposition with restriction matrices Ri1,...,R,. We assume that S is symmet-
ric and semidefinite and that the kernel of S is spanned by the indicator functions
of the subdomains that float. We let spmin > 0 be the smallest nonzero eigenvalue
of S, and smax be the largest eigenvalue of S with “nonsingular” condition number
Ko(8S) = 3mex. We let B = aoptd, where

min

(314) Gopt = v/ SmaxSmin-

We define K by (2.7) and Agorm by (3.2). We define M by (2.3), G by (2.6), and
Aoim by (2.14). We assume that the domain decomposition is has an (L1,¢) path
decomposition.

THEOREM 3.9 (condition number estimates for Aarn and Agorm, algebraic case).
Assume that we are given a reqular algebraic domain decomposition:

1+ \//CO(S)) I

L1 71'2

(3.15) K(Asoim) < 2 (
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Proof. We let Q = a(S +al)~! (cf. (3.2)) with eigenvalues 0 < q1 < --- < ¢, <1
and P =1 —Q = S(S + al)~! with positive eigenvalues 1 > p; > --- > pi, > 0, as
per the statement of Lemma 3.2. We calculate that

. z Smin 1
min = =
2€{Smin;--»Smax} Z T Qopt Smin T vV SminSmax 1+ \/ IC()(S)
(317) . Gopt _ v/ SminSmax

1
Q1 min = = = Dk-
2€{0,5min,---»Smax} 2 T Qopt Smax T v/ SminSmax 1+ 1/ ICQ(S)

We substitute the value of r given by (3.13), and the values of py and ¢; into (3.8)
vield (3.15). O

and

(3.16)  p

4. Estimates for the elliptic case. The main application is for elliptic prob-
lems.

DEFINITION 4.1 (regular geometric domain decomposition). We have a regular
geometric domain decomposition when the following properties hold. Let h > 0 be
the fine grid parameter, and let H > 0 be the typical subdomain size. Let Q0 be a
domain of unit diameter. We assume all the hypotheses of a reqular algebraic domain
decomposition. In addition, we assume the following:

(1) Q,...,9Qp are polygons or polyhedra of diameter H; < H.

(2) Fori=1,...,p, either Q; floats or the size of the intersection of 0Q; with

0 is comparable to 08;.
(3) The triangulation T}, is quasi-uniform (cf. [37, Definition B.3]).
(4) The matriz A is the finite element discretization of the bilinear form

a(u,v) = /Qa(x)Vu(x) - Vo(x) dx

with piecewise polynomial basis functions. The function a(x) is assumed to
be bounded 0 < amin < a(x) < amax 1 such a way that a(u,v) is equivalent to
the seminorm [, Vu - Vv. We further assume that a(x) is constant on each
subdomain ;.
We begin by formulating a standard estimate in a form which is suitable for our
use.
LEMMA 4.2. Assume that we have a regular geometric domain decomposition.
There is a constant Cyq, which depends on the shape of Q) and the subdomains, but
not on the grid parameter h or on the size of the subdomains, such that the inequality

H
(4.1) Ko(S) < Cdd%
is satisfied.

Proof. By replacing each subdomain §2; by H%Qi, we may assume without loss
of generality that H; = 1. Let up; be a (finite element) trace on 99;. If Q; floats,
further assume that the average of ur; is zero (so that ur; is orthogonal to the kernel
of S;). According to [37, Lemma 4.10], there are constants ¢ and C' such that
(42) C|uri|2 % . < U?Siui S C|uri|2%(am)'
According to [37], all constants appearing in the present proof depend on the regularity
and shape of the domain decomposition and on the elliptic operator, but do not depend
on the size or number of the subdomains, or on the finite element grid parameter h.
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There is also a constant ¢ such that [jurillz2p0,) < c|ur
[37, Lemma A.17]. There is yet another constant C’ such that |ur;]

H? (09))
1 <

, H?2 (801) -

%Humﬂp(agi) [37, Lemma B.5]. Hence, the estimate (4.2) becomes

C(O/)Z

&
—rzllurill 220, < ui S, <

(¢)
The spectral equivalence of ui,ur; and Hupi||2L2(aﬂi) [37, Lemma B.5 or the end of
the proof of Lemma 4.11] gives (4.1). O
Our third main result is the condition number estimates for the 2LM method for
an elliptic problem.
THEOREM 4.3 (condition number estimates for Aom and Agopm for elliptic
PDEs). Assume that we have a regular geometric domain decomposition. When

h and H are sufficiently small, the condition numbers KC(Agorm) and K(Aarm) are
bounded by

(4.3) IC(ASQLM),IC(AQLM) < OHighié,

||11Fi|\%2(ani)-

where the constant C depends on the regularity of the elliptic form a(u,v) as well as
the shape of Q0 and the shapes of the subdomains, but not on the sizes or number of
subdomains, nor on the parameter h of the triangulation T,.

The proof is by substituting the estimate (4.1) into the condition number esti-
mates of Theorem 3.9.

4.1. Remarks on Krylov space methods. The 2LM methods are linear prob-
lems that must be solved, and it is natural to use a Krylov space solver. We now briefly
summarize the convergence theory for GMRES and refer to [7] and references therein
for details.

The matrix Agorn is symmetric and indefinite. For such matrices, the condi-
tion number provides a linear convergence bound for GMRES, and the asymptotic
convergence factor is

-1
K+1

For symmetric and indefinite matrices, the minimum residual algorithm MINRES
is mathematically equivalent to GMRES and has a two-term recurrence, although
the numerical issues surrounding the loss of orthogonality signify that MINRES and
GMRES perform differently in practice.

Because our condition number is K = O(h~2H™%), if we consider purely the
condition numbers, we find that our new methods are expected to scale better than
classical Schwarz methods in the h variable alone. However, a 1-level Schwarz algo-
rithm scales like O(h='H~1), and so there is better scaling in the H variable and it has
the added benefit of being easy to implement, since it corresponds to the block-Jacobi
preconditioned.

However, within the context of a Krylov space solver, an additive Schwarz pre-
conditioner is symmetric and positive definite and hence benefits from a “free” square
root in its performance for GMRES or CG. Therefore, for Agornm, we expect an over-
all scaling in performance in the h variable to be roughly comparable to an additive
Schwarz preconditioner, and there is no special benefit in using one method over the
other—both the additive Schwarz method and the Agsrn method can be used with
Krylov space solvers that have short recurrences (CG and MINRES, respectively).

(4.4) <1
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The matrix Aoy is nonsymmetric, and as a result, the condition number is not
necessarily related to the performance of GMRES. Actual convergence bounds for
nonsymmetric matrices can be obtained from the field of values and from resolvent
norm estimates. The latter is the subject of the upcoming paper [8].

The nonsymmetric method Aoy, may indeed produce an overall algorithm which
scales better than additive Schwarz when used in combination with GMRES (or CG
for additive Schwarz). This good scaling behavior is not revealed by our analysis of
condition numbers alone, but the numerical experiments in section 5.2 suggest that
indeed the algorithm GMRES on Agpy scales very well. This apparent improved
scaling comes at a cost, since GMRES does not have a short recurrence.

We mention one advantage of our methods. Our local problems have better
condition numbers since (Q) = /Ko(S). This may be beneficial if the local problems
are solved iteratively.

5. Numerical experiments. We offer two sets of experiments. In the first set,
we confirm the condition number estimate (4.3). In the second set of experiments, we
investigate the behavior of GMRES on the matrices Aspv and Agor.

5.1. Verifying the condition number estimate (4.3). We confirm the es-
timate (4.3) with numerical experiments which we now describe. We verify the
scaling of the condition number of Agarn, as measured with the eigs command of
MATLAB, in the parameters £ and in h for the usual 5-point discrete Laplacian on the
unit square with a regular grid and with homogeneous Dirichlet data. Subdomains
are arranged as a grid of size ¢, normalized to the unit square.

In Figure 5.1 (left), we use 3 X 3 subdomains (£ = 2 and 4 cross points) and vary

the value of the finite element grid parameter h = £, L L L L Our experiments

confirm the scaling behavior (4.3) = O(h™2).

In Figure 5.1 (right), we take subdomains of width H = 13%1 and h = £ and
we vary the diameter £ = 2,4,8,16 (up to 17 x 17 = 289 subdomains and 256 cross
points). Our experiments confirm the scaling behavior (4.3) = O(H~?).

5.2. Experiments with GMRES. We now perform a scaling experiment with
GMRES on Agorm and Agpv. We use 4 X 4 subdomains and vary h. We then run
GMRES until the relative residual drops below 1076, For the initial residual, we use

Scaling in h Scaling in H
o.
. 10°
o 10 =]
g g
= =
g g
5 S 4nt
O o 10
o
-0 - Measured condition -0 - Measured condition
h~-0.5 0 N2
1 00 10
107 107 107"
h H

F1G. 5.1. Scaling of the condition number. Left: as a function of h. Right: as a function of £.
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TABLE 5.1
Number of GMRES iterations.

AsorM Aor,Mm Schwarz
h=1/17 22 16 50
h=1/33 32 17 69
h=1/65 49 19 86

a vector of ones. We report the number of iterations in Table 5.1. We thus confirm
the estimated asymptotic convergence factor (4.4). Indeed, the predicted increase
in iteration count going from h = 1/33 to h = 1/65 is roughly a factor of v/2; the
observed increase in iteration counts is a factor 1.5, which is in good agreement.

Since Aorm is nonsymmetric, the iteration counts need not be related to the
condition number of Asp . Nevertheless, we observe that the nonsymmetric matrix
Aorm performs much better than Agorn, both in terms of absolute iteration counts
and in terms of scaling in the h variable.

For comparison, we also include iterations with the additive Schwarz precondi-
tioner.

6. Conclusions. We have given a new optimized 2LM method and provided
condition number estimates. Our new 2LM is a generalization of previous algorithms
to the case where the domain and subdomains have cross points. The condition
number estimates are consistent with the optimized Schwarz literature and are verified
by numerical experiments.

7. Appendix. In this appendix, we give a sketch of the proof of Lemma 3.2.
This proof is highly technical. The complete proof has several cases, according to
which of pg or g; is smaller, etc. The various cases are all similar to one another.
Accordingly, we give a detailed proof for one case, and we summarize the other cases.

Sketch of proof of Lemma 3.2. The spectrum of @) can be given as a function of
the spectrum of S:

o(Q) = { 2 e 0(5)} .

zZ+a

Note that 0 < -3 <1 (since z > 0 by the semidefinite hypothesis on ) and hence
o(Q) C [0,1]. Since o(K) = {0,1}, we have that o(Asom) = 0(Q — K) C [-1,1],
which proves the upper bound of (3.7). We now estimate the eigenvalue of Agorm
with the smallest magnitude.

For any given A, define ¢ = KA (the continuous part of A) and d = XA — ¢
(the discontinuous part of A). In this way, |A|? = ||c||? + [|d||* and AsoLmA =
—Pc + Qd. By the spectral theorem, without loss of generality we may assume
that P and @ are both diagonal matrices P = diag{pi,...,pk,0,...,0} and Q =
diag{q1,...,qx,1,...,1}, since P and Q are symmetric and PQ = QP. Therefore, we

have

k n k
[AsornaA|> =Y pief + > qidi =2 picigids.
i=1 i=1 i=1

We introduce a parameter ¢ > 0 (to be determined later) and use the hypothesis that
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c’d = 0 to obtain
k k n
||ASZLMAH2 = Zp S+ Zqde —2 Zpiciqidi + 2Zt0idi
i=1 i—1 i=1
k
= Zp cz—l—Zqde —22 <1 — —) piciqid; + 2 Z te;d;.
=1

1=k+1

We now use the weighted Young inequality (3.4) with the choices & = p;c;, ¢ = ¢.d;,
and s = s; > 0 for ¢ = 1,...,k, where we have introduced the positive parameters
S1, - - -, Sk, which will be determined later. In addition, we also use the weighted Young
inequality with the choices ¢ =¢;, ( =d;, and s=c fori=k+1,...,n, whereoc >0
will be determined later. We obtain

k
t
A A2 > p?<1—<1— ) )c + ) q <1—<1— )Si_l)df
” . ” ; Digqi Z piq;
+ > (A —toh)d? - Z toc?.

i=k+1 i=k+1

Now we use the hypothesis that || Ec| < r||c||, which implies that || Ec||? < 1112 [I(I —
E)cl|?, and hence

(621

t tor?
2 2 o 2
[As2emA|[" > Z (pi —D; (1 - pﬂﬁ) SiT 1 C r2) Ci

B

Bi

k n

(7.1) +§ q <1— <1——t )sl> d? + § (1—to H)d?
; Piqi
=1

i=k+1
> min{a}|[(T = E)e|* + min{B: }{|(1 — E)d|* + (1 - to )| Ed]|*.

We again use that ||Ec|| < r||c||, which implies that ||(I — E)c||* > (1 — r?)||c||?, and
hence

p

HASQLM)\||2 > min {(1 — r2) miin{ai},miin{ﬂi},l — tail} H)\||2

There are now two cases to consider, namely, min{pg, g1} = px and min{px, ¢1 } =
q1. We treat the case min{pg, ¢1} = pi in detail; the case min{py,q1} = ¢1 is done in
a similar fashion.enlargethispage-12pt

We now choose the parameters sq, ..., sk, 0,t in such a way that p > p2(1 —r)2.
This can be achieved using the following procedure. First, we solve 1 — to~! =
pi(1—r)? for t. Then we solve 8; = pz(1—r)? for s; (cf. (7.1)). The resulting weights
are

<1

2 92
—_—— Qi(piQi_U+U(r_1) pk)
(7.2) t=c—0o(r—1)%; >0 and s =

i (%‘2 —pr’ (r— 1)2)

>0
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The coefficient ¢ is positive, and so is the coefficient s;, provided that o is small
enough. We make the choice

(7.3) oc=pr(l—r1)

and check (by substituting into (7.2)) that this value of ¢ is small enough so that s;
is indeed positive, provided pr < 7.

We substitute the values of t, s;, ¢;, and o given by (7.2), (7.3), and ¢; = 1 — p;
into (1 — r?)a; to obtain

(7.4)
¢(pi) = (1 —r*)a
= ((—1 +7) pi (—2pi (=147 (r4+1) (=1 4p) — (=1 +7)° p.°
— (=147) (=2pr® + 14 %) pr + 2pi (r + 1) (=14 7)° (=1 + p;) pi®
+(=1+7)° (=2pir® + pi?r? +2) pkg))/((—l +p0)° = pe? (—1+ 7')2)-

The function ¢(p;) has no singularities in the interval p; € [p, 1 — px] and ¢'(p;) =0
at the roots

_ 2(_ 2
(7.5) p(l) = Ltp” (=14 1) 5 and
—L (<L) e pe? (<14 7)
(7.6) PP = — (e — pr — 1) (par — pr + 1)°.

We now find the sign of @, (r, px) := ¢(p;) — pz(1 —r)2. Since ¢(p;) is a differen-
tiable function for p; € [px, 1 — pg], we have that

(I)Pi(rvpk) > (I)Pi(rvpk)'

min
pi€{p™M,p® pp,1—pp}

We consider the case p(*) in detail, and the other cases are similar.
To find the sign of ®,u)(r,px), we solve ®,a)(r,px) = 0 for the unknown py,
giving the roots

V1—12 +1
p,i’i =+ and pi’i =
r—1 r—1

We have plotted these roots in the (r,px) plane in Figure 7.1 (top-left). We note
that the zeros of @, (r, px) (as a function of py and r) do not intersect the rectangle
R ={(r,pr) [0.204 <r <1 and 0 < p <0.5}. We then compute ®,1)(0.5,0.25) ~
0.7229 > 0, which proves that ®,u) (7, px) is positive throughout the rectangle R.
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2 2/
1/ |
S0 g 0
_1\ _1\
-2 -2
0 0.5 1 0 0.5 1
T r
2 2
1 1
£ 0 g0
-1 -1
-2 -2
0 0.5 1 0 0.5 1
T T

Fi1c. 7.1. Solutions of ¢(pi) = pi(l—r)2 for various values of pi, px, and r. Top-left: p; = p(1).

Top-right: p; = p(Q). Bottom-left: p; = p. Bottom-right: p; = 1 — px. The region R has been
lightly shaded.

The cases p; = p'®), p; = pi, and p; = 1 — p, lead to the top-right, bottom-left,

and bottom-right parts (respectively) of Figure 7.1, and the result follows. O
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