
Domain decomposition algorithms for the two

dimensional nonlinear Schrödinger equation and

simulation of Bose-Einstein condensates

Christophe Besse, Feng Xing

To cite this version:

Christophe Besse, Feng Xing. Domain decomposition algorithms for the two dimensional
nonlinear Schrödinger equation and simulation of Bose-Einstein condensates. 2016. <hal-
01285359>

HAL Id: hal-01285359

https://hal.archives-ouvertes.fr/hal-01285359

Submitted on 9 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01285359

Domain decomposition algorithms for the two dimensional nonlinear
Schrödinger equation and simulation of Bose-Einstein condensates

Christophe Besse∗1 and Feng Xing†2

1Institut de Mathématiques de Toulouse UMR5219, Université de Toulouse; CNRS, UPS IMT,
F-31062 Toulouse Cedex 9, France.

2Laboratoire de Mathématiques J.A. Dieudonné, UMR 7351 CNRS, University Nice Sophia
Antipolis, team COFFEE, INRIA Sophia Antipolis Méditerranée, Parc Valrose 06108 Nice

Cedex 02, France, and BRGM Orléans France

March 16, 2016

Abstract
In this paper, we apply the optimized Schwarz method to the two dimensional nonlinear Schrödinger

equation and extend this method to the simulation of Bose-Einstein condensates (Gross-Pitaevskii
equation). We propose an extended version of the Schwartz method by introducing a preconditioned
algorithm. The two algorithms are studied numerically. The experiments show that the preconditioned
algorithm improves the convergence rate and reduces the computation time. In addition, the classical
Robin condition and a newly constructed absorbing condition are used as transmission conditions.

Keywords. nonlinear Schrödinger equation, rotating Bose–Einstein condensate, optimized Schwarz
method, preconditioned algorithm, parallel algorithm

Math. classification. 35Q55; 65M55; 65Y05; 65M60.

1 Introduction

We are interested in solving the nonlinear Schrödinger equation and the Gross-Pitaevskii (GPE) equation
by the optimized Schwarz method. A large number of articles and books [16–18] are devoted to this method
for different kinds of equations, for example the Poisson equation [21], the Helmholtz equation [14, 19]
and the convection-diffusion equation [23]. Recently, the authors of [5, 12, 13, 20] applied the domain
decomposition method to the linear or nonlinear Schrödinger equation. More specificaly, in [12, 13], the
authors proposed some newly efficient and scalable Schwarz methods for 1d or 2d linear Schrödinger
equation and for 1d nonlinear Schrödinger equation. These new algorithms could ensure high scalability
and reduce computation time. In this paper, we extend these works to the two dimensional nonlinear
case.

The nonlinear Schrödinger equation defined on a two dimensional bounded spatial domain Ω :=
(xl, xr)× (yb, yu), xl, xr, yb, yu ∈ R and t ∈ (0, T) with general real potential V (t, x, y) + f(·) reads

(1)
{
i∂tu+ ∆u+ V (t, x, y)u+ f(u)u = 0, (t, x, y) ∈ (0, T)× Ω,
u(0, x, y) = u0(x, y),

∗christophe.besse@math.univ-toulouse.fr
†feng.xing@unice.fr

1

where u0 ∈ L2(Ω) is the initial datum. We complement the equation with homogeneous Neumann
boundary condition on bottom and top boundaries and Fourier-Robin boundary conditions on left and
right boundaries. They read:

(2) ∂nu = 0, (x, y) ∈ (xl, xr)× {yb, yu}, ∂nu+ Su = 0, (x, y) ∈ {xl, xr} × (yb, yu),

where ∂n denotes the normal directive, n being the outwardly unit vector on the boundary ∂Ω (see Figure
1). The operator S is given by

Su = −ip · u, p ∈ R+,(3)

or Su = −i
√
i∂t + ∆Γ + V + f(u)u,(4)

where Γ = {xl, xr} × (yb, yu). The Laplace–Beltrami operator ∆Γ is ∂2
y in our case. The operator S in

(4) is a pseudo differential operator constructed recently in [2] as an absorbing boundary operator, which
is used to approximate the exact solution of the problem defined on R2, restricted to a bounded space
domain.

x

y

n n

n

nxl xryb

yu

Ω

Figure 1: Spatial bounded domain Ω = (xl, xr)× (yb, yu).

Recently, the Schwarz algorithms have been applied to the one dimensional linear or nonlinear Schrödinger
equation [13]. If the potential is linear and independent of time, then an interface problem allows to con-
struct a global in space operator. It is possible to assemble it in parallel without too much computational
efforts. Thanks to this operator, a new algorithm was introduced which is mathematically equivalent to
the original Schwarz algorithm, but requires less iterations and computation time. If the potential is gen-
eral, the authors used a pre-constructed linear operator as preconditioner, which leads to a preconditioned
algorithm. The preconditioner allows to reduce both the number of iterations and the computation time.
These new algorithms have been extended to the two dimensional linear Schrödinger equation [12], which
also shows the effectiveness of the new algorithms. In this article, we propose to extend the results to the
2d nonlinear case and to the simulation of Bose-Einstein condensates. Following the naming in [13], we
refer to the algorithm given by (6) as “the classical algorithm” and to the algorithm that will be presented
in Section 3 as “the preconditioned algorithm”.

The paper is organized as follows. We present in section 2 the the classical algorithm and some details
about the discretization. A preconditioned algorithm is presented in section 3. In section 4, we present
the implementation of these algorithms on parallel computers. Numerical experiments are performed in
section 5 and we focused on simulation of Bose-Einstein condensates. The last section draws a conclusion
and suggests some future directions of research.

2 Classical algorithm

2.1 Classical optimized Schwarz algorithm

Let us discretize uniformly with NT intervals the time domain (0, T). We define ∆t = T/NT to be the
time step. The usual semi-discrete in time scheme developed by Durán and Sanz-Serna [15] applied to

2

(1) reads as

i
un − un−1

∆t
+ ∆

un + un−1

2
+
Vn + Vn−1

2

un + un−1

2
+ f(

un + un−1

2
)
un + un−1

2
= 0, 1 6 n 6 NT

where un(x, y), (x, y) ∈ Ω denotes the approximation of the solution u(tn, x, y) to the Schrödinger equation
(1) at time tn = n∆t and Vn(x, y) = V (tn, x, y). By introducing new variables vn = (un + un−1)/2 with
v0 = u0 and Wn = (Vn + Vn−1)/2, this scheme can be written as

(5) Lxvn = 2i
un−1

∆t
,

where the operator Lx is defined by

Lxvn :=
2i

∆t
vn + ∆vn +Wnvn + f(vn)vn.

For any 1 ≤ n ≤ NT , the equation (5) is stationary. We can therefore apply the optimized Schwarz
method. Let us decompose the spatial domain Ω into N subdomains Ωj = (aj , bj), j = 1, 2, ..., N without
overlap as shown in Figure 2 for N = 3. The Schwarz algorithm is an iterative process and we identify
the iteration number thanks to label k. We denote by vkj,n the solution on subdomain Ωj at iteration
k = 1, 2, ... of the Schwarz algorithm (resp ukj,n). Assuming that u0,n−1 is known, the optimized Schwarz
algorithm for (5) consists in applying the following sequence of iterations for j = 2, 3, ..., N − 1

(6)

Lxv

k
j,n =

2i

∆t
uj,n−1, (x, y) ∈ Ωj ,

∂njv
k
j,n + Sjv

k
j,n = ∂njv

k−1
j−1,n + Sjv

k−1
j−1,n, x = aj , y ∈ (yb, yu),

∂njv
k
j,n + Sjv

k
j,n = ∂njv

k−1
j+1,n + Sjv

k−1
j+1,n, x = bj , y ∈ (yb, yu),

with a special treatment for the two extreme subdomains Ω1 and ΩN since the boundary conditions are
imposed on {x = a1} × (yb, yu) and {x = bN} × (yb, yu)

∂n1v
k
1,n + Sjv

k
1,n = 0, x = aj , ∂nN v

k
N,n + Sjv

k
N,n = 0, x = bN .

x

y

n2 n2

xl = a1 b1 = a2 b2 = a3 b2 = xr

Ω1 Ω2 Ω3

Figure 2: Domain decomposition without overlap, N = 3.

Various transmission operator S can be considered. The first one is the classical widely used Robin
transmission condition

(7) Robin : Sjv = −ip · v, p ∈ R+.

Traditionally, the optimal transmission operator is given in term of transparent boundary conditions
(TBCs). For the nonlinear two dimensional Schrödinger equation, we only have access to approximated

3

version of the TBCs given by the recently constructed absorbing boundary condition Smpade [2, 3] which
we used as the transmission condition

(8) Smpade : Sjv = −i
m∑
s=0

ams v + i
m∑
s=1

ams d
m
s ϕj,s, x = aj , bj .

The operator Smpade [2, 3] is originally constructed by using some pseudo differential techniques. Numeri-
cally it is approximated by Padé approximation of order m

Smpadev = −i
√

2i

∆t
+ ∆Γj +W + f(v)v ≈

(
− i

m∑
s=0

ams + i

m∑
s=1

ams d
m
s (

2i

∆t
+ ∆Γj +W + f(v) + dms)−1

)
v,

where Γj = {x = aj , bj}×(yb, yu). The Laplace-Beltrami operator ∆Γj is ∂yy in our case and the constant
coefficients are ams = eiθ/2/

(
m cos2((2s−1)π

4m)
)
, dms = eiθ tan2((2s−1)π

4m), s = 0, 1, ...,m, θ = π
4 . The auxiliary

functions ϕj,s, j = 1, 2, ..., N ,s = 1, 2, ...,m are defined as solution of the set of equations

(9)
(2i

∆t
+ ∆Γj +W + f(v) + dms

)
ϕj,s(x, y) = v, (x, y) ∈ (aj , bj)× (yb, yu).

Let us introduce the fluxes lkj,n and rkj,n defined as

lkj,n(y) = ∂njv
k
j,n(aj , y) + Sjv

k
j,n(aj , y), y ∈ (yb, yu),

rkj,n(y) = ∂njv
k
j,n(bj , y) + Sjv

k
j,n(bj , y), y ∈ (yb, yu),

with a special definition for the two extreme subdomains: lk1,n = rkN,n = 0. Thus, the algorithm (6) can
be splitted into local problems on subdomains Ωj , j = 1, 2, ..., N

(10)

Lxv

k
j,n =

2i

∆t
uj,n−1,

∂njv
k
j,n + Sjv

k
j,n = lkj,n, x = aj ,

∂njv
k
j,n + Sjv

k
j,n = rkj,n, x = bj ,

and flux problems

(11)

{
lk+1
j,n = −rkj−1,n + 2Sjv

k
j−1,n(bj−1, y), j = 2, 3, ..., N,

rk+1
j,n = −lkj+1,n + 2Sjv

k
j+1,n(aj+1, y), j = 1, 2, ..., N − 1.

2.2 Preliminaries related to space discretization

Without loss of generality, we present the space discretization of the semi-discrete Schrödinger equation
defined on the bounded domain (a, b)× (yb, yu), a, b ∈ R

(12)

2i

∆t
v + ∆v +W (x, y)v + f(v)v =

2i

∆t
h(x, y),

∂nv + Sv = l(x, y), x = a, y ∈ (yb, yu),

∂nv + Sv = r(x, y), x = b, y ∈ (yb, yu),

∂nv = 0, y = yb, y = yu,

where W (x, y)v + f(v)v plays the role of the semi-discrete potential in (5) and l(x, y), r(x, y) are two
functions. The operator S is Robin or Smpade given respectively by (7) and (8).

4

If f 6= 0, then the system (12) is nonlinear. The computation of v is accomplished by a fixed point
procedure. If we consider the Robin transmission condition, we take ζ0 = h and compute the solution v
as the limit of the iterative procedure with respect to the label q, q = 1, 2, ...

(13)

(2i

∆t
+ ∆ +W + f(ζq−1)

)
ζq =

2i

∆t
h,

∂nζ
q − ip · ζq = l, x = a,

∂nζ
q − ip · ζq = r, x = b.

For the transmission condition Smpade, we take ζ0 = h and φ0
s = 0, s = 1, 2, ...,m. The unknowns v and

ϕs, s = 1, 2, ...,m are computed as the limit (with respect to q) of ζq and φqs, s = 1, 2, · · · ,m, which are
solutions of the following coupled system

(14)

(2i

∆t
+ ∆ +Wn + f(ζq−1

)
ζq =

2i

∆t
h,(2i

∆t
+W + ∆Γ + dms

)
φqs = ζq − f(ζq−1)φq−1

s ,

∂nζ
q − i

m∑
s=0

ams ζ
q + i

m∑
s=1

ams d
m
s φ

q
s = l, x = a,

∂nζ
q − i

m∑
s=0

ams ζ
q + i

m∑
s=1

ams d
m
s φ

q
s = r, x = b.

The spatial approximation is realized with the standard Q1 finite element method with uniform mesh.
The mesh size of a discrete element is (∆x,∆y). We denote by Nx (resp. Ny) the number of nodes in x
(resp. y) direction on each subdomain. Let us denote by v (resp. h) the nodal interpolation vector of
v (resp. h), ζq the nodal interpolation vector of ζq, l (resp. r) the nodal interpolation vector of l(x, y)
(resp. r(x, y)), M the mass matrix, S the stiffness matrix and MW the generalized mass matrix with
respect to

∫
ΩWvφdx. Let MΓ the boundary mass matrix, SΓ the boundary stiffness matrix and MΓ

W

(resp. MΓ
W) the generalized boundary mass matrix with respect to

∫
ΓWvφdΓ (resp.

∫
Γ f(v)φdΓ). We

denote by Ql (resp. Qr) the restriction operators (matrix) from Ω to {a} × (yb, yu) (resp. {b} × (yb, yu))
and Q> = (Q>l , Q

>
r) where “·>” is the standard notation of the transpose of a matrix or a vector. The

matrix formulation for (13) is therefore given by

(15)
(
A + ip ·MΓ + MΓ

f(ζq−1)

)
ζq =

2i

∆t
Mh−MΓQ>

(
l
r

)
,

where A = 2i
∆tM − S + MW . The size of this linear system is Nx × Ny. If we consider the transmission

condition Smpade, we have

A

ζq

φq1
φq2
...
φqm

 :=

A + i(

∑m
s=1 a

m
s) ·MΓ B1 B2 · · · Bm

C D1

C D2
...

. . .
C Dm

ζq

φq1
φq2
...
φqm

=
2i

∆t

Mh
0
0
...
0

−

Mf(ζq−1)ζ

q−1

MΓ
f(ζq−1)

φq−1
1

...
MΓ
f(ζq−1

j)
φq−1
m

−

MΓ ·Q>

(
l
r

)
0
...
0

 .(16)

5

with

Bs = −iams dms MΓQ>, 1 6 s 6 m,

C = −QMΓ,

Ds = Q(
2i

∆t
MΓ − SΓ + MΓ

W + dms MΓ)Q>, 1 6 s 6 m.

It is a linear system with unknown (ζq,φq1, ...,φ
q
m) where φqs is the nodal interpolation of φqs on the

boundary and ϕs is the nodal interpolation of ϕs. The vectors v and ϕs are computed by

v = lim
q→∞

ζq, ϕs = lim
q→∞

φqs, s = 1, 2, ...,m.

In addition, the discrete form of the transmission operator S is given by

Robin : Sv = −ip · v, p ∈ R+,

Smpade : Sv = −i
m∑
s=0

ams v + i

m∑
s=1

ams d
m
s ϕs.

(17)

Remark 2.1. The Smpade transmission condition involves a larger linear system to solve than the one
of the Robin transmission condition. The cost of the algorithm with the Smpade transmission condition is
therefore more expensive.

If the potential is linear f = 0, then from the system (12) we have

(18) Robin :
(
A + ip ·MΓ

)
v =

2i

∆t
Mh−MΓQ>

(
l
r

)
,

and

Spade: A

v
ϕ1

ϕ2
...
ϕm

 =
2i

∆t

Mh
0
0
...
0

−

MΓ ·Q>

(
l
r

)
0
...
0

 .(19)

Directly from the definition of A, (19) can be written as one equation for v

(20)
(
A + i(

m∑
s=1

ams) ·MΓ −
∑
s=1

BsD−1
s Cs

)
v =

2i

∆t
Mh−MΓQ>

(
l
r

)
.

Note that numerically, we implement (18) and (19) to compute v (and ϕs, s = 1, 2, ...,m).

2.3 Classical discrete algorithm

Following what is done for the complete domain Ω× [0, T], we discretize the equations (10) and (11) on
each subdomain Ωj at each time step n = 1, 2, ..., NT . Accordingly, on each subdomain Ωj , let us denote
by

• Aj,n = 2i
∆tMj − Sj + Mj,Wn where Mj is the mass matrix, Sj is the stiffness matrix, Mj,Wn is the

generalized mass matrix with respect to
∫

Ωj
Wnvφdx,

6

• MΓj

Wn
the generalized boundary mass matrix with respect to

∫
Γj
WnvφdΓ, MΓj

f the generalized
boundary mass matrix with respect to

∫
Γj
f(v)φdΓ where Γj = {x = aj , bj} × (yb, yu),

• Qj,l and Qj,r the restriction operators (matrix) from Ωj to its boundary {aj} × (yb, yu) and {bj} ×
(yb, yu) respectively, Q>j = (Q>j,l, Q

>
j,r),

• Bj,s, Cj , Dj,n,s the matrix associated with the operator Smpade,

• vkj,n (resp. ukj,n) the interpolation vectors of vkj,n (resp. ukj,n).

We denote by lkj,n (resp. rkj,n) the nodal interpolation vector of lkj,n (resp. rkj,n). The classical algorithm is
initialized by an initial guess of l0j,n and r0

j,n, j = 1, 2, ..., N . The boundary conditions for any subdomain
Ωj at iteration k + 1 involve the knowledge of the values of the functions on adjacent subdomains Ωj−1

and Ωj+1 at prior iteration k. Thanks to the initial guess, we can solve the Schrödinger equation on each
subdomain, allowing to build the new boundary conditions for the next step, communicating them to
other subdomains. This procedure is summarized in (21) for N = 3 subdomains at iteration k.

(21)

rk1,n
lk2,n
rk2,n
rk3,n

 Solve−−−→

vk1,n
vk2,n
vk3,n

−→

−rk1,n + 2S(Q1,rv

k
1,n)

−lk2,n + 2S(Q2,lv
k
j,n)

−rk2,n + 2S(Q2,rv
k
j,n)

−lk3,n + 2S(Q3,lv
k
N,n)

 Comm.−−−−→

rk+1

1,n

lk+1
2,n

rk+1
2,n

lk+1
3,n

 .

Let us define the discrete interface vector by

gk,>n = (rk,>1,n , · · · , l
k,>
j,n , r

k,>
j,n , · · · , l

k,>
N,n).

Thanks to this definition, we give a new interpretation to the algorithm which can be written as

(22) gk+1
n = Rh,ngkn = I − (I −Rh,n)gkn.

where I is identity operator and Rh,n is an operator. The solution to this iteration process is given as the
solution to the discrete interface problem

(I −Rh,n)gn = 0.

Remark 2.2. If f = 0, the discretization of (10) on each subdomain is

Robin :
(
Aj,n + ip ·MΓj

)
vkj,n =

2i

∆t
Mukj,n−1 −MΓjQ>

(
lkj,n
rkj,n

)
,(23)

Spade:

(
Aj,n + i(

m∑
s=1

ams) ·MΓj −
m∑
s=1

Bj,sD−1
j,n,sCj

)
vkj,n =

2i

∆t
Mukj,n−1 −MΓjQ>

(
lkj,n
rkj,n

)
.(24)

3 Preconditioned algorithm

The application of the nonlinear operator Rh,n to gkn is expensive. In this section, we propose to add a
preconditioner P−1 in (22), which leads to a preconditioned algorithm

(25) gk+1
n = I − P−1(I −Rh,n)gkn.

7

Here P is a non singular matrix. To defined it, let us consider the free Schrödinger equation with a zero
potential V = 0, f = 0. We show in Propositions 3.1 and 3.2 that in this case, the operator Rh,n is linear

Rh,ngkn = Lhgkn + dn,

where Lh is a block matrix as defined by (26) and dn is a vector (the notation “MPI j” is used in the next
section). The matrix Lh is independent of the time step n. The size of each block Xk,l is Ny ×Ny.

(26) Lh =

MPI 0︷︸︸︷ MPI 1︷ ︸︸ ︷ MPI 2︷ ︸︸ ︷ MPI N−2︷ ︸︸ ︷ MPI N−1︷︸︸︷
X2,1 X2,2

X1,4

X3,1 X3,2

X2,3 X2,4

· · ·
X3,3 X3,4

XN−1,1 XN−1,2

· · ·
XN,1

XN−1,3 XN−1,4

.

Thus, we propose here
P = I − Lh.

Note that since Lh is independent of time step n, the preconditioner is constructed once and used for all
time steps.

Proposition 3.1. For the Robin transmission condition, assuming that V = 0 and f = 0, the matrix Lh
takes the form (26) and Lh is independent of time step n. In addition, if the subdomains are equal, then

(27)
X2,1 = X3,1 = · · · = XN,1, X2,2 = X3,2 = · · · = XN−1,2,

X2,3 = X3,3 = · · · = XN−1,3, X1,4 = X2,4 = · · · = XN−1,4.

Proof. First, by some straight forward calculations using (23) and (21), we can verify that

(28)

Xj,1 = −I − 2ip ·Qj,l(Aj,n + ip ·MΓj)−1MΓjQ>j,l,

Xj,2 = −2ip ·Qj,l(Aj,n + ip ·MΓj)−1MΓjQ>j,r,

Xj,3 = −2ip ·Qj,r(Aj,n + ip ·MΓj)−1MΓjQ>j,l,

Xj,4 = −I − 2ip ·Qj,r(Aj,n + ip ·MΓj)−1MΓjQ>j,r,

and d>n = (d>n,1,r, ...,d
>
n,j,l,d

>
n,j,r, ...,d

>
n,N,r)

> with

dn,j,l = 2ip ·Qj−1,r(Aj−1,n + ip ·MΓj−1)
2i

∆t
uj−1,n, j = 2, 3, ..., N,

dn,j,r = 2ip ·Qj+1,l(Aj+1,n + ip ·MΓj+1)−1 2i

∆t
uj+1,n, j = 1, 2, ..., N − 1.

(29)

Secondly, since V = 0, then

(30) Mj,Wn = 0, Aj,1 = Aj,2 = ... = Aj,NT
=

2i

∆t
Mj − Sj , j = 1, 2, ..., N.

8

Thus, the blocks Xj,1, Xj,2, Xj,3 and Xj,4 are both independent of time step n.
Finally, thanks to the hypothesis of the proposition, the geometry of each subdomain is identical. Thus,

the various matrices coming from the assembly of the finite element methods are the same. Therefore,
we have

M1 = M2 = ... = MN , S1 = S2 = ... = SN , MΓ1 = MΓ2 = ... = MΓN ,

Q1,l = Q2,l = ... = QN,l, Q1,r = Q2,r = ... = QN,r.(31)

The conclusion follows directly from (28).

Proposition 3.2. Let us consider the transmission condition Smpade. If the potential is zero, then the
matrix Lh takes the form (26) and Lh is independent of time step n. In addition, if the subdomains are
equal, then (27) is true.

Proof. The proof is almost same as that of the proposition 3.1. Using (24) and (21) gives
(32)

Xj,1 = −I − 2Qj,l

(
i

m∑
s=0

ams + i

m∑
s=1

ams d
m
s D−1

j,n,sCj
)(

Aj,n + i(
m∑
s=1

ams) ·MΓj −
∑
s=1

Bj,sD−1
j,n,sCj

)−1
MΓjQ>j,l,

Xj,2 = −2Qj,l

(
i

m∑
s=0

ams + i

m∑
s=1

ams d
m
s D−1

j,n,sCj
)(

Aj,n + i(

m∑
s=1

ams) ·MΓj −
∑
s=1

Bj,sD−1
j,n,sCj

)−1
MΓjQ>j,r,

Xj,3 = −2Qj,r

(
i
m∑
s=0

ams + i
m∑
s=1

ams d
m
s D−1

j,n,sCj
)(

Aj,n + i(
m∑
s=1

ams) ·MΓj −
∑
s=1

Bj,sD−1
j,n,sCj

)−1
MΓjQ>j,l,

Xj,4 = −I − 2Qj,r

(
i

m∑
s=0

ams + i

m∑
s=1

ams d
m
s D−1

j,n,sCj
)(

Aj,n + i(

m∑
s=1

ams) ·MΓj −
∑
s=1

Bj,sD−1
j,n,sCj

)−1
MΓjQ>j,r.

Under these assumptions, we have (30) and (31). In addition, the matrix associated with the transmission
condition Smpade satisfy

B1,s = B2,s = ... = BN,s, C1 = C2 = ... = CN , D1,n,s = D2,n,s = ... = DN,n,s, s = 1, 2, ...m,

and Dj,n,s = Q(2i
∆tM

Γj − SΓj + MΓj

Wn
+ dms MΓj)Q> is independent of time step n since MΓj

Wn
= 0.

Intuitively, the free semi-discrete Schrödinger operator without potential is a rough approximation of
the semi-discrete Schrödinger operator with potential:

2i

∆t
u+ ∆u ≈ 2i

∆t
u+ ∆u+ V u+ f(u)u.

In other words, V u + f(u)u is a perturbation of the free semi-discrete Schrödinger operator. Thus, the
matrix Lh can be seen as an approximation to

I −Rh,n.

Based on the previous propositions, it is sufficient to compute only four blocks X2,1, X2,2, X2,3 and X2,4

to construct the preconditioner P . It will be shown in the following section that the construction can be
implemented in a parallel way.

4 Parallel implementation

We present the parallel implementation of the classical algorithm (22) and the preconditioned algorithm
(25) in this section. We fix one MPI process per subdomain [22]. We use the distributed matrix, vector
and iterative linear system solver avalaible in PETSc library [6].

9

4.1 Classical algorithm

The discrete interface vector gkn is stored in a distributed manner in PETSc form. As shown by (33), rk1,n
is located in MPI process 0, lkj,n and rkj,n are in MPI process j − 1, j = 2, 3, ..., N − 1 and rkN,n is in MPI
process N − 1.

(33) gkn =

rk1,n
...

lkj,n
rkj,n
...

rkN,n

}
MPI 0

}
MPI j − 1

}
MPI N − 1

As shown by (21) for N = 3, at iteration k, vkj,n, j = 1, 2, ..., N is computed on each subdomain locally
and the boundary values are communicated.

4.2 Preconditioned algorithm

Thanks to the analysis yielded in previous section, we can build explicitly Lh with few computations.
For the Robin transmission condition, it is is based on the formulas (28). For the transmission condition
Smpade, the idea is equivalent, but involves (32). According to the proposition (3.1), the column s of X2,1

and X2,3 are
X2,1es = −es − 2ip ·Q2,l(Aj,n + ip ·MΓj)−1MΓ2Q>2,les,

X2,3es = −2ip ·Q2,r(Aj,n + ip ·MΓj)−1MΓ2Q>2,les,

where es = (0, 0, ..., 1, ...0) ∈ CNT×Ny , all its elements are zero except the s-th, which is one. The element
MΓ2Q>2,les being a vector, it is necessary to compute one time the application of (Aj,n + ip ·MΓj)−1 to
vector. Similarly, we have

X2,2es = −2ip ·Q2,l(Aj,n + ip ·MΓj)−1MΓ2Q>2,res,

X2,4es = −es − 2ip ·Q2,r(Aj,n + ip ·MΓj)−1MΓ2Q>2,res,

Let us recall that Aj,n = 2i
∆tMj − Sj for V = 0, f = 0. To know the first Ny columns of X2,1, X2,2,

X2,3 and X2,4, we only have to compute 2Ny times the application of (Aj,n + ip ·MΓj)−1 to vector. In
other words, this amounts to solve the Schrödinger equation on a single subdomain 2Ny times to build
the matrix Lh. The resolutions are all independent. Therefore, we can solve them on different processors
using MPI paradigm. We fix one MPI process per domain. To construct the matrix Lh, we use the N
MPI processes to solve the equation on a single subdomain (ex. (0, T)×Ω2) 2Ny times. Each MPI process
therefore solves the Schrödinger equation on a single subdomain maximum

Nmpi := [
2Ny

N
] + 1 times,

where [x] is the integer part of x. This construction is therefore super-scalable in theory. Indeed, if N is
doubled, then the size of subdomain is divided by two and Nmpi is also approximately halved.

Concerning the computational phase, the transpose of Lh is stored in a distributed manner using the
library PETSc. As shown by (26), the first block column of Lh lies in MPI process 0. The second and
third blocks columns are in MPI process 1, and so on for other processes. In addition, for any vector y,
the vector x := P−1y is computed by solving the linear system

Px = y

with Krylov methods (GMRES or BiCGStab).

10

5 Numerical results

We implement the algorithms in a cluster consisting of 92 nodes (16 cores/node, Intel Sandy Bridge
E5-2670, 32GB/node). We fix one MPI process per subdomain and 16 MPI processes per node. The
communications are handled by PETSc and Intel MPI. The linear systems related to (15), (2.2), (18) and
(19), are solved with the LU direct method using MKL Pardiso library. The convergence condition for
our algorithms is ‖ gk+1

n − gkn ‖< 10−10, n = 1, 2, ..., NT . The initial vectors are

• g0
1 = 0 or g0

1 = random vector,

• g0
n = lim

k→∞
gkn−1, n = 2, 3, ..., NT .

Since the convergence properties for different time steps n = 1, 2, ..., NT are similar, we only consider the
number of iterations required for convergence of the first time step n = 1. As mentioned in [17], using the
zero initial vector could give wrong conclusions associated with the convergence. Thus, the zero vector is
used when one wants to evaluate the computation time, while the random vector is used when comparing
the transmission conditions. The theoretical optimal parameter p (resp. m) in the transmission condition
Robin (resp. Smpade) is not at hand for us, we then seek the best parameter numerically for each case.

This section is composed of two subsections. The first one is devoted to the Schrödinger equation. In
the second, we consider the simulation of Bose-Einstein condensates.

5.1 Schrödinger equation

We decompose the physical domain (−16, 16) × (−8, 8) into N equal subdomains without overlap. The
final time T and the time step ∆t are fixed to be T = 0.5 and ∆t = 0.01 in this subsection. We consider
two different meshes

∆x = 1/128, ∆y = 1/8,

∆x = 1/2048, ∆y = 1/64,

where the size of cell is ∆x×∆y. The potential and the initial datum (Figure 3) are

V = |u|2, u0(x, y) = e−x
2−y2−0.5ix,

which give rise to a solution that propagates slowly to the negative side in y direction and undergoes
dispersion. It is possible to solve numerically the Schrödinger equation on the entire domain Ω with the
first mesh (∆x = 1/128,∆y = 1/8) under the memory limitation (32G). We compare in this sub section
the classical and the preconditioned algorithms, as well as the two transmission conditions.

5.1.1 Comparison of the classical algorithm and the preconditioned algorithm

We are interested in observing the robustness, the number of iterations of the first time step, the compu-
tation time involving the transmission condition Smpade. The zero vector is used as the initial vector g0

1.
We denote by Nnopc (resp. Npc) the number of iterations required for convergence with the classical algo-
rithm (resp. the preconditioned algorithm). Tnopc and Tpc denote the computation times of the classical
algorithm and the preconditioned algorithm respectively. In addition, we denote by T ref the computation
time to solve numerically on a single processor the Schrödinger equation on the entire domain.

First, we consider a mesh with ∆x = 1/128, ∆y = 1/8. We make the tests for N = 2, 4, 8, 16, 32
subdomains. The convergence history of the first time step is presented in Figure 4 for N = 2 (left) and
N = 32 (right). Table 1 shows the number of iterations of the first time step and the computation times.

11

Figure 3: Initial datum |u0|.

We can see that all the algorithms are robust and scalable. The number of iterations is independent of
number of subdomains. This independence has already been observed for one dimensional Schrödinger
equation for small N [13, 20]. In addition, the preconditioner allow to reduce number of iterations and
computation time.

0 2 4 6 8 10 12 14 16 18
Number of iterations

10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102

A
b
so

lu
te

 R
e
si

d
u
a
l

Classical

Preconditioned

0 2 4 6 8 10 12 14 16 18
Number of iterations

10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102

A
b
so

lu
te

 R
e
si

d
u
a
l

Classical

Preconditioned

Figure 4: Convergence histories of the first time step for N = 2 (left) and N = 32 (right). The mesh is ∆x = 1/128,
∆y = 1/8.

N 2 4 8 16 32
Nnopc 18 18 18 18 18
Npc 6 6 6 6 6
T ref 93.7
Tnopc 1106.2 571.2 297.4 161.8 85.2
Tpc 356.2 180.5 92.1 50.3 26.6

Table 1: Number of iterations and total computation time (seconds) of the algorithms with the mesh ∆x = 1/128,
∆y = 1/8.

12

Secondly, we reproduce the same tests with the mesh ∆x = 1/2048, ∆y = 1/64. The convergence
history of the first time step, the total computation times are shown in Figure 5 and Table 2. The
algorithms are both robust for N = 1024, but not scalable from N = 512 to N = 1024. The classical
algorithm loses scalability since if we use more subdomains used to decompose Ω, then more iterations
are required for convergence. Concerning the preconditioned algorithm, the computational time is larger
with N = 1024 compared to N = 512 since the application of the preconditioner increases with larger
N . However, the preconditioned algorithm is much more efficient since it can both reduce the number of
iterations and the total computation times.

0 5 10 15 20 25 30 35 40
Number of iterations

10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102
103

A
b
so

lu
te

 R
e
si

d
u
a
l

Classical

Preconditioned

0 20 40 60 80 100 120 140
Number of iterations

10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102
103

A
b
so

lu
te

 R
e
si

d
u
a
l

Classical

Preconditioned

Figure 5: Convergence histories of the first time step for N = 256 (left) and N = 1024 (right) with the mesh
∆x = 1/2048, ∆y = 1/64.

N 256 512 1024
Classical algorithm 3582.4 2681.5 2516.6

Preconditioned algorithm 596.9 376.1 441.9

Table 2: Computation times (seconds) of the algorithms with the mesh ∆x = 1/2048,∆y = 1/64.

5.1.2 Comparison of transmission conditions

In this part, we compare numerically the transmission conditions Robin and Smpade in the framework of
the two algorithms. The initial vector g0

1 here is a random vector to make sure that all the frequencies
are included. The time step is fixed to be ∆t = 0.01 and the mesh is ∆x = 1/128, ∆y = 1/8. Figure
6 and Figure 7 present the convergence histories of the first time step in the framework of the classical
and the preconditioned algorithms with Robin and Smpade transmission conditions for N = 2 and N = 32
respectively. It can be seen that in the framework of the classical algorithm, the transmission condition
Smpade allows the algorithm to converge faster, while in the framework of preconditioned algorithm, they
have similar histories of convergence. This observation indicates that the preconditioner P is a good
approximation of the nonlinear operator I −Rh,n. The influence of the transmission conditions is elimi-
nated by the preconditioner. In addition, we could confirm the conclusion of the previous subsection: the
preconditioner reduces a lot the number of iterations required for convergence.

5.1.3 Influence of parameters

In this subsection, we study the influence of parameters in the transmission conditions:

13

0 50 100 150 200
Number of iterations

10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102

A
b
so

lu
te

 R
e
si

d
u
a
l

Robin(p=29)

Smpade(m=13)

0 1 2 3 4 5 6
Number of iterations

10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102
103

A
b
so

lu
te

 R
e
si

d
u
a
l

Robin(p=28)

Smpade(m=12)

Figure 6: Convergence histories of the first time step of the classical algorithm (left) and the preconditioned
algorithm for N = 2. The mesh is ∆x = 1/128, ∆y = 1/8.

0 50 100 150 200
Number of iterations

10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102
103

A
b
so

lu
te

 R
e
si

d
u
a
l

Robin(p=29)

Smpade(m=13)

0 1 2 3 4 5 6
Number of iterations

10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102
103

A
b
so

lu
te

 R
e
si

d
u
a
l

Robin(p=28)

Smpade(m=12)

Figure 7: Convergence histories of the first time step of the classical algorithm (left) and the preconditioned
algorithm for N = 32. The mesh is ∆x = 1/128, ∆y = 1/8.

14

• the parameter m (order of Padé approximation) in the transmission condition Smpade,

• the parameter p in the transmission condition Robin.

The time step and the mesh are fixed to be ∆t = 0.01 and ∆x = 1/128, ∆y = 1/8.
Firstly, we consider the influence of m in the transmission condition Smpade. We present in Figure 8 and

in Figure 9 the number of iterations in relation to the order of Padé approximation (m) in the framework
of the classical and the preconditioned algorithms. Both of the zero vector and the random vector are
considered as the initial vector in our tests.

• For the classical algorithm, if the initial vector is the zero vector, there exists an optimal parameter
m. This observation is not consistent with our expectations since the higher order should make
the algorithm converge faster. We believe that the zero initial vector gives us some inaccurate
information.

• For the classical algorithm, if the initial vector is a random vector, the number of iterations first
decreases then increases by increasing the order m. We however do not have yet an explanation for
the relation between the convergence and the parameter m, which needs some more investigations.

• The parameter m is not very important for the preconditioned algorithm since the preconditioner
hides the information about the order.

2 4 6 8 10 12 14 16 18 20
m

0

20

40

60

80

100

120

N
u
m

b
e
r

o
f

it
e
ra

ti
o
n
s

Zero initial guess

Random initial guess

2 4 6 8 10 12 14 16 18 20
m

0

20

40

60

80

100

120

140

N
u
m

b
e
r

o
f

it
e
ra

ti
o
n
s

Zero initial guess

Random initial guess

Figure 8: Number of iterations vs. parameter m for N = 2 (left) and N = 32 (right) in the framework of the
classical algorithm.

Secondly, we study the influence of p in Robin transmission condition. The numbers of iterations
are presented in Table 3 with different p for N = 2 and N = 32 (here only p = 5, 10, ..., 50 are shown).
Both the classical algorithm and the preconditioned algorithm (Cls./Pd.), as well as the different initial
vectors (zero or random) are considered. As can be seen, for the preconditioned algorithm, the number of
iterations is almost the same in each case. For the classical algorithm, there exists an optimal p for each
case.

In conclusion, the use of the preconditioner allows to reduce both the number of iterations and the
computation time. In addition, the preconditioned algorithm is not sensitive to the transmission conditions
as well as the parameters in these transmission conditions.

5.2 Simulation of Bose-Einstein condensates

In this part, we apply the parallel algorithms to BEC simulation. Before comparing numerically the
algorithms and making dynamic simulation of quantized vortex lattices, we recall some facts about BEC.

15

2 4 6 8 10 12 14 16 18 20
m

5.7

5.8

5.9

6.0

6.1

6.2

6.3

N
u
m

b
e
r

o
f

it
e
ra

ti
o
n
s

Zero initial guess

Random initial guess

2 4 6 8 10 12 14 16 18 20
m

5.7

5.8

5.9

6.0

6.1

6.2

6.3

N
u
m

b
e
r

o
f

it
e
ra

ti
o
n
s

Zero initial guess

Random initial guess

Figure 9: Number of iterations vs. parameter m for N = 2 (left) and N = 32 (right) in the framework of
the preconditioned algorithm.

p N = 2 N = 32

Zero Random Zero Random
Cls. Pd. Cls. Pd. Cls. Pd. Cls. Pd.

5 57 6 548 6 57 6 582 6
10 35 6 297 6 35 6 316 6
15 32 6 227 6 33 6 241 6
20 36 6 200 6 36 6 212 6
25 41 6 189 6 41 6 200 6
30 46 6 186 6 47 6 200 6
35 53 6 188 6 53 6 204 6
40 59 6 194 6 60 6 211 6
45 66 6 208 6 66 6 223 6
50 73 6 216 6 73 6 234 6

Table 3: Number of iterations vs. parameter p.

16

5.2.1 Gross-Pitaevski equation

A Bose–Einstein condensate (BEC) is a state of matter of a dilute gas of bosons cooled to temperatures
very close to absolute zero. Under such conditions, a large fraction of bosons occupy the lowest quantum
state, at which point macroscopic quantum phenomena become apparent. One of the models for BEC is
the Gross-Pitaevskii (GPE) equation [1, 7, 9, 11]. In this paper, we consider the GPE equation defined
on a bounded spatial domain with the same boundary conditions as (1):

(34)
{
i∂tu+ 1

2∆u− V (x, y)u− β|u|2u+ ω · Lzu = 0, (t, x, y) ∈ (0, T)× Ω,
u(0, x, y) = u0(x, y).

The constant β describes the strength of the short-range two-body interactions (positive for repulsive
interaction and negative for attractive interaction) in a condensate. The constant ω ∈ R represents the
angular velocity, the z-component of the angular momentum Lz is given by

Lz = −i(x∂y − y∂x).

The potential here is

V (x, y) =
1

2
(γ2
xx

2 + γ2
yy

2), γx, γy ∈ R.

The GPE equation is a type of nonlinear Schrödinger equation. One of the difficulties in the simulation
of Bose-Einstein condensates derives from the term of rotation. Recently, the authors of [10] introduced a
coordinate transformation that allows to write the GPE equation in this new coordinates as a nonlinear
Schrödinger equation (36) with a time-dependent potential but without the rotation term. Thus, the
algorithms that we presented in the previous sections are applicable for GPE equation. For ∀t > 0, the
orthogonal rotational matrix A(t) is defined by

A(t) =

(
cos(ωt) sin(ωt)
− sin(ωt) cos(ωt)

)
.

The transformed Lagrange coordinate (x̃, ỹ) is then defined as

(35)
(
x̃
ỹ

)
= A−1(t)

(
x
y

)
= A>(t)

(
x
y

)
.

In this new coordinate, the GPE equation (34) could be written as

(36)
{
i∂tũ+ 1

2∆ũ− Vt(t, x̃, ỹ)ũ− β|ũ|2ũ = 0, t ∈ (0, T),
ũ(0, x̃, ỹ) = ũ0(x̃, ỹ),

where

(37) ũ(t, x̃, ỹ) := u(t, x, y), Vt(t, x̃, ỹ) := V (x, y), where (x, y)> = A(t)(x̃, ỹ)>.

Formally, the only difference between the equation (36) and the Schrödinger equation (1) is the
constant in front of the Laplace operator ∆. Thus, we could directly apply the domain decomposition
algorithms to the equation (36) on the spatial domain Ω = (xl, xr) × (yb, yu). The Robin transmission
condition and the transmission condition Smpade are given by (7), (8) and (9). A minor modification
concerns the constant before the operator ∆Γj in (9) which is 1

2 here.
Once the solution ũ is computed numerically, it is possible to reconstruct the solution u by (37). At

time t, the computational domain of ũ(t, x̃, ỹ) is Ω = (xl, xr) × (yb, yu) and the computational domain
of u(t, x, y) is A(t)Ω (see figure 10). The domains A(t)Ω for t > 0 share a common disc. The values of
u(t, x, y) within the maximum square (the valid zone) are all in the disc, which could be computed by
interpolation. The valid zone is

(
xl√

2
,
xr√

2
)× (

yb√
2
,
yu√

2
).

17

(a) (x̃, ỹ) ∈ Ω. (b) (x, y) ∈ A(t)Ω.

Figure 10: (a) The computational domain Ω. (b) The domain A(t)Ω at some different times: t = 0,
t = π/4 and t = π/2 where ω = 0.5.

5.2.2 Comparison of algorithms

In this part, we fix the physical domain to be Ω = (−16, 16)× (−16, 16). The initial datum is taken as a
Gaussian

u0(x, y) =
1

π1/4
e
−(x2+2y2)

2 , (x, y) ∈ R2,

where the coefficients are ω = 0.4 and β = 10.15. The time step is fixed as ∆t = 0.0001. Firstly, we
use a wide mesh ∆x = ∆y = 1/32, which generates 1024 × 1024 unknowns on Ω. It is possible to solve
the GPE equation (36) on the complete domain Ω under our memory limitation (32G) without using the
parallel algorithms (classical or preconditioned algorithm). However, the computation time could be very
long. Thus, we use here a small final time T = 0.1. Using the same notations as in the previous sections,
we show in Table 4 the computation times of the two algorithms with Robin and Smpade transmission
conditions. Since the boundary condition imposed on Ω is associated with the transmission operator, the
reference times T ref for the two transmission condition are different. In BEC simulation, a small time step
is necessary. According to our experiments, when a small ∆t is considered, a large m in Smpade transmission
condition is needed to ensure fast convergence. Thus, the use of the transmission condition Smpade is much
more expensive than the transmission condition Robin. We can also see that the computation times of
the classical algorithm (Tpc) and the preconditioned algorithm (Tnopc) are scalable.

N 2 4 8 16 32

Robin, p = 180

T ref 5.68
Tnopc 5.68 2.66 1.28 0.68 0.33
Tpc 3.49 1.60 0.77 0.44 0.24

Smpade, m = 76

T ref 8.41
Tnopc > 20 10.70 7.40 5.07 4.23
Tpc 6.30 3.52 2.30 1.68 1.37

Table 4: Computation time in hours with the mesh ∆x = ∆y = 1/32.

We make the tests with a finer mesh ∆x = 1/1024, ∆y = 1/64 with the Robin transmission condition
since it has been seen that the implementation with the transmission condition Smpade is much more

18

expensive than with the Robin transmission condition in the context of Gross-Pitaevski equation. The
complete domain is decomposed into N = 128, 256, 512, 1024 subdomains. The computation times are
presented in Table 5. We could see that the both algorithms are scalable. In addition, the preconditioner
allows to reduce the total computation time. However, since the implementation of the preconditioner
consumes memory, the memory is not sufficient in the case N = 128.

N 128 256 512 1024
Tnopc, p = 95 19.3 8.8 5.0 2.1
Tpc, p = 95 * 2.3 1.6 0.8

*: the memory is not sufficient.

Table 5: Computation time in hours with the mesh ∆x = 1/1024, ∆y = 1/64.

5.2.3 Dynamic simulation of quantized vortex lattices

According to the studies in the previous subsection, we apply the algorithms with the Robin transmission
condition to study the dynamics of quantized vortex lattices for BEC with rotation. In this simulation,
the nonlinear potential and the parameters are

V (x, y) =
1

2
(x2 + y2), β = 1000, ω = 0.9.

The initial solution u0 is a stationary vortex lattice [4, 7]. The stationary solution φ of (34) is defined as

(38) u(t, x, y) = φ(x, y)e−iµt,

where µ is the chemical condensation potential. By substituing (38) in (34), we have

µφ = −1

2
φ+ V φ+ β|φ|2φ− ωLzφ,

with the constraint of normalisation

||φ||22 =

∫
R2

|φ(x, y)|2dxdy = 1.

This is therefore a nonlinear eigenvalue problem. The eigenvalue µ can be computed from its corresponding
eigenvector φ by

µβ,ω(φ) = Eβ,ω(φ) +
β

4

∫
R2

|φ(x, y)|4dxdy,

where

(39) Eβ,ω(φ) =
1

2

∫
R2

(|∇φ|2 + V |φ|2 + β|φ|4 − ωφLzφ)dxdy.

The ground state of a BEC is defined as the solution of minimization problem, denoted by φg,

Eβ,ω(φg) = min
φ∈S

Eβ,ω(φ),

where S = {φ| ||φ||2 = 1, Eβ,ω <∞}.
For our simulation, we take the solution of minimization problem as the datum initial

(40) u0(x, y) = φg(x, y).

19

It is computed by BESP method (Backward Euler Sine Pseudospectral) [8] using GPELab [4], a matlab
toolbox developed for the computation of the ground states and the dynamics of quantum systems modeled
by GPE equations.

The complete domain Ω = (−16, 16)× (−16, 16) is decomposed into N = 32 subdomains. We fix the
time step as ∆t = 0.0001. The mesh is ∆x = ∆y = 1/32. The parameter p here is p = 180. Figure 11
shows the contours of the solution |u(t, x, y)|2 at some different times. The solution is illustrated in the
valid zone (−16/

√
2, 16/

√
2)× (−16/

√
2, (16−∆y)/

√
2). The total computation time is about 16 hours.

6 Conclusion and perspective

We applied the optimized Schwarz method to the two dimensional nonlinear Schrödinger equation and
GPE equation. We proposed a preconditioned algorithm which allows to reduce the number of iterations
and the computation time. According to the numerical tests, the preconditioned algorithm is not sensitive
to the transmission conditions (Robin, Smpade) and the parameters in these conditions. In addition, the
parallel algorithms are applied to the BEC simulation. We can obtain an accurate solution by using the
parallel algorithms and the computation time of the preconditioned algorithm is less than the classical
one.

One perspective could be to use a partially constructed I −Lh as the preconditioner in the context of
the multilevel preconditioner. The construction and the implementation should be less expensive.

Acknowledgements

We acknowledge Pierre Kestener (Maison de la Simulation Saclay France) for the discussions about the
parallel programming. This work was partially supported by the French ANR grant ANR-12-MONU-
0007-02 BECASIM (Modèles Numériques call). The first author also acknowledges support from the
French ANR grant BonD ANR-13-BS01-0009-01.

References

[1] X. Antoine, W. Bao, and C. Besse. Computational methods for the dynamics of the nonlinear
Schrödinger/Gross–Pitaevskii equations. Comput. Phys. Commun., 184(12):2621 – 2633, 2013.

[2] X. Antoine, C. Besse, and P. Klein. Absorbing Boundary Conditions for the Two-Dimensional
Schrödinger Equation With an Exterior Potential Part I: Construction and a Priori Estimates. Math.
Model. Methods Appl. Sci., 22(10), 2012.

[3] X. Antoine, C. Besse, and P. Klein. Absorbing boundary conditions for the two-dimensional
Schrödinger equation with an exterior potential. Part II: Discretization and numerical results. Numer.
Math., 125(2):191–223, 2013.

[4] X. Antoine and R. Duboscq. Computer Physics cations GPELab , a Matlab Toolbox to solve Gross-
Pitaevskii Equations I : computation of stationary solutions. Comput. Phys. Commun., 00:1–38,
2014.

[5] X. Antoine, E. Lorin, and A. Bandrauk. Domain decomposition method and high-order absorbing
boundary conditions for the numerical simulation of the time dependent schrödinger equation with
ionization and recombination by intense electric field. J. Sci. Comput., pages 1–27, 2014.

20

10 5 0 5 10

10

5

0

5

10

t=0.0

10 5 0 5 10

10

5

0

5

10

t=1.0

10 5 0 5 10

10

5

0

5

10

t=2.0

10 5 0 5 10

10

5

0

5

10

t=3.0

10 5 0 5 10

10

5

0

5

10

t=3.5

10 5 0 5 10

10

5

0

5

10

t=4.0

Figure 11: Contours of solution |u(t, x, y)|2 at some different times.

21

[6] S. Balay, M. F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik,
M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, and H. Zhang. PETSc Users Manual. Technical
Report ANL-95/11 - Revision 3.4, Argonne National Laboratory, 2013.

[7] W. Bao and Y. Cai. Mathematical theory and numerical methods for Bose-Einstein condensation.
Kinet. Relat. Model., 6(1):1–135, Dec. 2012.

[8] W. Bao, I.-L. Chern, and F. Y. Lim. Efficient and spectrally accurate numerical methods for comput-
ing ground and first excited states in Bose–Einstein condensates. J. Comput. Phys., 219(2):836–854,
2006.

[9] W. Bao and Q. Du. Computing the ground state solution of Bose–Einstein condensates by a nor-
malized gradient flow. SIAM J. Sci. Comput., 25(5):1674–1697, 2004.

[10] W. Bao, D. Marahrens, Q. Tang, and Y. Zhang. A Simple and Efficient Numerical Method for Com-
puting the Dynamics of Rotating Bose–Einstein Condensates via Rotating Lagrangian Coordinates.
SIAM J. Sci. Comput., 35(6), 2013.

[11] W. Bao, P. A. Markowich, and H. Wang. Ground, Symmetric and Central Vortex States in Rotating
Bose-Einstein Condensates. Commun. Math. Sci., 3(1):57–88, 2005.

[12] C. Besse and F. Xing. Domain decomposition algorithms for two dimensional linear Schrödinger
equation. 2015.

[13] C. Besse and F. Xing. Schwarz waveform relaxation method for one dimensional Schrödinger equation
with general potential. Preprint, arXiv: 1503.02564, 2015.

[14] Y. Boubendir, X. Antoine, and C. Geuzaine. A quasi-optimal non-overlapping domain decomposition
algorithm for the Helmholtz equation. J. Comput. Phys., 231(2):262–280, 2012.

[15] A. Durán and J. Sanz-Serna. The numerical integration of relative equilibrium solutions. The non-
linear Schrodinger equation. IMA J. Numer. Anal., 20(2):235–261, Apr. 2000.

[16] M. J. Gander. Optimized Schwarz Methods. SIAM J. Numer. Anal., 44(2):699–731, Jan. 2006.

[17] M. J. Gander. Schwarz methods over the course of time. Electron. Trans. Numer. Anal., 31:228–255,
2008.

[18] M. J. Gander and L. Halpern. Méthodes de décomposition de domaine. Encyclopédie électronique
pour les ingénieurs, 2012.

[19] M. J. Gander, F. Magoules, and F. Nataf. Optimized Schwarz methods without overlap for the
Helmholtz equation. SIAM J. Sci. Comput., 24(1):38–60, 2002.

[20] L. Halpern and J. Szeftel. Optimized and quasi-optimal Schwarz waveform relaxation for the one
dimensional Schrödinger equation. Math. Model. Methods Appl. Sci., 20(12):2167–2199, Dec. 2010.

[21] P.-L. Lions. On the Schwarz alternating method. III: a variant for nonoverlapping subdomains. Third
Int. Symp. domain Decompos. methods Partial Differ. equations, 6:202–223, 1990.

[22] Message Passing Interface Forum. MPI : A Message-Passing Interface Standard Version 3.0. Technical
report, 2012.

[23] F. Nataf and F. Rogier. Factorization of the convection-diffusion operator and a (possibly) non
overlapping Schwarz method. Contemp. Math., 1994.

22

