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Effective Transmission Conditions for Domain
Decomposition Methods applied to the Time-Harmonic
Curl-Curl Maxwell’s equations

V. Dolean!, M.J. Gander?, S. Lanteri®, J.F. Lee*, Z. Peng®

Abstract

The time-harmonic Maxwell equations describe the propagation of electromag-
netic waves and are therefore fundamental for the simulation of many modern
devices we have become used to in everyday life. The numerical solution of these
equations is hampered by two fundamental problems: first, in the high frequency
regime, very fine meshes need to be used in order to avoid the pollution effect
well known for the Helmholtz equation, and second the large scale systems ob-
tained from the vector valued equations in three spatial dimensions need to be
solved by iterative methods, since direct factorizations are not feasible any more
at that scale. As for the Helmholtz equation, classical iterative methods applied
to discretized Maxwell equations have severe convergence problems.

We explain in this paper a family of domain decomposition methods based
on well chosen transmission conditions. We show that all transmission con-
ditions proposed so far in the literature, both for the first and second order
formulation of Maxwell’s equations, can be written and optimized in the com-
mon framework of optimized Schwarz methods, independently of the first or
second order formulation one uses, and the performance of the corresponding
algorithms is identical. We use a decomposition into transverse electric and
transverse magnetic fields to describe these algorithms, which greatly simplifies
the convergence analysis of the methods. We illustrate the performance of our
algorithms with large scale numerical simulations.
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1. Introduction

The first order time dependent Maxwell equations are

o€ OH

— -V xH E=— —+VxE=0 1
and domain decomposition methods can be directly applied in space time to
these equations, see for example [I] for Schwarz waveform relaxation methods.
The time-harmonic Maxwell equations are obtained from by assuming that
the source is time periodic, J(x,t) = Re(J(x) exp(iwt)), which implies

E(x,t) = Re(E(x) exp(iwt)), H(x,t) = Re(H(x) exp(iwt)),
and leads to the first order time-harmonic Maxwell’s equations
(iwe+o0)E-VxH=-J, iwpH+VxE=0. (2)

Eliminating H in this system of equations, we obtain the second order Maxwell
equations

(—w?e +iwo)E + V x (lv X E> = —iwl. (3)
]

Domain decomposition methods have been developed for the first order formu-
lation (2)), see [2], [3], [, [5], [6], and also for the second order formulation (3,
see [1], [8][section 4.7], [9], [10], [I1], [12], [13]. Both formulations contain the
inherent difficulties of the indefinite Helmholtz equation (A +k%)u = f, namely
the pollution effect [I4] [15] and the difficulties iterative solvers have with such
problems [I6]. The focus of this paper is the iterative solution of discretized
Maxwell equations of the form or using domain decomposition tech-
niques. There is also a large body of literature for Maxwell equations with a
very different nature: if one discretizes (1)) in time using some implicit scheme,
on obtains for example for the trapezoidal rule

8n+1 _&n . an-i-l + HT N gn-i—l + gn - _Jn+1 + ._7”
AL 2 7 2 - 2
/HnJrl —_ K" 8n+1 + En
WAL TV <2) =0

(4)
and thus has to solve at each time step a different type of Maxwell’s equation
of the form

(ey+0)E-VxH=-J, pu/mH+VxE-=g, (5)

n n T ntl " n n
where (E,H) := (E"t, Hn ), = 2, J = T2 - /e€n + 208" —
V xH" and g = \/quH" — V x E". Here as well, one can eliminate H from
the system and obtains the second order formulation

1 ~ 1
(5\/ﬁ+o)E+Vx(MVXE>:—J—meg. (6)



There are many very good solvers for this type of Maxwell’s equation of the first
order form or second order form @, since, as one can see from comparing
them with the time-harmonic formulations and , they correspond to the
positive definite Helmholtz equatiorﬂ nu — Au = f, and for such equations,
virtually all iterative methods perform well, especially multigrid and domain
decomposition. A classical overlapping Schwarz method has for example been
proposed and analyzed for @ in [19, 20], and an optimized Schwarz method for
(5) can be found in the second part of [4]. FETI type preconditioners have been
developed for (6] with jumping coefficients in [21], and for mortar discretizations
in [22). Primal iterative substructuring methods for the same problem have
been analyzed in [23], see also [24] for an effective preconditioner for the Schur
complement. Efficient multigrid methods for (@ have been proposed in [25], see
also [26]. In this paper, we are not interested in the Maxwell type problems of
the form (), (6], where many very good solvers exist, but in the time-harmonic
case modeled by , .

Over the last decade, a new class of overlapping Schwarz methods was de-
veloped for scalar partial differential equations, namely the optimized Schwarz
methods. These methods are based on a classical overlapping domain decom-
position, but they use more effective transmission conditions than the classical
Dirichlet conditions at the interfaces between subdomains. New transmission
conditions were originally proposed for three different reasons. First, to obtain
Schwarz algorithms that are convergent without overlap, see [27] for Robin con-
ditions. The second motivation for changing the transmission conditions was
to obtain a convergent Schwarz method for the Helmholtz equation, where the
classical overlapping Schwarz algorithm is not convergent. As a remedy, approx-
imate radiation conditions were introduced in [28] 29]. The third motivation was
that the convergence rate of the classical Schwarz method is rather slow and too
strongly dependent on the size of the overlap. For an introduction to optimized
Schwarz methods, see [30].

Like the Helmholtz equation, the high frequency time-harmonic Maxwell’s
equations are difficult to solve by classical iterative methods. Domain decompo-
sition methods are currently the most promising solution techniques for this class
of problems. Optimized transmission conditions for the best performance of the
Schwarz algorithm in a given class of local transmission conditions were first
introduced for the Helmholtz equation in [31} 32]. Following the first provably
convergent method in [29], various optimized Schwarz methods were developed
over the last decade: in [31], 33, [32] 10} 4} 6], the focus was on optimized poly-
nomial approximations of the symbol of the transparent boundary conditions;
for rational approximations of Padé type, see [34].

As far as Maxwell’s equations are concerned, there are two basic formu-
lations: the first order formulation , for which complete optimized results
are known [4 [6], and the second order or curl-curl formulation , with par-

1This terminology is becoming more and more common, in order to well distinguish this
equation from the original Helmholtz equation studied by Helmholtz in [I7], see also [18]



tial optimization results. Applications to real life problems using a Discon-
tinuous Galerkin method can be found in [2 B 35]. For finite-element based
non-overlapping and non-conforming domain decomposition methods for the
computation of multiscale electromagnetic radiation and scattering problems
we refer to [36] [1T], 12 [13].

2. Optimized Schwarz algorithms

We consider the curl-curl problem with zero conductivity ¢ = 0 in a
bounded domain 2, with boundary conditions on 92 such that the problem is
well posed [37]. We further assume that p is constant, and therefore obtain

—’E4+VxVxE=—-i0Z]J, (7)

where W := w/ue and Z := \/g A general Schwarz algorithm for two sub-
domains Q = €y U Qs then solves iteratively for n = 1,2... the subdomain
problems

—&?Eb" 4+ V x (V xEbMY) = —ioZY in Oy
n1 (El n) = 7;‘11 (Eln_l) on I'ya, 8
—?E*" 4+ V x (VxE*) = —i@ZJ inQ, (8)
7;12(E2 n) = 7;‘12(E17n_1) on Iy,

where I'1g = 9§21 N g, T'y; = 902 N Qy, and Ty, are transmission conditions,
n; denoting the unit outward normal vector of subdomain ;. The classical
Schwarz method uses for example the impedance condition

Ta(E) = (V x E xn) x n+i0E X n, 9)
see [29]. This impedance condition is equivalent to using the condition
Ta(E) = (V x E x n) —ion x (E x n), (10)

which is just a rotation by 90 degrees of @[), but is more adapted to variational
formulations, see for example [3§].

The transmission conditions in [4] developed for the first order formulation
of Maxwell’s equations ([2)), and for which complete optimization results are
available, can be written for the curl-curl formulation in the form

Ta(E) = (I+(6{Srm +05SrE))(VXE xn) xn (11)
+ ’L'(I)(I — ((%STM + (ﬂ‘STE))(E X n).

Here Sty =V V.-, St = V. X VX, T denotes the tangential direction and
8, 1 =1,2,3,4 are parameters that can be chosen in order to obtain fast con-
vergence, see [4] for several optimized choices. A different form of transmission
conditions was proposed in [I3] and [12],

T2E) = I+ (038rm +63S75))(n x V x E)

— (I — (52Sras + 6287%))(n x (E x n)), (12)



for more details, see [39]. Using the TE-TM decomposition, we show in the
next section that the two general forms of transmission conditions and
lead apart from a few subtleties to optimized Schwarz methods with the same
contraction factor, and therefore the complete optimization results obtained
in [4] for the first order formulation can be used for all these families of
Schwarz methods for the curl-curl formulation to obtain the fastest methods
in each class. Our analysis in the TE-TM decomposition also shows that one can
optimize separately for TE and TM modes, which can be of interest in certain
situations.

3. Convergence analysis using the TE-TM decomposition

In order to show the relationship between the families of transmission con-
ditions and , we use Fourier analysis, and thus assume that the coef-
ficients are constant, and the domain on which the original problem is posed
is = R3, in which case we need to impose the Silver-Miiller radiation con-

dition lim, ;07 (V X E x n+ iwE) = 0, where r = |x|, n = x/|x|, for the
problem to be well-posed [37]. The two subdomains €; = (—oo,L) x R2
and Qy = (0,00) x R? we consider are half spaces, and the interfaces are

s = {L} x R? and T'y; = {0} x R2, the overlap size being L > 0. Let
the Fourier transform in y and z directions be

E(z,k) := (FE)(x,k) :/ E(z,y, z)e!Fvv+k=2) dyd
R2

where we denote by k, and k, the Fourier variables, k = (k,, k) and |k|* =
ki + k2. We will also use the hat to denote the Fourier symbols of operators.
We first compute the local solutions of the homogeneous counterparts of ,
which corresponds to the equation that the error satisfies at each iteration.

Lemma 1 (Local solutions). The local solutions of (@ with J = 0 are of the
form

. T . T
Rl — Aa—L) <_W’A4’A2) B2 =N (W—M7A3,A1>

A
(13)

A= VIKE= 5 (1)

and the coefficients Aq1234 depend in general on ky, k..

where

Proof. We take a Fourier transform of the curl-curl Maxwell’s equations ([7)) with
J =0, and obtain with the notation E = (EI, Ey, EZ)

- dE dE .
~92 . y . z 2 2 _
9 . dE; - d‘E -
B, + zky% — kyk. B, — %x?y +k2E, =0, (15)
- dE - d’E .
~92 . T z 2 —



The general solution of this system of ordinary differential equations is

_ Z(Agky + Alkz)ei)\m B Z(A4ky + Agkz)(f)‘z
A (16)

E, 3
Ey = AgeiAw + A4€>\z,

Ez = Alei)\m + Ag(’,)\m.
Using now the Silver-Miiller conditions in both subdomains we obtain . O

The local solutions in suggest to use a different basis, which we call the
TE-TM decomposition.

Lemma 2 (TE-TM decomposition of local solutions). The local solutions from
can be re-written as

Ej = ATMEj’TM +ATEEj’TE, _] = 1,27 (17)

where

T . T
BUTE — ML) (g _ka 1 BLTM _ Aa—L) (_ilk? | ko
- ) ky’ ) - ky)\ [ ky )

18
E2TE _ =Xz ( ,7%71>T7 R2TM _ =Xz <i|k|2 1 kZ>T' ( )
Yy

ky X 7E

Proof. We split the solution in ©; from into a combination of solutions
verifying Aok, + A4k, = 0, Az, Ay # 0 called TE modes, and the orthogonal
complement called TM modes. The relation Ask, + A4k, = 0 implies that

Ay = —AQZ—Z, and therefore, choosing Ay = 1, a basis vector for the TE mode
y

in Qp is El;TE given in . To find the corresponding TM mode, we need
to find a vector of the form E! in orthogonal to EMTF. Such a vector is

orthogonal to ELTE if we choose Ay := 1 and Ay := Z—z which leads to the

vector ELTM ip . The result for subdomain €25 is obtained similarly. O

The action of the operators involved in the transmission conditions and
becomes very simple with the TE-TM decomposition.

Lemma 3 (Action of operators in 7,! on TE-TM modes). For the normals
n; = (1,0,0) and ny = (—1,0,0), the operators in T} applied to TE and TM
modes satisfy for j = 1,2 the relations

(@XEj’TE Xl’lj) X 1 = )\(Ej’TE an>, (19)
(VX EMTM sxnj)xn; = —S (BT xny),
Srel(9 X BT ) ) = ST an) = 0
STM((V X EJ’TM X nj) X nj) = STM(EJ’TM X nj) = 0,
STE(Ej’TM X nj) = ‘k|2(Ej’TM X nj)v (21)
STM(Ej’TE X nj) = —|k‘2(Ej’TE X nj).



Proof. We first compute V x B#TE and V x EATM,

ilk|? 0 1
Ty k.@?
vV x BEUTE — —A eA(ac—L)7 V x EVTM _ k, e)\(z—L),
ke
]
ilk|? 0 A (22)
hy k.2
vV x B2TE _ A e~ vV x B2TM _ | — 7\ e AT
k. 4
Yy )\ J

We now use the fact that for any vector field U = (U,, Uy, U.) we have the
relations

0 0 0
II1XU: _Uz ,IIQXU: Uz ,an(Uan): Uy ,j:1,2.
U, U, U

(23)
Applying the first two relations of to the quantities E"TF and E/TM and
the last relation of to their curl, and using the symbols

. k2 —kyk A —k2 —kyk
= z z = Y yo=
StE —kyk. k2 } » Stm [ —kyk, k2 | (24)
we find after a short calculation the relations (19)), (20)), (21)). O

Lemma 4 (Action of operators in 7,2 on TE-TM modes). Similarly, the op-
erators in T,2 applied to TE and TM modes satisfy for j = 1,2 the relations

n; x Vx EXTE = _\(n; x (EITF x ny)), (25)
n; x Vx BTV = &(n; x (BHTM x ny)).
Sre(ny x Vx ETM) = Spp(n; x (BXTM xnj)) = 0, (26)
STM(IIJ X V X EJ TE) = STM(I’lj X (Ej’TE X nj)) = 0.
<5:'TE(nj X (]E‘jj’TE xm;)) = [k[*(n; x (E] TP xny)), (27)
Srar(ny x (BPTM xnp)) = —[k*(n; x (B7TM x ny)).

Proof. We proceed as in the proof of Lemma [3] except that we apply the last
relation of | . ) to the quantities E#TE and E/>TM and the first two relations
of . to their curl. O

Theorem 1 (Convergence factors). The convergence factor of the Schwarz al-
gorithm (8) with transmission conditions and overlap L > 0 is given by

1—(A+i@) (ASL +i@d3)
V| T=(h—i@) (Ao —iwdl)

A—i@
Aiw

{’ 1— (A +i®) (Ji A +iwd3)
1—(A—i@) (I A —i@63)

ble ] (28)



where A = \/|k|? — &2, see , and @ = wy/eu. With transmission conditions
, the convergence factor is

| a—ig 14+ (A+i@) (82 X 44i082) 14+ (A+i@) (G2 +i0d?2) Y
P2 = ‘,\ﬁg max{‘l+()\—i®)(6§)—i£;6%) ) 1+(/\—i@)(m§—im5§) le™* . (29)
Therefore if we choose d5 = —0t, 63 = =63, 62 = —03, 62 = =681, the two

Schwarz algorithms are completely equivalent.

Proof. We first compute the action of the interface operators from . We
obtain

T4, ()

Al {(1 + (01Srar + 0387E))(V x EPTE x n;) x n;j
(1 — (638rar + 04Srw)) (EFTE x nj)}

Ay [(U+ (018 rar + 33872))(V x BITM xny) x
(1= (B3Srar + 81Sre) (BT x )]

(30)

+ + +

By using now properties and from Lemma [3| this simplifies to
TL®) = Ay [(1+618ra)r £ i1 - 5§$TM)] (B/TE x ny)
Ay (14 03Srp) (- %) (1 — 63Sr) | (BT x my).
(31)

where the upper signs of + and F correspond to j = 1 and the lower signs to
j = 2. Using now and the relation |k|? = (A —i®)(A + i@) leads to

T (B) = (@) [Ahp(1— (A F i@)(0}A F i@d}))(EFTF x n;)
+ Ay (2 + (T @) (-3 F i00]))(BITY x ny)]

. +1
- s [ah0-oreeh o) ()

Y

(32)

. . ~ .
b O -ag Fiesh) (T )],
where we used the expressions of the TE and TM modes from Lemma
We thus obtain _
o A
T ®) = | e ). (33)
™
and the matrices
(1 — (AT i) (SN Fiwd})) +5=(+2 + (A Fid)(—635 F zwai))]

+E (- AFi@)(IAFiod})  F(1— (A Fi@)(61A F iwd})

j =

(34)
can be re-written as
k ~ k. 3
a 2=p —a —=p
By = (0 ky By = — W ) ky
1 ()\ —+ zw) %O& *6 3 2 ()\ ZCU) [ —%d ﬁ ] 3 (35)




with
a=1—(\—i@)(0t\ —i0d3),
a=1—(A+1i@)(5{ X+ i0d3),
B=R(1— (A —i@)(\f —iwd3)),
B=—L(1— (\+i@) (N} +i@d3)).
Therefore, the Schwarz iteration with transmission conditions can be
re-written as

Al,n A2,n—1 AQ,TL Al,’n—l
B { L } =By [ e e, B 3F | =B TE | | e
ATM ATM ATM ATM

(36)

The convergence factor is given by the spectral radius of the iteration matrix
B := By 'Bye*F, see for example [4], and this matrix is diagonal:

A—io | & 0 L
— o 5 - 37
Ao | 0 -5 ] ‘ (87)
Hence the spectral radius of B is the convergence factor given in (28).
The results for can be obtained similarly: we get
k ks ~ 3
— 2z ﬁ — 2z _/B
By = (A i Ry By = (A —i& Fy - 38
1 (+7’W) o %6 ) D2 ( Zw)[ & ]lz;ﬂ‘|7 ( )
with
a=—1—(\—i®) (02N — iwd?),
a =14 (A +i@) (33 + iwd3), (39)
p=—-%(1+ (X — i) (A3 — i@d?)),

B =14+ (A +id) (N3 + i@d7)).

Even though the iteration matrices B; o from and are different, the
iteration matrix B := Bl_lBge_AL is pf the same form shown in . One only
has to take the coefficients «, &, 3, 8 from for the algorithm using trans-
mission conditions (11), and from for the algorithms using transmission
conditions . O

4. Optimization

The parameters 5{, j=1,2,1=1,2,3,4 can be chosen to obtain rapidly
converging algorithms. The following corollary is useful, since it leads to a
further simplification of the convergence factor.

Corollary 1. If we denote by v :

_ 1 .
= REmrTe T and we choose in the

transmission condition @

i + st

iorse
2 o~ . 1.
i+ ste’

5f:71/7,~+tm, = v, 0i=-v, &=
iw+s



or in the transmission conditions the corresponding values in (28)), the
convergence factor simplifies to

A—Stm
)\—&-s“”

p(IK|, @, 5™, 5) = 3722 max { | 32252

)\+ste

FleE, (40)
where A = \/|k]?2 — ©? and © = w./Ep.

Proof. This result can be obtained by a direct calculation. O

Several choices of s and s for optimized performance are possible: in [4]
case 3, section 3.5], the authors suggest a choice depending on the use of overlap
(L > 0) or not (L = 0):

(ki_G}Q)l/S

(1 + i)WV (k — &) /VE L=,

where k™ = %P pis the order of polynomial used in the trial functions, & is the
local mesh size at the interface, and k. is an estimate of the closest numerical
frequency just above @, see [4] for more details. This choice is minimizing the
convergence factor uniformly for all TE-TM modes in the case with overlap,
and in a bounded range (0, kmax) in the case without overlap, and leads to a
uniformly bounded contraction factor

1 —2CY3(k2 — @*)YSp1/3 L =Ch >0,

= { YRRl il L=0 (42)
Vigmax -
It is even possible to obtain weaker dependence on the mesh parameter, namely
1—O(h*) without overlap and 1—O(h'/%) with overlap if the two subdomains
do not use the same parameter, see [4, case 5, section 3.5].

With more information about the frequency content of the TE and TM
modes, one can also optimize separately. For example if the high frequency
cutoff k™2* is different for TE and T'M modes, we can use in the non-overlapping

case
gte — (1 +Z)‘ /k.max,te(ki _ (:)2)1/4/\/5,
gtm — (1 4 Z)‘ /kmax,tm(ki _ @2)1/4/\/5’

and a good heuristic choice for non-conforming Nedelec element discretizations,
see [40, Section 4.5.1], is kma®:te = fmax  fpmaxtm — %kmax. If one has more a
priori information about the modes that one wants to compute, and if one starts
with a zero initial guess, it is possible to tune the transmission conditions to be
very effective to converge rapidly for those particular modes. If for example one
knows a priori that there is only one particular TE mode in the simulation, and
no other ones, one can make the method converge for this particular mode in
one shot. For a more detailed explanation, see [41], last paragraph of Subsection
5.1.

(43)

10



5. Transmission conditions rewritten for easy implementation

With the choice v := |k\2—2@2+z‘1@(st6+stm)
are not constants, since they contain also the Fourier parameters |k|?, and thus
the implementation of the corresponding transmission conditions and
seems not immediate. We show here for the case of the transmission conditions
, which are well suited for variational implementations, how they can be
discretized. The case of transmission conditions is similar. The idea is
to multiply both sides of the transmission conditions in Fourier by the symbol
[k|? — 202 + iw(s' + s'™), and then to discretize the modified transmission
conditions after taking the inverse Fourier transform of the resulting relations.
This leads to the additional term —A, — 2&? + i@ (s + s™) and the modified,
but equivalent transmission conditions

in Corollary the parameters 5lj

TZE) = (A, =207 +id(s" 4 s'™))(n x (V x E) — id(n x (E x n)))
—+ (6%$TM — STE)(n X (V X E)) Jri(,:)(fSTM + (L%STE)(H X (E X Il))7
(44)

where 512 = V512, 1 =1,2,3,4, and we have used already the choice of Corollary
that leads to 05 = 03 = —1. Using now the fact that —A,I = —Srar + Stp
we can further simplify to obtain

T2(E) = (202 +i0(s" +s"™))(n x (V x E) —iw(n x (E x n)))
+ (=Srm+Sre)(nx (VXE)—ion x (E xn)))
+ (5%STM — STE)(II X (V X E)) + i(:)(—STM + (SZSTE)(II X (E X n))
= (=207 +id(s* + s'™))(n x (V x E) —i&(n x (E x n)))
+ (5% — I)STM(II X (V X E)) + ZLIJ((SZ — 1)STE(U X (E X n))

(45)
If we divide further by the constant —2&? + iw(s'® + s'™), the proposed trans-
mission condition can be rewritten as

TXE) = nx(VxE)—id(nx (Exn)) (46)
+ =St x (VX E)) + ——Srp(n x (E x n)).

We see that the optimized transmission conditions contain, as a first part,
the classical impedance conditions , and then, as a second part, a per-
turbation term using the operators Stjy; and Stg. These two second order
differential operators can be implemented using integration by parts in a vari-
ational framework, see for example [42], where also the discretization of cross
points is discussed. If the parameters in the transmission conditions are
derived by minimizing the convergence factor for all TE-TM modes like in ,
we call the method obtained optimized Schwarz Method (OSM). We will see
in the numerical experiments in the next section that OSMs exhibit in general
faster convergence compared to using other transmission conditions, like the
ones suggested in [42] and [I3]. Finally, we emphasize that the optimized pa-
rameters in which stemm from the analysis of the constant coefficient case
with planar interfaces can also be used in a general situation with curved inter-
faces and variable coefficients: to do so, one implements variationally, and

11



uses in the parameter formulas the local mesh size and coefficient values.
A rigorous analysis of curved interfaces is a new area that just started, see [43]
and references therein.

6. Numerical results

We study now the performance of the optimized Schwarz algorithms via
numerical experiments. We start by introducing the notation for the domain
decomposition (DD) and discretization. We then test the effectiveness of the
proposed OSM transmission conditions both by examining the eigenspectrum
of the DD matrix, and by numerical convergence and scalability experiments
with respect to several parameters of interest. We conclude with a convergence
comparison for the COBRA cavity, an important large-scale electromagnetic
problem, where the new OSM transmission conditions lead to significant sav-
ings. All our simulations use non-overlapping decompositions (for some over-
lappig experiments, see [4]), and all computational statistics are reported using
a workstation with two Intel Xeon E5-2600 processors and 96 GB of memory.

6.1. Domain decomposition and discretization

We decompose the computational domain  C R3 into M non-overlapping
subdomains such that Q = Q; U Qy--- U Qp. We mesh each subdomain in-
dependently with a tetrahedral mesh 7,” with characteristic mesh size h. On
each subdomain, we define discrete trial and test functions u?,v? € X" C
H (curl; €2,,), and for all our experiments X is the space of mixed order curl-
conforming vector basis functions defined in [44], with order p = 2 (with 20
vector basis functions within each tetrahedron).

The matrix equation resulting from the finite dimensional discretization can

be written in compact form, for example for two subdomains, M = 2, as
Ai Cig u; Y1

= , 47
[ Ca1 A2 uz y2 (47)
where the matrices A; and A are subdomain matrices and Cio and Cy; are
interface coupling matrices. More details on the submatrices and right-hand-
sides can be found in [42]. We solve the linear system iteratively using a
preconditioned Krylov subspace method. The OSM methods correspond then

to a block-Jacobi preconditioner inverting only the subdomain matrices, leading
to the preconditioned linear system

7T Aflclz u; _ Aflyl (48)
Ay 'Co 7 uy A lys |-

6.2. FEigenspectrum

Our convergence analysis predicts the eigenvalue distribution of the pre-
conditioned DD matrix in . In this subection, we investigate numerically
the eigenvalue distributions that results from the OSM transmission conditions.
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Figure 1: Eigenspectra for a WR-75 waveguide, f=12 GHz.

We study the concrete example of a 0.025m segment of a WR-75 rectangu-
lar waveguide. The waveguide name WR stands for Waveguide Rectangular
and the frequency band of operation is X-Ku band. The dimensions of the
cross-section are 0.01905m x 0.009595m. We partition the waveguide by a
transverse plane into two equally sized subdomains, and use quasi-uniform
meshes with mesh size h = 0.005m. The dimensions of the subdomains are
0.01905m x 0.009595m x 0.0125m.

For comparison purposes, we also show results for the transmission condi-
tions proposed in [42] and [13], which we call here “Rawat — Peng — Lee” (RPL)
transmission conditions, see also [39]. The convergence factor of the RPL con-
ditions is given by

)

~ T.te ~tm VKT —wt—ww ‘k‘2*“’2*1“’
PRPL(|k|7Wak 7k ‘ |k\27w2+2w
where k'™ and k'® are pure imaginary parameters to be chosen. The authors in
[42] recommended to use

(‘ VIk|]2—o2—ikte

|k‘27w2+lkte

’ Vk|2—@2—ikt™

|k|2 —02 +1k.t7n

];:te — _i\/(%(kmam,te + @))2 _ @2’ ];tm _ _Z\/(%(kma:c,tm + w))Q _ &‘)2’
(50)

see the last paragraph in Section for more information on estimates for k™t
and kmax,tm.

We first operate the waveguide above cutoff for only the TE;g mode, at
f = 12 GHz. We show in Figure [I] the eigenvalue distributions of the DD
matrices for OSM and RPL transmission conditions. We see that both spectra
will lead to good convergence properties, since all the eigenvalues are within
the shifted-unit-circle around 1, but the spectrum for the OSM transmission
conditions is more clustered than the one for the RPL transmission conditions.
This is because the OSM conditions are based on minimizing the convergence
factor, which implies p3&x; < pPRP}., and thus a better clustering around one of
the spectrum.
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Figure 2: Elgenspectra for a WR-75 waveguide, f=16 GHz.
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Figure 3: Elgenspectra for a WR-75 waveguide, f=9 GHz.

Next, we use the same discretization, h = 0.005m and p=2, and increase the
frequency to f = 16 GHz. At this operating frequency, both the TE1y and TEgq
modes propagate. This is reflected in Figure [2| where we see that the spectral
radii increased slightly in both cases. Again, we notice that the OSM conditions
lead to a smaller spectral radius and eigenvalues more clustered around one.

We finally repeat the numerical analysis at frequency f = 9 GHz, see Fig-
ure [3l This results in more evanescent modes in the eigenspectrum, and again
we observe the better clustering of the OSM conditions around one, as before,
which confirms our analysis for all these regimes. We can therefore expect that
the OSM transmission conditions will lead to smaller iteration numbers, at the
same numerical cost per iteration, an issue we will study numerically in the next
subsection.

6.3. Convergence study

We now use the truncated Generalized Conjugate Residual method (GCR),
see [45], with the block Gauss-Seidel preconditioner corresponding to the alter-
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Table 1: Number of iterations to attain a relative residual reduction of 10~8 for different
transmission conditions and different mesh sizes.

Cases wh =0.785 ©h=0.524 @wh=0.393 @&h=0.256
RPL conditions 11 (20) 14 (29) 17 (39) 19 (53)
OSM conditions 12 (20) 10 (23) 10 (25) 10 (26)

Table 2: Computational statistics for WR-75 waveguide simulations at different mesh sizes.

Cases wh =0.785 @wh=0.524 @&h=0.393 @&h = 0.256
DOFs 83,910 312,828 685,458 1,235,408
Peak memory (MB) 28 98 182 329
CPU time (second) 1 7 26 63

nating form of our Schwarz methods to solve (47). (Note that the theoretical
analysis performed in the previous sections can be extended easily to this form.)
The direction of the Gauss-Seidel preconditioner has chosen to be consistent with
the wave front propagation in the experiments. We denote the relative residual
by €, and terminate the iteration when the relative reduction in € is smaller than
a specified tolerance €y. To present scalability results with respect to different
parameters of interest, we use w for the wave number, d for the subdomain size,
D for the entire problem domain size, and h for the mesh size.

6.3.1. Scalability with respect to wh

We use a 1.5\ segment of a WR-75 rectangular waveguide operating at 12
GHz, where Ay denotes the free space wavelength. The waveguide ports are
terminated with perfectly matched layers (PMLs) and as excitation, we use
the TE1o mode. We partition the waveguide into six subdomains, each 0.25\¢
long. These subdomains are meshed independently and quasi-uniformly, and
the interface meshes do not match. The iteration numbers required using the
RPL and OSM transmission conditions for varying mesh sizes from h = \y/8 to
h = Xo/20 are given in Table The number of degrees of freedom (DOF's), peak
memory usage and computational time per DD iteration are given in Table
Note that the DD method with OSM conditions and the DD method with the
RPL conditions require the same computational cost per iteration.

The h—refinement permits the representation of more high frequency evanes-
cent modes on the interface. Since both RPL and OSM conditions deal effec-
tively with evanescent modes, the dependence of the iteration count on wh is
small, but asymptotically more pronounced for the RPL transmission conditions
than for the OSM transmission conditions, as expected from our spectral analy-
sis. We next repeat the experiment using a random vector as the right-hand side
to make sure all frequencies are present in the excitation. The corresponding
results are shown in parentheses in Table We see that more iterations are
needed when all modes are present compared to the TE;y mode excitation, but
note again the asymptotic advantage of the OSM transmission conditions when
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wh becomes small.

6.3.2. Scalability with respect to 0D

We use a WR-75 waveguide of length 0.0375m partitioned into 6 equally
sized subdomains of dimension 0.01905m x 0.009595m x 0.00625m. We test
the performance of the DD methods for four frequencies: 12 GHz, 20 GHz, 30
GHz and 40 GHz. The electrical size of the waveguide increases from 0.76 g X
0.38Xp X 1.5Ag to 2.54g x 1.28 ¢ x 5o accordingly. The mesh size is chosen as
h = X\o/8. The iteration counts we obtain are given in Table (3| for both TE;q
mode excitation and in parentheses with a random vector as excitation. The
computational statistics for the simulations are given in Table |4 We see that
the DD method with OSM transmission conditions depends only little on & D,
and it clearly outperforms the RPL transmission conditions when the operating
frequency increases.

We next examine the behavior of the methods as the problem size increases.
We use a fixed subdomain size of 0.25)\g, and we increase the length of the
waveguide by increasing the number of subdomains. The mesh size is kept fixed
at h = X\o/8. Figure [4] shows the convergence history of the methods for 10,
40, 160, 640 subdomains, where the electrical size of the problems increases
from 2.5\¢ to 160\ accordingly. Table [5| gives the computational statistics of
the simulations. Note that we have exploited the subdomain repetitions in the
computation [46], so the computational resources required are quite modest.

In this convergence study, the propagating modes are of great significance
because the wave must travel from one end of the waveguide to the other. We
see that both RTL and OSM transmission conditions lead to a dependence of
the convergence on the problem size, which is expected in the absence of a
coarse space. However, the OSM conditions significantly outperform the RTL
conditions. In the top row of Figure 4| we show the results for a TE;g mode
excitation, and below for a random vector excitations, where the dependence
on the number of subdomains with OSM transmission conditions is only very
moderate.

6.4. Electromagnetic scattering from a COBRA cavity

The second example we consider is the electromagnetic wave scattering from
a COBRA cavity, whose geometrical description is given in Figure We
consider a plane wave normal incident upon the cavity aperture, § = 180°,
¢ = 90°, at frequency of f=10 GHz. The electric field is polarized in the x
direction. The cavity is partitioned into 4 repeated subblocks and meshed with

Table 3: Number of iterations to attain a relative residual reduction of 10~8 for different
transmission conditions and different operating frequencies

Cases f=12GHz f=20GHz f=30GHz f=40GHz
RPL conditions 11 (20) 15 (31) 19 (43) 32 (59)
OSM conditions 12 (20) 14 (23) 15 (25) 17 (27)
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Figure 4: Iterative solver convergence with increased problem size, TEjg mode excitation in
the top row, and random vector excitation in the bottom row.
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Figure 5: Decomposition of the COBRA cavity into 65 subdomains.
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mesh size h = )\y/8. We use 65 subdomains arranged using these subblocks as
shown in Figure|5| leading to 23,564,846 degrees of freedom. The peak memory
usage is 12 GB and it takes 30 minutes for one DD iteration.

Figure [6] shows the convergence history of the methods. The DD method
with OSM transmission conditions requires 69 iterations to reach ey = 1075.
The DD method with RPL transmission conditions fails to converge to ¢y =
10~® within 300 iterations. Next, we perform a simulation using an oblique
incidence, 8 = 150°, ¢ = 90°, and an X—polarized electric field. The simulation
with oblique incidence requires 81 iterations using OSM transmission conditions,
compared to more than 300 iterations with RPL transmission conditions, again
a significant improvement. The electric fields on the COBRA cavity are shown
in Figure [7] for both the normal and oblique excitations.

10
) 0 0SM TC, 6=180°
BN 0SM TC, 6=150°
107 Ry --RPL TC, 6=180°
o —RPL TC,

Residual
=
o

.

.

0 50 ° 100 150, 200 250 300
Iterations

Figure 6: Iterative solver convergence for the COBRA cavity

6.5. Electromagnetic radiation from a Vivaldi antenna array

We conclude our numerical experiments with a large-scale electromagnetic
radiation problem. Shown in Figure [§] is a mockup nose radar antenna array
often placed on the front of the airplane behind the radome. It is an X-band
Vivaldi-type antenna array [47] with total 864 antenna elements, and distributed
on a planar grid. Each antenna element is considered as one subdomain and
discretized using adaptive h mesh refinement [48], which results in average mesh
size h = Ao/12 for the computation. The exterior mesh truncation boundary
is enforced by a combined field boundary integral equation method [49]. The

Table 4: Computational statistics for the WR-75 waveguide simulations at different operating
frequencies.

Cases FT—12GHz f=20GHz f—=230GHz f—40GHz
DOFs 83.910 675.936 9151138 4,761,927
Peak memory (MB) 28 175 512 1,200
CPU time (mm:ss) 00:01 00:20 02:00 05:00
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(a) Normal incident excitation: § = 180°, ¢ = (b) Obliquely incident excitation: § = 150°, ¢ =

90° 90°

Figure 7: Electric field magnitude on the COBRA cavity.

simulation is performed at 10GHz with 864 subdomains and requires 26,541,216
DOFs. It requires 7 minutes for one DD iteration and peak memory usage
is 5.8 GB. The convergence history of the DD methods with RPL transmission
conditions and OSM transmission conditions are shown in Figure[d] The electric
current distribution on the antenna array and the radiation magnetic field on a
observation surface are shown in Figure [I0]

7. Conclusions

We explained in this paper how many transmission conditions for solving
time-harmonic Maxwell equations by domain decomposition can be formulated
and analyzed in the common framework of optimized Schwarz methods. In
particular, using the important TE-TM decomposition, we derived explicit for-
mulas which allow us to use optimized transmission conditions developed for first
order formulations directly also for second order formulations, for which such
optimized formulas were missing so far. Numerical experiments showed that
these optimized transmission conditions lead to domain decomposition methods

Table 5: Computational statistics for the WR-75 waveguide simulations with increasing prob-
lem size (N: number of subdomains).

Cases N=10 N=40 N=160 N =640
DOFs 136,002 534,342 2,124,102 8,483,142
Peak memory (MB) 22 65 265 1,067
CPU time (second) 0.5 2 8 33
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Figure 9: Iterative solver convergence for the Vivaldi antenna array

for the second order time-harmonic Maxwell equations that scale well with re-
spect to the discretization size, the operating frequency and the problem size,
and outperform existing transmission conditions. Finally, we demonstrated sub-

stantially improved convergence for an important large scale simulation, at the
same cost per iteration.
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