158 research outputs found

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Power-efficient multicasting algorithms for wireless ad hoc networks

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    4G Technology Features and Evolution towards IMT-Advanced

    Get PDF
    Kiinteiden- ja mobiilipalveluiden kysyntĂ€ kasvaa nopeasti ympĂ€ri maailmaa. ÄlykkĂ€iden pÀÀtelaitteiden, kuten iPhone:n ja Nokia N900:n markkinoilletulo yhdistettynĂ€ nĂ€iden korkeaan markkinapenetraatioon ja korkealuokkaiseen kĂ€yttĂ€jĂ€kokemukseen lisÀÀvĂ€t entisestÀÀn palveluiden kysyntÀÀ ja luovat tarpeen jatkuvalle innovoinnille langattomien teknologioiden alalla tavoitteena lisĂ€kapasiteetin ja paremman palvelunlaadun tarjoaminen. Termi 4G (4th Generation) viittaa tuleviin neljĂ€nnen sukupolven mobiileihin langattomiin palveluihin, jotka International Telecommunications Union:in Radiocommunication Sector (ITU-R) on mÀÀritellyt ja nimennyt International Mobile Telecommunications-Advanced (IMT-Advanced). NĂ€mĂ€ ovat jĂ€rjestelmiĂ€, jotka pitĂ€vĂ€t sisĂ€llÀÀn IMT:n ne uudet ominaisuudet, jotka ylittĂ€vĂ€t IMT-2000:n vaatimukset. Long Term Evolution-Advanced (LTE-Advanced) ja IEEE 802.16m ovat IMT-A sertifiointiin lĂ€hetetyt kaksi pÀÀasiallista kandidaattiteknologiaa. TĂ€ssĂ€ diplomityössĂ€ esitellÀÀn kolmannen sukupolven jĂ€rjestelmien kehityspolku LTE:hen ja IEEE 802.16e-2005 asti. LisĂ€ksi työssĂ€ esitetÀÀn LTE-Advanced:n ja IEEE 802.16m:n uudet vaatimukset ja ominaisuudet sekĂ€ vertaillaan nĂ€iden lĂ€hestymistapoja IMT-A vaatimusten tĂ€yttĂ€miseksi. Lopuksi työssĂ€ luodaan katsaus LTE ja IEEE 802.16e-2005 (markkinointinimeltÀÀn Mobile WiMAX) -jĂ€rjestelmien markkinatilanteeseen.The demand for affordable bandwidth in fixed and mobile services is growing rapidly around the world. The emergence of smart devices like the iPhone and Nokia N900, coupled with their high market penetration and superior user experience is behind this increased demand, inevitably driving the need for continued innovations in the wireless data technologies industry to provide more capacity and higher quality of service. The term "4G" meaning the 4th Generation of wireless technology describes mobile wireless services which have been defined by the ITU's Radiocommunication Sector (ITU-R) and titled International Mobile Telecommunications-Advanced (IMT-Advanced). These are mobile systems that include the new capabilities of IMT that go beyond those of IMT-2000. Long Term Evolution-Advanced (LTE-Advanced) and IEEE 802.16m are the two main candidate technologies submitted for IMT-Advanced certification. This thesis reviews the technology roadmap up to and including current 3G systems LTE from the 3rd Generation Partnership Project (3GPP) and IEEE 802.16e-2005 from the Institute of Electrical and Electronics Engineers (IEEE). Furthermore, new requirements and features for LTE-Advanced and IEEE 802.16m as well as a comparative approach towards IMT-Advanced certification are presented. Finally, the thesis concludes with a discussion on the market status and deployment strategies of LTE and IEEE 802.16e-2005, or Mobile WiMAX as it is being marketed

    Active Fault-Tolerance in Wireless Networked Control Systems

    Get PDF
    In a Wireless Networked Control System (WNCS), several nodes or components of the system may communicate over the common network that connects them together. Thus, there may be communication taking place between the sensors and the controller nodes, among the controllers themselves, among the sensors themselves, among the actuator themselves, and between the controller and the actuator nodes. The purpose of this communication is to improve the performance of the control system. The performance may be a measurable quantity defined in terms of a performance criterion, as in the case of optimal control or estimation, or it may be a qualitative measure described as a desired behaviour. Each node of the WNCS may act as a decision maker, making control as well as communication decisions. The presence of a network brings in constraints in the design of the control system, as information between the various decision makers must be exchanged according to the rules and dynamics of the network. Our goal is to quantify some of these constraints, and design the control system together with the communication system so as both do their best given the constraints. This work in no way attempts to suggest the best way to design a communication network that suits the needs of a particular control system, but some of the results obtained here may be used in conjunction with other results in forming an understanding as to how to proceed in the design of such systems in the future. The work proposes a novel real-time communication protocol based on the Time Division Multiple Access (TDMA) strategy, which has built-in tolerance against the network-induced effects like lost packets, assuring a highly deterministic and reliable behaviour of the overall networked control system, thus allowing the use of classical control design methods with WNCS. Determinism in the transmission times, for sending and for receiving, is assured by a communication schedule that is dynamically updated based on the conditions of the network and the propagation environment. An advanced experimentation platform has been developed, called WiNC, which demonstrates the efficiency of the protocol with two well-known laboratory benchmarks that have very different dynamics, namely the three-tank system and the inverted pendulum system. Wireless nodes belonging to both systems are coordinated and synchronized by a master node, namely the controller node. The WiNC platform uses only open source software and general-purpose (commercial, off-the shelf) hardware, thus making it with a minimal investment (low cost) a flexible and easily extendable research platform for WNCS. And considering the general trend towards the adoption of Linux as a real-time operating system for embedded system in automation, the developed concepts and algorithms can be ported with minimum effort to the industrial embedded devices which already run Linux

    Journal of Telecommunications and Information Technology, 2003, nr 4

    Get PDF
    kwartalni

    Seamless, reliable, video multicast in wireless ad hoc networks

    Get PDF
    A wireless ad hoc network is a self-organized and dynamically reconfigurable wireless network without central administration and wired infrastructure. Nodes in a wireless ad hoc network can instantly establish a communication structure while each node moves in an arbitrary manner. A wireless ad hoc network is useful for mobile nodes working in a group to accomplish certain tasks. On the other hand, multicast is a very useful and efficient means of supporting group-oriented applications. Multicast is an essential technology for many applications such as video distribution and group video conferencing, data dissemination, disaster relief and battlefield. Video multicasting over wireless ad hoc networks is bandwidth-efficient compared to multiple unicast sessions. However, video multicasting poses great challenges over wireless ad hoc networks. Video packets are both delay and loss sensitive. In addition, due to nodes mobility, the topology of wireless ad hoc networks is frequently changed. As a result, the established links are continuously broken, causing quality loss and interruption in the received video signal. Other challenges include limited battery life of wireless nodes and lower wireless network capacity compared to wired networks. Video multicast over wireless ad hoc networks has been an active area in recent years. The main objective of these studies is to improve the quality of the received video by exploiting the error resilience properties of Multiple Description Coding (MDC) along with multiple paths. In other words, MD video is encoded and transmitted over two different paths to each destination node. If only one path is broken, packets corresponding to the other description on the other path can still arrive at the destination node on time. Layered Coding (LC) and Multiple Description Coding (MDC) have been proposed as video source coding techniques that are robust against inevitable transmission errors. In contrast to MDC, LC encodes a media source into two or more sub-streams, known as layers, one base layer and several enhancement layers. The base layer can be decoded to provide a basic quality of the received video while the enhancement layers are mainly used to refine the quality of the video that is reconstructed from the base layer. If the base layer is corrupted, the enhancement layers become useless, even if they are received correctly. Therefore, the base layer is critically important and is usually highly protected. For MDC, however, these sub-streams are of equal importance in the sense that each sub-stream, also called a description, can be decoded independently to produce a signal of basic quality. When more descriptions are received, the decoder can gradually increase the quality. One main problem of video multicasting for heterogeneous destinations is the assignment of video descriptions and the construction of multicast tree. However, the assignment of MD video and the construction of multicast tree can greatly affect the user satisfaction (i.e., affect the quality of the received video). In this thesis, we introduce novel approaches to improve the user satisfaction for a set of heterogeneous multicast destinations. The main idea of our approaches is to employ the independent-description property of MDC along with multiple multicast trees. However, many questions are raised: How multiple multicast trees should be constructed? And how MD video should be assigned? Is it better to construct multiple multicast trees first and then assign the video descriptions? Or is it better to assign the video descriptions first and we then construct multiple multicast trees? Should we perform that in a distributed manner or in a centralized one? To answer these questions, we propose different algorithms to construct multiple multicast trees and to assign MD video. The proposed algorithms are: Serial MDC, Distributed MDC, and Centralized MDC. Serial MDC constructs multiple paths, to each destination, and assigns a different video description to each of them. After that, it constructs multiple multicast trees. Distributed MDC assigns MD video and constructs multiple multicast trees in parallel and in distributed fashion. In Centralized MDC, the assignment of MD video and the construction of multiple multicast trees are performed in a centralized manner. However, Centralized MDC first constructs multiple multicast trees and then assigns different video description to each multicast tree. We evaluate and compare our proposed algorithms Under different network conditions. For example, Network size, and multicast group size. Simulation results demonstrate that, indeed, the way of multicast trees construction and the assignment of MD video can greatly affect the user satisfaction. In addition, simulation results show that MDC can achieve higher user satisfaction compared to LC with a small cost in terms of number of pure forwarders nodes, bandwidth utilization, and aggregate tree delay. Furthermore, we use our proposed algorithms to develop different multicast protocols for video multicast over wireless ad hoc networks. Specifically, we propose four protocols, namely, Centralized MDMTR (Multiple Disjoint Multicast Trees Routing), Sequential MDMTR, Distributed MDMTR, and Neighbor-aware MDMTR protocols. These protocols take many issues into consideration, rejoining and joining a multicast group, multicast trees maintenance, and mobility of nodes, for example. We evaluate the performance of our proposed protocols and compare them under different network conditions. For example, multicast group size, and mobility of nodes. Simulation results demonstrate that our protocols perform well compared to other protocols in the literature

    Proceedings of the Fifth International Mobile Satellite Conference 1997

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial communications services. While previous International Mobile Satellite Conferences have concentrated on technical advances and the increasing worldwide commercial activities, this conference focuses on the next generation of mobile satellite services. The approximately 80 papers included here cover sessions in the following areas: networking and protocols; code division multiple access technologies; demand, economics and technology issues; current and planned systems; propagation; terminal technology; modulation and coding advances; spacecraft technology; advanced systems; and applications and experiments
    • 

    corecore