137 research outputs found

    Broadcasting in DMA-bound bounded degree graphs

    Get PDF
    AbstractBroadcasting is an information dissemination process in which a message is to be sent from a single originator to all members of a network by placing calls over the communication lines of the network. In [2], Bermond, Hell, Liestman and Peters studied the effect, on broadcasting capabilities, of placing an upper bound on the graph's degree. In this paper, we generalize their results allowing calls to involve more than two participants. We give lower bounds and construct bounded degree graphs which allow rapid broadcasting. Our constructions use the nation of compounding graphs in de Bruijin digraphs. We also obtain asymptotic upper and lower bounds for broadcast time, as the maximum degree increases

    Bus interconnection networks

    Get PDF
    AbstractIn bus interconnection networks every bus provides a communication medium between a set of processors. These networks are modeled by hypergraphs where vertices represent the processors and edges represent the buses. We survey the results obtained on the construction methods that connect a large number of processors in a bus network with given maximum processor degree Δ, maximum bus size r, and network diameter D. (In hypergraph terminology this problem is known as the (Δ,D, r)-hypergraph problem.)The problem for point-to-point networks (the case r = 2) has been extensively studied in the literature. As a result, several families of networks have been proposed. Some of these point-to-point networks can be used in the construction of bus networks. One approach is to consider the dual of the network. We survey some families of bus networks obtained in this manner. Another approach is to view the point-to-point networks as a special case of the bus networks and to generalize the known constructions to bus networks. We provide a summary of the tools developed in the theory of hypergraphs and directed hypergraphs to handle this approach

    Properties and Algorithms of the KCube Graphs

    Get PDF
    The KCube interconnection topology was rst introduced in 2010. The KCube graph is a compound graph of a Kautz digraph and hypercubes. Compared with the at- tractive Kautz digraph and well known hypercube graph, the KCube graph could accommodate as many nodes as possible for a given indegree (and outdegree) and the diameter of interconnection networks. However, there are few algorithms designed for the KCube graph. In this thesis, we will concentrate on nding graph theoretical properties of the KCube graph and designing parallel algorithms that run on this network. We will explore several topological properties, such as bipartiteness, Hamiltonianicity, and symmetry property. These properties for the KCube graph are very useful to develop efficient algorithms on this network. We will then study the KCube network from the algorithmic point of view, and will give an improved routing algorithm. In addition, we will present two optimal broadcasting algorithms. They are fundamental algorithms to many applications. A literature review of the state of the art network designs in relation to the KCube network as well as some open problems in this field will also be given

    Broadcasting in Hyper-cylinder graphs

    Get PDF
    Broadcasting in computer networking means the dissemination of information, which is known initially only at some nodes, to all network members. The goal is to inform every node in the minimal time possible. There are few models for broadcasting; the simplest and the historical model is called the Classical model. In the Classical model, dissemination happens in synchronous rounds, wherein a node may only inform one of its neighbors. The broadcast question is: What is the minimum number of rounds needed for broadcasting, and what broadcast scheme achieves it? For general graphs, these questions are NP-hard, and it is known to be at least 3 - ε inapproximable for any real ε > 0. Even for some very restricted classes of graphs, the questions remain as an NP-hard problem. Little is known about broadcasting in restricted graphs, and only a few classes have a polynomial solution. Parallel and distributed computing is one of the important domains which relies on efficient broadcasting. Hypercube and torus are the most used network topology in this domain. The widespread use is not only due to their simplicity but also is for their efficiency and high robustness (e.g., fault tolerance) while having an acceptable number of links. In this thesis, it is observed that the Cartesian product of a number of path and cycle graphs produces a valuable set of topologies, we called hyper-cylinders, which contain hypercube and Torus as well. Any hyper-cylinder shares many of the beneficial features of hypercube and torus and might be a suitable substitution in some cases. Some hyper-cylinders are also similar to other practically used topologies such as cube-connected cycles. In this thesis, the effect of the Cartesian product on broadcasting and broadcasting of hyper-cylinders under the Classical and Messy models is studied. This will add a valuable class of graphs to the limited classes of graphs which have a polynomially computable broadcast time. In the end, the relation between worst-case originators and diameters in trees is studied, which may help in the broadcast study of a larger class of graphs where any tree is allowed instead of a path in the Cartesian product

    Properties and Algorithms of the KCube Interconnection Networks

    Get PDF
    The KCube interconnection network was first introduced in 2010 in order to exploit the good characteristics of two well-known interconnection networks, the hypercube and the Kautz graph. KCube links up multiple processors in a communication network with high density for a fixed degree. Since the KCube network is newly proposed, much study is required to demonstrate its potential properties and algorithms that can be designed to solve parallel computation problems. In this thesis we introduce a new methodology to construct the KCube graph. Also, with regard to this new approach, we will prove its Hamiltonicity in the general KC(m; k). Moreover, we will find its connectivity followed by an optimal broadcasting scheme in which a source node containing a message is to communicate it with all other processors. In addition to KCube networks, we have studied a version of the routing problem in the traditional hypercube, investigating this problem: whether there exists a shortest path in a Qn between two nodes 0n and 1n, when the network is experiencing failed components. We first conditionally discuss this problem when there is a constraint on the number of faulty nodes, and subsequently introduce an algorithm to tackle the problem without restrictions on the number of nodes

    Fault-free longest paths in star networks with conditional link faults

    Get PDF
    AbstractThe star network, which belongs to the class of Cayley graphs, is one of the most versatile interconnection networks for parallel and distributed computing. In this paper, adopting the conditional fault model in which each node is assumed to be incident with two or more fault-free links, we show that an n-dimensional star network can tolerate up to 2n−7 link faults, and be strongly (fault-free) Hamiltonian laceable, where n≥4. In other words, we can embed a fault-free linear array of length n!−1 (n!−2) in an n-dimensional star network with up to 2n−7 link faults, if the two end nodes belong to different partite sets (the same partite set). The result is optimal with respect to the number of link faults tolerated. It is already known that under the random fault model, an n-dimensional star network can tolerate up to n−3 faulty links and be strongly Hamiltonian laceable, for n≥3

    Intelligent query processing in P2P networks: semantic issues and routing algorithms

    Get PDF
    P2P networks have become a commonly used way of disseminating content on the Internet. In this context, constructing efficient and distributed P2P routing algorithms for complex environments that include a huge number of distributed nodes with different computing and network capabilities is a major challenge. In the last years, query routing algorithms have evolved by taking into account different features (provenance, nodes' history, topic similarity, etc.). Such features are usually stored in auxiliary data structures (tables, matrices, etc.), which provide an extra knowledge engineering layer on top of the network, resulting in an added semantic value for specifying algorithms for efficient query routing. This article examines the main existing algorithms for query routing in unstructured P2P networks in which semantic aspects play a major role. A general comparative analysis is included, associated with a taxonomy of P2P networks based on their degree of decentralization and the different approaches adopted to exploit the available semantic aspects.Fil: Nicolini, Ana Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Lorenzetti, Carlos Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Maguitman, Ana Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Chesñevar, Carlos Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentin

    Embedding complete binary trees into star networks

    Get PDF
    Abstract. Star networks have been proposed as a possible interconnection network for massively parallel computers. In this paper we investigate embeddings of complete binary trees into star networks. Let G and H be two networks represented by simple undirected graphs. An embedding of G into H is an injective mapping f from the vertices of G into the vertices of H. The dilation of the embedding is the maximum distance between f(u), f(v) taken over all edges (u, v) of G. Low dilation embeddings of binary trees into star graphs correspond to efficient simulations of parallel algorithms that use the binary tree topology, on parallel computers interconnected with star networks. First, we give a construction of embeddings of dilation 1 of complete binary trees into n-dimensional star graphs. These trees are subgraphs of star graphs. Their height is fl(n log n), which is asymptotically optimal. Constructions of embeddings of complete binary trees of dilation 28 and 26 + 1, for 8 > 1, into star graphs are then given. The use of larger dilation allows embeddings of trees of greater height into star graphs. For example, the difference of the heights of the trees embedded with dilation 2 and 1 is greater than n/2. All these constructions can be modified to yield embeddings of dilation 1, and 26, for ~ > 1, of complete binary trees into pancake graphs. Our results show that massively parallel computers interconnected with star networks are well suited for efficient simulations of parallel algorithms with complete binary tree topology
    • …
    corecore