
Properties and Algorithms of the KCube
Interconnection Networks

Keivan Noroozi

Department of Computer Science

Submitted in partial fulfillment
of the requirements for the degree of

Master of Science

Faculty of Mathematics and Science, Brock University
St. Catharines, Ontario

c©Keivan Noroozi, 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brock University Digital Repository

https://core.ac.uk/display/62652658?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Dr. Ke Qiu, for all his help
throughout this process. His guidance has helped me in all the time of research and writing
of this thesis. I could not have imagined having a better supervisor and mentor for my
master’s study.

I would like to thank the members of my supervisory committee, Dr. M. Winter, Dr. S.
Houghten, and Dr. B. Farzad, for their time and insightful advice.

Also I would like to thank the Department of Computer Science, Brock University,
for giving me the opportunity to study and work in such a friendly environment, and for
providing me with financial support.

Finally, I would like to thank my family: my parents, brothers and sister for their un-
conditional love and support.

Co-Authorship

Some preliminary results were reported in the following paper:

1. “On the Hamiltonicity of the KCube Interconnection Network.” (with K. Qiu and L.
Zhao), Second International Symposium on Computing and Networking (CANDAR)
IEEE, 2014.

2. “On the Hamiltonicity, Connectivity, and Broadcasting Algorithm of the KCube.”
(with K. Qiu), Third International Symposium on Computing and Networking (CAN-
DAR) IEEE, 2015.

Abstract

The KCube interconnection network was first introduced in 2010 in order to exploit the

good characteristics of two well-known interconnection networks, the hypercube and the

Kautz graph. KCube links up multiple processors in a communication network with high

density for a fixed degree. Since the KCube network is newly proposed, much study is

required to demonstrate its potential properties and algorithms that can be designed to solve

parallel computation problems.

In this thesis we introduce a new methodology to construct the KCube graph. Also,

with regard to this new approach, we will prove its Hamiltonicity in the generalKC(m, k).

Moreover, we will find its connectivity followed by an optimal broadcasting scheme in

which a source node containing a message is to communicate it with all other processors.

In addition to KCube networks, we have studied a version of the routing problem in the

traditional hypercube, investigating this problem: whether there exists a shortest path in a

Qn between two nodes 0n and 1n, when the network is experiencing failed components. We

first conditionally discuss this problem when there is a constraint on the number of faulty

nodes, and subsequently introduce an algorithm to tackle the problem without restrictions

on the number of nodes.

Contents

1 Introduction 1
1.1 Classification of Computer Architecture 2
1.2 Shared-Memory Parallel Machines . 3
1.3 Interconnection Networks . 5

1.3.1 Definitions . 6
1.3.2 Linear Array and Ring . 8
1.3.3 Complete Graph . 8
1.3.4 Mesh and Torus . 8
1.3.5 Tree . 10
1.3.6 Hypercube . 10
1.3.7 De Bruijn Graph and Kautz Graph 11

1.4 Evaluating Parallel Algorithms . 12
1.5 Organization of the Thesis . 14

2 Literature Review of the KCube Graph 16
2.1 Introduction . 16
2.2 KCube Network . 16
2.3 Properties . 19
2.4 Routing Algorithm . 20

2.4.1 Hypercube Routing . 21
2.4.2 Routing in a Faulty Hypercube . 21

2.5 Kautz Graph Routing . 23
2.6 KCube Routing . 24

3 Topological Properties of the KCube Graph 26
3.1 A New Methodology for the KCube Construction 26

3.1.1 The New Arrangement of the Input/Output Nodes 26
3.2 The Average Distance Between Two Nodes 27

iv

3.3 Hamiltonicity of KCube . 29
3.4 Connectivity of KCube Networks . 32

4 Broadcasting on KCube Networks 35
4.1 Introduction . 35
4.2 Kautz Digraph Broadcasting and Spanning Tree 36
4.3 Broadcasting on the KCube Network . 39

5 Blocking Node Problem 41
5.1 Introduction . 41
5.2 Conditions for Shortest Path Routing with Faulty Nodes on the Hypercube . 42
5.3 The Routing Algorithm . 46

5.3.1 IDENTIFICATION Algorithm . 46

6 Conclusion 50

Bibliography 55

List of Tables

1.1 Degree, Diameter and Hamiltonicity of Interconnection Networks 13

3.1 Properties of Interest of the Hypercube, Kautz and the New Version of
KCube Network . 34

List of Figures

1.1 A Shared-Memory Parallel Computer . 3
1.2 Reading Access to Memory: a. Exclusive Read ; b. Concurrent Read 4
1.3 Writing Access to Memory: a. Exclusive Write ; b. Concurrent Write . . . 5
1.4 a. Linear Array of Size 6 ; b. Ring of Size 6 9
1.5 Complete Network of Size 5, K5 . 9
1.6 A 3× 3 Mesh . 10
1.7 a. 1-cube; b. 2-cube; c. 3-cube . 11
1.8 D(2, 2) . 12
1.9 K(2, 2) . 12

2.1 K(2, 2) . 17
2.2 KC(2, 2) . 17
2.3 Input and Output Nodes in Q3 by Original Approach 18
2.4 The Unsafe Nodes (Gray Nodes), and Faulty Nodes (Black Nodes) in a

4-cube. 22
2.5 Clock-Wise Order of i. i = 3 in: 324→ 241. 25

3.1 Input Nodes (Black) and Output Nodes (White) in Q3 27
3.2 Hamiltonian Path u; v in a Laceable Bipartite Graph 30
3.3 a. K(1, k) ; b. KC(1, k) . 30
3.4 A Hamiltonian Cycle in KC(2, 2). 31
3.5 a. Part of Hamiltonian Cycle in K(4, 3) ; b. Part of Hamiltonian Cycle in

KC(3, 3) . 32

4.1 a. B(2, 3) ; b. Broadcast Spanning Tree of B(2, 3) with Root 000 36
4.2 Spanning Tree in K(2, 3) Starting in Node 210 37
4.3 Almost Generic Spanning Tree in K(2, 3) Starting in Twin Node 101 38
4.4 Broadcasting Steps in 3-cube . 39
4.5 Broadcast Spanning Tree in KC(2, 3) . 40

vii

5.1 Blocking Nodes. 44
5.2 Dead End Node (Gray Node) and Blocking Nodes (Black Nodes) in Q3. . . 46

Chapter 1

Introduction

In computer science, problems can be solved by two major approaches, using single a pro-
cessor and multiple processors. Computers that use a single processor are called sequential
computers, and the ones that use multiple processors are called parallel computers. In
parallel computers several processors cooperate simultaneously to accomplish a task in a
shorter time than it requires for a sequential computer. Parallel computers have two main
advantages over sequential computers. First, in many computational problems, the time
needed to obtain a solution using a sequential computer (single processor) is unacceptably
high. There is a stage that the speed of computation cannot be increased regardless of how
other components of the system are improved. Second, there exist problems impossible
to tackle sequentially regardless of how much time it takes. These drawbacks of sequen-
tial computers motivate computer scientists to address a variety of computational problems
using multiple processors.

This field of computer science opens a new door in terms of solving computational
problems and it proposes new techniques for the design and analysis of algorithms. Ac-
cordingly, it requires a completely new theoretical knowledge in addition to the sequential
methods of solving those problems.

Based on how the processors communicate with each other, there are two major com-
putational models for which parallel algorithms can be designed, namely, shared-memory

parallel machines and interconnection networks.
In this chapter, we first introduce the classification of computer architectures. Then we

explain two major computational models, shared-memory machines and interconnection
networks, as well as introducing some well-known examples of the latter. At the end of
this chapter we discuss the parameters used to measure and analyze parallel algorithms in
order to understand their efficiency.

1

CHAPTER 1. INTRODUCTION 2

1.1 Classification of Computer Architecture

The computer machine structure can be described using the stream concept. A stream
simply means a sequence of items that can be either instructions or data. Machines have
been classified into four different categories based on the interaction between instructions
and data streams [13]:

• SISD - Single Instruction, Single Data Stream

This represents the most conventional sequential computing machines. This class of
computers does not utilize any parallelism within their computations except instruc-
tion pipelining. The processor follows a single instruction stream to process a data
stream.

• SIMD - Single Instruction, Multiple Data Stream

Here, multiple identical processors can operate a single instruction in parallel on
different pieces of data. Processors have their own local memory to store data and
the single instruction stream is issued by a central control unit. All the major parallel
models and algorithms in this thesis are discussed in accordance with this class of
computers.

• MISD - Multiple Instruction, Single Data Stream

MISD machines have multiple processors, each of which has its own control unit and
together they share a common memory unit. They can execute multiple instructions
on a single data sequence. In reality there is no implementation for this class of
computers.

• MIMD - Multiple Instruction, Multiple Data Stream

This class of parallel computers use multiple processors that have their own memory
and control units. They function autonomously and execute different instructions
on different data sequences. Each processor can solve a subproblem of the main
problem independently. Hence, MIMD parallel machines are considered as the most
powerful class among the other classes.

SIMD and MIMD machines can utilize either shared-memory family or interconnection

networks.
The processors of a parallel system have to communicate with each other in order to

send or receive a piece of data, and finally, to obtain a result for the main problem. There
are two computational models according to the manner they communicate: Shared-memory
parallel machines and Interconnection Networks.

CHAPTER 1. INTRODUCTION 3

Figure 1.1: A Shared-Memory Parallel Computer

1.2 Shared-Memory Parallel Machines

Shared-memory parallel machines are one of the fundamental computational models that
allow processors to communicate through a single and common Memory Access Unit
(MAU). As it can be understood from the name of this model, processors do not have their
own memory. The shared-memory model is also called Parallel Random Access Memory
(PRAM), shown in Fig 1.1.

In the PRAM model, when two processors, say Pi and Pj , wish to communicate with
each other, they have to accomplish this by using a shared memory as a bulletin board. For
example, Pi has a piece of data needed by Pj . First, Pi writes it to a specific location of the
memory and then it will be read by Pj .

There are different restrictions for processors to access the shared-memory to read or
write a piece of data. The restrictions are classified as follows:

• Exclusive Read (ER): In this form of restriction, only one processor in one time
unit can read from a particular memory location. Then in parallel, p processors can
simultaneously read from p distinct memory locations.

• Concurrent Read (CR): In this form of restriction, multiple processors in one time
unit can read from a particular memory location. Then in parallel, p processors can
simultaneously read from p′ distinct memory locations, where p′ ≤ p. Each of the p′

CHAPTER 1. INTRODUCTION 4

Figure 1.2: Reading Access to Memory: a. Exclusive Read ; b. Concurrent Read

memory locations can be read possibly by multiple processors. It is evident that ER
is a special case of CR.

Fig 1.2 illustrates the two types of reading restriction for the processors.

• Exclusive Write (EW): In this form of restriction, only one processor in one time
unit can write to a particular memory location. Then in parallel, p processors can
simultaneously write to p distinct memory locations.

• Concurrent Write (CW): In this form of restriction, multiple processors in one
time unit can write to a particular memory location. Then in parallel, p processors
can simultaneously write to p′ distinct memory locations, where p′ ≤ p. Each of the
p′ memory locations can be written into possibly by multiple processors. Again, EW
is a special case of CW.

Fig 1.3 illustrates the two types of writing restriction for the processors.

Combining these different restrictions for read/write, we have four types of PRAM
computers regarding reading and writing the data within the shared memory which are as
follows:

CHAPTER 1. INTRODUCTION 5

Figure 1.3: Writing Access to Memory: a. Exclusive Write ; b. Concurrent Write

1. Exclusive Read, Exclusive Write (EREW): Here, any memory location can be read
from and written to, only by one processor at the same time. This class is the most
restricted among the others and considered the weakest model.

2. Exclusive Read, Concurrent Write (ERCW): Here, multiple processors can write
to but not read from the same memory location concurrently.

3. Concurrent Read, Exclusive Write (CREW): Here, multiple processors can read
from but not write to the same memory location concurrently.

4. Concurrent Read, Concurrent Write (CRCW): Here, any memory location can
be read from and written to, by multiple processors at the same time. This class is
the most powerful among the others since it has the maximum flexibility in reading
from and writing into the memory.

1.3 Interconnection Networks

Interconnection networks are another class of parallel processing. In contrast to the shared-
memory model of parallel processing, in which processors share a common memory, each

CHAPTER 1. INTRODUCTION 6

processor in interconnection networks has its own memory. There are either two-way
or one-way links between processors that make communication between them possible.
Therefore, if a processor wishes to send a piece of data to other processors, it has to be
done through these links for routing the data from its memory to the memory of the desti-
nation processors.

Network topology is a key factor when the performance of an interconnection network
is being discussed. They are modeled by a graph G = (V,E) where V is the set of nodes
(each node indicates a processor in the network), and E is the set of edges that indicates
the links between processors.

1.3.1 Definitions

Since interconnection networks are represented by graphs, we can use their properties and
parameters to evaluate and analyze the networks. We follow the standard terminology of
graph theory and interconnection networks [4, 19], and use the terms “interconnection net-
work” and “graph” , “processor” and “node” , “edge” and “link” interchangeably. Further
in this section, we will review the essential definitions and properties that are needed to
analyze and compare different interconnection networks. Some well-known and important
interconnection networks will be discussed afterwards.

Definition 1. A graph G(V,E) is a non-empty set V of nodes and a set E of edges. If an

edge e ∈ E = (u, v) where u, v ∈ V , then u and v are said to be neighbours and the edge

e is said to be incident on these nodes. A directed graph (or digraph) is a graph where

edges (or arcs) have a direction associated with them, i.e., the pair of nodes corresponding

to each edge is ordered.

Definition 2. In a graphG = (V,E), the degree of node u ∈ V is the number of neighbours

of V . The degree of a graph is said to be the maximum of all node degrees.

Definition 3. A graph G = (V,E) is called regular when all the nodes in G have the same

degree. We denote such a graph by n-regular when n is the degree of each node (also the

degree of the graph)

Definition 4. In a graph G, a path is defined as a sequence of successive edges which

connect a sequence of distinct nodes. The shortest path in number of edges between two

nodes u, v ∈ V is called distance between u and v. The maximum distance between any

two nodes u, v ∈ V is called the diameter of the graph.

When we are evaluating an interconnection network, the diameter is considered as one
of the important properties. This is because it plays an essential role in many aspects such

CHAPTER 1. INTRODUCTION 7

as routing and broadcasting a message. A smaller diameter is much more desirable for a
network as it is related to the routing and broadcasting times.

Definition 5. A Hamiltonian cycle (Eulerian Cycle), also called a Hamiltonian circuit

(Eulerian circuit), is a cycle that visits each node (edge) exactly once. A graph possessing

a Hamiltonian cycle (Eulerian Cycle) is said to be Hamiltonian (Eulerian).

Definition 6. A Hamiltonian path in a graph is a path that visits each node of the graph

exactly once.

Definition 7. A graph is bipartite if we can divide its nodes into two disjoint sets V1 and

V2 such that there is no edge between the nodes of each set. Then each edge connects u to

v where u ∈ V1 and v ∈ V2. Each set of bipartite graph is called bipartition.

Definition 8. Bisection width of a network refers to the minimum number of the links that

need to be removed to break the network into two equal sized disconnected networks.

Definition 9. A graph G is n-connected if there exist n internally node-disjoint paths be-

tween any pair of nodes. The connectivity κ(G) of G is the greatest integer n such that G

is n-connected

Definition 10. An Isomorphism from graphG to graphH is a bijection f : V (G)→ V (H)

such that (u, v) ∈ E(G) if and only if (f(u), f(v)) ∈ E(H). G is isomorphic to H if there

is an isomorphism from G to H . An automorphism of a graph is an isomorphism from G

into G

Definition 11. A graph is node-symmetric (edge-symmetric) if for every pair of nodes

u, v ∈ V (G) (e, f ∈ E(G)), there is an automorphism that maps u to v (e to f). Simply,

when a graph is node-symmetric (edge-symmetric), it means if you look at the whole graph

from any node (edge) of V (G) (E(G)) it will be exactly the same graph.

Being symmetric is very important to a network. For example, in a node-symmetric
network it is much easier to design a routing and broadcasting algorithm due to the same
accessibility between the processors. Also the starting or destination point of the algorithm
is less of an issue since all the nodes are the same.

Definition 12. A graph G is called f-fault tolerant when the removal of f or less nodes

does not make the graph disconnected. The fault tolerance of a graph G is the largest

value for f that G is f -fault tolerant.

CHAPTER 1. INTRODUCTION 8

Fault-tolerance is the property that indicates the capability of a network to continue
its operation when failed components exist in the network. Highly fault-tolerant networks
are most likely able to continue to perform without any drop in efficiency when some
components have failed. From the interconnection network perspective, this property is
highly important since working with too many processors will increase the probability of
failure among them and it is essential for the network to tolerate it as much as possible.

Many interconnection networks have been proposed in order to connect as many pro-
cessors as possible while the efficiency of network remains acceptable. Here we review
some of the popular and basic interconnection networks and compare their performance
with each other.

1.3.2 Linear Array and Ring

A linear array is a simple interconnection network to implement. It is a sequence of
processors that form a one-dimensional array where each processor has two neighbours,
except the terminal processors (first and last). See Fig 1.4. The degree of this graph is
2 except for the first and last nodes, and the diameter is N − 1 when N is the number
of processors. If the first and last nodes of a linear array are connected to each other the
graph is called a ring. One of the considerable advantages of the ring over the linear array
topology is its diameter bN/2c, which is half of that of a linear array’s diameter.

1.3.3 Complete Graph

This network has the most possible number of links between processors such that each
processor Pi, 1 ≤ i ≤ N is directly connected to all other N − 1 processors, and it is
called complete graph or clique. We denote complete graph by Kn, when n is the size of
the graph. This network has the best diameter which is 1. However, the number of edges
in the network of size N is equal to

(
N
2

)
, which is unacceptably high to be implemented in

real world.

1.3.4 Mesh and Torus

Mesh topology is an m ∗ n grid that forms a two-dimensional array with m rows and n
columns. Each processor Pij (where i and j denote the row and column number), that
does not lie in the boundary rows and columns, has a degree of four and the neighbours
Pi−1,j , Pi+1,j , Pi,j−1, Pi,j+1. It can be easily shown that this network has a diameter equal to

CHAPTER 1. INTRODUCTION 9

Figure 1.4: a. Linear Array of Size 6 ; b. Ring of Size 6

Figure 1.5: Complete Network of Size 5, K5

CHAPTER 1. INTRODUCTION 10

Figure 1.6: A 3× 3 Mesh

O(m+n). The mesh network topology is easy to layout and it has been used in many mul-
tiprocessor systems. Three or higher dimensional meshes also exist. However in practice,
they become less desirable to be used.

Torus is a network topology similar to the mesh while the first and last node in each
row and column are connected. See Fig 1.5. These additional edges give the nodes in the
boundary of the network the same characterizations as internal nodes. For instance, mesh
is not edge-symmetric while torus avoids this problem.

1.3.5 Tree

In this network topology, processors connected to each other form a complete binary tree.
In a binary tree of level d there are 2d − 1 processors. Each processor Pi is connected to
its parent by a link except for the root node. Also each processor is connected to its two
children except the leaf nodes.

1.3.6 Hypercube

An n-dimensional hypercube, Qn or n-cube, has 2n nodes labeled from 0 to 2n − 1. Each
node is denoted by a binary representation with length n. There is an undirected edge
between (u, v) if their binary representation differ in exactly one position (one bit), i.e.,
u = un−1un−2 . . . ui+1uiui−1 . . . u1u0 and v = un−1un−2 . . . ui+1ūiui−1 . . . u1u0, 0 ≤ i ≤
n − 1. Among all network topologies, the hypercube is one of the most popular networks
for interconnecting many processors in a parallel computer and has been widely studied
[24, 31]. This network has drawn the attention of many computer scientists during the
past decades for its desirable characteristics essential to link up multiple processors such as

CHAPTER 1. INTRODUCTION 11

Figure 1.7: a. 1-cube; b. 2-cube; c. 3-cube

symmetric, regularity, embedding capability, and logarithmic diameter.
InQn, the Hamming distance of two nodes u = un−1un−2 . . . u0 and v = vn−1vn−2 . . . v0

is defined as |{i|ui 6= vi}| denoted by H(u, v). For example, H(1110, 0111) = |{0, 3}| =

2. It is straightforward to find the shortest path from u to v in Qn by applying the following
approach: Moving across the binary sequence of u from right to left, whenever a bit differs
from v’s bit in the same position, flip it. Therefore, we can see that the diameter of the
hypercube of dimension n is logN = n when N = 2n is the number of processors.

Moreover, the broadcasting in the hypercube are optimal and can be performed effi-
ciently which we discuss comprehensively in the following chapters.

An important property of the hypercube is that it can be decomposed into two identical
hypercubes of one lower dimension. Many algorithms designed on the hypercube utilize
this recursive property (called tearing property in some papers [31]) since the main problem
can be divided into two subproblems that will be solved recursively. If an n-cube is split
into two identical (n− 1)-cubes, their nodes are in a one-to-one correspondence. There are
n different ways for an n-cube to be cut into two (n− 1)-cubes.

1.3.7 De Bruijn Graph and Kautz Graph

A de Bruijn graph D(d, k) d, k ≥ 1 is a directed graph of out-degree d with dk nodes,
and the diameter of k [6, 34]. Each node is represented as xkxk−1 . . . x2x1 where i ∈
{0, 1, . . . , d − 1}. Each node xkxk−1 . . . x2x1 has a directed edge pointing to the node
xk−1 . . . x2x1α where α ∈ {0, 1, . . . , d− 1}. See Fig 1.8.

A similar graph to the de Bruijn graph is the Kautz graph K(d, k). It is also a directed
graph but with more nodes, dk + dk−1, and the diameter of k. Each node is represented

CHAPTER 1. INTRODUCTION 12

Figure 1.8: D(2, 2)

Figure 1.9: K(2, 2)

as xkxk−1 . . . x2x1 where xi ∈ {0, 1, . . . , d} and two successive digits xi and xi+1 cannot
be equal (xi 6= xi+1). Each node xkxk−1 . . . x2x1 has a directed edge pointing to the node
xk−1 . . . x2x1α where α ∈ {0, 1, . . . , d} − {x1}. See Fig 1.9.

Different properties and algorithms of this network topology are discussed in detail
further in this thesis.

Table 1.1 lists different interconnection networks and some of their important proper-
ties.

1.4 Evaluating Parallel Algorithms

Before describing the ways of evaluating parallel algorithms in detail, let us review what
O(n) and Ω(n) indicate exactly:

• The function f(n) is Ω(g(n)) if there exist constants n0 ≥ 1 and c > 0 such that
when n ≥ n0, we have f(n) ≥ cg(n).

• The function f(n) is O(g(n)) if there exist constants n0 ≥ 1 and c > 0 such that
when n ≥ n0, we have f(n) ≤ cg(n).

The efficiency of parallel algorithms can be assessed and evaluated by three basic and
main criteria: the algorithm’s running time, the number of processors, and the Cost. How-
ever, there are other less common tools to analyze parallel algorithms, such as the algo-
rithm’s probability of success [1]. Here, we first explain the elementary step, followed by
a brief look into the important criteria of evaluating parallel algorithms:

Definition 13. An elementary step is a measure of the algorithm’s speed. There are two

types of elementary step:

CHAPTER 1. INTRODUCTION 13

Table 1.1: Degree, Diameter and Hamiltonicity of Interconnection Networks

Interconnection Network Number of Nodes Degree Diameter Hamiltonian

Linear Array N 2 N No

Ring N 2 bN/2c Yes

Complete Graph N N − 1 1 Yes

Mesh (m ∗ n) mn 4 m+ n No

Torus (m ∗ n) mn 4 b(m+ n)/2c Yes

Hypercube N log2N log2N Yes

de Bruijn (d, k) dk d k Yes

Kautz (d, k) dk + dk−1 d k Yes

1. Computational Step: It refers to a basic arithmetic or logical operation such as

adding, comparing, and swapping two numbers that is performed by a processor on

one or two data.

2. Routing Step: It refers to the transferring of a piece of data from one processor to

another, that needs to be performed according to the algorithm’s instruction. This

can be accomplished via the links between processors or the shared memory.

Algorithm running time: This is the number of time units from the beginning of the
first processor operation to the end of the last processor operation to solve a computational
problem. It is assumed that each computational step or any other elementary step [1], takes
a constant unit of time. By counting these steps consecutively, we can measure the running
time of the algorithm. Therefore, it is almost equal to the number of steps. The running
time of an algorithm is referred to as the worst case scenario of that problem to be solved by
the algorithm. That is, the time required for the most difficult instance of the main problem
to be fully performed, and is denoted by t(n).

Number of processors: Another criterion for evaluating a parallel algorithm is the
number of processors required to accomplish the algorithm. In general, it is in our interest
to use fewer processors in our computer as that naturally results in a less expensive sys-
tem. Therefore, when comparing two different algorithms that have the same performance

CHAPTER 1. INTRODUCTION 14

except for the number of processors, the one with the fewer number of processor is much
preferred. We denote this number by either p(n), when it is a function of n (size of input),
or by p when the number of processors is independent of the size of input.

Cost: This is an important parameter to assess a parallel algorithm and is defined as
follows: c(n) = p(n) × t(n). This number presents the product of algorithm’s running
time and its number of processors. In other words, cost is an upper bound for the number
of steps performed by the algorithm since some of the processors might be idle during the
process. Then, if all the processors are active, c(n) is equal to the total number of steps.

Now, the question is when the cost of an algorithm is considered good or efficient, i.e.,
when it is beneficial to solve a problem in parallel while there already exists a sequential
algorithm to solve it. To answer this question, there is an efficiency chart by which we can
measure the goodness of the parallel algorithm’s cost. First we define efficiency, when t1 is
the worst case running time of a fastest existing sequential algorithm for a given problem,
and tn is the worst case running time of the parallel algorithm for the same problem, as
follows:

E(1, p) =
t1
cost

Then we measure the efficiency number according to the following cases:

1. If E(1, p) < 1, then the parallel algorithm is not cost optimal.

2. If E(1, p) = 1, then the parallel algorithm is cost optimal.

3. If E(1, p) > 1, then it can be implied that there is a faster sequential algorithm for
that particular problem.

For the third case, after achieving the faster sequential solution, which can be simulated
from the parallel algorithm, we have to recalculate the efficiency number with the new t1.

1.5 Organization of the Thesis

Many interconnection networks have been proposed in order to be used in parallel comput-
ers. Many of the newly proposed interconnection networks are improved versions of the
old and existing ones. They can be a compound network of two or more networks, or just
a variant of an old network with one or more enhancements to its properties. For example,
the hypercube network has a lot of variants such as Twisted Cube, Cube Connected Cy-
cles, Folded Cube, Augmented Cube, Exchanged hypercube, Fibonacci Cube, and etc. An
example of a compound interconnection network is the KCube network, which we discuss

CHAPTER 1. INTRODUCTION 15

in detail throughout this thesis. It employs two well-known networks for its construction,
the hypercube and the Kautz graph. Since it has been proposed only recently, many of its
properties, as well as the possible algorithms, have not been revealed yet. Some of the
KCube’s properties and algorithms will be studied in the next chapters of this thesis. More
specifically, we will proceed according to the following organization:

Chapter 2: A literature review of the KCube network as well as the hypercube and the Kautz
graph.

Chapter 3: A thorough discussion of the KCube new construction methodology, as well as its
properties, such as the Hamiltonian cycle and connectivity.

Chapter 4: A broadcasting algorithm for KCube that combines Kautz graph and hypercube
broadcasting.

Chapter 5: Investigation of a routing problem on a faulty hypercube, and a general algorithm to
determine the existence of the shortest path in such a hypercube.

Chapter 6: Conclusion and future work.

Chapter 2

Literature Review of the KCube Graph

2.1 Introduction

Both hypercubes and Kautz graphs have many desirable characteristics, and hence have
been studied extensively. The KCube network was first proposed by Guo et al. (2010) [9],
to combine these two networks and make use of their advantages. It has good modular-
ity, expansibility and regularity [9]. In this chapter, we first go over the KCube definition
and construction that was proposed by Guo et al. [9] for the first time. Then we review
its already proven properties and algorithms. However, since KCube is a newly proposed
architecture compared to other networks such as the hypercube, many of its potential prop-
erties have not been found yet, and therefore has room for a great deal of investigation in
the future.

2.2 KCube Network

Definition 14. Given two regular graphs G1(V1, E1) and G2(V2, E2), a compound graph

G2(G1) is defined such that every v ∈ V2 in G2 is replaced by a copy of G1 and every

e ∈ E2 is replaced by an edge connecting corresponding two copies of G1.

KCube is a compound graph by replacing each node of the Kautz graph by a hypercube
of appropriate dimension. A KCube of dimensions d and k, denoted by KC(d, k), replaces
each node of K(d, k) with a hypercube (sometimes called a hypercube cluster) of dimen-
sion m where d = 2m−1. This can be derived from the fact that K(d, k) has an indegree
and outdegree equal to d, and if each node of K(d, k) is replaced with a hypercube Qm, we
have 2d = 2m due to the number of nodes in each hypercube cluster. Then, half the nodes
in the hypercube will act as input nodes and half the nodes as output nodes. Now, each

16

CHAPTER 2. LITERATURE REVIEW OF THE KCUBE GRAPH 17

Figure 2.1: K(2, 2)

21

12

20

02

01

10

00

01

10

11

00

00

00

00

00

10

 10

10

10

10

01

01

01

01

01

11

11

11

11

11

Figure 2.2: KC(2, 2)

edge of the K(2m−1, k) is replaced with an edge (remote arc) connecting two nodes from
two different hypercube clusters such that the starting point of the edge is an output node
of a Qm, and the end point is an input node in another corresponding Qm. Therefore, the
edges in a KCube are divided into two groups of remote edges and hypercube edges. We
know that in the KC(d, k), d = 2m−1, thus we can denote a KCube as KC(m, k) where m
is the hypercube clusters dimension. Fig. 2.1 and Fig. 2.2 illustrate K(2, 2) and KC(2, 2).

According to the definition by Guo et al. [9], as long as the two preconditions hold, the
graph belongs to the KCube family. Then, there are different options that we can use to
construct a KCube graph. The two preconditions that have to be satisfied in order to have a
KCube are as follows [9]:

1. The outdegree and indegree of each node inK(2m−1, k) is 2m−1, and each hypercube
cluster contains 2m nodes. These nodes need to be divided into two equal sets. One is
output nodes which are starting point/source of the arcs from one hypercube cluster
to other corresponding hypercube cluster. The other set is input nodes which are end
point/destination of arcs from a corresponding hypercube cluster.

2. There are d(dk + dk−1) remote arcs in KC(m, k). These arcs need to be mapped to
pairs of nodes, where one end of an arc is an output node of a hypercube cluster and
the other is an input node of another hypercube cluster.

An approach is proposed by Guo et al. [9] to satisfy the first precondition in which it
partitions the nodes of each hypercube based on the two first bits of their binary sequences
such that in Qm the input nodes are of the form xm−1 . . . x210 or xm−1 . . . x201. In other
words, nodes that start with “01” or “10” are considered as input nodes (white nodes).
Conversely, the output nodes are of the form xm−1 . . . x211 or xm−1 . . . x200, that is, nodes

CHAPTER 2. LITERATURE REVIEW OF THE KCUBE GRAPH 18

Figure 2.3: Input and Output Nodes in Q3 by Original Approach

that end with ”11” or ”00” are considered as output nodes (black nodes), Fig. 2.3 shows
the input and output nodes in a 3-cube. Obviously, the number of nodes in both cases are
equal so that the first precondition holds.

As for the second precondition, an approach given by Guo et al. [9], maps the remote
arcs with the following approach.

First, the input nodes and output nodes will be sorted in an ascending order. For
example in KC(2, 2) where the hypercube clusters are of dimension 2, the sorted input
nodes would be 01, 10 and output nodes would be 00, 11. Then we also sort the out-arcs
(out-degree edges) and in-arcs (in-degree edges), based on their source and destination in
K(2m−1, k) with the following approach. According to the Kautz definition, each node
xkxk . . . x1 has an arc pointing to the node xk−1 . . . x1α, α ∈ {0, 1, . . . , d} − {x1}. We
define i, 0 ≤ i ≤ d, as the clockwise distance from xk to α (if xk 6= x1) and from xk + 1

to α (if xk = x1). Each arc has a unique i. Fig 2.6 shows the example of clock-wise order
of i in 324 → 241. Note that the ith out-arc of any node xk . . . x2x1 is also the ith in-arc
of a corresponding node xk−1 . . . x1α. Therefore, out-arcs and in-arcs can be sorted in an
ascending order based on i.
To complete our example, consider the same KC(2, 2), a Kautz node, say 02, has been
replaced by a Q2 and it has two out-arcs in the corresponding K(2, 2):

o1 = 02→ 20

o2 = 02→ 21

And two in-arcs:
i1 = 20→ 02

i2 = 10→ 02

Then after sorting, in-arcs ascending order is o1, o2 and out-arc ascending order is i1, i2.

CHAPTER 2. LITERATURE REVIEW OF THE KCUBE GRAPH 19

Now, to constitute a KCube and satisfy the second precondition according to Guo et al. [9],
the ith arc of node x in K(2m−1, k) is replaced with a remote arc in KC(m, k) from ith

output node in a Qm to ith input node of the other corresponding Qm.
Each node in KC(m, k) is denoted by < x = xk . . . x2x1, y = ym . . . y1 >, where the

first part, x, represents the Kautz-label of that node, and the second part, y, represents the
hypercube-label of that node.

2.3 Properties

Since KCube has been proposed recently, there are limited existing studies on it in the
literatures. However, several properties of KCube have been proved by Guo et al. [9] and
Zhao [37], which are mentioned below.

Theorem 2.3.1. In a KC(m, k), the number of hypercube clusters is 2k(m−1) + 2(k−1)(m−1)

and the number of nodes is 2k(m−1)+m + 2k(m−1)+1 [9].

Proof. According to the definition of Kautz graph, there is dk + dk−1 nodes. In KCube,
each node is replaced by a hypercube cluster of dimension m, and each has 2m nodes. We
also know in KCube, d = 2m−1. Therefore, Theorem 2.3.1 holds.

Lemma 1. An upper bound on the shortest path between an output node and input node

within a hypercube cluster of dimension m is m− 1 [9].

Proof. In a Qm, the longest length of the shortest path is the path between two comple-
ment nodes xm . . . x2x1 and xm . . . x̄2x̄1. The definition of input node and output nodes in
KC(m, k) implies that the two complement nodes in Qm, are from the same group, either
input or output nodes. Then, going from an input (output) node to an output (input) node
will take at most m− 1 steps.

Theorem 2.3.2. An upper bound on the diameter of KC(m, k) is m(k + 1) + 1 [9].

Proof. Let us assume u =< x, y > and v =< x′, y′ > are two arbitrary nodes inKC(m, k).
We wish to traverse from u to v through a shortest path. We divide such a path into three
different parts: source Qm where u lies, intermediate Qm’s and the destination Qm where
v lies. Considering the diameter of the Kautz graph k, such a shortest path will go through
at most k − 1 intermediate Qm’s. In the source Qm, the path needs to take at most m hops
from u to the appropriate output node in the same hypercube cluster to get to the first inter-
mediate Qm. Inside each intermediate cluster, since the path enters through the input node
and exits from an output node, according to the Lemma 1, it requires at mostm−1 steps for

CHAPTER 2. LITERATURE REVIEW OF THE KCUBE GRAPH 20

each intermediate hypercube cluster to route the message. For the destination cluster, the
same argument as the source cluster holds and m is the maximum number of hops needed
to take. Therefore, considering the number of Kautz edges which is k, the total number of
steps is bounded by: 2m+ (k − 1)(m− 1) + k = m(k + 1) + 1.

Theorem 2.3.3. The KCube is a bipartite graph.

It is shown by Zhao [37] how this property holds with the bipartite sets of:
V1 = { All the nodes with even Hamming weights}
V2 = { All the nodes with odd Hamming weights}

Hamming weight is said to be the number of 1’s in the binary sequence of each node of the
hypercube. It can be observed that the two nodes of the same parity (either two nodes of
even or two nodes of odd parity) do not share an edge since by the definition of hypercube,
two nodes are directly connected to each other only when their binary sequences differ in
exactly one bit. Then V1 and V2 are the two bipartition sets in KCube.

We discuss this property in further detail in Chapter 3 where we prove the Hamiltonicity
of KCube.

Proposition 1. KC(m, k) is a regular but not node-symmetric graph [37].

This is derived from the regularity of the Kautz graph and the hypercube. In the KCube
all the nodes have the degree m + 1, when m is for the hypercube edges and 1 is for an
in-degree or an out-degree edge, so KCube is regular. However, it is not vertex-symmetric
since there is not an automorphism for all the nodes. It is worth mentioning that Kautz
graphs and de Bruijn graphs are also not node-symmetric [7, 23].

2.4 Routing Algorithm

One of the fundamental algorithms of interconnection networks is the routing process of
that network and the capability of transferring a piece of data among the processors through
the shortest path. Network topologies that are known to have an effective and fast routing
algorithm are very desirable to be employed in practice. There are several different routing
paradigms, e.g., the classic routing problem from a source node to a destination node, the
routing from a source node to multiple destination nodes through disjoint paths, and from
a set of nodes to another set of nodes. Combinations of these problems have also been
studied, for example, finding the shortest and disjoint paths from a source node to multiple
destination nodes [27, 29, 30].

CHAPTER 2. LITERATURE REVIEW OF THE KCUBE GRAPH 21

In this chapter we first look at the hypercube routing and the problem of routing with
faulty nodes (failed components). Next, we briefly go over the literature related to the
routing algorithm of Kautz graphs. Finally, we present the existing algorithm for the KCube
routing which utilizes the hypercube and the Kautz graph routing schemes.

2.4.1 Hypercube Routing

The routing algorithm on the hypercube was investigated by Saad and Schultz [31]. Let
H(u1, u2) be the Hamming distance between two arbitrary nodes in an n-cube. Then, if
there is no faulty node, the length of the shortest path between two nodes u1 and u2 is equal
to H(u1, u2). Please note that we also use H(u) to represent the Hamming weight of u, the
number of 1’s in u’s binary representation. Furthermore, the number of parallel or disjoint
paths between u1 and u2 is also equal to H(u1, u2) . The shortest path can be generated by
correcting the differing bits one by one between u1 and u2. As an example of this routing
scheme, consider a 3-cube where the source node and the destination node are u1 = 010

and u2 = 101 respectively. Here, H(010, 101) = 3, then there is a shortest path of length 3
that can be generated by correcting the differing bits. We can start by changing the leftmost
bit and correcting it from left to the right of its binary sequence.

u1 = 010
correct the leftmost bit−−−−−−−−−−−−−→ 110

correct the second bit−−−−−−−−−−−−→ 100
correct the rightmost bit−−−−−−−−−−−−−−→ 101 = u2

2.4.2 Routing in a Faulty Hypercube

An interconnection network in its practical use may consist of a great number of processors.
As this number grows, the likelihood of having a failed component due to any unknown
reason will increase. Therefore, it is necessary for any network to incorporate fault-tolerant
routing algorithms. In particular, this problem in the hypercube has been studied by many
researchers such as Chiu and Wu [12], Kaneko and Ito [21], Chen and Shin [10], and Gu
and Peng [16].

This problem can be looked at from different angles and has several different versions.
One of them that is within the scope of this thesis is to determine whether there exists a
shortest path between two complement nodes s and t, i.e., H(s, t) = n, in a Qn when some
of the nodes are blocked (the path cannot go through them and must ignore them). This
problem will be investigated thoroughly in Chapter 5, but first we review the existing results
[12, 21] here. We use the terms “faulty nodes” and “blocking nodes” interchangeably.

The unsafe node notion was introduced by Chiu and Wu [12] to potentially avoid the
blocking nodes. A node is defined as an unsafe node if it has either two or more faulty

CHAPTER 2. LITERATURE REVIEW OF THE KCUBE GRAPH 22

Figure 2.4: The Unsafe Nodes (Gray Nodes), and Faulty Nodes (Black Nodes) in a 4-cube.

neighbours, or three or more faulty or unsafe neighbours. If a node is neither a faulty nor
an unsafe node, it is called safe node.

In Fig 2.4, the black nodes are faulty nodes, the gray nodes are unsafe nodes, and the
white nodes are safe ones. An algorithm by Chiu and Wu [12] is presented to identify the
status of all the nodes (safe, unsafe, or faulty) in an n-cube.

Theorem 2.4.1. In a faulty hypercube , there is a shortest path between two nodes A and

B with the length of H(A,B) if node A is a safe node while B is a non-faulty node [12].

Proof. Let h = H(A,B). First assume, h = 1, obviously, there is a direct edge between
A and B. If h = 2, there are two disjoint shortest paths between A and B. By definition,
A is a safe node and there cannot be two faulty nodes adjacent to A. Then there exists at
least one path between A and B with a Hamming distance of two. Now suppose h ≥ 3.
There are h nodes of A’s neighbours that lie in different shortest paths from A to B. We
know that since A is a safe node, it has at most two faulty or unsafe nearest neighbours.
Hence, at least one of these h nodes exists that is guaranteed to be safe. We choose one of
them for the next node. Now, H(A, b) has been reduced to h− 1. Similarly, we repeat this
method as long as the Hamming weight of the current node and the destination node (B) is
greater or equal to 3. Finally when we are two steps fromB, we apply the above mentioned
instruction for the case h = 2 and reach the destination. Therefore a shortest path of length
h between A and B has been generated.

Kaneko and Ito [21] expanded this idea, and introduced the notion of full reachability.

CHAPTER 2. LITERATURE REVIEW OF THE KCUBE GRAPH 23

Definition 15. A non-faulty node u is called fully reachable relative to h if there is a path

of length h between u and all the nodes in Hamming distance h from u.

The full reachability algorithm (FR), proposed by Kaneko and Ito [21], is based on
fully reachability concept and extends the algorithm by Chiu and Wu [12]. Evaluation of
their algorithm shows that it can find paths consisting of no faulty nodes in less time in
comparison with the algorithm by Chiu and Wu [12]. These findings are the result of great
research efforts made to tackle this problem. In addition, we approach it through another
way that complements their results.

2.5 Kautz Graph Routing

The Kautz graph K(d, k) [22] is a directed graph with the maximum degree d and the di-
ameter k . The Kautz graphs are known as highly dense graphs. The maximum number of
nodes in a graph of fixed degree d, and diameter k is called Moore bound and is equal to
1+d+d2+. . .+dk [5]. There is no such graph with the density equal to Moore bound, thus it
is not feasible to have this number of processors in practice. The Kautz graph has dk +dk−1

nodes which is very close to Moore bound, and they are the densest graphs when the diame-
ter is equal to two [25]. According to Moore bound it has been shown that the lower bound
for the diameter of graph with N nodes and the degree of d is dlogd(N(d− 1) + 1)e − 1

[25]. Now, if we replace N with dk + dk−1, we obtain dlogd(dk+1 − dk−1 + 1)e − 1 = k.
This indicates that Kautz graph has an optimal diameter. In fact, between any two nodes
in a Kautz graph, there is a unique path [38]. There exists a simple routing algorithm for
the shortest path between node x and node y [18, 38], determined by the longest common
sequence that is a suffix of x and prefix of y. For example, if the length of such sequence
is k − l, that is, x = xkxk−1 · · ·x1 = xkxk−1 · · ·xk−l+1z1 · · · zk−l and y = ykyk−1 · · · y1 =
z1z2 · · · zk−lyl · · · y2y1, then the distance between x and y is l and the routing is done as
follows:

xkxk−1 · · ·x1 = xkxk−1 · · ·xk−l+1z1 · · · zk−l
→ xk−1 · · ·xk−l+1z1z2 · · · zk−lyl
→ xk−2 · · ·xk−l+1z1z2 · · · zk−lylyl−1
...

→ xk−l+1z1z2 · · · zk−lylyl−1 · · · y2
→ z1z2 · · · zk−lyl · · · y2y1.

CHAPTER 2. LITERATURE REVIEW OF THE KCUBE GRAPH 24

Consequently, the diameter of K(d, k) is k.
For example, the steps of routing from u = 3021 to v = 2302 in a K(4, 4) are as

follows:
u = 3021 −→ 0212 −→ 2123 −→ 1230 −→ 2302 = v

Note that in this example, there is no common sequence as the suffix of u and the prefix
of v. Then it requires k = 4 steps for the source node to reach the destination.

This interconnection network is fault-tolerant and it is shown that its connectivity is d
and there are d node disjoint paths between any two nodes [36]. The existence of these
disjoint paths can be effective in faulty Kautz network when the source node contains the
information of all the faulty nodes throughout the network so that it can find the fault-
free path to its destination. Although the Kautz graph has a good connectivity, having the
option of different disjoint paths is effective only when the identity and location of faulty
nodes have been broadcasted throughout the network. This process of informing all the
nodes about the failed components takes up a lot of space and bandwidth. A distributed
fault-tolerant routing is proposed by Chiang and Chen [11] that fully covers this problem.

2.6 KCube Routing

The routing algorithm in the KCube [9] uses the routing of the Kautz graph and the routing
of the hypercube. Suppose we wish to route a message from u =< x, y > to v =< x′, y′ >

in a KC(m, k). According to the routing algorithm of Kautz graph we can determine the
next hypercube cluster to send a message to, and subsequently we can find the ith output
node in the source hypercube cluster Qm. Then if the source node is not the appropriate
output node, we perform a hypercube routing inside theQm in order to transfer the message
to the desirable output node. Otherwise, the message will be exited directly from the output
node. At each step the next hypercube cluster is chosen based on the correspondingK(d, k)

routing steps, and inside the hypercube clusters the hypercube routing is used to reach from
the input node to the appropriate output node. Finally, at the last hypercube cluster where v
resides, if the destination is the input node which the path has entered from, the process is
finished. Otherwise, it performs another hypercube routing to reach the node v =< x′, y′ >.

For example, consider the KC(3, 2), where the corresponding Kautz graph is K(4, 2).
Given the source node s =< 324, 101 >, and the destination node t =< 413, 001 >, the
path between them will be generated by the following steps.
First, we can determine the next hypercube cluster based on the Kautz routing which is
241. The arc 324 → 241 has order i = 3, because of the clockwise distance from 3 to 1.

CHAPTER 2. LITERATURE REVIEW OF THE KCUBE GRAPH 25

Figure 2.5: Clock-Wise Order of i. i = 3 in: 324→ 241.

Please see Fig 2.5. Thus, we need to go to the third output node in the first Q3 which is
100:
< 324, 101 >→< 324, 100 >, and then it can exit that Q3 and get to the next Q3, where
third input node < 241, 101 > is the appropriate node for entering the next cluster:
< 324, 100 >→< 241, 101 > . Here, since the next Kautz arc is 241→ 413, the clockwise
distance between 2 and 3 is one and i = 1. So we route< 241, 101 > to the first output node
inside the same hypercube cluster: < 241, 101 >→< 241, 100 >→< 241, 000 >. Then, it
goes to the next and final Q3, < 241, 000 >→< 413, 001 >. Note that the entering input
node is exactly the destination node, therefore, we do not need to perform any hypercube
routing in the last Q3.

Chapter 3

Topological Properties of the KCube
Graph

3.1 A New Methodology for the KCube Construction

In Chapter 2 we saw that a KCube graph needs to satisfy two preconditions. This definition
gives us options to construct a KCube by assigning different input and output nodes. In
this chapter we introduce a new way to partition input and output nodes. We show that
this new KCube allows us to prove one important property of interconnection networks,
Hamiltonicity. Moreover, the new approach of KCube construction increases the flexibility
of routing throughout the network which is explained in more detail.

3.1.1 The New Arrangement of the Input/Output Nodes

It is shown by Zhao [37] that the KCube is bipartite where the input and output nodes
are defined as described in Guo et al. [9]. It is well-known and can be easily observed
that the hypercube is bipartite. Thus, hypercube nodes can be divided into two disjoint
sets V1 and V2 where for any edge e = (u, v), u ∈ V1, v ∈ V2. This means there is
no such edge that its nodes lie in the same bipartite set. In the hypercube the bipartite
sets can be created based on Hamming weights of nodes, that is, the nodes with an odd
Hamming weight form the V1 and the nodes with an even Hamming weight form the V2
and in this fashion, we have |V1|= |V2|. We make use of this property of the hypercube to
partition the input and output nodes in a KCube. Thus all the nodes with an even Hamming
weights constitute output nodes and all the nodes with odd Hamming weights constitute
input nodes. Fig 3.1 illustrates such a partitioning. As a result, the first precondition will be
satisfied automatically since the number of nodes with odd Hamming weights and nodes

26

CHAPTER 3. TOPOLOGICAL PROPERTIES OF THE KCUBE GRAPH 27

000 001

010 011

100 101

110 111

Figure 3.1: Input Nodes (Black) and Output Nodes (White) in Q3

with even Hamming weights are both equal to 2m−1.
Our approach of defining input and output nodes has several advantages that are dis-

cussed further. One that immediately will be achieved is that each input node now is con-
nected to m output nodes that each one has a direct link to m different clusters. Similarly,
each output node is connected to m input nodes which are pointed to by m clusters. While
in the KCube definition by Guo et al. [9] each input (output) node is only connected to two
output (input) nodes.
When m = 2, d = 2m−1 = 2, the KCubes of the two different versions become the
same. Fig 2.2 shows KC(2, 2). Clearly, the KCube defined with our approach of node
partitioning is also bipartite.

In the following sections we will see how this new definition will affect different aspects
of the KCube network.

3.2 The Average Distance Between Two Nodes

In Chapter 2 we discussed the routing algorithm of the original KCube according to the
old definition of input and output nodes. The upper bound m(k + 1) + 1 for diameter
of KC(m, k), obtained in [9], is based on the fact that the largest length of the shortest
path between an input and output node inside an intermediate hypercube cluster is m − 1.
Intermediate clusters are referred to as the clusters other than the first and last clusters
where the source node and destination node reside. Now, after our way of defining KCube,
the following result will be achieved.

Lemma 2. The average number of steps required to reach from an input node to an output

node in a KC(m, k) inside an intermediate hypercube cluster is m
2

.

CHAPTER 3. TOPOLOGICAL PROPERTIES OF THE KCUBE GRAPH 28

Proof. Since the hypercube is node-symmetric, without loss of generality we assume the
entering input node is 0m that wishes to reach to the appropriate output node to route the
message to the next cluster. There are 2m−1 different output nodes and we want to examine
the distance of each from the node 0m. Changing each 0 to 1 will increment the Hamming
weight by one and as a result, after taking each step, the group of output nodes or input
nodes will be changed to the other group. In other words, nodes at distance one are output
nodes, nodes at distance two are input nodes, nodes at distance three are output nodes and
so on. Therefore, all the output nodes are residing at odd distance from node 0m. Since
we assumed we enter the Qm from node 0m, we can simply count the nodes with the same
Hamming weight which also represent the distance from 0m:

if m is odd : 1 ∗
(
m

1

)
+ 3 ∗

(
m

3

)
+ . . .+m ∗

(
m

m

)
if m is even : 1 ∗

(
m

1

)
+ 3 ∗

(
m

3

)
+ . . .+ (m− 1) ∗

(
m

m− 1

)
There is 2m−1 output nodes, then the average distance in both cases will be:

1 ∗
(
m
1

)
+ 3 ∗

(
m
3

)
+ . . .+m ∗

(
m
m

)
2m−1 =

m

2
;

1 ∗
(
m
1

)
+ 3 ∗

(
m
3

)
+ . . .+ (m− 1) ∗

(
m

m−1

)
2m−1 =

m

2

Theorem 3.2.1. The average distance between two nodes in Kautz graph, K(d, k), is

k − 1
d−1 [33].

It can be seen that the average distance in a Kautz graph is very close to its diameter and
in fact, it can be approximated by k . Using this result together with what we have achieved
in lemma 2, we are able to determine the average distance between a pair of nodes in a
KCube network.

Corollary 3.2.2. The average distance between two nodes, residing in two different hyper-

cube clusters in a KC(m, k), is m(k+1)
2

+ k.

Proof. There are k+1 hypercube clusters to traverse as well as k remote arcs (Kautz edge):
t(n) = (k + 1) ∗ m

2︸ ︷︷ ︸
hypercube steps

+ k︸︷︷︸
Kautz steps

= m(k+1)
2

+ k

This number is almost half of the upper bound achieved in Guo et al. [9]. As we expect
intuitively, the new arrangement of input and output nodes has made the routing procedure
among the processors of the network more flexible.

CHAPTER 3. TOPOLOGICAL PROPERTIES OF THE KCUBE GRAPH 29

In the next section we study the Hamiltonicity property of our proposed KCube network.

3.3 Hamiltonicity of KCube

The Hamiltonicity property for an interconnection network is one of many important prop-
erties relevant to parallel computing and has been studied for many interconnection net-
works, e.g. [19, 38]. For example, if a network is Hamiltonian, then we can embed a linear
array into the network so that all algorithms designed for linear arrays can be readily exe-
cuted on the network as well. As the embedding capability increases, the network can be a
host to more guest graphs. Hamiltonicity is also used to create independent spanning tree
and results in designing fault-tolerant protocols [15].

In this section we first review some properties of the hypercube and Kautz graph needed
to prove the existence of a Hamiltonian cycle in KCube. A valuable attempt has been made
by Zhao [37] to show that KC(1, k) and KC(2, k) are Hamiltonian, while we prove there
is a Hamiltonian cycle in the general KC(m, k) using our definition of input and output
nodes.

Definition 16. A connected bipartite graph with bipartitions V1 and V2 is called Hamiltonian-

laceable if it has u; v Hamiltonian path for ∀u, v where u ∈ V1 and v ∈ V2.

Graphs possessing this property allow us to start the path from one arbitrary node which
lies in one set of bipartition, traverse a Hamiltonian path, and terminate it at any node lying
in the other bipartition set. Fig 3.2 shows a Hamiltonian path in a bipartite graph that starts
from one set of bipartition and ends at the other set of bipartition.

Theorem 3.3.1. All hypercube graphs are Hamiltonian-laceable [8].

This property of hypercubes can be proved by induction on the dimension of the hy-
percube Qm. For the case m = 1 it is trivial that the statement holds. Suppose Qm is
Hamiltonian-laceable. If we join the two identical copies of Qm to form a Qm+1, the
Hamiltonian paths of Qm’s can also be joined to form a Hamiltonian path in Qm+1.

Theorem 3.3.2. Kautz digraphs are Eulerian [2].

This is because a digraph G has an Eulerian cycle if and only if for each node v of G, its
in-degree is equal to its out-degree [19] and this condition is satisfied by the Kautz graph.

Now we are ready to show the Hamiltonicity of KCube graph.

Theorem 3.3.3. KC(m, k) is Hamiltonian.

CHAPTER 3. TOPOLOGICAL PROPERTIES OF THE KCUBE GRAPH 30

Figure 3.2: Hamiltonian Path u; v in a Laceable Bipartite Graph

Proof. Recall that in a KCube KC(m, k) corresponding to the Kautz graph K(d, k), we
have d = 2m−1.

For m < 3:
If m = 1, then d = 21−1 = 1 and the corresponding Kautz graph K(1, k) has exactly

two nodes that form a loop, for any k ≥ 1. In this case, the hypercube cluster used is Q1

with two nodes and KC(1, k) is simply a 4-cycle, thus Hamiltonian. See Fig 3.3.

Figure 3.3: a. K(1, k) ; b. KC(1, k)

If m = 2, we show that KC(2, k) is Hamiltonian for any k ≥ 1. Since K(2, k)

is Eulerian, we take any such a cycle. The in-degree and out-degree of K(2, k) are 2,
which means that each node of it is entered twice and exited from twice. Now consider

CHAPTER 3. TOPOLOGICAL PROPERTIES OF THE KCUBE GRAPH 31

21

12

20

02

01

10

00

01

10

11

00

00

00

00

00

10

 10

10

10

10

01

01

01

01

01

11

11

11

11

11

Figure 3.4: A Hamiltonian Cycle in KC(2, 2).

the KC(2, k) associated with this K(2, k). When the Eulerian cycle enters a hypercube
cluster, it does so through an input node. Now it needs to go to another cluster which can
be done by going to an output node which is directly connected to this input node. In fact,
since the hypercube cluster is a 2-cube, this input node is directly connected to both output
nodes. So no matter which Eulerian cycle is used, we can combine the Eulerian cycle with
the fact that each hypercube cluster is a 2-cube to obtain a Hamiltonian cycle. For example,
if we pick the Eulerian cycle

02→ 21→ 12→ 21→ 10→ 02→

20→ 01→ 10→ 01→ 12→ 20→ 02

in K(2, 2), then the Hamiltonian cycle associated with it in KC(2, 2) by our construction
is given in Fig 3.4.

For m ≥ 3:
It is well-known that all Kautz graphs are Hamiltonian [18]; we know that K(d, k) has

a Hamiltonian cycle. This Hamiltonian cycle can then be used to construct a Hamiltonian
cycle in KC(m, k) that is associated with K(d, k) where d = 2m−1. To see this, we use the
result from Theorem 3.3.1 that a hypercube is Hamiltonian-laceable. Let the Hamiltonian
cycle of the K(d, k) be u1 → u2 → . . .→ un → u1. We start from an output node v in the

CHAPTER 3. TOPOLOGICAL PROPERTIES OF THE KCUBE GRAPH 32

hypercube cluster corresponding to u1. Following the Hamiltonian cycle, we go to an input
node of the hypercube cluster corresponding to u2. In general, When the Hamiltonian cycle
enters a node inK(d, k), it now enters an input node in the correspondingKC(m, k), which
then traverses through all the nodes in the Qm through a Hamiltonian path (guaranteed to
exist by Theorem 3.3.1) to an output node, which then leaves the node to go to an input
node from another cluster which is the next node in the Hamiltonian cycle of the K(d, k).
Please see Fig 3.5. Finally, we will go back to an input node in the cluster corresponding to
u1 which can then go to the original output node in the same cluster, forming a Hamiltonian
cycle in the KC(m, k).

312 121 212

(a)

000 001

010 011

100 101

110 111
312

121

212

(b)

Figure 3.5: a. Part of Hamiltonian Cycle in K(4, 3) ; b. Part of Hamiltonian Cycle in
KC(3, 3)

3.4 Connectivity of KCube Networks

A graph G is n-connected if there exist n internally node-disjoint paths between any pair of
nodes. The connectivity κ(G) ofG is the greatest integer n such that G is n-connected [19].

CHAPTER 3. TOPOLOGICAL PROPERTIES OF THE KCUBE GRAPH 33

The connectivity of a network is directly related to the network’s fault tolerance property.
In KC(m, k) where d = 2m−1, m + 1 is an upper bound on its connectivity because

there can be at most m+ 1 disjoint paths between two nodes with a degree of m+ 1 where
the source is an output node and the destination is an input node.

We have the following result on the connectivity of the KCube whose proof is straight-
forward:

Lemma 3. The connectivity κ(KC(m, k)) of the KCube is m.

Proof. It is shown that the κ(K(d, k)) = d [18] and κ(Qm) = m [19]. Also, that each
node u in the KCube can be uniquely written as u =< u1, u2 > where u1 is the Kautz
label of u and u2 is the hypercube label. Consider two arbitrary nodes u =< u1, u2 > and
v =< v1, v2 >. We divide the proof into two cases:

Case 1: If u and v are in the same hypercube cluster, namely, u1 = v1, then clearly
there are m disjoint paths between u and v since Qm is m-connected. There is one more
disjoint path that can possibly exist if u is an output node and v is an input node. In that
case, the path traverses from u using Kautz edges and ends the path at v. Note that no edges
of the hypercube clusters that u and v reside are used. However, in other three possibilities
for u and v’s group, namely, input/input, output/output, and input/output, there will be m
disjoint paths from u to v, since the path from u has to use inside hypercube cluster edges
to reach v .

Case 2: If u and v are in two different hypercube clusters. We show that in this case that
there are also m node-disjoint paths between u and v. In the hypercube with Kautz label
u1, we can first travel from node u to m different output nodes (note that each hypercube
cluster has 2m nodes that half of them are output nodes, the other half are input nodes,
d = 2m−1, and m such paths are guaranteed to exist). Each of these output nodes is a
starting point of a unique path to an input node of the hypercube cluster of v1, and there are
m such paths (guaranteed to exist by the connectivity of the κ(K(d, k)) = d where m ≤ d,
and the fact that each input node of a cluster is connected to one unique output node from
another cluster). Once inside the hypercube cluster v1, there exist m disjoint paths from
these m input nodes to the node v = (v1, v2) since Qm is m-connected. Similar to case1,
there can be m + 1 disjoint paths only when u is an output node and v is an input node.
In that case, in addition to the paths explained before, there is one more path that does not
use hypercube edges of clusters which u and v reside. In other three possibilities of u and
v’s group, namely, input/input, output/output and input/output, there cannot be a path that
avoids hypercube edges of source and destination clusters.

It is worth noting that if we treat the KCube as an undirected graph, then the connectiv-

CHAPTER 3. TOPOLOGICAL PROPERTIES OF THE KCUBE GRAPH 34

ity would be m + 1. This can be obtained from the fact that each node in the KCube has a
degree of m+ 1. Therefore, removing m+ 1 neighbours of a node will make this node an
isolated one and the graph will become disconnected while after removal of m nodes the
graph stays connected.

Table 3.1 illustrates a comparison among some properties of the hypercube, the Kautz
graph and the new version of KCube.

Table 3.1: Properties of Interest of the Hypercube, Kautz and the New Version of KCube
Network

Graph Network Size Degree Hamiltonian Connectivity

Q(m) NH = 2m m Yes m

K(2m−1, k) NK = 2(m−1)K + 2(m−1)(k−1) 2m Yes 2m

KC(m, k) NKC = NH ×NK m+ 1 Yes m

Chapter 4

Broadcasting on KCube Networks

4.1 Introduction

There exist a host of communication problems in any interconnection network, such as the
problem of broadcasting, gossiping, and total exchange, etc. In this chapter, we consider
the broadcasting algorithm, one of the most important communication primitives on an
interconnection network, where one processor (source) wishes to send a piece of data to
all other processors in the network. This communication problem has been widely stud-
ied for many network topologies including the de Bruijn graph and Kautz graph [3, 28],
and naturally, the hypercube [20, 32]. In an interconnection network where processors are
connected according to a certain topology, communications among processors are accom-
plished by sending messages along the interconnection links. Two possible communication
models exist for each node of the network: single-port and all-port. In a single-port model,
in one time unit, a processor can send (receive) at most one datum of fixed length to (from)
one and only one of its neighbours. On the other hand, in an all-port model, in one time
unit, a processor can send (receive) one datum of fixed length to (from) all its neighbours.
For our discussion, we assume the single-port model. For any interconnection network with
a total of N processors, a trivial lower bound is its diameter. Another trivial lower bound is
Ω(logN). This is because after each broadcasting step, the number of processors with the
message can at most double. Therefore, for KC(m, k), the lower bound for broadcasting
is Ω(log((dk + dk−1)2m)) = Ω(k log d) = Ω(km) where d = 2m−1. For the n-dimensional
hypercubeQn with 2n nodes, the broadcasting can be done easily in optimal timeO(log 2n)

= O(n).

35

CHAPTER 4. BROADCASTING ON KCUBE NETWORKS 36

4.2 Kautz Digraph Broadcasting and Spanning Tree

As the first step, we review some definitions needed for this chapter and then we dicuss
Kautz digraph broadcasting and spanning tree [14] of this network.

Definition 17. A spanning tree T of graph G is a subgraph of G in which V (T) = V (G)

where T is a tree (a graph that contains no cycle).

Definition 18. A d-ary tree is defined to be a tree whose nodes have no more than d chil-

dren.

Definition 19. For any digraph G and node u ∈ V (G), a broadcast spanning tree of G

with root u is defined to be a spanning tree Tu of G such that for any node v, if nodes

receive the message directly from v, then there are arcs between those nodes and v [28].

Fig 4.1 illustrates a de Bruijn graph B(2, 3) and its corresponding broadcast spanning
tree.

Figure 4.1: a. B(2, 3) ; b. Broadcast Spanning Tree of B(2, 3) with Root 000

Since the diameter of K(d, k) is k, from any node, all other nodes can be reached in
at most k steps. Additionally, the following lemma from [28] implies that we are able to
generate the broadcast tree in K(d, k):

Lemma 4. For any Kautz digraph K(d, k) with d ≥ 2 and k ≥ 2, and any vertex u,

there exists a spanning d-ary tree of K(d, k) of depth k with root u, and this depth k is the

smallest possible.

CHAPTER 4. BROADCASTING ON KCUBE NETWORKS 37

210

101 102

010 012 020 021

120 121 201 202 212

Figure 4.2: Spanning Tree in K(2, 3) Starting in Node 210

It can be observed that since the diameter is k, the depth of the spanning tree cannot
exceed k. Each node xkxk−1...x1 of the tree has children from left to right xk−1...x1α, α ∈
{0, 1, ..., d}−{x1} except if they already appear at a previous level of the tree, in which case
the corresponding branch stops. Fig 4.2 is an example of generating a d-ary broadcasting
spanning tree for K(2, 3).

However, the spanning tree generated by this approach is not guaranteed to be generic.
This property is important in terms of hardware implementation efficiency [35]. A generic
spanning tree for a graph with diameter k and fixed out-degree d has two conditions:

1. All leaf nodes are at distance k from the root
2. All non-leaf nodes have d outgoing links.
By applying an approach from [35], we can make the broadcast spanning tree for

K(d, k) almost generic. It uses specific nodes for source nodes called twin nodes. Twin
nodes are pairs of nodes with double links or parallel links, i.e., they both have out-degree
arcs to each other. Such nodes in K(2, 3) are node pairs {010, 101} or {202, 020}.

In [35], it has been shown that if the source node is among the twin nodes, we can
obtain an almost generic spanning tree. That is, all leaf nodes are at distance k from the
root and it is a d-ary tree with the exception of the twin brother node of the root. This twin
brother node of the root has d− 1 outgoing edges.

In this process, since the broadcasting spanning tree is d-ary, in each unit of time, or
level of the tree, each processor can send the message to d other processors through its
out-degree links according to Kautz digraph definition, except for the twin brother node of
the root which has d− 1 outgoing links.

Fig 4.3 shows the almost generic spanning tree of K(2, 3).

CHAPTER 4. BROADCASTING ON KCUBE NETWORKS 38

210

101

102

010 012

020 021

120 121

201 202 212

Figure 4.3: Almost Generic Spanning Tree in K(2, 3) Starting in Twin Node 101

Hypercube Broadcasting

According to the hypercube construction, in an n-cube, a source node can easily broadcast
a message to all other processors in a single-port model with the following scheme [31]:

Each node is denoted by xnxn−1 . . . x1, xi ∈ {0, 1}. Since the hypercube is node-
symmetric, without loss of generality, we assume the source node containing the initial
message is 0n. At the first step, it will communicate the message with node 0n−11 through
the direct edge by changing the first (rightmost) bit. Now, the number of informed nodes
is doubled. At the second step, these nodes will communicate the message through the
edge corresponding to their second bit. Generally, the communications at step i occur by
changing the ith position of the binary sequence of informed nodes. In other words the
message is sent through the edge corresponding to the ith bit of the nodes. This process
will be completed after log2N (N is the number of processors) steps, because at each
step the number of nodes that receive the message is doubled. Fig 4.4 shows the steps
of broadcasting in a 3-cube. Note that the black nodes are those who have received the
message by the time of that step.

CHAPTER 4. BROADCASTING ON KCUBE NETWORKS 39

Figure 4.4: Broadcasting Steps in 3-cube

This process can be performed starting from any node of the n-cube. Furthermore, the
nodes that are engaged in step i will form a hypercube of dimension i if the missing edge
between the nodes are added.

4.3 Broadcasting on the KCube Network

We know that KC(m, k), where m is the dimension of hypercube clusters and k is the
corresponding Kautz graph’s diameter, is a graph obtained by combining a Kautz digraph
and hypercubes such that each node of the Kautz digraph is replaced by a hypercube of
appropriate dimension. Our broadcasting scheme in the KCube takes advantage of this
composition. Hypercube broadcasting also plays an essential role. The idea for our broad-
casting algorithm is simple: we first perform the hypercube broadcasting in the hypercube
cluster C where the source node resides. This cluster C, when viewed as a single node in
the almost generic spanning tree, is connected to d other clusters (also viewed as nodes).
This hypercube cluster is connected to d other clusters via its output nodes and the input
nodes of the other clusters. The step when C sends its message to its d children in one
step (all-port model) in the spanning tree can now be accomplished in constant time in a
single-port model on the corresponding KCube. These clusters that just get the message
can perform a hypercube broadcasting, all in parallel, and the process continues to the next
level of clusters in the spanning tree and so on until all leaf clusters all have the message.
This broadcasting algorithm is for the source node whose Kautz label is a twin node. If
the source node is not a twin node, it can route the message to a twin node first in O(m)

time. Fig 4.5 illustrates broadcasting in KC(2, 3). In this example the node < 101, 00 >

wishes to broadcast a piece of data to all other nodes. First, by performing the hypercube

CHAPTER 4. BROADCASTING ON KCUBE NETWORKS 40

broadcasting all the nodes will be informed in the first and starting hypercube cluster. Af-
terwards, through the output nodes of that cluster (black nodes), the message are sent to the
hypercube clusters directly connected to C. By repeating this, the broadcast spanning tree
for KC(2, 3) will be generated.

Figure 4.5: Broadcast Spanning Tree in KC(2, 3)

As for the time of our broadcasting algorithm, since the broadcasting inQm takesO(m)

time and the spanning tree has height k, the total time is O(mk) which is optimal in view
of the lower bound derived earlier.

Chapter 5

Blocking Node Problem

5.1 Introduction

Routing is one of the most fundamental problems in an interconnection network. There are
various routing problems. For example, given a source node s and a target node t, we may
want to find a routing path between s and t. We may also ask such a path be the shortest.
Similarly, we may want to find multiple disjoint paths between the two nodes. And we can
also impose the condition that these disjoint paths be the shortest ones. Several other well-
known disjoint path paradigms exist [26]. For example, we may want to find (1) disjoint
paths between two nodes; (2) disjoint paths from one fixed node to a set of nodes; and (3)
disjoint paths from a set of nodes to another set of nodes of the same cardinality. Routing
algorithms are useful in designing efficient and fault-tolerant routings for the corresponding
networks.

We study the problem of finding a shortest path from a source node to a target node in
the hypercube with the presence of a number of blocking or faulty nodes. Fault-tolerant
routing for the hypercube has been studied extensively and a vast amount of literature
exists. In Chapter 2, we discussed the work by Chiu and Wu [12] as well as Kaneko and
Ito [21]. Our work examines the problem from a different angle by giving some simple
conditions for these paths to exist. These conditions imply a new routing algorithm which
complements the previous routing and is more efficient in certain situations.

In this chapter, we first present two conditions for the shortest path to exist. Next, a
routing algorithm is developed that determines the existence of such a path with no restric-
tion on the number of blocking nodes.

41

CHAPTER 5. BLOCKING NODE PROBLEM 42

5.2 Conditions for Shortest Path Routing with Faulty Nodes
on the Hypercube

When some nodes in the hypercube become faulty, the shortest path routing is to find a
shortest path without using any of the faulty nodes. By symmetry, without loss of gener-
ality, we can assume that one of the nodes is 0n and the other 1n.Thus our problem can be
stated as follows.

Given nodes s = 1n and t = 0n in an n-cube (i.e., t = 0 and s = 2n − 1), and k
other nodes b1, b2, ..., bk (we can call them blocking nodes or faulty nodes), bi 6= s, bi 6= t,
1 ≤ i ≤ k, does there exist a shortest path from s to t that does not intersect any blocking
node bi?

In Chapter 2, we reviewed the work by Chiu and Wu [12] toward fault-tolerant routing
in the hypercube. As defined earlier, a non-faulty node is unsafe if it is adjacent to at least
two faulty nodes or more than two faulty or unsafe nodes. A non-faulty node is safe if it is
not unsafe [21]. We saw the proof in Chapter 2 by Chiu and Wu [12] that if either the source
or the target node is safe, then there is a shortest path from s to t involving no faulty nodes.
Clearly, it is possible that even if both s and t are unsafe, a shortest path could still exist.
Therefore, the condition that either the source node or the target node is safe is simply a
sufficient condition for a shortest path to exist between the source and target nodes.

An improved version of the above routing algorithm is given by Kaneko and Ito [21]
where the notion of full reachability is introduced. A non-faulty node u is fully reachable
with respect to Hamming distance h if every non-faulty node which is distance h away
from u is reachable (involving no faulty nodes) from u by a path of length h [21]. Simula-
tion results show that their algorithm performs better than the one from [12] in that larger
percentage of paths found are shortest paths.

In [17], it was assumed that the number of faulty nodes is no more than n − 1, node
failures occur dynamically, and each node knows the faulty status of its neighbours. It is
worth pointing out that in their routings, each node knows the states of its nearest neigh-
bours only, while we know all the blocking nodes. Thus their problems are not the same as
ours.

In view of the above, our work studies the routing problem from a different angle and
in a sense, complements the previous work.

We will first consider the case when the number of blocking nodes is less than n. This
condition was also pointed out in [12].

Lemma 5. In Qn, n ≥ 2, if the number of blocking nodes is less than n, then there exists a

shortest path from s to t that does not intersect any of the blocking nodes.

CHAPTER 5. BLOCKING NODE PROBLEM 43

Proof. If n = 2, with at most one blocking node, it is clear that there is a shortest path from
11 to 00 avoiding the blocking node. We now assume n ≥ 3.

If there exists an (n − 1)-cube containing node 0 with exactly n − 1 blocking nodes,
without loss of generality, let these blocking nodes be

0 b1,n−2 b1,n−3 · · · b1,1 b1,0

0 b2,n−2 b2,n−3 · · · b2,1 b2,0

...

0 bn−1,n−2 bn−1,n−3 · · · bn−1,1 bn−1,0

In this case, since 10n−1 is not a blocking node, we can route 1n to 0n as follows: 1n ∗→
10n−1 → 0n.

If there is no such an (n − 1)-cube containing 0 with n − 1 blocking nodes, then each
column of the blocking nodes has at least one 1. In this case, since there are n 1’s in s while
we only have n − 1 blocking nodes, there must be one dimension i such that if we set the
1 of s in that dimension to 0, the resulting node is different from all the blocking nodes.
Therefore, we also have an (n−1)-cube containing 0 that has at most n−2 blocking nodes.
As another example, let n = 3, and b1 = 100 and b2 = 011. We want to flip one bit of
s = 111 so that it is not equal to any of the blocking nodes. In this case, we can make it
to 101 or 110. If we make it to s′ = 101, we can throw out 011, as it is no longer in the
2-cube containing 000, 100, and 101 since 011 has a 1 in column 1. Thus, what we do now
is to look for a path from 101 to 000, with at most one blocking node, in a 2-cube which
can be done by the inductive assumption. In fact, the path is 111 → 101 → 001 → 000.
The situation is similar if we change 111 to 110.

In both cases, the proof is then completed by induction.

We now look at the case when the number of blocking nodes is n.

Lemma 6. In Qn, n > 2, with n blocking nodes b1, b2, ..., bn, there exists a shortest path

from s = 1n to t = 0n that does not intersect any of the blocking nodes if and only if

(a) {b1, b2, · · · , bn} 6= {011...11, 101...11, · · · , 111...10} and

(b) {b1, b2, · · · , bn} 6= {00...001, 00...010, · · · , 10...000},
i.e., at least one neighbour of s is not a blocking node and at least one neighbour of t is not

a blocking node.

CHAPTER 5. BLOCKING NODE PROBLEM 44

Proof. The “only if” part is trivial because if such a path exists, it has to go through one of
the neighbours of t and one of the neighbours of s.

If for some i, all the n blocking nodes have 0 in dimension i, i.e., the ith column of the
blocking nodes is 0, then we can easily route s to 00 · · · 010 · · · 0, where 1 is in dimension
i (note that 00 · · · 010 · · · 0 is not a blocking node), by correcting bits in j, j 6= i and
0 ≤ j ≤ n− 1 in any order, and then to 0.

If there is no such a 0 column, since the only case when each column has exactly one 1
is when the blocking nodes are 000...001, 000...010, ..., 010...000, and 100...000, we claim
that when the condition as specified holds, then there exists a neighbour s′ of s that is not
one of the blocking nodes such that the Qn−1 containing t and s′ contains at most n − 2

original blocking nodes, that is, there exists a column i of the blocking nodes with at least
two 1’s such that when we set the bit of s in dimension i to 0 to obtain s′, there are at
most n − 2 blocking nodes in the Qn−1 containing 0 and s′ = 111 · 101 · · · 1 and s′ is
different from any of the blocking nodes. To see this, since we can permute the columns
of the blocking nodes (and we can certainly order the blocking nodes), the blocking nodes
are as shown in Fig. 5.1 where k ≥ 1 and each of the first k columns has at least two 1’s.
We consider the following two cases. If k = n, then the only way that changing a 1 to
0 in s = 1n in any dimension results in a blocking node is when the blocking nodes are
{b1, b2, · · · , bn} = {011...111, 101...111, · · · , 111...110}. If 1 ≤ k ≤ n − 1, changing a 1
in any of the first k dimensions of 1n to 0 will not result in a blocking node (see Fig. 5.1).
Therefore, our claim is true. This claim combined with Lemma 5 implies that there exists
a shortest path from s to t not intersecting any of the blocking nodes.

Figure 5.1: Blocking Nodes.

Intuitively, the smallest number of blocking nodes required such that both Conditions

CHAPTER 5. BLOCKING NODE PROBLEM 45

(a) and (b) in Lemma 6 hold yet there does not exist a shortest path from 1n to 0n is 2(n−1).
This is obtained by making n−1 neighbours of 1n as blocking nodes and n−1 neighbours
of the non-blocking node that is a neighbour of 1n as blocking nodes. For example, if
n = 4, these blocking nodes could be 1110, 1011, 1101, 0110, 0101, and 0011. Note that
the last three blocking nodes are neighbours of 0111, the nonblocking neighbour of 1111.
In fact, we can prove the following result easily:

Proposition 2. In Qn, if the number of blocking nodes is less than 2(n−1) and Conditions

(a) and (b) from Lemma 6 hold, then there exists a shortest path from 1n to 0n.

Proof. We apply induction on n.
For n = 2, if we have one blocking node, then we have a shortest path from 11 to 00.
Assume that the proposition holds for n. Then for Qn+1, we have at most 2((n + 1)−

1) − 1 = 2n − 1 blocking nodes. we consider the following three cases for the at most
2n− 1 blocking nodes.

Case 1. There is one column of 0’s. Let us assume it’s column 1 (dimension n). In
this case, we can route 1n+1 to 0n+1 as follows without intersecting any blocking node:
1n+1 ∗→ 10n → 0n+1. This is because 10n is not a blocking node.

Case 2. There is (at least) one column, say column 1, with exactly one 1. Let us assume
the blocking node with 1 in position 1 is u. If 10n is not a blocking node, i.e., u 6= 10n,
then we can first route 1n+1 to 10n without intersecting any of the blocking nodes easily
(since u has at least one 1 in another position, say position 2, i.e., u = 11 · · ·, a possible
path is 1n+1 → 1011 · · · 1 ∗→ 10n → 0n+1. Note that u is the only blocking node with
position 1 being 1. Thus, node 1011 · · · 1 is non-blocking). If 10n is a blocking node, i.e.,
u = 10n, then one of the node 0n+1’s other n neighbours has to be free. Let this neighbour
be v = 010n−1. Then the routing is 1n+1 ∗→ 110n−1 → 010n−1 → 0n+1. Note that since
there is only one blocking node with column 1 being 1. u is this node. Thus, node 110n−1

is not a blocking node.
Case 3. All columns have at least two 1’s. Since Condition (a) holds, there must be one

dimension such that if we change the 1 in that dimension to 0 in 1n+1, it will not result in a
blocking node. Thus we now have at most (2n− 1)− 2 = 2n− 3 blocking nodes in a Qn

and by induction hypothesis, there exists a shortest path from 1n+1 to 0n+1.

Clearly, there are cases where such shortest paths exist from s to t in Qn even when the
number of blocking nodes is greater than 2n−3. Thus the above result is simply a sufficient
condition. It would be interesting to characterize the necessary and sufficient conditions for
which such paths exist for any given set of blocking nodes.

CHAPTER 5. BLOCKING NODE PROBLEM 46

000 001

010 011

100 101

110 111

Figure 5.2: Dead End Node (Gray Node) and Blocking Nodes (Black Nodes) in Q3.

5.3 The Routing Algorithm

In this section, we will present an algorithm which determines the existence of a shortest
path in an n-dimensional hypercube from s = 1n to t = 0n with m blocking nodes where
1 ≤ m ≤ 2n − (n+ 1).

In a 2-cube, if one of the nodes 01 and 10 is not a blocking node, we know that there
is a shortest path between 00 and 11. On the other hand, in a 3-cube, if nodes 110 and 101
are blocking nodes, then we know we cannot go from 111 to 100 (this is also implied by
Lemma 6 in the 2-cube of nodes 100, 101, 110, and 111) and thus 100 is not reachable
from 111. See Fig 5.2. Node 100 in this case becomes a de facto blocking nodes in the
3-cube being considered. This discussion inspires the notion of dead end nodes and the
subsequent algorithm.

5.3.1 IDENTIFICATION Algorithm

We define a dead end node as the node which does not originally belong to the set of
blocking nodes and is not reachable from node 1n in an n-cube. Clearly, any shortest path
between 0n and 1n, if it exists, does not go through any dead end node, that is, a dead end
node acts just like a blocking node.

The IDENTIFICATION algorithm, explained further, identifies dead end nodes in the
n-dimension hypercube with the set of blocking nodes. It is based on the fact that when a
group of blocking nodes of the same Hamming weight, say h, exist such that they block
a non-blocking node, then the blocked node, a dead end node, has a Hamming weight of
h− 1. The correctness of the algorithm is implied by Lemma 6.

We now describe the algorithm. First, blocking nodes will be divided based on their

CHAPTER 5. BLOCKING NODE PROBLEM 47

Hamming weights 1, 2, ..., n − 1 (note that 1n and 0n cannot be blocking nodes). The
algorithm performs an AND operation as follows:

For the blocking nodes with Hamming weight n−1, it performs a bit-wise AND opera-
tion for every possible pairs of nodes (there could beO(

(
h(n−1)

2

)
) such pairs, where h(n−1)

is the number of blocking nodes with Hamming weight of n−1). If the operation results in
a node with Hamming weight n−2, the new node is a dead end node and is added to the set
of blocking nodes with Hamming weight of n − 2 as a new blocking node, If the result is
not a node with Hamming weight of n−2 or if it is already a blocking node with Hamming
weight n − 2, we leave it and do nothing further. Essentially, this step finds all the nodes
that cannot be reached from 1n in one step (inside a 2-cube containing node 1n). Then, the
algorithm proceeds to the next step with the blocking nodes with Hamming weight n − 2

and performs the same operations for every three of them (there could be O(
(
h(n−2)

3

)
) such

triples). Similarly, this step finds all the nodes that cannot be reached in two steps from 1n

(inside a 3-cube containing the node 1n). The process continues until it finishes performing
for every group of (n−1) blocking nodes among the blocking nodes with Hamming weight
of 2.

To demonstrate this procedure, consider a Q4 with the following set of blocking nodes:
{1110, 1011, 1101, 0011}. We first group the blocking nodes into two groups with Ham-
ming weights 3 and 2.

Hamming weight = 3 : {1110, 1011, 1101}

Hamming weight = 2 : {0011}

We begin with blocking nodes with Hamming weight of n−1 = 3, which are 1110, 1011, 1101,
and we perform the following operations:

1110 ∧ 1011 = 1010

1110 ∧ 1101 = 1100

1011 ∧ 1101 = 1001

Since all the resulting nodes have Hamming weight 2, they are dead end nodes and will
be added to the set of blocking nodes with Hamming weight of 2. Hence, the new set of
blocking nodes with Hamming weight of 2 has been updated to: {0011, 1010, 1100, 1001}.

For the next set of operations, we have:
0011 ∧ 1010 ∧ 1100 = 0000

0011 ∧ 1010 ∧ 1001 = 0000

0011 ∧ 1100 ∧ 1001 = 0000

CHAPTER 5. BLOCKING NODE PROBLEM 48

1010 ∧ 1100 ∧ 1001 = 1000

After this step, we get one dead end node 1000 which is added to the set of blocking
nodes with Hamming weight 1 and the algorithm stops.

Now we are ready to present a necessary and sufficient condition to determine if there
exists a shortest path from s = 1n to t = 0n in a hypercube of dimension n by utilizing the
IDENTIFICATION algorithm. Obviously, the number of blocking nodes cannot exceed
2n − (n+ 1) because a shortest path from s to t in an n-cube consists of n+ 1 nodes.

Theorem 5.3.1. In Qn with m blocking nodes, 1 ≤ m ≤ 2n − (n + 1), there exists a

shortest path from s = 1n to t = 0n that does not intersect any of the blocking nodes if and

only if after performing the IDENTIFICATION algorithm, at least one of the 0n neighbours

is a non-blocking node (neither original blocking node nor dead end node).

Proof. Necessary: If such a shortest path exists, it has to go through one of the 0n neigh-
bours, say u. Then u cannot be one of the blocking nodes or dead end nodes.
Sufficient: We show that if after running the algorithm, at least one of the neighbours of 0n

is a non-blocking node, then we can actually construct a shortest path from 0n to 1n.
Without loss of generality, assume that this non-blocking neighbour node is j = 10n−1.

We can go from 0n to j in one step. Now we need to go to one of the neighbours of j whose
Hamming weight is one more than j’s. If all the neighbours of j with weightH(j)+1 = 2,
namely, nodes 1100 · · · 00, 1010 · · · 00, ..., 1000 · · · 01, are blocking nodes, then j would
have been generated as a blocking node during the procedure, since

1100 · · · 00 ∧ 1010 · · · 00 ∧ . . . ∧ 1000 · · · 01 = 1000 · · · 00,

a contradiction. Therefore, at least one of j’s neighbours with weight= H(j)+1 is not a
blocking node. Now we add the edge from j to this non-blocking node to the shortest path
and continue in the same fashion.

As an example, consider a Q3 with blocking nodes: {101, 011, 100, 010}. If we run the
IDENTIFICATION algorithm, it will generate 001 as a dead end node. Therefore, there is
no such node among 0n neighbours which is non-blocking node, because 100 and 010 are
blocking nodes.

Of course, if at any time during the algorithm, the number of blocking nodes (the origi-
nal blocking nodes plus newly created dead end nodes) with Hamming weight h is equal to(
n
h

)
, the total number of nodes in an n-cube with Hamming weight h, the algorithm should

be terminated because we know that there does not exist a shortest path between 1n and 0n.

CHAPTER 5. BLOCKING NODE PROBLEM 49

In [12], Chiu and Wu presented the notions of safe nodes and unsafe nodes that imply
the likelihood for having a shortest path without going through blocking nodes. Their
routing guarantees the existence of a shortest path between nodes A and B depending on
whether A or B is safe. However, the step of identifying the status of each node can cause
inefficiency during the procedure. Moreover, if the source and destination nodes are not
safe, the algorithm is not able to find the shortest path while for our algorithm there is no
constraint on the source and destination nodes to obtain the result. It is worth pointing
out that using the safe node concept is effective when it is applied in low-dimensional
hypercubes, while the efficiency of our approach does not rely on the dimension of the
hypercube. It is also worth pointing out that assumptions made are different between our
work and the others reviewed in this thesis where we know beforehand all the blocking
nodes. Similarly, our algorithm always finds shortest paths if they exist.

Chapter 6

Conclusion

In this thesis we have studied the KCube interconnection network that combines the well-
known Kautz graph and the hypercube. KCube is a novel architecture for connecting many
processors in an interconnection network or communication network that was first proposed
in 2010. We proved some interesting properties of the KCube and designed a communica-
tion algorithm as well. In addition, we investigated a well-known paradigm of the shortest
path routing problem in the classic binary hypercube and achieved results pertaining to the
faulty hypercube network.

In particular, we:

• Proposed a new methodology for constructing KCube with more flexibility in terms
of connection between input and output nodes;

• Found the average number of steps required for routing between two nodes in a
KC(m, k);

• Showed the existence of a Hamiltonian cycle for the general KC(m, k);

• Found the connectivity of KCube, which is equal to m when the KCube is treated as
a directed graph;

• Designed an optimal broadcasting algorithm in the single-port model for KC(m, k)

regardless of what arrangements for input and output nodes is used. This algorithm
meets the lower bound broadcasting time defined for KCube network.

• Studied a well-known paradigm of the shortest path routing problem. A few suffi-
cient conditions for different cases depending on the number of faulty nodes were
presented.

50

CHAPTER 6. CONCLUSION 51

• Introduced an algorithm, which also implies a necessary and sufficient condition for
the shortest path to exist with presence of any number of faulty nodes.

Since the KCube is a newly proposed topology, further research is required to unravel its
potential properties and algorithms. One of our future aims is to study the routing problem
and to find the diameter of the KCube. Also, it would be interesting to design application
algorithms such as sorting for the KCube.

As for the blocking node problem in the hypercube, we have only concentrated on
finding/characterizing necessary and sufficient conditions for the shortest paths to exist so
far. Our next step would be to evaluate the time complexity of the algorithm requires.
Clearly, our algorithm could be inefficient in certain cases. In an initial evaluation of our
method, we find that of how blocking nodes are distributed in the hypercube affects the
time to obtain the result. For example, the more blocking nodes are close to either 0n or 1n,
the less time is needed for the IDENTIFICATION algorithm to be completed. This is due
to the steps of any Hamming weight that the algorithm will skip if there is no any blocking
node of that specific Hamming weight and before that.

We are working toward analyzing its average time and cases when it performs effi-
ciently.

Bibliography

[1] S.G. Akl. Parallel Computation: Models and Methods. Prentice-Hall, Inc., 1997.

[2] J. Araujo, J-C. Bermond and G. Ducoffe. Eulerian and Hamiltonian Dicycles in Di-
rected Hypergraphs. Discrete Mathematics, Algorithms and Applications, 6(01):pages
1450012, 2014.

[3] J-C. Bermond and S. Perennes. Efficient Broadcasting Protocols on the De Bruijn and
Similar Networks. In Proc. 2nd Colloquium on Structural Information and Commu-

nication Complexity. Citeseer, 1995.

[4] J.A. Bondy and U.S.R. Murty. USR Murty Graph Theory with Applications, 1976.

[5] W.G. Bridges and S. Toueg. On the Impossibility of Directed Moore Graphs. Journal

of Combinatorial theory, series B, 29(3):pages 339–341, 1980.

[6] D.J. Bruijn. A Combinatorial Problem. Proceedings of the Koninklijke Nederlandse

Akademie van Wetenschappen. Series A, 49(7):pages 758, 1946.

[7] J.M. Brunat. Explicit Cayley Vovers of Kautz Digraphs. the electronic journal of

combinatorics, 18(1):pages 105, 2011.

[8] C.C. Chen and N.F. Quimpo. On Strongly Hamiltonian Abelian Group Graphs. In
Combinatorial mathematics VIII, pages 23–34. Springer, 1981.

[9] D. Guo, H. Chen, Y. He, H. Jin, C. Chen, H. Chen Z. Shu, and G. Huang. KCube:
A Novel Architecture for Interconnection Networks. Information Processing Letters,
110(18):pages 821–825, 2010.

[10] M.S. Chen and K.G. Shin. Adaptive Fault-Tolerant Routing in Hypercube Multicom-
puters. IEEE Transactions on Computers, 39(12):pages 1406–1416, 1990.

52

BIBLIOGRAPHY 53

[11] W.K. Chiang and R.J. Chen. Distributed Fault-Tolerant Routing in Kautz Networks.
In Distributed Computing Systems, 1992., Proceedings of the Third Workshop on Fu-

ture Trends of, pages 297–303. IEEE, 1992.

[12] G.M. Chiu and S.P. Wu. A Fault-Tolerant Routing Strategy in Hypercube Multicom-
puters. IEEE Transactions on Computers, 45(2):pages 143–155, 1996.

[13] M. Flynn. Some Computer Organizations and Their Effectiveness. IEEE Transactions

on Computers, 100(9):pages 948–960, 1972.

[14] Z. Ge and S. L. Hakimi. Disjoint Rooted Spanning Trees with Small Depths in De
Bruijn and Kautz Graphs. SIAM Journal on Computing, 26(1):pages 79–92, 1997.

[15] E. Ghosh. Hamiltonicity and Longest Path Problem on Special Classes of Graphs.
Thesis Department of Computer Science and Engineering Indian Institute of Technol-

ogy, 2011.

[16] Q.P. Gu and S. Peng. Optimal Algorithms for Node-to-Node Fault Tolerant Routing
in Hypercubes. The Computer Journal, 39(7):pages 626–629, 1996.

[17] K. Day, S. Harous and A-E. Al-Ayyoub. A Fault Tolerant Routing Scheme for Hy-
percubes. Telecommunication Systems, 13(1):pages 29–44, 2000.

[18] J-C. Bermond, N. Homobono and C. Peyrat. Connectivity of Kautz Networks. Dis-

crete Mathematics, 114(1):pages 51–62, 1993.

[19] L.H Hsu and C.K. Lin. Graph Theory and Interconnection Networks. CRC press,
2008.

[20] S.L. Johnsson and C.T. Ho. Optimum Broadcasting and Personalized Communication
in Hypercubes. IEEE Transactions on Computers, 38(9):pages 1249–1268, 1989.

[21] K. Kaneko and H. Ito. Fault-Tolerant Routing Algorithms for Hypercube Intercon-
nection Networks. IEICE TRANSACTIONS on Information and Systems, 84(1):pages
121–128, 2001.

[22] W.H. Kautz. Bounds on Directed (d, k) Graphs. Theory of Cellular Logic Networks
and Machines. AFCRL-68-0668 Final report, pages 20–28, 1968.

[23] C. Lavault. Interconnection Networks: Graph and Group Theoretic Modelling. In
12th International Conference on Control Systems and Computer Science (CSCS12),

BIBLIOGRAPHY 54

volume 2, page 207. Romanian Society of Control Engineering and Technical Infor-
matics and Faculty of Control and Computers, 1999.

[24] F.T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays· Trees·
Hypercubes. Elsevier, 2014.

[25] D. Li, X. Lu and J. Su. Graph-Theoretic Analysis of Kautz Topology and DHT
Schemes. In Network and Parallel Computing, pages 308–315. Springer, 2004.

[26] M. Dietzfelbinger, S. Madhavapeddy and I.H. Sudborough. Three Disjoint Path
Paradigms in Star Networks. In Proceedings of the Third IEEE Symposium on Paral-

lel and Distributed Processing, pages 400–406. IEEE, 1991.

[27] S. Gao, B. Novick and K. Qiu. From Hall’s Matching Theorem to Optimal Routing
on Hypercubes. Journal of Combinatorial Theory, Series B, 74(2):pages 291–301,
1998.

[28] M.C. Heydemann, J. Opatrny and D. Sotteau. Broadcasting and Spanning Trees in De
Bruijn and Kautz Networks. Discrete applied mathematics, 37:pages 297–317, 1992.

[29] E Cheng, K. Qiu and Z.Z. Shen. On Disjoint Shortest Paths Routing in Interconnec-
tion Networks: A Case Study in the Star Graph. Congressus Numerantium, pages
157–180, 2013.

[30] K. Qiu and B. Novick. Disjoint Paths in Hypercubes. Congressus Numerantium,
pages 105–112, 1996.

[31] Y. Saad and M.H. Schultz. Topological Properties of Hypercube. IEEE Transactions

on Computers, 37(7):pages 867–872, 1988.

[32] Y. Saad and M.H. Schultz. Data Communication in Hypercubes. Journal of parallel

and distributed computing, 6(1):pages 115–135, 1989.

[33] P. Salinger and P. Tvrdik. All-to-All Scatter in Kautz Networks. In Euro-Par98

Parallel Processing, pages 1057–1061. Springer, 1998.

[34] M.R. Samatham and D.K. Pradhan. The De Bruijn Multiprocessor Network: a Versa-
tile Parallel Processing and Sorting Network for VLSI. IEEE Transactions on Com-

puters, 38(4):pages 567–581, 1989.

[35] G. Smit and P. Havinga. Multicast and Broadcast in the Rattlesnake ATM Switch. In
MMNET, pages 218–226. Citeseer, 1995.

BIBLIOGRAPHY 55

[36] M. Imase, T. Soneoka and K. Okada. Fault-Tolerant Processor Interconnection Net-
works. Systems and Computers in Japan, 17(8):pages 21–30, 1986.

[37] L. Zhao. Properties and Algorithms of the KCube Graphs. Thesis Department of

Computer Science Brock University, 2014.

[38] S. Zhou and H. Xu. A Unified Formulation of Kautz Network and Generalized Hyper-
cube. Computers & Mathematics with Applications, 49(9):pages 1403–1411, 2005.

