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Abs t rac t .  Star networks have been proposed as a possible interconnec- 
tion network for massively parallel computers. In this paper we investi- 
gate embeddings of complete binary trees into star networks. Let G and 
H be two networks represented by simple undirected graphs. An embed- 
ding of G into H is an injective mapping f from the vertices of G into the 
vertices of H. The dilation of the embedding is the maximum distance 
between f(u), f(v) taken over all edges (u, v) of G. 
Low dilation embeddings of binary trees into star graphs correspond 
to efficient simulations of parallel algorithms that use the binary tree 
topology, on parallel computers interconnected with star networks. 
First, we give a construction of embeddings of dilation 1 of complete 
binary trees into n-dimensional star graphs. These trees are subgraphs of 
star graphs. Their height is fl(n log n), which is asymptotically optimal. 
Constructions of embeddings of complete binary trees of dilation 28 and 
26 + 1, for 8 > 1, into star graphs are then given. The use of larger 
dilation allows embeddings of trees of greater height into star graphs. For 
example, the difference of the heights of the trees embedded with dilation 
2 and 1 is greater than n/2. All these constructions can be modified to 
yield embeddings of dilation 1, and 26, for ~ > 1, of complete binary 
trees into pancake graphs. 
Our results show that massively parallel computers interconnected with 
star networks are well suited for efficient simulations of parallel algo- 
rithms with complete binary tree topology. 

1 I n t r o d u c t i o n  

Several large-soMe processor networks of different topologies have been imple- 
mented or are being considered for implementation. Users of these networks 
might wish to use a parallel algorithm which is designed for a different topol- 
ogy. It is therefore necessary to develop methods which would enable the user 
to simulate efficiently one network topology, say G, on a different topology, say 
H.  Usually, different processors of G would be mapped on different processors of 
H. In case when a processor in network H can communicate directly only with 
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those processors to which it is directly connected (the store and forward commu- 
nication mode), an efficient simulation would require that  the processors which 
are adjacent in network G would be mapped either onto adjacent processors of 
H or onto processors that  can communicate with a few intermediate hops. Since 
a topology of a network can be represented by a graph in which the vertices rep- 
resent the processors and the edges represent the communication channels, the 
problem of efficient network simulation can be formulated in graph-theoretical 
terms as that  of finding a graph embedding of G into H with a low dilation. 

Let G and H denote two simple, undirected graphs. In general, an embedding 
of the graph G into the graph H is an injective mapping f of the vertices of G 
into the  vertices of H together with a mapping PI which assigns to each edge 
(u, v) of G a path between f (u)  and f (v )  in H.  

The dilation of a given embedding f ,  denoted by dil(f) ,  is defined to be the 
maximum of {length(P I (u, v)) : (u, v) E E(G)}.  Since our goal is to construct 
embeddings of low dilation, we will take PI to be a mapping that  assigns to each 
edge (u, v) of G a shortest path between the vertices f (u)  and f (v )  of g .  Thus, 
in this paper dil(f)  = max{dlc( f(u) ,  f (v))  : (u,v) E E(G)},  where dH(x, y) 
denotes the distance between x and y in the graph H.  The minimum dilation of 
an embedding of G into H,  denoted dil(G, H), is the minimum of dil( f)  taken 
over all embeddings of G into H. 

The expansion of an embedding f is the ratio of the number of vertices of H 
to the number of vertices of G. Since we use injective mappings in this paper, the 
expansion of all embeddings will be at least one. A number of papers has been 
published in the last ten years on embeddings of a given network into another 
one for networks such as grids, hypercubes, trees (see [10]). 

The star graphs were proposed in [1] as a topology for interconnecting pro- 
cessors in large scale parallel computers. These graphs belong to the family of 
Cayley graphs [3], a family of graphs obtained from representations of groups, 
and they have very many interesting properties [1]. 

Let n be a positive integer. The star graph Sn of dimension n is a graph 
whose vertex set consists of all permutations of {1, 2 , . . . ,  n}. The ith position of 
a vertex xlx2 ...x,~ of a star graph will be referred to as the ith coordinate of the 
vertex. A vertex xlx~ . . .  xn is adjacent to the vertices xix2 . . .  Xi-lXlXi+l . . .  Xn, 
for 2 < i < n, i.e., vertices obtained by a transposition of the symbol in the first 
coordinate with the symbol in the ith coordinate of the vertex for 2 < i < n. 
Thus, the star graph of dimension n has n! vertices and each of its vertices is 

3 adjacent to n - 1 other vertices. The diameter of St, is equal to [~(n - 1)j ([1]). 
For any nonnegative integer h, the complete binary tree of height h, denoted 

Th, is the binary tree where each internal vertex has exactly two children and all 
the leaves are at distance h from the root of the tree. For a complete binary tree 
Th, the level i, 0 < i < h, is defined as the set of all vertices of Th at distance i 
from the root of the tree. The tree Th has h + 1 levels and level i, 0 < i < h, 
contains 2 i vertices. 

The problem of embedding a graph into star graphs has been already studied 
for some families of graphs. Nigam et al. [11] showed that  the star graph Sn 
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contains a Hamiltonian cycle for every n, n > 2, and presented an embedding 
of hypercubes into the star graphs (see also [2], [9]). Jwo et hi. [7] considered 
embeddings of cycles and grids into star graphs. 

Since a complete binary tree is a common topology of many parallel algo- 
rithms, it is important to determine how well the star networks can simulate 
it. Thus, in this paper we consider the problem of embedding complete binary 
trees into the star graph and give constructions of embeddings of low dilation. 
In these constructions there is a trade-off between the dilation and expansion 
i.e., the use of a larger dilation produces a smaller expansion. Notice that em- 
beddings of complete binary trees into star graphs obtained by a composition of 
the known embeddings of binary trees into hypercubes [8] and hypercubes into 
star graphs [11] gives embeddings of dilation at least 2 whose expansion is larger 
than that of the dilation 1 embeddings from Theorem 1. 

Our constructions will use the following property of star graphs. Let a, 1 _< 
_< n, be an integer and let V/~ be the set of all vertices of S,~ in which the 

symbol in the ith coordinate is equal to ~. For every a, the subgraph of Sn 
induced by Vi ~ is isomorphic to Sn-1. Furthermore, the substars induced by Via 
and Vj ~ are vertex disjoint if either i = j and a # ~ or i # j and a = ft. 

We denote by h(n) the height of the largest complete binary tree whose 
number of nodes is at most equal to the number of nodes of the n-dimensional 
star graph i.e., h(n) is the largest integer k such that 2 k + l -  1 ~ n! , and therefore 
h(n) is O(n log n). We denote by h6 (n) the maximum height of a complete binary 
tree that we can embed into Sn with dilation 6. Clearly, ht(n) < h2(n) < 
�9 .. hLs(n-1)/2)j(n) = h(n) since the diameter of the star graph is [ ~ ( n -  1)] ([1]). 

We will describe an embedding of a tree into a star graph by giving a labeling 
of the vertices of the tree with vertices of the star graph on which they are 
mapped. The label of the root of the tree in our constructions will be 12. . .  n. 

We first consider dilation 1 embeddings of complete binary trees into the star 
graphs. This actually produces complete binary subtrees of the star graphs. Our 
construction gives dilation 1 embeddings of complete binary trees into Sn whose 
height is ~(n  log n), which is asymptotically the best possible. 

We then give constructions of embeddings of dilation 2, and discuss embed- 
dings of dilation 26 - 1 and 2~f, for ~ >__ 2, of complete binary trees into the star 
graphs. All constructions for dilations at least 2 follow the same general idea, 
which is different from the one used for dilation 1. The use of larger dilation 
allows us to reduce the expansion of the embeddings by a non-constant factor. 

Our results show that the star networks are very suitable for efficient simu- 
lation of algorithms that are using complete binary tree topology. 

In this paper we give only outlines of the main proofs. All proofs can be 
found in our research report [5]. 

2 E m b e d d i n g s  o f  d i l a t i o n  1 

We begin with a simple result from [4], which will be used in the proof of our 
main theorem on the dilation 1 embeddings of complete binary trees. 
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T h eo rem  1. For every n, n > 2, there is a dilation I embedding of the complete 
binary tree Tn-2 into the star graph Sn. 

Note that  the height of the embedded tree is only proportional to the dimen- 
sion n of the star graph which is far from the upper bound O(n log n). The next 
theorem improves this result by showing the existence of a complete binary tree 
which is a subgraph of S~ and has height 12(n log n), the result being therefore 
asymptotically optimal. 

Theorem 2. For n = 5 or 6 there exists a dilation 1 embedding of the complete 
binary tree of height 2n - 5 into the star graph Sn. For n > 7, there exists a 
dilation 1 embedding of the complete bina~ tree of height h t ( n ) =  p ( n -  2p)+ 3 
into the star graph Sn, where p is defined to be the integer such that (p+ l )2  p-1 < 
n < (p + 2)2p. 

The proof of the theorem is omitted here and can be found in [5]. The idea is 
to first construct embeddings directly for the cases n = 5, 6 or 7. And then, for 
n > 7, (p + 1)2 p-a < n < (p + 2)2 p, to proceed by induction on p, and, for 
a given p, by induction on n, using extensively the next lemma, for which we 
include below the main idea of the construction. 

We first introduce some definitions. The graph formed by a path cocl�9 �9 �9 cp+a 
of length p+  1 in which each vertex ci, 0 < i < p, is adjacent to a pendant vertex, 
will be called the b-comb of length p +  1 (a short for a "broken comb"). The path 
coca...cp+a will be called the main path of the comb. The vertex co will be 
called the initial vertex of the b-comb. 

We define T~p to be a binary tree of height 2p having the following shape. 
The first p - 1 levels (from 0 to p - 2) of the tree T~p form a complete binary 
tree. Each vertex of level p - 2 has two children, each of them being the initial 
vertex of a b-comb of length p + 1. 

A complete binary tree Th,(n), ha(n) > 2p, can be obtained from T~p by iden- 
tifying each leaf at level p+i,  0 < i < p, of T~p with the root of a complete binary 
tree of height hi(n) - p -  i. Thus we construct a dilation 1 embedding of The(n) 
into Sn by giving a dilation 1 embedding of T~p into Sn and by using embeddings 
of Tt, l < ha(n) - p ,  into Sn (which exist by the induction hypothesis). 

L e m m a  3. For any integer n, define p to be the integer such that 
( p +  1)2 p-1 < n < ( p +  2)2 p. Then, for any n >_ 8, 

ha(n) = p + min(hx(n - 1), p + ha(n - 2)). 

O u t l i n e  o f  p roof .  We first construct a labeling of the vertices of the binary 
tree T~p with vertices of Sn so that  
(i) adjacent vertices of the tree are labeled with adjacent vertices of Sn, 
(ii) the labels of all vertices of the complete binary subtree on the first p levels 
(obtained by using Theorem 1) and all vertices of the main paths of the 2 p-a 
combs, are vertices of the substar of Sn having n in the last coordinate. Moreover 
the last vertices of these paths (which are at level 2p ) are labeled with vertices 
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of different substars of Sn of dimension n - 2 whose symbols in the last two 
coordinates are equal to c~n for different symbols a which are not used in the 
levels strictly less than 2p in coordinate n - 1. 
(iii) the labels of the pendant vertices of all the combs (the number of which 
is equal to 2p-l(p + 1)) end with different symbols excluding n (this is possible 
since n > 2P-l(p+ 1)) and therefore they belong to different (n - 1) dimensional 
substars of Sn. 
An example of such a labeling of the tree T~p for p = 3 is given in Figure 1. The 
details of the construction are omitted here and can be found in [5]. 

We now use Tip and its labeling to obtain an embedding of a complete binary 
tree T into Sn. Identify each leaf of Tip at level p + i, 0 < i < p, having a 
label ala2. .  "an, an ~ n, with the root of a complete binary tree of height 
hl(n - 1) - i. The labeling of this complete binary subtree is obtained from 
a dilation 1 embedding of The(n-x) into the star graph Sn-1 by applying the 
permutation 

al a2 . . . an -1  

to its labels, and appending an as a suffix. Finally, identify each leaf of level 
2p of Tip having a label a l a 2 . . . a n  with the root of a complete binary tree of 
height hi (n - 2). The labeling of this complete binary subtree is obtained from 
a dilation 1 embedding of Th,(n-2) into the star graph Sn-2 by applying the 
permutation 

(1  2 . . . n - 2 )  
al  a2 a n - 2  

to its labels, and appending an to them as a suffix. In both cases such embeddings 
of Th, ( , - l )  and Th,(,_~) exist by the definition of hl(n - 1) and hl(n - 2). 

Thus we have obtained a labeling of a tree T of height p + min(hx (n - 1), p + 
hl(n - 2)), which defines an embedding of the tree into Sn. It is clear from the 
construction that this embedding has dilation 1. O 

Using the expression for hi(n) from Theorem 2 we can calculate a lower 
bound on hi(n)  and get the following. 

P ropos i t ion4 .  hi(n) > (1/2+e(n))nlog 2 n where e(n) lends to 0 when n tends 
to infinity. 

Since the number of vertices of S(n) is n!, the largest complete binary tree which 
could be embedded into Sn irrespective of dilation has height [logs(n! + 1)] - 1  < 
n log 2 n for n large enough. From the previous proposition, h~(n) = I2(n log~ n), 
and thus the star graph has as a subgraph a complete binary tree with asymp- 
totically optimal height. The existence of such complete binary subtrees could 
be useful for designing eff• parallel algorithms for star networks. 

3 E m b e d d i n g s  o f  d i l a t i o n  2 

By allowing a larger dilation we can embed larger complete binary tree into star 
graphs. It is simple to verify that Ta cannot be embedded into $4 with dilation 
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1, but it is very easy to obtain a dilation 2 embedding of T3 into $4. In this 
section we give a recursive construction of dilation 2 embeddings of complete 
binary trees into star  graphs. The following lemma,  given without  proof, will be 
used as a start ing point for the reeursion. 

L e m m a  5. There ezists a dilation 2 embedding of 7"8 into $6. 

The next l emma will be used for the recursive step of the main  theorem of this 
section. 

L e m m a  6. For n > 5, 

h2(n)  = h 2 ( .  - 1) + 

O u t l i n e  of  proof.  Let n be an integer, n _> 5, and let j = [log~nJ, i.e., 
2 ./ _< n < 2 j+ l .  We show that ,  given dilation 2 embeddings of complete binary 
tree Th2(1) into Si, for 5 < i < n - 1, we can construct a labeling of the vertices 
of the complete binary tree Th~(n-1)+j with vertices of S,~ such tha t  any two 
adjacent labels correspond to vertices at distance at most  two in S,~, i.e., a 
dilation 2 labeling. 

Assume that  for every i, 5 < i < n - 1, there is a labeling of The(i) with 
vertices of Si, such that  the labels of any two adjacent vertices of The(i) are at 
distance at most  2 in Si. We may also assume without loss of generality that  the 
label of the root of The(i), 5 < i < n -- 1, is equal to 1 2 . . . i .  

If  n is not a power of 2, i.e., n > 2 j, j _~ 2, then Sn consists of at least 
2 j -k- 1 disjoint substars of dimension n - 1. We construct a dilation 2 embedding 
of Th~(,~) into Sn by labeling the first j levels of the tree with vertices of the 
substar  of dimension n -  1 having n in the last coordinate, and by labeling each 
of the 2J subtrees rooted at level j with vertices of a substar  of dimension n - 1 
having symbol i in the last coordinate, 1 < i < 2 j ,  as follows. 

The labels in the levels 0, 1 , . . . ,  j -  1 of The(n) are obtained from the labeling 
of the first j levels of an embedding of 7~(,~-1) into Sn-1,  by appending n to 
each label as a suffix. This is possible since h l (n  - 1) > j - 1 by Theorem 1. 

Let ui, for 1 < i < 2 j ,  denote the label of the ith vertex f rom the left at 
the level j of The(n). The label of ui is obtained from the label of its parent ,  say 
p(ul), by a transposition of the symbol i of p(ui) with the symbol  in the first 
coordinate of p(ui) and then by transposing the symbol i with the symbol  n in 
the last coordinate. If  na2. . ,  an- l i  is the resulting label of ui then the labels of 
the vertices in the subtree of this vertex are obtained from the labels of the tree 
Th~(n-1) into Sn-1 by applying the permuta t ion  

(1 o 
and by appending i to them as a suffix. 

If  n is a power of 2, the construction of a labeling of Th~(,~) is essentially 
similar to the one above, although it involves more work, and will not be given 
here. rn 
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Using the two previous lemmas it is now not difficult to show the following 
result by induction on n (the proof is omit ted here). 

T h e o r e m  7. For every integer n > 6, there is a dilation 2 embedding of the com- 
plete binary tree The(n) into the star graph S, ,  where h2(n) = (n + 1) [log s nJ - 
2 Ll~ + 2. 

The next proposition shows that  the difference between the heights of the 
trees we can embed into Sn with dilation 1 and 2 is at least linear in n. 

P r o p o s i t i o n S .  h2(n) - hi(n) > n/2 for n >__ 12. 

4 E m b e d d i n g s  o f  d i l a t i o n  2 6  a n d  2 6  - 1. f o r  6 >__ :~ 

The construction used in Theorem 7 can be generalized to dilations 26 - 1 and 
26 for 6 >__ 2. Further increase in the dilation allows us to get closer to the upper 
bound on the size of the complete binary tree that  can be embedded into a star 
graph. 

L e m m a 9 .  Let n,6 be integers such that 6 >_ 2, n > 6 + 1, and let j be equal to 

[log 2 nJ. 

h~e - l (n )  = h26-1(n - 1) + j 

h26-1(n) = h ~ _ x ( n  - 6) + 6j + i 

if  (n 1) 6-x 26J+1 - ]-[,=x (n - 6 + i) < 

iS (n-  1)l-IL- (n-6+l) _> 
for some i > 0 and 6j + i -  1 <_ h ~ _ l ( n -  6). 

O u t l i n e  o f  p roo f .  The construction given in the proof of Lemma 6 is valid 
for embeddings of any dilation > 2 and, thus, h2~-x(n) > h26-1(n - 1) + j 
for any 6 > 2. Therefore, we only need to give a construction in case when 
( n -  6-1- 1 ) ( n -  6 - t - 2 ) . . . ( n -  2 ) ( n -  1) 2 > 2 ' j+i  for some i > 0, and 6 j + i -  1 < 
h26-1(n - 6). 
Let k = h26-1(n - 6 ) .  We can construct a dilation 2 6 -  1 labeling of the vertices 
of a complete binary tree Tk+6j+i with vertices of Sn such that  
(i) the labels of the vertices of the first 6j + i levels are vertices of the substar 
of Sn of dimension n - 6 having the symbols of the last 6 coordinates equal to 
( n -  6 + 1 ) ( n -  6 + 2 ) . - . n  
(it) the labels of the vertices of the 26j+i subtrees of height k rooted at level 
6j + i are vertices of different substars of dimension n - 6. The vertices of each 
of the substars contain n in a fixed coordinate i between 2 and n, and if 2 < 
i ~ n - 6 then they have the symbols in the last 6 - 1 coordinates fixed, else if 
n - 6 + 1 < i < n then they have the symbols in the last 6 coordinates fixed. In 
either case the symbols in the last coordinates differ in at least one coordinate 
from ( n - 6 - 1 - 1 ) ( n - 6 +  2 ) . . .  n. The number of substars verifying these conditions 
is ( n - 6 +  1 ) . . .  ( n - 2 ) ( n -  1) 2 which is at least equal to 2 ~j+i by the assumption. 

The details of the construction can be found in [5]. [] 

Similarly we can prove the following lemma. 
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L e m m a  I0.  
to [log 2 nJ. 

h2 , (n)  = h~,(n  - 1) + j  
hz6(n)  = h26(n - '5) + 'hj + i 

Let n,'5 be integers such that ,5 > 2, n > ,5 + 1, and let j be equal 

/ f  (n -- r + 1)(n - '5 + 2 ) . - .  n < 2 '5-/+1 
/f  (n -- '5 + 1)(n -- '5 + 2 ) . - . n  > 26-/+/ 

f o r  some i > 0 and '5j + i - 1 < h26(n - '5). 

In the case of  dilat ion i, for i = 3 or 4, we obta ined  the explicit  formulas  o f  hi (n )  
given in the theorem below. 

T h e o r e m  11. For every integer n > 8, there is a dilation i embedding o f  the 
complete binary tree Thdn),  f o r  i = 3 or 4, into the s tar  graph Sn, where 
ha(n)  = h4(n - 1) + [log2nJ - 1, 
ha(n) ( n + l ) [ l o g ~ n J - 2 t ~ ~ 1 7 6  f o r  2P < n < 2 " + 2 " - 1 - 1  
ha(n) = (n + 1)[log~nJ - 2l,og~,q+l _ 21'og,,,J-a + + 2 
for 2 p + 2  p-' < n < 2  p+I. 

P r o p o s i t i o n l 2 .  For every integer n, n > 8, (n - 5) /6  < h4(n) - h2(n)  < n /4 .  

5 T a b l e  o f  r e s u l t s  a n d  c o n c l u s i o n  

Th e  results of  the previous sections for star  graphs  of  dimensions 3 to 18 are 
summar ized  in Table 1. If  our embedding  is the best possible with respect to the 
height  of  the embedded tree, we print  the value in bold. 

order of h(n) 
n S , = n !  
3 6 1 
4 24 3 
5 120 5 
6 720 8 
7 5040 11 
8 40320 14 
9 362880 17 
10 ~ 3 . 6 1 0  s 20 
11 ~ 4 10 r 24 
12 ~ 4 . 8  108 27 
13 ~ 6 . 2 1 0  ~ 31 
14 ~ 8.710 l~ 35 
15 ~ 1.3 1012 39 
16 ~ 2.1 1013 43 
17 ~ 3.5 1014 47 
18 ~ 6.4 1015 51 

order of 
Th(n) 

3 1 
15 2 
63 5 

511 7 
4095 9 

32767 11 
261143 13 

2 106 15 
3.4 107 17 
2.7 lO s 19 
4.3 10 9 21 
6.9101~ 23 
1.1 1012 25 
1.8 1013 27 
2.8 1014 30 
4.5 1015 33 

Table 1. 

dilation 1 2 h33n)( 4 5 
height hi(n)  h2(n) h4(n) hh(n) 

8 
I0 I I  
13 14 
16 17 
19 20 
22 23 
25 27 
28 29 30 
31 32 34 
34 36 37 38 
38 40 41 42 
42 44 45 46 
46 48 49 50 

The low dilation embeddings  of  complete  b inary  trees into star  g raphs  pre- 
sented in this paper  are asympto t ica l ly  opt imal .  In part icular ,  for the range of  
dimensions of  star  graphs  shown in the table, they approach  closely the best  
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possible expansion. Notice that  our constructions give embeddings of trees of 
opt imum height with dilation 4 into Sn for n up to 10 and n = 12. Since the star 
graph of dimension 12 has more than 10 s vertices, our results give low dilation, 
best expansion embeddings of complete binary trees into star graphs of feasible 
sizes. Thus we have shown that  star networks, similarly as hypercubes and de 
Bruijn graphs [8], can efficiently simulate any algorithm designed for complete 
binary trees. 

Although we did not include the results here, it can be easily obtained that  
the average dilation of our dilation 2,3 or 4 embeddings into Sn is less than 
1.2422, 1.2423, 1.943, respectively. We should also point out that  our construc- 
tions and results can be easily modified to obtain embeddings of dilation 1,2, 
and 26 of complete binary trees into pancake graphs (and more generally into 
reeursively decomposable Cayley graphs), see [6] for the definitions. 

Many interesting problems remain open. We conclude our paper by mention- 
ing some of them below. 

1. Determine a nontrivial upper bound on the height of a complete binary tree 
which can be embedded into S ,  (or Pn) with dilation 6 for 1 _< 6. 

2. Construct embeddings of dilation 2i + 1 into pancake graphs such that  
h2i(n) < h2i+x(n) for large n. 

3. Given n, determine the smallest dilation for which there is an embedding of a 
complete binary tree into the star graph Sn having the opt imum expansion. 
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