
Properties and Algorithms of the KCube

Graphs

Li Zhao

Department of Computer Science

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

Faculty of Mathematics and Science, Brock University

St. Catharines, Ontario

c©Li Zhao, 2013

Acknowledgements

I would like to express my heartfelt gratitude to my supervisor, Dr. Ke Qiu , whose

patience and suggestions on an interesting thesis topic, as well as his academic experi-

ence, have been invaluable to me. I genuinely thank him for his general and financial

support over the past two years. He has not only guided me in the correct direction

for my research but has also provided some brilliant ideas in the development of my

thesis.

I would also like to thank my committee members, including Dr. M. Winter, Dr. S.

Houghten and Dr. B. Farzad, for their thoughtful and detailed comments, feedback,

and suggestions.

As a graduate student at Brock University, I am deeply grateful to the Faculty of

Mathematics and Science for offering a rich and fertile environment to study and

explore new ideas. Brock University is also gratefully acknowledged.

Finally, I would like to thank my parents, Guohua Zhao and Fenglian Cui for being

a constant source of support. It is thanks to my father that I first became interested

in the subject of science when I was a child.

Thank you very much.

Li Zhao

Abstract

The KCube interconnection topology was first introduced in 2010. The KCube graph

is a compound graph of a Kautz digraph and hypercubes. Compared with the at-

tractive Kautz digraph and well known hypercube graph, the KCube graph could

accommodate as many nodes as possible for a given indegree (and outdegree) and the

diameter of interconnection networks. However, there are few algorithms designed

for the KCube graph. In this thesis, we will concentrate on finding graph theoretical

properties of the KCube graph and designing parallel algorithms that run on this

network.

We will explore several topological properties, such as bipartiteness, Hamiltonianic-

ity, and symmetry property. These properties for the KCube graph are very useful to

develop efficient algorithms on this network. We will then study the KCube network

from the algorithmic point of view, and will give an improved routing algorithm. In

addition, we will present two optimal broadcasting algorithms. They are fundamental

algorithms to many applications. A literature review of the state of the art network

designs in relation to the KCube network as well as some open problems in this field

will also be given.

Contents

1 Introduction 1

1.1 Parallel Computer Architectures . 2

1.2 Shared Memory Parallel Machines . 3

1.3 Interconnection Networks . 4

1.4 Analyzing Parallel Algorithms . 11

1.5 Organization of the Thesis . 13

2 Literature Review of the KCube Graph 17

2.1 Introduction . 17

2.2 Properties . 18

2.3 de Bruijn Digraph . 19

2.4 Kautz Digraph . 21

2.5 Hypercube . 23

2.6 dBCube . 25

2.7 The KCube Network . 25

3 Topological Properties of the KCube Network 30

iii

3.1 Introduction . 30

3.2 Topological Properties of the KCube 30

3.3 Routing Problems . 37

4 Broadcasting 50

4.1 Introduction . 50

4.2 Properties of the Line Graph and the Complete Bipartite Graph . . . 53

4.2.1 The Topological Properties of de Bruijn Digraph 54

4.3 A Broadcasting Algorithm on the Kautz Graph 57

4.4 Two Optimal Broadcasting Algorithms on the KCube Graphs 63

5 Conclusion 75

Bibliography 82

List of Tables

1.1 Interconnection Networks and their Degrees and Diameters 10

List of Figures

2.1 K(2,2) . 21

2.2 A Hypercube Interconnection Network: (a) m = 0; (b) m = 1; (c)

m = 2; (d) m = 3; (e) m = 4 . 23

2.3 K(2,2) and KC(2,2) . 27

2.4 Partition and Sort of all Nodes in H(3) [20] 27

3.1 Partition of KC(2,2) . 33

3.2 A Hamiltonian Cycle of KC(2,2) . 36

3.3 H(2) . 36

3.4 ith Orders on the Kautz Levels of KC(4,4) 44

4.1 Partition B(2, 3) to K2,2 . 57

4.2 Partition B(2, 3) to K2,2 and K0
2,2 . 58

4.3 Undirected K2,2 Graphs . 59

4.4 UB(2, 3) . 59

4.5 Four Disjoint Cycles . 60

4.6 B(3, 2) and K3,3 . 62

4.7 K(2, 2) and K2,2 . 62

vi

4.8 Partitions of KC(2, 2) . 66

Chapter 1

Introduction

The motivation to investigate parallel computation is that it is an evolution of serial

computation. Traditionally, serial computation is a single computer having a single

central processing unit (CPU). A problem can be broken into a discrete series of

instructions. Instructions can be executed by a CPU sequentially. In computing,

there are many large and complex problems that are impossible or impractical to

be solved by a single computer, especially given that even the most complex com-

puter has an upper limit of processors and computer memory. Such problems include

galaxy information, weather forecasting, biomedical analyses, speech recognition, the

management of huge knowledge bases and so on. One way out of this impasse is to

provide more computer resources in parallel computation. More processors and com-

puter memory per problem will shorten the completion time. In a parallel computer,

multiple processors cooperate to solve a computational problem in a portion of the

time required by one processor. In general, there are two important aspects of paral-

lel computation, namely, parallel computational models and parallel algorithms. The

1

CHAPTER 1. INTRODUCTION 2

relation between parallel computational models and parallel algorithms is a parallel

algorithm solves a particular problem on a parallel computational model for which the

parallel algorithms are designed. We have two major computational models, namely,

shared memory parallel machines and interconnection networks, depending on how

the processors communicate with each other.

This chapter will introduce parallel computer architectures and the reasons for our in-

terest in the KCube. We will present illustrations of shared memory parallel machines

and interconnection networks. Important aspects of good interconnection networks

and some popular topologies will then be laid out. We will then explain a number of

parameters that researchers use to analyze and measure parallel algorithms. Finally,

we will give an overview and the organization of this thesis.

1.1 Parallel Computer Architectures

There are diverse methods to characterize parallel computer architectures. We can

categorize computers into following four classifications according to the interaction

between instruction streams and data streams [17].

• Single Instruction, Single Data Stream (SISD)

In a SISD computer, there is only one instruction stream being executed by

the CPU and only one data stream being used as an input. Typical SISD type

computers are older generation mainframes and minicomputers.

• Multiple Instruction, Single Data Stream (MISD)

In a MISD computer, there are multiple processors operating on a single data

CHAPTER 1. INTRODUCTION 3

stream independently through separate instruction streams.

• Single Instruction, Multiple Data Stream (SIMD)

A SIMD computer has multiple processors which execute the same instructions.

Each processor can operate on a different data element. The key characteristic

of a SIMD computer on data streams is that the operations can be performed

in parallel on each element of a large regular data structure. All processors are

controlled by a central control unit. All the major parallel models in this thesis

are SIMD computers.

• Multiple Instruction, Multiple Data Stream (MIMD)

In an MIMD computer, all processors execute different instruction streams

and work with different data streams. Execution can be synchronous or asyn-

chronous. MIMD machines are the most powerful type of the parallel computers.

1.2 Shared Memory Parallel Machines

One of the most important categories of parallel machines is shared memory parallel

machines. A shared memory parallel machine consists of identical processors and

a common memory which they access in parallel. The communication of a shared

memory machine occurs implicitly in the same way that a conventional computer

accesses instructions (i.e., loads and stores). All processors can run independently and

share the shared memory variables. One processor can write a variable in a shared

memory location that will be visible to all other processors. A shared memory parallel

CHAPTER 1. INTRODUCTION 4

machine is also called as a Parallel Random Access Machine (PRAM). Examples

of PRAM are commonly represented today by Symmetric Multiprocessor Machines

(SMP) and CC-UMA-Cache Coherent (UMA). Cache coherent means if one processor

updates a location in the shared memory, all the other processors know about the

update. Cache coherency is accomplished at the hardware level.

Cooperation and coordination among all the processors in PRAM are accom-

plished simultaneously by reading and writing the shared variables in the shared

memory through a memory access unit (MAU).

1.3 Interconnection Networks

The previous section introduced communication among processors via a shared mem-

ory. In this section, we will: give an explanation of what an interconnection network

is; give a brief overview of why new interconnection networks continue to be pro-

posed by listing the most important aspects of interconnection networks; explain why

de Bruin and Kautz networks are excellent candidates for interconnection network

designs; give formal definitions of interconnection networks; list several popular in-

terconnection networks; and finally; list important criteria for evaluating network

topologies. The difference between a shared memory parallel machine and an inter-

connection network is that there is no a common memory for processors to share

in an interconnection network. Instead, an equal portion of the common memory is

distributed to all the processors. The communication among all the processors in

an interconnection network is via topological networks. Two processors which are

CHAPTER 1. INTRODUCTION 5

directly connected by a link are said to be neighbours. In a complete network with

N processors (N means the number of processors in a network in this thesis), each

processor has N − 1 neighbours and can send a datum to any of its neighbours and

receive a datum from any of its neighbours through a two-way link [1]. It is not only

too expensive to build so many links for all but the smallest values of N but also in-

feasible to lay out the number of links connecting all the processors without too many

crossings. As a consequence, there is a huge volume of research papers focusing on a

number of aspects of topological network design, taking into consideration that; (1)

interconnection networks in parallel computation usually possess a regular pattern;

(2) most topological networks attempt to minimize the diameter; (3) the topologi-

cal structure of interconnection networks has superior mathematical properties which

have close fundamental relationships with the communication patterns of important

parallel algorithms [14]; (4) vertex symmetry is also a desirable attribute of an effi-

cient interconnection network design [29]. This property makes any vertex look same

in the network. Moreover, symmetric networks allow for identical processors at every

vertex with identical routing algorithms. It’s very useful to design efficient algorithms

that exploit the symmetric structure of the network. Many well-known interconnec-

tion networks, such as complete networks, rings, tori, hypercubes, cube-connected

cycles, star graphs, and pancake graphs are examples of such vertex-symmetric net-

works. Most of them belong to the class of Caley graphs which are connected graphs

constructed from a group and a set of generators [2, 7, 26, 27, 33, 39, 40]; (5) another

valuable physical topology for interconnection networks is to have the largest num-

ber of vertices for a fixed degree 4 and diameter D [29]. As the demand for data

CHAPTER 1. INTRODUCTION 6

processing expands year by year, it is desirable to design interconnection networks

that will allow for the maximum number of processors with the most efficient and

the lowest-cost possible combination of degree and diameter while maintaining sim-

ple routings, such as those in de Bruijn and Kautz networks. A de Bruijn network,

which can provide the shortest distance between clusters running different parts of

an application [10], was chosen for JPLs 8096-node multiprocessor.

When attempting to create a very large multiprocessor system [29], one of the

important aforementioned aspects is the fifth aspect: a network which has the largest

number of vertices for a fixed degree and diameter. This is what led us to focus on

the KCube: the KCube is a very large multiprocessor system. We looked deeply into

de Bruijn and Kautz networks because our research was to explore the topological

properties of, and to design parallel algorithms on, the KCube network, and the

KCube is a compound graph of a Kautz digraph and hypercubes, with the Kautz

digraph being a subdigraph of the de Bruijn digraph. Therefore, before we explain

our research into the KCube, we need to examine the de Bruijn and Kautz networks

upon which the KCube is based.

In fact, de Bruijn and Kautz networks are not vertex symmetric [9, 29]. However,

they have very elegant properties, such as having an optimal number of nodes (for a

fixed value of D or 4 bounded by Moore Bound [28]), easy routings, and an optimal

fault-tolerance [12]. General upper bounds called Moore bounds for the order of

such graphs and digraphs are attainable only for certain special graphs and digraphs.

Those graphs focus on finding better (tighter) upper bounds for the maximum possible

number of vertices by giving the degree/diameter.

CHAPTER 1. INTRODUCTION 7

Formally, we can use an undirected graph to describe an interconnection network.

Given an undirected graph G = (V,E), where each processor Pi is located at the

vertex vi and there exists a direct communication link between two processors Pi

and Pj if and only if (vi, vj) ∈ E. V is a set of vertices and E is a set of edges.

Interconnection networks, in general, can be classified into direct or indirect schemes

[3, 14, 32]. In this thesis, we will use the terms “processor”and “node”, “interconnec-

tion network”and “graph”interchangeably. Next, we will give a brief description of

some popular interconnection networks. These networks have been proposed, built,

and used as commercial computers. From now on, we will use N to denote the number

of processors in the following interconnection networks.

Complete Graph: The complete graph is the most powerful network. In a com-

plete graph KN , each of the processors is adjacent to the remaining N −1 processors.

A complete graph is also called a Clique.

Linear Array: The linear array is the simplest way to connect N processors,

P0, P1, ..., PN−1. In this network, all N processors form a one-dimensional array.

Each processor Pi (0 < i < N − 1) is adjacent to its two neighbours Pi−1 and Pi+1.

The first node P0 is adjacent to P1 and the last node PN−1 to PN−2. Both of them

have only one neighbour. If we connect P0 and PN−1, we get a network called Ring.

In this case, every node has two neighbours.

Two-Dimensional Array: A network is obtained by arranging the N processors

into an r× s two dimensional array. The processor in row i and column j is denoted

by Pij, where 0 ≤ i ≤ r − 1 and 0 ≤ j ≤ s − 1. Each processor Pij has two-

way communication links to its four neighbours P(i+1)j, P(i−1)j, Pi(j+1), and Pi(j−1)

CHAPTER 1. INTRODUCTION 8

if they exist. Processors on the boundary rows and columns have fewer than four

neighbours. This network is also known as Mesh. A multi-dimensional mesh can

be defined similarly. Such a network is called a d-dimensional mesh, where d ≥ 2.

Each processor in a d-dimensional mesh is adjacent to its 2 × d neighbours, except

the processors on the boundary.

Tree: In a tree network, the processors form a complete binary tree. Such a tree

has d levels, numbered 0 to d−1, and N = 2d−1 nodes, each of which is a processor.

Each processor at level i is connected by a two-way communication line to its parent

at level i+ 1 and to its two children at level i− 1. The root processor (at level d− 1)

has no parent, and the leaves (all of which are at level 0) have no children.

Pyramid: A one-dimensional pyramid parallel computer is obtained by adding

two-way links connecting processors at the same level in a binary tree, thus forming

a linear array at each level. This concept can be extended to higher dimensions. For

example, a two-dimensional pyramid consists of (4d+1 − 1)/3 processors distributed

among d + 1 levels. All processors at the same level are connected to form a mesh.

There are 4d processors at level 0 (also called the base), arranged in a 2d × 2d mesh.

There is only one processor at level d (also called the apex). In general, a processor

at level i, in addition to being connected to its four neighbours at the same level, has

connections to four children at level i− 1 (provided that i ≥ 1) and to one parent at

level i+ 1 (provided that i ≤ d− 1).

Shuffle Exchange: Let N processors P0, P1, ..., PN−1 be available, where N is

a power of 2. In the perfect shuffle interconnection, a one-way communication line

links Pi to Pj, where

CHAPTER 1. INTRODUCTION 9

j =


2i, for 0 ≤ i ≤ N/2− 1

2i+ 1−N, for N/2 ≤ i ≤ N − 1

.

Equivalently, the binary representation of j is obtained by cyclically shifting that

of i one position to the left. An alternative representation of the perfect shuffle

interconnection is given as a mapping from the set of processors to itself. This rep-

resentation explains the origin of the network’s name: When a deck of playing cards

is split into two piles of equal size, a perfect shuffle is obtained by interleaving the

cards in the two piles. If the directions on the one-way links are reversed, we obtain

the perfect unshuffle connection. The links are undirected (i.e., are two-way commu-

nication lines). It is known as the shuffle-unshuffle network. Finally, two-way lines

connecting every even-numbered processor to its successor are added to the network.

These connections are called exchange links. A network with the shuffle, unshuffle,

and exchange links is called a shuffle exchange network.

A number of criteria are used to evaluate network topologies. We will now in-

troduce some of them and then use them to analyze some of the networks described

above.

Definition 1. The degree of a processor is the number of neighbours of this processor.

Definition 2. The distance between two processors Pi and Pj is the number of links

on the shortest path from Pi to Pj; the diameter of the network is the maximum

distance among any two arbitrary processors.

Table 1.1 shows the interconnection networks already defined and the ones to be

CHAPTER 1. INTRODUCTION 10

Table 1.1: Interconnection Networks and their Degrees and Diameters

Interconnection network Degree Diameter Precise Diameter
Linear Array 2 O(N) N − 1
r × s Mesh 4 O(max(r, s)) (r − 1) + (s− 1)

Tree 3 O(logN) 2blogNc
Pyramid 9 O(logN) O(logN)

Shuffle-Exchange 3 O(logN) 2 logN -1
Hypercube(n-cube) logN O(logN) logN

B(d, k) d k k
K(d, k) d k k
KC(m, k) m+ 1 O(mk) m(k + 1) + 1

defined in Chapter 2.

Definition 3. The connectivity of a graph G with N nodes is N − 1 if G is the

complete graph and otherwise is the minimum number of nodes of G whose deletion

results in a disconnected graph.

The larger connectivity is, the better.

Definition 4. The Bisection width is the minimum number of arcs that must be

removed to partition the network into two equal halves.

The larger the bisection width the better.

Definition 5. A graph G is f-fault tolerant if, whenever f or less than f nodes are

deleted from G, the remaining graph is still connected. The fault tolerance of the

graph G is the maximum f for which it is f-fault tolerant.

The difference between connectivity and fault tolerance is 1.

Definition 6. A graph is regular if and only if all nodes in this graph have the same

degree.

CHAPTER 1. INTRODUCTION 11

We can divide interconnection networks into two models, based on how many

neighbours one can communicate with in one time unit (similar to PRAM) [1] :

• single-port (weak) model, in each unit of time a processor is only allowed to

send data to or receive data from one of its neighbours.

• all-port (strong) model, the processor can communicate with one or more of

its neighbours simultaneously.

Unless specified otherwise, all interconnection networks in this thesis are consid-

ered to be the single-port model.

1.4 Analyzing Parallel Algorithms

There are different ways to evaluate a parallel algorithm. In a sequential algorithm,

running time is the major measurement. In a parallel algorithm, evaluation consists

of the running time, the number of the processors, the speedup, the slowdown, and

the cost. The following measurement is from [1].

The running time of a parallel algorithm is defined as the time required by the

algorithm to solve a computational problem on a parallel computer. The running

time is measured by counting the number of consecutive elementary steps performed

by the algorithm in a worst-case scenario. There are two different types of elementary

steps in parallel algorithms:

• A computational step is a basic arithmetic or logical operation performed on

one or two data within a processor. A parallel computer performs multiple op-

CHAPTER 1. INTRODUCTION 12

erations in a single step in order to solve a problem efficiently. These operations

are comprised of adding, comparing, swapping, etc.

• A routing step is used by an algorithm to route a constant size datum be-

tween the source node and the destination node across the shared memory or

interconnection network.

We make an assumption that each computational step or each routing step takes

a constant number of time units. The total number of the steps is the running time of

a parallel algorithm. We use a function t(N) to denote the running time of a parallel

algorithm of the input size N .

Another aspect to measure the performance of a parallel algorithm is the number

of processors which is a function of the size of the input. To compare different

parallel algorithms for a given problem with the same running time, fewer processors

are preferred. We use p(N) to denote the number of processors used by a parallel

algorithm to solve a problem of size N .

The cost c(N) of a parallel algorithm is defined as c(N) = p(N) × t(N). If the

lower bound for solving the problem is Ω(f(N)) in a sequential computation, and the

cost of a parallel algorithm is O(f(N)) in a parallel computation, we say that this

parallel algorithm is cost optimal.

It is significant to balance cost and performance, since a parallel computer with

more processors will be more expensive to build.

Speedup: The primary reason for using parallel algorithms is to speed up se-

quential computation. This is measured by a ratio known as the speedup, defined

CHAPTER 1. INTRODUCTION 13

as follows: let ts denote the worst case running time of the fastest known sequential

algorithm for a problem, and let tp denote the worst case running time of the parallel

algorithm using p processors. Then, the speedup provided by the parallel algorithm

is

Speedup = ts
tp
.

A good parallel algorithm is one for which this ratio is large.

Speedup Folklore Theorem: For a given computational problem, the speedup

provided by a parallel algorithm using p processors, over the fastest possible sequential

algorithm for the problem, is at most equal to p.

Slowdown is the effect on the running time of reducing the number of the pro-

cessors on a parallel computer.

Slowdown Folklore Theorem: If a certain computation can be performed with

p processors in time tp and with q processors in time tq, where q ≤ p, then tp ≤ tq ≤

tp + ptp/q.

1.5 Organization of the Thesis

Three of the commonly studied interconnection networks in the past are de Bruijn,

Kautz, and hypercubes. The advantages of de Bruijn networks (such as Koorde [25]),

and Kautz networks (such as lightwave networks [31, 34]) are that they have an

optimal number of nodes (for small value of 4 and diameter D), easy routings and

an optimal fault-tolerance [29]. The advantages of hypercube networks (such as the

CHAPTER 1. INTRODUCTION 14

Cosmic Cube, the Intel iPSC, the NCUBE) are that they possess strong connectivity,

which means that several node-disjoint paths exist between any two nodes; regularity,

which means that every node has the same degree; and symmetry, which means that

there exists an automorphism for any pair of nodes to map one node to another [10].

The main disadvantages of de Bruijn and Kautz diagraphs are that they are

not vertex symmetric, and therefore cannot employ identical routing algorithms and

other algorithms, such as sorting algorithms and so on, at every vertex [29]. The main

disadvantage of hypercubes is that the degree of each node in a hypercube increases

as logN , where N is the total number of nodes. This property could make its use

prohibitive for large N [10].

All of these networks attempt to reduce diameter as far as possible and employ

simple routing algorithms. Most importantly, to design an efficient physical topology,

to reduce the amount of signal loss, network topology should attempt to design a

digraph with as many nodes as possible for a given indegree (and outdegree) and

diameter [31, 34, 38]. For example, a de Bruijn topology can handle more nodes than

shufflenet with similar performance measures, and a Kautz topology can have more

nodes than a de Bruijn topology with the same degree and diameter. In addition, a

KCube topology can accommodate more nodes than a Kautz topology with the same

degree and diameter, which makes it worthy of investigating a KCube topology.

Among state of the art schemes, a dBCube network is closest to the KCube

network. The dBCube network was proposed in 1993 as a compound graph of a de

Bruijn graph and hypercubes. The dBCube possesses the advantages of maintaining

equal connectivity for all nodes in the network, but, it suffers from large diameter

CHAPTER 1. INTRODUCTION 15

when the size of the network increases [10]. Because of the limitations of the above

mentioned networks, the KCube graph was proposed in 2010 as a novel architecture

for interconnection networks. The KCube is a compound graph of a Kautz digraph

and hypercubes which replaces each node on a Kautz digraph with a hypercube as a

cluster.

The KCube network employs hypercube topology as a basic cluster, connects

many such clusters using a Kautz digraph, and maintains node connectivity to be

the same for all nodes. The size of the KCube network as a regular network can

be easily extended by increments of a cluster size. Each cluster utilizing hypercube

topology allows easy embedding of existing parallel algorithms, while the Kautz di-

graph, which possesses easy routings and an optimal fault-tolerance, provides the

shortest distance between clusters running different parts of an application. On the

other hand, the KCube is not a vertex-symmetric network which makes it difficult

for us to design identical routing algorithms at every node. Another disadvantage of

the KCube is that the degree of the Kautz digraph must be equal to the number of

nodes in a hypercube which is constrained against an arbitrary hypercube size. As

a proposed network, some topological properties and fundamental algorithms for the

KCube have not been exploited yet. They include bipartiteness, Hamiltonianicity,

symmetry property, improved routing algorithms and broadcasting algorithms. We

will explore the KCube network from both the graph theoretical and the algorithmic

points of views in this thesis. We will present the following:

CHAPTER 1. INTRODUCTION 16

1. a literature review of the KCube;

2. related interconnection networks and their properties for de Bruijn graph, Kautz

digraph, and Hypercube;

3. new topological properties for the KCube and an improved routing algorithm

that provides a smaller upper bound on the diameter of the KCube;

4. two broadcasting algorithms for the KCube;

5. summary;

This thesis is organized as follows. Chapter 2 will present a literature review of the

KCube and related interconnection networks. We will also define various problems

to be studied in this thesis. In Chapter 3, some graph theoretical properties will be

discussed and an improved routing algorithm will be presented. We will design two

broadcasting algorithms for the KCube in Chapter 4. In Chapter 5, we will summarize

our work and offer suggestions for future work.

Chapter 2

Literature Review of the KCube

Graph

2.1 Introduction

In this chapter, we will provide a formal definition of the KCube and will review the

primary research of Guo et al. [20] into the KCube. Before we do this, however,

we will give formal definitions of graph properties and a brief background of the

predecessors of the KCube in the development of some interconnection networks - the

de Bruijn digraph, Kautz digraph, and hypercube. We will provide formal definitions,

topological properties, routings and uses of these networks. We will then look at

the dBCube, the compound graph which most closely resembles the KCube, before

proceeding to the KCube itself.

The de Bruijn, Kautz, and hypercube networks have been much studied because of

the properties they have, which have made them good candidates for interconnection

17

CHAPTER 2. LITERATURE REVIEW OF THE KCUBE GRAPH 18

networks of parallel computers (see [5, 36]), such as Koorde [25], D2B [18], Tapestry,

Pastry, Lightwave [34] and FissioneE [30]. Koorde and D2B are based on de Bruijn

network, Tapestry and Pastry are based on hypercube topology and Lighwave and

FissioneE networks are based on Kautz network.

2.2 Properties

Definition 7. A graph G = (V,E) is a bipartite graph if (1) V = V1
⋃
V2 and

V1
⋂
V2 = ∅ and (2) ∀(u, v) ∈ E, u ∈ V1 and v ∈ V2 or u ∈ V2 and v ∈ V1. In

other words, no two nodes in V1 are adjacent and no two nodes in V2 are adjacent.

The complete bipartite graph with partitions of equal size | V1 |= n and | V2 |= n, is

denoted Kn,n [42].

Definition 8. An Eulerian Cycle in an undirected graph is a cycle that uses each

edge exactly once. A connected graph has an Eulerian cycle if and only if all vertices

have even degree [42].

Definition 9. A Hamiltonian Cycle is a spanning cycle in a graph (a cycle through

every vertex). The circumference of a graph is the length of its longest cycle [42].

Definition 10. A Hamiltonian path is a spanning path [42].

Definition 11. An Isomorphism from G to H (another graph) is a bijection f :

V (G)→ V (H) such that (v, w) ∈ E(G) if and only if f(v, w) ∈ E(H). We say G is

isomorphic to H, written G ∼= H, if there is an isomorphism from G to H [42].

CHAPTER 2. LITERATURE REVIEW OF THE KCUBE GRAPH 19

Definition 12. An Automorphism of G is a permutation of V (G) that is an iso-

morphism from G to G [42].

Definition 13. A graph G is vertex symmetric or (vertex-transitive) if for

every pair v, w ∈ V (G), there is an automorphism that maps v to w [42].

Definition 14. The line graph of G, written L(G), is the graph whose vertices are

the edges of G, with (e, f) ∈ E(L(G)) when e = (u, v) and f = (v, w) in G (i.e., when

e and f share a vertex) [42].

2.3 de Bruijn Digraph

A de Bruijn digraph B(d, k) of outdegree d and diameter k has as vertices the

words of length k on an alphabet of d letters. The number of vertices in B(d, k) is

dk. Vertex x1...xk is joined by an arc to the vertices x2...xkα where α is any letter

from the alphabet, α = 0, 1, ..., d − 1 [4]. For a given digraph G, we denote as UG

the underlying graph associated to G (obtained by removing the orientation). The

underlying de Bruijn graph will therefore be denoted as UB(d, k).

Topological Properties

• Each k-dimensional de Bruijn digraph is the line digraph of the (k−1)-dimensional

de Bruijn digraph with the same set of vertices [23].

• Each de Bruijn digraph is Eulerian and Hamiltonian. The Euler cycles and

Hamiltonian cycles of these digraphs (equivalent to each other via the line di-

graph construction) are de Bruijn sequences. A binary de Bruijn sequence

CHAPTER 2. LITERATURE REVIEW OF THE KCUBE GRAPH 20

of order k is a string of bits di ∈ {0, 1}, d = {d1, ..., dn2} such that ever

string of length k, {a1, ..., an} ∈ {0, 1}n, occurs exactly once consecutively in

d. Each B(d, k) sequence has length dk. There are (d!)d
k−1

dk
distinct de Bruijn

sequences in B(d, k). There are two distinct de Bruijn sequences which are

00010111 and 11101000. Each sequence can generate all the vertices [16]. For

example: 00010111 = (000)10111 = 0(001)0111 = 00(010)111 = 000(101)11

= 0001(011)1 = 00010(111) = 00101(110) = 001011(100). The de Bruijn

sequences B(2, 3) can be constructed by taking a Hamiltonian path of a 3-

dimensional de Bruijn digraph over 2 symbols (or equivalently, an Eulerian

cycle of a 2-dimensional de Bruijn digraph over 2 symbols) [16].

• A simple routing method in a de Bruijn network is as follows: Let x = x1...xk

be a source node and y = y1...yk be a destination node. The routing path is

x1...xk −→ x2...xky1 −→ x3...y1y2 −→ � � � −→ xky1...xk−1 −→ y1...yk [4].

Uses

• Some grid network topologies are de Bruijn graphs [11]. A grid network is a

computer network that has a number of (computer) systems connected in a grid

topology. In a grid topology, each node is connected with two neighbors along

one or more dimensions.

• The distributed hash table protocol Koorde [25] uses a de Bruijn graph.

• In bioinformatics, de Bruijn graphs are used for de novo assembly of (short)

read sequences into a genome [13].

CHAPTER 2. LITERATURE REVIEW OF THE KCUBE GRAPH 21

2.4 Kautz Digraph

A directed Kautz digraph [31], K(d, k), has node indegree = outdegree = d and

network diameter = k, where d ≥ 1 and k ≥ 1. The number of vertices in K(d, k)

is dk + dk−1. The vertex set is {xk...xi...x1 | xi ∈ {0, 1, ...d} and xi 6= xi+1 for all

1 ≤ i ≤ k}, where xk...xi...x1 denotes a sequence. There is an arc from vertex

xkxk−1...x1 to vertex xk−1...x1α for each α ∈ {0, 1, ..., d} − x1. The underlying Kautz

graph will be denoted as UK(d, k). Figure 2.1 gives an example of K(2, 2).

Figure 2.1: K(2,2)

Topological Properties

• For a fixed degree d and number of vertices N = dk + dk−1 , the Kautz digraph

has the smallest diameter of any possible directed graph with N vertices and

degree d. A graph for a fixed degree d and diameter k, the maximum number of

nodesN in the graph is the Moore bound [8] 1+d+d2+...+dk. The Moore bound

is not achievable for any non-trivial graph. The number of nodes in the Kautz

digraph K(d, k), dk + dk−1, is very close to the Moore bound. In fact, a Kautz

digraph is the densest graph when the diameter is two. From the Moore bound,

CHAPTER 2. LITERATURE REVIEW OF THE KCUBE GRAPH 22

it is easy to see the lower bound of the diameter of a graph with N nodes is

dlogd(N(d−1)+1)e−1 and the diameter k of Kautz digraph K(d, k) reaches the

lower bound as dlogd(N(d− 1) + 1)e − 1 = dlogd((dk + dk−1)(d− 1) + 1)e − 1 =

dlogd(dk+1 − dk−1 + 1)e − 1 = k. Thus, the Kautz digraph has an optimal

diameter. As far as the Moore bound is concerned, the best of the general

known classes of networks are de Bruijn or Kautz networks [29, 30].

• All Kautz digraphs have Eulerian cycles (An Eulerian cycle is one which vis-

its each edge exactly once. This result follows because Kautz digraphs have

indegree equal to outdegree for each node) [41].

• All Kautz digraphs have Hamiltonian cycles [21].

• The Kautz digraph also has optimal fault tolerance [12, 30]. That is, Kautz

digraph of degree d is d - connected (i.e., there are d node disjoint paths between

any two nodes).

• For any two nodes x = xk...x1 and y = yk...y1, there is a shortest routing path

of length k in K(d, k) from x to y, given by x = xk...x1 −→ xk−1xk−2...x1yk −→

xk−2xk−3...ykyk−1 −→ � � � −→ x1yk...y2 −→ y = yk...y1 = y when x1 6= yk or

a routing path of length k − 1 given by x = xk...x1 −→ xk−1xk−2...x1yk−1 −→

xk−2xk−3...yk−1yk−2 −→ � � � −→ x1yk−1...y1 = y = yk...y1 = y when x1 = yk [31].

Uses

The Kautz digraph has been used as a network topology for connecting processors

in high-performance computing [3], fault-tolerant computing applications [30], and as

CHAPTER 2. LITERATURE REVIEW OF THE KCUBE GRAPH 23

attractive logical topologies in multihop lightwave networks [31, 34].

2.5 Hypercube

An m-dimensional hypercube is also known as an m-cube [1]. Let N be 2m for

some m ≥ 0 and label all processors as P0, P1, ..., PN−1. In an m-cube, for Pi, let

ym−1ym−2...y1y0 be the binary representation of i, where 0 ≤ i < N . The processors

Pi and Pj are adjacent if and only if the binary representations of the indices i and j

differ in exactly one bit. Figure 2.2 shows H(m), for m = 0, 1, 2, 3, 4.

Figure 2.2: A Hypercube Interconnection Network: (a) m = 0; (b) m = 1; (c) m = 2;
(d) m = 3; (e) m = 4

Topological Properties

The following hypercube properties are from [35].

CHAPTER 2. LITERATURE REVIEW OF THE KCUBE GRAPH 24

• The m-cube can be constructed recursively from two lower dimensional (m−1)-

cubes whose vertices are numbered likewise from 0 to 2m−1 − 1.

• There are m different ways of tearing an m-cube, i.e., of splitting it into two

(m − 1)-subcubes so that their respective vertices are connected in one-to-one

fashion. Each different tearing corresponds to splitting the m-cube graph into

two subgraphs: one whose node labels have an one in position i and one whose

node labels have a zero in position i, 0 ≤ i ≤ m− 1.

• There are m!2m different ways in which the 2m nodes of an m-cube can be

labeled.

• Any two adjacent nodes A and B of an m-cube are such that the nodes adjacent

to A and those adjacent to B are connected in an one-to-one fashion.

• There are no cycles of odd length in an m-cube.

• The minimum distance between the nodes A and B is equal to the number of

bits that differ between A and B, i.e., the Hamming distance h(A,B). The

routing path between two nodes in an m-cube is to correct the positions in

which A and B differ different bits.

For example, let A = 01011 and B = 10111, one routing path is 01011 −→

11011 −→ 10011 −→ 10111.

• Let A, B be any two nodes and assume that H(A,B) < m. Then there are

H(A,B) parallel paths of length H(A,B) between the nodes A and B.

CHAPTER 2. LITERATURE REVIEW OF THE KCUBE GRAPH 25

• Let A, B be any two nodes of an m-cube and assume that H(A,B) < m. Then

there are m parallel paths between A and B. Moreover, the length of each path

is at most H(A,B) + 2.

2.6 dBCube

Definition 15. Given two regular graphs G1 and G2, the compound graph G2(G1) is

obtained by replacing each node of G2 by a copy of G1 and replacing each link of G2

by links which connects corresponding two copies of G1 [20].

Now, we will introduce the compound graph that is dBCube. A dBCube is a

compound graph of a de Bruijn graph (G2) and hypercubes (G1). A dBCube is

denoted as dBC(c, d), where c is the number of hypercube clusters and d is the

dimension of the hypercube. There are c× 2d number of nodes in a dBC(c, d) [10].

2.7 The KCube Network

The KCube combines a Kautz digraph G2 and a hypercube G1. It utilizes the hyper-

cube topology as a unit cluster and connects all the hypercube clusters in the Kautz

digraph. A constraint must be satisfied for the two graphs to comprise the KCube

graph. The constraint is that the degree of the Kautz digraph G2 must be the same

as the number of nodes in a hypercube G1. The outdegree and indegree of each node

in K(d, k) are d. The total degree of each node in K(d, k) is 2d. Each hypercube

cluster has 2m number of nodes. So, it is d = 2m−1 in the KCube. The KCube is

CHAPTER 2. LITERATURE REVIEW OF THE KCUBE GRAPH 26

denoted as KC(m, d, k) where m is the hypercube dimension, d is the node outdegree

of the Kautz digraph, and k is the diameter of the Kautz digraph [20]. For simplicity,

we will use KC(m, k) in this paper. Figure 2.3 shows the K(2, 2) and KC(2, 2). Any

node in KC(m, k) is labelled 〈x = xk...x2x1, y = ym...y2y1〉, where xk...x2x1 is called

the Kautz-part-label and ym...y2y1 is called the hypercube-part-label. All nodes in

H(m) can be separated into two equal parts. The output nodes of H(m) are the

nodes ym...yi...y2y1, where

• y2y1 = x2x1 or y2y1 = x̄2x̄1.

• yi = 0 or 1 for all 3 ≤ i ≤ m.

The input nodes of H(m) are the nodes ym...y2y1, where

• y2y1 = x̄2x1 or y2y1 = x2x̄1.

• yi = 0 or 1 for all 3 ≤ i ≤ m.

The nodes whose last two bits are 00 or 11 are the output nodes of H(m), and the

nodes whose last two bits are 01 or 10 are the input nodes of H(m). All nodes in

H(3) as shown in Figure 2.4 (a) are partitioned into two equal sets. The black nodes

represent the output nodes, while the white nodes represent the input nodes, as shown

in Figure 2.4 (b). The second precondition is that we further sort all the output nodes

of H(m) in the ascending order of the node labels and all the input nodes of H(m)

in the same way. For example, the output nodes of H(m) are sorted in the order of

000, 011, 100, 111, and sort all the input nodes of H(m) are sorted in the order of

001, 010, 101, 110, as shown in Figure 2.4 (b) [20].

CHAPTER 2. LITERATURE REVIEW OF THE KCUBE GRAPH 27

Figure 2.3: K(2,2) and KC(2,2)

Figure 2.4: Partition and Sort of all Nodes in H(3) [20]

Topological Properties

In a KC(m, k), there are 2k(m−1) +2(k−1)(m−1) hypercube clusters and 2k(m−1)+m +

2k(m−1)+1 vertices [20].

Lemma 1. The largest length of the shortest path between an output node and an

input node in the same hypercube H(m) is m− 1 [20].

Proof. In H(m), the largest number of nodes which must be traversed in order to

travel from any node ym...y2y1 to the nodeȳm...ȳ2ȳ1 is m. The length of the shortest

CHAPTER 2. LITERATURE REVIEW OF THE KCUBE GRAPH 28

path between the node ym...y2y1 and every node except the node ȳm...ȳ2ȳ1 is less

than m. According to the splitting approaches, we can infer that the node ym...y2y1

is included in the set of output nodes or the set of input nodes, together with the

node ȳm...ȳ2ȳ1. Thus, the largest length of the shortest path between an output node

and an input node in the same hypercube H(m) is m− 1.

Theorem 1. An upper bound on the diameter of KC(m, k) is 2m+(k−1)(m−1)+k =

m(k + 1) + 1 [20].

Proof. In KC(m, k), the shortest path from an arbitrary node 〈x, y〉 to any node

〈x′, y′〉 traverses at most k + 1 hypercube clusters, including the source hypercube x,

destination hypercube x′, and other k−1 intermediate hypercubes. This is guaranteed

by the diameter of K(2m−1, k). In the source hypercube x, the largest length of a

shortest path from the node 〈x, y〉 to any other node is less than or equal to m, and

is only equal to m when the node 〈x, y〉 is an output node and the other node is

〈x, ȳ〉. For any intermediate hypercube along the shortest path from 〈x, y〉 to 〈x′, y′〉,

it receives a message from one of its input nodes and forwards the message to one

of its output nodes within m − 1 hops, as proved in Lemma 1. For the destination

hypercube x′, it receives a message from one of its input nodes and forwards this to

the node 〈x′, y′〉. The largest length of a shortest path from that input node to the

node 〈x′, y′〉 is less than or equal to m, and is only equal to m when that input node is

〈x′, ȳ′〉 and the node 〈x′, y′〉 is also an input node. In addition, the shortest path also

traverses k remote links where each link connects a pair of hypercube clusters. Thus,

a upper bound on the diameter of KC(m, k) is 2m+(k−1)(m−1)+k = m(k+1)+1,

CHAPTER 2. LITERATURE REVIEW OF THE KCUBE GRAPH 29

hence Theorem 1 holds.

Chapter 3

Topological Properties of the

KCube Network

3.1 Introduction

In this chapter, we will give proofs that the KCube possesses three topological proper-

ties including bipartiteness, Hamiltonianicity for certain hypercube dimensions, and

symmetry property. These properties are very useful in developing efficient paral-

lel algorithms on the KCube network. Then, we will provide an improved routing

algorithm that gives a smaller upper bound on the diameter of the KCube.

3.2 Topological Properties of the KCube

These properties are important because they affect how KCube algorithms are de-

signed. We are interested in bipartiteness because it is a graph property that allows

30

CHAPTER 3. TOPOLOGICAL PROPERTIES OF THE KCUBE NETWORK 31

us to partition all of the nodes on the KCube into two equal sets. We are interested

in Hamiltonianicity because Hamiltonian cycles give us one way to sort all vertices on

the KCube like those on a linear array. We are interested in the symmetry property

because in any vertex symmetric network, all the vertices are identical. This makes

it easier to design an identical routing algorithm on each vertex. We are interested

in shortest path routing algorithms because the cost for the routing/communication

between two nodes is proportional to the length of the routing path.

Theorem 2. The KCube, as an undirected graph, is a bipartite graph.

Proof. For each H(m) used as a cluster, its bipartition is as follows:

V1 = {All nodes with even Hamming Weights},

V2 = {All nodes with odd Hamming Weights},

i.e.,

V1 = {ui | H(ui) is even, 0 ≤ i ≤ 2m−1 − 1},

V2 = {vj | H(vj) is odd, 0 ≤ j ≤ 2m−1 − 1}.

With the above partition for each cluster, the nodes of the KCube are partitioned

as follows:

V
′
1 = {〈a, b〉|b ∈ V1, a is a Kautz label}

V
′
2 = {〈c, d〉|d ∈ V2, c is a Kautz label}

By the definition of the KCube, all output nodes are of the form:

ym−2...yi...00 or ym−2...yi...11, where, yi ∈ {0, 1}, i = 1, 2, ...,m− 2. All in-

put nodes are of the form: ym−2...yi...01 or ym−2...yi...10, where, yi ∈ {0, 1}, i =

1, 2, ...,m− 2. For example, for m = 3, the sorted order of the output nodes are

CHAPTER 3. TOPOLOGICAL PROPERTIES OF THE KCUBE NETWORK 32

000, 011, 100, 111, and the sorted order of the input nodes are 001, 010, 101, 110.

Similarly, for m = 4, the sorted order of the output nodes are 0000, 0011, 0100, 0111,

1000, 1011, 1100, 1111, while the sorted order of the input nodes are 0001, 0010,

0101, 0110, 1001, 1010, 1101, 1110. It is easy to prove by induction that the out-

put/input nodes in sorted order can be obtained by the sorted order of output/input

nodes from H(m) in H(m + 1). The sorted order of the output nodes in H(m) are

u1, u2, ..., u2m−1 and the sorted order of the input nodes in H(m) are v1, v2, ..., v2m−1 .

Then, the sorted output nodes in H(m+1) are 0u1, 0u2, ..., 0u2m−1 , 1u1, 1u2, ..., 1u2m−1 .

The sorted input nodes in H(m + 1) are 0v1, 0v2, ..., 0v2m−1 , 1v1, 1v2, ..., 1v2m−1 . The

initial condition: for m = 2, u1 = 00, u2 = 11, v1 = 01, v2 = 10. Therefore, we can

see: ym−2...yi...00 is the ith output node in H(m). ym−2...yi...01 is the ith input node

in H(m). ym−2...yi...11 is the jth output node in H(m). ym−2...yi...10 is the jth input

node in H(m). It is equivalent to say that the ith output node and the ith input node

have different parities. We use G that stands for Hamming distance in H(m). For

example, if (〈a, b〉, 〈c, d〉) is an edge in the KC(m, k), where a, c are Kautz labels and

b, d are hypercube labels, then |G(b)−G(d)| = 1. It is clear that it is impossible for

any two nodes in V
′
1 (V

′
2) to be adjacent to each other because all of the hypercube

labels in V
′
1 (V

′
2) have the same even/odd parity. Therefore, KC(m, k) is a bipartite

graph.

Figure 3.1 shows KC(2, 2) partitioned into two sets (A and B). The first column

represents the nodes’ Kautz-part-labels in the KC(2, 2). The second and the third

columns represent the nodes’ hypercube-part-labels (even and odd parities) in the

CHAPTER 3. TOPOLOGICAL PROPERTIES OF THE KCUBE NETWORK 33

Figure 3.1: Partition of KC(2,2)

KC(2, 2). The 2-cube is labelled as 00, 01, 10, 11. The 0, 1, 2, 3 are corresponding

decimal numbers in the 2-cube. Each hypercube cluster in the KC(2, 2) has four

vertices which are partitioned into two sets A and B. In set A, all nodes have

even parities in the KC(2, 2). And, in the set B, all nodes have odd parities in the

KC(2, 2).

Theorem 3. KC(1, k), for any k, is Hamiltonian.

Proof. A Hamiltonian cycle of KC(1, k) can be generalized as follows: A Hamiltonian

cycle of KC(1, k), for any k, on the Kautz-part-label can be constructed by Eulerian

cycles of K(1, k) digraph. An Eulerian cycle of K(1, k) is guaranteed because the

indegree and outdegree of each node is the same, namely, d = 1. The total degree

of each node (both indegree and outdegree) will be an even number, namely, 2d = 2.

These two conditions guarantee Eulerian cycles of K(1, k) for any k. If we replace

each node in K(1, k) with H(1), we can have Hamiltonian cycles in KC(1, k). This

is because each node in K(1, k) is replaced by an edge H(1) with one input node and

one output node where these two nodes follow the edge order of an Eulerian cycle

CHAPTER 3. TOPOLOGICAL PROPERTIES OF THE KCUBE NETWORK 34

of K(1, k) digraph. The edge order means a walk in a graph that is a sequence of

vertices and edges, V1, E1, V2, E2,..., Vk, Ek, Vk+1 such that the endpoints of edge Ei

are Vi and Vi+1. If V1 = Vk+1, the walk is a closed walk. A closed walk is to start

and end at the same place. A successful walk in Knigsberg corresponds to a closed

walk in the graph in which every edge is used exactly once. Such a closed walk in any

graph that uses every edge exactly once is called an Eulerian cycle. In conclusion,

we can use Eulerian cycles of K(1, k) to get Hamiltonian cycles of KC(1, k), for any

k.

Theorem 4. KC(2, k), for any k, is Hamiltonian.

Proof. A Hamiltonian cycle of KC(m, k), m = 2, can be generalized as follows: A

Hamiltonian cycle of the KC(2, k), for any k, on the Kautz-part-label can be con-

structed by an Eulerian cycle of K(2, k) digraph. A connected digraph has Eulerian

cycles if and only if every node’s degree is even. In general, an Eulerian cycle is a

digraph cycle which uses each digraph edge only once and a Kautz digraph has Eule-

rian cycles because the indegree and outdegree of each node is the same and the total

degree of each node is even. K(2, k) is guaranteed to have Eulerian cycles because

the indegree and outdegree of each node is the same, namely, d = 2 and the total

degree of each node (both indegree and outdegree) will be an even number, namely,

2d = 4. These two conditions guarantee Eulerian cycles of K(2, k) for any k. If we

replace each node in K(2, k) with a hypercube H(2), we can have Hamiltonian cycles

of KC(2, k) for any k. This is because in the Eulerian cycle of K(2, k), each node

is replaced by two edges of H(2), with each edge having one input node connected

CHAPTER 3. TOPOLOGICAL PROPERTIES OF THE KCUBE NETWORK 35

to two output nodes. It is Hamiltonian as long as the input nodes and output nodes

of any hypercube in KC(2, k) follow the edge order of an Eulerian cycle of K(2, k)

digraph. In conclusion, we can use Eulerian cycles of K(2, k) to get Hamiltonian

cycles of KC(2, k), for any k.

For example, KC(2, 2) is a compound graph of K(2, 2) and H(2). A Hamiltonian

cycle of KC(2, 2) on the Kautz-part-label can be constructed by an Eulerian cycle of

K(2, 2). The total degree of each node (both indegree and outdegree) in K(2, 2) is

2d = 4. An Eulerian cycle of K(2, 2) traverses each edge in K(2, 2) only once. These

edges are represented in Figure 3.2 (a) as 10 → 01 → 12 → 21 → 12 → 20 → 02 →

20 → 01 → 10 → 02 → 21 → 10. If we replace each node in K(2, 2) with H(2), we

have Hamiltonian cycles of KC(2, 2). This is because in the Eulerian cycle of K(2, 2),

each node is replaced by two edges of H(2), with each edge having one input node

connected to two output nodes (see Figure 3.3). Inside the KC(2, 2), all input nodes

and output nodes of the six hypercube clusters follow the edge order of an Eulerian

cycle of K(2, 2) digraph. The Hamiltonian cycle of KC(2, 2) is 〈10, 10〉 → 〈10, 00〉 →

〈01, 01〉 → 〈01, 11〉 → 〈12, 10〉 → 〈12, 00〉 → 〈21, 01〉 → 〈21, 00〉 → 〈12, 01〉 →

〈12, 11〉 → 〈20, 10〉 → 〈20, 00〉 → 〈02, 01〉 → 〈02, 00〉 → 〈20, 01〉 → 〈20, 11〉 →

〈01, 10〉 → 〈01, 00〉 → 〈10, 01〉 → 〈10, 11〉 → 〈02, 10〉 → 〈02, 11〉 → 〈21, 10〉 →

〈21, 11〉. The red lines in Figure 3.2 (b) represent the Hamiltonian cycle of KC(2, 2).

It is worth investigating in the future whether our proof for KC(1, k) and KC(2, k)

also apply to KC(m, k) for m ≥ 3 or whether KC(m, k) is Hamiltonian at all.

Proposition 1. KC(m, k) is regular but not vertex symmetric.

CHAPTER 3. TOPOLOGICAL PROPERTIES OF THE KCUBE NETWORK 36

Figure 3.2: A Hamiltonian Cycle of KC(2,2)

Figure 3.3: H(2)

Proof. The KCube is a regular graph because it is a compound graph of a Kautz

digraph and hypercubes which are all regular. The KCube is not vertex symmetric

because a graph is vertex symmetric if for any two vertices that there is an automor-

phism that maps u to v. In the KC(2, 2), certain nodes are on a cycle of length 6,

while other nodes are on cycles of length 10. In fact, de Bruijn and Kautz graphs are

not vertex symmetric [9, 29]. As a result, the KCube is not vertex symmetric.

CHAPTER 3. TOPOLOGICAL PROPERTIES OF THE KCUBE NETWORK 37

3.3 Routing Problems

After proving the useful properties of the KCube, we want to investigate routing

algorithms for the KCube, because an efficient routing algorithm leads to simpler and

faster communication between any pair of nodes on a network. Guo et al.’s routing

algorithm simply combined the Kautz routing algorithm and the hypercube routing

algorithm, which allowed them to establish an upper bound on the diameter of the

KCube which is m(k + 1) + 1 [20]. In the following, we develop an improved routing

algorithm which provides a smaller upper bound on the diameter of the KCube.

Guo et al.’s routing algorithm is to combine the Kautz routing algorithm with

the hypercube routing algorithm to the corresponding out-arc of the next Kautz

node (which is represented on the KCube as a Kautz-part-label) and continues to a

destination node in a hypercube cluster. However, their routing algorithm doesn’t

always give the shortest paths for all pairs of nodes. In their routing algorithm, there

are k + 1 hypercube clusters involved because the diameter of K(d, k) is k. In our

routing algorithm, we examine their routing algorithm as a possibility, but our work

also explores other possible routing paths by adding an additional hypercube cluster

along the routing paths. This enables us to determine other shorter routing paths and

to establish a smaller upper bound on the diameter of the KCube which is km + 2.

This will involve at most k+2 hypercube clusters because the diameter of K(d, k+1)

is k+1. In the source hypercube cluster, there are 2m−1 output nodes besides the one

CHAPTER 3. TOPOLOGICAL PROPERTIES OF THE KCUBE NETWORK 38

output node used by Guo et al. There are (2m−1− 1) output nodes left, which means

there are (2m−1 − 1) legal/possible routing paths if we add an additional hypercube

cluster. We don’t need to check all routing paths. We can do a little bit of analysis to

choose the right output node which will result in shorter paths for some pairs of nodes

in some cases. When each node in a Kautz digraph is replaced with a hypercube, the

out-arcs (and the corresponding output nodes) and in-arcs (and the corresponding

input nodes) are sorted on the hypercube clusters in a KCube in ascending order

[20]. The out-arcs and in-arcs of any node in K(2m−1, k) can be sorted using the

following approach. One can infer from the definition of Kautz digraph that for a

node xk...x2x1, its out-arc to node xk−1...x1α for α ∈ {0, 1, ..., d} − {x1} is denoted

as the ith out-arc. Here, i indicates the clockwise distance from xk to α (if x1 6= xk)

or from xk + 1 to α (if x1 = xk) in a ring consisting of the values 0, 1,..., d in

ascending order. It is worth noticing that the ith out-arc of any node xk...x2x1 is

also the ith in-arc of a corresponding node xk−1...x1α. Thus, all 2m−1 out-arcs of

each node can be sorted in ascending order, and all 2m−1 in-arcs of each node can be

sorted in the same way. Moreover, first any given node x in K(2m−1, k) is replaced

by a hypercube H(m). Second, the ith out-arc of the node x is replaced by a remote

arc between the ith output node of a hypercube and the ith input node of another

hypercube. Here, the two hypercube clusters correspond to the head and tail of the

ith out-arc of the node x in K(2m−1, k) [20]. When we analyze any pair of nodes, we

use a graphical analogy of a ring that lists the values: 0, 1,..., d in ascending order

in a clockwise direction which allows us to determine the three major routing paths

among all possible routing paths. We map the second leftmost digit of the Kautz-

CHAPTER 3. TOPOLOGICAL PROPERTIES OF THE KCUBE NETWORK 39

part-label in a source hypercube cluster to the leftmost digit on the Kautz-part-label

in a destination hypercube cluster in a clockwise direction on the ring.

Algorithm 1. An improved Routing Algorithm for KC(m, k).

We now present an improved routing algorithm. Guo et al. determine a routing

algorithm in KC(m, k). However, as they state in [20] their routing algorithm does

not always derive the shortest paths for all pairs of nodes. For example, in KC(2, 2),

consider the routing from node 〈21, 11〉 to node 〈20, 01〉. According to their routing

algorithm, the path is 〈21, 11〉 → 〈21, 10〉 → 〈21, 00〉 → 〈12, 01〉 → 〈12, 11〉 →

〈20, 10〉 → 〈20, 00〉 → 〈20, 01〉. This path has seven hops. There is another path

which takes 5 hops: 〈21, 11〉 → 〈10, 10〉 → 〈10, 11〉 → 〈02, 10〉 → 〈02, 00〉 → 〈20, 01〉.

For this reason, we have proposed an improved routing algorithm which identifies

the shorter paths for some pairs of nodes in some cases. we label two hypercube

clusters x and x′. Their routing path from x to x′ traverses at most k + 1 hypercube

clusters, including the source hypercube cluster x and the destination hypercube

cluster x′, as well as other k − 1 intermediate hypercube clusters.

However, there are shorter paths between the source node 〈x, y〉 and the destina-

tion node 〈x′, y′〉 if we can select an additional hypercube cluster v along the routing

path. This can involve a maximum of k + 2 hypercube clusters, including the source

hypercube cluster x and the destination hypercube cluster x′, as well as other k in-

termediate hypercube clusters in certain cases. Now, we will present an approach for

how the source node x selects the next hypercube cluster v which is either on the k

remote-arc path or the k + 1 remote-arc paths. A link (arc) connecting two nodes in

CHAPTER 3. TOPOLOGICAL PROPERTIES OF THE KCUBE NETWORK 40

the same cluster is called a local link, while a link connecting two nodes in different

clusters is called a remote link [20]. The connection topology inside each cluster is

a hypercube, while the interconnection topology at the level of clusters is a Kautz

digraph. In this paper, we use the terms “link”and “arc”interchangeably.

The k remote-arc path used by Guo et al. travels from the source hypercube

cluster x to the destination hypercube cluster x′. It will go through k + 1 hypercube

clusters at most because the diameter of K(2m−1, k) is k. There is only one k remote-

arc path.

The k + 1 remote-arc path used in our algorithm means that we can add an

additional hypercube cluster from the source hypercube cluster x to the destination

hypercube cluster x′. It will go through k+2 hypercube clusters because the diameter

of K(2m−1, k + 1) is k + 1. There are (2m−1 − 1) numbers of k + 1 remote-arc paths.

Now, we give details regarding how to select the next node in KC(m, k). Any node

in KC(m, k) is labelled 〈x = xk...x2x1, y = ym...y2y1〉.

Firstly, we use 〈x = xk...x2x1, y = ym...y2y1〉 as a source node x and 〈x′ =

x
′

k...x
′
2x
′
1, y

′
= y

′
m...y

′
2y
′
1〉 as a destination node x′ in KC(m, k).

Secondly, we mark the second digit of Kautz-part-label in the source node to the

first digit of the Kautz-part-label in the destination node by a clockwise direction

in a ring consisting of the values 0,1,..., d in ascending order if x1 6= x
′

k. If x1 =

x
′

k, we directly choose the k remote-arc path. There are three major paths that

we need to consider. The first path is that the source node 〈x = xk...x2x1, y =

ym...y2y1〉 routes to the next hypercube cluster 〈x = xk−1...x1x
′

k, y = ȳm...ȳ2y1〉. This

is determined by the self-routing of Kautz digraph [31] on the k remote-arc path.

CHAPTER 3. TOPOLOGICAL PROPERTIES OF THE KCUBE NETWORK 41

According to the construction rule of KC(m, k), we can derive the ith order of the

out-arc from the source hypercube cluster 〈x = xk...x2x1, y = ym...y2y1〉 to the first

intermediate hypercube cluster 〈x = xk−1...x1x
′

k, y = ȳm...ȳ2y1〉 and continue to reach

the destination hypercube cluster 〈x = x
′

k...x
′
2x
′
1, y = y

′
m...y

′
2y
′
1〉 by the ith order.

The second path is the source hypercube cluster 〈x = xk...x2x1, y = ym...y2y1〉

routes to the first intermediate hypercube cluster 〈x = xk−1...x1β, y = ȳm...ȳ2y1〉,

β ∈ {0, 1, ..., d} − {x1}. Here, ith order indicates the clockwise distance from xk−1 to

x
′

k on the ring. They have the same ith orders along intermediate hypercube clusters

except the source hypercube cluster and destination hypercube cluster.

The third path is the source node 〈x = xk...x2x1, y = ym...y2y1〉 routes to the next

hypercube cluster 〈x = xk−1...x1γ, y = ȳm...ȳ2y1〉, γ ∈ {0, 1, ..., d} − {x1}. Here, ith

order indicates the clockwise distance from x
′

k−1 to xk on the ring. They have the

same ith orders along intermediate hypercube clusters except the source hypercube

cluster and destination hypercube cluster.

Thirdly, among the above three major middle paths, we could pick the best one,

i.e., the one that has the fewest gaps between ith remote-arc connections on the

Kautz-part-label in the KCube.

Lastly, after choosing one of the three major paths, we can also check that the

source hypercube cluster and the destination hypercube cluster on the hypercube-

part-labels have the shortest hypercube routing paths. According to above analysis,

we can derive the order j of the out-arc from node x to node v among all out-arcs of

node x. Then the message should be forwarded from the jth output node in hypercube

cluster x to the jth input node in the hypercube cluster v. If the node 〈x, y〉 is not the

CHAPTER 3. TOPOLOGICAL PROPERTIES OF THE KCUBE NETWORK 42

jth output node in the hypercube x, it infers the label of the jth output node in the

same hypercube, and routes the message to the jth output node using the self-routing

of hypercube [35]. In conclusion, we can have shorter paths for any pairs of nodes in

KC(m, k).

An example is shown in Figure 3.4. The source hypercube cluster is 〈1432, 0000〉,

and the destination hypercube cluster is 〈0412, 1010〉 in KC(4, 4). We mark the sec-

ond digit of the Kautz-part-label in the source hypercube cluster to the first digit of

the Kautz-part-label in the destination hypercube cluster by moving in a clockwise

direction on a ring consisting of the values 0, 1, 2, 3,..., 8 in ascending order. In addi-

tion, since x1 6= x
′

k, we need to choose an additional hypercube cluster. According to

the above method, we choose one of three major paths on the Kautz level connection.

The first path is 〈1432〉 → 〈4320〉 → 〈3204〉 → 〈2041〉 → 〈0412〉 on the k remote-arc

path. The middle intermediate hypercube clusters’ ith orders are (7 − 1) = 6 and

(7− 1) = 6.

The second path is on the k + 1 remote-arc path. The ith order indicates the

clockwise distance from xk−1 to x
′

k on the ring. Each of these paths has the same

ith orders along intermediate hypercubes clusters except the source hypercube cluster

and destination hypercube cluster. The middle intermediate hypercube cluster’ ith

orders are (6 − 2) = 4 and (8 − 2) = 6. One of the paths is 〈1432〉 → 〈4324〉 →

〈3240〉 → 〈2404〉 → 〈4041〉 → 〈0412〉.

The third path is on the k+1 remote-arc path. The ith order indicates the clockwise

distance from x
′

k−1 to xk on the ring. They have the same ith orders along intermediate

hypercube clusters except the source hypercube cluster and destination hypercube

CHAPTER 3. TOPOLOGICAL PROPERTIES OF THE KCUBE NETWORK 43

cluster. The middle intermediate hypercube cluster’ ith orders are (5 − 2) = 3 and

(8 − 2) = 6. One of the paths is 〈1432〉 → 〈4323〉 → 〈3230〉 → 〈2304〉 → 〈3041〉 →

〈0412〉. We choose the third one because it has the fewest gaps between ith remote-

arcs on the Kautz-part-label. After choosing the third major path, we will analyze

the source hypercube cluster and the destination hypercube cluster’s hypercube-part-

labels to find the shortest routing paths. The shortest routing paths are usually to be

considered the closest to the output node of the source node’s hypercube-part-label

and the closest input node of the destination node’s hypercube-part-label. Because

we have a ring, we don’t need to figure out all the routing paths between the source

node and the destination node. We use constant time to consider the three major

paths on a ring and pick the one with the fewest gaps between ith remote-arcs on

the Kautz level connections. We also use constant time to find the smallest routing

paths only in the source hypercube cluster and the destination hypercube cluster.

This analysis takes constant time to compute. Since the first jth order has been

determined, we can derive the order j of the out-arc from node x to node v among

all out-arcs of node x. Then the message should be forwarded from the jth output

node in hypercube x to the jth input node in the hypercube v and continue to the

destination node. It takes constant time for each node to decide what to do next.

So the total running time required for routing on the KCube is proportional to the

length of the routing paths, which is O(km). The 6th path is the shortest path from

the source node < 1432, 0000 > to the destination node < 0412, 1010 >. We need to

use constant time to analyze the jth (6th) order among the three major paths. Then,

we can pick the best one.

CHAPTER 3. TOPOLOGICAL PROPERTIES OF THE KCUBE NETWORK 44

Figure 3.4: ith Orders on the Kautz Levels of KC(4,4)

Lemma 2. An upper bound on the diameter of the KC(m, k) is m× k + 2.

Proof. The proof of an upper bound on the diameter of the KC(m, k) from Guo

et al. is 2m + (k − 1)(m − 1) + k = m(k + 1) + 1 [20]. However, we think this

upper bound is not tight. Because we directly confirmed that the exact diameter of

KC(2, 2) is 6, while Guo et al.’s upper bound is 2(2 + 1) + 1 = 7. We claim that

an upper bound on the diameter of the KC(m, k) is m × k + 2. When we have two

arbitrary nodes 〈x, y〉 and 〈x′, y′〉, we use the routing Algorithm 1 to decide which

routing path is selected. For any pairs of nodes, there are only two cases that we

consider that they are either on the the k remote-arc path or k+ 1 remote-arc paths.

The largest length of a shortest path from two arbitrary nodes 〈x, y〉 and 〈x′, y′〉 on

the k remote-arc path is guaranteed by the diameter of K(2m−1, k), and there are

k + 1 hypercube clusters involved. In the source hypercube x, the largest length of

a shortest path from the node 〈x, y〉 to any other node is less than or equal to m,

and is only equal to m when the node 〈x, y〉 is an output node and the other node is

CHAPTER 3. TOPOLOGICAL PROPERTIES OF THE KCUBE NETWORK 45

〈x, ȳ〉. The destination hypercube cluster x′ receives a message from one of its input

node and forwards to the node 〈x′, y′〉 in one step. All the intermediate hypercube

clusters traverse a maximum of m− 1. There are k− 1 such intermediate hypercube

clusters. Also, the shortest path traverses k remote links that each link connects a

pair of hypercubes clusters. Thus, an upper bound on the diameter of KC(m, k) is

m+ 1 + k + (k − 1)(m− 1) = km+ 2.

We generalize the routing path between any two nodes 〈x, y〉 and 〈x′, y′〉 on the k

remote-arc path as follows:

We use 〈x = xk...xi...x2x1, y = ym...yi...y2y1〉 as a reference node, where xi ∈

{0, 1, ..., 2m−1} and 1 ≤ i ≤ k and yi = 0 or 1 for all 1 ≤ i ≤ m.

〈x, y〉 = 〈xk...xi...x2x1, ym...yi...y2y1〉

...

〈xk...xi...x2x1, ȳm...ȳi...ȳ2ȳ1〉

...

〈xk−1...xi...x10, ȳm...ȳi...ȳ2y1〉

...

〈xk−1...xi...x10, ym...yi...y2y1〉

...

〈xixi−1...x10xk−1xk−2xi+1, ym...yi...y2ȳ1〉

...

〈xixi−1...x10xk−1xk−2xi+1, ȳm...ȳi...ȳ2ȳ1〉

...

CHAPTER 3. TOPOLOGICAL PROPERTIES OF THE KCUBE NETWORK 46

〈xi−1...x10xk−1xk−2xi+1xi−2, ȳm...ȳi...ȳ2y1〉

...

〈xi−1...x10xk−1xk−2xi+1xi−2, ym...yi...y2y1〉

...

〈x2x10xk−1xk−2xi+1xi−2...x3, ym...yi...y2ȳ1〉

...

〈x2x10xk−1xk−2xi+1xi−2...x3, ȳm...ȳi...ȳ2ȳ1〉

...

〈x10xk−1xk−2xi+1xi−2...x4, ȳm...ȳi...ȳ2y1〉

...

〈x10xk−1xk−2xi+1xi−2...x4, ym...yi...y2y1〉

...

〈0xk−1xk−2xi+1xi−2...x1, ym...yi...y2ȳ1〉

...

〈0xk−1xk−2xi+1xi−2...x1, ȳm...ȳi...ȳ2ȳ1〉 = 〈x′, y′〉

We generalize the routing path between any two nodes 〈x, y〉 and 〈x′, y′〉 on the

k + 1 remote-arc path below:

〈x, y〉 = 〈xk...xi...x1, ym...yi...y2ȳ1〉

...

〈xk...xi...x1, ym...yi...ȳ2ȳ1〉

...

〈xk−1...x1xi, ym...yi...ȳ2y1〉 i 6= k, otherwise i+ 1.

...

CHAPTER 3. TOPOLOGICAL PROPERTIES OF THE KCUBE NETWORK 47

〈xk−1...x1xi, ym...yi...ȳ2ȳ1〉

...

it repeats the same steps as above from ith node to the destination node 〈x′, y′〉.

...

〈0xk−1xk−2xi+1xi−2...x1, ȳm...ȳi...ȳ2ȳ1〉 = 〈x′, y′〉 on k + 1 remote-arc path.

On the k + 1 remote-arc path, there are k + 2 hypercube clusters. The source

hypercube cluster sends a message directly to the next hypercube cluster without

routing inside. The destination hypercube cluster receives the message in one hop. All

the intermediate hypercube clusters traverse a maximum of m− 1 steps. There are k

intermediate hypercube clusters and k+1 remote arcs. Thus, it is k(m−1)+1+k+1 =

km+ 2.

We claim that km + 2 is a lower bound on the KC(m, k) when m = 2 or m = 3

because any routing path that traverses larger than k + 1 remote-arc path is already

greater than km + 2. Because the lower bound and upper bound are exactly same,

we say the diameter of the KC(m, k) is m× k + 2 when m = 2 or m = 3. Here, we

give several examples to show how the routing algorithm works.

For example, we consider the routing path from 〈21, 11〉 to 〈20, 01〉 in KC(2, 2).

We choose the path 〈21, 11〉 → 〈10, 10〉 → 〈10, 11〉 → 〈02, 10〉 → 〈02, 00〉 → 〈20, 01〉

on the k+1 remote-arc path, rather than the one Guo et al. chose on the k remote-arc

path. They chose the path 〈21, 11〉 → 〈21, 10〉 → 〈21, 00〉 → 〈12, 01〉 → 〈12, 11〉 →

〈20, 10〉 → 〈20, 00〉 → 〈20, 01〉.

If the routing is from 〈21, 11〉 to 〈20, 10〉, we choose the path 〈21, 11〉 → 〈21, 10〉 →

〈21, 00〉 → 〈12, 01〉 → 〈12, 11〉 → 〈20, 10〉 on the k path rather than the path

CHAPTER 3. TOPOLOGICAL PROPERTIES OF THE KCUBE NETWORK 48

〈21, 11〉 → 〈10, 10〉 → 〈10, 11〉 → 〈02, 10〉 → 〈02, 00〉 → 〈20, 01〉 → 〈20, 00〉 →

〈20, 10〉 on the k + 1 path.

It is possible for two nodes have the same routing distance on the k remote-arc

path and the k + 1 remote-arc path on the Kautz level.

If the path is from 〈21, 11〉 to 〈20, 11〉, the path 〈21, 11〉 → 〈10, 10〉 → 〈10, 11〉 →

〈02, 10〉 → 〈02, 00〉 → 〈20, 01〉 → 〈20, 11〉 is on the k + 1 remote-arc path.

The path 〈21, 11〉 → 〈21, 10〉 → 〈21, 00〉 → 〈12, 01〉 → 〈12, 11〉 → 〈20, 10〉 →

〈20, 11〉 is on the k remote arc path. These two are the same. When a path in

KC(m, k) is identical to the k remote-arc path and k + 1 remote-arc path, it is the

exact diameter of the KC(m, k).

Now consider routing in KC(3, 3) from 〈123, 000〉 to 〈021, 111〉, the first path is

〈123, 000〉 → 〈123, 100〉 → 〈234, 101〉 → 〈234, 100〉 → 〈340, 101〉 → 〈340, 111〉 →

〈402, 110〉 → 〈402, 100〉 → 〈021, 101〉 → 〈021, 111〉 on the k + 1 remote-arc path.

This path contains nine hops.

The second path is 〈123, 000〉 → 〈231, 001〉 → 〈231, 011〉 → 〈231, 111〉 → 〈310, 110〉 →

〈310, 111〉 → 〈102, 110〉 → 〈102, 100〉 → 〈102, 000〉 → 〈021, 001〉 → 〈021, 011〉 →

〈021, 111〉 on the k + 1 remote-arc path. This path has eleven hops.

The third path is 〈123, 000〉 → 〈123, 001〉 → 〈123, 011〉 → 〈123, 111〉 → 〈230, 110〉 →

〈230, 010〉 → 〈230, 000〉 → 〈302, 001〉 → 〈302, 011〉 → 〈302, 111〉 → 〈021, 110〉 →

〈021, 111〉 on the k remote-arc path. This path contains eleven hops.

The forth path is 〈123, 000〉 → 〈123, 001〉 → 〈123, 011〉 → 〈232, 010〉 → 〈232, 000〉 →

〈232, 100〉 → 〈320, 101〉 → 〈320, 111〉 → 〈202, 110〉 → 〈202, 111〉 → 〈021, 110〉 →

〈021, 111〉 on the k remote-arc path. This path contains eleven hops.

CHAPTER 3. TOPOLOGICAL PROPERTIES OF THE KCUBE NETWORK 49

We consider routing in KC(3, 3) from 〈123, 000〉 to 〈021, 010〉.

The path is 〈123, 000〉 → 〈123, 001〉 → 〈123, 011〉 → 〈123, 111〉 → 〈230, 110〉 →

〈230, 010〉 → 〈230, 000〉 → 〈302, 001〉 → 〈302, 011〉 → 〈302, 111〉 → 〈021, 110〉 →

〈021, 010〉 on the k remote-arc path. This path contains eleven hops.

The path is 〈123, 000〉 → 〈231, 001〉 → 〈231, 011〉 → 〈231, 111〉 → 〈310, 110〉 →

〈310, 111〉 → 〈102, 110〉 → 〈102, 100〉 → 〈102, 000〉 → 〈021, 001〉 → 〈021, 000〉 →

〈021, 010〉 on the k + 1 remote-arc path. This path contains eleven hops.

Chapter 4

Broadcasting

4.1 Introduction

A broadcasting problem is an information dissemination process in a network. In

a network, one processor sends a piece of information to all other processors. This

process is to be completed as quickly as possible subject to a constraint. The con-

straint is that, in a single-port (weak) model, a processor is only allowed to send data

to, or receive data from, one of its neighbours in one unit of time. Since after each

unit of time, the number of processors with the data can at most be doubled, the

broadcasting problem (BP) in such a model has a lower bound Ω(logN) where N

is the number of processors in the network. For the KCube network KC(m, k), the

lower bound will be Ω(log((dk +dk−1)× 2m)) = Ω(log((dk +dk−1)× 2d)) = Ω(k log d).

The idea to design a broadcasting algorithm on the KCube is first to convert the

KCube into several bipartite graphs. Because these bipartite graphs have the ex-

act same structures, we can design a broadcasting algorithm to send data on these

50

CHAPTER 4. BROADCASTING 51

bipartite graphs. Since the KCube is a compound graph of a Kautz digraph and

hypercubes, the way to convert a KCube into several bipartite graphs is to partition

the corresponding Kautz digraph into several complete bipartite graphs. The nodes

of the partitioned Kautz complete bipartite graphs can be used as Kautz-part-labels

in the KCube, and we can add hypercube nodes in each complete bipartite graph,

which will result in bipartite graphs of the KCube. However, a Kautz digraph is a

subdigraph of the corresponding de Bruijn digraph, so we need to understand how a

de Bruijn digraph can be partitioned into complete bipartite graphs. The K(d, k) is

a subdigraph of the corresponding de Bruijn digraph. The corresponding de Bruijn

digraph is B(d+1, k). In fact, it is not an original de Bruijn digraph that can be par-

titioned into complete bipartite graphs, but actually the corresponding line graph of

the de Bruijn digraph that can be partitioned into complete bipartite graphs. Many

researchers have mentioned using line graphs because line graphs have good proper-

ties. The de Bruijn and Kautz complete bipartite graphs and their corresponding line

graphs are isomorphic to each other. The relation between an original digraph G and

its line graph L(G) is that the L(G) is isomorphic to the subsequent graph of G which

is from the same d set of the original graph G (where d is the degree of each vertex).

To design a broadcasting algorithm on the de Bruijn graph, we need to partition

the corresponding line graph of the de Bruijn graph into complete bipartite graphs.

Heydemann and Sotteau gave a method for partitioning de Bruijn graphs into several

complete bipartite graphs [23]. Once we have de Bruijn complete bipartite graphs,

we can design an algorithm on one bipartite graph and it will apply equally to all

bipartite graphs. When we take out the nodes which are labelled with consecutive

CHAPTER 4. BROADCASTING 52

letters (e.g., 000, 111) in the de Bruijn complete bipartite graphs, the resulting graphs

are Kautz complete bipartite graphs. Bermond and Perennes designed a broadcasting

algorithm on complete bipartite graphs of de Bruijn graphs and Kautz graphs which

will be described in Section 4.3 [4]. What we do in our research is to take the Kautz

partitioned complete bipartite graphs, and replace each node in the Kautz graph with

a hypercube H(m) with 2m nodes. Inside each KCube bipartite graph, we set the left

part nodes as initial nodes and we set the right part nodes as terminal nodes. The

initial nodes are output nodes in the KCube. The terminal nodes are input nodes in

the KCube. After adding the hypercube nodes, each KCube bipartite graph has the

exact same structure. Our research is to design a broadcasting algorithm based on

Bermond and Perennes’s idea that utilize the complete bipartite graphs of a Kautz

digraph and accommodate the hypercube lables of the KCube. This allows us to de-

fine a bipartite protocol on a KCube bipartite graph which will apply for all KCube

bipartite graphs.

In this chapter, we will first illustrate the topological properties of the line graph

and the complete bipartite graph. Then, we will show that the de Bruijn digraph

and Kautz digraph’s corresponding line graphs can be partitioned into several com-

plete bipartite graphs. Third, we will explore Bermond and Perennes’s broadcasting

algorithm on bipartite graphs of de Bruijn graphs and Kautz graphs. Finally, based

on Bermond and Perennes’s broadcasting algorithm [4], we will develop two optimal

broadcasting algorithms on the KCube.

CHAPTER 4. BROADCASTING 53

4.2 Properties of the Line Graph and the Com-

plete Bipartite Graph

In this section, we will begin by providing notations. Then, we will show the re-

lationships between the de Bruijn graph and the Kautz graph. Lastly, we will list

the topological properties of the de Bruijn graph. It is significant to study these

properties because if we know the de Bruijn bipartition, we automatically know the

Kautz bipartition according to the relationships between those two. We can use these

properties to design broadcasting algorithms on KCube bipartite graphs later.

Given a connected graph G and a message originator, vertex u, the broadcast

time of u, denoted b(u), is the minimum number of time units required to complete

broadcasting from u. The broadcast time of the graph G, b(G), is defined as the

maximum of b(u) taken over all the vertices u in G.

The Kautz digraph is a subdigraph of de Bruijn digraph induced by the set of ver-

tices without two consecutive identical letters. Before we explore the KCube bipartite

graphs, it is important to examine the de Bruijn and Kautz digraphs’ line graphs and

bipartite graphs, which serve as the foundation of the KCube. The following results

and topological properties are from [4, 23].

It is well known that the de Bruijn digraph (as well as the Kautz digraph) of

indegree and outdegree d and diameter k is the line digraph of the same digraph of

diameter k − 1. Here the line digraph and the complete bipartite digraphs include

directions because the de Bruijn and the Kautz digraphs have directions. Later, we

remove all the directions in the line digraph and the complete bipartite digraphs

CHAPTER 4. BROADCASTING 54

because they are bi-directional. As usual, Kd,d denotes the bipartite digraph formed

by two independent sets A and B of d vertices, with all arcs from A to B. We will

use K0
d,d to denote the digraph obtained from Kd,d by identifying two given adjacent

vertices and replacing the arc joining them by a loop. The alphabet of size d is

Σ = {0, 1, ..., d − 1}. As a short form, we will use ak to denote the word of length k

composed of k occurrences of the letter a.

As illustrated above in the relationship between the line digraph and the original

digraph, here we show how the line digraph of the de Bruijn digraph can be partitioned

into the complete bipartite digraphs.

The line graph of the B(d, k − 1) is regular of indegree and outdegree d, then,

the vertices of B(d, k) corresponding to the in-coming and out-going arcs of a vertex

without loop of B(d, k − 1) form a complete bipartite digraph Kd,d in B(d, k). The

vertices of B(d, k) corresponding to the in-coming and out-going arcs of a vertex ak−1

(with a loop) of B(d, k − 1) form a complete digraph K0
d,d [23]. We can have the

following properties.

4.2.1 The Topological Properties of de Bruijn Digraph

• Any vertex x1x2...xk of B(d, k), different from ak, ak−1α, αak−1 (0 ≤ a ≤

d−1, 0 ≤ α ≤ d−1, α 6= a) belongs to exactly two Kd,d’s. One of the Kd,d’s has

vertex set the union of A = {αx2...xk | 0 ≤ α ≤ d− 1} and B = {x2...xkβ | 0 ≤

β ≤ d−1} and contains all the arcs from A to B. The vertex set of the other Kd,d

is the union of {x1x2...xk−1β | 0 ≤ β ≤ d−1} and {αx1x2...xk−1 | 0 ≤ α ≤ d−1}.

CHAPTER 4. BROADCASTING 55

The vertex x1x2...xk has indegree 0 and outdegree d in the first Kd,d and out-

degree 0 and indegree d in the other one [23].

• For any letter a of the alphabet (0 ≤ a ≤ d−1), the vertex ak of B(d, k) belongs

to the K0
d,d with the vertex set the union of A = {αak−1 | 0 ≤ α ≤ d−1, α 6= a},

B = {ak−1β | 0 ≤ β ≤ d − 1, β 6= a}, and {ak}. The subdigraph K0
d,d contains

all the arcs from A to B, from A to ak, from ak to B and a loop on ak, so ak

has both indegree and outdegree d in the K0
d,d [23].

• Vertices of B(d, k) of the form ak−1α (or αak−1), with 0 ≤ a ≤ d− 1, 0 ≤ α ≤

d − 1, α 6= a, belong to one subdigraph Kd,d with the vertex set the union of

A = {γak−2α | 0 ≤ γ ≤ d − 1} and B = {ak−2αβ | 0 ≤ β ≤ d − 1} and

one subdigraph K0
d,d with the vertex set the union of A = {αak−1 | 0 ≤ α ≤

d− 1, α 6= a}, B = {ak−1β | 0 ≤ β ≤ d− 1, β 6= α}, and ak [23].

• Each arc of B(d, k) belongs to a unique Kd,d or K0
d,d. The arcs of B(d, k) can be

partitioned into dk−1 complete bipartite graphs (Kd,d). Therefore, the digraph

B(d, k) is the arc disjoint union of exactly dk−1 − d digraphs, each one being

isomorphic to Kd,d, and of d digraphs, each one being isomorphic to K0
d,d [23].

We have provided an example to show an original digraph’s corresponding line

digraph. According to the line graph definition, we use a vertex to represent each

edge in B(2, 2) in the subsequent digraph. Then we add together all of the edges

in terms of de Bruijn digraph connections. This process results in a line digraph

for B(2, 2) which is B(2, 3). B(2, 3) is isomorphic to the subsequent graph of B(2, 2)

CHAPTER 4. BROADCASTING 56

which is from the same d (d = 2) set of the original graph B(2, 2) (where d is the degree

of each vertex). It is B(2, 3) = L(B(2, 2)). The same property holds for de Bruijn

and Kautz digraphs, (i.e.,) B(d, k) = L(B(d, k − 1)) and K(d, k) = L(K(d, k − 1)).

According to the above de Bruijn properties, we have included an example to show

how the line digraph could be partitioned into several complete bipartite digraphs.

Later, we will remove all the directions in the complete bipartite digraphs as a result

of bi-directionality. Since B(2, 3) is a line digraph of B(2, 2), we partition the line

digraph B(2, 3) into several bipartite digraphs. Indeed, since B(2, 2) is a regular

digraph, with indegree and outdegree 2, the vertices of B(2, 3) corresponding to the

in-coming and out-going arcs of a vertex without loop of B(2, 2) form a complete

bipartite digraph K2,2 in B(2, 3). The vertices of B(2, 3) corresponding to the in-

coming and out-going arcs of a vertex a2 (with a loop) of B(2, 2) form a complete

digraph K0
2,2. Each arc of B(2, 3) belongs to a unique K2,2 or K0

2,2 (see Figure 4.1 and

Figure 4.2). These complete bipartite digraphs have directions. Since the first K2,2

and the second K2,2 are bidirectional, we can remove all the directions. The arcs of

B(2, 3) can be partitioned into dk−1 = 23−1 = 4 complete bipartite graphs (K2,2) in

Figure 4.3. The graph B(2, 3) is the arc disjoint union of dk−1 − d = 23−1 − 2 = 2

cycles of length 4, denoted C4 (each one being isomorphic to K2,2), and of 2 triangles

(each one being isomorphic to K0
2,2) in Figure 4.5. We remove all the directions in de

Bruijn subgraphs because complete bipartite graphs are bi-directional. It is easy to

find which complete bipartite graphs are isomorphic to the undirected UB(2, 3) (as

defined in Section 2.2) as seen in Figure 4.4. The corresponding properties for the

undirected de Bruijn graph can be easily deduced. In particular, when d = 2, the

CHAPTER 4. BROADCASTING 57

Figure 4.1: Partition B(2, 3) to K2,2

undirected binary de Bruijn graph of diameter 3, denoted by UB(2, 3), is the union

of 2 cycles of length 4, denoted C4, and of two triangles, which are all edge disjoint

in Figure 4.5.

4.3 A Broadcasting Algorithm on the Kautz Graph

In this section, we will show Bermond and Perennes’s broadcasting algorithm on an

undirected Kautz graph [4]. It is important to understand how the broadcasting algo-

rithm executes on the Kautz graph because a KCube will partition the corresponding

CHAPTER 4. BROADCASTING 58

Figure 4.2: Partition B(2, 3) to K2,2 and K0
2,2

CHAPTER 4. BROADCASTING 59

Figure 4.3: Undirected K2,2 Graphs

Figure 4.4: UB(2, 3)

CHAPTER 4. BROADCASTING 60

Figure 4.5: Four Disjoint Cycles

Kautz graph according to the Kautz bipartition and add all of the hypercube nodes

on each complete bipartite graph. Later, we will design two optimal broadcasting

algorithms on the KCube (Section 4.4).

K(d, k) is the subdigraph of B(d + 1, k). K(d, k) is generated using the set of

vertices without two consecutive identical letters from B(d + 1, k). If a Kd+1,d+1 of

B(d + 1, k) induces a Kd,d in K(d, k), similar properties hold for K(d, k). In fact,

the digraph K(d, k) is the union of dk−1 + dk−2 digraphs, each one isomorphic to the

bipartite graphs Kd,d [23].

A Bipartite Broadcasting Protocol

Bermond and Perennes explain how a bipartite protocol broadcasts on complete

bipartite graphs (isomorphic to the line graph of the original Kautz graph). If they

let the vertices of Kd,d be, respectively, A = {a0, ..., ad−1} and B = {b0, ..., bd−1}. The

broadcasting protocol is as follows: at time 1, if the originator is ai, it informs bi;

then at time t ≥ 2, any vertex aj (and ,respectively, bj) which knows the message

sends it to bj+2t−2 (and, respectively, aj+2t−2). By induction, one can easily show that

after time t, if ai is the originator, the message is known by 2t−1 vertices of B, namely

bi, ..., bi+2t−1−1 and 2t−1 vertices of A, namely ai, ..., ai+2t−1−1 [4].

CHAPTER 4. BROADCASTING 61

For example, consider the broadcasting algorithm running on the K(2, 2). K(2, 2)

is the subdigraph of B(3, 2). This B(3, 2) digraph has some nodes with consecutive

identical letters and can be partitioned into 3 complete bipartite graphs (K3,3) in

Figure 4.6. Because our work on the KCube is based on a Kautz digraph and the

Kautz digraph doesn’t have nodes with consecutive identical letters, we remove them

(00, 11, 22) to deduce K2,2 in K(2, 2) in Figure 4.7. The broadcasting procedure

lets the vertices of the first K2,2 be respectively A = {a0, a1} = {01, 21} and B =

{b0, b1} = {10, 12}. At time 1, a0 informs b0 which sends data from 01 to 10. At time

t ≥ 2, any vertex aj (and, respectively, bj) sends data to bj+2t−2 (and, respectively,

aj+2t−2), that is a0 sends data to b1 and b0 sends data to a1. They are nodes 01 to

12 and 10 to 21. During each phase, each vertex, which has received the message

as a terminal vertex of first K2,2 in the preceding phase, sends data to the terminal

vertices of the K2,2, which are initial vertices in the other K2,2 bipartite graphs. In

this case, 01 and 10, 21 and 12, which are terminal vertices in the first K2,2, have

already been informed. But, they are also the initial vertices in the second K2,2

and the third K2,2. Each K2,2 executes the bipartite protocol one more time. Then,

the broadcasting is complete. Each K2,2 takes log d time to send data. There are

dk−1 + dk−2 = 22−1 + 22−2 = 3 complete bipartite graphs. b(UK(2, 2)) ≤ k(log d) =

3× 1 = 3.

CHAPTER 4. BROADCASTING 62

Figure 4.6: B(3, 2) and K3,3

Figure 4.7: K(2, 2) and K2,2

CHAPTER 4. BROADCASTING 63

4.4 Two Optimal Broadcasting Algorithms on the

KCube Graphs

The way to convert KCube into bipartite graphs is to partition the corresponding

Kautz digraph as the Kautz-part-labels according to the Kautz bipartition [23] and

add all the hypercube-part-labels on the KCube. The method for partitioning a Kautz

digraph is presented in Section 4.3.

Each Kd,d corresponds to a vertex of the KCube as follows. The Kd,d is associated

to 〈x = xk...x2x1, y = ym...y2y1〉 where

• y2y1 = x2x1 or y2y1 = x̄2x̄1

• yi = 0 or 1 for all 3 ≤ i ≤ m

Inside each KCube bipartite graph, we set the left part nodes as initial vertices

(output nodes) and the right part nodes as terminal vertices (input nodes).

• y2y1 = x̄2x1 or y2y1 = x2x̄1

• yi = 0 or 1 for all 3 ≤ i ≤ m

of this Kd,d.

We are ready to broadcast in bipartite graphs of KC(m, k) with a protocol that

is the bipartite protocol for the Kd,d. The vertices of Kd,d are respectively A =

{a0, ..., ad×2m−1−1} and B = {b0, ..., bd×2m−1−1}. The partition procedure proceeds in

sequence from the first Kd,d to the last Kd,d.

Partition Procedure:

CHAPTER 4. BROADCASTING 64

1. 〈x = xk...x2x1, y = ym...y2y1〉 → 〈x = xk−1...x2x1α, y = ym...y2ȳ1〉. 〈x =

xk...x2x1, y = ym...y2y1〉 is an originator with a datum in the first KCube bi-

partite graph. It is an output node. We set this node is the first initial node

denoted a0 in the set A. 〈x = xk−1...x2x1α, y = ym...y2ȳ1〉 is the first input node

corresponding an originator in the first KCube bipartite graph. We set it as the

first terminal node denoted b0 in the set B.

2. This procedure the Kautz-part-label doesn’t change, only differ from the right-

most one digit each time on the hypercube-part-label until differs all hypercube-

part-label digits.

〈x = xk...x2x1, y = ym...y2y1〉 → 〈x = xk...x2x1, y = ym...y2ȳ1〉. We set 〈x =

xk...x2x1, y = ym...y2ȳ1〉 as the second terminal node (input node) in set B.

It denotes b1. At the same time, 〈x = xk−1...x2x1α, y = ym...y2ȳ1〉 → 〈x =

xk−1...x2x1α, y = ym...ȳ2ȳ1〉. We set 〈x = xk−1...x2x1α, y = ym...ȳ2ȳ1〉 as the

second initial node (an output node) denoted a1 in the set A. Each partition

procedure happens from an initial vertex to a terminal vertex and also from a

terminal vertex to an initial vertex. This procedure ends until differs all the

hypercube digits on the hypercube-part-label.

3. After differing all hypercube digits , Kautz-part-label starts to change according

to the Kautz bipartite partition and repeat step 1. Each procedure happens

from an initial vertex to a terminal vertex and also from a terminal vertex

to an initial vertex. This procedure ends until changing each corresponding

Kautz-part-label.

CHAPTER 4. BROADCASTING 65

4. It starts to repeat the step 2 which doesn’t change Kautz-part-labels and differ

all hypercube-part-label digits.

5. It starts to repeat the step 3 which changes the Kautz-part-labels and doesn’t

change the hypercube-part-labels. This step finishes until the last KCube bi-

partite graph.

The first broadcasting algorithm is as follows: at time 1, if the originator is ai, it

informs bi. At time t ≥ 2, any vertex aj (resp bj) which knows the message sends it

to bj+2t−2 resp (aj+2t−2). Then at time t ≥ 4, any vertex ap (resp bp) which knows the

message sends it to bp+2t−3 resp (ap+2t−3).

At time t ≥ 5, any vertex ap (resp bp) which knows the message sends it to bp+2t−4

resp (ap+2t−4)

By induction one can easily show that after time t, if ap is the initial vertex, the

message is known by 2t−4 vertices of B, namely, bp, ..., bp+2t−4−1 and 2t−4 vertices of

A, namely ap, ..., ap+2t−4−1. In addition, we add the previous time nodes.

As an example, KC(2, 2) is a compound graph of the Kautz digraph K(2, 2) and

Hypercubes H(2). A constraint is 2d = 2m → d = 2m−1 = 22−1 = 2.

K(2, 2) is the subgraph of B(3, 2) induced by the set of vertices without two consec-

utive identical letters and a K3,3 of B(3, 2) in Figure 4.6 induces a K2,2 of K(2, 2) in

Figure 4.7. In particular the K(2, 2) is the arc disjoint union of exactly dk−1+dk−2 = 3

graphs, each one is isomorphic to the graph K2,2. We can add hypercube-part-labels

in Figure 4.8. We can partition all the nodes into two sets in the next table. Now,

we are ready to broadcast a message according to the protocol. At time 1, a0 −→ b0.

CHAPTER 4. BROADCASTING 66

Figure 4.8: Partitions of KC(2, 2)

At time 2, a0 −→ b1 and b0 −→ a1. At time 3, a0 −→ b2, b0 −→ a2, b1 −→ a3 and

a1 −→ b3. At time 4, b2 −→ a4, a2 −→ b4, a3 −→ b5 and b3 −→ a5. At time 5,

a4 −→ b6, b4 −→ a6, b5 −→ a7, and a5 −→ b7. At time 6, a4 −→ b8, b4 −→ a8,

b5 −→ a9, a5 −→ b9, b6 −→ a10, a6 −→ b10, a7 −→ b11 and b7 −→ a11.

a0 < 01, 00 > < 10, 01 > b0

a1 < 10, 00 > < 01, 01 > b1

a2 < 10, 11 > < 01, 10 > b2

a3 < 01, 11 > < 10, 10 > b3

a4 < 20, 11 > < 02, 10 > b4

a5 < 21, 11 > < 12, 10 > b5

a6 < 02, 11 > < 20, 10 > b6

a7 < 12, 11 > < 21, 10 > b7

a8 < 02, 00 > < 20, 01 > b8

a9 < 12, 00 > < 21, 01 > b9

a10 < 20, 00 > < 02, 01 > b10

a11 < 21, 00 > < 12, 01 > b11

CHAPTER 4. BROADCASTING 67

This protocol works with KC(2, 2), and it may work for arbitrary KC(m, k).

However, further research must be done to test this protocol. The difference between

the first bipartite protocol and the second bipartite protocol is that there is an ad-

ditional partition procedure in the first bipartite protocol. It partitions all nodes of

KCube bipartite graphs into two sets A and B where we designed the protocol on the

two sets. However, in the second bipartite protocol, there is no this partition pro-

cedure. We directly designed a bipartite protocol on remote arcs inside one KCube

bipartite graph which can apply for all KCube bipartite graphs. It works for arbitrary

KC(m, k).

The second bipartite broadcasting protocol is to let the vertices of each Kd,d be

respectively A = {a0, ..., ad×2m−1−1} and B = {b0, ..., bd×2m−1−1}. The broadcasting

procedure has two phases. The first phase happens in the KCube bipartite graphs.

We define a bipartite protocol on the KCube bipartite graphs. The second phase

happens in the hypercube clusters with the same Kautz-part-labels. We use the

hypercube broadcasting algorithm [6]. If we check the KCube bipartite graphs care-

fully, inside each KCube bipartite graph, the connections between the initial vertices

(output nodes) and the terminal vertices (input nodes) are the remote arcs on the

KCube. Recall that on the KCube, we call any arc which connects two nodes in

different hypercube clusters a remote arc. We call any arc which connects two nodes

in the same hypercube cluster a local arc. The advantage of representing a KCube

as KCube bipartite graphs is that this approach gives us a way to simplify deter-

mining which nodes will send or receive data in which order. Each KCube bipartite

graph is connected to other KCube bipartite graphs by local arcs, which gives us one

CHAPTER 4. BROADCASTING 68

way to show how data can be transferred from one KCube bipartite graph to other

KCube bipartite graphs, because after we convert the KCube into KCube bipartite

graphs, we “split” each hypercube cluster into two equal parts. The “splitting” is

virtual; the hypercube clusters are not split on the original KCube graph. One half of

the hypercube cluster retains the same Kautz-part-label and all the hypercube-part-

labels are output nodes. The other half retains the same Kautz-part-label and all the

hypercube-part-labels are input nodes. For example, in Figure 4.8, in the first KCube

bipartite graph, the two terminal nodes < 10, 01 > and < 10, 10 > are connected by

local arcs to two initial nodes < 10, 00 > and < 10, 11 > in the next KCube bipartite

graph. Every “split” hypercube cluster in a KCube bipartite graph is connected by

local arcs to another “split” hypercube cluster in another KCube bipartite graph with

the same Kautz-part-label. So, we can say on the KCube bipartite graphs, the remote

arcs show how data transfers among different hypercube clusters and the local arcs

show how data transfers inside each hypercube cluster.

So, the second broadcasting algorithm is as follows:

First, we use the first node (arbitrarily chosen) in the first KCube bipartite graph

as an originator to send a datum along the first remote arc to the corresponding node

ai −→ bi in the same KCube bipartite graph. The two nodes (an initial node and a

terminal node) that now have the data are called informed initial/terminal nodes.

Second, the two informed nodes, which are in different “split” hypercube clusters

(in different KCube bipartite graphs) send data along the local arcs to the corre-

sponding ith input/output nodes in the other “split” hypercube clusters with the

same Kautz-part-labels. For example, in Figure 4.8, at this step, the first output

CHAPTER 4. BROADCASTING 69

node < 01, 00 > sends a datum by the local arc to the corresponding first input node

< 01, 01 > in the other split hypercube cluster with the same Kautz-part-label. At

the same time, the first input node < 10, 01 > sends a datum by the local arc to

the corresponding first output node < 10, 00 > in the other “split” hypercube cluster

with the same Kautz-part-label. In this example, KC(2, 2), at step 2, 4 nodes are

informed on the KCube. In Figure 4.8, the blue labels do not represent added nodes

on the KCube bipartite graphs. Instead, they represent the labels of nodes which

are connected by local arcs to nodes in a different KCube bipartite graph that is not

contiguous in the diagram.

Third, in each informed “split” hypercube cluster, we use the hypercube broad-

casting algorithm [6], which partitions H(m) into 2 sub-hypercubes of size H(m− 1)

and sends data from one sub-hypercube H(m−1) to another sub-hypercube H(m−1)

in parallel by differing a significant bit. The advantage of the hypercube broadcast-

ing algorithm is that both H(m − 1) hypercubes broadcast data independently in

parallel. Broadcasting data on the H(m) from one H(m − 1) to another H(m − 1)

can be done in one unit of time, which allows us to double the number of processors

with data inside each “split” hypercube cluster at each time. All the data transfers

inside each informed “split” hypercube cluster in parallel along local arcs at the same

time. This step allows all the nodes inside the informed hypercube clusters to get the

data simultaneously using the hypercube broadcasting algorithm. For example, in

Figure 4.8, the hypercube of H(2) can partition into 2 sub-hypercubes of H(1). The

sub-hypercube of H(1) (an edge with a node < 10, 01 > and a node < 10, 00 >) can

send data to another sub-hypercube of H(1) (an edge with a node < 10, 11 > and

CHAPTER 4. BROADCASTING 70

a node < 10, 10 >) by differing the leftmost significant bit. At the same time, the

sub-hypercube of H(1) (an edge with a node < 01, 01 > and a node < 01, 00 >) can

send data to another sub-hypercube of H(1) (an edge with a node < 01, 11 > and a

node < 01, 10 >) by differing the leftmost significant bit.

Fourth, the last nodes to be informed in step 3 send data to the corresponding

nodes by the remote arcs inside each KCube bipartite graph with different Kautz-

part-labels. Some of these nodes are initial nodes and some of these nodes are terminal

nodes. Any vertex aj (resp bj) which has the datum sends it to bi+d+1 resp (ai+d+1).

The i subscript is the previous bipartite protocol defined on the remote arc at sept

1. The d is an indegree/outdegree of a Kautz graph. These remote arcs inside each

KCube bipartite graphs give us a clear way to double the number of new informed

hypercube clusters. For example, in Figure 4.8, an initial node a1 (< 01, 11 >) can

send a datum to a terminal node b3 (< 12, 10 >) and an terminal node b1 (< 10, 10 >)

can send a datum to an initial node a3 (< 21, 11 >) with different Kautz-part-

labels using the same bipartite protocol in the first KCube bipartite graph. At the

same time, an initial node a1 (< 10, 11 >) can send a datum to a terminal node b3

(< 02, 10 >) and a terminal node b1 (< 01, 10 >) can send a datum to an initial node

a3 (< 20, 11 >) with different Kautz-part-labels using the same bipartite protocol in

the second KCube bipartite graph.

Fifth, the informed nodes from step 4 send the data to the corresponding ith

input/output nodes in their own “split” hypercube clusters with the same Kautz-

part-label. This step repeats step 2. For example, in Figure 4.8, at this step, the

second input node < 12, 10 > sends a datum by the local arc to the corresponding

CHAPTER 4. BROADCASTING 71

second output node < 12, 11 > in the other “split” hypercube cluster with the same

Kautz-part-label. The second input node < 02, 10 > sends a datum by the local arc

to the corresponding second output node < 02, 11 > in the other “split” hypercube

cluster with the same Kautz-part-label. At the same time, the second output node

< 21, 11 > sends a datum by the local arc to the corresponding second input node

< 21, 10 > in the other “split” hypercube cluster with the same Kautz-part-label. The

second output node < 20, 11 > sends a datum by the local arc to the corresponding

second input node < 20, 10 > in the other “split” hypercube cluster with the same

Kautz-part-label. At this step, 8 nodes are informed on the KCube.

Sixth, we repeat step 3 using the hypercube broadcasting algorithm, which sends

data from H(m− 1) to the corresponding H(m− 1) by differing a significant bit. For

example, in Figure 4.8, the hypercube of H(2) can partition into 2 sub-hypercubes

of H(1). The sub-hypercube of H(1) (an edge with a node < 12, 10 > and a node

< 12, 11 >) can send data to another sub-hypercube of H(1) (an edge with a node

< 12, 00 > and a node < 12, 01 >) by differing the leftmost significant bit. The

sub-hypercube of H(1) (an edge with a node < 02, 10 > and a node < 02, 11 >) can

send data to another sub-hypercube of H(1) (an edge with a node < 02, 00 > and

a node < 02, 01 >) by differing the leftmost significant bit. At the same time, the

sub-hypercube of H(1) (an edge with a node < 21, 11 > and a node < 21, 10 >)

can send data to another sub-hypercube of H(1) (an edge with a node < 21, 01 >

and a node < 21, 00 >) by differing the leftmost significant bit. The sub-hypercube

of H(1) (an edge with a node < 20, 11 > and a node < 20, 10 >) can send data

to another sub-hypercube of H(1) (an edge with a node < 20, 01 > and a node

CHAPTER 4. BROADCASTING 72

< 20, 00 >) by differing the leftmost significant bit. This step allowing different

“split” hypercube clusters with different Kautz-part-labels in one KCube bipartite

graph can send data to another “split” hypercube clusters in different KCube bipartite

graphs simultaneously at one step in one KCube bipartite graph.

Seventh, if we still have some hypercube clusters left which are not informed yet,

we can repeat step one to send data along the remote arcs and inform new hypercube

clusters with different Kautz-part-labels.

Eighth, we can repeat step 2.

Ninth, we execute the hypercube broadcasting algorithm again.

Tenth, the procedure continues until all nodes been informed.

It is known that if G is a d− regular digraph: b(UL(G)) ≤ D(L(G))(log2(d) + 1)

[4].

Time Analysis:

First of all, we could easily come up with a simple but inefficient broadcasting al-

gorithm on the KCube. We could simply combine the Kautz broadcasting algorithm

and the hypercube broadcasting algorithm. For example, on the KCube, we could ap-

ply the Kautz broadcasting algorithm first to broadcast data to hypercube cluster(s).

Inside each hypercube cluster, we apply the hypercube broadcasting algorithm. After

the hypercube broadcasting algorithm is finished, we could continue with the Kautz

broadcasting algorithm to send data to the next hypercube cluster, and apply the

hypercube broadcasting algorithm again, and so on. The optimal running time for

the Kautz broadcasting algorithm is Ω(k log d) because there are dk +dk−1 number of

nodes in the Kautz graph. When we apply the Kautz broadcasting algorithm on the

CHAPTER 4. BROADCASTING 73

KCube, however, each node in the Kautz graph is replaced with a hypercube cluster

H(m). Therefore, each node at each step in the original Kautz broadcasting algo-

rithm will have to spend an extra O(m) time to apply the hypercube broadcasting

algorithm. Therefore, the total running time for broadcasting data in this way on

the KCube is the Kautz broadcasting running time times the hypercube broadcasting

running time, which is O(m× k log d). However, it is not optimal since we know that

the lower bound of the broadcasting algorithm on the KCube is Ω(k log d).

What we have done is develop a bipartite broadcasting algorithm on the KCube.

We first convert the KCube into a number of KCube bipartite graphs. Then, we design

a bipartite protocol on the KCube bipartite graphs which allows us to broadcast data

on them. The KCube bipartite graphs and the original KCube graph are isomorphic

to each other. Therefore, if we are able to apply our broadcasting algorithm to the

KCube bipartite graphs, we can broadcast data on the original KCube graph. Let

t(m) be the time that it takes to broadcast data in a hypercube cluster. Then, using

the procedure we described above in the hypercube cluster, we send the data from

one “split” hypercube cluster to the corresponding ith input/output nodes with the

same Kautz-part-label in another “split” hypercube cluster by using the hypercube

broadcasting algorithm, which takes log d + 1 time in a hypercube cluster. Because

t(m) = 1+t(m−1) and m = logN , the N is the total number of nodes in H(m), which

is N = 2m. The constraint in the KCube is 2d = 2m −→ d = 2m−1 −→ m = log d+ 1.

According to the the Kautz partitions, each KCube bipartite graph contains a number

of “split” hypercube clusters with different Kautz-part-labels. Because each “split”

hypercube cluster in a KCube bipartite graph take log d+ 1 time to broadcast data,

CHAPTER 4. BROADCASTING 74

and all “split” hypercube clusters send or receive data at the same time, all “split”

hypercube clusters with different Kautz-part-labels in one KCube bipartite graph take

log d+ 1 time. Now we can analyse the bipartite protocol that is divided into phases.

During a phase, each vertex which has received the data at some initial/terminal

vertex (we use * to represent the next Kauz-part-label on the KCube bipartite graphs,

which is the Kautz bipartite partition as described in Section 4.3) of any Kd,d sends

data to the corresponding terminal/initial vertex of the same Kd,d using our bipartite

broadcasting protocol. Each KCube bipartite graph takes log d + 1 time units. At

phase i, vertices which start a bipartite protocol are of the form xi....xk∗ and none

of them can be in the same Kd,d. After i phases of this protocol, every vertex at a

distance of i from the originator has received the data. Because each KCube bipartite

graph takes log d+1 time, and because we have dk−1+dk−2 number of KCube bipartite

graphs, the total running time is the diameter of the KCube bipartite graphs times

log d + 1, it is Ω(log((dk−1 + dk−2) × d × 2m)) = Ω(log((dk−1 + dk−2) × d × 2d)) =

O(k log d). It is optimal running time.

In Figure 4.8, each KCube bipartite graph takes log d + 1 time to send data.

There are dk−1 + dk−2 = 22−1 + 22−2 = 3 KCube bipartite graphs. b(KC(2, 2)) ≤

k(log d+ 1) = 3 ∗ 2 = 6.

In essence, what our bipartite broadcasting algorithm does is allow all informed

nodes in “split” hypercube clusters to broadcast data to another “split” hypercube

cluster with the same Kautz-part-label in one step simultaneously at one unit of time;

therefore, the “split” hypercube clusters are acting as if they were nodes in a Kautz

graph.

Chapter 5

Conclusion

In this thesis, we have studied the KCube which has been proposed as a novel archi-

tecture for interconnection networks. We found some useful topological properties of

the KCube. We also designed an improved routing algorithm and two broadcasting

algorithms for this network. In particular, we have proven:

• The KCube possesses the property of bipartiteness, which allows partitioning all

vertices into two disjoint sets. These two sets have equal cardinality. Therefore,

the KCube is a balanced bipartite graph.

• KC(1, k) and KC(2, k), for arbitrary k, are Hamiltonian.

• The KCube is regular but not vertex-symmetric.

We have designed:

• an improved routing algorithm showing a reduced upper bound on the diameter

of the KCube.

75

CHAPTER 5. CONCLUSION 76

• two single-port broadcasting algorithms which are based on Bermond and Perennes’s

Kautz broadcasting algorithm. These broadcasting algorithms match the lower

bound, thus are optimal. The idea is to broadcast data on a number of bipartite

graphs. Bipartite graphs are produced by line graphs. The line graph and the

original graph with the same degree are isomorphic to each other.

So far, only a few algorithms and topological properties have been found for the

KCube. More work still needs to be done to find algorithms and topological properties

for solving more problems on the KCube in the future. Some of these problems are

listed below:

• designing application algorithms for the KCube (such as sorting).

• finding fault-tolerance properties and other properties for the KCube.

• Hamiltonianicity for KC(m, k) for arbitrary m and k.

Bibliography

[1] S. G. Akl, Parallel Computations: Models and Methods. Upper Saddle River, NJ,

USA: Prentice Hall, 1997.

[2] S. B. Akers and B. Krishnamurthy, “A Group-Theoretic Model for Symmetric

Interconnection Networks,”IEEE Transactions on Computers, vol. 38, no. 4, pp.

555-566, 1989.

[3] D. P. Agrawal, Advanced Computer Architecture. IEEE Computer Society Press,

1986.

[4] J. C. Bermond and S. Perennes, “Efficient Broadcasting Protocols on the de

Bruijn and Similar Networks,”in Proc. 2nd Colloquium on Structural Information

and Communication Complexity, 1995, pp. 233-247.

[5] J. C. Bermond and C. Peyrat, “De Bruijn and Kautz Networks: A Competitor for

the Hypercube,”in Proc. 1st European Workshop on Hypercubes and Distributed

Computers, 1989, pp. 279-293.

77

BIBLIOGRAPHY 78

[6] D. P. Bertsekas, C. Ozveren, G. D. Stamoulis, P. Tseng, and J. N. Tsitsiklis,

“Optimal Communication Algorithms for Hypercubes, ”Journal of Parallel and

Distributed Computing, vol. 11, pp. 263-275, 1991.

[7] N. Biggs, Algebraic Graph Theory. Cambridge University Press, 1974.

[8] W. G. Bridges and S. Toueg, “On the Impossibility of Directed Moore

Graphs,”Journal of Combinatorial Theory, Series B, vol. 29, pp. 339-341, 1980.

[9] J. M. Brunat, “Explicit Cayley Covers of Kautz Digraphs,”The Electronic Jour-

nal of Combinatorics, vol. 18, pp. 105, 2011.

[10] C. Chen, D. P. Agrawal, and J. R. Burke, “dBCube: A New Class of Hierarchi-

cal Multiprocessor Interconnection Networks with Area Efficient Layout,”IEEE

Transactions on Parallel and Distributed System, vol. 4, no. 12, 1993.

[11] B. C. Cheng, K. S. -M. Li, and S. J. Wang, “De Bruijn Graph-Based Commu-

nication Modelling for Fault Tolerance in Smart Grids,”Circuits and Systems

(APCCAS) on Asia Pacific Conference, 2012, pp. 623-626.

[12] W. K. Chiang and R. J. Chen, “Distributed Fault-Tolerant Routing in Kautz

Networks,”in Proc. of the Third Workshop on Future Trends of Distributed Com-

puting Systems, 1992, pp. 297-303.

[13] J. J. Cook and C. Zilles, “Characterizing and Optimizing the Memory Footprint

of de Novo Short Read DNA Sequence Assembly”, Performance Analysis of

Systems and Software. IEEE International Symposium on Performance Analysis

of Systems and Software, Urbana, 2009, pp. 143-152.

BIBLIOGRAPHY 79

[14] D. E. Culler, J. P. Singh and A. Gupta Parallel Computer Architecture A Hard-

ware/Software Approach. Morgan Kaufmann Publishers, INC, An Imprint of

Elsevier, San Francisco, California, 2011.

[15] S. P. Dandamudi and D. L. Eager, “On Hierarchical Hypercube Multicomputer

Interconnection Network Design,”Journal of Parallel and Distributed. Computer

vol. 12, no. 3, pp. 283-289, 1991.

[16] D. Z. Du, D. F. Hsu, F. K. Hwang, and X. M. Zhang, “The Hamiltonian Property

of Generalized de Bruijn Digraphs,”Journal of Combinatorial Theory, Series B,

vol. 52, pp. 1-8, 1991.

[17] M. Flynn, “Some Computer Organizations and their Effectives,”IEEE Transac-

tions on Computers, vol. C-21, pp. 948-960, 1972.

[18] P. Fraigniaud and P. Gauron, The Content-Addressable Network D2B. Tech

Rept, 2003.

[19] H. Frank, “The Maximum Connectivity of a Graph,”in Proc. of the National

Academy of Sciences of the United States of America, vol. 48, no. 7, 1962, pp.

1142-1146.

[20] D. Guo, H. Chen, Y. He, H. Jin, C. Chen, H. Chen, Z. Shu, G. Huang, “KCube:

A Novel Architecture for Interconnection Networks,”Information Processing Let-

ters, vol. 110, no. 18-19, pp. 821-825, 2010.

BIBLIOGRAPHY 80

[21] R. Harbane and M. C. Heydemann, “Efficient Reconfiguration Algorithms of de

Bruijn and Kautz Networks into Linear Arrays,”Journal of Theoretical Computer

Science, vol. 263, pp. 173-189, 2001.

[22] J. P. Hayes, T. N. Mudge, and Q. F. Stout, “Architecture of a Hypercube Super-

computer,”in Proc. International Conference on Parallel Processing, 1986, pp.

653-660.

[23] M. C. Heydemann and D. Sotteau, “A Note on Recursive Properties of the de

Bruijn, Kautz and FFT Digraphs,”Information Processing Letters, vol. 53, pp.

255-259, 1995.

[24] W. D. Hillis, The Connection Machine. Cambridge, MA: MIT Press, 1985.

[25] M. F. Kaashoek and D. R. Karger, “Koorde: A Simple Degree-Optimal Hash

Table,” in Proc. of the 2nd International Workshop on Peer-to-Peer Sys-

tem(IPTPS), 2003.

[26] E. Kranakis and D. Krizanc, “Distributed Computing on Cayley Networks,”4th

IEEE Symposium on Parallel and Distributed Processing, Arlington, pp. 222-229,

1992.

[27] E. Kranakis and D. Krizanc, “Labeled versus Unlabeled Distributed Cayley Net-

works,”1st Colloquium on Structural Information and Communication Complex-

ity (SICC-1), Carleton University, Press, 1994.

BIBLIOGRAPHY 81

[28] T. Lakshman and V.K. Wei, “Distributed Computing on Regular Networks with

Anonymous Nodes, ”IEEE Transactions on Computers, vol. 43, no. 2, pp. 211-

218, 1994.

[29] C. Lavault, “Interconnection Networks: Graph- and Group- Theoretic Mod-

elling”, in Proc. of 12th International Conference on Control Systems and Com-

puter Science vol. 2, 1999, pp. 207-214.

[30] D. Li, X. Lu, and J. Su, “Graph-Theoretic Analysis of Kautz Topology and

DHT Schemes,”IFIP International Federation for Information Processing, 2004,

pp. 308-315.

[31] G. Panchapakesan and A. Sengupta, “On a Lightwave Network Topology Using

Kautz Digraphs,”IEEE Transactions on Computers, vol. 48, no. 10, pp. 1131-

1138, 1999.

[32] K. Padmanabhan, “Cube Structure for Multiprocessors,”in Communications of

the ACM, vol. 33, no. 1, pp. 43-52, 1990.

[33] K. Qiu, S. G. Akl and H. Meijer, “On Some Properties and Algorithms for the

Star and Pancake,”Journal of Parallel and Distributed Computing, vol. 22, pp.

16-25, 1994.

[34] C. P. Ravikumar, T. Rai, V. Verma, Kautz Graphs as Attractive Logical Topolo-

gies in Multihop Lightwave Networks. Computer Communications, vol. 20, pp.

1259-1270, 1997.

BIBLIOGRAPHY 82

[35] Y. Saad and M. H. Schultz, “Topological Properties of Hypercubes,”IEEE Trans-

actions on Computers, vol. 37, no. 7, pp. 867-872, 1988.

[36] M. R. Samatham and D. K. Pradhan, “The de Bruijn Multiprocessor Network: A

Versatile Parallel Processing and Sorting Network for VLSI,”IEEE Transactions

on Computers, vol. 38, no. 4, pp. 567-581, 1989.

[37] C. L. Seitz, “The Cosmic Cube,”in Communications of the ACM, vol. 28, no. 1,

pp. 22-33, 1985.

[38] K. N. Sivarajan and R. Ramaswami, “Lightwave Networks Based on de Bruijn

Graphs,”IEEE/ACM Transactions on Networking, vol. 2, no. 1, pp. 70-79, 1994.

[39] K. W. Tang and B. W. Arden, “Vertex-Transitivity and Routing for Cayley

Graphs in GCR Representations,”Proc. of the 1992 ACM Symposium on Applied

Computing, vol. 2, pp. 1180-1187, 1992.

[40] K. W. Tang and B. W. Arden, “Representations of Borel Cayley Graphs,”SIAM

Journal on Discrete Math vol. 6, no. 4, pp. 665-676, 1993.

[41] Wati, “Kautz graph”, manuscript, online at

http://planetmath.org/sites/default/files/texpdf/38526.pdf, 2013.

[42] D. B. West, Introduction to Graph Theory. Upper Saddle River, NJ 07458, USA:

Prentice Hall, 1996.

[43] Z. Zhang and A. S. Acampora, “Analysis of Multihop Lightwave Networks,”Proc.

IEEE GLOBECOM pp. 1873-1879, 1990.

