
Lehigh University
Lehigh Preserve

Theses and Dissertations

2011

Algebraic Models of Constant Node Degree
Interconnection Networks
Khadidja Bendjilali
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

This Dissertation is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Bendjilali, Khadidja, "Algebraic Models of Constant Node Degree Interconnection Networks" (2011). Theses and Dissertations. Paper
1063.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228642326?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F1063&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1063&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1063&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/1063?utm_source=preserve.lehigh.edu%2Fetd%2F1063&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

ALGEBRAIC MODELS

OF CONSTANT NODE DEGREE

INTERCONNECTION NETWORKS

by

Khadidja Bendjilali

A Dissertation

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Doctor of Philosophy

in

Computer Engineering

Lehigh University

January 2012

c⃝ Copyright 2012 by Khadidja Bendjilali

All Rights Reserved

ii

This dissertation is accepted in partial fulfillment of the requirements for the degree

of Doctor of Philosophy.

(Date)

(Accepted Date)

Professor Meghanad Wagh

Professor Bruce Dodson

Professor Tiffany Jing Li

Professor Zhiyuan Yan

iii

iv

Acknowledgements

” In The Name of Allah Most Gracious Most Merciful”

First and foremost, I would like to express my sincere gratitude to my advisor,

Professor Meghanand Wagh for all the hope he has put on me, for his continuous

guidance and endless patience and support. Professor Wagh has been a great ad-

visor, I will forever be thankful to him. I would like also to thank the members of

my dissertation committee, Professor Tiffany Jing Li, Professor Bruce Dodson, and

Professor Zhiyuan Yan for their helpful comments and advices during the revision

of my dissertation draft. I am gifted to have been raised in a family where edu-

cation is highly valued and praised. I would like to thank my great parents, Dr.

Boualem Bendjilali and Lila Belkacem, to the most special person in my life Dr.

Fethi Belkhouche and every member of my family for their love, endless support

and encouragement. Without their continuous support and love I would not have

been able to accomplish this work.

v

vi

Contents

Acknowledgements v

Abstract 1

1 Introduction 3

1.1 Introduction . 3

1.2 Some promising networks . 5

1.3 Existing algebraic models for interconnection networks 8

1.4 Organization of the dissertation . 12

2 Mathematical Preliminaries and Algebraic Models 15

2.1 Finite Fields . 15

2.2 Dual of polynomial basis of Finite Fields 18

2.3 Graph Automorphism . 21

2.4 An algebraic model of the butterfly graph 22

2.5 Cycles in Wrapped Butterflies . 28

2.6 An algebraic model of the deBruijn graph 30

3 Butterfly Automorphisms 35

3.1 Introduction . 35

3.2 Automorphisms of the butterfly network 37

3.3 Edge Transformations by automorphisms 48

3.4 Application of automorphisms to tolerate edge faults 52

3.5 Conclusion . 68

vii

4 Shuffle Exchange Networks 71

4.1 Introduction . 71

4.2 An Algebraic model of the

Shuffle Exchange Network . 72

4.3 Path algorithm for Shuffle Exchange Network 77

4.4 Relation with deBruijn network . 79

4.5 Conclusion . 81

5 Cube Connected Cycles 83

5.1 Introduction . 83

5.2 Algebraic Model of CCC . 84

5.3 Path Algorithms for CCC . 90

5.4 Automorphisms of the Cube Connected Cycles Graph 100

5.5 Edge transformations by automorphisms in CCCn 110

5.6 CCCn as a subgraph of BFn . 115

5.7 Conclusion . 119

6 Conclusion 121

6.1 Future Research . 123

Bibliography 124

Vita 131

viii

List of Tables

1.1 Comparison of Hypercube (Hn), Ring (Rn), Torus (Tn,n), Shuffle Ex-

change (SEn), deBruijn (DBn), Cube Connected Cycles (CCCn), and

Butterfly (Bn) interconnection networks 8

2.1 Structure of GF (23). 18

2.2 Structure of GF (24). 18

2.3 Automorphism Function . 22

2.4 Equivalence between the nodes of B4 and graph C4 ×GF (24). 28

2.5 Equivalence between the binary and the algebraic labels of DB4. . . . 33

3.1 Automorphism ϕ(·) : B4 → B4 such that ϕ(3, α14) = (1, α2). 41

3.2 Automorphism ϕ(·) : B3 → B3 such that ϕ(1, α2) = (0, α6). 41

3.3 Automorphism ϕ(·) : B4 → B4 by choosing c’s. 43

3.4 Automorphism ψ(·) : B4 → B4. 47

4.1 Equivalence between the binary and the algebraic labels of SE4. . . . 75

5.1 Equivalence between the nodes of CCC4 and graph C4 ×GF (24). . . 89

5.2 an automorphism ϕ that maps (1, α3) to (2, α7) in CCC4. 104

5.3 Automorphism ψ(·) : CCC4 → CCC4. 109

ix

x

List of Figures

2.1 Original Graph. 22

2.2 Relabeled Graph. 23

2.3 Connections from node (m, V) in the butterfly network. 24

2.4 Connections from node (m,X) ∈ Cn×GF (2n) in the butterfly network. 25

2.5 Connections of Butterfly B4 in Binary notation. 26

2.6 Connections of Butterfly B4 in Algebraic notation. 27

2.7 Two possible cases of merging two distinct cycles when one cycle

contains the vertex (m,X) and the other, the vertex (m,X + β0). . . 29

2.8 Connections of deBruijn DB4 in Binary notation. 31

2.9 The connectivity of the deBruijn graph (DBn) 32

2.10 Connections of deBruijn DB4 in Algebraic notation. 33

3.1 Butterfly B4 with faulty edges marked with light lines and fault-free

edges with dark lines. The column numbers are at the top and the

row index of each node is marked next to the node. 54

3.2 Fault free cycle of all nodes (i,X), 0 ≤ i ≤ n− 1, X ̸= 0 when an f

edge (m− 1, X)→ (m,αX) is faulty. 57

3.3 The Hamiltonian cycle when the f and g edges from (0, 0) are faulty

and the node (0, β0 + βn−1) is in Set 2. Note that all edges are

bidirectional and the dashed f edge is not part of the cycle. 58

3.4 Hamiltonian cycle in B4 avoiding faulty f and g edges from (0, 0). . . 60

3.5 Hamiltonian cycle in B4 avoiding faulty f and g edges from (1, α6). . 60

xi

3.6 Butterfly B4 with faulty edges marked with light lines and fault-free

edges with dark lines. The column numbers are at the top and the

row index of each node is marked next to the node. 62

3.7 Butterfly B4 with faulty edges marked with light lines and fault-free

edges with dark lines. The column numbers are at the top and the

row index of each node is marked next to the node. 64

3.8 Butterfly B3 with faulty edges marked with light lines and fault-free

edges with dark lines. The column numbers are at the top and the

row index of each node is marked next to the node. 66

4.1 An 16-node Shuffle Exchange network (SE4) in Binary notation . . . 72

4.2 An 8-node Shuffle Exchange network (SE3) in Algebraic notation . . 75

4.3 An 16-node Shuffle Exchange network (SE4) in Algebraic notation . . 76

4.4 The connectivity of the Shuffle Exchange graph SEn. 76

4.5 The connectivity of the deBruijn graph (DBn) 80

5.1 The connectivity of the Cube Connected Cycles graph CCCn. 85

5.2 Connections of Cube Connected Cycles CCC4 in Binary notation.

To make the drawing simpler, m in (m, V) is written as a column

heading and nodes in column 0 are repeated. 86

5.3 The connectivity of the Cube Connected Cycles graph CCCn. 88

5.4 Connections of Cube Connected Cycles CCC4 in Algebraic notation.

To make the drawing simpler, m in (m, X) is written as a column

heading and nodes in column 0 are repeated. 91

xii

Abstract

Binary representation has been widely used to model many common interconnec-

tion networks such as the Butterflies (BF), Cube Connected Cycles (CCC), Shuffle

Exchange (SE), Hypercubes and deBruijn (DB) networks. However, binary models

are difficult to analyze and complex to use, except for a few select ones such as

the Hypercubes. In this research we exploit new algebraic representations for BF,

CCC, SE and DB networks. While algebraic models for BF and DB are available in

the literature, this dissertation provides algebraic models for CCC and SE for the

first time. The simplicity of the models and access to powerful algebraic techniques

allows us to explore the structural properties of these networks. In particular, we

have found all the automorphisms of BF and CCC networks and the effect of these

automorphisms on graph edges. This has allowed us to provide strategies to map

algorithms on networks with faulty edges, which is an important problem in parallel

processing. We illustrate our methods by mapping Hamilton cycle on the butter-

fly under various edge fault scenarios. This dissertation also exploits the algebraic

machinery to find paths in SE and optimal paths in the CCC networks.

1

2

Chapter 1

Introduction

1.1 Introduction

Over the last few decades, the semiconductor technology has delivered increasingly

faster and complex and yet smaller integrated circuits. Unfortunately, this ability to

create chips of shrinking sizes and higher complexities has now hit the technological

barriers. On the other hand, applications are becoming increasingly complex and

need faster solutions. The only way to solve these highly dynamic and complex prob-

lems is by using parallel computing paradigm. It is therefore an accepted premise

that parallel processing using a larger number of processors will be the future of

computing.

While somewhat specialized parallel machines based on SIMD (single-instruction-

multiple-data) and shared memory have also been designed, the most common par-

allel architecture is the distributed memory parallel machine. In such a machine,

multiple processors work independently on different parts of the application using

their own program and data memories. They exchange data and partial results with

each other using communication links between them. These links, together, form an

interconnection network of the machine. Unfortunately, the communication speeds

have not kept up with the computational speeds. As a result, the performance

of message passing parallel architectures and multi-core chips depends, to a large

3

CHAPTER 1. INTRODUCTION

extent, on the underlying interconnection network.

The choice of the interconnection network also affects other key characteristics

of the system such as the ease of algorithm development, overall speed, reliability,

scalability and complexity of physical layout. Therefore communication network of

a parallel processor dominates its performance.

Interconnection networks can be modeled as graphs whose nodes represent pro-

cessors, and edges, the communication paths between them. Hypercubes, butterflies,

cube connected cycles and meshes are some of the popular graphs on which many

of the existing parallel machines are based [1]. To run a computation on a parallel

machine, one partitions the task into a set of sub-tasks and develops a task graph.

One then maps the task graph on the interconnection graph of the architecture such

that the communicating sub-tasks are mapped (as far as possible) on processors that

have a direct link between them. Graph theory is one of the most powerful math-

ematical tools for designing and analyzing interconnection networks. Selecting an

appropriate topological structure of an interconnection network is a major problem

in designing distributed memory parallel machine.

Interconnection networks are characterized by the following parameters:

• Network size: the number of nodes in the network. Large network size is

desirable since it implies more processors and hence higher throughput.

• Node degree: the number of communication links connected to a node. The

degree of a node in interconnection network directly determines the complexity

of communication hardware within that processor node. Clearly a small node

degree is desirable. In addition, if the node degree is constant with respect

to the size of the network then the same node hardware may be employed to

build networks of different sizes. Thus constant node degree is important for

scalability and economical of parallel computing.

• Bisection width: The minimum number of links which need to be cut in

order to divide the network into two equal halves. A large bisection width is

desirable since the bisection width limits the rate of data transfer between the

4

1.2. SOME PROMISING NETWORKS

two halves of the network, thus affecting the performance of communication.

• Network diameter: The maximum shortest path between any two nodes in

the network. The shortest path is the minimum number of links which must

be traversed in order to connect two nodes in the network. The network

diameter is the longest of such shortest paths between any pair of nodes and

therefor represents the maximum number of links that a message may have to

traverse before it reaches its destination. A smaller diameter implies a shorter

time for message communication and results into a higher speed of algorithm

execution.

• Existence of mappings of parallel algorithms: Mapping algorithms on ar-

chitectures is an important requirement of an interconnection network. To

reduce the communication overhead, a good match is necessary between the

structure of parallel algorithm represented by the guest graph (in which the

nodes represent subtasks and edges, communication between subtasks), and

the network topology represented by the host graph. There are several de-

sirable properties such as dilation, congestion, loading, etc. to estimate the

quality of a mapping.

• Symmetry: An interconnection network is symmetric if it looks the same from

any node. Symmetry allows simpler algorithm mappings, easier communica-

tion strategies, task remapping and fault avoidance.

We now review some common interconnection networks in the light of the desired

properties stated in this section.

1.2 Some promising networks

This section reviews some of the common interconnection networks in the light of

the desired properties.

The simplest interconnection network is a Ring of N nodes [1]. Each node in

the ring is connected to only two other nodes in a cycle with diameter of N/2.

5

CHAPTER 1. INTRODUCTION

It has constant node degree of 2 and a constant bisection of width of 2. Ring

network contains several attractive properties such as simplicity, extensibility and

symmetry. Ring networks are suitable for implementing simple algorithms with low

communication costs. However, mapping most guest graphs onto Ring is difficult

because of the simple architecture and the large diameter of this architecture.

A two-dimensional Torus network is defined to have n×n = N nodes, formed by

an n × n array of nodes with each connected to its immediate neighbor in the row

and column, including the wrap around edges. Torus is one of the attractive inter-

connection networks due to its symmetry and application to solving finite element

problems. It has a constant node degree of 4 and a diameter of O(
√
N) [1].

Many networks use labels that are binary strings. We therefore explain the

notation first. Let Zn denote the group of integers {0, 1, . . . , n − 1} under the

operation of addition modulo n and Zn
2 , the group of binary vectors of length n

under the operation of modulo 2 addition.

A topology that has been used in several parallel machines is the Hypercube.

The n-dimensional hypercube Hn is defined to have 2n nodes labeled with elements

of Zn
2 [2, 1]. Two nodes are connected with an edge if and only if their labels differ

in exactly one bit. Hypercube Hn can be constructed from two Hn−1 hypercubes

by connecting the corresponding nodes. This hierarchical property of a hypercube

simplifies the development of communication strategies as well as the mappings of

a large number of parallel algorithms on the hypercube. Hypercube Hn also has

many other nice properties such as a small diameter n and a large bisection width

2n−1. The non-constant node degree, however gives the hypercube poor scalability.

A network with a large number of nodes becomes very complex, which is reflected

in the network cost.

The n-dimensional Shuffle Exchange graph, SEn, has 2n nodes, each labeled

with an element of Zn
2 . A node (v1v2 . . . vn) is connected to three distinct nodes:

(v1v2 . . . vn⊕2n) (an exchange edge), (v2v3 . . . vnv1) and (vnv1 . . . vn−1) (shuffle edges)

[3]. SEn has 3× 2n−1 edges and a diameter of 2n− 1. Its node degree is ≤ 3.

The n-dimensional deBruijn graph, DBn was introduced to overcome the Hyper-

cube disadvantage that the degree grows as the size of the network increases. DBn

6

1.2. SOME PROMISING NETWORKS

has 2n nodes, each labeled with an element of Zn
2 . A node (v1v2 . . . vn) ∈ DBn is

connected to (v2v3 . . . vn 0), (v2v3 . . . vn 1), (0 v1v2 . . . vn−1) and (1 v1v2 . . . vn−1) [4].

DBn has 2n−1 edges and a diameter of n. Its node degree is ≤ 4. Shuffle Exchange,

and deBruijn, though non-symmetric, are still considered important because of their

small node degree and small diameter.

The Cube Connected Cycles network of degree n, CCCn was developed as a

hypercube derivative by replacing each node of a degree n hypercube by a cycle of

n nodes [5]. CCCn has n2n nodes, each labeled by a pair (m,V) where m ∈ Zn, and

V ∈ Zn
2 . A node (m,V) of CCC is connected to only three other nodes: (m+1, V),

(m− 1, V) and (m,V ⊕ 2m) as shown in Fig. 5.1, where V ⊕ 2m is the string V with

mth bit complemented. The diameter of CCC is 6 when n = 3 and 2n+ ⌊n/2⌋ − 2

when n > 3 [6]. This low diameter and the low constant node degree imply that

CCC may be very useful for parallel architectures.

The Wrapped Butterfly graph BFn, n ≥ 3, is defined to have n2n nodes, each

labeled with a pair (m,V) wherem ∈ Zn and V ∈ Zn
2 [1]. A node (m,V) is connected

to four distinct nodes: (m+1, V), (m+1, V ⊕2m), (m−1, V) and (m−1, V ⊕2m−1)

as shown in Fig. 2.3. BFn represents a good trade-off between the cost and the

performance of a parallel machine. It has a large number of nodes (n2n), fixed node

degree (4), low diameter (⌊3n/2⌋), symmetry, and ability to support a variety of

parallel algorithms [1, 7–10].

Table 1.1 summarizes the topological properties of the various interconnection

networks mentioned in this section.

This dissertation focuses on constant node degree networks since these are the

only trully scalable networks from hardware perspective. However, as described

above, other properties such as a small diameter and the availabilty of mappings of

common parallel algorithms are crutial to the performance of such networks. The

prominent networks that have a constant node degree include the Ring, the Torus,

the Tree, the Shuffle Exchange network, the deBruijn network, the Cube Connected

Cycles and the Wrapped Around Butterfly. Of these, the Ring and the Torus have a

substantially large diameter, O(N) and O(
√
N) respectively, where N is the number

7

CHAPTER 1. INTRODUCTION

Table 1.1: Comparison of Hypercube (Hn), Ring (Rn), Torus (Tn,n), Shuffle Ex-
change (SEn), deBruijn (DBn), Cube Connected Cycles (CCCn), and Butterfly (Bn)
interconnection networks

Network No. Dia Node Bisection Symmetry

name of proc degree width

Hn 2n n n 2n−1 Yes
Rn n n/2 2 2 Yes
Tn,n n2 n 4 2n Yes
SEn 2n 2n− 1 ≤ 3 n/log n No
DBn 2n n ≤ 4 2n/n No
CCCn n2n 2n 3 2n−1 Yes
Bn n2n ⌊3n/2⌋ 4 2n Yes

of nodes. Thus they do not really scale well in performance. The Tree, Shuffle Ex-

change and the deBruijn networks do not possess symmetry, an important property

that is required for fault tolerance as well as to simplify algorithm mappings. Thus

neither of these three networks are scalable in this context.

The two scalable networks that have symmetry, constant node degree and ac-

ceptable diameter, O(logN), are thus the Cube Connected Cycles and the Wrapped

Butterflies. Our research focuses on these two architectures.

1.3 Existing algebraic models for interconnection

networks

This section reviews the existing algebraic models for constant node degree intercon-

nection networks. The objective is to provide the reader with a concise introduction

to these models.

The first general framework for constant node degree interconnection networks

was introduced by Akers and Krishnamurthy [2, 11]. They showed that by using

Cayley graphs, one can obtain constant node-degree interconnection networks, all

of which are symmetric. Given a group G and a subset S called the generator set,

an interconnection network can be defined as a Cayley Graph, in which each vertex

8

1.3. EXISTING ALGEBRAICMODELS FOR INTERCONNECTION NETWORKS

is labeled by an element of G and two vertices u, v ∈ G are connected if and only if

there exists an element s ∈ S, such that v = us. To ensure bidirectionality of edges

and to avoid self loops, S should be closed under inverses and should not contain

identity element. The node degree of this graph is the number of elements in the

subset S.

All Cayley graphs are node symmetric. All the common symmetric networks

such as hypercubes, rings, toruses, butterflies can be constructed as Cayley graphs

using appropriately defined groups and generator sets. Further, this concept has

also been used to develop new interconnection networks with attractive properties,

e. g., star graphs and pancake graphs [2, 12, 13]. As an illustration, Hypercube Hn

of dimension n can be constructed as a Cayley graph of the group Zn
2 under the

binary operation of bit-wise XOR, and the generator set S to be the set of n binary

vectors of weight 1.

Cayley Graphs, for the first time, offered a unified view of symmetric intercon-

nection networks. Unfortunately, even though they provide new models for some

older networks and a procedure to generate new networks, they do not simplify the

investigation of either topological (other than the symmetry and node degree) or

mapping properties of these networks.

Cayley graphs cannot model non-symmetric networks such as Shuffle Exchange

and deBruijn graphs which have important topological properties (refer to Table

1.1). An extension of the Cayley graph concept known as the Cayley Coset graphs

was therefore developed by Annexstein et al. [11]. Given a group G and its subgroup

H, and a generator subset S as in the case of a Cayley graph, a Cayley coset graph

with |G|/|H| nodes may be defined as follows. Every node of the graph is labeled

by a (say) left coset of H in G. Node Hx is connected to node Hy if and only if

there exists an s ∈ S such that x1s = y1, where x1 ∈ Hx and y1 ∈ Hy. If the

subset H is trivial, i.e., if H = {e} where e is the identity element of G, then the

Cayley Coset Graph is the same as the Cayley graph obtained from G and the set

of generator S. Thus, Cayley coset graphs can be used to represent both symmetric

and non-symmetric graphs. Unfortunately this model also suffers from the same

drawback as the Cayley graphs, namely that it can be used effectively to design new

9

CHAPTER 1. INTRODUCTION

interconnection networks but it does not simplify the investigation of the existing

networks. In order to benefit from the model one needs to make the model powerful

enough to explore all the structural properties.

The third kind of algebraic model used to describe interconnection networks

uses finite fields. Since a field admits both addition and multiplication, this model

often is more powerful. Currently models that use finite fields are available for

the deBruijn networks [14, 15] and for the Wrapped Butterfly networks [10]. In

these models, the graph nodes are expressed using elements of finite fields (for the

deBruijn network) or elements of a direct product of groups and finite fields (for

Wrapped Butterflies). The connectivity between nodes can then be expressed as a

simple algebraic relationship between the node labels. This allows one to explore the

structural properties of these networks in much more direct fashion using powerful

algebraic techniques. Further, such a model allows one to map algorithms to parallel

machines rather easily [10].

Binary representation has been used to model common interconnection networks

such as Wrapped Butterfly, Hypercube, Cube Connected Cycles, deBruijn, and

Shuffle Exchange. Unfortunately, the binary model is quite difficult to analyze

except for a few selected ones such as Hypercube. For example, in a Wrapped

Butterfly network, the destination of (m,V) is (m + 1, V ⊕ 2m) the complexity of

this representation should be apparent from the fact that the second coordinate of

the destination is a function of both V and m, the two coordinates of the source.

Because of this, one cannot treat the two coordinates independently making it very

difficult to explore the topological properties of the network.

With the advances in the VLSI technology, it is now possible to build parallel

machines with a large number of processors. However, larger the machine, higher is

the probability that one or more of its processors and links will develop a fault. Thus,

for the underlying networks of these large machines, mapping of algorithms on faulty

graphs becomes an important issue [16–20]. Unfortunately, earlier work with these

models did not explore mappings on networks with faults. Finite field based models

are powerful enough to yield results in this domain as well. In particular, these

models may yield easy expression of such powerful concepts as the automorphisms

10

1.3. EXISTING ALGEBRAICMODELS FOR INTERCONNECTION NETWORKS

of the graphs. Since automorphism is a natural way to remap an algorithm on a

faulty network, it represents an important direction for exploration.

This research develops a new approach to mappings on faulty butterflies using

an algebraic model first given in [10]. We show that with this model, it is rather

simple to obtain all the automorphisms of the butterfly. Automorphisms can be

used to translate an algorithm mapping to one that avoids node faults. For example,

an algorithm mapping can avoid a faulty node Nfaulty by using a free node Nfree

(assuming one exists) and an automorphism ϕ(·) of the interconnection graph such

that ϕ(Nfree) = Nfaulty. By remapping tasks on each node N to node ϕ(N), one

can run the algorithm entirely on fault free nodes. Automorphisms have also been

used to obtain better VLSI layouts of butterfly networks [21,22].

This research obtains all the automorphisms of the degree n wrapped butterfly

BFn (Theorems 1, 4, 6). We explore the edge transformations in butterfly networks

due to automorphisms. In particular, we show that exactly n2n automorphisms of

BFn affect all the edges in a column similarly (Theorem 7). As an example, we show

that a butterfly BFn supports a Hamilton cycle even when it has up to 2n faulty

edges of the same type (to be defined later) in each column except one (Theorem 11).

Hamiltonian cycle provide an optimal all to all broadcast in architectures that have

processor constrained communication (a processor can receive only one message at

any time). As a corollary, one can show that BFn is Hamiltonian with up to n− 1

random edge faults distributed one per column. The remaining n2n automorphisms

change the type of exactly half the edges in a column while the other edges retain

their type (Theorems 9, 10). Further, one can design automorphisms to achieve

the desired edge transformation. This allows one to map algorithms onto butterfly

machines with edge faults. As examples, we show that a Butterfly BFn supports a

Hamilton cycle even when it has faulty edges in all but two of its rows as long as

the faults in a given set of rows are constrained to one type and those outside to one

type as well (Theorems 13, 14). Further, the requirement of two fault-free rows can

be lifted when n is odd (Theorems 15, 16). Our procedure allows one to map the

Hamilton cycle on to the faulty butterfly easily and directly. The simplicity of the

automorphism and the resultant edge mappings show promise of wide applicability

11

CHAPTER 1. INTRODUCTION

of this technique to a variety of applications.

Binary models of Cube Connected Cycles (CCCn) suffer from similar defects.

The connectivity of CCCn using the binary model is much too complex to obtain

many of the useful properties of the network. In this research, we propose a new

model for CCCn based upon the direct product of a cyclic group and a finite field.

With this new model, one can avail of powerful algebraic techniques to investigate

the structure and mappings of CCCn. Similar algebraic models developed previously

for the deBruijn network [15] and the wrapped butterflies [10] have allowed efficient

mappings of cycles and trees on the butterflies and provided insights into intricate

structural properties such as the automorphisms [23,24]. This new model helps solve

similar problems in CCCn. Besides proving this model, this reserach demonstrates

its use to obtain paths in CCCn. We also provide a similar new model of SEn and

explore the relationship between the Shuffle Exchange and the deBruijn networks.

Finally, this research also obtains all the automorphisms of the Cube Connected

Cycles and explores the edge transformations in CCCn networks due to automor-

phisms.

1.4 Organization of the dissertation

The rest of this dissertation is organized as follows. The necessary mathematical

background required for the rest of the dissertation is presented in the next Chapter,

where we briefly review some basic results in finite fields. Chapter 2 also reviews the

algebraic model of the Wrapped Butterfly network using direct product of finite fields

and cyclic groups. Chapter 3 obtains all the automorphisms of a Wrapped Butterfly

network. It also investigates the translation of Butterfly edges by automorphisms,

and proposes a new strategy for algorithm mappings on an architecture with faulty

edges. The new algebraic model of the Shuffle Exchange is defined and proved

in Chapter 4. We prove that the Shuffle Exchange network is a subgraph of the

deBruijn network of the same size. In Chapter 5 the new algebraic model of the

Cube Connected Cycles network is introduced and proved. We then provide all the

12

1.4. ORGANIZATION OF THE DISSERTATION

automorphisms of the Cube Connected Cycles network. We also investigate the

effect of automorphisms on the Cube Connected Cycles edges. Finally, Chapter 6

summarizes the most important results of this work.

13

CHAPTER 1. INTRODUCTION

14

Chapter 2

Mathematical Preliminaries and

Algebraic Models

This chapter presents the mathematical framework on finite fields and their proper-

ties to be used in the subsequent chapters. The definitions and background provided

in this chapter will be used to treat the interconnection networks; in particular the

Wrapped Butterfly (Bn) and the Cube Connected Cycles (CCCn). This chapter is

organized in these sections. Section 2.1 presents the main definitions concerning fi-

nite fields. Section 2.2 discusses the dual of polynomial basis of finite fields. Section

2.3 discusses the automorphism definition. An overview of the new representation of

Bn and its isomorphism to the binary node labels is provided in Section 2.4. Section

2.5 is devoted to mapping of cycles of possible lengths to Bn, then provide simple

procedures to merge cycles under this model. Section 2.6 provides an overview of

the algebraic model of the deBruijn network.

2.1 Finite Fields

In this section, we discuss the main definitions and properties of finite fields and

groups that will be used in this research. For more extensive coverage of the topic,

reader is referred to [25, 10]. Group is one of the important structures we employ.

15

CHAPTER 2. MATHEMATICAL PRELIMINARIES ANDALGEBRAICMODELS

It is defined as follows.

Definition 1 [26] A set G with a binary operation ⊗ is called a group iff

1. G is closed under ⊗.

2. ⊗ is associative, i.e., a ⊗(b⊗ c) = (a⊗ b)⊗ c for any a, b, c ∈ G.

3. There is an identity element e ∈ G such that a⊗ e = e⊗ a = a for all a ∈ G.

4. For each a ∈ G, there exists a, b ∈ G such that a⊗ b = b⊗ a = e.

A group in which a⊗ b = b⊗ a for all a, b ∈ G is called commutative group.

Now we define a field structure.

Definition 2 A set F with binary operations ⊕ (generally called addition) and ⊗
(generally called multiplication) is called a field iff

1. F is a commutative group under ⊕. Let e denote its identity.

2. Set F − {e} is a commutative group under ⊗.

3. ⊗ is distributes over ⊕, i.e., a⊗ (b⊕ c) = a⊗ b⊕ a⊗ c for any a, b, c ∈ F .

Definition 3 A finite field also called (Galois field) is a field that contains finite

number of elements.

Finite fields are algebraic structures that support the four basic operations: addi-

tion, subtraction, multiplication, and division. They do share many of the properties

of the other fields such as the fields of real numbers or complex numbers. The only

difference is that finite fields have a finite number of elements unlike the fields of

real or complex numbers. Finite fields are important in algebraic geometry, cryp-

tography, Galois theory and coding theory among others. It is known that a finite

field has exactly pn elements where p is a prime and n is a positive integer. Further,

there is only one finite field (within isomorphism) of any size. A Galois Field with

pn elements is denoted by GF (pn).

16

2.1. FINITE FIELDS

We restrict ourselves to p = 2, i.e., finite fields GF (2n). However, to construct

GF (2n), we first build GF (2), a field that has only two elements 0 and 1. The

addition and multiplication operations on GF (2) are defined as addition and mul-

tiplication modulo 2. This implies that X + X = 0, for any X ∈ GF (2). Thus

X = −X in GF (2).

To enlarge the field of two elements to a field of 2n elements, one uses a primitive

polynomial p(x) of degree n over GF (2). A primitive polynomial over GF (2) has

coefficients in GF (2), but has no roots in that field. One can extend GF (2) by

including a root of p(x), say α. Since one is constructing a structure in which

multiplication is a valid operation, one would expect products of these elements,

α2, α3, α4, . . . to be also valid elements of the new field. However, all these powers

cannot be distinct. Recall that α is the root of a polynomial of degree n. Thus, αn

can be expressed in terms of the lower powers of α. Thus any αi can be expressed

as of
∑n−1

j=0 ajα
i, aj ∈ GF (2). One can thus show that the number of distinct powers

of α is at most 2n − 1. If p(x) is indeed primitive, then all these 2n − 1 powers

of α are distinct. In fact, α2n−1 = 1 and thus, the elements of GF (2n) are closed

under multiplication. Therefore, any of these distinct α powers may be multiplied

and the result would still be an element within the finite set of α powers. The finite

field thus generated has 2n elements comprising of 0 and the 2n − 1 powers of α

enumerated as {0, 1, α, α2, . . . , α2n−2}.
Fields GF (23) and GF (24) are illustrated below in Table 2.1 and Table 2.2,

respectively. Expressing each element of GF (2n) in basis ⟨αn−1, αn−2, . . . , α, 1⟩ is
fairly straightforward. For example, in Table 2.2, elements 1, α, α2 and α3 are

already the basis elements. α4 can be expressed using lower powers of α using the

fact that α is the root of the primitive polynomial x4 + x+1. Thus α4 +α+1 = 0,

or α4 = α + 1. (Recall that GF (2n) uses modulo 2 additions.) The expressions for

successive higher powers of α are obtained by multiplying the expressions for lower

powers by α and replacing any α4, thus created, by α + 1.

Tables 2.1 and 2.2 are important to simplify additions between field elements. For

example, using Table 2.2, one may easily add α10 and α11 in GF (24) as α10 +α11 =

(α2 + α + 1) + (α3 + α2 + α) = α3 + 1 = α14.

17

CHAPTER 2. MATHEMATICAL PRELIMINARIES ANDALGEBRAICMODELS

Table 2.1: Structure of GF (23).

Primitive Polynomial: x3 + x+ 1
Elements and their Relationships:

0 α3 = α+ 1
1 α4 = α2 + α
α α5 = α2 + α+ 1
α2 α6 = α2 + 1

Dual Base ⟨β2, β1, β0⟩ = ⟨α, α2, 1⟩.

Table 2.2: Structure of GF (24).

Primitive Polynomial: x4 + x+ 1
Elements and their Relationships:

0 α7 = α3 + α+ 1
1 α8 = α2 + 1
α α9 = α3 + α
α2 α10 = α2 + α+ 1
α3 α11 = α3 + α2 + α
α4 = α+ 1 α12 = α3 + α2 + α+ 1
α5 = α2 + α α13 = α3 + α2 + 1
α6 = α3 + α2 α14 = α3 + 1

Dual Base ⟨β3, β2, β1, β0⟩ = ⟨1, α, α2, α14⟩.

2.2 Dual of polynomial basis of Finite Fields

One can use an alternate representation for the elements of GF (2n) over GF (2)

using the dual basis ⟨βn−1, βn−2, . . . , β0⟩. The dual of polynomial basis is unique and

its component βi is defined as that element of GF (2n) which satisfies

Tr(αjβi) =

 1 if j = i,

0 otherwise
(2.1)

18

2.2. DUAL OF POLYNOMIAL BASIS OF FINITE FIELDS

where, the Trace function Tr(·) : GF (2n)→ GF (2) is computed as [25]:

Tr(x) =
n−1∑
i=0

x2
i

, x ∈ GF (2n).

Note that Trace is a linear function. In other words, for any a, b ∈ GF (2) and

X,Y ∈ GF (2n), one has

Tr(aX + bY) = aTr(X) + bTr(Y).

The structure of the primitive polynomial governs the relationships between the

dual basis elements. In particular, the dual basis elements βi, 0 ≤ i < n of a finite

field GF (2n) are related to each other as given by the following Lemma.

Lemma 1 Let ⟨βn−1, βn−2, . . . , β0⟩ denote the dual base of GF(2n). Then

βi =

 αβ0 if i = n− 1

αβi+1 + pi+1βn−1 otherwise,
(2.2)

where α is the primitive element of the field and pi is the coefficient of xi in the

primitive polynomial used to generate the field.

Proof.

To prove that βn−1 = αβ0, all we need to show is that the element αβ0 satisfies

the definition of βn−1. Consider any 0 ≤ j < n− 1. Because of the properties of β0,

Tr(αjαβ0) = Tr(αj+1β0) = 0.

On the other hand, by using the linearity property of the Trace function and the

fact that

αn =
n−1∑
k=0

pkα
k

one gets,

Tr(αn−1αβ0) =
n−1∑
k=0

pkTr(α
kβ0) = p0 = 1.

19

CHAPTER 2. MATHEMATICAL PRELIMINARIES ANDALGEBRAICMODELS

The relation of βi and βi+1 can be proved similarly. For any 0 ≤ i < n− 1, and

0 ≤ j < n− 1, j ̸= i.

Tr(αj(αβi+1 + pi+1βn−1)) = Tr(αj+1βi+1) + pi+1Tr(α
jβn−1) = 0. (2.3)

Further, for i < n− 1, for j = n− 1,

by expressing αn as
∑n−1

k=0 pkα
k (since p(α) = 0),

Tr(αn−1(αβi+1+pi+1βn−1)) =
n−1∑
k=0

pkTr(α
kβi+1)+pi+1Tr(α

n−1βn−1) = pi+1+pi+1 = 0.

(2.4)

Finally, for j = i < n− 1,

Tr(αi(αβi+1 + pi+1βn−1)) = Tr(αi+1βi+1) + pi+1Tr(α
iβn−1)) = 1 + 0 = 1. (2.5)

From (2.3), (2.4) and (2.5),

αβi+1 + pi+1βn−1 = βi, for0 ≤ i < n− 1

.

We use symbol σ to denote the quantity (αn + 1). Using the fact that p(α) = 0,

σ can also be expressed as σ =
∑n−1

i=1 piα
i. The interaction between σ and elements

of the dual basis is important to our representation. It is given by the following

Lemma.

Lemma 2 Let ⟨βn−1, . . . , β1, β0⟩ denote the dual basis of GF (2n). Then

Tr(σβi) =

 0 if i = 0,

pi otherwise,

T r(α−1σβi) =

 0 if i = n− 1

pi+1 otherwise.

20

2.3. GRAPH AUTOMORPHISM

Proof. One has

Tr(σβi) = Tr((αn + 1)βi) = Tr(
n−1∑
j=1

pjα
jβi)

=
n−1∑
j=1

pjTr(α
jβi) (2.6)

The trace function in (2.6) is 0 except when j = i, when it is 1. This gives the

value of Tr(σβi) stated in the lemma. The value of Tr(α−1σβi) can be computed

similarly.

2.3 Graph Automorphism

Graph isomorphism represents the problem of testing whether two graphs are iden-

tical. An isomorphism ϕ from a graph G = (VG, EG) to a graph H = (VH , EH) is

one to one mapping of VG onto VH that preserves connectivity, that is ϕ : VG → VH

such that for any two vertices u and v ∈ VG, we have (ϕ(u), ϕ(v)) ∈ EH if and only

if (u, v) ∈ EG.

An automorphism of a graph is an isomorphism from a graph to itself. Auto-

morphisms are useful to remap an algorithm without affecting its performance on

a graph in the event of failure of a node or an edge. It is also important in multi

user machines when algorithm mappings need to be moved every time a new user

demands some part of the architecture. Recently, automorphisms of architecture

graphs have also been used to design better VLSI layout of multicore chips [21,22].

To illustrate the concept of graph automorphism, consider a graph shown in

Fig. 2.1, and a mapping function defined in Table 2.3. To prove that the resulting

graph after applying ϕ is an automorphic copy of graph in Fig. 2.1, one needs to

show that this mapping satisfies the automorphism properties. It is easy to check

that the specified ϕ is a one to one mapping from the graph nodes to themselves

which means every node is an image of one and only one node. Secondly, for every

pair of connected nodes in the graph, their images are also connected, and if the

two nodes are not connected in the graph then their images remain unconnected.

21

CHAPTER 2. MATHEMATICAL PRELIMINARIES ANDALGEBRAICMODELS

For example nodes B and E are connected in the graph. One can see that their

images under ϕ, A and C respectively, are also connected. Therefore, one can often

call an automorphism as relabeling the node graph as shown in Fig. 2.2. In this

graph, nodes are relabeled with their images. In Chapter 3, and Chapter 5 we

will determine all possible automorphisms of the Wrapped Butterfly and the Cube

Connected Cycles graphs.

FEDC

A

B

Figure 2.1: Original Graph.

Table 2.3: Automorphism Function

N ϕ(N)

A B
B A
C F
D E
E C
F D

2.4 An algebraic model of the butterfly graph

Before we provide the algebraic model for the butterfly, we first discuss the conven-

tional binary model.

22

2.4. AN ALGEBRAIC MODEL OF THE BUTTERFLY GRAPH

DCEF

B

A

Figure 2.2: Relabeled Graph.

Let Zn denote the group of integers 0 through n−1 under the operation of addi-

tion modulo n and Zn
2 , the group of binary vectors of length n under the operation

of modulo 2 addition. Then the wrapped butterfly graph BFn, n ≥ 3, is defined to

have n2n nodes each labeled by the pair (m,V), where m ∈ Zn, V ∈ Zn
2 . The nodes

of BFn may be arranged in a 2n×n array such that (m,V) is in the located in m-th

column and V -th row. Each node is connected only to nodes in the neighboring

columns (except for the wrap-around links between the nodes of the 0-th and the

n− 1-th columns). BFn graph is shown in Fig. 2.5. BFn is a symmetric, undirected

regular graph of degree 4. BFn has a logarithmic diameter of ⌊3n/2⌋ and a vertex

connectivity 4, i.e., for any pair of nodes there exist 4 node disjoint paths between

them. BFn supports many parallel algorithms well [1, 7–9, 27, 28]. It is shown that

one can map cycles and trees on BFn with relatively low dilation [29–31]. A node

(m,V) is connected to four distinct nodes: (m+ 1, V), (m+ 1, V ⊕ 2m), (m− 1, V)

and (m − 1, V ⊕ 2m−1) as shown in Fig. 2.3. Note that the third and the fourth

edges are inverses of the first and the second edges respectively. Thus the edges of

a wrapped butterfly are bidirectional, i.e., corresponding to an edge from (m1, V1)

to (m2, V2), there is also an edge from (m2, V2) to (m1, V1).

In this classical definition of the wrapped butterfly, the rows of destinations

(m+ 1, V ⊕ 2m) and (m− 1, V ⊕ 2m−1) are dependent on both the column and the

row of the source (m,V). This complicates mappings of algorithm task graphs on

the butterfly.

Now we provide the algebraic model of BFn first presented in [10]. Here, the

23

CHAPTER 2. MATHEMATICAL PRELIMINARIES ANDALGEBRAICMODELS

(m + 1, V)

)

(m − 1, V)

(m− 1, V ⊕ 2m−1)

(m + 1, V ⊕ 2m)

(m, V)

Figure 2.3: Connections from node (m, V) in the butterfly network.

nodes of BFn are labeled with pairs (m,X), m ∈ Cn, X ∈ GF (2n), where Cn is the

cyclic group of integers 0 through n − 1 under the operation of addition modulo n

and GF (2n) is the finite field of 2n elements. We will often refer to m as the column

and X, the row, of node (m,X). Let α denote the primitive element of GF (2n) and

⟨βn−1, βn−2, . . . , β0⟩, its dual basis. The node connectivity of graph BFn can then be

described through an algebraic relationship. In particular, a vertex (m,X) of BFn

is connected to the vertices (m + 1, αX), (m + 1, αX + βn−1), (m − 1, α−1X) and

(m − 1, α−1X + β0) as shown in Fig. 2.4. For convenience, we refer to these four

edges as f , g, f−1 and g−1 respectively. It is easy to verify that if edge f goes from

node N1 to N2, then the edge that goes from N2 to N1 is f
−1. The same observation

is also true for g and g−1. Since edges of the butterfly are bidirectional, we often

refer to an edge either as f or g without worrying about the direction.

In order to establish the equivalence between the binary labels and the new

labels, we use the following mapping ζ : Zn × Zn
2 → Cn ×GF (2n),

ζ(m, vn−1vn−2 . . . v1v0) = (m,
n−1∑
i=0

v(i+m) mod n βi). (2.7)

Mapping ζ is one-to-one and onto because ⟨βn−1, βn−2, . . . , β0⟩ is a basis of GF (2n).

It is proven in [10] that ζ also preserves the connectivity of BFn. Thus ζ is merely an

24

2.4. AN ALGEBRAIC MODEL OF THE BUTTERFLY GRAPH

(m + 1, αX)

)

f

f−1

(m − 1, α−1X)

g

g−1

(m− 1, α−1X + β0)

(m + 1, αX + βn−1)

(m, X)

Figure 2.4: Connections from node (m,X) ∈ Cn×GF (2n) in the butterfly network.

isomorphism or relabeling of the butterfly nodes. Table 2.4 provides the mapping ζ

between the two representations of B4. In order to illustrate the entries in this table,

consider mapping of a butterfly node (1, 1110) ∈ Zn×Zn
2 to its new algebraic setting.

The dual basis of GF (24) given in Table 2.2 is ⟨β3, β2, β1, β0⟩ = ⟨1, α, α2, α14⟩. Thus

ζ(1, 1110) = (1, α14 + α2 + α)

= (1, 1 + α + α2 + α3)

= (1, α12).

Thus the butterfly node with binary label (1, 1110) is renamed in the new algebraic

notation as (1, α12). The butterfly graph B4 relabeled in the algebraic notation is

shown in Fig. 2.6.

The simplicity of this model should be apparent from the fact that unlike the

binary representation, the two components of the destination of (m,X) are indepen-

dent. For the proof and examples of the algebraic model of BFn, reader is referred

to [10].

25

CHAPTER 2. MATHEMATICAL PRELIMINARIES ANDALGEBRAICMODELS

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

����

����

����

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

����

����

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

����

��
��
��
��

��
��
��
��

����

1 3 00 2
0000

0010

0100

0110

1001

1010

1011

1000

1110

1111

1101

1100

0111

0101

0011

0001

Row
Column

Figure 2.5: Connections of Butterfly B4 in Binary notation.

26

2.4. AN ALGEBRAIC MODEL OF THE BUTTERFLY GRAPH

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

��

��

��

�
�
�
�

��
��
��
��

��

�
�
�
�

�
�
�
�

��

��

�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

����

����

��
��
��
��

��
��
��
��

α14
α2

α2 α2

α
13

α
13

α14

α3 α4 α5

α7α7 α78α 8α

α2 α14

α4 α5α5

α12
α12

α
13 α3

α10α9

α2

α6

α3α3 α4 α5 α
13

8α 8α

α6 α6

α7 8α α7

α10α9 α12

α4α4

α9α9

α5 α
13

α3

α10 α12
α6

α10α10

α11α11

α12 α6 α9

α11α11α11

α14

α14

1

α

1

α

1α

1

α

1

α

1

0
0

0
0 0

3 00 2
First coordinate Second coordinate

Figure 2.6: Connections of Butterfly B4 in Algebraic notation.

27

CHAPTER 2. MATHEMATICAL PRELIMINARIES ANDALGEBRAICMODELS

Table 2.4: Equivalence between the nodes of B4 and graph C4 ×GF (24).

label (m, X)

(0, 0000) (0, 0)
(0, 0001) (0, α14)
(0, 0010) (0, α2)
(0, 0011) (0, α13)
(0, 0100) (0, α)
(0, 0101) (0, α7)
(0, 0110) (0, α5)
(0, 0111) (0, α12)
(0, 1000) (0, 1)
(0, 1001) (0, α3)
(0, 1010) (0, α8)
(0, 1011) (0, α6)
(0, 1100) (0, α4)
(0, 1101) (0, α9)
(0, 1110) (0, α10)
(0, 1111) (0, α11)

label (m, X)

(1, 0000) (1, 0)
(1, 0001) (1, 1)
(1, 0010) (1, α14)
(1, 0011) (1, α3)
(1, 0100) (1, α2)
(1, 0101) (1, α8)
(1, 0110) (1, α13)
(1, 0111) (1, α6)
(1, 1000) (1, α)
(1, 1001) (1, α4)
(1, 1010) (1, α7)
(1, 1011) (1, α9)
(1, 1100) (1, α5)
(1, 1101) (1, α10)
(1, 1110) (1, α12)
(1, 1111) (1, α11)

label (m, X)

(2, 0000) (2, 0)
(2, 0001) (2, α)
(2, 0010) (2, 1)
(2, 0011) (2, α4)
(2, 0100) (2, α14)
(2, 0101) (2, α7)
(2, 0110) (2, α3)
(2, 0111) (2, α9)
(2, 1000) (2, α2)
(2, 1001) (2, α5)
(2, 1010) (2, α8)
(2, 1011) (2, α10)
(2, 1100) (2, α13)
(2, 1101) (2, α12)
(2, 1110) (2, α6)
(2, 1111) (2, α11)

label (m, X)

(3, 0000) (3, 0)
(3, 0001) (3, α2)
(3, 0010) (3, α)
(3, 0011) (3, α5)
(3, 0100) (3, 1)
(3, 0101) (3, α8)
(3, 0110) (3, α4)
(3, 0111) (3, α10)
(3, 1000) (3, α14)
(3, 1001) (3, α13)
(3, 1010) (3, α7)
(3, 1011) (3, α12)
(3, 1100) (3, α3)
(3, 1101) (3, α6)
(3, 1110) (3, α9)
(3, 1111) (3, α11)

2.5 Cycles in Wrapped Butterflies

This section provides an overview of mapping cycles of all possible lengths on

Wrapped Butterfly. For detailed discussion, see [10].

[10] has shown that in BFn with an even n, cycles of all even lengths L can be

mapped except L = 6 when n > 6 and L = 10 when n > 10. Similarly for an odd n,

cycles of all lengths can be mapped on BFn except odd L < n, L = 6 when n = 5

or n > 6 and L = 10 when n = 7, n = 9 or n > 10. Since part of this research

deals with mapping cycles on faulty butterflies, we briefly describe here the process

of mapping a cycle on BFn.

To map a cycle of length L ≤ lcm(n, 2n−1), where L is a multiple of n L ̸= 2n−1,
one can start from a vertex (m,X) where m is arbitrary and X = βn−1(1 + αL)−1.

By continuously using the f edges, the rest of the vertices of the cycle are obtained.

The last vertex, (m − 1, αL−1X), is connected to the first vertex (m,X) by a g

edge because of the value of X when L < lcm(n, 2n − 1) and by an f edge when

L = lcm(n, 2n − 1). Note that the second coordinate of each vertex in such cycles

28

2.5. CYCLES IN WRAPPED BUTTERFLIES

is nonzero. On the other hand, by starting from a vertex (m, 0) for an arbitrary m

and using f edges between nodes, one can get a cycle of length n that contains all

the nodes with their second coordinate 0. We will often refer to this cycle as the

0-cycle.

Two cycles in BFn may be merged to form a larger cycle as the following Lemma

shows.

Lemma 3 [10] Any two distinct cycles in BFn may be merged if one cycle contains

some vertex P = (m,X) and the other, the vertex Q = (m,X + β0).

Proof. Let P ′ and Q′ denote the adjacent vertices to P and Q in the two cycles with

first index m+1. It is easy to see that if P → P ′ is an f edge, then so is Q→ Q′, or

else P ′ are Q′ are not distinct. Similarly, if P → P ′ is a g edge, then so is Q→ Q′.

Cycle merging in both these cases is achieved by dropping the edges P → P ′ and

Q→ Q′ and adding edges P → Q′ and Q→ P ′.

(m, X)

(m+1, X) (m+1, X)

β

ff

g

(m, X)(m, X +)

g g

f

β α βn−1 n−1

0

(m+1, X+)

(m, X +)

P’ Q’

QP P Q

P’ Q’(m+1, X+)

g

α

β

α α

0

f

Figure 2.7: Two possible cases of merging two distinct cycles when one cycle contains
the vertex (m,X) and the other, the vertex (m,X + β0).

The cycle obtained by merging has a length equal to the sum of the lengths of

the two original cycles. Lemma 3 can also be used to obtain a Hamiltonian cycle in

BFn. To achieve this, we first design gcd(n, 2n − 1) distinct cycles that include all

the vertices with nonzero second coordinate. Each cycle begins from some vertex

(m,X), X ̸= 0, not included in previous cycles and uses only f edges. It is easy to

show that each of these cycles will have n/ gcd(n, 2n − 1) vertices of type (m,β0).

29

CHAPTER 2. MATHEMATICAL PRELIMINARIES ANDALGEBRAICMODELS

Since the corresponding vertices (m, 0) belong to the 0-cycle, each of these cycles

can be merged with the 0-cycle using Lemma 3. Thus we get the Hamiltonian cycle

for BFn rather easily.

Note that Lemma 3 can also be used to merge a pair of outside adjacent vertices

(m,Q) and (m + 1, Q′) with a cycle provided a vertex (m,P) within the cycle is

such that P = Q+β0. This observation allows one to create cycles of lengths which

are not necessarily multiples of n into BFn.

2.6 An algebraic model of the deBruijn graph

The deBruijn graph [32] has been one of the interesting and applied graphs. A de-

Bruijn graph of degree n, DBn, is defined to have 2n nodes, each with a maximum

node degree of four independent of the network size. DBn is attractive because it has

a small constant node degree and a small diameter, n. It however suffers from the

fact that its connectivity is difficult to explore. It is neither symmetric nor recursive.

Consequently, mapping parallel algorithms on them becomes a very complex task.

Since an interconnection network is useful only if real-world application programs

can be mapped onto it, there have been intense efforts recently to map standard al-

gorithm skeletons such as the trees and cycles on these networks [4,33–36]. However,

apart from [37], which uses graph theoretic relationship between shuffle oriented di-

agraphs and hypercubes, very few results are available that provide a fresh look at

the connectivity properties. This lack of proper analytical models to express the

connectivity of these networks has proved to be a major roadblock in these analysis.

In this section we show that the nodes of DBn maybe labeled with elements

of the finite fields GF (2n) such that the node connectivity is expressed through

an algebraic relationship between these labels. This allows one to exploit the rich

properties of the finite fields to develop good mappings on these networks.

Before we provide the algebraic model for the deBruijn, we first discuss the

conventional binary model. DBn is defined to have 2n nodes each labeled with an

n bit binary string. A node (vn−1, vn−2, . . . , v0) ∈ DBn is connected to four nodes

30

2.6. AN ALGEBRAIC MODEL OF THE DEBRUIJN GRAPH

(0, vn−1, vn−2, . . . v1), (1, vn−1, vn−2, . . . v1), (vn−2, vn−3 . . . v0, 0) and (vn−2, vn−3 . . . v0, 1).

DB4 graph is shown in Fig. 2.8.

01110001

0000 1111

111011001000

01101001

0010 1011

11011010

0101

0100

0011

Figure 2.8: Connections of deBruijn DB4 in Binary notation.

Now we provide the algebraic model of DBn first presented in [15]. Here, the

nodes of DBn are labeled with elements of the finite field GF (2n), a finite field of 2n

elements. Let α denote the primitive element of GF (2n) and ⟨βn−1, βn−2, . . . , β0⟩,
its dual basis. The node connectivity of graph DBn can then be described through

an algebraic relationship. In particular, A node with label X ∈ GF (2n) is connected
to nodes αX, αX + βn−1, α

−1X and α−1X + β0 as shown in Fig. 2.9.

For convenience, we refer to these four edges as f , g, f−1 and g−1 respectively.

It is easy to verify that if edge f goes from node N1 to N2, then the edge that goes

from N2 to N1 is f−1. The same observation is also true for g and g−1. Since edges

of the deBruijn graph are bidirectional, we often refer to an edge either as f or g

without worrying about the direction.

In order to establish the equivalence between the binary labels and the algebraic

labels, mapping ζ : Zn × Zn
2 → Cn ×GF (2n) defined below can be used.

ζ(vn−1, vn−2, . . . v1, v0) = (
n−1∑
i=0

vi βi). (2.8)

Mapping ζ is one-to-one and onto because ⟨βn−1, βn−2, . . . , β0⟩ is a basis of GF (2n).

It is proven in [15] that ζ also preserves the connectivity of DBn. Thus ζ is merely

31

CHAPTER 2. MATHEMATICAL PRELIMINARIES ANDALGEBRAICMODELS

(αX)

)

f

f−1

(α−1X)

g

g−1

(α−1X + β0)

(αX + βn−1)

X

Figure 2.9: The connectivity of the deBruijn graph (DBn)

an isomorphism or relabeling of the deBruijn nodes. Table 2.5 provides the mapping

ζ between the two representations of DB4.

In order to illustrate the entries in this table, consider mapping of a deBruijn

node (1, 1, 0, 1) ∈ Zn
2 to its new algebraic setting. The dual basis of GF (24) given

in Table 2.2 is ⟨1, α, α2, α14⟩. Thus

ζ(1, 1, 0, 1) = 1 + α + α14

= 1 + α + (α3 + 1)

= α3 + α = α9.

Thus the deBruijn node with binary label (1, 1, 0, 1) is renamed in the new algebraic

notation as α9. The deBruijn graph DB4 relabeled in the algebraic notation is shown

in Fig. 2.10.

32

2.6. AN ALGEBRAIC MODEL OF THE DEBRUIJN GRAPH

Table 2.5: Equivalence between the binary and the algebraic labels of DB4.

Binary Algebraic
(0, 0, 0, 0) 0
(0, 0, 0, 1) α14

(0, 0, 1, 0) α2

(0, 0, 1, 1) α13

(0, 1, 0, 0) α
(0, 1, 0, 1) α7

(0, 1, 1, 0) α5

(0, 1, 1, 1) α12

Binary Algebraic
(1, 0, 0, 0) 1
(1, 0, 0, 1) α3

(1, 0, 1, 0) α8

(1, 0, 1, 1) α6

(1, 1, 0, 0) α4

(1, 1, 0, 1) α9

(1, 1, 1, 0) α10

(1, 1, 1, 1) α11

α

α

α

α

α

α

α

α

13 12

11

672

0

1

α

3 5

α

α

α

10

9

14

4

8

α

α

Figure 2.10: Connections of deBruijn DB4 in Algebraic notation.

33

CHAPTER 2. MATHEMATICAL PRELIMINARIES ANDALGEBRAICMODELS

34

Chapter 3

Butterfly Automorphisms

3.1 Introduction

As the quest of high-speed computing resources continues, the physical limitations

on uniprocessor speed due to the Moore’s law imply a pressing need for parallel

processors. These multi-processors exchange information using interconnection net-

works. Unfortunately, the speed of data transfer between cooperating processors

has not kept pace with the increase in the computing speed. Therefore, the choice

of the interconnection network affects several characteristics of the system, such as

performance, ease of algorithm development, reliability, scalability and complexity

of the physical layout. As a result, communication network of a parallel processor

dominates its performance.

The wrap-around butterfly network represents a good trade-off between the cost

and the performance of a parallel machine. It has a large number of processors,

fixed node degree, low diameter, symmetry, and an ability to support a variety of

parallel algorithms. Cube Connected Cycles is a sub-graph of BFn [38]. Other

extensions of BFn are also available [39,40]. BFn supports many parallel algorithms

efficiently [1, 7–10,27,28,31].

With the advances in the VLSI technology, it is now possible to build parallel

machines with a large number of processors. However, larger the machine, higher

35

CHAPTER 3. BUTTERFLY AUTOMORPHISMS

is the probability that one or more of its processors or links will develop a fault.

Thus, for the underlying networks of these large machines, mappings of algorithms

on faulty graphs becomes an important design issue.

Previous results about mappings on faulty butterflies include one by Vadapalli

and Srimani who have shown that in BFn, there exists a cycle of length at least

n2n − 2 with one faulty node and n2n − 4 with two faulty nodes [41]. Later, Tsai

et al., improved this to show that for odd n, cycle length n2n − 2 is possible with

two faulty nodes [42]. They also proved that in the presence of one faulty node and

one faulty edge, there exists a cycle of length n2n − 2 when n is even, and n2n − 1,

when n is odd. Hwang and Chen have shown that the maximal cycle of length n2n

can be embedded in a faulty butterfly even with two edge faults [43]. However,

these studies have used the binary representation of the butterfly resulting in rather

complex mappings. Their results are limited to either mapping Hamiltonian cycle

or the largest possible cycle with limited fault set.

This chapter obtains all the automorphisms of a wrapped butterfly network of

degree n using an algebraic model. We show that with this model, it is rather simple

to obtain all the automorphisms of the butterfly network. In addition, this chapter

uses the powerful algebraic techniques to study the edge transformations due to these

automorphisms. This chapter also proposes a new strategy for algorithm mappings

on an architecture with faulty edges. This strategy essentially consists of finding

an automorphism that would map the faulty edges to the free edges in the graph.

Having a set of n2n+1 simple well defined automorphisms which translate graph edges

deterministically, makes this a very powerful technique for dealing with edge faults.

This strategy of avoiding edge faults using automorphisms is quite novel because

previously automorphisms have been employed only to avoid the node faults. We

illustrate our methods by mapping Hamilton cycle on the butterfly under various

edge fault scenarios.

This chapter is organized in these sections. Section 3.2 obtains all the automor-

phisms of a wrapped butterfly network of degree n using an algebraic model. Section

3.3 investigate the translation of butterfly edges by automorphisms. It proposes a

36

3.2. AUTOMORPHISMS OF THE BUTTERFLY NETWORK

new strategy for algorithm mappings on an architecture with faulty edges. We il-

lustrate in Section 3.4 our methods by mapping Hamiltonian cycle on the butterfly

under various edge fault scenarios.

3.2 Automorphisms of the butterfly network

Wagh and Guzide have previously shown that the algebraic model allows efficient

mappings of cycles of all possible lengths and trees of largest sizes on the butterfly

[10]. The relevant part of that work is summarized in Section 2.5. We extend this

work by exploring the automorphisms of butterfly in the same setting.

Since nodes in column m are only connected to nodes in columns m + 1 and

m− 1, one has only two kinds of automorphisms of BFn; those which map nodes in

column m to nodes in column m+ t for an integer t and those which map nodes in

column m to nodes in column t−m. We denote the automorphisms of the first kind

by ϕ(·). An automorphism which maps nodes in column m to nodes −m mod n is

denoted by ψ(·). A product of ψ(·) with the set of ϕ(·) automorphisms provides all

the automorphisms of the second kind.

We first give the following lemma which relates the edges in a column to edges

in any other column. This lemma forms the foundation of the automorphisms of

the first kind.

Lemma 4 (connectivity) Let Km, Km+1 ∈ GF (2n) be related as Km+1 = αKm

or Km+1 = αKm + βn−1. For any X, Y ∈ GF (2n) and t ∈ Cn, if nodes (m,X)

and (m + 1, Y) are connected in BFn, then so are the nodes (m + t,X +Km) and

(m+ 1 + t, Y +Km+1).

Proof. The presence of the edge (m+ t,X +Km)→ (m+ 1 + t, Y +Km+1) can be

proved by showing that Y +Km+1 = α(X +Km) + cβn−1 for some c ∈ {0, 1}. Since
(m,X)→ (m+1, Y), the connectivity of BFn gives Y = αX+c′βn−1 for c

′ ∈ {0, 1}.
Further, the given constants Km and Km+1 are related as Km+1 = αKm + c′′βn−1,

where c′′ ∈ {0, 1}. Therefore Y +Km+1 = α(X +Km) + (c′ + c′′)βn−1.

37

CHAPTER 3. BUTTERFLY AUTOMORPHISMS

The connectivity specified by Lemma 4 can be used to obtain the automorphisms

of the butterfly network as shown in Theorem 1.

Theorem 1 If constants K0, K1, . . . , Kn−1 ∈ GF (2n) satisfy

Ki =

 αKi−1 or αKi−1 + βn−1, if 0 < i ≤ n− 1,

αKn−1 or αKn−1 + βn−1 if i = 0,

then function ϕ(·) : Bn → Bn defined as

ϕ((m, X)) = (m+ t, X +Km) (3.1)

for any t ∈ Cn, is an automorphism of BFn, i.e., it maps nodes of BFn to nodes

and edges to edges.

Proof. The fact that ϕ(·) maps edges to edges is clear from Lemma 4. To prove

that it is an automorphism we only have to show that it is a one-to-one and onto

mapping.

Let ϕ(m,X) = ϕ(m′, X ′), then from the definition of ϕ(·),

(m+ t,X +Km) = (m′ + t,X ′ +Km′).

From the first components of the two pairs, m = m′. From the second components,

X +Km = X ′ +Km which implies that X = X ′. Thus two distinct nodes cannot

have the same image under ϕ(·), i.e., ϕ(·) is one-to-one.
Now consider any node (m′, Y) ∈ Bn. It is easy to see that this node is the

image of (m′ − t, Y +Km′−t). Therefore ϕ(·) is onto.

Note that constant t merely translates edges in one column to a column t away.

As Theorem 1 shows, this t and constant elements Ki ∈ GF (2n), 0 ≤ i < n fully

define the automorphism ϕ(·). We will henceforth refer to t as the column offset and

Kis as the automorphism offsets,

One can see the simplicity of the automorphism ϕ(·) defined in (3.1). Every node

in the network is applied the same column offset and every node in the same column

38

3.2. AUTOMORPHISMS OF THE BUTTERFLY NETWORK

is applied the same automorphism offset. Further, the offsets of the two coordinates

of a node label are independent. This makes use of such an automorphism especially

attractive.

Theorem 1 allows one to design such an automorphism under various conditions.

For example, suppose one wants an automorphism such that for a given pair of

nodes N1 = (a, U), N2 = (b, V) ∈ Bn, the automorphism maps N1 to N2, i.e.,

ϕ(N1) = N2. (3.2)

(If we can do this for an arbitrary pair of nodes, it would imply that BFn is a sym-

metric network.) Such a mapping can be obtained by choosing a column offset t and

automorphism offsets K0, K1, . . . , Kn−1 ∈ GF (2n) satisfying condition in Theorem

1) and then defining ϕ as in (3.1). Note that the relations between Kis provide

certain flexibility in the choice of the constants. We exploit this flexibility to ensure

that (3.2) is satisfied.

Let us rewrite the relations between Kis as

Ki = αK
(i−1)mod n

+ ciβn−1, 0 ≤ i ≤ n− 1, (3.3)

where each ci is either 0 or 1. One can use (3.3) repeatedly to express any individual

automorphism offset as

Ka = αK
(a−1)mod n

+ caβn−1

= α2K
(a−2)mod n

+ (c
(a−1)mod n

α + ca)βn−1

= α3K
(a−3)mod n

+

(c
(a−2)mod n

α2 + c
(a−1)mod n

α + ca)βn−1.

Proceeding in this fashion, one gets

Ka = αn Ka + (
n−1∑
j=0

c
(a−j)mod n

αj)βn−1,

or

Ka = (1 + αn)−1(
n−1∑
j=0

c
(a−j)mod n

αj)βn−1. (3.4)

39

CHAPTER 3. BUTTERFLY AUTOMORPHISMS

Further, if ϕ((m, X)) = (m+ t, X +Km), then to satisfy (3.2) requires that

t = (b− a)mod n and

Ka = U + V. (3.5)

By combining (3.4) and (3.5), one gets

(U + V)(αn + 1)β−1
n−1 =

n−1∑
j=0

c
(a−j)mod n

αj, (3.6)

One can see that the left hand side of (3.6) is an element of GF (2n) and can

therefore be uniquely expressed in the polynomial basis ⟨αn−1, αn−2, . . . , 1⟩. This

gives the unique set of values for cis. One can then use these values in (3.3) to

obtain the automorphism offsets K
(a+1)mod n

, K
(a+2)mod n

, . . ., K
(a−1)mod n

.

One can illustrate this procedure by:

Example 1. Computing an automorphism ϕ(·) : B4 → B4 which maps node (3, α14)

to node (1, α2). For this function, the column offset t = (1 − 3)mod 4 = 2 and the

automorphism offset K3 = α14 + α2 = α13. (see Table 2.2). Further,

n−1∑
j=0

c
(3−j)mod n

αj = K3σβ
−1
3 = α3 + 1.

Thus one gets c0 = 1, c1 = 0, c2 = 0 and c3 = 1 and consequently, K0 = α3, K1 = α4

and K2 = α5. The resultant automorphism function ϕ(·) is given in Table 3.1.

It is easy to verify that the mapping in Table 3.1 preserves connectivity. For

example, (0, α3) and (1, α4) were connected in the original graph. After mapping,

their images (2, 0) and (3, 0) remain connected.

Example 2. Computing an automorphism ϕ(·) : B3 → B3 which maps node (1, α2)

to node (0, α6). For this function, the column offset t = (0 − 1)mod 3 = 2 and the

automorphism offset K1 = α2 + α6 = 1. (see Table 2.1.) Further,

n−1∑
j=0

c
(1−j)mod n

αj = K1σβ
−1
2 = 1.

Thus one gets c0 = 0, c1 = 1 and c2 = 0 and consequently, K0 = α2, K1 = 1 and

K2 = α. The resultant automorphism function ϕ(·) is given in Table 3.2.

40

3.2. AUTOMORPHISMS OF THE BUTTERFLY NETWORK

Table 3.1: Automorphism ϕ(·) : B4 → B4 such that ϕ(3, α14) = (1, α2).

(m,X) ϕ(m,X)
(0, 0) (2, α3)
(0, 1) (2, α14)
(0, α) (2, α9)
(0, α2) (2, α6)
(0, α3) (2, 0)
(0, α4) (2, α7)
(0, α5) (2, α11)
(0, α6) (2, α2)
(0, α7) (2, α4)
(0, α8) (2, α13)
(0, α9) (2, α)
(0, α10) (2, α12)
(0, α11) (2, α5)
(0, α12) (2, α10)
(0, α13) (2, α8)
(0, α14) (2, 1)

(m,X) ϕ(m,X)
(1, 0) (3, α4)
(1, 1) (3, α)
(1, α) (3, 1)
(1, α2) (3, α10)
(1, α3) (3, α7)
(1, α4) (3, 0)
(1, α5) (3, α8)
(1, α6) (3, α12)
(1, α7) (3, α3)
(1, α8) (3, α5)
(1, α9) (3, α14)
(1, α10) (3, α2)
(1, α11) (3, α13)
(1, α12) (3, α6)
(1, α13) (3, α11)
(1, α14) (3, α9)

(m,X) ϕ(m,X)
(2, 0) (0, α5)
(2, 1) (0, α10)
(2, α) (0, α2)
(2, α2) (0, α)
(2, α3) (0, α11)
(2, α4) (0, α8)
(2, α5) (0, 0)
(2, α6) (0, α9)
(2, α7) (0, α13)
(2, α8) (0, α4)
(2, α9) (0, α6)
(2, α10) (0, 1)
(2, α11) (0, α3)
(2, α12) (0, α14)
(2, α13) (0, α7)
(2, α14) (0, α12)

(m,X) ϕ(m,X)
(3, 0) (1, α13)
(3, 1) (1, α6)
(3, α) (1, α12)
(3, α2) (1, α14)
(3, α3) (1, α8)
(3, α4) (1, α11)
(3, α5) (1, α7)
(3, α6) (1, 1)
(3, α7) (1, α5)
(3, α8) (1, α3)
(3, α9) (1, α10)
(3, α10) (1, α9)
(3, α11) (1, α4)
(3, α12) (1, α)
(3, α13) (1, 0)
(3, α14) (1, α2)

Table 3.2: Automorphism ϕ(·) : B3 → B3 such that ϕ(1, α2) = (0, α6).

(m,X) ϕ(m,X)
(0, 0) (2, α2)
(0, 1) (2, α6)
(0, α) (2, α4)
(0, α2) (2, 0)
(0, α3) (2, α5)
(0, α4) (2, α)
(0, α5) (2, α3)
(0, α6) (2, 1)

(m,X) ϕ(m,X)
(1, 0) (0, 1)
(1, 1) (0, 0)
(1, α) (0, α3)
(1, α2) (0, α6)
(1, α3) (0, α)
(1, α4) (0, α5)
(1, α5) (0, α4)
(1, α6) (0, α2)

(m,X) ϕ(m,X)
(2, 0) (1, α)
(2, 1) (1, α3)
(2, α) (1, 0)
(2, α2) (1, α4)
(2, α3) (1, 1)
(2, α4) (1, α2)
(2, α5) (1, α6)
(2, α6) (1, α5)

41

CHAPTER 3. BUTTERFLY AUTOMORPHISMS

It is easy to verify that the mapping in Table 3.2 preserves connectivity. For

example, (0, α6) and (1, 1) were connected in the original graph. After mapping

their images (2, 1) and (0, 0) remain connected.

Alternately, one can design an automorphism ϕ : Bn → Bn given cis values. To

construct ϕ in this case, given constants ci ∈ {0, 1} , 0 ≤ i < n, we compute K0 by

(3.6) as

K0(α
n + 1)β−1

n−1 =
n−1∑
j=0

c(−j) mod nα
j.

The other Ki values can then be inferred from (3.3).

As an example, let constants c0 = 0, c1 = 1, c2 = 1, c3 = 1 in B4. Automorphism

offset K0 can then be obtained from

n−1∑
j=0

c(−j) mod n α
j = K0(1 + α4)β−1

3 . (3.7)

c0 + c3α + c2α
2 + c1α

3 = K0(α)(1)
−1

α + α2 + α3 = K0(α)

α11 = K0(α).

Solving (3.7) gives K0 = α10, which, in turn yields K1 = α12, K2 = α6 and K3 = α9.

The resultant automorphism function ϕ(·) is given in Table 3.3.

As is evident from this discussion, all the automorphism offsets for any ϕ(·) are
related such that choosing any one of them, say, K0, fixes all the others. On the

other hand, distinct K0 and t values give rise to distinct automorphisms. Thus there

are exactly n2n automorphisms of butterfly BFn when the first index of all the nodes

is translated by the same amount.

Because the automorphism offsets play such a central role in defining the auto-

morphism, we now provide some of their basic properties.

42

3.2. AUTOMORPHISMS OF THE BUTTERFLY NETWORK

Table 3.3: Automorphism ϕ(·) : B4 → B4 by choosing c’s.

(m,X) ϕ(m,X)
(0, 0) (0, α10)
(0, 1) (0, α5)
(0, α) (0, α8)
(0, α2) (0, α4)
(0, α3) (0, α12)
(0, α4) (0, α2)
(0, α5) (0, 1)
(0, α6) (0, α7)
(0, α7) (0, α6)
(0, α8) (0, α)
(0, α9) (0, α13)
(0, α10) (0, 0)
(0, α11) (0, α14)
(0, α12) (0, α3)
(0, α13) (0, α9)
(0, α14) (0, α11)

(m,X) ϕ(m,X)
(1, 0) (1, α12)
(1, 1) (1, α11)
(1, α) (1, α13)
(1, α2) (1, α7)
(1, α3) (1, α10)
(1, α4) (1, α6)
(1, α5) (1, α14)
(1, α6) (1, α4)
(1, α7) (1, α2)
(1, α8) (1, α9)
(1, α9) (1, α8)
(1, α10) (1, α3)
(1, α11) (1, 1)
(1, α12) (1, 0)
(1, α13) (1, α)
(1, α14) (1, α5)

(m,X) ϕ(m,X)
(2, 0) (2, α6)
(2, 1) (2, α13)
(2, α) (2, α11)
(2, α2) (2, α3)
(2, α3) (2, α2)
(2, α4) (2, α12)
(2, α5) (2, α9)
(2, α6) (2, 0)
(2, α7) (2, α10)
(2, α8) (2, α14)
(2, α9) (2, α5)
(2, α10) (2, α7)
(2, α11) (2, α)
(2, α12) (2, α4)
(2, α13) (2, 1)
(2, α14) (2, α8)

(m,X) ϕ(m,X)
(3, 0) (3, α9)
(3, 1) (3, α7)
(3, α) (3, α3)
(3, α2) (3, α11)
(3, α3) (3, α)
(3, α4) (3, α14)
(3, α5) (3, α6)
(3, α6) (3, α5)
(3, α7) (3, 1)
(3, α8) (3, α12)
(3, α9) (3, 0)
(3, α10) (3, α13)
(3, α11) (3, α2)
(3, α12) (3, α8)
(3, α13) (3, α10)
(3, α14) (3, α4)

43

CHAPTER 3. BUTTERFLY AUTOMORPHISMS

Theorem 2 Let ϕ(·), ϕ′(·) : Bn → Bn be any two automorphisms of BFn based on

sets of constants t,K0, K1, . . . Kn−1 and t′, K ′
0, K

′
1, . . . K

′
n−1. Then,

1. If any Km = 0, then all Ki = 0, 0 ≤ i < n.

2. If any Km ̸= 0, then all Ki ̸= 0, 0 ≤ i < n.

3. If any Km = K ′
m, then all Ki = K ′

i, 0 ≤ i < n.

4. If any Km ̸= K ′
m, then for every i, 0 ≤ i < n, Ki ̸= K ′

i.

5.
∑n−1

i=0 Ki is either 0 or (1 + α)−1βn−1.

Proof. From (3.4) one can see that Km = 0 implies that cj = 0, 0 ≤ j < n. Relation

(3.3) then shows that each Ki is zero. On the other hand, if any Km is nonzero,

then so is every other Ki or else, any Ki = 0 would invalidate any other nonzero

Km. This proves the first two parts of the corollary.

To prove the third and fourth parts, it is sufficient to note from (3.3) and (3.4)

that any given Km uniquely determines all the other Kis. If Km = K
′
m, then from

(3.6) we get the same c values in the two cases, which will generate an equal set of

K values. Hence, Ki = K
′
i , for all i.

Finally, the sum of allKis can be computed as follows. By applying a summation

to both sides of (3.3), one gets

n−1∑
i=0

Ki = α(
n−1∑
i=0

Ki) + (
n−1∑
i=0

ci)βn−1

= (
n−1∑
i=0

ci)βn−1(1 + α)−1 (3.8)

Since
∑n−1

i=0 ci in (3.8) is either 0 or 1, the sum of all Kis is as stated in the Corollary.

It is well known that the set of all the automorphisms form a group. In case of

BFn, set of automorphisms of the first kind also form a group. In particular it is

easy to verify that automorphism ϕ(m,X) = (m,X) is the identity of the group.

Following theorem specifies inverse of an automorphism.

44

3.2. AUTOMORPHISMS OF THE BUTTERFLY NETWORK

Theorem 3 Let ϕ(m,X) = (m + t,X + Km) then the inverse automorphism is

given by

ϕ−1(m,X) = (m− t,X +Km−t).

Proof. It is easy to see that

ϕ−1ϕ(m,X) = ϕ(m− t,X +Km−t) = (m,X +Km−t +Km−t) = (m,X)

and

ϕϕ−1(m,X) = ϕ−1(m+ t,X +Km) = (m,X +Km +Km) = (m,X).

Group formed by all automorphism of the first kind is not commutative. If

automorphism ϕ is characterized by t and Km while another, ϕ′, by t′ and K ′
m, then

ϕϕ′(m,X) = (m+t+t′, X+K ′
m+Km+t′) and ϕ

′ϕ(m,X) = (m+t′+t,X+Km+Km+t).

Clearly these two expressions cannot be equal always. However, the set of ϕ’s with

column offset t equal to zero form a commutative group.

We now investigate the automorphism ψ(·) of BFn that reflects the column index

of each node. Our result concerning this automorphism is stated in the following

theorem.

Theorem 4 For every X ∈ GF (2n), X =
∑n−1

i=0 xiβi, let X
′ =

∑n−1
i=0 xiβn−1−i. Then

the mapping

ψ(m,X) = (n−m,X ′)

is an automorphism of BFn.

Proof. It is simple to see that ψ(·) is one-to-one and onto. We only need to prove

that it preserves the edge connectivity of BFn. In particular, we demonstrate that

45

CHAPTER 3. BUTTERFLY AUTOMORPHISMS

since vertex (m,X) is connected to the vertices (m + 1, αX + cβn−1), c ∈ {0, 1},
ψ(m,X) is also connected to vertices ψ(m + 1, αX + cβn−1). Let X =

∑n−1
i=0 xiβi.

Then using the relationships between the consecutive βis given in Lemma 1, one

gets

αX + cβn−1 =
n−1∑
i=1

(xiβi−1 + xipiβn−1) + (c+ x0)β0

=
n−2∑
i=0

xi+1βi + (c+
n−1∑
i=0

pixi)βn−1. (3.9)

Thus

ψ(m+ 1, αX + cβn−1) = (n−m− 1, Y) (3.10)

where,

Y =
n−2∑
i=0

xi+1βn−1−i + (c+
n−1∑
i=0

pixi)β0

=
n−1∑
i=1

xiβn−i + (c+
n−1∑
i=0

pixi)β0 (3.11)

Now,

αY =
n−1∑
i=1

xiαβn−i + (c+
n−1∑
i=0

pixi)βn−1

=
n−1∑
i=1

(xiβn−1−i + xipn−iβn−1)

+ (c+
n−1∑
i=0

pixi)βn−1

=
n−1∑
i=0

xiβn−1−i + c′βn−1, (3.12)

where c′ ∈ {0, 1} denotes

c′ = c+
n−1∑
i=0

(pi + pn−i)xi. (3.13)

Note that

ψ(m,X) = (n−m,
n−1∑
i=0

xiβn−1−i)

= (n−m,αY + c′βn−1). (3.14)

46

3.2. AUTOMORPHISMS OF THE BUTTERFLY NETWORK

Table 3.4: Automorphism ψ(·) : B4 → B4.

(m,X) ψ(m,X)
(0, 0) (0, 0)
(0, 1) (0, α14)
(0, α) (0, α2)
(0, α2) (0, α)
(0, α3) (0, α3)
(0, α4) (0, α13)
(0, α5) (0, α5)
(0, α6) (0, α9)
(0, α7) (0, α8)
(0, α8) (0, α7)
(0, α9) (0, α6)
(0, α10) (0, α12)
(0, α11) (0, α11)
(0, α12) (0, α10)
(0, α13) (0, α4)
(0, α14) (0, 1)

(m,X) ψ(m,X)
(1, 0) (3, 0)
(1, 1) (3, α14)
(1, α) (3, α2)
(1, α2) (3, α)
(1, α3) (3, α3)
(1, α4) (3, α13)
(1, α5) (3, α5)
(1, α6) (3, α9)
(1, α7) (3, α8)
(1, α8) (3, α7)
(1, α9) (3, α6)
(1, α10) (3, α12)
(1, α11) (3, α11)
(1, α12) (3, α10)
(1, α13) (3, α4)
(1, α14) (3, 1)

(m,X) ψ(m,X)
(2, 0) (2, 0)
(2, 1) (2, α14)
(2, α) (2, α2)
(2, α2) (2, α)
(2, α3) (2, α3)
(2, α4) (2, α13)
(2, α5) (2, α5)
(2, α6) (2, α9)
(2, α7) (2, α8)
(2, α8) (2, α7)
(2, α9) (2, α6)
(2, α10) (2, α12)
(2, α11) (2, α11)
(2, α12) (2, α10)
(2, α13) (2, α4)
(2, α14) (2, 1)

(m,X) ψ(m,X)
(3, 0) (1, 0)
(3, 1) (1, α14)
(3, α) (1, α2)
(3, α2) (1, α)
(3, α3) (1, α3)
(3, α4) (1, α13)
(3, α5) (1, α5)
(3, α6) (1, α9)
(3, α7) (1, α8)
(3, α8) (1, α7)
(3, α9) (1, α6)
(3, α10) (1, α12)
(3, α11) (1, α11)
(3, α12) (1, α10)
(3, α13) (1, α4)
(3, α14) (1, 1)

From (3.10) and (3.14) it is obvious that vertex ψ(m,X) is connected to vertex

ψ(m+ 1, αX + cβn−1), c ∈ {0, 1}.

When the context is clear, we sometimes write ψ(X) in place of ψ(m,X). The-

orem 25 lists some basic properties of ψ(·).

Theorem 5 1. ψ(·) is an order 2 automorphism.

2. ψ(X1 +X2) = ψ(X1) + ψ(X2).

3. ψ((m,X)) = (n−m,X) for exactly 2⌈n/2⌉ values of X ∈ GF (2n).

Proof. The first two properties of ψ(·) are obvious from its definition. For any

X =
∑n−1

i=0 xiβi, ψ((m,X)) = (n−m,X) if and only if xi = xn−1−i, 0 ≤ i < ⌊n/2⌋.
From this the third property follows.

Automorphism ψ(·) : B4 → B4 is shown in Table 3.4.

47

CHAPTER 3. BUTTERFLY AUTOMORPHISMS

We end this section with the following theorem enumerating all the automor-

phisms of BFn.

Theorem 6 BFn has a total of n2n+1 automorphisms.

Proof. Note that the product of two automorphisms is also an automorphism. Thus

in addition to the n2n automorphisms defined by Theorem 1, another set of auto-

morphisms can be defined by multiplying each of these ϕ(·)s by the automorphism

ψ(·) in Theorem 4. Since the order of automorphism ψ(·) is 2, these are all the

automorphisms of BFn.

3.3 Edge Transformations by automorphisms

This section investigates the effect of an automorphism on the butterfly edges. We

call edges (i− 1, X)→ (i, αX) and (i− 1, X)→ (i, αX + βn−1) for all X ∈ GF (2n)
as the edges in the ith column of BFn.

The automorphism ϕ(·) of Theorem 1 affects all the edges in the same column

similarly. This is stated in the following theorem.

Theorem 7 Let the automorphism offsets be related as:

Ki = αK
(i−1)mod n

+ ciβn−1, 0 ≤ i ≤ n− 1,

(a) If ci = 1, then the automorphism ϕ(·) maps all f edges of BFn in column i to g

edges and all g edges to f edges.

(b) If ci = 0, then the automorphism ϕ(·) maps all f edges of BFn in column i to f

edges and all g edges to g edges.

Proof. Consider an f edge between nodes N1 = (i− 1, X) and N2 = (i, αX) of the

sub-graph of BFn. Now, ϕ(N1) = (i− 1, X +Ki−1) and,

ϕ(N2) = (i, αX +Ki)

= (i, αX + αKi−1 + ciβn−1)

= (i, α(X +Ki−1) + βn−1)

48

3.3. EDGE TRANSFORMATIONS BY AUTOMORPHISMS

From this, one can clearly see that the edge between ϕ(N1) and ϕ(N2) is a g edge.

The translation of a g edge into an f edge can be similarly proved.

Note that the automorphism ϕ(m, X) = (m + t, X + Km) also advances the

column number m by quantity t. In this case, cm = 1 has the effect of mapping the

f edges of the sub-graph between columns m− 1 and m to g edges and all g edges

to f edges; but these transformed edges now appear in column m + t. Similarly

the edges in mth column are mapped to edges of the same type in column m+ t if

cm = 0.

We will show in the next section how Theorem 7 is helpful in avoiding faulty

edges in a mapping.

To describe the effect of the automorphism ψ(·) on the edges of BFn, we first

define a set S as

S = {X ∈ GF (2n)|ψ(X) = αψ(αX)} (3.15)

The types of edges from any element of S are preserved by ψ. (See Theorem 9).

Some of the basic properties of S are listed in the following theorem.

Theorem 8 Let pi denote the coefficient of xi in the primitive polynomial used to

generate GF (2n). Then

1. X =
∑n−1

i=0 xiβi ∈ S if and only if
∑n−1

i=1 xi (pi + pn−i) = 0.

2. For any X /∈ S, αψ(αX) + ψ(X) = βn−1.

3. If pi = pn−i, then βi ∈ S,

4. S is a subgroup of GF (2n) under the operation of addition.

5. There are exactly 2n−1 elements in S.

Proof. Using Lemma 1 one gets

αX =
n−2∑
i=0

αxiβi = x0βn−1 +
n−1∑
i=1

xi(βi−1 + piβn−1 =
n−1∑
i=1

xiβn−i + βn−1

n−1∑
i=0

pixi).

49

CHAPTER 3. BUTTERFLY AUTOMORPHISMS

Therefore, ψ(αX) =
n−2∑
i=0

xi+1βn−1−i + β0
n−1∑
i=0

pixi.

A multiplication by α gives

αψ(αX) =
n−1∑
i=1

xi(βn−i−1 + pn−iβn−1) + βn−1

n−1∑
i=0

pixi

=
n−1∑
i=1

xiβn−1−i + x0βn−1 + βn−1(
n−1∑
i=1

xi(pi + pn−i)). (3.16)

Adding (3.16) to

ψ(X) =
n−1∑
i=0

xiβn−1−i

gives

αψ(αX) + ψ(X) = βn−1

n−1∑
i=1

xi(pi + pn−i). (3.17)

Since all xi and pi belong to GF (2), the right hand side of (3.17) is either 0 or βn−1.

The first two parts of the theorem therefore follow directly from (3.17).

To prove the third part, note that Lemma 1 implies

αψ(αβi) = αψ(βi−1 + piβn−1) = α(βn−i + piβ0)

= βn−1−i + pn−iβn−1 + piβn−1. (3.18)

For βi ∈ S, one needs to have ψ(βi) = αψ(αβi). Comparing ψ(βi) = βn−1−i with

(3.18) gives the required result.

To prove that S is a group under addition, all one needs to show is that 0 ∈ S
and that S is closed under addition. The first of these is obvious. To show the

closure, let X1, X2 ∈ S. Then

αψ(α(X1 +X2)) = α(ψ(αX1) + ψ(αX2)) = αψ(αX1) + αψ(αX2) = αψ(αX1 + αX2).

This implies that X1 +X2 ∈ S .

To prove the last part of the theorem, we first show that it is impossible to have a

primitive polynomial of degree n ≥ 3 over GF (2), with all pi = pn−i, 0 ≤ i ≤ n. To

50

3.3. EDGE TRANSFORMATIONS BY AUTOMORPHISMS

prove this by contradiction, suppose there is a primitive polynomial p(x) of degree

≥ 3 with coefficients satisfying pi = pn−i for all 0 ≤ i ≤ n. Let α be the primitive

root of p(x). Then all its roots of are given as α2i , 0 ≤ i < n. Now consider a

polynomial g(x) = xnf(x−1). Clearly, g(α−1) = 0 showing that α−1 is a root of

g(x). However, because of the assumed relationships between the coefficients of

p(x), g(x) = p(x). Thus α−1 = α2i , or α2i+1 = 1 for some i, 0 ≤ i < n. Now since

α is a primitive element, the smallest power of α that gives a 1 is 2n − 1. Thus

2i + 1 is a multiple of (2n − 1). But this is impossible for n ≥ 3 because i < n.

Therefore it is impossible for a primitive polynomial of degree ≥ 3 to have pi = pn−i

for all 0 ≤ i ≤ n. As a result of this, the first part of the theorem implies that there

is a linear relationship between the components of X when X ∈ S. Thus one can

choose all but one component of X independently. The choice of n− 1 independent

components, each in GF (2), implies that there are exactly 2n−1 elements X ∈ S.

Set S plays an important role in edge transformations of BFn under ψ(·) as the
following theorem shows.

Theorem 9 When X ∈ S, ψ maps f edges from (m,X) to f edges and g edges to

g edges. On the other hand, when X /∈ S, ψ maps f edges from (m,X) to g edges

and g edges to f edges.

Proof. Consider an edge (m,X) → (m + 1, αX + cβn−1). If c = 0, this represents

an f edge and if c = 1, a g edge. The automorphism maps the first node to

N1 = (n−m,ψ(X)) and the second to N2 = (n−m− 1, α−1ψ(X) + cβ0) if X ∈ S.
Clearly there is an f edge from N2 to N1 when c = 0 and a g edge when c = 1.

If X /∈ S, then from the second part of Theorem 8, one can see that the second

node maps to N
′
2 = (n−m−1, α−1ψ(X)+α−1βn−1+ cβ0) = (n−m−1, α−1ψ(X)+

(c + 1)β0). Thus there is a g edge from N
′
2 to N1 when c = 0 and an f edge when

c = 1.

As a consequence of Theorem 8, we have the following result.

51

CHAPTER 3. BUTTERFLY AUTOMORPHISMS

Theorem 10 Automorphism ψ(·) maps edges from exactly half the rows of the but-

terfly to the edges of the same type.

Proof. Theorem 9 shows that edges starting from nodes in the same row (i.e., nodes

(m,X) having the same X) behave similarly; all of them either map to edges of the

same type (when X ∈ S) or map to edges of the other type (when X /∈ S). The

stated result is true because |S| = 2n−1 (Theorem 8, Part 5).

3.4 Application of automorphisms to tolerate edge

faults

Previously automorphisms have only been used to tolerate node faults. However,

Theorems 7 and 9 directly express the effect of an automorphism on the butterfly

edges. Consequently, one can now use these automorphisms to tolerate edge faults

for many mappings on the butterfly.

The general procedure to obtain a fault free mapping on a faulty butterfly is

simple. If some edges used in the mapping are faulty but the edges to which they

can be mapped by some automorphism are free, then applying that automorphism

to the mapping will allow it to use only fault-free edges. Note that much of the

power of this method is due to the fact that we have n2n+1 well-defined and sim-

ple automorphisms that map edges in a deterministic fashion. We illustrate this

procedure by constructing a Hamilton cycle under various edge fault scenarios.

Theorem 11 If the edges in one of the columns of BFn are fault free and the faults

in each of the other columns are limited to only one type of edges, then BFn is

Hamiltonian.

Proof. As shown in [10], it is possible to construct a Hamiltonian cycle in BFn by

first constructing two cycles using only f edges; one linking all nodes (m,X), X ̸= 0,

and another linking all nodes (m, 0). These cycles are merged into a Hamiltonian

cycle by using a pair of g edges in column t: (t − 1, 0) → (t, βn−1) and (t − 1, β0)

52

3.4. APPLICATION OF AUTOMORPHISMS TO TOLERATE EDGE FAULTS

and (t, 0). With 0 ≤ t < n, there are n such independent pairs of g edges that may

be used to merge the cycles. We will use the g edges in the column of BFn that has

no faults. We now show that one can design an automorphism ϕ : Bn → Bn which

will avoid all faults. To construct ϕ, we compute constants ci, 0 ≤ i < n such that

ci =

 1 if there is a fault in f edge in column i

0 otherwise
(3.19)

One can then get K0 by (3.6) as

K0(α
n + 1)β−1

n−1 =
n−1∑
j=0

c(−j) mod nα
j.

The other Ki values can then be inferred from (3.3). Theorem 7 then shows that

the Hamilton cycle will use f edges in columns where f edges are fault free and g

edges where f edges have faults. Thus the transformed Hamiltonian cycle will not

have any faulty edges.

To illustrate Theorem 11, consider a butterfly B4 shown in Fig. 3.1 with faults in

columns 0 and 1 restricted to f edges and in column 2 to g edges. Edges in column

3 are fault free. Clearly in this case, c0 = c1 = 1 and c2 = c3 = 0. This gives from

(3.19), K0 = α13, K1 = α3, K2 = α4 and K3 = α5. By following the procedure of

Theorem 11 we first create the original Hamilton cycle as:

(0, 1) → (1, α) → (2, α2) → (3, α3) → (0, α4) →
(1, α5) → (2, α6) → (3, α7) → (0, α8) → (1, α9) →
(2, α10)→ (3, α11)→ (0, α12)→ (1, α13)→ (2, α14)→
(3, 0) → (0, 0) → (1, 0) → (2, 0) → (3, 1) →
(0, α) → (1, α2) → (2, α3) → (3, α4) → (0, α5) →
(1, α6) → (2, α7) → (3, α8) → (0, α9) → (1, α10)→
(2, α11)→ (3, α12)→ (0, α13)→ (1, α14)→ (2, 1) →
(3, α) → (0, α2) → (1, α3) → (2, α4) → (3, α5) →
(0, α6) → (1, α7) → (2, α8) → (3, α9) → (0, α10)→

53

CHAPTER 3. BUTTERFLY AUTOMORPHISMS

α
14

α2

α2 α2

α
13

α
13

α
14

α3 α4
α5

α7
α7 α78α 8α

α2
α
14

α4 α5
α5

α12
α12

α
13

α3

α10α9

α2

α6

α3α3 α4
α5

α
13

8α 8α

α6 α6

α7 8α α7

α10α9
α12

α4
α4

α9
α9

α5 α
13

α3

α10 α12
α6

α10α10

α11α11

α12 α6
α9

α11α11
α11

α
14

α
14

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

����

����

����

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

����

����

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

����

����

��
��
��
��

��
��
��
��

1

α

1

α

1α

1

α

1

α

1

0
0

0
0 0

3 00 2

Figure 3.1: Butterfly B4 with faulty edges marked with light lines and fault-free
edges with dark lines. The column numbers are at the top and the row index of
each node is marked next to the node.

54

3.4. APPLICATION OF AUTOMORPHISMS TO TOLERATE EDGE FAULTS

(1, α11)→ (2, α12)→ (3, α13)→ (0, α14)→ (1, 1) →
(2, α) → (3, α2) → (0, α3) → (1, α4) → (2, α5) →
(3, α6) → (0, α7) → (1, α8) → (2, α9) → (3, α10)→
(0, α11)→ (1, α12)→ (2, α13)→ (3, α14)→ (0, 1)

By applying the automorphism offsets already calculated, one can then obtain

the required fault-free Hamilton cycle as:

(0, α6) → (1, α9) → (2, α10)→ (3, α11)→ (0, α11)→
(1, α11)→ (2, α12)→ (3, α13)→ (0, α3) → (1, α) →
(2, α2) → (3, α3) → (0, α) → (1, α8) → (2, α9) →
(3, α5) → (0, α13)→ (1, α3) → (2, α4) → (3, α10)→
(0, α12)→ (1, α6) → (2, α7) → (3, α8) → (0, α7) →
(1, α2) → (2, α3) → (3, α4) → (0, α10)→ (1, α12)→
(2, α13)→ (3, α14)→ (0, 0) → (1, 1) → (2, α) →
(3, α2) → (0, α14)→ (1, 0) → (2, 0) → (3, 0) →
(0, 1) → (1, α4) → (2, α5) → (3, α6) → (0, α9) →
(1, α5) → (2, α6) → (3, α7) → (0, α2) → (1, α14)→
(2, 1) → (3, α) → (0, α8) → (1, α7) → (2, α8) →
(3, α9) → (0, α5) → (1, α13)→ (2, α14)→ (3, 1) →
(0, α4) → (1, α10)→ (2, α11)→ (3, α12)→ (0, α6)

Theorem 11 is interesting because it implies that up to 2n−1 edges of the same

type may be faulty in up to n−1 columns and the faulty butterfly is still Hamiltonian.

It is easy to extend this idea to any other mapping also. A direct result of Theorem

11 is the following result.

Corollary 1 A butterfly with n−1 edge faults distributed one per column is Hamil-

tonian.

We now give a new alternate simple proof of a previous known result [43] based

on our work discussed in the previous section.

55

CHAPTER 3. BUTTERFLY AUTOMORPHISMS

Theorem 12 Graph BFn with up to 2 random edge faults is Hamiltonian.

Proof. If there is only one fault or if there are two faults, both in the same type

(f or g) of edges, or if they are in two different columns, then by Theorem 11 one

can generate a Hamiltonian cycle for BFn. Thus we only need to treat cases that

involve two faulty edges of different types (one f and one g) in the same column.

Consider now the case of an f and a g faulty edge in the same column m such

that they do not share a node. Let the faulty f edge be (m − 1, X) → (m,αX),

X ̸= 0. In this case, one can first create a cycle containing all the nodes (i,X),

0 ≤ i ≤ n− 1, X ̸= 0 using only the f edges. Clearly this cycle avoids the faulty g

edge. Further, it can be easily modified to avoid the faulty f edge. To achieve this,

add the g edges (m− 1, X)→ (m,αX + βn−1) and (m− 1, X + β0)→ (m,αX) and

remove the f edges (m− 1, X)→ (m,αX) and (m− 1, X + β0)→ (m,αX + βn−1)

as shown in Fig. 3.2. This removes the faulty f edge from the cycle, but partitions

it into two disjoint cycles.

We now show that there exist g edges (shown as horizontal lines in Fig. 3.2)

connecting the two parts which can be used to rejoin the two halves and create a

single cycle of all the nodes (m,X), X ̸= 0 without any faulty edge. It is easy to see

that the number of nodes in each part is a multiple of n, and in fact, is at least 2n.

Let k be any integer between 0 and n − 1 other than m − 1 or m − 2mod n. This

is always possible because n ≥ 3. Since there are exactly 2n − 1 nodes with first

index k in the two cycles, one of the cycles will have an odd number of such nodes.

Without loss of generality, assume that it is the right cycle. Consider a typical node

(k, Y) in this cycle. If node (k + 1, αy + βn−1) also belongs to the same cycle, then

the g edge from (k, Y) → (k + 1, αy + βn−1) will end up in the same cycle. At the

same time, the node (k, Y + β0) which belongs to the same cycle will have a g edge

going to (k + 1, αY) in the same cycle. Thus the g edges starting from that cycle

and ending up in the same cycle occur in pairs. Since there are odd number of nodes

with first index k, one of these nodes, say (k, Y), will have a g edge to the node

(k+1, αY +βn−1) in the left cycle. Further, the node (k, Y +β0) from the left cycle

has a g edge ending up at (k + 1, αY) in the right cycle. Using this pair of g edges,

56

3.4. APPLICATION OF AUTOMORPHISMS TO TOLERATE EDGE FAULTS

one can create a cycle of all nodes (i,X), X ̸= 0 without using any faulty edge as

shown in Fig. 3.2. Note that because the f and g edge faults are not incident on

the same node, none of the g edges used here are faulty.

β0β
n−1

α(m, X +)

β
n−1

α(k+1, Y +)

β0(k,Y+)

(k, Y)

(k+1, Y)

(m−1, X) (m, α X)

α

(m−1, X +)

Figure 3.2: Fault free cycle of all nodes (i,X), 0 ≤ i ≤ n − 1, X ̸= 0 when an f
edge (m− 1, X)→ (m,αX) is faulty.

To add the rest of the BFn nodes to the Hamiltonian cycle, one can build the

cycle of all the nodes (i, 0), 0 ≤ i ≤ n− 1, using faultless f edges and merge it with

the cycle in Fig. 3.2 using g edges in any column other than m.

If the faulty f edge is (m − 1, 0) → (m, 0), then one can create a cycle of all

nodes (t,X), X ̸= 0 using faultless f edges, and of all nodes (t, 0) using f edges.

The faulty f edge will be in the second cycle. Merging the two cycles gets rid of the

faulty edge.

Finally, consider the case of the faulty f and g edges in the same column and also

sharing a node. We initially construct a Hamiltonian cycle considering that both

f and g edges from the node (0, 0) to be faulty. This cycle can then be translated

using an appropriate automorphism to one that avoids f and g edges from any node.

We first partition the butterfly nodes into three sets of nodes connected by f

edges as follows.

Set 1: (1, 0)
f−→ (2, 0)

f−→ (3, 0)
f−→ · · · (0, 0).

Set 2: (0, β0)
f−→ (1, βn−1)

f−→ (2, αβn−1)
f−→ · · · (n− 1, β0).

Set 3: (0, βn−1)
f−→ (1, αβn−1)

f−→ (2, α2βn−1)
f−→ · · · (n− 1, α−1β0).

57

CHAPTER 3. BUTTERFLY AUTOMORPHISMS

Note that sets 2 and 3 when joined together give the cycle of length n2n − n

containing all the nodes with nonzero second coordinates obtained by continuously

traveling along the f edges. Set 1 contains all the BFn nodes with their second

coordinate 0. We can connect sets 1 and 2 into a cycle because their endpoints are

connected by g edges. In particular, (0, β0)
g−→ (1, 0) and (n − 1, β0)

g−→ (0, 0).

The nodes in Set 3 can be incorporated in this cycle if the two end nodes of Set

3 are connected to some two consecutive nodes in the cycle. Note that the end

nodes of Set 3 have the following connectivity: (0, βn−1)
g−→ (1, αβn−1 + βn−1) and

(n−1, α−1β0)
g−→ (0, β0+βn−1). One can verify that (0, β0+βn−1)

f−→ (1, αβn−1+

βn−1). Thus if node (0, β0+βn−1) is in Set 2, then one can remove the f edge between

this node and the next, and instead connect the nodes of Set 3 into the cycle using

the g edges noted here. The resultant cycle is shown in Fig. 3.3.

β
0

β
n−1

β
0

β
n−1

β
n−1

β
0

β
n−1

(1,)

β
n−1

(0,)

β
n−1

β
n−1

β
0

β
n−1

(0, +)

f f f

f f f

f f f

g g

(1,0) (2,0) (3,0) (0,0)

(0,) (2,)α (n−1,)

(1,)α α 2(2,) α −1(n−1,)

α(1, +)

g g

f

Set 1:

Set 2:

Set 3:

Figure 3.3: The Hamiltonian cycle when the f and g edges from (0, 0) are faulty
and the node (0, β0+βn−1) is in Set 2. Note that all edges are bidirectional and the
dashed f edge is not part of the cycle.

On the other hand, if the node (0, β0 + βn−1) is in Set 3 rather than in Set 2,

then the g edges from the endpoints of Set 3 go to adjacent nodes of Set 3, namely

the nodes (1, αβn−1 + βn−1) and (0, β0 + βn−1). By removing the f edge between

these adjacent nodes and adding the g edges from the endpoints, one can see that

all the nodes of Set 3 form a cycle. To show that this cycle can be merged with the

cycle formed by the nodes in Sets 1 and 2, we show that there is some (m,β0) in

cycle 3 with m ̸= 0 and m+ 1 ̸= 0. Because then, one can drop edge (m,β0)
f−→

58

3.4. APPLICATION OF AUTOMORPHISMS TO TOLERATE EDGE FAULTS

(m + 1, βn−1) in the cycle of Set 3 and instead use connections to merge this cycle

with Set 1 using edges (m,β0)
g−→ (m+ 1, 0) and (m, 0)

g−→ (m+ 1, βn−1). To

see that such a node (m,β0) exist in Set 3, note that the number of nodes in Set 3

is at least 2n − 1. In other words, the second coordinate of the nodes in Set 3 take

all possible nonzero values. Consequently, there will be some (m,β0) present in Set

3. Further, both (0, β0) and (n − 1, β0) are in Set 2, showing m ̸= 0, n − 1. Thus

nodes in Set 3 can also be merged in the cycle formed by nodes in Sets 1 and 2.

This gives the required Hamiltonian cycle.

Theorem 12 can be illustrated by mapping a Hamiltonian cycle in a faulty B4 in

case of the faulty f and g edges in the same column and sharing a node. Assume that

the faulty edges are (1, α6)
f−→ (2, α7) and (1, α6)

g−→ (2, α9). We first construct a

hamiltonian cycle considering that both f and g edges from node (0, 0) to be faulty

as in Fig.3.3. Then we apply an automorphism ϕ(·) : B4 → B4 which maps node

(0, 0) to node (1, α6). For this ϕ, the column offset t = (1 − 0)mod 4 = 1 and the

automorphism offset K0 = 0 + α6 = α6. The cycle obtained is shown in Fig.3.4.

Further, from(3.6),

n−1∑
j=0

c
(1−j)mod n

αj = K0σβ
−1
3 = α3 + α + 1.

Thus one gets c0 = 1, c1 = 1, c2 = 0 and c3 = 1 and consequently, K1 = α9,

K2 = α10 and K3 = α12. The resultant cycle after applying this automorphism to

cycle in Fig.3.4 is shown in Fig.3.4.

Earlier we gave Theorem 11 to deal with faults of the same kind in columns, The

following theorem deals with faults of the same kind in rows (Recall that nodes

with the same second index are deemed to be in the same row).

The next five theorems use the set S of rows. Equation (3.15) defines S. Theorem

9 shows that ψ does not convert the types of edges.

Theorem 13 If the edges in rows 0 and β0 of BFn are fault-free, the faults in other

rows X ∈ S are restricted to g edges and those in rows X /∈ S are restricted to only

one type of edges, then BFn is Hamiltonian.

59

CHAPTER 3. BUTTERFLY AUTOMORPHISMS

(3, α14)→ (2, α13)→ (1, α12)→ (0, α11)→ (3, α10)→
(2, α9) → (1, α8) → (0, α7) → (3, α6) → (2, α5) →
(1, α4) → (0, 1) → (1, α) → (2, α2) → (3, α3) →
(0, α4) → (1, α5) → (2, α6) → (3, α7) → (0, α8) →
(1, α9) → (2, α10)→ (3, α11)→ (0, α12)→ (1, α13)→
(2, α14)→ (3, 1) → (0, α) → (1, α2) → (2, α3) →
(3, α4) → (0, α5) → (1, α6) → (2, α7) → (3, α8) →
(0, α9) → (1, α10)→ (2, α11)→ (3, α12)→ (0, α13)→
(1, α14)→ (2, 1) → (3, α) → (0, α2) → (1, α3) →
(2, α4) → (3, α5) → (0, α6) → (1, α7) → (2, α8) →
(3, α9) → (0, α10)→ (1, α11)→ (2, α12)→ (3, α13)→
(0, α3) → (3, α2) → (2, α) → (1, 1) → (0, α14)→
(1, 0) → (2, 0) → (3, 0) → (0, 0) → (3, α14)

Figure 3.4: Hamiltonian cycle in B4 avoiding faulty f and g edges from (0, 0).

(0, α5) → (3, α9) → (2, α8) → (1, α) → (0, α3) →
(3, α13)→ (2, α12)→ (1, α10)→ (0, α14)→ (3, 1) →
(2, α14)→ (1, α13)→ (2, α3) → (3, α4) → (0, α10)→
(1, α12)→ (2, α6) → (3, α7) → (0, α2) → (1, α14)→
(2, 0) → (3, 0) → (0, 1) → (1, α4) → (2, α10)→
(3, α11)→ (0, α11)→ (1, α11)→ (2, α11)→ (3, α12)→
(0, α6) → (1, α9) → (2, α5) → (3, α6) → (0, α9) →
(1, α5) → (2, α13)→ (3, α14)→ (0, 0) → (1, 1) →
(2, α4) → (3, α5) → (0, α13)→ (1, α3) → (2, α) →
(3, α2) → (0, α14)→ (1, 0) → (2, 1) → (3, α) →
(0, α8) → (1, α7) → (2, α2) → (3, α3) → (0, α) →
(1, α2) → (0, α7) → (3, α8) → (2, α7) → (1, α8) →
(2, α9) → (3, α10)→ (0, α12)→ (1, α6) → (0, α5)

Figure 3.5: Hamiltonian cycle in B4 avoiding faulty f and g edges from (1, α6).

60

3.4. APPLICATION OF AUTOMORPHISMS TO TOLERATE EDGE FAULTS

Proof. We prove the theorem by constructing a Hamiltonian cycle in BFn using only

fault-free edges.

We begin with a cycle containing all nodes (m,X) ∈ Bn, X ̸= 0 linked by f

edges and another containing all nodes (m, 0) ∈ Bn, again using only f edges. (This

is a procedure similar to that in Section 2.5.) We then merge these two cycles into

a Hamiltonian cycle using g edges in rows 0 and β0: (t, 0) → (t + 1, βn−1) and

(t, β0)→ (t+ 1, 0) for some t. If the faults in rows other than 0 and β0 are only in

g edges, then we already have the fault-free Hamiltonian cycle. If the faults in rows

X /∈ S are in f edges, then applying the automorphism ψ to BFn would map them

to fault-free g edges as stated in Theorem 9. Note that ψ maps the f edges in rows

X ∈ S to fault-free f edges, thus giving the required Hamiltonian cycle.

Application of this theorem is illustrated in Fig.3.6 which assumes that the but-

terfly B4 has a large number of faults in the category specified by Theorem 13. Note

that in B4, S = {0, α, α6, α7, α8, α10, α11, α14}.
The fault-free Hamiltonian cycle is then obtained as:

(0, α14)→ (1, 1) → (2, α4) → (3, α10)→ (0, α11)→
(1, α12)→ (2, α6) → (3, α7) → (0, α8) → (1, α9) →
(2, α5) → (3, α13)→ (0, α3) → (1, α) → (2, α2) →
(3, α14)→ (0, 0) → (1, 0) → (2, 0) → (3, 0) →
(0, 1) → (1, α4) → (2, α10)→ (3, α11)→ (0, α12)→
(1, α6) → (2, α7) → (3, α8) → (0, α9) → (1, α5) →
(2, α13)→ (3, α3) → (0, α) → (1, α2) → (2, α14)→
(3, 1) → (0, α4) → (1, α10)→ (2, α11)→ (3, α12)→
(0, α6) → (1, α7) → (2, α8) → (3, α9) → (0, α5) →
(1, α13)→ (2, α3) → (3, α) → (0, α2) → (1, α14)→
(2, 1) → (3, α4) → (0, α10)→ (1, α11)→ (2, α12)→
(3, α6) → (0, α7) → (1, α8) → (2, α9) → (3, α5) →
(0, α13)→ (1, α3) → (2, α) → (3, α2) → (0, α14)

61

CHAPTER 3. BUTTERFLY AUTOMORPHISMS

α
14

α2

α2 α2

α
13

α
13

α
14

α3 α4
α5

α7
α7 α78α 8α

α2
α
14

α4 α5
α5

α12
α12

α
13

α3

α10α9

α2

α6

α3α3 α4
α5

α
13

8α 8α

α6 α6

α7 8α α7

α10α9
α12

α4
α4

α9
α9

α5 α
13

α3

α10 α12
α6

α10α10

α11α11

α12 α6
α9

α11α11
α11

α
14

α
14

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

����

����

����

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

����

����

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

����

����

��
��
��
��

��
��
��
��

1

α

1

α

1α

1

α

1

α

1

0
0

0
0 0

3 00 2

Figure 3.6: Butterfly B4 with faulty edges marked with light lines and fault-free
edges with dark lines. The column numbers are at the top and the row index of
each node is marked next to the node.

62

3.4. APPLICATION OF AUTOMORPHISMS TO TOLERATE EDGE FAULTS

If the edge faults are located differently, then one can use the automorphism ψ(·)
with a different Hamiltonian cycle to obtain a fault-free mapping as the following

theorem shows.

Theorem 14 If the edges in rows σ = (1 + α)−1βn−1 and σ + β0 of BFn are fault-

free, the faults in other rows X ∈ S are restricted to f edges and those in rows

X /∈ S, restricted to only one type of edges, then BFn is Hamiltonian.

Proof. We use the original Hamiltonian cycle of Theorem 13. By applying a ϕ(·)
which flips edges in every column (Theorem 7), we get a Hamiltonian cycle which

uses only g edges in all rows other than rows σ and σ + β0. The rest of the proof

runs parallel to the proof of Theorem 13.

To illustrate Theorem 14, consider a butterfly B4 shown in Fig. 3.7 where

rows σ = α11 and σ + β0 = α10 of B4 are fault-free, the faults in other rows

X ∈ S = {0, α, α6, α7, α8, α10, α11, α14}. are restricted to f edges and those in rows

X /∈ S, restricted to g edges.

We start by constructing the hamiltonian cycle of Theorem 13. By applying ϕ(·)
which flips edges in every column, we get a Hamiltonian cycle which uses only g

edges in all rows other than rows α11 and α10. Then applying ψ(·) should get rid of

all faults. The Hamiltonian cycle obtained from this is shown below. The fault-free

Hamiltonian cycle is then obtained as:

(0, α7) → (1, α2) → (2, α3) → (3, α4) → (0, α5) →
(1, α6) → (2, α9) → (3, α10)→ (0, α11)→ (1, α11)→
(2, α11)→ (3, α11)→ (0, α12)→ (1, α13)→ (2, α14)→
(3, 0) → (0, 1) → (1, α) → (2, α8) → (3, α7) →
(0, α2) → (1, α3) → (2, α4) → (3, α5) → (0, α6) →
(1, α9) → (2, α10)→ (3, α12)→ (0, α13)→ (1, α14)→
(2, 0) → (3, 1) → (0, α) → (1, α8) → (2, α7) →
(3, α2) → (0, α3) → (1, α4) → (2, α5) → (3, α6) →

63

CHAPTER 3. BUTTERFLY AUTOMORPHISMS

α
14

α2

α2 α2

α
13

α
13

α
14

α3 α4
α5

α7
α7 α78α 8α

α2
α
14

α4 α5
α5

α12
α12

α
13

α10α9

α2

α6

α3α3 α4
α5

α
13

8α 8α

α6 α6

α7 8α α7

α10α9
α12

α4
α4

α9
α9

α5 α
13

α3

α10 α12
α6

α10α10

α11α11

α12
α9

α11α11
α11

α
14

α
14

α3

α6

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

����

����

����

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

����

����

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

1

α

1

α

1α

1

α

1

α

1

0
0

0
0 0

3 00 2

Figure 3.7: Butterfly B4 with faulty edges marked with light lines and fault-free
edges with dark lines. The column numbers are at the top and the row index of
each node is marked next to the node.

64

3.4. APPLICATION OF AUTOMORPHISMS TO TOLERATE EDGE FAULTS

(0, α9) → (1, α10)→ (2, α12)→ (3, α13)→ (0, α14)→
(1, 0) → (2, 1) → (3, α) → (0, α8) → (1, α7) →
(2, α2) → (3, α3) → (0, α4) → (1, α5) → (2, α6) →
(3, α9) → (0, α10)→ (1, α12)→ (2, α13)→ (3, α14)→
(0, 0) → (1, 1) → (2, α) → (3, α8) → (0, α7)

Theorems 13 and 14 require that two rows of BFn be fault-free. As shown in the

next two theorems, this condition may be dropped if n is odd.

Theorem 15 Let n be odd. If the faults in rows 0 and β0 of BFn are restricted to

the f edges, those in the other rows X ∈ S to the g edges, and in rows X /∈ S to

faults of only one type, then BFn is Hamiltonian.

Proof. We first construct a Hamiltonian cycle as follows. Start from any node of

the butterfly and choose the next node from a current node (m,X) ∈ Bn using:

next node =


(m+ 1, 0) if X = β0,

(m+ 1, βn−1) if X = 0 and

(m+ 1, αX) otherwise.

(3.20)

It is easy to prove that the cycle from (3.20) is a Hamilton cycle. Further, nodes

in rows 0 and β0 in this cycle use only fault-free g edges. The rest of nodes use f

edges. If they are fault free, we already have the fault-free Hamiltonian cycle. If

faults in rows X /∈ S are restricted to edges of type f , then applying automorphism

ψ(·) to this cycle will give the fault-free Hamiltonian cycle.

Theorem 15 can be illustrated by mapping a Hamiltonian cycle in a faulty B3

shown in Fig. 3.8. Note that in B3, S = {0, 1, α4, α5}.
The Hamiltonian cycle obtained from Theorem 15 is shown below.

(0, α2) → (1, 1) → (2, 0) → (0, α) → (1, α4) →
(2, α5) → (0, α6) → (1, α3) → (2, α2) → (0, 1) →
(1, 0) → (2, α) → (0, α4) → (1, α5) → (2, α6) →

65

CHAPTER 3. BUTTERFLY AUTOMORPHISMS

α6α4

α2

α4

α5

α3

α3α3

α2

α6α4

α5

α6

α3

α4

α5

α6

α2

α5

α2
��
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

1

0

1

α

0 0 0

1

α

α

20

1 α

01

Figure 3.8: Butterfly B3 with faulty edges marked with light lines and fault-free
edges with dark lines. The column numbers are at the top and the row index of
each node is marked next to the node.

(0, α3) → (1, α2) → (2, 1) → (0, 0) → (1, α) →
(2, α4) → (0, α5) → (1, α6) → (2, α3) → (0, α2)

A similar result can also be derived by applying ϕ(·) which flips all the edges of

the cycle (3.20) to get the starting Hamiltonian cycle used in Theorem 15. We state

the result below without proof.

Theorem 16 Let n be odd. If the faults in rows σ and σ+ β0 of BFn are restricted

to the g edges, those in the other rows X ∈ S to the f edges, and in rows X /∈ S to

faults of only one type, then BFn is Hamiltonian.

Note that the symmetry of BFn will allow further generalization of Theorems 13

- 16.

We end this section by showing that one can also employ automorphisms ϕ(·)
and ψ(·) together to get even more powerful results.

Theorem 17 If the edges in one of the columns of BFn are fault free, and the faults

in each of the other columns are such that edges from X ∈ S have one type of fault

and those from X /∈ S have another type of fault. Then BFn is Hamiltonian.

66

3.4. APPLICATION OF AUTOMORPHISMS TO TOLERATE EDGE FAULTS

Proof. If the faulty edges from (m,X), are of type g when X ∈ S and of type f if

X /∈ S, then applying ψ will map all of these faulty edges to type g in column n−m.

On the other hand if the faulty edges from (m,X), are of type f when X ∈ S and

of type g if X /∈ S, then applying ψ will map all of these faulty edges to type f in

column n −m. Thus, after applying ψ, all the faulty edges in any column will be

limited to only one type and there will be no faulty edges in one column. Theorem

11 can then be used to build the required Hamiltonian cycle using fault free edges.

Application of this theorem is illustrated in the next example which assumes that

faults are limited to g edges from X ∈ S and to f edges from X /∈ S in columns

1, 3 in B4; and for column 0 faults are limited to f edges from X ∈ S and to g

edges from X /∈ S, where S = {0, α, α6, α7, α8, α10, α11, α14}. We need to choose an

automorphism with c0 = 0, c1 = 1, c2 = 0, c3 = 0. Automorphism offset K0 can then

be obtained from

K0(α
4 + 1)β−1

3 =
n−1∑
j=0

c(−j) mod nα
j. (3.21)

Solving (3.21) gives K0 = α2, which in turn yields K1 = α14, K2 = 1 and K3 = α

from (3.3). Using an automorphism based on these offsets provides a re-mapping of

the cycle on the faulty butterfly as:

(0, α8) → (1, α7) → (2, α8) → (3, α9) → (0, α10)→
(1, α12)→ (2, α13)→ (3, α14)→ (0, 1) → (1, α4) →
(2, α5) → (3, α6) → (0, α7) → (1, α2) → (2, α3) →
(3, α) → (0, α2) → (1, α14)→ (2, 1) → (3, α4) →
(0, α5) → (1, α13)→ (2, α14)→ (3, 1) → (0, α) →
(1, α8) → (2, α9) → (3, α10)→ (0, α11)→ (1, α11)→
(2, α12)→ (3, α13)→ (0, α14)→ (1, 0) → (2, 0) →
(3, 0) → (0, 0) → (1, 1) → (2, α) → (3, α2) →
(0, α3) → (1, α) → (2, α2) → (3, α3) → (0, α4) →
(1, α10)→ (2, α11)→ (3, α12)→ (0, α13)→ (1, α3) →

67

CHAPTER 3. BUTTERFLY AUTOMORPHISMS

(2, α4) → (3, α5) → (0, α6) → (1, α9) → (2, α10)→
(3, α11)→(0, α12) → (1, α6) → (2, α7) → (3, α8) →
(0, α9) → (1, α5) → (2, α6) → (3, α7) → (0, α8)

Applying ψ, one gets the cycle:

(0, α7) → (1, α8) → (2, α9) → (3, α5) → (0, α6) →
(1, α7) → (2, α8) → (3, α9) → (0, α10)→ (1, α11)→
(2, α12)→ (3, α6) → (0, α9) → (1, α5) → (2, α13)→
(3, α3) → (0, α4) → (1, α10)→ (2, α11)→ (3, α12)→
(0, α13)→ (1, α3) → (2, α) → (3, α2) → (0, α3) →
(1, α) → (2, α2) → (3, α14)→ (0, 0) → (1, 0) →
(2, 0) → (3, 0) → (0, 1) → (1, α4) → (2, α10)→
(3, α11)→ (0, α11)→ (1, α12)→ (2, α6) → (3, α7) →
(0, α2) → (1, α14)→ (2, 1) → (3, α4) → (0, α5) →
(1, α13)→ (2, α14)→ (3, 1) → (0, α) → (1, α2) →
(2, α3) → (3, α) → (0, α8) → (1, α9) → (2, α5) →
(3, α13)→ (0, α14)→ (1, 1) → (2, α4) → (3, α10)→
(0, α12)→ (1, α) → (2, α7) → (3, α8) → (0, α7)

One can check that this Hamiltonian cycle does not contain any of the faulty

edges.

3.5 Conclusion

This Chapter has focused on exploring structural properties and fault tolerant map-

pings on BFn using an algebraic model based on finite fields. This Chapter has also

provided all the n2n+1 automorphisms of a wrapped butterfly network of degree n

68

3.5. CONCLUSION

using the direct product of a cyclic group and a finite field. In the past, automor-

phisms have been used to map algorithms on architecture with generally one faulty

node. This Chapter investigated for the first time the translation of butterfly edges

by automorphisms. A new strategy for algorithm mappings on an architecture with

faulty edges has been proposed. We have illustrated our technique by mapping

Hamilton cycle on the butterfly under various edge fault scenarios.

69

CHAPTER 3. BUTTERFLY AUTOMORPHISMS

70

Chapter 4

Shuffle Exchange Networks

4.1 Introduction

Interconnection networks which are used to move data between multiple cores within

a chip or between computers in a parallel machine often constrain the performance of

the machine. The Shuffle Exchange (SE) is an interconnection network that is non-

symmetric but still considered one of the most fundamental interconnection networks

for parallel computation due to their small, fixed node degree and small (logarithmic)

diameter [3,44,45]. Previous work on SE includes VLSI implementation and design

of optimal layout [46]. The Shuffle Exchange network is proven to be a coset graph

of the CCC. It was shown in [47] that the Shuffle Exchange network contains a

Hamiltonian cycle. Feldmann and Unger [38] have proved that the Shuffle Exchange

network is a subgraph of deBruijn network. The problem of designing fault-tolerant

networks for Shuffle Exchange was addressed by [48,49].

One drawback to this class of networks lies in its unwieldy model. Unfortunately

the connectivity of Shuffle Exchange using the binary model is much too complex to

obtain many of the useful properties of the network. This Chapter is organized as

follows. Section 4.2 develops an algebraic model for the Shuffle Exchange network

based on a finite field. With this model, one can avail of the powerful algebraic

71

CHAPTER 4. SHUFFLE EXCHANGE NETWORKS

��
��
��

��
��
��

��
��
��
��

�
�
�
�

��
��
��

��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���
���
���
���

���
���
���
���
���
���
���

����
����
����
����
����
����
����

����
����
����
����
����
����
���������������� ������������ ������������

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����
����

����
����
����
����
����
����
����

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

������������

��������������������������������������

��������������������������������������

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

1101

1111

1000

01010100 1010 1011 1110

11001001

0011 0110

0010 0111

0001
0000

Figure 4.1: An 16-node Shuffle Exchange network (SE4) in Binary notation

techniques to investigate the structural properties of this network. Section 4.3 ex-

ploits these techniques to find paths in the Shuffle Exchange network. Section 4.4

explores the relationships between the Shuffle Exchange and deBruijn networks.

4.2 An Algebraic model of the

Shuffle Exchange Network

Even though non-symmetric, Shuffle Exchange is a popular interconnection net-

work [45]. A Shuffle Exchange graph of degree n, SEn has 2n nodes, each with

a maximum node degree of 3. Traditionally, one uses a set Zn
2 of n-bit binary

strings to label the nodes of SEn. A node ⟨vn−1, vn−2, . . . , v0⟩ is connected to nodes

⟨vn−2, vn−3, . . . , v0, vn−1⟩, ⟨v0, vn−1, vn−2, . . . , v1⟩ (shuffle edges) and ⟨vn−1, vn−2, . . . , v0⟩
(exchange edge). SE4 graph labeled in binary is shown in Fig. 4.1.

In this section we show that the nodes of SEn may be labeled with elements

of the finite field GF (2n) such that the node connectivity is expressed through an

algebraic relationship between these labels.

72

4.2. AN ALGEBRAIC MODEL OF THE SHUFFLE EXCHANGE NETWORK

Theorem 18 The nodes of the Shuffle Exchange graph SEn can be labeled by the

elements of the finite field GF (2n) such that a graph node X is connected to the

nodes (αX + βn−1Tr(σX)), (α−1X + β0Tr(σα
−1X)) and (X + β0).

Proof. Consider a mapping ζ(·) : Zn
2 → GF (2n) defined as

ζ(⟨vn−1, vn−2, . . . , v0⟩) =
n−1∑
i=0

viβi (4.1)

We now show that the correspondence expressed by (4.1) relabels the graph nodes

in such a manner that the graph connectivity is expressed as in the theorem.

Let X denote the algebraic label of the node V = ⟨vn−1, vn−2, . . . , v0⟩, i.e.,

X = ζ(V) =
n−1∑
i=0

viβi (4.2)

The neighbors of V are V1 = ⟨vn−2, vn−3, . . . , v0, vn−1⟩, V2 = ⟨v0, vn−1, vn−2, . . . , v1⟩
and V3 = ⟨vn−1, vn−2, . . . , v0⟩.

The relabeling of node V1 gives

ζ(V1) =
n−1∑
i=0

viβi+1 (4.3)

where the index of β is considered modulo n. Using Lemma 1, one can write (4.3)

as

ζ(V1) =
n−2∑
i=0

viα
−1(βi + pi+1βn−1) + un−1α

−1βn−1

= α−1X + β0
n−2∑
i=0

pi+1vi. (4.4)

However, from Lemma 2,

Tr(α−1σX) =
n−1∑
i=0

viTr(α
−1σβi) =

n−2∑
i=0

vipi+1. (4.5)

Comparing (4.4) and (4.5) we get

ζ(V1) = α−1X + β0Tr(α
−1σX).

73

CHAPTER 4. SHUFFLE EXCHANGE NETWORKS

Similarly, the relabeling of node V2 gives

ζ(V2) =
n−1∑
i=0

viβi−1 (4.6)

where the index of βi−1 is considered modulo n. Using Lemma 1, (4.6) may be

rewritten as

ζ(V2) =
n−1∑
i=1

vi(αβi + piβn−1) + v0αβ0

= αX + βn−1

n−1∑
i=1

pivi. (4.7)

But from Lemma 2,

Tr(σX) =
n−1∑
i=0

viTr(σβi) =
n−1∑
i=1

vipi. (4.8)

From (4.7) and (4.8) one gets

ζ(V2) = αX + βn−1Tr(σX).

Finally, recognizing that the value of v0 can be expressed in GF (2n) as v0 + 1,

the relabeling of V3 gives

ζ(V3) = (v0 + 1)β0 +
n−1∑
i=1

viβi

= β0 +
n−1∑
i=0

viβi = X + β0.

Thus all the three edges of SEn in binary notation may be expressed in terms of

their algebraic relationship.

The translation of binary labels of graph SE4 to their algebraic values using (4.1)

is illustrated in Table 4.1. The SE3 and SE4 relabeled in the algebraic notation is

shown in Fig. 4.2 and Fig. 4.3.

The connectivity of SE4 using the new algebraic model is shown in Fig. 4.4. As

indicated in this figure, we will refer to the three edges as f , f−1 and g in this path.

74

4.2. AN ALGEBRAIC MODEL OF THE SHUFFLE EXCHANGE NETWORK

Table 4.1: Equivalence between the binary and the algebraic labels of SE4.

Binary Algebraic
(0000) 0
(0001) α14

(0010) α2

(0011) α13

(0100) α
(0101) α7

(0110) α5

(0111) α12

Binary Algebraic
(1000) 1
(1001) α3

(1010) α8

(1011) α6

(1100) α4

(1101) α9

(1110) α10

(1111) α11

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��

��
��
��

���
���
���
���
���
���

���
���
���
���
���
������������������
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

����������

6α

0 1

α α

αα

α

4 5

2

3

Figure 4.2: An 8-node Shuffle Exchange network (SE3) in Algebraic notation

75

CHAPTER 4. SHUFFLE EXCHANGE NETWORKS

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����
����

����
����
����
����
����
����
����

������������ ������������ ������������

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����
����

����
����
����
����
����
����
����

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

������������

��������������������������������������

��������������������������������������

α α

α

α

α

αα

α

α α α αα α

2

4

5

7 8

9

11

1

0

3

13

14

12

6 10

Figure 4.3: An 16-node Shuffle Exchange network (SE4) in Algebraic notation

(αX + βn−1Tr(σX))

(X + β0)X

f

f−1

(α−1X + β0Tr(σα−1X))

g

Figure 4.4: The connectivity of the Shuffle Exchange graph SEn.

76

4.3. PATH ALGORITHM FOR SHUFFLE EXCHANGE NETWORK

Not only is the connectivity expression in this model is simple, but because of the

linearity of the trace function, one can make the following interesting observation.

If X1
f−→ Y1 and X2

f−→ Y2, then,

X1 +X2
f−→ Y1 + Y2.

Similarly, If X1
f−1

−→ Y1 and X2
f−1

−→ Y2, then,

X1 +X2
f−1

−→ Y1 + Y2.

We will call this observation as the linearity in source property of the f and f−1

edges and use it later when we embed SEn in the deBruijn graph.

We now show the use of algebraic machinery to chart a path from node X to

node Y in the shuffle exchange graph. We will only use edges f and g.

4.3 Path algorithm for Shuffle Exchange Network

This section deals with designing a path to travel between any two nodes of the

Shuffle Exchange network.

Algorithm 1 (Path to go from X to Y in SEn)

Compute ci = Tr((X + Y)αi), 0 ≤ i < n.

Compute destination nodes Di as follows. Let D0 = X.

for i = 0 to n− 1 do

From Di go to node D′
i = Di + ciβ0.

From D′
i go to node Di+1 = αD′

i + βn−1Tr(σD
′
i)

Then Dn = Y .

Note the simplicity of Algorithm 1 which is a direct consequence of the algebraic

model specified in Theorem 18. The path given here is not necessarily optimal since

we constrain ourselves to only two of the edges. However, it shows that the diameter

of SEn cannot be more than 2n. Further, when ci = 0, the first step in iteration i is

not really a move from a node to the next node on the path. Thus the length of the

path in the algorithm is n+ number of nonzero cis. The proof of the correctness of

the algorithm is provided below.

77

CHAPTER 4. SHUFFLE EXCHANGE NETWORKS

Proof. We first show (by mathematical induction) that

Di = αiX +
i−1∑
j=0

tjβn−i+j, (4.9)

where tj = cj + Tr(αjσX).

When i = 1, One can demonstrate that (4.9) is true by direct calculation. Now

assume that (4.9) is true for some i. Its truth for i+1 can be established as follows.

From Algorithm 1,

D′
i = αiX +

i−1∑
j=0

tjβn−i+j + ciβ0,

and consequently,

Di+1 = αi+1X +
i−1∑
j=0

tjαβn−i+j + ciβn−1 + βn−1Tr(α
iσX) +

i−1∑
j=0

tjTr(σβn−i−j)

= αi+1X + tiβn−1 +
i−1∑
j=0

tj[αβn−i+j + βn−1pn−i+j]

= αi+1X + tiβn−1 +
i−1∑
j=0

tjβn−i+j

= αi+1X +
i∑

j=0

tjβn−i−1+j. (4.10)

Step 2 of (4.10) uses Lemma 2 and step 3 uses Lemma 1. Equation (4.10) shows

that if (4.9) is true for i then it is also true for i + 1. Therefore by mathematical

induction, it is true for all 0 ≤ i < n.

Clearly the final destination Dn is dependent upon the values of cis. We now

show that to achieve Dn = Y , cis should have the values specified in the algorithm.

Using (4.10), one gets

Tr((X + Y)αi) = Tr((X + αnX +
n−1∑
j=0

tjβj)α
i. (4.11)

78

4.4. RELATION WITH DEBRUIJN NETWORK

Using linearity of the trace function and the fact that Tr(βjα
i) = 1 only if j = i

and is 0 otherwise, one can simplify (4.11) as

Tr((X + Y)αi) = Tr(αiσX) +
n−1∑
j=0

tjTr(βjα
i)

= Tr(αiσX) + ti

= ci. (4.12)

This proves that the cis used in the algorithm do indeed lead the path to the desired

final destination Dn = Y .

As an illustration, consider the path from node X = 0 to node Y = α6 in SE4.

One can compute c0 = 1, c1 = 1, c2 = 0 and c3 = 1, The path is then given by

0→ α14 → 1→ α3 → α4 → α5 → α12 → α6.

4.4 Relation with deBruijn network

We now show that the Shuffle Exchange network SEn is related to the deBruijn

network DBn.

A deBruijn network of degree n, DBn, is a graph with 2n nodes, each labeled

with an n bit binary string. A node with label (an−1, an−2, . . . , a0) is connected to

four nodes (0, an−1, an−2, . . . , a1), (1, an−1, an−2, . . . , a1), (an−2, an−3, . . . , a0, 0) and

(an−2, an−3, . . . , a0, 1). DBn is attractive because it has a small constant node degree

and a small diameter, n. However, it is not symmetric and is not seen prominently

in commercial world because of its lack of algorithm mappings.

An algebraic model for DBn is available in literature [15]. In this model, the

nodes of DBn are labeled using the elements of the finite field GF (2n). A node with

label X ∈ GF (2n) is connected to nodes αX, αX + βn−1, α
−1X and α−1X + β0.

These connections are indicated in Fig. 4.5.

Following theorem shows that SEn can be embedded in DBn.

Theorem 19 SEn is a subgraph of DBn.

79

CHAPTER 4. SHUFFLE EXCHANGE NETWORKS

(αX)

)

f

f−1

(α−1X)

g

g−1

(α−1X + β0)

(αX + βn−1)

X

Figure 4.5: The connectivity of the deBruijn graph (DBn)

Proof. Use the mapping λ(·) : SEn → DBn defined as

λ(X) = αf(X)X + f(X)βn−1Tr(σX), X ∈ GF (2n),

where,

f(X) = Tr(σ(1 + α)−1X).

We first show that λ(·) is a one-to-one mapping between the nodes of SEn and

DBn by contradiction. Assume λ(X) = λ(Y) for some X,Y ∈ GF (2n). If f(X) =

f(Y) = 0, then X = Y . If f(X) = f(Y) = 1, then it leads to α(X + Y) +

βn−1Tr(σ(X + Y)) = 0. However, we know from the CCCn connectivity (see Fig.

5.3) that α(X + Y) + βn−1Tr(σ(X + Y)) is the destination of (X + Y) along the f

edge. Since this destination is 0, the source X+Y = 0 as well. Thus, again we have

X = Y . Finally, if f(X) and f(Y) are different, say if f(X) = 1 and f(Y) = 0,

then λ(X) = λ(Y) gives αX + βn−1Tr(σX) = Y . One then gets f(Y) = f(X),

which is a contradiction. Thus any time λ(X) = λ(Y), X = Y , i.e., function λ(·) is
one-to-one.

We now prove that the edges of SEn are preserved by λ(·). Because of the linear-
ity in source property of the f edges of SEn, one only needs to show the preservation

of f and f−1 edges starting from βi, 0 ≤ i < n. Consider the edge βi
f−→ βi−1. One

can show that f(βi) = f(βi−1) = 1. Thus λ(βi) = βi + βn−1Tr(σβi). From Lemmas

1 and 2, one can then see that λ(βi) = βi−1. Similarly λ(βi−1) = βi−2. Thus the

80

4.5. CONCLUSION

edge βi
f−→ βi−1 of SEn translates to the edge βi−1 −→ βi−2 of DBn (see Fig. 4.5)

(it is an f edge in DBn if pi−1 = 0 and a g edge otherwise).

Finally, to see the preservation of the g edge of SEn, consider edge X
g−→ X+β0.

One has, f(X + β0) = f(X) + 1. Thus if f(X) = 0, then f(X + β0) = 1. Thus

the edge is transformed by λ(·) to X → α(X + β0) + βn−1Tr(σ(X + β0)) = αX +

βn−1 + βn−1Tr(σX). This is clearly either edge f or g of DBn. On the other

hand, if f(X) = 1, then f(X + β0) = 0. Thus the SEn edge is transformed to

αX + βn−1Tr(σX)→ X + β0. This is either edge f
−1 or g−1 of DBn.

4.5 Conclusion

This Chapter has developed a new algebraic model for the Shuffle Exchange network

that is used in parallel architecture. This model allows the use of powerful algebraic

techniques to study the structural properties of the network. Our strategy exploits

these techniques to find paths in the Shuffle Exchange network and to explore the

relationship between Shuffle Exchange and deBruijn networks.

81

CHAPTER 4. SHUFFLE EXCHANGE NETWORKS

82

Chapter 5

Cube Connected Cycles

5.1 Introduction

Interconnection networks often constrain the performance of multi-cores chips or

parallel computers. Cube Connected Cycles (CCC) is an attractive interconnection

network because of its symmetry, small constant node degree and small diameter.

Previous work on CCC includes VLSI implementation and optimal layout [50,51],

load balancing, routing and one-to-one, one-to-many broadcast strategies [52, 53],

mappings of cycles in fault-free and faulty topologies [54] and determination of the

forwarding index of the network [55].

One of the drawbacks of the CCC network is its unwieldy model which compli-

cates mappings of algorithms on these architectures. As a result, even though this

network is scalable and has attractive topological properties, its utility in applica-

tions is somewhat constrained. With this in mind, a new addressing scheme for CCC

using Cayley graphs over permutation groups has been proposed [56]. Unfortunately

even that new model does not provide sufficient insight into the graph connectivity.

This Chapter provides a new algebraic model of the Cube Connected Cycles using

cyclic groups and finite fields. Our model allows one to harness powerful algebraic

techniques to explore the topological properties and mappings on the Cube Con-

nected Cycles graph. It also illuminates the relationships between graphs as diverse

83

CHAPTER 5. CUBE CONNECTED CYCLES

as Shuffle Exchange, deBruijn (both non-symmetric), Wrapped Butterflies and the

Cube Connected Cycles.

With this new model, one can avail of powerful algebraic techniques to investigate

the structure and mappings of these networks. Similar algebraic models developed

previously for the deBruijn network [15] and the Wrapped Butterflies [10] have

allowed efficient mappings of cycles and trees on the Butterflies and provided insights

into intricate structural properties such as the automorphisms [23, 24]. The new

model proposed here helps solve similar problems in Cube Connected Cycles.

This Chapter is organized as follows. The new algebraic model of the Cube

Connected Cycles is defined and proved in Section 5.2. Section 5.3 provides optimal

path algorithms for the Cube Connected Cycles. Section 5.4 obtains all the auto-

morphisms of the Cube Connected Cycles using an algebraic model. We explore the

edge transformation in Cube Connected Cycles networks due to automorphisms in

Section 5.5. Section 5.6 proves that the Cube Connected Cycles is a subgraph of

the Butterfly network of the same size.

5.2 An Algebraic model of the

Cube Connected Cycles

The cube connected cycles network of dimension n (CCCn) has n2
n nodes, each of

which is labeled by a pair (m,V) where m ∈ Zn, a group of integers {0, 1, · · · , n−1}
and V ∈ Zn

2 , a set of n bit binary strings. A node (m,V) is connected to nodes

(m + 1, V), (m− 1, V) and (m,V ⊕ 2m) as shown in Fig. 5.1, where V ⊕ 2m is the

string V with mth bit complemented. The diameter of CCC is 6 when n = 3 and

2n+ ⌊n/2⌋−2 when n > 3 [6]. This low diameter and the low constant node degree

implies that CCC may be very useful for parallel architectures. CCC4 graph labeled

in binary is shown in Fig. 5.2.

In this section we provide a new model for the CCCn defined over the structure

Cn × GF (2n). In particular, following theorem shows that if the nodes of CCCn

are labeled by the elements of the structure Cn × GF (2n), then the edges can be

84

5.2. ALGEBRAIC MODEL OF CCC

(m + 1, V)

)

(m − 1, V)

(m, V ⊕ 2m)(m, v)

Figure 5.1: The connectivity of the Cube Connected Cycles graph CCCn.

expressed by a simple algebraic relationship between the labels.

Theorem 20 The nodes of the cube connected cycles graph CCCn can be labeled by

the elements of Cn × GF (2n) in such a fashion that the graph connectivity can be

expressed as follows. A node (m,X) is connected to the three nodes (m + 1, αX +

βn−1Tr(σX)), (m− 1, α−1X + β0Tr(σα
−1X)) and (m,X + β0).

Proof. Let V = ⟨vn−1, vn−2, . . . , v0⟩. Consider the mapping ζ : Zn × Zn
2 →

Cn ×GF (2n) defined by

ζ((m,V)) = (m,X), where X =
n−1∑
i=0

vm+iβi. (5.1)

We now show that the correspondence expressed by (5.1) relabels the graph

nodes allowing the graph connectivity as stated in the theorem.

The three neighbors of (m,V) are (m + 1, V), (m − 1, V) and (m,V1), where

V1 = ⟨vn−1, vn−2, . . . , vm+1, vm, vm−1, . . . , v0⟩.
The image of the first neighbor of (m,V) is

ζ(m+ 1, V) = (m+ 1,
n−1∑
i=0

vm+1+iβi)

= (m+ 1,
n−1∑
i=0

vm+iβi−1), (5.2)

85

CHAPTER 5. CUBE CONNECTED CYCLES

����

����

��
��
��
��

����

����

��
��
��
��

����

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

����

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

����

��
��
��
��

����

����

����

��
��
��
��

����

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

����

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

����

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

����

��
��
��
��

����

����

��
��
��
��

����

��
��
��
��

����

����

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

����

�
�
�
�

��
��
��
��

����

�
�
�
�

��

����

��

�
�
�
�

��
��
��
��

��

��
��
��
��

����

��
��
��
��

1 30 2 0

1110

1111

1101

1100

1011

1010

1001

1000

0111

0110

0101

0100

0011

0001

0000

0010

Column

Row

Figure 5.2: Connections of Cube Connected Cycles CCC4 in Binary notation. To
make the drawing simpler, m in (m, V) is written as a column heading and nodes
in column 0 are repeated.

86

5.2. ALGEBRAIC MODEL OF CCC

where the index of β is considered modulo n. From Lemma 1, one can express βi−1

in (5.2) in terms of βi to get

ζ(m+ 1, V) = (m+ 1, α
n−1∑
i=1

vm+iβi +

βn−1

n−1∑
i=0

vm+ipi + vmαβ0)

= (m+ 1, αX + βn−1

n−1∑
i=1

vm+ipi). (5.3)

Now, using Lemma 2 and definition (5.1),

Tr(σX) =
n−1∑
i=0

vm+iTr(σβi)

=
n−1∑
i=0

vm+ipi. (5.4)

Combining (5.3) and (5.4) one can see that

ζ(m+ 1, V) = (m+ 1, αX + βn−1Tr(σX)).

Thus (m,X) is connected to (m+ 1, αX + βn−1Tr(σX)).

Similarly, The image of the second neighbor of (m,V) is

ζ(m− 1, V) = (m− 1,
n−1∑
i=0

vm+iβi+1), (5.5)

where the index of β is taken modulo n. Using Lemma 1, one gets

ζ(m− 1, V) = (m− 1, α−1
n−2∑
i=0

vm+iβi +

β0
n−2∑
i=0

vm+ipi+1 + vm+n−1βn−1α
−1)

= (m+ 1, α−1X + β0
n−2∑
i=0

vm+ipi+1). (5.6)

However, Lemma 2 and definition (5.1) give

Tr(α−1σX) =
n−1∑
i=0

vm+iTr(α
−1σβi)

=
n−2∑
i=0

vm+ipi+1. (5.7)

87

CHAPTER 5. CUBE CONNECTED CYCLES

From (5.6) and (5.7) one can see that

ζ(m+ 1, V) = (m+ 1, α−1X + β0Tr(α
−1σX)).

Thus (m,X) is connected to (m− 1, α−1X + β0Tr(α
−1σX)).

Finally, since vm = vm +1, the image of the third neighbor of (m,V) is given by

ζ(m,V1) = (m,
n−1∑
i=0

vm+iβi) + β0

= (m,X + β0).

Thus (m,X) is connected to (m,X + β0).

Fig. 5.3 shows the connectivity of the algebraic model for CCC given by Theorem

20.

(m + 1, αX + βn−1Tr(σX))

(m, X + β0)(m, X)

f

f−1

(m − 1, α−1X + β0Tr(σα−1X))

g

Figure 5.3: The connectivity of the Cube Connected Cycles graph CCCn.

Note that unlike its binary counterpart, this connectivity is amenable to algebraic

manipulation. Recall also that in binary representation, an edge from node (m,V)

ended on node (m,V ⊕ 2m). Thus the second coordinate of the destination depends

on both, the first and the second, coordinates of the source. On the other hand,

in the new algebraic model, each coordinate of a destination depends only on the

corresponding coordinate of the source (see Fig. 5.3). This, in our opinion, would

greatly simplify explorations of the CCCn network. Finally, note that similar to the

Shuffle Exchange graphs, within the context of the algebraic model of CCCn, one

can make the following observation. If

88

5.2. ALGEBRAIC MODEL OF CCC

Table 5.1: Equivalence between the nodes of CCC4 and graph C4 ×GF (24).

label (m, X)

(0, 0000) (0, 0)
(0, 0001) (0, α14)
(0, 0010) (0, α2)
(0, 0011) (0, α13)
(0, 0100) (0, α)
(0, 0101) (0, α7)
(0, 0110) (0, α5)
(0, 0111) (0, α12)
(0, 1000) (0, 1)
(0, 1001) (0, α3)
(0, 1010) (0, α8)
(0, 1011) (0, α6)
(0, 1100) (0, α4)
(0, 1101) (0, α9)
(0, 1110) (0, α10)
(0, 1111) (0, α11)

label (m, X)

(1, 0000) (1, 0)
(1, 0001) (1, 1)
(1, 0010) (1, α14)
(1, 0011) (1, α3)
(1, 0100) (1, α2)
(1, 0101) (1, α8)
(1, 0110) (1, α13)
(1, 0111) (1, α6)
(1, 1000) (1, α)
(1, 1001) (1, α4)
(1, 1010) (1, α7)
(1, 1011) (1, α9)
(1, 1100) (1, α5)
(1, 1101) (1, α10)
(1, 1110) (1, α12)
(1, 1111) (1, α11)

label (m, X)

(2, 0000) (2, 0)
(2, 0001) (2, α)
(2, 0010) (2, 1)
(2, 0011) (2, α4)
(2, 0100) (2, α14)
(2, 0101) (2, α7)
(2, 0110) (2, α3)
(2, 0111) (2, α9)
(2, 1000) (2, α2)
(2, 1001) (2, α5)
(2, 1010) (2, α8)
(2, 1011) (2, α10)
(2, 1100) (2, α13)
(2, 1101) (2, α12)
(2, 1110) (2, α6)
(2, 1111) (2, α11)

label (m, X)

(3, 0000) (3, 0)
(3, 0001) (3, α2)
(3, 0010) (3, α)
(3, 0011) (3, α5)
(3, 0100) (3, 1)
(3, 0101) (3, α8)
(3, 0110) (3, α4)
(3, 0111) (3, α10)
(3, 1000) (3, α14)
(3, 1001) (3, α13)
(3, 1010) (3, α7)
(3, 1011) (3, α12)
(3, 1100) (3, α3)
(3, 1101) (3, α6)
(3, 1110) (3, α9)
(3, 1111) (3, α11)

(m,X1)
f−→ (m+ 1, Y1) and (m,X2)

f−→ (m+ 1, Y2),

then, (m,X1 +X2)
f−→ (m+ 1, Y1 + Y2).

Similarly, If

(m,X1)
f−1

−→ (m− 1, Y1) and (m,X2)
f−1

−→ (m− 1, Y2),

then, (m,X1 +X2)
f−1

−→ (m− 1, Y1 + Y2).

We will refer to this observation as the linearity in source property of the f and f−1

edges of the CCCn graph.

Table 5.1 provides the mapping ζ between the two representations of CCC4. In

order to illustrate the mapping from Binary to Algebraic notation, consider mapping

of a Cube Connected Cycles node (1, 0110) ∈ Zn ×Zn
2 to its new algebraic setting.

The dual basis of GF (24) given in Table 2.2 is ⟨β3, β2, β1, β0⟩ = ⟨1, α, α2, α14⟩. Thus

ζ(1, 0110) = (1, β0 + β1)

= (1, α14 + α2)

= α13.

Thus the Cube Connected Cycles node with binary label (1, 0110) is renamed in the

89

CHAPTER 5. CUBE CONNECTED CYCLES

new algebraic notation as (1, α13). The CCC4 relabeled in the algebraic notation is

shown in Fig.5.4.

5.3 Path Algorithms for Cube

Connected Cycles

This section deals with designing a path to travel between any two nodes of the

Cube Connected Cycles network. We start by stating a result that will help us

minimize the path length.

Lemma 5 A path with n consecutive f edges forms a cycle in CCCn.

Proof. We have

(m,βi)
f−→ (m+ 1, αβi + βn−1Tr(σβi))

= (m+ 1, αβi + piβn−1) from Lemma 2

= (m+ 1, βi−1) from Lemma 1.

Consequently, starting from any (m,βi) and traversing n f edges will bring one back

to the starting node. Since any X ∈ GF (2n) can be decomposed into a sum of βis,

the linearity of the f edges (see discussion after Theorem 22) implies that the cycle

characteristics is also true of any starting node (m,X).

We are now ready to use the algebraic machinery to chart a path from a node

(0, X) to the node (a, 0) in CCCn for any given a ∈ Cn and X ∈ GF (2n). Because of
the symmetry of CCCn, one can transform the problem of finding the path between

any two arbitrary nodes to the one of finding a path between such a node pair. We

develop two strategies to determine such a path.

In our first strategy, we employ the edges f and g only. Since the g edge is its

own inverse, it can be followed only by an f edge. Thus there are only two possible

paths to go from the mth column of CCCn to the (m+1)th column. In first of these

paths, (m,D)
f−→ (m+1, D′), where D′ = αD+βn−1Tr(σD), while for the second

90

5.3. PATH ALGORITHMS FOR CCC

��
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

����

����

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

����

��
��
��
��

��
��
��
��

��

����

��

��

�
�
�
�

����

��
��
��
��

��
��
��
��

��
��
��
��

��

��

��
��
��
��

�
�
�
�

�
�
�
�

����

��

��
��
��
��

α2

α2

α
13

α14

α3 α4 α5

α7 α78α 8α

α2 α14

α4α5

α12

α
13 α3

α10α9

α2

α6

α3 α4 α5 α
13

8α

α6

α7 8α α7

α10α9 α12

α4

α9

α5 α
13

α3

α10 α12
α6

α10

α11

α12 α6 α9

α11α11

α14

α14 α14

α2

α
13

α7

α5

α12

α3

8α

α4

α9

α10

α11

α6

α11

1

α

1

α

1

α

1

α

1

0
0 0 0

30 2

α

1

0
0

First coordinate Second coordinate

Figure 5.4: Connections of Cube Connected Cycles CCC4 in Algebraic notation. To
make the drawing simpler, m in (m, X) is written as a column heading and nodes
in column 0 are repeated.

91

CHAPTER 5. CUBE CONNECTED CYCLES

path, (m,D)
g−→ (m,D +β0)

f−→ (m+1, D′), where D′ = αD+βn−1+βn−1Tr(σD

+σβ0) = αD + βn−1(1 + Tr(σD)). This last simplification uses Lemma 2. Thus

in both cases, the second coordinate of the destination node, (m + 1, D′), can be

expressed as

D′ = αD + βn−1(c+ Tr(σD)), (5.8)

where c is either 0 or 1. We will refer to the path going from (m,D) to (m+ 1, D′)

as a path segment. Clearly, each path segment in this strategy is made of either an

f edge or a g edge followed by an f edge.

To express the coordinates of any node along the path, one can apply (5.8)

repeatedly. We begin by designating the starting node as (m,D0) and a node reached

after i path segments as (m + i,Di). Let ci denote the value of binary constant c

used in the ith path segment. From (5.8) one gets,

D1 = αD0 + βn−1(c0 + Tr(σD0)). (5.9)

Using (5.8) repeatedly and simplifying the result each time using Lemmas 2 and 1

gives the destination (m+ k,Dk) after k path segments as

(m+ k, αkD0 +
k−1∑
j=0

βn−k+j(cj + Tr(αjσD0)). (5.10)

Assuming the starting node (m,D0) = (0, X) and the destination node (m+k,Dk) =

(a, 0), then

k = a mod n and

0 = αkX +
k−1∑
j=0

βn−k+j(cj + Tr(αjσX)). (5.11)

Values of k and cj, 0 ≤ j < k satisfying (5.11) give the required path.

To solve (5.11), first note that for any k ≥ n, the summation in (5.11) goes over

all the βj, 0 ≤ j < n. Since αkX has a unique decomposition in the dual basis, one

can always find cis to satisfy (5.11) in this case. For smallest such k, k = n + a,

(5.11) becomes

n−1∑
j=0

Tr(αn+a+jX)βj =
n+a−1∑
j=0

β−a+j(cj + Tr(αjσX)), (5.12)

92

5.3. PATH ALGORITHMS FOR CCC

where we have expressed αn+aX on the left hand side of the expression in its dual

basis. Comparing the coefficients of βj, 0 ≤ j < n− a, on both sides of (5.12) gives

Tr(αn+a+jX) = cj+a + Tr(αj+aσX).

By using the linearity of the trace function and the fact that σ = 1 + αn gives

cj+a = Tr(αj+aX), 0 ≤ j < n− a or,

cj = Tr(αjX), a ≤ j < n. (5.13)

Similarly, comparing the coefficients of βj, n− a ≤ j < n, in (5.12) gives

Tr(αn+a+jX) = cj+a + Tr(αj+aσX) + cj−n+a +

Tr(αj−n+aσX).

Simplifying this as before gives

cj+a + cj+a−n = Tr(αj+a−nX), n− a ≤ j < n or

cj + cn+j = Tr(αjX), 0 ≤ j < a. (5.14)

For a smaller k = a, the summation in (5.11) does not span all the βj, 0 ≤ j < n

of the dual basis. Therefore all X values may not yield a solution to (5.11). In

particular, with k = a, (5.11) becomes

n−1∑
j=0

Tr(αa+jX)βj =
a−1∑
j=0

β−a+j(cj + Tr(αjσX)). (5.15)

All the path segments as described here end with an f edge. In order to provide

a greater flexibility at designing the path, we allow a last g edge (if required) after

the a path segments to reach the destination node. Using the last g edge has the

effect of adding β0 to the expression on the right hand side of (5.15). By comparing

the coefficients of various βjs on both sides of this equation as before, one gets

cj = Tr(αjX), 0 ≤ j < a,

last g edge to be used if Tr(αaX) = 1 and

Tr(αjX) = 0, a < j < n. (5.16)

93

CHAPTER 5. CUBE CONNECTED CYCLES

The discussion above, including the computation of cis from (5.13), (5.14) and

(5.16), provide the following path algorithm.

Algorithm 2 (Path to go from (0,X) to (a,0) in CCCn using edges f and

g.

If Tr(αiX) = 0, for all a < i < n, then

Set PathSegments to a, LastGEdge = Tr(αaX) and

choose binary values ci = Tr(αiX), 0 ≤ i < a.

Else Set PathSegments to a+ n,

choose binary values ci, 0 ≤ i < a+ n, as

ci + ci+n = Tr(αiX), 0 ≤ i < a and

ci = Tr(αiX), a ≤ i < n.

(Note: ci, ci+n, 0 ≤ i < a are not unique.)

Start from the node (0, X).

For i from 0 to PathSegments do

If ci = 1, proceed along a g followed an f edge.

If ci = 0, proceed along an f edge.

If PathSegments = a and LastGEdge = 1,

proceed along the g edge.

Note that the path obtained by this algorithm can sometimes be shortened.

Because of Lemma 5, any time t > ⌊n/2⌋ consecutive f edges are indicated by the

algorithm, they can be replaced by n− t f−1 edges.

We illustrate the algorithm with the following examples.

Example 1. (path from (0, α7) to (2, 0) in CCC4).

In this case, Tr(α3α7) = 0. Therefore one needs only 2 path segments in this path.

By using appropriate traces, one has: c0 = Tr(α0α7) = 1, c1 = Tr(αα7) = 0 and

the last g edge is to be used because Tr(α2α7) = 1. The required path then uses the

edge sequence gf, f, g (We have separated path segments by commas for clarity).

The actual path is given by: (0, α7)
g−→ (0, α)

f−→ (1, α2)
f−→ (2, α14)

g−→ (2, 0).

Example 2. (path from (0, α6) to (2, 0) in CCC4).

In this case, one needs 6 path segments. By following the procedure of the algorithm,

94

5.3. PATH ALGORITHMS FOR CCC

c0+c4 = 1, c1+c5 = 1, c2 = 0 and c3 = 1. To satisfy the first two of these equations,

we choose c0 = c1 = 1 and c4 = c5 = 0. The path will then use the edge sequence

gf, gf, f, gf, f, f . Since in CCC4, four consecutive f edges from any node return one

to the same node, fff ≡ f−1. Thus, in this case, a shorter path to the destination

is given by the edge sequence gf, gf, f, gf−1. The actual path is given by:

(0, α6)
g−→ (0, α8)

f−→ (1, α7)
g−→ (1, α)

f−→
(2, α2)

f−→ (3, α14)
g−→ (3, 0)

f−1

−→ (2, 0)

We can also create a path from (0, X) to (a, 0) using the f−1 and g edges. As

before, since g edges cannot follow each other, the path segments going from a

column m to a column m−1 will be made up of edges f−1 or gf−1. Let the starting

node be (m,D). The destination of the first path segment can be computed to be

the node (m − 1, D′), where D′ = α−1D + β0Tr(α
−1σD) + c0β1, where the binary

value c0 equals 0 if the path segment is f−1 and 1, if it is gf−1. The node on the

path after going through k such path segments is given by

(m− k, α−kD +
k∑

j=1

βk−jTr(α
−jσD) +

k−1∑
j=0

cjβk−j), (5.17)

where cj, 0 ≤ j < k, is the binary constant used in the jth path segment.

With the starting node (0, X), (5.17) will give the destination node (a, 0) after

k path segments if

a = −kmod n and

0 = αkX +
k∑

j=1

βk−jTr(α
−jσX) +

k−1∑
j=0

cjβk−j). (5.18)

As before, we need to consider only two cases; k = (n − a)mod n and k =

(n− a)mod n+ n.

When k = n + (n − a)mod n, (5.18) has a solution for every X because all the

basis vectors of the dual base, βi, 0 ≤ i < n are available on the right hand side.

By matching the coefficients of each βi on both the sides of (5.18), one can obtain

relationships between cjs. Comparing coefficients of β0, one gets

Tr(α−kX) = Tr(α−kσX) + Tr(αn−kσX) + ck−n.

95

CHAPTER 5. CUBE CONNECTED CYCLES

On simplification, this yields

cn−a = Tr(αaX). (5.19)

Similarly, coefficients of βi, 1 ≤ i < k − n, one gets

Tr(αi−kX) = Tr(αi−kσX) + Tr(αi−k+nσX) +

ck−i + ck−i−n.

This equation can be simplified to yield

ci + c+ i+ n = Tr(αn−iX), 0 < i < n− a. (5.20)

Similarly, comparing coefficients of βk−n, one gets

Tr(α−nX) = Tr(αnσX) + c0 + cn,

which simplifies to

c0 + c+ n = Tr(X). (5.21)

Finally, comparing coefficients of βi, k − n < i < n, one gets

Tr(αi−kX) = Tr(αi−kσX) + ck−i,

which gives

ci = Tr(αn−iX), n− a < i < n. (5.22)

When k = (n− a)mod n, (5.18) may not have a solution for all x values. In this

case, a > 0 as is obvious from (5.18). For this k = n− a, (5.18) becomes

n−1∑
j=0

Tr(αn−a+jX)βj =
n−a∑
j=1

βn−a−jTr(α
−jσX)

+
n−a−1∑
j=0

cjβk−j. (5.23)

The path described here necessarily ends in an f−1 edge. To make the strategy

more flexible, we allow for a last g edge which may reach the destination node in

96

5.3. PATH ALGORITHMS FOR CCC

the same column, a. With this, the expression on the right hand side of (5.23) gets

added with an additional β0. Solution of this equation gives

c0 = Tr(X),

cj = Tr(αn−jX), 1 ≤ j < n− a,

last g edge to be used if Tr(αaX) = 1 and

Tr(αjX) = 0, n− a < j < n. (5.24)

This discussion gives the following path algorithm using f−1 and g edges.

Algorithm 3 (Path to go from (0,X) to (a,0) in CCCn using edges f−1

and g).

If a = 0, Set PathSegments to n− a,
choose binary values c0 = Tr(X) and

ci = Tr(αn−iX), 1 ≤ i < n− a.
Else If a > 0 and Tr(αiX) = 0, for all 0 < i < a, then

Set PathSegments to n− a, LastGEdge = Tr(αaX)

and choose binary values c0 = Tr(X),

ci = Tr(αn−iX), 1 ≤ i < n− a.
Else Set PathSegments to n+ (n− a)mod n,

choose binary values ci, 0 ≤ i < a+ n, as

c0 + cn = Tr(X), ci + ci+n = Tr(αn−iX),

0 < i < n− a and ci = Tr(αn−iX), n− a ≤ i < n.

(Note: ci, ci+n, 0 ≤ i < n− a are not unique.)

Start from node (0, X).

For i from 0 to PathSegments do

If ci = 1, proceed along a g followed by an f−1 edge.

If ci = 0, proceed along an f−1 edge.

If PathSegments = n− a and LastGEdge = 1,

proceed along the g edge.

97

CHAPTER 5. CUBE CONNECTED CYCLES

Note that, as in the case of the first algorithm, the path obtained by this algo-

rithm can sometimes be shortened using Lemma 5. Any time t > ⌊n/2⌋ consecutive
f−1 edges are indicated by this algorithm, they can be replaced by n− t f edges.

Following example illustrates the algorithm.

Example 3. (path from (0, α11) to (1, 0) in CCC4).

In this case, since a = 1, the condition Tr(αjX) = 0, n − a < j < n in (5.21) is

obviously satisfied. Thus we can use only n − a = 3 path segments. From step 1

of algorithm 3, one gets c0 = c1 = c2 = 1. Further, since Tr(αα11) = 1, one should

use one extra g edge at the end. The edge sequence is therefore gf−1, gf−1, gf−1, g.

The actual path is given by:

(0, α11)
g−→ (0, α10)

f−1

−→ (3, α9)
g−→ (3, α4)

f−1

−→
(2, α3)

g−→ (2, 1)
f−1

−→ (1, α14)
g−→ (1, 0).

Example 4. (path from (0, α5) to (2, 0) in CCC4).

In this case, one has c0+c4 = Tr(α5) = 0, c1+c5 = Tr(α8) = 0, c2 = Tr(α7) = 1 and

c3 = Tr(α6) = 1 , We use c0 = c4 = c1 = c5 = 0 to satisfy the relationships between

cis. Thus the edge sequence of the path is f−1, f−1, gf−1, gf−1, f−1, f−1. Since

f−1, f−1, f−1 = f in CCC4, one can use a shorter edge sequence f−1f−1, gf−1, gf .

The actual path is given by:

(0, α5)
f−1

−→ (3, α4)
f−1

−→ (2, α3)
g−→ (2, 1)

f−1

−→
(1, α14)

g−→ (1, 0)
f−→ (2, 0).

Example 5. (path from (0, α5) to (0, 0) in CCC4).

In this case, since a = 0 there will be no extra g edge at the end. Thus, we

can use only n − a = 4 path segments. From step 1 of algorithm 3, one gets

c0 = c1 = 0, c2 = c3 = 1. Thus the edge sequence of the path is f−1, f−1, gf−1, gf−1.

The actual path is given by:

(0, α5)
f−1

−→ (3, α4)
f−1

−→ (2, α3)
g−→ (2, 1)

f−1

−→
(1, α14)

g−→ (1, 0)
f−1

−→ (0, 0).

One can show that the algorithms 2 and 3 provide paths which are less than the

diameter of the Cube Connected Cycles graph as given in the following theorem.

Theorem 21 The path algorithms 2 and 3 provide a path less than the diameter of

98

5.3. PATH ALGORITHMS FOR CCC

CCCn.

Proof. The diameter of CCCn is 6 if n = 3 and 2n + ⌊n/2⌋ − 2 if n > 3 [6]. We

show that the path obtained by one of the two algorithms is always less than the

diameter.

Because of symmetry of CCCn, the path between any pair of nodes in CCCn is

isomorphic to a path between (0, X) and (a, 0) with appropriately chosen a ∈ Cn

and X ∈ GF (2n). We therefore only focus on these paths using algorithms 2 and 3.

The theorem for n = 3 can be proved from algorithm 2 rather easily. for a = 0,

the constants c0, c1 and c2 are either 0 or 1. Since ci = 0 implies an f edge and

ci = 1, an edge sequence gf , even when each ci is 1, the path length is at most 6.

For a = 1, even if all traces that give the cis are 1, one can choose c0 = c1 = c2 = 1

and c3 = 0. This results in the edge sequence gf, gf, gf, f , which, from Lemma 5

equals gfgfgf−1, a path of length 6. Finally, when a = 2, in the worst case (of all

trace functions are 1), one can choose c0 = c1 = c2 = 1 and c3 = c4 = 0, giving the

edge sequence gf, gf, gf, f, f = gfgfg, a path of length 5.

When a > 3, the choice of algorithm can be based on a (for the purpose of

this proof). If ⌈n/2⌉ ≤ a < n, one can use algorithm 2. If the number of path

segments equals a, then the path length is at most 2a ≤ 2(n − 1). If the number

of path segments equal a + n, then ci + ci+n, 0 ≤ i < a are fixed, but individual

ci, ci+n ∈ GF (2) are not. We choose cn = cn+1 = · · · = cn+a−1 = 0. Value cn−1

may be either a 0 or a 1. Since each 0 value of ci implies an f edge, while a 1, gf

edges, at least a+1 edges at the end of the path are f edges. Using Lemma 5, these

consecutive a + 1 f edges can be replaced with (n − a − 1) f−1 edges. The path

length is then given by the number of edges due to ci, 0 ≤ i < n − 1, at most one

g edge due to cn−1 and (n − a − 1) f−1 edges at the end. We therefore have path

length ≤ 2(n− 1) + 1 + (n− a− 1) ≤ 2n+ ⌊n/2⌋ − 2.

On the other hand, if 0 ≤ a < ⌈n/2⌉, we use algorithm 3. If the number of

path segments equals n− a, then the path length is at most 2(n− a) ≤ 2n because

each path segment is made up of at most two edges, This also covers the case when

a = 0. If a ̸= 0 and the number of path segments equal (2n − a), then ci + ci+n,

99

CHAPTER 5. CUBE CONNECTED CYCLES

0 ≤ i < n − a are fixed, but individual ci, ci+n ∈ GF (2) are not. As before, we

choose cn = cn+1 = · · · = c2n−a−1 = 0. Value cn−1 may be either a 0 or a 1. Since

each 0 value of ci implies an f−1 edge, while a 1, gf−1 edges, at least (n − a + 1)

edges at the end of the path are f−1 edges. Using Lemma 5 again, these consecutive

n− a+ 1 f−1 edges can be replaced with (a− 1) f edges. Thus the path length in

this case satisfies path length ≤ 2(n− 1) + 1 + (a− 1) ≤ 2n+ ⌊n/2⌋ = 2.

Finally, when X = β0 + β1 + · · ·+ βn−1, Tr(α
iX) = 1, 0 ≤ i < n. If a = ⌊n/2⌋,

then using similar arguments, it can be shown that either of the two algorithms give

the minimum path length from (X, 0) to (a, 0) to be 2n+ ⌊n/2⌋− 2. Therefore this

is the diameter of CCCn.

5.4 Automorphisms of the Cube Connected Cy-

cles Graph

We now explore the automorphisms of the cube connected cycles graph CCCn. For

this, consider the constants K0, K1, . . ., Kn−1 ∈ GF (2n) related to each other as

Km+1 = αKm + βn−1Tr(σKm), 0 ≤ m < n, (5.25)

where, as will be shown later, the index of K can be considered modulo n.

Constants K0 through Kn−1 play a central role in characterizing the automor-

phisms. It is therefore worthwhile considering their interdependance first. Because

each Km+1 is related to Km, it is natural to expect that each of these constants can

be obtained from K0. The explicit dependence of Km on K0 is given by

Km = αmK0 +
m∑
j=1

Tr(αm−jσK0)βn−j, 0 ≤ j < n. (5.26)

Equation (5.26) can be proved by mathematical induction. It is obvious for m = 0.

If it is true for some Km, then its truth for Km+1 can be established using (5.25)

and (5.26) as follows.

Km+1 = αm+1K0 +
m∑
j=1

Tr(αm−jσK0)βn−jα + βn−1Tr(σα
mK0)

100

5.4. AUTOMORPHISMS OF THE CUBE CONNECTED CYCLES GRAPH

+ βn−1Tr(σ
m∑
j=1

Tr(αm−jσK0)βn−1)

= αm+1K0 +
m∑
j=1

Tr(αm−jσK0)(βn−j−1 + pn−jβn−1) + βn−1Tr(σα
mK0)

+ βn−1

m∑
j=1

Tr(αm−jσK0)pn−j

= αm+1K0 +
m∑
j=1

Tr(αm−jσK0)βn−j−1 + βn−1Tr(σα
mK0)

= αm+1K0 +
m+1∑
j=1

Tr(αm+1−jσK0)βn−j,

Let σK0 be expanded in dual basis as

σK0 =
n−1∑
i=0

aiβi.

Then the relation (5.26) for m = n gives

Kn = αn +
n∑

j=1

n−1∑
i=0

aiTr(α
n−jβi)βn−j

= αn +
n∑

j=1

an−jβn−j

= αn + σK0 = K0. (5.27)

From this, one can clearly see that the index of Km in (5.25) is modulo n.

Theorem 22 now states a set of automorphisms of the CCC graph.

Theorem 22 A mapping ϕ(·) : Cn ×GF (2n)→ Cn ×GF (2n) defined by

ϕ(m,X) = (m+ t,X +Km), (5.28)

for arbitrary t ∈ Cn and constants Km’s related to each other as in (5.25) is an

automorphism of graph CCCn.

Proof. It is clear that ϕ is a one-to-one onto mapping. We show that if two

nodes N and N ′ are connected in CCCn, then so are the nodes ϕ(N) and ϕ(N ′).

Let N = (m,X). Then we have

ϕ(N) = (m+ t,X +Km) (5.29)

101

CHAPTER 5. CUBE CONNECTED CYCLES

There may be 3 kinds of edges between N and N ′. We prove the result for each

separately.

Case 1 N ′ = (m+ 1, αX + βn−1Tr(σX)).

In this case we have

ϕ(N ′) = (m+ t+ 1, αX + βn−1Tr(σX) +Km+1)

= (m+ t+ 1, αX + αKm + βn−1Tr(σ(X +Km)))

= (m+ t+ 1, α(X +Km) + βn−1Tr(σ(X +Km))). (5.30)

Eq.s (5.29) and (5.30) show that ϕ(N) is connected to ϕ(N ′).

Case 2 N ′ = (m,αX + β0).

We now have

ϕ(N ′) = (m+ t, αX +Km + β0). (5.31)

Clearly from eq.s (5.29) and (5.31) ϕ(N) is connected to ϕ(N ′) in this case also.

Case 3 N ′ = (m− 1, α−1X + β0Tr(σα
−1X)).

The image of this N ′ under ϕ is given by

ϕ(N ′) = (m+ t− 1, α−1X + β0Tr(σα
−1X) +Km−1) (5.32)

Now from the relationship (5.25) between Km and Km−1, we get

σα−1Km = σKm−1 + σβ0Tr(σKm−1), or

Tr(σα−1Km) = Tr(σKm−1).

Thus,

Km−1 = α−1Km + α−1βn−1Tr(σα
−1Km). (5.33)

Combining (5.32) and (5.33) gives

ϕ(N ′) = (m+ k − 1, α−1X + β0Tr(σα
−1X) + α−1Km + β0Tr(σα

−1Km))

= (m+ k − 1, α−1(X +Km) + β0Tr(σα
−1(X +Km))). (5.34)

From (5.29) and (5.34) one can see that ϕ(N) is connected to ϕ(N ′) in the third

case also.

102

5.4. AUTOMORPHISMS OF THE CUBE CONNECTED CYCLES GRAPH

We will refer to the automorphisms specified by Theorem 22 as the automor-

phisms of the first kind. The parameters K0 through Kn−1 characterizing the mod-

ification of the second coordinate of a node label will be called the automorphism

constants the change in the first coordinate t would be called the automorphism

offset.

We now demonstrate the use of automorphisms of first kind to prove the sym-

metry of CCCn.

Corollary 2 Cube connected cycles graph is symmetric.

Proof. We prove the symmetry by showing that given any two nodesN1 = (a,X1)

and N2 = (b,X2), there exists an automorphism ϕ(·) of CCCn which maps N1 to

N2.

Choose t = (b − a)mod n, constant Ka = X1 + X2 and other constants Ki,

0 ≤ i < n, i ̸= a obtained using (5.25). Define the automorphism ϕ(·) as in

Theorem 22. Clearly, ϕ(N1) = N2.

As an illustration, we provide in Table 5.2 an example of an automorphism

that maps (1, α3) to (2, α7) in CCC4. First, we calculate the column offset t =

2 − 1 = 1. This first calls for computing constants K0 through K3 which will

provide the automorphism as in Theorem 22. Note that in GF (24), βn−1 = β3 = 1

and σ = (α4 + 1) = α. Using (5.25), we then get

K1 = α3 + α7 = α4

K2 = αK1 + Tr(σK1) = α5

K3 = αK2 + Tr(σK2) = α13 and

K0 = αK3 + Tr(σK3) = α3

Which leads to the automorphism mapping shown in Table 5.2.

The automorphisms constants can also be determined from the traces Tr(σKi),

0 ≤ i < n as shown in the following Theorem. This result would be used later to

develop mappings on faulty CCCn graphs.

103

CHAPTER 5. CUBE CONNECTED CYCLES

Table 5.2: an automorphism ϕ that maps (1, α3) to (2, α7) in CCC4.

node N ϕ(N)
(0, 0) (1, α3)
(0, 1) (1, α14)
(0, α) (1, α9)
(0, α2) (1, α6)
(0, α3) (1, 0)
(0, α4) (1, α7)
(0, α5) (1, α11)
(0, α6) (1, α2)
(0, α7) (1, α4)
(0, α8) (1, α13)
(0, α9) (1, α)
(0, α10) (1, α12)
(0, α11) (1, α5)
(0, α12) (1, α10)
(0, α13) (1, α8)
(0, α14) (1, 1)

node N ϕ(N)
(1, 0) (2, α14)
(1, 1) (2, α)
(1, α) (2, 1)
(1, α2) (2, α10)
(1, α3) (2, α7)
(1, α4) (2, 0)
(1, α5) (2, α8)
(1, α6) (2, α12)
(1, α7) (2, α3)
(1, α8) (2, α5)
(1, α9) (2, α14)
(1, α10) (2, α2)
(1, α11) (2, α13)
(1, α12) (2, α6)
(1, α13) (2, α11)
(1, α14) (2, α9)

node N ϕ(N)
(2, 0) (3, α5)
(2, 1) (3, α10)
(2, α) (3, α2)
(2, α2) (3, α)
(2, α3) (3, α11)
(2, α4) (3, α8)
(2, α5) (3, 0)
(2, α6) (3, α9)
(2, α7) (3, α13)
(2, α8) (3, α4)
(2, α9) (3, α6)
(2, α10) (3, 1)
(2, α11) (3, α3)
(2, α12) (3, α14)
(2, α13) (3, α7)
(2, α14) (3, α12)

node N ϕ(N)
(3, 0) (0, α13)
(3, 1) (0, α6)
(3, α) (0, α12)
(3, α2) (0, α14)
(3, α3) (0, α8)
(3, α4) (0, α11)
(3, α5) (0, α7)
(3, α6) (0, 1)
(3, α7) (0, α5)
(3, α8) (0, α3)
(3, α9) (0, α10)
(3, α10) (0, α9)
(3, α11) (0, α4)
(3, α12) (0, α)
(3, α13) (0, 0)
(3, α14) (0, α2)

104

5.4. AUTOMORPHISMS OF THE CUBE CONNECTED CYCLES GRAPH

Theorem 23 The n binary values ci = Tr(σKi), 0 ≤ i < n, uniquely determine

the automorphism constants Ki, 0 ≤ i < n.

Proof. From (5.25), one gets, K1 = αK0 + c0βn−1, K2 = α2K0 +(αc0 + c1)βn−1, etc.

After applying (5.25) n times, one obtains

K0 = αnK0 + βn−1

n−1∑
i=0

ciα
n−1−i.

From this, one gets

K0 = σ−1βn−1

n−1∑
i=0

ciα
n−1−i. (5.35)

Once K0 is determined, other Ki, 1 ≤ i < n are fixed by (5.26).

The symmetry of a network is important for designing mappings, avoiding faults

and readjusting mapping templates to specific situations. For example, Algorithm

2 provides a path to travel from (0, X) to (a, 0). If we want to travel from (m1, X1)

to (m2, X2) we can use symmetry to first transform the problem to one suitable

for Algorithm 2 as follows. We first find an automorphism ϕ such that for some

X ∈ GF (2n) and a ∈ Cn, one has

ϕ(0, X) = (m1, X1) (5.36)

and

ϕ(a, 0) = (m2, X2) (5.37)

From (5.36) one gets the column offset t = m1. But from (5.37), t = m2 − a, giving
a = m2−m1. Now, (5.37) gives Ka = X2. From Ka, one can obtain K0 as in (5.25).

Then using Equation (5.36), one gets X1 = X +K0 or X = X1 +K0. Once X and

a are thus obtained, one can use Algorithm 2 (or 3) to obtain a path from (0, X) to

(a, 0). Applying automorphism ϕ to this path transforms it to one from (m1, X1) to

(m2, X2).

We illustrate this procedure by finding a path from (2, α6) to (1, α8) in CCC4.

We start by defining an automorphism ϕ such that

ϕ(0, X) = (2, α6) (5.38)

105

CHAPTER 5. CUBE CONNECTED CYCLES

and

(a, 0) = (1, α8) (5.39)

The column offset from (5.38) is t = 2, and t = 1 − a from (5.39). Thus, a = 3.

From (5.39) gives K3 = α8, which in turn yields K0 = α7, K1 = α8, K2 = α7. Then,

using Equation (5.38) one gets K0 = X + α6 and X = α6 + α7 = α10. Therefore,

finding a path from (2, α6) to (1, α8) becames a problem of finding a path between

(0, α10) and (3, 0) using Algorithm 2. The path obtained from the algorithm is:

(0, α10)
f−→ (1, α12)

g−→ (1, α5)
f−→ (2, α13)

g−→ (2, α2)
f−→ (3, α14)

g−→ (3, 0).

Applying ϕ to every node, one can then obtain the required path from (2, α6) to

(1, α8) as:

(2, α6)
f−→ (3, α9)

g−→ (3, α4)
f−→ (0, α5)

g−→ (0, α12)
f−→ (1, α6)

g−→ (1, α8).

We now count the total number of automorphisms of the first kind. Note that

K0 ∈ GF (2n) can have 2n distinct values. OnceK0 is chosen, all other automorphism

constants K1 through Kn−1 are fixed by (5.26). Similarly, the automorphism offset

t can be chosen from n distinct values. Thus there are n2n different automorphisms

of the first kind.

In order to describe the remaining automorphisms we define a function µ(·) :

GF (2n)→ GF (2n) as follows.

µ(X) =
n−1∑
i=0

xn−iβi, where X =
n−1∑
i=0

xiβi. (5.40)

Note that the index of xi is considered modulo n. When expressed in the dual

basis, the components x1 through xn−1 of X are reflected to obtain µ(X). Following

Lemma specifies some basic properties of µ.

Lemma 6 The function µ defined in (5.40) has following properties.

1. µ is a one-to-one mapping.

2. µ(µ(X)) = X for all X ∈ GF (2n).

3. µ(X + Y) = µ(X) + µ(Y), for any X, Y ∈ GF (2n).

106

5.4. AUTOMORPHISMS OF THE CUBE CONNECTED CYCLES GRAPH

4. µ(X + β0) = µ(X) + β0, for any X ∈ GF (2n).

5. µ(αX) = x1β0 +
∑n−1

i=0 xipiβ1 +
∑n−1

i=2 xiβn−i+1, for any X ∈ GF (2n), where pi
is the coefficient of αi in the primitive polynomial.

Proof. The first four assertions are obvious. We prove the last one using Lemma 1.

µ(αX) = µ

(
n−1∑
i=0

xiαβi

)

= µ

(
x0βn−1 +

n−1∑
i=1

xi(βi−1 + piβn−1)

)

= x1β0 +
n−1∑
i=0

xipiβ1 +
n−1∑
i=2

xiβn−i+1.

We can now specify a new automorphism of CCCn not covered by Theorem 22.

Theorem 24 Mapping ψ(m,X) = (n−m,µ(X)) is an automorphism of CCCn.

Proof. From Lemma 6 one can see that mapping ψ is one-to-one. To show that

it preserves connectivity, consider the f edge between (m,X) and (m + 1, αX +

βn−1Tr(σX)). The images of these nodes under ψ are: N1 = (n − m,µ(X)) and

N2 = (n − m − 1, Y) where, Y = µ(αX + βn−1Tr(σX)). We now show that

there is an f edge from N2 to N1. Note that the column of N1 is one higher than

that of N2. To show that their rows are related as required, we will show that

αY + βn−1Tr(σY) = µ(X). One has,

αY + βn−1Tr(σY) = αµ(αX) + αβ1Tr(σX) + βn−1(Tr(σµ(αX)) + p1Tr(σX)).

(5.41)

However,

αµ(αX) + αβ1Tr(σX) = αµ(αX) + αβ1
n−1∑
i=0

Tr(xiσβi)

= αµ(αX) + αβ1
n−1∑
i=1

xipi

107

CHAPTER 5. CUBE CONNECTED CYCLES

= x1βn−1 + x0αβ1 +
n−1∑
i=2

xiαβn−i+1

= x1βn−1 + x0β0 + x0p1βn−1 +
n−1∑
i=2

xiβn−i

+
n−1∑
i=2

xipn−i+1βn−1. (5.42)

βn−1Tr(σµ(αX)) = βn−1[Tr(x1σβ0) +
n−1∑
i=2

xiTr(σβn−i+1) + Tr(σβ1)
n−1∑
i=0

xipi]

= βn−1

n−1∑
i=2

xipn−i+1 + p1βn−1

n−1∑
i=0

xipi. (5.43)

And finally,

p1βn−1Tr(σX) = p1βn−1

n−1∑
i=0

xiσβi

= p1βn−1

n−1∑
i=1

xipi. (5.44)

By adding (5.42) through (5.44) gives from (5.41),

αY + βn−1Tr(σY) = x1βn−1 + x0β0 +
n−1∑
i=2

xiβn−i

= µ(X) (5.45)

From (5.45) it is clear that there is an f edge from N2 to N1.

Similarly, nodes (m,X) and (m,X + β0) which are connected by a g edge have

images (n−m,µ(X)) and (n−m,µ(X + βn−1)) = (n−m,µ(X) + βn−1). Clearly,

these images are also connected by a g edge.

Thus the one-to-one mapping ψ preserves connectivity of CCCn. It is therefore

an automorphism of CCCn.

Automorphism ψ(·) : CCC4 → CCC4 is shown in Table 5.3.

Theorem 25 lists some basic properties of the automorphism ψ(·).

Theorem 25 1. ψ(·) is an order 2 automorphism.

108

5.4. AUTOMORPHISMS OF THE CUBE CONNECTED CYCLES GRAPH

Table 5.3: Automorphism ψ(·) : CCC4 → CCC4.

(m,X) ψ(m,X)
(0, 0) (0, 0)
(0, 1) (0, α2)
(0, α) (0, α)
(0, α2) (0, 1)
(0, α3) (0, α13)
(0, α4) (0, α5)
(0, α5) (0, α4)
(0, α6) (0, α6)
(0, α7) (0, α7)
(0, α8) (0, α8)
(0, α9) (0, α12)
(0, α10) (0, α10)
(0, α11) (0, α11)
(0, α12) (0, α9)
(0, α13) (0, α3)
(0, α14) (0, α14)

(m,X) ψ(m,X)
(1, 0) (3, 0)
(1, 1) (3, α2)
(1, α) (3, α)
(1, α2) (3, 1)
(1, α3) (3, α13)
(1, α4) (3, α5)
(1, α5) (3, α4)
(1, α6) (3, α6)
(1, α7) (3, α7)
(1, α8) (3, α8)
(1, α9) (3, α12)
(1, α10) (3, α10)
(1, α11) (3, α11)
(1, α12) (3, α9)
(1, α13) (3, α3)
(1, α14) (3, α14)

(m,X) ψ(m,X)
(2, 0) (2, 0)
(2, 1) (2, α2)
(2, α) (2, α)
(2, α2) (2, 1)
(2, α3) (2, α13)
(2, α4) (2, α5)
(2, α5) (2, α4)
(2, α6) (2, α6)
(2, α7) (2, α7)
(2, α8) (2, α8)
(2, α9) (2, α12)
(2, α10) (2, α10)
(2, α11) (2, α11)
(2, α12) (2, α9)
(2, α13) (2, α3)
(2, α14) (2, α14)

(m,X) ψ(m,X)
(3, 0) (1, 0)
(3, 1) (1, α2)
(3, α) (1, α)
(3, α2) (1, 1)
(3, α3) (1, α13)
(3, α4) (1, α5)
(3, α5) (1, α4)
(3, α6) (1, α6)
(3, α7) (1, α7)
(3, α8) (1, α8)
(3, α9) (1, α12)
(3, α10) (1, α10)
(3, α11) (1, α11)
(3, α12) (1, α9)
(3, α13) (1, α3)
(3, α14) (1, α14)

2. ψ(m,X1 +X2) = ψ(m,X1) + ψ(m,X2).

3. ψ(m,X) = (n−m,X) for exactly 2⌈(n+1)/2⌉ values of X ∈ GF (2n).

Proof. The first two properties of ψ(·) are obvious from its definition. For any

X =
∑n−1

i=0 xiβi, ψ(m,X) = (n−m,X) if and only if xi = xn−i, 1 ≤ i ≤ ⌊(n− 1)/2⌋.
From this, the third property follows.

Since ψ is an order 2 automorphism and it is independent of the ϕ automor-

phisms, ψ · ϕ for each ϕ, is also an automorphism. Further, ψ · ϕ = ϕ′ ·ψ where, the

two automorphisms defined by pairs (t,K0) and (t′, K ′
0) respectively are related as

t′ = −t and K ′
0 = µ(K0). Therefore ψ · ϕ cannot generate any new automorphisms

that are not generated by ϕ′ ·ψ. Thus the total number of automorphisms of CCCn

is n2n+1.

109

CHAPTER 5. CUBE CONNECTED CYCLES

5.5 Edge transformations by automorphisms in

CCCn

This section investigates the effect of the automorphisms described in Sec. 5.4 on the

edges of CCCn. It is easy to see that all the automorphisms of CCCn map g edges to

g edges. In particular, given any automorphism of the first kind, ϕ(·) with automor-

phism offset t and automorphism constants Ki, the g edge (m,X)
g−→ (m,X + β0)

is mapped to the edge (m + t,X +Km)
g−→ (m + t,X + β0 +Km). Similarly, the

automorphism of the second kind, ψ(·), maps the g edge (m,X)
g−→ (m,X + β0)

to another g edge (n−m,µ(X))
g−→ (n−m,µ(X) + β0).

To study the effect of the automorphisms on the f edges of CCCn, we classify

them as either of type 0 or type 1 based on the nodes from which they originate.

We define an f edge from (m,X) to be of type 0 if Tr(σX) = 0, and of type 1, if

Tr(σX) = 1. This classification of f edges is equivalent to partitioning elements

of GF (2n) into two sets, E0 and E1 such that when the f edge from (m,X) is of

type 0, X ∈ E0 and when that edge is of type 1, X ∈ E1. Clearly, Tr(σX) = 0 if

X ∈ E0, and Tr(σX) = 1 if X ∈ E1.

We then have the following result about the sets E0 and E1.

Theorem 26 E0 is a subgroup of the additive group GF (2n) and |E0| = 2n−1.

Further, E1 is a coset of E0.

Proof. Note that if X1, X2 ∈ E0, then Tr(σ(X1 +X2)) = Tr(σX1) + Tr(σX2) = 0

implying that X1+X2 ∈ E0 as well. Element 0 ∈ E0 is the identity of E0 and inverse

of any X ∈ E0 is X itself. Thus, E0 is a group. To find the number of elements

in E0, note that when X goes over all the elements of GF (2n), so does σX. Since

exactly half the elements of GF (2n) have a 0 trace, |E0| = 2n−1. E1 being the coset

of E0 is obvious.

Theorem 26 shows that exactly half the f edges in any column of CCCn are

of type 0 and the remaining half, of type 1. Theorem 27 explores the effect of an

automorphism of the first kind on these edges.

110

5.5. EDGE TRANSFORMATIONS BY AUTOMORPHISMS IN CCCN

Theorem 27 Let ϕ(·) be an automorphism of the first kind defined by the automor-

phism offset t and the automorphism constants Ki, 0 ≤ i < n. ϕ(·) maps each f

edge in column m to an edges of the same type if Tr(σKm) = 0 and to an edge of

the opposite type if Tr(σKm) = 1.

Proof. Consider an f edge from a node N1 = (m,X). The image of this edge under

the automorphism ϕ is an f edge from node N2 = ϕ(m,X) = (m + t,X + Km).

The classification of the f edge from node N1 into type 0 or 1 depends on the

value of Tr(σX) while that of the edge from N2 depends on Tr(σ(X + Km)) =

Tr(σX) + Tr(σKm). The theorem immediately follows from this.

Note that Tr(σKm) has been previously denoted by cm as in Theorem 23.

As Theorem 27 shows, the effect of an automorphism of the first kind on the type

(0 or 1) of an f edge from (m,X) depends only on the value of m. In other words,

the automorphism either preserves or alters the type of all f edges in a column. On

the other hand, the effect of the automorphism of the second kind, ψ(·), on the type

of an f edge from (m,X) depends only uponX. In other words, ψ(·) either preserves
or alters the type of all f edges in a row of CCCn. To see this, consider an f edge

(m,X)
f−→ (m + 1, Y), where Y = αX + βn−1Tr(σX). Under the automorphism

ψ(·), the image of this edge is (n−m,µ(X))
f←− (n−m− 1, µ(Y)) where function

µ is defined in (5.40). Clearly, the types of these two f edges depends upon Tr(σX)

and Tr(σµ(Y)) respectively. Since these values are independent of m, one can see

that the transformation of the edge type by ψ(·) does not depend on m.

To study the effect of ψ(·) on the edges of CCCn, we define a set S of the

elements of GF (2n) such that an X ∈ S if and only if the type of f edge from

(m,X) is preserved under ψ(·). It is not difficult to find elements of the set S.

AnX ∈ S can happen in two cases. when the f edge from (m,X) is of type 0, i.e,

(m,X)
f−→ (m+1, αX) and its image (n−m,µ(X))

f←− (n−m−1, µ(αX)) is also

of type 0. This case requires that Tr(σX) = 0 and Tr(σµ(αX)) = 0. In the second

case, the f edge from (m,X) is of type 1, i.e, (m,X)
f−→ (m+ 1, αX + βn−1) and

its image (n−m,µ(X))
f←− (n−m− 1, µ(αX + βn−1)) is also of type 1. This case

requires that Tr(σX) = 1 and Tr(σµ(αX+βn−1)) = 1. However, the linearity of the

111

CHAPTER 5. CUBE CONNECTED CYCLES

trace and the µ(·) functions and Lemma 2 allows one to write Tr(σµ(αX+βn−1)) =

Tr(σµ(αX) + Tr(σµ(βn−1)) = Tr(σµ(αX)) + p1. Therefore, one gets X ∈ S if and

only if

Tr(σX) = Tr(σµ(αX)) = 0, or Tr(σX) = Tr(σµ(αX)) + p1 = 1. (5.46)

Condition (5.46) can be written more compactly as

X ∈ S if and only if Tr(σ(p1X + µ(αX))) = 0, (5.47)

where, p1 denotes the complement of p1, i.e., when p1 = 0, p1 = 1 and vice versa.

With the set S characterized by (5.47), one can now state Theorem 28 which

specifies its properties.

Theorem 28 1. S is a subgroup of the additive group of GF (2n).

2. If the primitive polynomial p(x) is such that

p(x) + xn+1p(x−1) = (1 + x)(1 + xn), (5.48)

then |S| = 2n, otherwise, |S| = 2n−1.

3. Exactly half the elements of S are in E0 and the other half in E1.

4. Amongst the elements of GF (2n) that are not in S, exactly half are in E0 and

the other half in E1.

Proof. From (5.47), it is obvious that 0 ∈ S and S is closed under addition because

of the linearity of Tr and µ functions. Additive inverse of each X is X itself. Thus

S is a group.

To determine the number of elements in S and their distribution amongst sets

E0 and E1, consider first the case when p(x) satisfies (5.48). Let p(x) = 1 + xn +∑n−1
i=1 pix

i. Then a direct computation gives

p(x) + xn+1p(x−1) = (1 + x)(1 + xn) + p1(x+ xn) +
n−1∑
i=2

xi(pi + pn−i+1), (5.49)

112

5.5. EDGE TRANSFORMATIONS BY AUTOMORPHISMS IN CCCN

Thus if the primitive polynomial p(x) satisfies (5.48), then its coefficients must

satisfy p1 = 0 and for every i, 2 ≤ i < n, pi + pn−i+1 = 0. Equation (5.47) for

X = βi, 1 ≤ i < n, then gives

Tr(σ(βi + µ(αβi))) = Tr(σ(βi + µ(βi−1 + piβn−1)))

= Tr(σ(βi + βn−i+1 + piβ1)) = pi + pn−i+1 + pip1 = 0.

This shows that βi ∈ S, 1 ≤ i < n. Similarly,

Tr(σ(β0 + µ(αβ0))) = Tr(σ(β0 + β1) = p1 = 0,

showing that β0 ∈ S. Since S is a group and every X ∈ GF (2n) can be decomposed

into the dual basis, every X ∈ S and |S| = 2n. Further, from Theorem 26, exactly

half of these elements are in E0 and the rest in E1.

When p(x) does not satisfy (5.48), either p1 = 1 or for some 2 ≤ i < n, pi +

pn−i+1 = 1. If p1 = 1, the condition (5.47) shows that X ∈ S if and only if

Tr(σµ(αX)) = 0. But because µ(·) is an one-to-one onto function from GF (2n) to

GF (2n), as X varies over all the elements of GF (2n), so does σµ(αX). Since exactly

half of the field elements have a trace equal to 0, |S| = 2n−1. Now consider the pair

of elements X and (X + β0 + β1). One has

Tr(σµ(αX)) + Tr(σµ(α(X + β0 + β1))) = Tr(σµ(α(β0 + β1)))

= Tr(σµ(β0)) = Tr(σβ0) = 0.

Using (5.47) one can thus infer that either both X and (X + β0 + β1) are in S or

both are not in S, However, only one of these is in E0 because

Tr(σX) + Tr(σ(X + β0 + β1)) = Tr(σ(β0 + β1)) = p1 = 1.

Therefore in this case, exactly half the elements in S are in E0 and the rest in E1.

In addition, amongst the elements that are not in S, exactly half are in E0 and the

rest in E1.

Finally, when p(x) does not satisfy (5.48), but p1 = 0, there must be an i,

2 ≤ i < n such that pi + pn−i+1 = 1. For a pair of elements X and X + βi, one has

Tr(σ(X + µ(αX))) + Tr(σ(X + βi + µ(α(X + βi)))) = Tr(σ(βi + µ(αβi)))

= Tr(σ(βi + µ(βi−1 + piβn−1))) = pipn−i+1 + pip1 = 1.

113

CHAPTER 5. CUBE CONNECTED CYCLES

Thus from (5.47), exactly one of X and X + βi is in S, giving |S| = 2n−1. To find

out how many of these elements in S are in E0, we examine X and (X+βi+βn−i+1).

We have,

Tr(σ(X + µ(αX))) + Tr(σ(X + βi + βn−i+1 + µ(α(X + βi + βn−i+1))))

= Tr(σ(βi + βn−i+1 + µ(α(βi + βn−i+1))))

= Tr(σ(βi + βn−i+1 + µ(βi−1 + βn−i + (pi + pn−i+1)βn−1)))

= Tr(σ(pi + pn−i+1)β1) = (pi + pn−i+1)p1 = 0.

Thus from (5.47), both X and X + βi are in S or not in S. However, exactly one of

them is in E0 because

Tr(σX) + Tr(σ(X + βi + βn−i+1)) = Tr(σ(βi + βn−i+1)) = pi + pn−i+1 = 1.

Therefore exactly half the elements in S are in E0 and the rest in E1. In addition,

exactly half of elements that are not in S are in E0 and the rest in E1.

Theorem 28 shows that the edge transformation in CCCn because of the auto-

morphism of the second kind, ψ(·) is highly regular. Either none of the f edges in

the graph change their type (when p(x) satisfies (5.48)), or edges in exactly half the

rows of the graph change their type (when p(x) does not satisfy (5.48)) because of

ψ. Further, within the sets of edges that change or do not change, exactly half are

of type 0 and the others, of type 1.

It is clear from the theorem that the characteristics of the primitive polynomial

used to build the field and model the network are important. In particular, relation

(5.48) is critical in determining the sizes of sets of edges that change types because

of the automorphism ψ(·). One can show that to satisfy (5.48), the degree of the

polynomial should be odd and its coefficient p(n+1)/2 should be 1. Even though

condition (5.48) seems rather artificial, there are many primitive polynomials which

satisfy it. Primitive polynomials x3 + x2 + 1 and x5 + x4 + x3 + x2 + 1 can be cited

as examples.

For applications to mappings on faulty networks, it is preferred to have smaller

114

5.6. CCCN AS A SUBGRAPH OF BFN

sets of edges with predictable transformations due to an automorphism. It is there-

fore preferred to use a primitive polynomial p(x) which does not conform to (5.48).

This would ensure that f edges in only half the rows in CCCn would change type,

while other half would not. Fortunately, it is possible to show that there does ex-

ist at least one primitive polynomial which does not satisfy (5.48) for every degree

n. Let a primitive polynomial p(x) of degree n satisfy (5.48). Then its reciprocal

polynomial, p̃(x) = xnp(x−1) is also a primitive polynomial. p̃(x) cannot also satisfy

(5.48), because otherwise, one would have

p̃(x) + xn+1p̃(x−1) = (1 + x)(1 + xn). (5.50)

Expressing p̃(x) in terms of p(x) in (5.50) and simplifying gives p(x) = 1+xn, which

is impossible as p(x) is primitive.

5.6 CCCn as a subgraph of BFn

It is known that the cube connected cycles is a subgraph of the butterfly graph [38].

We show in this section how this can be derived in our algebraic model.

Consider a function f(·) : GF (2n)→ GF (2) defined as

f(X) = Tr(σ(α + 1)−1X). (5.51)

Following lemma states important properties of f .

Lemma 7 The function f(·) : GF (2n)→ GF (2) defined by (5.51) is linear and has

the following properties.

f(X + β0) = f(X) + 1

f(αX + βn−1Tr(σX)) = f(X) and

f(α−1X + β0Tr(σα
−1X)) = f(X)

115

CHAPTER 5. CUBE CONNECTED CYCLES

Proof. Linearity of f is obvious from the linearity of the trace function. Let X ′ =

X + β0. Then,

f(X ′) = Tr(σ(α + 1)−1X) + Tr(σ(α+ 1)−1β0)

= Tr(σ(α + 1)−1X) + 1.

To prove the other two parts of the lemma, note that σ(1+α)−1 = 1+α+α2 +

· · ·αn−1. Let X ′ = αX + βn−1Tr(σX). Then,

f(X ′) = Tr(αX + · · ·+ αnX) + Tr(σX)Tr(βn−1 + αβn−1 + · · ·+ αn−1βn−1)

= f(X) + Tr(X) + Tr(αnX) + Tr(σX)

= f(X).

Similarly, when X ′ = α−1X + β0Tr(σα
−1X), one has

f(X ′) = Tr(α−1X + · · ·+ αn−2X) + Tr(σα−1X)Tr(β0 + αβ0 + · · ·+ αn−1β0)

= f(X) + Tr(α−1X) + Tr(αn−1X) + Tr(σα−1X)

= f(X).

We now state the central result of this section.

Theorem 29 CCCn is a subgraph of BFn.

Proof. We show that the function ϕ : CCCn → BFn defined by

ϕ(m,X) = (m+ f(X), αf(X)X + f(X)βn−1Tr(σX)), (5.52)

maps all the edges of CCCn to distinct edges of BFn.

First note that ϕ is a one-to-one function. This is because if ϕ(m1, X1) =

ϕ(m2, X2), then

αf(X1)X1 + f(X1)βn−1Tr(σX1)) = αf(X2)X2 + f(X2)βn−1Tr(σX2)). (5.53)

116

5.6. CCCN AS A SUBGRAPH OF BFN

If f(X1) = f(X2), then (5.53) gives X1 = X2. Without loss of generality, assume

f(X1) = 1 and f(X2) = 0. Then (5.53) can be rewritten as

αX1 + βn−1Tr(σX1) = X2. (5.54)

Thus,

f(X2) = Tr(σ(α + 1)−1X2)

= Tr(σα(α+ 1)−1X1) + Tr(σX1)Tr(σ(α + 1)−1βn−1). (5.55)

Using α(α + 1)−1 = 1 + (α + 1)−1 in the first term of (5.55) and σ(α + 1)−1 =

1 + α + α2 + · · ·+ αn−1 in the second, one gets

f(X2) = Tr(σX1) + f(X1) + Tr(σX1) = f(X1).

But this contradictory to the assumption that f(X1) = 1 and f(X2) = 0. Therefore

ϕ is a one-to-one function.

We now show that ϕ maps the edges of CCCn to edges of BFn through the

following three cases.

Case 1. Edge between (m,X) and (m + 1, X ′) in CCCn, where X ′ = αX +

βn−1Tr(σX)).

When f(X) = 0, because of Lemma 7, f(X ′) = 0 as well. The two vertices map in

BFn to

ϕ(m,X) = (m,X), and,

ϕ(m+ 1, X ′) = (m+ 1, αX + βn−1Tr(σX)).

Because Tr(σX) is either 0 or 1, there is clearly an edge between these two vertices

in BFn.

When f(X ′) = f(X) = 1, vertices (m,X) and (m+ 1, X ′) in CCCn map to the

following BFn vertices.

ϕ(m,X) = (m+ 1, X ′)), and,

ϕ(m+ 1, X ′) = (m+ 2, αX ′ + βn−1Tr(σX
′)).

117

CHAPTER 5. CUBE CONNECTED CYCLES

Since Tr(σX ′) is either 0 or 1, there is an edge in BFn between these two vertices.

Case 2. Edge between (m,X) and (m − 1, X ′) in CCCn, where X
′ = α−1X +

β0Tr(σα
−1X)).

As in the previous case, let f(X) = f(X ′) = 0, Then the two vertices map in BFn

to

ϕ(m,X) = (m,X), and,

ϕ(m− 1, X ′) = (m− 1, X ′) = (m− 1, α−1X + β0Tr(σα
−1X)).

Since Tr(σα−1X) is either 0 or 1, there is a direct link between these two vertices

of BFn.

On the other hand, when f(X) = f(X ′) = 1, one has

ϕ(m,X) = (m+ 1, αX + βn−1Tr(σX)) and,

ϕ(m− 1, X ′) = (m,αX + βn−1Tr(σX)) = (m,X).

Thus in this case also, there is an edge between these two vertices in BFn.

Case 3. Edge between (m,X) and (m,X + β0) in CCCn.

In this case, when f(X) = 0, f(X + β0) = 1 from Lemma 7. Thus the two vertices

map to

ϕ(m,X) = (m,X) and,

ϕ(m,X + β0) = (m+ 1, α(X + β0) + βn−1Tr(σ(X + β0)))

= (m+ 1, αX + βn−1(Tr(σX) + 1)),

showing that the two vertices are connected in BFn.

Similarly, when f(X) = 1, f(X + β0) = 0. Thus the edge maps to

ϕ(m,X) = (m+ 1, αX + βn−1Tr(σX)) and,

ϕ(m,X + β0) = (m,X + β0).

Clearly, in this case also, there is an edge between these two images in BFn.

118

5.7. CONCLUSION

5.7 Conclusion

This Chapter has provided a new algebraic model for the CCC using the direct

product of a cyclic group and a finite field. This model allows the use of powerful

algebraic techniques to study the structural properties of the network. We exploited

these techniques to find optimal paths in the CCC and explore the relationships be-

tween the Cube Connected Cycles, the Shuffle Exchange and the deBruijn networks.

We have shown that the total number of automorphisms of a the CCC network of

degree n is n2n+1 and have obtained explicit expressions for these automorphisms.

119

CHAPTER 5. CUBE CONNECTED CYCLES

120

Chapter 6

Conclusion

Wrap-around Butterfly Network (BFn), Cube Connected Cycles (CCCn), Shuffle

Exchange (SEn) and deBruijn (DBn) are some of the most popular interconnection

networks on which many of the existing parallel machines are based. This disser-

tation focused on exploring structural properties of Wrapped Butterflies (BFn) and

Cube Connected Cycles (CCCn) using algebraic models based on finite fields.

We have obtained simple expressions for all the n2n+1 automorphisms of BFn.

Automorphisms have been used in the past to deal with single node faults and for

tight VLSI layout of single chip implementations of interconnection networks. Even

though the number of automorphisms could be computed from the packages such

as Nauty, there is no prior work on obtaining these automorphisms themselves. We

have explored useful properties and interactions of these automorphisms. We have

investigated, for the first time, the effect of automorphisms on graph edges. This, in

turn, can be used to map algorithm on Butterfly architectures with faulty edges. To

achieve a fault free mapping, one only has to choose an appropriate automorphism

to map the set of faulty edges to free edges. Since an automorphism set is complete

and since each of these automorphisms are simple; it helps in this choice.

We have illustrated our technique by mapping a Hamilton cycle on a Butter-

fly under various edge fault scenarios. Previously, Hamilton cycle mappings were

possible only for two node or one node and one edge or two edge faults. Our work

shows that Butterfly (BFn) supports a Hamiltonian cycle even when it has up to

121

CHAPTER 6. CONCLUSION

2n faulty edges of the same type in each column except one (Theorem 11) or even

when it has faulty edges in all but two of its rows as long as the faults in a given set

of rows are constrained to one type and those outside to one type as well (Theorems

13, 14). Further, the requirement of two fault-free rows can be lifted when n is odd

(Theorems 15, 16, 17). As a corollary, we have shown that BFn is Hamiltonian with

up to n− 1 random edge faults distributed one per column (Corollary 1). We also

give much simpler construction than [43] for building Hamilton cycles in BFn with

up to two random edge faults.

This dissertation has provided new algebraic models for the Shuffle Exchange

(SEn) and Cube Connected Cycles (CCCn) networks. Because of fixed node degree

and small diameter, these networks are scalable.

Our models use finite fields and are much simpler to deal with than the usual

binary models. We show the power of the algebraic model by proving that CCCn

is a subgraph of BFn in a manner much simpler than the prior proof [38]. We also

use the models to design path algorithms to travel between any two nodes of the

Cube Connected Cycles and Shuffle Exchange networks (Algorithms 1, 2, 3). Paths

in CCCn have been studied before [56,57], but our algorithms are much simpler and

provide many alternatives which might be a useful characteristics if some edges in

the graph are faulty.

This research has obtained all the n2n+1 automorphisms of the Cube Connected

Cycles of dimension n for the first time (Theorem 22). Even though the number of

automorphisms of CCCn could be computed earlier using the Naulty package, the

automorphisms themselves were not determined earlier.

Similar to our work on BFn, we have also investigated the effect of automor-

phisms on the edges of CCCn (Theorems 26, 27, 28). Our work shows that four

quite distinct interconnection networks, SEn, DBn, CCCn and BFn all share very

similar algebraic models and are subject to similar mathematical exploits.

122

6.1. FUTURE RESEARCH

6.1 Future Research

This research proposed a new approach to mappings on Butterfly network with

faulty edges. Even though we have limited our mappings to Hamiltonian cycle,

we believe that the techniques developed in this research hold a lot of promise for

other parallel algorithm mappings on BFn under a larger set of edge faults and

mapping under node faults. The algebraic model shows very promising results in

analyzing constant node degree networks. In this dissertation we have proposed a

new algebraic model for Cube Connected Cycles and Shuffle Exchange networks. In

particular we show that these networks can be very effectively described by a finite

field. One may identify the nodes in the interconnection graph with the elements

of the abstract algebraic structure in such a fashion that the connectivity between

nodes is expressed as a simple algebraic relation between the field elements. This

allows one to exploit the rich properties of the finite fields to develop good mappings

on these networks. We demonstrated the power of these techniques to find optimal

paths in the CCCn and SEn. Our work could be extended to map cycles and trees

on Cube Connected Cycles (CCCn). Finally, we also believe that similar algebraic

approach could be used to model other constant node interconnection networks as

well.

123

CHAPTER 6. CONCLUSION

124

Bibliography

[1] F. Leighton, Introduction to parallel algorithms and architectures: Arrays, trees,

hypercubes. M. Kaufman Pub., 1992.

[2] S. Akers and B. Krishnamurthy, “A group-theoretic model for symmetric in-

terconnection networks,” IEEE Trans. Computers, vol. 38, no. 4, pp. 555–566,

1989.

[3] Z. Chen, Z.-J. Liu, and Z.-L. Qiu, “Bidirectional shuffle-exchange network and

tag-based routing algorithm,” Communications Letters, IEEE, vol. 7, pp. 121

– 123, march 2003.

[4] M. Samatham and D. Pradhan, “The de bruijn multiprocessor network: A ver-

satile parallel processing and sorting network for vsli,” IEEE Trans. Computers,

vol. 38, no. 4, pp. 567–581, 1989.

[5] F. Preparata and J. Vuillemin, “The cube-connected cycles: A versatile network

for parallel computation,” Comm. ACM, vol. 24, no. 5, pp. 30–39, 1991.

[6] I. Frǐs, I. Havel, and P. Liebl, “The diameter of the cube-connected cycles,”

Inf. Process. Lett., vol. 61, no. 3, pp. 157–160, 1997.

[7] W. Lin, T. Sheu, C. R. Das, T. Feng, and C. Wu, “Fast data selection and

broadcast on the butterfly network,” in Proc Workshop Future Trends Distrib

Comput Syst 1990s, pp. 65–72, 1990.

[8] A. Ranade, “Optimal speedup for backtrack search on a butterfly network,”

Mathematical systems theory, vol. 27, pp. 85–102, Jan 1994.

125

BIBLIOGRAPHY

[9] E. J. Schwabe, “Constant-slowdown simulations of normal hypercube algo-

rithms on the butterfly network,” Information processing letters, vol. 45, p. 295,

Apr 1993.

[10] M. D. Wagh and O. Guzide, “Mapping cycles and trees on wrap-around but-

terfly graphs,” SIAM J. on Comput., vol. 35, pp. 741–765, 2006.

[11] F. Annexstein, M. Baumslag, and A. Rosenberg, “Group action graphs and

parallel architectures,” SIAM J. Compt., vol. 19, no. 3, pp. 544–569, 1990.

[12] S. Akers and B. Krishnamurthy, “The star graph: An attractive alternative

to n-cube,” in Int’l Conf. Parallel Processing (ICPP 87) (I. St. Charles, ed.),

pp. 393–400, 1987.

[13] B. Arden and K. Tang, “Representation and routing of cayley graphs,” IEEE

Trans. Comm., vol. 39, pp. 1,533–1,537, 1991.

[14] J. Mo, Interconnection networks based on finite fields and finite groups. PhD

thesis, Lehigh University, 1996.

[15] M. D. Wagh and J. C. Mo, “An analytical setting and mappings on the product

of generalized de bruijn graphs,” in Proc. of the 10th Int. Conference on Parallel

and Distributed Computing Systems, (New Orleans), pp. 253–257, October 1–3

1997.

[16] C.-H. Tsai, “Cycles embedding in hypercubes with node failures,” Inf. Process.

Lett., vol. 102, no. 6, pp. 242–246, 2007.

[17] C.-H. Tsai and Y.-C. Lai, “Conditional edge-fault-tolerant edge-bipancyclicity

of hypercubes,” Inf. Sci., vol. 177, no. 24, pp. 5590–5597, 2007.

[18] J.-S. Fu, “Fault-tolerant cycle embedding in the hypercube,” Parallel Comput.,

vol. 29, no. 6, pp. 821–832, 2003.

[19] T.-L. Kueng, T. Liang, L.-H. Hsu, and J. J. M.Tan, “Long paths in hypercubes

with conditional node-faults,” Inf. Sci., vol. 179, no. 5, pp. 667–681, 2009.

126

BIBLIOGRAPHY

[20] S.-Y. Hsieh, “Fault-tolerant cycle embedding in the hypercube with more both

faulty vertices and faulty edges,” Parallel Comput., vol. 32, no. 1, pp. 84–91,

2006.

[21] A. Avior, T. Calamoneri, S. Even, A. Litman, and A. L. Rosenberg, “A

tight layout of the butterfly network,” Theory of Computing Systems, vol. 31,

pp. 475–488, Dec 1998.

[22] C.-H. Yeh, B. Parhami, E. A. Varvarigos, and H. Lee, “VLSI layout and pack-

aging of butterfly networks,” in Proc. of ACM symp. on Parallel algorithms

and architectures, (Bar Harbor, Maine), pp. 196–205, 2000.

[23] M. D. Wagh and K. Bendjilali, “Butterfly automorphisms and edge faults,” in

Proc. of Int. Symp. on Parallel and Distr. Comput., (Istanbul, Turkey), July

2010.

[24] M. D. Wagh and K. Bendjilali, “Conquering edge faults in butterfly with auto-

morphisms,” in Proc. of Int. Conf. on Theoretical and Mathematical Founda-

tions of Comp. Sc., (Orlando, FL), pp. 57–64, July 2010.

[25] E. R. Berlekamp, Algebraic coding theory. New York, NY: Mc-Graw Hill, 1968.

[26] P. A. Grillet, Algebra. A Wiley-Interscience publication, 1999.

[27] C. T. Gray, W. Liu, T. Hughes, and R. Cavin, “The design of a high-

performance scalable architecture for image processing applications,” in Proc

90 Int. Conf. Appl. Specif. Array Processors, pp. 722–733, 1991.

[28] J. H. Reif and S. Sen, “Randomized algorithms for binary search and load

balancing on fixed connection networks with geometric applications,” SIAM

Journal on Computing, vol. 23, pp. 633–651, Jun 1994.

[29] A. L. Rosenberg, “Cycles in networks,” Tech. Rep. Tech Rep 91-20, Univ. of

Mass., 1993.

127

BIBLIOGRAPHY

[30] A. Gupta and S. E. Hambrusch, “Embedding complete binary trees into but-

terfly networks,” IEEE Trans. Computers, vol. 40, pp. 853–863, Jul 1991.

[31] S. Bhatt, F. R. K. Chung, J. Hong, F. Leighton, B. Obrenic, A. L. Rosenberg,

and E. J. Schwabe, “Optimal emulation by butterfly-like networks,” JACM,

vol. 43, pp. 293–330, Mar 1996.

[32] N. G. de Bruijn, “A combinatiorial problem,” Proc. Koninklijke Nederlandse

Acad. van Wetenschappen, vol. A49, pp. 758–764, 1949.

[33] J. Bermond and P. Fraigniaud, “Broadcasting and gossiping in de bruijn net-

works.,” SIAM J. on Comput., vol. 23, pp. 212–225, Feb 1994.

[34] D. Z. Du, D. F. Hsu, F. K. Hwang, and X. M. Zhang, “The hamiltonian property

of generalized de bruijn digraphs.,” J. of Combinatorial Theory. Series B.,

vol. 52, pp. 1–8, May 1991.

[35] M. C. Heydemann, J. Opatrny, and D. Sotteau, “Broadcasting and spanning

trees in de bruijn and kautz networks,” Discrete applied math., vol. 37–38,

pp. 297–317, July 1992.

[36] M. Heydemann, J. Opatrny, and D. Sotteau, “Embedding of hypercubes and

grids into de bruijn graphs,” Journal of Parallel and Distributed Computing,

vol. 23, pp. 104–111, 1994.

[37] M. Baumslag, “An algebraic analysis of the connectivity of debruijn and shuffle

exchange diagraphs,” Discrete Applied Math, vol. 61, no. 3, pp. 213–227, 1995.

[38] R. Feldmann and W. Unger, “The cube-connected-cycle is a subgraph of the

butterfly network,” Parallel Processing Letters, vol. 2, no. 1, pp. 13–19, 1992.

[39] O. Guzide and M. D. Wagh, “Extended butterfly networks,” in Proc. of the The

18th Int. Conf. on Parallel and Distributed Computing Systems, (Las Vegas,

NV), pp. 109–113, 2005.

128

BIBLIOGRAPHY

[40] O. Guzide and M. D. Wagh, “Enhanced butterfly: A Cayley graph with node

degree 5,” in Proc. of the The 20th Int. Conf. on Parallel and Distributed

Computing Systems, (Las Vegas, NV), pp. 224–229, 2007.

[41] P. Vadapalli and P. Srimani, “Fault tolerant ring embedding in tetravalent

cayley network graphs,” J Circuits Syst Comput, vol. 10, pp. 527–536, 1996.

[42] C.-H. Tsai, T. Liang, L.-H. Hsu, and M.-Y. Lin, “Cycle embedding in faulty

wrapped butterfly graphs,” Networks, vol. 42, no. 2, pp. 85–96, 2003.

[43] S.-C. Hwang and G.-H. Chen, “Cycles in butterfly graphs,” Networks, vol. 35,

no. 2, pp. 161–171, 2000.

[44] H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans. Com-

put., vol. 20, pp. 153–161, Feb 1971.

[45] C. Chen and J.-K. Lou, “An efficient tag-based routing algorithm for the back-

ward network of a bidirectional general shuffle-exchange network,” Communi-

cations Letters, IEEE, vol. 10, pp. 296–298, apr 2006.

[46] F. Leighton, Complexity issues in VLSI: optimal layouts for the shuffle-

exchange graph and other networks. Cambridge, MA, USA: MIT Press, 1983.

[47] R. Feldmann and P. Mysliwietz, “The shuffle exchange network has a hamil-

tonian path,” in Proc. of the 17th Int. Symp. on Mathematical Foundations of

Computer Science, (London, UK), pp. 246–254, Springer-Verlag, 1992.

[48] J. Bruck, R. Cypher, and C. T. Ho, “Fault-tolerant de bruijn and shuffle-

exchange networks,” IEEE Trans. Parallel Distrib. Syst., vol. 5, no. 5, pp. 548–

553, 1994.

[49] M. Baumslag, “Fault-tolerance properties of debruijn and shuffle-exchange net-

works,” in SPDP’93, pp. 556–563, 1993.

[50] G. Chen and F. C. M. Lau, “Layout of the cube-connected cycles without long

wires,” Comput. J., pp. 374–383, 2001.

129

BIBLIOGRAPHY

[51] Y. Tanaka and Y. Shibata, “On the pagenumber of the cube-connected cycles,”

Math. in CS, vol. 3, pp. 109–117, 2010.

[52] S. Jianping, H. Zifeng, and S. Yuntao, “An optimal multicast algorithm for

cube-connected cycles,” J. Comput. Sci. Technol., vol. 15, pp. 572–583, Novem-

ber 2000.

[53] G. E. Jan, S. W. Leu, C. H. Li, and X. Dong, “A perfect load balancing

algorithm on cube-connected cycles,” in Proc. of the 5th WSEAS Int. Conf. on

Comp. Intelligence, Man-Machine Systems and Cybernetics, pp. 345–350, 2006.

[54] A. Germa, M. Heydemann, and D. Sotteau, “Cycles in the cube-connected

cycles graph,” Discrete Appl. Math., vol. 83, pp. 135–155, March 1998.

[55] J. Yan, J. M. Xu, and C. Yang, “Forwarding index of cube-connected cycles,”

Discrete Appl. Math., vol. 157, pp. 1–7, January 2009.

[56] L. Peng, W. Wei, and J. Xiang, “A new addressing scheme for cube-connected

cycles network,” in Proc. of the 3rd IEEE Conf. on Industrial Electronics and

Applications, (Singapore), pp. 586 – 590, June 3-5 2008.

[57] D. Meliksetian and C. R. Chen, “Optimal routing algorithm and the diameter

of the cube-connected cycles,” IEEE Transactions on parallel and Distributed

Systems, vol. 4, pp. 1172–1178, 1993.

130

Vita

Khadidja Bendjilali recieved her PhD. degree from the department of Computer

Engineering at Lehigh University, USA in January 2012. She received her M.S. de-

gree from the Computer Science department at Lehigh University, USA in January

2005. She received her Bachelor of Science degree in Computer Science from Univer-

sity of Petra. Her research interests include parallel processing, and interconnection

networks.

131

	Lehigh University
	Lehigh Preserve
	2011

	Algebraic Models of Constant Node Degree Interconnection Networks
	Khadidja Bendjilali
	Recommended Citation

	tmp.1363264564.pdf.YsCCJ

