
Lehigh University
Lehigh Preserve

Theses and Dissertations

1993

A comparison between hypercube and binary de
Bruijin networks
Ato Y. Arkaah
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Arkaah, Ato Y., "A comparison between hypercube and binary de Bruijin networks" (1993). Theses and Dissertations. Paper 232.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228641454?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/232?utm_source=preserve.lehigh.edu%2Fetd%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

U· .~' T';H;" El

>' ' IJ

rkaah, t Ym

TI
113 tarls n 'we n

ypercube and

inary e Bruijn Netw rks
o

.T : January 16, 1994

A Comparison Between Hypercube and

Binary de Bruijn Networks

by ,

Ato Y. Arkaah

A Thesis

Presented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

m

CompurerEngmeering

Electrical Engmeermg aiid Computer Science Department

.· .. ,"Lehigh.Uni'!-ersity .
"

December 10, 1993.

Table of Contents

Abstract 1
1 An Introduction to Multiprocessor Networks 2

1. 1 Introduction 2
1.2 Attributes of a multiprocessor network 3
1.3 Relevant multiprocessor networks 5

'" 1.3.1 The linear array network 5
1.3 .2 The ring network 6
1.3.3 The binary tree network 7
1.3.4 The shuffle-exchange network 8

1.4: Organization of thesis' 9

2 The Hypercube Multiprocessor Network 11

2.1 Definition of a hypercube network 11
2.2 Dimensions and node degrees of the hypercube 12
2.3 Hypercube properties 13

2.3. 1 Message routing 13
2.3.2 Uniformity and symmetry 15
2.3.3 Expanding and tearing 16
2.3.4 Absorbing networks into the hypercube 18

2.3.4.1 Mapping rings and linear arrays onto a hypercube 18
2.3.4.2 Mapping a binary tree network onto a hypercube 19

2.4 Message broadcasting on a hypercube 20
2.4.1 Timing analysis of a single node scatter broadcast 21
2.4.2 Timing analysis of a multinode broadcast 22
2.4.3 Timing analysis of a total-exchange broadcast 22

3 The Binary de Bruijn Multiprocessor Network 23

3. 1 Definition of a de Bruijn network 23
3.2 Dimensions and node degrees of the de Bruijn 24
3.3 de Bruijn network properties 24

3.3.1 Message routing 25
3.3.2 Uniformity and symmetry 26
3.3.3 Expanding and tearing 27
3.3.4 Absorbing networks into the binary de Bruijn 28

3.3.4.1 Mapping rings and linear arrays onto a binary de Bruijn 28
3.3.4.2 Mapping a binary tree onto a binary de Bruijn 29

".:. -:-'- .':.

iii

.' -""f.-.- " •.-.:..:~.:'...

3.3.4.3 Mapping a shuffle-exchange onto a binary de Bruijn 30
3.4 Message broadcasting 31

3.4.1 Timing analysis of a single node scatter broadcast 31
3.4.2 Timing analysis of a multinode broadcast 32
3.4.3 Timing analysis of a total-exchange broadcast 32

4 An Analysis of a Select Group of Sorting Algorithms 33

4. 1 Introduction
4.2 The bubble sort algorithm .

4.2.1 Efficiency of the bubble sort
4.3 The insertion sort algorithm

4.3.1 Efficiency of the insertion sort
4.4 The shell sort algorithm

4.4.1 Efficiency of the shell sort
4.5 The quick sort algorithm

4.5. 1 Efficiency of the quick sort
4.6 Selecting sorting algorithms for multiprocessors networks

5 Transputers and Occam

5.1 Introduction to transputers
5.2 Th~ IMS T805 transputer
5.3 The SuperSetPlus.64 system
5.4 The Occam programming language

33
34
35
35
36
36
38
38
39
40

42

42
43
44
44

6 Implementing a Hybrid Sorting Algorithm on Multiprocessor 47
Networks

6.1 Introduction
6.2 Distributing and timing sorting algorithms
6.3 Implementing the bubble sort algorithm
6.4 Implementing the shell sort algorithm

7 Results and Conclusions

7. 1 Introduction
7.2 Attribute differences

47
47
48
49

51

51
51

­.,. _ •.:'. ~:: $'"
-.".- ,~.. ,-

IV

..0(): -:..._.~_.r~!.:~:\:f~_ -;! 'J"t ":~ :'>":"'}:~!::'~:'r'1..t.::~~... - ...-:-,...,....,..;, F- _.. -,

"

7.3 Implementing the networks
7.3.1 The effect of a dynamic node degree on network software
7.3.2 Packet routing header protocols

7.4 Results of the hybrid sort
7.5 Conclusion

References

52
53
54
55
58

60

.\'.'-;';'"

v

List of Figures

Chapter 1

1.1 A L(8) array network
1.2 A R(8) 'network
1.3 A T(2,3) network
1.4 A ShX(2,3) network

Chapter 2

2.1 Sahiplehypercllbetopolbgies' - -.__w'·

2.2 Distinct communication paths
2.3 _Expansion of a hypercube network
2.4 Mapping a ring-network onto a hypercube network
2.5 Mapping a binary tree onto a hypercube network
2.6 Creation of spanning trees for two nodes of a 3-cube

Chapter 3

6
7
7
8

11
14
17
19
20
21

3.1 Sample de Bruijn topologies 23
3.2 Sample dB(2,4) network 26
3.3 Expansion of a dB(2,2) network to a dB(2,3) network 27
3.4 - Mapping a binary tree onto a binary de Bruijn network 29
3.5 Mapping a shuffle-exchange network onto a binary de Bruijn network 30
3.6 Worst-case and best-case spanning trees of a dB(2,3) network 31

Chapter 4

4.1 First pass through a list using a bubble sort
4.2 Insertion sort algorithm applied to a list
4.3 First pass of a shell sort on a list
4.4 Quick sort of a list

Chapter 5

35
36
37
39

-
5.1 IMS T805 block diagram

!.,:-,.~";'~., ..-~-:-,#.::;.l:. ~~.;:.q;;;.,.". -",,~-'.::;::';,-::::L-:-'$;(""'. . -.,,:1< • • '-.:...

~.' ~,--;:....-:.,,; .. ;1.~·i~'.·_~,. --.- -. --

VI

Chapter 7

7.1 Routing a packet in the de Bruijn network
7.2 Plot of hybrid sort vs. bubble sort

Vll

54
57

.'.~-': .;. , - ..

List of Tables

Chapter 7

7.1 Differences of the hypercube and binary de Bruijn networks
7.2 Results of the hybrid sort

Vlll

52
56

Abstract

Application specific multiprocessor networks tend to achieve the maXImum

possible performance for th~ir class of applications. However, the task of comparing

networks that differ in physical attributes on a specific class of applications is difficult

in nature.

The intention of this study is to perform a comparison between the hypercube and

binary de Bruijn multiprocessor networks. This class of networks differ in almost every

physical design aspect. Although the hypercube network is known to be particularly well ­

suited to the distributed sorting class of applications, little is known of the de Bruijn

network within this class.

This study presents the differences and similarities between the two networks. It

also presents results obtained from a hybrid distributed sorting application implemented

on both networks for increasing network and list sizes. If the de Bruijn network at the

very least matches the hypercube in low network fabrication cost, simplicity, and sorting

efficiency, then the de Bruijn network can be targeted as a possible network of the

future.

.!':"'

1

CHAPTER 1

An Introduction to Multiprocessor Networks

1.1 Introduction

The demand for systems that possess faster execution times and higher throughput

has increased steadily over the last decade. Prior to the design of parallel systems

conventional computers were approaching the upper bound of their physical switching

limits. This~lirtIit:'tfie'fiatUrardetaY'tll11eT6rsignals to travel from one point to another,

is bound by our present day technological standards. To further emphasize the point, a

single sequential processor capable of operating at the speed of light could not achieve

more than a couple billion instructions per second [14]. Such a system does not meet the .

requirements of applications derived from fields such as physi~s of fluid dynamics.

To increase computer throughput, it was realized that the sequential bottleneck

problem of. Von Neumann architecture had to be avoided. One of the solutions to this

problem is to create systems with multiple processors. In other words, systems that could

process information concurrently or in parallel.

Parallel computers are constructed with the assumption that a large number of

applications are inherently parallel. Thus, if an application or parts of an application can

be executed in parallel we can achieve faster execution and an increased throughput.

It is the intention of this study to perform a critical comparison between the de

Bruijn multiprocessor network and the hypercube multiprocessor network. During the

course of this document, the advantage and disadvantages of both systems will be

2

examined in detail. Also, some conclusions are drawn from empirical data obtained from

timed sorting algorithms implemented on both networks.

Throughout the course of this ~ocument, the term multiprocessor network will be

used to denote a parallel computer with a specific topological design for its

communication links. The multiprocessor networks utilized in this study are static in

nature. The communication links of a static network, once configured, remain passive

throughout the network's lifetime. On the other hand, dynamic networks possess the

ability to· reconfigure their communication links by resetting their network's

communication channel switching elements at run-time [12].

Static networks are usually represented as undirected graphs, where vertices are

processing nodes and edges correspond to communication channel links between nodes

[8,11,13,17]. In addition, each processing node consists of a processor with its local

memory module . Once a graph is established for a network the attributes of the graph

can be analyzed.

1.2 Attributes of a multiprocessor network

In a multiprocessor network, primary focus is placed on the following attributes:

o diameter. This denotes the maximum number of hops any message traverses for

communication between nodes. This length is desired to be kept ata minimum value

because, the shorter the message path the less time communication will consume, which

in tum contributes to a faster system.

o node degree. The degree of a node corresponds to the number of input/output (I/O)

communication links each node possesses. Obviously, the greater the degree the more

3

complex and expensive the node. Thus, node degree is desired to be at a minimal,

constant number, or should avoid increasing as rapidly as the machine size. A constant

node degree for increasing/decreasing network sizes does not require the design and

manufacture of new nodes, but simply a reconfiguration of its communication channel

links.

o routing algorithms. Routing algorithms are responsible for the efficient and safe

transportation of messages/data between processors. The complexity of the routing

algorithm of a multiprocessor network is directly related to its design. Algorithms for

message routing are preferred to be as simple and as optimal as possible. (Le. using the

shortest path)

<:) uniformity and symmetry. A uniform and symmetric network permits a single node

design with its fixed node degree to be utilized for all vertices of the network. This

desired attribute contributes significantly to the systems cost factor, and when adhered

to can lead to a standard routing algorithm with a balanced communication traffic flow .
. J

o fault tolerance. It is every designers wish that their multiprocessor network be able

to operate in the midst of faults. This attribute is not addressed throughout the course of

this document primarily because of the vast/ange of its sub-topics.

o expansibility and tearing ability. These attributes consider the case of reducing or

increasing the network size. It is the goal of every designer to create a network that is

easy to increase/decrease in node size.

o absorbability. This particular attribute is concerned with the network's ability to

emulate another network. If a network possesses this attribute for a different network an

4

......,r.-~r.n-- ,.~._~

argument can be made that the type of network absorbed is no longer needed. Usually,

this attribute can be used to classify the designed network as a general-purpo_se or a
,

special-purpose network.

In some cases, the above attributes can contradict each other. For example, a

multiprocessor network with a small diameter might imply a network with nodes of a

greater degree. This is understandable because to obtain an optimal diameter of 1, one-

would expect a fully connected network (i.e. each node is directly connected to all other

nodes). These contradictions contribute to the traqe-off between cost and performance.

Multiprocessor network designers realize that an optimal network is created when

it optimizes as many of the above mentioned attributes as possible. In fact, it is from

these attributes that the ideas for both the hypercube and de Bruijn multiprocessor

networks were created.

To perform a comparison of the two networks, it is necessary to defIne other

networks that are used for analyzing the absorption properties of the hypercube and de

Bruijn multiprocessor networks.

1.3 Relevant multiprocessor networks

Multiprocessor networks that are examined are the linear array network, the ring

network, the binary network, and the shuffle-exchange network.

1.3.1 The linear array network

The linear array network, denoted L(n), is a multiprocessor network consisting

of n processing nodes connected in a chained fashion. (see fIgure 1.1)

5

000 001 010 011 100 101 110 11l.
o 0 0 0 0 000

Figure 1.1 A L(8) array network

The linear array network possesses a diameter of n-l, and a maximum node

degree ofl:"Oute'r'ncides"p'ossess"~t~ode degree of 1, and inner nodes possess a node

degree of 2 [12,17].

~The advantage of such a system is its ability to process data in an overlapped

pipelined fashion [9]. In other words, a partially completed task can be passed on to an

adjacent processor. In this case, each of these processors can be assigned -a specific

portion of the algorithm to perform on the incoming data.

The linear array's disadvantage is noticed when a slow node, due to a complex

partial algorithm, affects the execution time of the pipelined process. The size of a partial

algorithm must therefore be carefully selected in an attempt to avoid a load imbalance.

1.3.2 The ring network

The ring network, denoted R(n), is a multiprocessor network consisting of n

processing nodes .linked in a circular fashion.

The advantage of a ring network over a linear network is that it possesses a

n-l .
diameter of r -- 1, and a constant node degree of 2 [12]. Another advantage over

2

its linear counterpart is its ability to continue recycling data past the nth stage of.

6

processing.

111
CJ

~OlO

/
. .

lOlllt"~~c(011

100

Figure 1.2 A R(S) network

The ring network also possesses the same disadvantage as its linear counterpart if it is

used to implement a pipelined process.

1.3.3 The binary tree network

The binary tree network, denoted T(2,n), is a multiprocessor network consisting

of 2n-I processing nodes linked in a fashion similar to that of a tree. (see figure 1.3)

/"

o~</"
/ ~

.' '

o
110

\
\

Figure 1.3 A T(2,3) network

Processing nodes of the network are labeled from I to T-I in binary notation. The

following steps outline the main steps of the tree construction:

step 1. Designate the root node as xn_l,xn_2, ... ,xI,I; where x.=O.

step 2. The left child node identifier (id) of any node is obtained- by' multiplying the -

7

\

node's id by a factor of 2, which is identical to a left-shift operation (LJ.

step 3. The right child id of any node is obtained by adding a. value of 1 to the left
child's id.

step 4. Repeat steps 2 and 3 until all 2n-l nodes have been utilized in the binary tree's
construction.

The binary tree network possesses a diameter of 2 (flog2n1-1) , and a

maximum node-degree of 3. The ~oot node is of degree 2, inner nodes are of degree 3,

and outer nodes are of degree 1 [12,17].

1.3.4 The shuffle-exchange network

i) -

A shuffle-exchange network, denoted ShX(n), is a multiprocessor network

consisting of 2n processing nodes labeled from 0 to 2n-l in binary notation. (see figure

1.4)

/1°10 011

I'\,llo.000 oo\(: .111

101100·

Figure 1.4 A ShX(2,3) network

The communication channel links are constructed utilizing the following rules and

definitions :

definition 1.1: A node is said to be shuffled when a Ls operation with a wrap-around is
performed on its node id. The shuffle operation, denoted Sh(m), is further illustrated as
follows:

8

definition 1.2: A node is said to be exchanged when its LSB is complemented. The
exchange process, denoted Ex(m), is as follows:

Ex(m) = Ex(mn_j,mn_2, ... ,mj,mo)
complemented LSB.

where m'o is the

With the following defInitions in place, the shuffle-exchange network is defmed
- ------- -----

as follows:

definition 1.3: A node, x, is connected to a node, y, ify = Sh(x), or x = Sh(y), or Y =

Ex (x). In other words, x is connected to y ifYn-j,Yn_2, ... ,Yj,yo = Xn_2,Xn_3, ..'.,xo>xn_j, or
Xn_j,Xn_2,···,Xj,XO = Yn-2,Yn-3"",Yo,Yri-j, or lastly, Yn-j,Yn-2,· .. ,Yj,yo = Xn_j,Xn_2,· .. ,Xj,X'0·

The shuffle-exchange network possesses a diameter of 21og2n -1 , and a

maximum node degree of 4 [12,17].

1.4 Organization of thesis

This paper intends to establish a clear understanding of the binary hypercube and

de Bruijn networks before applying practical sorting applications on the defmed

networks. Each chapter contributes to a greater understanding of how the sorting

algorithms are implemented on these multiprocessor networks.

Chapters 2 and 3 are dedicated to the defmition and analysis of th~ hypercube and

de Bruijn multiprocessor networks. Attributes such as diameters, node degrees,

uniformity, symmetry, and routing algorithms are explored in detail. The topic of

message broadcasting is also visited for both networks. Message broadcasting is a topic

that considers the number of time units that specifIc messages take to reach their

destinations.

Chapter 4 analyzes various sorting algorithms that may be benefIcial to this study.

After an in-depth study ·of the algorithms, a decision is made as to which sorting

9

algorithms better serve our purposes.

For this study to be valid, the practical timing analysis must be performed on a

parallel machine that can emulate both topologies. This machine is the SuperSetPlus.64

Transputer machine from Computer System Architects (CSA). Chapter 5 contains the

architectural and functional information of the SuperSetPlus.64 Transputer machine. Also

included in chapter 5 is a brief introduction to Occam 2, the parallel language that is

utilized in this study.

ChapteY66ut1iriesthe"pseudo:-cod~'fortne-sorting algorithms as well as the actual
,-

configuration process for the multiprocessor networks.

Finally, chapter 7 contains the empirical data obtained from the sorting algorithms

implemented on both networks. From this data and the previous chapters, a decision is

made as to which of the two networks is more suitable for sorting applications. These

results may not necessarily apply to other applications implemented on both networks.

10 .

CHAPTER 2

The Hypercube Multiprocessor Network

2.1 Definition of a hypercube network

A n-dimensional hypercube multiprocessor is a distributed-memory parallel

computer consisting of 2n processing nodes, connected in a n-dimensional cube network

[4,5,7, 10, 12, 16]. The hypercube is constructed by labeling the J: nodes by 2n binary

numbers from 0 to 2n-1. Communication channel links are constructed by connecting any

two nodes whose node ids differ by exactly one bit position. (see figure 2.1)

111

01 11

Ho~J: ---PIO
001

Host
n-l n-2 n-3

1110 1111

1010

/

Ho~

1101

1000 n-4 1001

Figure 2.1 Sample hypercube topologies

In general, I/O capability is handled by a computer called the host, which is

connected to any defmed network by one or more nodes. This host is a conventional

computer with standard I/O devices that acts as an intermediatory between the outside

world and the network [6]. In this study, the host is the only link the hypercube network

has to the outside world, and vice-versa. Whenever an application is to be run on the

11

hypercube, the program is downloaded from the host. When the data has been transferred

to the nodes of the system, the application is processed. Computational results are

returned to the host by the active hypercube nodes.

Implementation of the distributed-memory architecture of a hypercube is

accomplished by assigning independent portions of local memory to each processor,

followed by the linking of each processor to its memory. Processors are granted direct

access to their local memory, however, attempts to access or modify data outside of the

processors lo'cal memory must be achieved via communication through channels. The

-
communication channels are the actual physical linkages of the individual processors that _

are arranged in the dimensional cube network topology.

2.2' Dimensions and node degrees of the hypercube

The definition of a hypercube network implies that each node possess exactly n-

neighbors; where a neighbor is defined to· be any node with a direct I-to-l

communication channel link to a given node [2,4,7,12].

proposition 2.1: The maximum degree of any node iIi a hypercube is n [4,7,12].

proof: The proof is by example. Assume a binary 3-dimensional hypercube network,
where x is a node that is a member of the network. If the individual digits within x are
denoted xz,x],x()1 then by definition of a hypercube there must be channel links that
support communication between xz,x],x(p and the following nodes: (x'z,x],xcJ, (xz,x'],xr),
and (xz,x],x'r).

proposition 2.2: The diameter of a hypercube network is n [2,4,7,10,12,16,18].

proof: It follows from the proof of proposition 2.1 that if the bit positions from one
node to another can only differ by one bit position, the maximum distance ever travelled
by a message in the network must occur when every bit position of the source node
differs from that of the destination node. In other words, the source node (Xz,X}1xcJ must,
be the total opposite of the destination node (x 'z,x 'l'X 'cJ. The difference in bits in this

12

case is n.

2.3 Hypercube properties

The hypercube network possesses several properties that can be attributed to its

symmetric and uniform nature. For example, due to its symmetry and uniformity network
\

routing traffic remains balanced. Other properties such as a singular routing algorithm,

and a vast network absorbing capability also exist for this type of network.

2.3.1 Message routing

The general multiprocessor network concept of linking adjacent nodes with

communicating channels requires that each node be able to send, route, and receive data

(ideally in packets) to/from another node. In the hypercube network, the path from a

source node to a destination node is obtained by a step-by-step examination of

corresponding node bits. For example, if node xn_j,xn_2, ... ,xj,Xo sends a message to node

Yn-j,Yn-2'" ·'Yj,Y{)1 each bit of the source and destination nodes from the least significant

bit (LSB) to the most significant bit (MSB) must be compared. If any bit of the source

node, xm (0 ~ m ~ n-l) , differs from its corresponding destination bit, Ym' this bit is

complemented to obtain the next intermediate node. This process is repeated until a

complete path from the source to the destination node is obtained [2,4,7,10,12]. For

example, a valid path from source node 0110 to destination node 1001 is

(0110. 0111. 0101. 0001.1001). This algorithm always (Obtains the shortest path for

communication within the hypercube. It should also be noted that if the path is initiated

from any of the n bits of the source node, n distinct paths for the message to traverse can

13

be obtained. (see figure 2.2)

When a node sends, routes, or receives data to/from another node, a

communication channel path (ideally the shortest path) must be obtained for the data

packet to traverse. The minimum path length for any point-to-point node communication

is obtained from the number of bits that differ between the source and destination nodes

(known as the Hamming distance).

3

01 1 11

.£:1'Host 00 2 . 10

n=2

Host

Source Node"" 0

Dest. Node = 1

Path = {l}

No. of paths = 1 = n

Source Node =00

Dest. Node "" 11

Path = {I, 2}

No. of paths "" 2 "" n

SoUrce Node = 000

Dest. Node = 111

Path = {I, 2, 3}

No. of paths =3"" n

Key:
Source node: Origin of data/message.
Dest. node: futended destination of data/message.

Path: Distinct paths that can be travelled.

Figure 2.2 Distinct communication paths

The Hamming distance is obtained as follows:

definition 2.1: Bsum() is defined as the function that computes' the total number of 1s
present in any binary representation. Thus by definition

'.

Bsum(OllOl) = 3.

definition 2.2: The shortest path length from one node to another is defined as follows:

14

BSUM«Source_Node_Id) XOR (Destination_Node_Id»; where XOR is
defmed as the exclusive-or function.

With the above defmition, if one views the 4-dimensional hypercube shown in figure 2.1

it can be verified thatthe shortestpatliTenglli-ffom node 1001 to node 0J10is:

BSUM«(lOOI) XOR (0110» = BSUM(l111) = 4.

It would be improper to mention the_ use of communication channels from one

node to another without discussing -the -possibility of a packet encountering a busy node.

In other words, a packet enroute to a particular node may encounter a node already

engaged in sending/receiving a packet to/from a neighboring node. This occurs when a

transmitted packet, upon encountering a non-busy node, temporarily locks out that node's

routing device from other packets to ensure the safe transmission of its data. Current

architecture solves this problem by queuing the routed packet in a dedicated device of the

busy node. A possible theoretic alternative is to re-route the path of that packet by

selecting another communication path. However, re-routing a packet would only be

beneficial if a node has a substantial number of messages queued and waiting to be

forwarded.

2.3.2 Uniformity and symmetry

From the above sections it is apparent that the hypercube network is a totally

uniform and symmetric network. When the topic of uniformity and symmetry is

considered, several questions are raised regarding the redundancy of design, and the

possibility of a singular routing algorithm for all nodes.

Redundancy in design examines the possibility of a network so well designed that

15

each node of the system is identical in nature and design. A singular node design implies

nodes will possess the same node degree, the same memory organization/capacity, and

the same processing capabilities. The need for uniformity is better understood when one

considers the cost associated with creating a non-singular node design for a network.

The entire life-cycle for the creation of this network, in terms of cost and time, is

proportional to the irregularity of the system [13].

The concept of a single and simple routing algorithm explores the possibility of

a symmetric network. If a network is symmetric, nodes may pass packets/messages to

neighbors in the same manner. If a network was non-symmetric a routing algorithm

would become harder to derive and implement [13].

Both these concepts have been shown to exist within the hypercube network.

2.3.3 Expanding and tearing

With the defInition of a hypercube comes several advantages that can be attributed

to the symmetry of the hypercube network. One such advantage is the ability to construct

., with relative ease a cube of higher or lower dimensions.

In the construction of a higher dimension hypercube (expansion), two identical

(n-I)-cube networks are obtained, and each of these sub-cubes are numbered 0 to 2n-I.

The higher dimension cube is then constructed by creating communication channel links

between the nodes of the fIrst (n-I)-cube to their identical nodes (node with matching ids)

on the second (n-I)-cube. One must realize that each node of the fIrst cube now has an

id identical to that of the secoI,ld cube. This problem is corrected by the concatenation

(represented by I) of a 0 to the left-side of the fIrst cube's node ids, and a I to the left-

16

side of the second cube's node ids [2]. (see figure 2.3)

001

000

101 111 101
/

/
/

1 "

011 001·.
/ .J.(

T In' .,M011
110

1 1"/
010 000

1./ ..l./OlO
'if' T .

111

110

11101

(n-l) = 3

IConcatenation
11110 11111

0::-----------/-/,0.

11010 /1101
Cl---+------'-,Ol1~,l-O----::-:O~"7-rl"----/,0

(n-l) = 3

11000 n=4 11001

Figure 2.3 Expansion of a hypercube network

In a similar manner, a binary n-cube can be torn into two (n-1)-cubes, where one

cube's most significant node id bits are Os and the other's are Is. The tearing of a binary

~n-cube does not necessarily have to occur along the MSB of the binary n-cube's node ids.

In other words, the process of tearing can be applied to any bit position of the binary n-

cube, with the stipulation that the sub-cubes created from the tearing of the {h-bit position

(i < n) differ by the bit numbers 0 and I [2]. It can be inferred from the above that it

is possible to tear a binary cube in n different ways. Each tearing permits a ~inary n-cube

to be split into two sub-cubes. One sub-cube then possesses a (n-I)-bit node id whose fh_

bit is always a 0, and the other sub-cube possesses a (n-I)-bit node whose ith-bit is a 1.

17

2.3.4 Absorbing networks into the hypercube

The main advantage of the hypercube network is it's ability to absorb sever~l

netwotks. This ability permits the binary n-cube to be recognized as a system suitable

for several fields of interest.

2.3.4.1 Mapping rings and linear arrays onto a hypercube

Hypercube networks can be shown to handle with great efficiency any application

suited for a linear array network or a ring network [16,18]. The mapping of a linear

array is trivial, and similar to that of the ring network. Only the ring network is analyzed

in this section.

The mapping of 2n processing nodes in a ring network onto a hypercube network

is obtained by traversing our cube in a Hamiltonian path which is defmed as follows:

definition 2.3: Define the n bits of binary cube id of zr numbers to be Gray(n) [16]. The
binary-reflected Gray code on n bits is defmed recursively as follows:

if Gray(n) = {GO,Gl, ... ,G2n.2,G2n.l}
then Gray(n + 1) = {0IGo,0IGl, ... ,0IG~2,0IG2n.l'

11 G2ll.1, 11 G2n.2,· .. ,11 G1,11 Go}·

Thus for n=2 and n=3 the following is obtained:

Gray(2) = {00,01,11,1O},
and Gray(3) = {OOO,OOI ,011 ,010, 110,111,101, 100},

which translates into the following mapping shown in figure 2.4.

From figure 2.4, the simplicity of mapping 2n processors of a ring network onto

a hypercube network is easily realized.

- 18

~4

An R(8) network

MAP

101"" 6 ".111

001- T7 01115
Y k GO

11 ,100 . 110
I /8 /4

(j) C~
000 010

A binary 3-cube ~

II Key: D tted lin . . hann 1"-'-o es represent communIcation c e 1illJI>j

i which are not needed to implement the ring network

Figure 2.4 Mapping a ring network onto
a hypercube network

2.3.4.2 Mapping a binary tree network onto a hypercube

The hypercube network consisting of 2n processing nodes can only absorb a level

binary tree of 2:'-1-1 nodes [4,16,18,], (see figure 2.5)

001 (Root node)
fa

o
1101

1001

3

0110
5

A binary 4-cube

6

1110
G:-···

4)
1000

1010

1111
e

1011•...........•9111 .•.•.

0011
•• ! :.

La f 9 proc m' 4 0100 2 0101
SS 0 ess g ---IDII"_ ()()()() (Root node) .' .

nodes during mapping
1100 : 1
• •••

4

010 011" ,~
2/ 3 5/ \6

/ \

1~ l~i 1~ 1f1

A T(2,3) binary network

I

Figure 2.5 Mapping a binary tree onto a
d> hypercube network

19

The failure to accommodate any other node is due to the symmetric nature of the

hypercube network which contains redundant nodes at level n-l of the given binary tree.

This symmetry causes the waste of 2n
- 2n

-
1+1 processing nodes in any hypercube network

that attempts to emulate a binary tree network of ?-l_l nodes. Clearly, this waste

indicates a weak point of the hypercube network.

2.4 Message broadcasting on a hypercube

Before progressing any further, the stage for analyzing broadcasting algorithms

must be set. It is assumed that all data is transmitted in the form of a packet, and in the

following algorithms the time taken for a packet to cross one communication channel link

is 1 time -unit. Packets may be transmitted in both directions on a communication

channel, and for the sake of simplicity transmission of packets are completely error-free.

Once a packet is placed on a communication channel line no other packets may be

transmitted on that line. If more than one packet attempts to use a communication

channel line, only one will be transmitted on that communication channel link for a

period of 1 time unit while the other will be placed in a flrst-in-flrst-out (FIFO) queue.

Each node is assumed to possess an infInite storage space. All communication channel

links can receive and transmit packets simultaneously, this capability is termed the

Multiple Link Availability (MLA) assumption [4].

Single node broadcasting involves the transmittal of an identical packet from a

source node to all other nodes [4,10,16]. The approach to this problem is to transmit the

packet along a directed spanning tree commencing from the source node [4,7, 10, 16]. A

spanning tree is a tree which visits all nodes of a network by unique directed paths and

20

..

is constructed as follows:

step 1. Select a source node. Create the fIrst level by visiting each bit from the LSB to
the MSB, invert each bit.

step 2. Traverse each n-node by progressing one bit to the right of the last bit inverted,
each bit visited is inverted until the LSB is reached. After processing the LSB the
progression is resumed from the MSB until the bit of origin for each node on level 1 is
reached (see fIgure 2.6). This method eventually leads to a single node n times and all
but one of these recurring sub-paths must be discarded.

Source Node: 000 Source Node: 101

000 101 LEVEL 0

/1\ /1\
100 010 001 001 111 100 LEVEL 1

I 1 I I I I
110 011 101 011 110 000 LEVEL 2

~I< ~*/ I ~f /t/ I
111 111 111 010 010 010 LEVEL 3

Figure 2.6 Creation of spanning trees for two
. nodes of a 3-cube

2.4.1 Timing analysis of a single node scatter broadcast

In this problem a single node attempts to transmit ?-I different packets to ?-I

nodes. The transmission count is n2n
-
l
, because the selected node must send 2n

-
1 packets

that must traverse n levels [4]. (see figure 2.6)

The lower bound time required is r2
n
-1 1; where each node receives a total
n

of 2n-1 packets over n communication channel links [4].

21

2.4~2 Timing analysis ofamultinode-broadcast

The multinode broadcast executes a single node broadcast simultaneously from

all nodes. This problem can be solved by specifying one spanning tree per root node.
- ----- _. - ---

However, problems arise when some communication channel links belong to more than

one spanning tree. The timing analysis is affected as several packets" arrive

simultaneously at a node and all request transmission on the same communication channel

link resulting in a FIFO queue.

The number of transmissions needed can be obtained by accepting the fact that

each node" sends a packet to 2n-1 nodes and that there are 2:' nodes. The transmission _

count is given as 2:'(2n-1) [4].

In figure 2.6, each transmitted packet eventually meets at a common node. Thus,

all but one of the last transmission time units for the common node must be removed.

The final timing analysis formula for the multinode broadcast is r2n
-

1l [4]. This
n

value represents a lower bound for the time required by the specific broadcast algorithm.

2.4.3 Timing analysis of a total-exchange broadcast

Similar to the problem of a single node scatter, each node attempts to transmit a

different packet to every other node. In the total-exchange broadcast, 2" nodes transmit

packets that will traverse n levels of a spanning tree. Assuming that each node transmits

packets to 2"-1 nodes, the transmission count is npn-1 [4].

The lower bound on this transmission time is 2:'-1 [4]. This time is achieved due

to the overlapped packet transmission in an attempt to keep all communication channels

and ports busy.

22

CHAPTER 3

The Binary de Bruijn Multiprocessor Network

3.1 Defmition of a de Bruijn network

A de Bruijn multiprocessor network is a distributed-memory parallel computer

consisting of Ir processing nodes; where R represents the -radix of the system and n is

the number of digit positions used to identify all nodes within the system. The de Bruijn

network, denoted dB(R,n), possesses a bi-directional communication channel link

between two nodes x and y, if the n-l last digits of node x are equal to the n-l fIrst digits

of node y. In other words, there exists a communication channel link between the two

[8,13,17]. With this defInition in place a de Bruijn network can be easily constructed by

creating K' processing nodes labeled from 0 to K'-l of the given radix. Communication

links are placed between nodes that meet the above specified criteria. (see figure 3.1)

Host~

dB(2,l)

001~." / ~11
000/' ~I'

Host -e:...~1 .':®
" / ""- /

100 110

dB(2,3)

~
1

Host 00 LJ

10

dB(2,2)

2

dB(3,2)

Figure 3.1 Sample de Bruijn topologies

23

From the definition of a de Bruijn network there must be at least two redundant

self loops on the beginning and ending nodes of the system. These links are of no

particular benefit to the system and as a result are disconnected from the network, or in

the case of the root node, connected to the host computer.

The distributed-memory architecture of the de Bruijn network is constructed in
,

the same fashion as that of the hypercube network in chapter 2. It is accomplished by the

assignment of a local memory module to each processing node for its individual use.

Access to data outside of a nodes range is achieved by message passing.

Although several other radix-based networks exist for the de Bruijn network, the

ma~ focus in this paper is on the binary de Bruijn network which is denoted dB(2,n).

3.2 Dimensions and node degrees of the de Bruijn

It follows from the definition of oil de Bruijn network that each node within· a de

Bruijn network must have a maximum of 2R neighbors.

Proposition 3.1: The maximum node degree in a binary de Bruijn network is 4 [13,17].

Proof: The proof is by example. Assume a dB (2, 3) network, where x is a node that is
a member of the network. If the individual digits within x are denoted as X2,XI,X{)1 then
according to the definition there must exist channel links to support communication
between X2'XI'XO and the following nodes: x}1x{)1x. and x.,X2,XI ; where x. is a binary digit.
In the case of a binary de Bruijn network this can only occur in four ways:
(xI,X{)10), (xI ,X{)1l), (O,X2,XI), and (i,X2,XI), for all sizes of n.

Proposition 3.2: The diameter of any binary de Bruijn network is n [8,13,17].

Proof: The proof is similar to that of proposition 2.2.

3.3 de Bruijn network properties

At this point, it should be apparent that a network's properties are what makes

24

a network amiable to system designers. The properties of a network eventually make or

break the system, and as a result the search to discover new topologies which encompass

an even greater set of attributes continues. As discussed earlier, several property trade-

offs exist within any system, and the de Bruijn multiprocessing network is in no wayan

e~~eption to the rule.

3.3.1 Message routing

With any multiprocessor topology, the designer's goal is to create a simple

routing algorithm that will not sacrifice other attributes of the system. This goal is easily

accomplished in the de Bruijn network via node id shiftin~. For example, to send a

message from source node xn-j'xn_2' ... ,xoto destination node Yn-j,Yn-2" .. ,Yo one need only

perform n Ls operations on both nodes. Intermediate nodes are created from the incoming

least significant bit (LSB) of the source node; which is the most significant bit (MSB) of

the destination node. Thus the path from xn_j,xn_2" .. ,xo to Yn-j,Yn-2' ... ,Yo is as follows: (xn_

Utilizing the previous message routing principle, it 'follows that another trivial

path can be obtained from performing n right shifts on the source and destination nodes.

3' • .. ,Yo>Xn_j)' (Yn-j, Yn-2' "·'yj'yc)· It should be apparent that these paths are not necessarily

distinct. For example, the two paths from source node 100 to destination node 101 are:

path 1: (100), (001), (010), (101).
path 2: (100), (110), (010), (101).

l

Although not plainly obvious, these routing algorithms reinforce the concept of

25

the diameter of a binary de Bruijn network. This is due to the fact that a· valid path

between two nodes will be obtained in at most n shifts.

One must realize that the previous routing algorithms, although relatively simple,

do not necessarily obtain the shortest path between two nodes. For example, the shortest

path from sourfe node 001 to destInation node 100 is not (001, 011, 110, 100), but

rather, the direct path from 001 to 100. In theory, several algorithms can be obtained to

extract the shortest paths between nodes, however, these paths are obtained at an increase

in complexity to the system.

3.3.2 Uniformity and symmetry

From the previous de Bruijn network defInitions and routing algorithms it can be

seen that this kind of multiprocessor network is indeed unifonn. Unifonn in the sense

that there is a singular design for all nodes [13]. In particular, the node design and

degree will remain the same for all nodes. (see fIgure 3.2)

Figure 3.2 Sarn.ple dB(2,4) network

26

The de Bruijn network, however, is not fully symmetric due to such attributes as

the redundant self loops of the system [13]. This partially un-syITIIIietric behavior

becomes more apparent when one views the dB(2,4) network shown in figure 3.2.

3.3.3 Expanding and tearing

The advantage of any de Bruijn network is fully realized when one considers the

topic of expanding and tearing the network.

Expansion is achieved by placing R:'+i_R:' additional nodes in the network and

numbering them from R:' to R:'+ i-1; where i= nnew':'nold' nnew is the new node id digit length

and nold is the old node id digit length [13,17]. The definition of the communication -

channel link is applied to the new system to obtain its complete topology. (see figure 3.3)

Hom Y(~U-,
~;~

1. dB(2,2)

Host ~/~10
~~ ~

1

1 ~

10

2. Partial dB(2,3),
~IIHoot~,,~)®

100 1W

3. dB(2,3)

Figure 3.3 .Expansion of a dB(2,2) network to a dB(2,3) network

In the case of tearing, the nodes of the network need not be removed from the

system, instead communication channel links are simply re-routed.

Unlike the hypercube, an increase or decrease in the number of nodes does not

27

necessitate a change in the design of the processing nodes: All that is needed in the

expansion case is the re-configuration of the communication channel links with the

additional nodes. For tearing, the system required a re-configuration of the

communication channel links, leaving excess nodes temporarily inactive. If the de Bruijn

system is designed properly, the cost of physically upgrading/downgrading the number

of processing nodes will be at a mere fraction of the cost of other systems.

3.3.4 Absorbing networks into the binary de Bruijn

As mentioned previously a goal of every multiprocessor network designer is to

create a network that is able to imitate other topologies. In the following sections the

binary de Bruijn network is shown to succeed in absorbing the following networks: a

linear network, a ring network, a binary tree network, and a shuffle-exchange network.

Of the above listed networks only the shuffle-exchange network can not be

absorbed by the hypercube topology, this is due to the hypercubes inability to create a
of·

communication channel link between two nodes whose bit positions differ by more than

one bit. However, in the scope of this paper, this is not a shortcoming of the hypercube

as one could easily argue that the binary de Bruijn network rejects some topologies a

hypercube easily absorbs. (i.e. the torus network)

3.3.4.1 Mapping rings and linear array onto a binary de Bruijn

It is simple to establish that a binary de Bruijn network possesses both a

hamiltonian path as well as a hamiltonian cycle [13,17]. In fact, the binary de Bruijn

network possesses several such paths.

28

The mapping of both the linear array network and the ring network onto a binary

de Bruijn network is trivial, and similar to the mapping discussed in the hypercube

section (chapter 2).

3.3.4.2 Mapping a binary tree onto a binary de Bruijn -

A binary tree of ?-l nodes can be absorbed into a binary de Bruijn network,

dB(2;n), by selecting a root node and applying the following algorithm:

step 1. To create the left child of a parent node perform a left-shift operation on the
parent's node id.

step 2. The right child of a parent node is obtained by performing step 1 and then
adding the value 1 to the resulting node id.

step 3. Repeat step 1 and step 2 at each level of the binary tree until all but one node
of the binary de Bruijn network have been utilized.

This absorption is shown in figure 3.4.

001
A

010
Q

\

1000 10~"G

A 7-node binary tree network

001 0::; fa11
~ "'~"'lJCllOlttllOr----Ol01 "''0111

/

100. 110

dB(2,3)

Figure 3.4 Mapping a binary tree onto a binary de Broijn network

The reason a binary tree is absorbed by a binary de Bruijn network is not easily
."

comprehensible. The topology and node id placement of a binary tree is remarkably

29

similar to that of the binary de Bruijn network. From the previous defInitions, it was

stated that a communication channel link exists between nodes x and y, if the n-1 last

digits of node x were equal to the n-l fIrst digits of node y. In other words, there was

where X_I for the binary de Bruijn case, is a binary digit (0 or 1) [17]. These state~ents

are similar to those utilized in the labelling of a binary tree.

3.3.4.3 Mapping a shuffle-exchange onto a binary de Bruijn

As defIned earlier, the shuffle-exchange network possesses a communication

channel link between two nodes x and y, if-and-only-if: y=Sh(x), or x=Sh(y) , or -

.l>

y=Ex(x) [17]. Therefore, node 010 is connected to nodes (100, 001,011). Likewise, the

node 000 can only be connected to the node 001. (see fIgure 3.5)

000 .O_~OO::C:l-e<Oi j?)o>-Il_O--eelll
100~1-----------1lful

An 8-node shuffle-exchange network

1Note: a mismap occurs with
node idS, however, the
topology remains the
same.00lt /rl~~/:" o(?~ 0 III

100 ------110

dB(2,3) .

Figure 3.5 Mapping a shuffle-exchange network onto a
binary de Bruijn network

The defInition of the shuffle-exchange network closely resembles that of the de

Bruijn network, and as result it is no surprise that the shuffle-exchange network can be

30

absorbed by the binary de Bruijn topology.

3.4 Message Broadcasting

.In-accordance with the MLA protocol and broadcasting rules discussed in chapter

2, the broadcast analysis of a de Bruijn network is complex in nature. In particular,

broadcasts are placed in a best-case or worst-case category for cases were nodes must

transmit 2n-l different packets. The creation of these categories is necessary because the

routing algorithm employed for the network is restrictive in nature.

Worst-case broadcasts are achieved from the root node and last node of the binary

de Bruijn network. This can be attributed to the redundant self-loops of the network

which restrict parallel transmissions/receptions to/from other nodes. All remaining nodes

within the network fall under the category of best-case broadcasting nodes. (see figure

3.6)

Source Node: 000

000

I
001

/\
010 011

/\ 1\
100 101 110 111

a) Worst-case situation

Source Node: 001

001

/\
010 011

/\ /\
100 101 110 111

/
000

b) Best-ease situation

LEVEL 0

LEVEL 1

LEVEL 2

LEVEL 3

Figure 3.6 Worst-case and Best-case spanning trees of
a dB(2,3) network

In single node broadcasting packets take n time units regardless of the best or

31

---_.- ---

worst ·case·spanning trees. The proof for these broadcast times is embedded in the

expansion and packet distribution properties of binary tree networks [12, 13 ,17] .

3.4.1 Timing analysis of a single-node scatter broadcast

Broadca~t times are achieved by combining the two categories of broadcast times

together. A single-node scatter entails the transmission of £'-1 different packets to 2n-1

different nodes within the network.

If the node is identified as a worst-case node the broadcast time is given as £'-1,

because 2n-1 packets must be transmitted in sequential (see figure 3.6.a) order from the

node. Best-case nodes, however, achieve broadcast times of £,-1.

3.4.2 Timing analysis of a multi-node broadcast

A multi-node broadcast entails the broadcast of the same packet to all nodes from

each node in the network.

This broadcast is simply a combination of the total time for worst-case and best-

case singlenode broadcasting in the entire network. The broadcast is therefore expressed

as 2(£'-1) + n(2n-2), which is equivalent to 2(2n + n2n
-
1 - n - 1).

3.4.3 Timing analysis. of a total-exchange broadcast

Neglecting node contention time for buffered packets on communication channels,

the best-case total-exchange broadcast on a binary de Bruijn network is expressed as

2(2n-1) + (2n_2)(2n-1) = 22n-1_2. In this broadcast, the worst-case time is 2n-1, hence the

2(2n-1) term. Likewise, the best-case broadcast is achieved by 2n-2 processing nodes

where each node's broadcast takes 2n
-
1 time units.

32

CHAPTER 4

An Analysis of a Select Group of Sorting Algorithms

4.1 Introduction'

Sorting algorithms play a major role in a significant number of computational

algorithms. It is for this reason that sorting algorithms were utilized for the comparison

-
between the hypercube and de Bruijn multiprocessor networks.

Sorting, as used in these computational algorithms, entails the organization of data

(not necessarily numeric in value) into some logical structured order. In the case of an

application which.utilizes several thousand numerical values, it is apparent that processed

data must eventually be arranged into an easily comprehensible fonn. This form can be

obtained by multiprocessor networks at a faster rate than that of any conventional

computer system. Examining the case of several thousand numerical values, a single.

sequential proc~~ is inefficient due to its inability to compare more than two values

at one point in time. However, these comparisons are overlapped by a multiprocessor

network, and are only hampered by the number of available processing nodes.

In this study, as multiprocessor networks are implemented to utilize the

distributed-memory organization, the question of where sorted data fmally resides must

be addressed. Sorted data may eventually reside in a single node or may remain scattered

in some order throughout the network [5]. It is important, however, that the fmal

placement of the sorted data is dependent on the chosen application.

Initially, M data items in the root node are split into MIN lists, where N is the

33

number of processors in the network. The lists are then distributed for sorting throughout

the network. When all distributed sorting is complete, sorted items are returned (in

order) to the root node to be merged into a single sorted list.

In the following chapters, selected algorithms presented in the next sections are

-
utilized to perform the comparison between the hypercube and de Bruijn networks. In an

attempt to obtain unbiased execution times the algorithms implemented on the hypercube

and binary de Bruijn networks must be identical. This stipulation implies that the

difference obtained from the execution times depends solely on the efficiency of the

routing algorithms of both networks.

The bubble sort, insertion sort, shell sort, and quick sort are all sorting algorithms

worth examining in this chapter. The knowledge obtained from the implementation and

the efficiency of each sort is utilized to select a sorting algorithm that best suits this

study's need.

4.2 The bubble sort algorithm

The bubble sort is a well known algorithm primarily because of its simplicity,

however, it turns out that this sort is the least efficient [19]. The general concept of the

bubble sort can be described as follows. Given an initial unsorted list of M elements,

pass through the list and compare adjacent pairs of items. Whenever a pair of items are

out of order with respect to each other, swap them. The first pass through a list of M

items ensures that the last item (in logical value) will be deposited in the last location of

the list. (see figure 4.1.) From this point it is easy to see that the last item in the list

need no.longer be included in the sort. The second pass now only needs to visit the first

34

M-l items in the list, and the third pass only visits the frrst M-2 list items. This process

UST[I] ! 87
1

LIST[I] 60 UST[I]

I~
UST[l] 60 I

i 60 I 87 25
-- ---- --- ---

LIST[2]
I

UST[2] UST[2] LIST[2]
i

LIST[3]

~
UST[3] 25 LIST[3]

~
UST[3] 65

LIST[4] 65 LIST[4] 65 LIST[4] 65 LIST[4] 87

Initial state Interchange after Interchange after Interchange after
of array UST comparing slots I comparing slots 2 comparing slots 3

and 2 and 3 'and 4

Figure 4.1 First pass through a list using a bubble sort

is continued until M-l passes have been completed.

4.2.1 Efficiency of the bubble sort

The efficiency of the bubble sort can be measured by the number of comparisons

it requires to sort a list of M items. Initially, M-l comparisons are made, however the

number of comparisons decreases by a factor of one on each pass until, in the final pass,

only one comparison is made. On average, as M/2 comparisons are made per pass, the

actual efficiency of the bubble sort algorithm is expressed as C (M -1) (M) [19].
2

For large M, however, the M2 term prevails. The efficiency of the bubble sort is

therefore accepted to be O(M2
).

4.3 The insertion sort algorithm

It is the goal of the insertion sort to insert in the ith pass the ith element in

LlST[l], LlST[2], ... , LlST[i] in its correct location. (see figure 4.2)

35

----- LIST[M] i - 2 i = 3 i = 4

87 60 25 25

60 87 60 60

25 25 87 65

65 65 65 87

Initial state Interchange' after 2 interchanges after Interchange after
of array UST comparing slots 1 comparing slots 2 comparing slots 3

and 2 and 3 and 4

Figure 4.2 Insertion sort algorithm applied to a ,list

In Naps et ai. 'fI9}, the sorting process is expressed in the following steps:

step 1. Set} = 2, where} is an integer.

step 2. Check if LIST[j} < LIST[j-I}. If so interchange them; set} =} - I and repeat
step 2 until} = 1.

step 3. Set} = 3,4, 5, ... , M and keep on executing step 2.

4.3.1 Efficiency of the insertion sort

Although the insertion sort is almost always better than the bubble sort, the time

element in both method,.s remains at O(M2
) [19] .

In the case of partially sorted data, the insertion sort normally takes less time than

the bubble sort. The number of interchanges needed in both the methods is on the

M2 . M2

average -, and in the worst cases about - [19] .
4 2

4.4 The shell sort algorithm

The shell sort algorithm' is based on the concept that partially sorted lists require

36

less comparisons and interchanges to achieve the goal of becoming a sorted list [18,19]:

Instead of sorting the M items of a list· immediately, the list is divided into smaller

segments which are then separately sorted using the insertion sort [19,20]. (see figure

4.3)

87
t

60 25 65 10 70

1__--+--__' __I I

First divide the list into 3 segments of 2 elements each.

87
60
27

65
10
70

segment 1
segment 2
segment 3

and then sort each of the segments:

65 87
10 60
27 70

Figure 4.3 First pass of a shell sort on a list

The key to the shell sort algorithm is that the whole array is frrst fragmented into

K segments' for some number K, where K is preferably a prime number [19,20]. If the

size of the list array LIST is M, then the segments are:

LIST[l}, LIST[K+ i}, LIST[2*K+ i}, , LIST[M/K+ i}
LIST[2}, LIST[K+2}, LIST[2*K+2}, , LIST[M/K+2}

LIST[K}, LIST[2*K}, LIST[3*K}, ... , LIST[M/K+K).

As each segment is already sorted, the whole array is partially sorted after several

passes. In following passes, the value of K is reduced, which increases the size of each

segment, and also reduces the number of segments. The next value of K is also chosen

37

so that it is relatively prime to its previous value. (Two integers are said to be relatively

prime to each other if they have no common factor greater than 1.) This process is

repeated until K = 1, at which point the list is sorted [19]. Each segment is sorted by

the insertion sort method, so that each successive segment is partially sorted. During the

later phases of the sort the insertion sort increases in efficiency, which in tum increases

the overall efficiency of the shell sort [19,20].

4.4.1 Efficiency of the shell sort

The shell sort is also called the diminishing increment sort because the number

of segments, K, continually decreases. The method is considered to be more efficient if -

the successive integers are relatively prime to each other [19,20]. D. E. Knuth in [20]

estimates the average execution time of the shell sort with relatively prime integers to be

proportional to O(M(1og2Mi). The shell sort also works for any value of K greater

than 1. However, when the values of K are not relatively prime, then the efficiency of

the sort is given as O(M'), where 1<r<2 [19,20].

The shell sort is most efficient on arrays that are already nearly sorted. In fact,

the first chosen value of K should be large to ensure that the whole array is fragmented

into small individual arrays, for which the insextion sort is higWy effective [19].

4.5 The quick sort algorithm

The purpose of the quick sort is to move a data item in the correct direction just

enough for it to reach its final place in a list [18,19]. Utilizing a divide-and-conquer

--
approach, this algorithm avoids the unnecessary swapping of data items by moving an

38

item a great distance in one move. A pivotal item is selected and moves are made so that

data items on one side ofthe pivot are smaller than the pivot, and data items on the other

are greater than the pivot [18,19]. The pivot is now in its correct position. The algorithm

is applied recursively to the parts of the list on either side of the pivot until the whole

list is sorted. (see figure 4.4)

LIST[1], LIST[2], ..;............, LIST[lO]

15* 20 5 8 95 12 80 17 9 55

9 20 5 8 95 12 80 17 () 55

9 () 5 8 95 12 80 17 20 55

9 12 5 8 95 () 80 17 20 55

9 12 5 8 () 95 80 17 20 55

9 12 5 8 15 95 80 17 20 55

* - indicates selected pivot item

_ - indicates next item in list to be positioned in respect to pivot

() - indicates open slot position of item selected for swap

Figure 4.4 Quick sort of a list

4.5.1 Efficiency of the quick sort

The quick sort algorithm only perfonns efficiently if its pivots are selected as

close as possible to the median of the list to. be sorted. If care is not taken to select the

appropriate pivot, the sorting efficiency and speed are hampered by several re-orderings

of the list.

The average run-time efficiency of the quick sort is given as O(Mlog2M) [19]

However, the quick sort efficiency can drop to that of O(M2
) due to the continuous

right to left scan all the way to the last left boundary in the case of a badly selected pivot

39

[19].

~

The quick sort algorithm i~. hampered by its need to maintain a stack for the

temporary storage of pivoted items [19]. This need, however, can be avoided by use of

a language that permits recursion.

4.6 Selecting sorting algorithms for multiprocessor networks

Although it is the intention of this study to compare the hypercube and binary de

Bruijn networks, it is also a goal of this study to prove the efficiency of multiprocessor

networks over single-processor computers. This goal can be achieved by implementing

an inefficient sorting algorithm, such as the bubble sort, on a single-processor computer -

and comparing the results to that of the hypercube and binary de Bruijn multiprocessor

networks.

In this manner, a lis(of M items can be divided into a list of MIT items wfuch

are distributed and sorted concurrently on each node of the multiprocessor networks via

the bubble sort algorithm. However, when the partial lists have been sorted and returned

they still need to be merged.

Although the quick sort is the most efficient algorithm discussed, its need for a

stack or a recursion capable language for the temporary storage of its pivot points

increases its complexity. In fact, the language utilized in this study, Occam 2 (chapter

5), does not support recursion and for this reason the quick sort must be discarded from

the final sort/merge selection process.

It has been shown that the insertion sort is merely a subset of the shell sort and

that the shell sort is particularly well suited to sorting a partially sorted list. The shell

40

sort was therefore the appropriate choice for the merging process of the ~ lists. As the

shell sort is selected for the merge task it is implemented on the root node. (i.e.

processor collecting the sorted lists)

The pseudo-code for implementing this hybrid sorting algorithm on the

multiprocessor networks is shown in chapter 6 of this thesis, and the final results

obtained are listed in the concluding chapter, chapter 7.

41

CHAPTER 5

Transputers and Occam

5.1 Introduction to transputers

The transputer is a single-chip reduced instruction set computer (RISC) designed '

with the principle of message passing [3]. This device is composed of a high-speed

processor with local memory and four inter-processor communication channel links.

Developed by SGS-THOMSON Microelectronics (fonnally INMOS Ltd.), the transputer

is intended for use in parallel processing environments and applications. The major

features of transputers include:

o High speed integer (and for T800 and T9000-floating point) processor;

() On-chip fast static memory;

o Four serial bi-directional communication channel links;

o Internal timers, and

o External memory interface.

Communication is achieved on a point-to-point basis where a transputer is

connected to anoJp.er through one or more serial communication links. Once these links

are established, transputers may communicate with each other via defmed protocols.

The transputer family consists of the IMS T212, IMS T225, IMS T400, IMS

T414, IMS T425, IMS T800, IMS T801, IMS T805, and the latest T9000 floating point

transputer. These transputers differ mainly by their data and address bus widths. Others

such as the T800, T801, T805 and T9000 also differ by their increased internal random

42

DisablelntRam

access memory (RAM) and hardware floating point umts .

. The central processing unit (CPU) of a transputer possesses extra functionality in

high-level languages and timers, which raises some questions as to its RISC

classification. Also, it should be noted that the transputer does not possess memory

management capabilities" and only implements multitasking via hardware as opposed to

the conventional operating system method.

In this study, the T805 transputer is utilized in the SuperSetPlus machine to

implement the sorting algorithms on the hypercube and binary de Bruijn networks.

5,2 The IMS T805 transputer

The IMS T805 is a transputer which possesses a 32-bit CMOS microcomputer

with a 64-bit floating point unit [15]. The T805 is equipped with 4 Kbytes of RAM, a

configurable memory interface and four INMOS communication links. (see figure 5.1)

Floating Point Unit

v~ I, ~
ear:e n~~Anal System I inkSpecja1

~ Sern ~~ooru
~ ~~12~

BootFromROM ~~_ LinkInO
C10ckIn ~

ProcSpeedSelect (0-2) --'-------' I 32 Interfa - LinkOutO

ITimers I I jLink d- LinkInI

~
M Interfa LinkOutlKb;res 32 -

~ 32 ~Mte~ad =
ProcClockOut
notMemSQ-4 _--r::=--------, ~ LinkIn3

notMemWrBO-3,....<:
notMemRd ~ LCUa _ LinkOut3
notMemRf

RefresbPeJldin~ EJ- EventReq
MemW8.1t 32 Event - EventAc~.

MemConfig 32 - EventW8.1ting
MemReq ~ ~ MemnotWrDO

MemGranted --~ IIJIIIIP"""" MemnotRfDl
Fi e 5.1 IMS T805 block di MemAD2-31

43

Equipped to handle high performance arithmetic and floating point operations, the

T805 is able to perform floating point arithmetic concurrently with the processor. This

concurrency obtains a rate of 2.2 Mflops at a processor speed of 20 MHz and 3.3 Mflops

at 30 MHz. Limited to a memory address space of 4 Gbytes, the 32-bit wide T805
,,~.

memory interface uses multiplexed data and address lines to provide a data rate of up to

4 bytes every 100 nanoseconds (400 Mbytes/sec) for a 30 MHz processor speed [15].

The INMOS communication channel links also allow the T805 transputer to be

configured in several multiprocessor network topologies via point-to-point connections.

Each bi-directional link between T805 transputers can operate at a selectable rate of 5,

10, or 20 Mbits/sec.

Although Occam is the main language utilized on the T805 transputer, other high

level languages such as C, and FORTRAN are supported [3,15].

5.3 The SuperSetPlus.64 system

Equipped with programmable link switches, the SuperSetPlus.64 system consists

of 64 T805 transputers operating at a speed of 20 MHz. Memory is implemented by a

4 Kbyte on-chip RAM and either 1 Mbyte or 4 Mbyte of external memory [5].

Multiprocessor networks on the SuperSetPlus.64 system are specifically created via the

configuration of communication channel links of the system into the desired network's

topology.

5.4 The Occam programming language

The Occam language is named after William of Occam, a fourteenth century

44

English scholar arid philosopher. Developed by David May at INMOS, England, Occam

is a parallel programming language that supports explicit hardware concurrency and is

based on C.A.R. Hoare's Communicating Sequential Processes (CSP). Occam is intended

for use by transputer-based systems and is considered to be the assembly language of the

transputer.

Initially, Occam was restricted' to single data (integer) types and could not handle

floating point operations (Occam 1). However, the latest version, Occam 2, is designed

to handle features such as floating point representations, block memory transfers on a

single transputer, and block memory transfers via a link from one transputer's memory

to another. Occam 2 also supports mixed language programming which allows module

processes of different languages to be re-used as part of an overall program [3].

Each process in Occam may communicate concurrently with another process via

channels. This communicating concurrency of processes is exactly what was needed for

transputer-based systems. Applications of several independent processes can be mapped

onto the transputer-based system and their communication is achieved through the

communication channel links of the system.

An Occam based program can be fully developed and tested on a single transputer

. before being implemented on a network of transputers. The two main advantages of

Occam are its parallel construct (PAR), and its ability to prioritize processes through its

PRJ construct. Processes may be executed in parallel by preceding them with the PAR

construct, and prioritization is achieved by placing the PRI construct in front of the PAR

construct.

45

In Occam, parallel processes are separate entities and a process may only

communicate with another via message passing. However, message passing in Occam

utilizes the broadcast-and-wait technique where aprocess attempting to send a message

to another must wait for the other process to acknowledge its readiness to receive the

message. This technique is also implemented for an early process read. In this technique,

a message is never lost within the system, however, processes are capable of waiting

indefinitely (deadlocked) for another process [3].

Chapter 6 contains the sorting pseudo-code algorithms that are eventually

implemented in the Occam 2 programming language.. .

46

CHAPTER 6

Implementing a Hybrid Sorting Algorithm on Multiprocessor Networks

6.1 Introduction

Currently, several versions of algorithms for the sorting algorithms discussed in

chapter 4~xist. However, each of. these algorithms can be generalized into standard

pseudo-code form in order to further clarify the steps required for the entire sorting

process.

6.2 Distributing and timing sorting algorithms
o

As the sorting algorithms are executed on multiprocessor networks where the root

node is the only node connected to the host, there must exist an algorithm that efficiently

broadcasts Ml2n portions of the original list to each processor within the network. Prior

to this action, timing of the sorting process must commence.

The· global timer is implemented on the root node and only terminates when all

the returned sorted lists have been merged into the final list. The algorithm to handle this

portion of the tasks is expressed in the following modules.

proc begin root node download and timer(Obtain list, distribute list, and time sort)- - - --
declare_int dimension; (network's dimension)
declare_int root_node_id; (root node id (Le. if n=4, then root_nodeJd=OOOO»
declare int counter, ptr; (local vars. to keep track of distribution & loops)
declare_global)nt M; (number of items in partial lists)
declare_global_int n_nodes; (number of nodes in the network)
declare_global_time timer; (sorting timer)
declare_global_buf max_list; (original list buffer)

[set ptr == 0]
[set n_nodes = 2dimensio1

47

[get max_list]
[set M = sizeof(max_list)/n_nodes]
[initialize timer]
for_begin (counter = 0 to (n_nodes - 1»

ptr ... (counter * M)
[send max_list! FROM ptr FOR M J to PROCESSORcounter]

for end
proc_end

proc_begin-root_node_retrieve_timer(Retrieve partial lists and shell sort merged list)
declareJnt counter, ptr; (local vars. to keep track of retrieval and nodes)

[set ptr = 0]
for_begin (counter = 0 to (n_nodes - 1»

ptr ... (counter *M)

[set max_list! FROM ptr FOR MJ = list from PROCESSORcounter]
for end
proc call shellsort(max list)- -
[stop timer]
[report results]

proc end

6.3 Implementing the bubble sort algorithm

As stated in chapter 4, each processor is responsible for sorting its portion of the

list. These lists are distributed to each processor which in tum must obtain and sort its

partial list. The' partial lists are sorted utilizing the bubble sort algorithm which is

expressed as follows:

declare_globalJnt nitems;
declare global buf partial list;- - -

(number of items in partial list)
(partial list buffer)

proc_begin bubblesort(partial_list)
declareJnt i, j; (local tracking vars.)
declare_int temp; (temp. storage var.)

for_begin (i = 0 to (nitems - 1» (number of passes)
for begin (j = 0 to «nitems - 1) - i» (mnnber of comparisons)

if~begin (partialJist[jJ > partial_list[j+1]) then

48

(number of items in original list)
(manipulative tracking vars.)
(partial lists pointer)
(arrays start at location 0)

temp partial list[j]
partial_list[j] partial_list[j+1]

. partial}ist[j+l] temp
if end

for end
for end

proc end

main_begin
[obtain partial_list from comm. channel]
proc call bubblesort(partial list)- -
[return sorted partiatlist to root_node over comm. channel]

main end ..

6.4 Implementing the shell sort algorithm

In chapter 4, the shell sort algorithm was shown to be well suited to handling the

task of sorting partially sorted lists. The returned list from each processor, when merged,

creates 2n partially sorted lists where every M/? locat.ions in the list is the start of a

partially sorted list.

The following pseudo-code extracted from Naps at al. [l9] expresses the steps

required for the effective execution of the shell sort algorithm. This algorithm is only

executed on the root node after all nodes have returned their sorted partial lists.
(-

proc_begin shellsort(max}ist)
declare_int n_items;
declare int i, j, k, temp;

[set i = nJtems/n_nodes]
while begin (i ~ 0)

j i
repeat_begin

j (j + 1)
k (j-i)
while_begin (k ~ 0)

if begin (max list[k] > max list[k+ij) then- - -

49

temp max_list[k]
max_list[k] max_list[k+i]

J max_list[k+i] temp
k (k - i)

else
k -1

if end
, while_begin

repeat_until_end (j = n_items)
i (i / n_nodes)

while end
proc_end (bubblesort)

50

(force loop termination)

CHAPTER 7

Results and Conclusions

7.1 Introduction

Statements can almost always be made that justify the specific attribute of any

multiprocessor network. However, if a statement insinuates a network is more efficient

than another it must have substantial evidence to support its claim. In fact, the task of

proving a particular network is more efficient than another is extremely arduous. The

complexity of such a task is increased when multiprocessor networks designed for a

specific class of applications are compared. This class of application specific networks
I

tend to achieve the maximum performance available for their class of applications as

opposed to other general-purpose networks.

This chapter presents the differences, results, and conclusions obtained from the

study of the hypercube and binary de Bruijn multiprocessor networks.

7.2 Attribute differences

As stated earlier, several statements can be made to support each network's

attributes, however, to avoid the risk of counter-statements that prove or dis-prove the

efficiency of one network over another, the differences between the hypercube and binary

de Bruijn networks are listed in table 7.1. This table is constructed in part from the

previous chapters, Ganesan et ai. in [IJ, and Samantham et ai. in [17].

51

Hypercube Network

Number of nodes

Binary de Bruijn Network

Node degree

Network diameter

Jl (subject to network size)

n

4 (constant)

n

Fault tolerant yes (up to n - 1 nodes) yes (only 1 node)

Routing under
node/link faults yes yes

Longest path length
w/single fault n + 1 (max.) n + 4 (max.)

Easy detours around
faults no yes

Extensibility difficult easy

Mapping/absorption
Binary tree difficult (loss of 2n_'Z'-1 nodes) easy (loss of 1 node)
network

Shuffle-exchange no yes
network

Mesh network yes (even w/faults) no

Linear array yes yes (even w/faults)
network

Ring network yes yes

"

Table 7.1 Differences of the hypercube and binary de Bruijn networks

7.3 Implementing the networks

This section examines the two differences encountered in the implementation

52

of the hypercube and binary de Bruijn networks. Of these two differences, the dynamic

node degree of the hypercube for increasing and decreasing network sizes proved to be

~

the most disturbing. The second difference, which was minor, was in that of the packet

routing header protocols!.

7.3.1 The effect of a dynamic node degree on network software

A major difference between the hypercube and binary de Bruijn network is the

node degree attribute of each network. The impact of a network's node degree on that

network's software is significant in the case of tearing and increasing the network's size.

If the node degree attribute for a network is not constant in nature, an alteration to the -

network's size necessitates a major alteration throughout the network. (Recall that the

node degree of a hypercube network is dynamic in nature as opposed to the static node

degree of the binary de Bruijn network.)

In this study, increasing or decreasing the size of the binary de Bruijn network

required no extensive modifications to the network software. Apart from the required

physical network alterations and notifying the root node of its new dimension, the

software for the binary de Bruijn network remained unaltered.

However, porting the software of the hypercube network proved to be a daunting

task. After the usual physical network re-configuration and the root node dimension

notification process, the network software had to be adapted for cases in which the

network was extended or tom. This task although not complex in nature, proves to be

! Occam 2 Source code for both networks is archived in the EECS department of Lehigh
University located in Packard Laboratory. (Rm. 304) .

53

cumbersome and is required for all modifications to the dimension of the hypercube. In

fact, two additional channels, for the transmission and reception of packets, were

required each time the dimension of the hypercube was increased by a factor of one.

These additional channels must be reflected in all cases throughout the hypercube's

communication channel software modules.

7.3.2 Packet routing header protocols

To implement successful node-to-node communications on each network, a packet,

consisting of the partitioned list of numbers to be sorted, is required to possess its

destination node id, origin node id, and list size. This requirement, however, is not ­

sufficient in the case of the binary de Bruijn network, as each intermediate network node

needs to maintain a pointer to the next bit of the destination id that will be absorbed.

(Recall that in chapter 3, a message route from node xn_J'xn_2, ... , Xoto node Yn-J,Yn-2'" .,Yo

on a binary de Bruijn network is as follows: (xn_J,xn_2, ... ,xJ,xoJ, (xn-2,xn-3, ,,,,x(}1Yn-J)' (xn_

3,Xn-4"" ,Yn-J,Yn-~' (xIPYn-J"" 'Y2'YJ)' (Yn-J,Yn-2'''' ,YJ,yoJ·) It should be apparent that

intermediate nodes within the de Bruijn network require a knowledge of the next Ym bit

to be absorbed from the destination node id, where O~m<n-l. (see figure 7.1)

The routing header for the de Bruijn network for a node-to-node communication

is shown in figure 7.1. In figure 7.1.a, 7.1.b, 7.1.c, the routing header of a packet is

modified at each intermediate node to point to the next Ym bit position to be absorbed by

the next intermedillfe node.

Routing headers of packets in hypercube network's are not required to maintain

a pointer to the next bit for intermediate nodes, instead, intermediate nodefsimply scan

54

Current Node

a) Origin: 000

000 --001

b) Intermediate
node: 001

001-010

c) Intermediate
node: 010

010-1.00

d) Destination
node: 100

data locations

,/ modified bit absorption pointer

~'---n-----'I~I----"~ §ita n I

bit pointer position_L_ _ / modified bit absorption pointer

~ .

,/ no modification needed

1100 I000 I~ --- ~ta 1~'-...-...-..-....------,~

Figure 7.1 Routing a packet in the de Bruijn network
Steps for modification of a packet header from node 000 to node 100

from bit 0 to bit n-l of the destination node. When a differing bit is found the packet is

routed to the node that differs in its bit position.

7.4 Results of the of the hybrid sort

The results obtained for the execution times ,of the hybrid sorting algorithm

discussed in chapter 4 of this study are split into two classes: i) the broadcast-return

category, and ii) the elapsed sort time category.

The broadcast-return category deals with the time elapsed for the distribution,

partial sort and return of the segmented sorted lists. At this point no attempt is made to

merge the sorted segmented lists. The elapsed sort time category progresses a stage

further than the broadcast-return category by performing a shell sort on the merged but

still partially sorted list. (see table 7.2)

55

\.

----The decrease in broadcast-return times for increasing-nodes ofeach network can

be attributed to the decreasing packet size. This elapsed time decreases due to the

decrease in packet sizes, and the decrease in the number of comparisons each sorting

node must perform.

Execution times in seconds
------------------------------------list sizes· ------------------------------------

_. lK 2K 4K 8K 16K
Network
Single node 2.612 10.276 41.463 165.496 663.623

dB(2,3) [.192] [.289] [.691] [2.329] [8.881]
1.710 6.073 24.400 96.376 387.624

3-cube [.165] [.290] [.695] [2.316] [8.881]
1.684 6.074 24.403 96.362 387.624

dB(2,4) [1.112 f] [1. 180f] [1.333 f] [1.748 f] [3.377 f]
2.735 f 7.379 f 26.672 f 102.522 f 408.763 f

4-cube [1.107 f] [1.163 f] [1.335 f] [1.767 f] [3.399 f]
2.730 f 7.362 f 26.673 f 102.541 f 408.784 f

[.192] - indicates achieved broadcast-return time
• - List sizes are in powers of 2. (i.e. lK = 1024 items)
f - Times obtained for networks of 16 nodes include a one second delay in local

processing nodes to allow the initial broadcast lists to be distributed without channel
contention. This delay was necessary to prevent deadlock in the root node as the
distribution process assumes that partially sorted lists will only be returned after all
distribution is complete.

Table 7.2 Results of the hybrid sorting algorithm

The results of the hybrid sort on increasing multiprocessor network sizes is easier

to comprehend in the form of a graph. In some cases, the elapsed sort times acquired for

56

the multiprocessor networks are identical and plots are therefore difficult to disassociate

from one another. (see figure 7.2)

It can be concluded that the increase iIi overall sorting times or" 16 node networks

is due to the nature of the shell sort. For example, the effect of splitting the list into ZZ

segments results in an increase in the number of comparisons needed to obtain the lowest

number of each segment in the merge process. (see chapter 4)

700

Legend

--- dB(2,3) {S nodes}

• 3-cube {S nodes}

, 0, dB(2,4) (16 nodes}

~ 4-cube {18 nodes}

- single processor

400

500

300

200

600 /
I'

/1
/1'

) l
~/ /1'

1: jL-_~~'~==-----r-'_/_'~-------~}----r-, _
1K 2K 4K SK 16K

List ~ize in powers of 2. (Le. lK - 1024)

Figure 7.2 Plot of hybrid sort vs. bubble sort

It must be noted that the hybrid sort implemented on both networks is not

communication intensive in nature. In other words, node-to-node communication did not

occur extensively for either network. It is suspected that in the case of communication

intensive classes of applications the hypercube network will triumph over the de Bruijn

network. This statement is based on the broadcast-exchange bounds presented in chapters

2 and 3. However, for the hybrid sorting class of applications no significant timing

differences were recorded between the hypercube and binary de bruijn network. In fact,

the times are almost practically identical in value.

57

It is realized that from this portion of the study, multiprocessor networks do in

fact triumph over a single processor network due to their concurrent nature. However,

it must also be stated that if the hybrid sort times for the increasing network sizes

continues to increase at its present rate, then it must also be assumed that the hybrid sort

time will eventually surpass that of the single node sort for greater network sizes. This

assumption implies that the hybrid sort is only effective for limited sizes of

multiprocessor networks.

Finally, although the performance of the multiprocessor networks proved to be

better than that of the single processor system, it must be realized that the efficiency of

this hybrid sort is rather poor.

7.5 Conclusion

In general, several factors must be examined in an attempt to present a valid

comparison between different multiprocessor networks. Some of these factors can be

identified as the design and implementation complexity, absorption capability, and

finally, the software development and hardware manufacturing cost of each network.

It is apparent that the design and implementation of both networks is simple in

nature. However, significant differences exist in both their hardware and software

development costs as well as their absorption properties. In this study, the cost factor of

the hypercube network tends to be its downfall simply because expanding the network

requires the re-design and alteration of both the network's hardware and software

communication interfaces. This process is undesirable and may even lead to the

introduction of errors into the network.

58

-----The aDsorptIOn properties of-tfiefiypercuoe and bmary d~rtrijIl1letworks-are--~­

extensive in nature. However, this class of property can not be used as a comparison

factor because some networks absorbed by the hypercube can not be absorbed by the

binary de Bruijn network and vice-versa.

It has been ascertained that the performance of the binary de Bruijn network in

this class of hybrid sorting applications is similar to that of the hypercube. Although the

hypercube network is expected to surpass the binary de Bruijn network in communication

intensive sorting applications, this still remains to be proven.

This study has proven that the binary de Bruijn network possesses network

properties similar to that of the hypercube. In fact, in some cases the binary de Bruijn

network's properties surpass that of the hypercube. This was evident in the binary de

Bruijn network's ability to alter its network size without the re-design of nodes or

software modules. In this regard, the binary de Bruijn network must be considered an

;< adaptive, low-cost alternative to the hypercube for this particular class of sorting

application.

59

[1] E. Ganesan and D.K. Pradhan, The hyper-de BruUn networks: scalable versatile

architecture, IEEE Trans. Parallel Distrib. Systems, vol. 4, no. 9, pp 962-978,

1993.

[2] P. Gaughan and S. Yalamanchili, Adaptive routing protocols for hypercube

interconnection networks, Computer, vol. 26, no. 5, pp. 12-23, 1993.

[3] T. Hazra, Programming transputers, IEEE Potentials, vol. 12, no. 3, pp. 47-49,

1993.

[4] D. Bertsek, C. Ozveren, G. Stamoulis, P. Tseng and J. Tsitsiklis, Optimal

communication algorithms for hypercubes, J. Parallel Distrib. Comput., vol. 11,

pp. 263-275, 1991.

[5J Computer System Architects, SuperSetPlus.64: A multi-transputer, multi-user,

processor, SuperSetPlus.64 Tech. Manual, pp. 122-181, 1991.

[6] Prasad, V.V.R. and C. Murthy, Downloading node programs/data into

hypercubes, Parallel Comput., vol. 17, pp.633-642, 1991.

[7] S. K. Das, N. Deo and S. Prasad, Parallel graph algorithms for hypercube

computers, Parallel Comput., vol. 13, pp. 143-158, 1990.

[8] Z. Liu, Optimal routing in the de BruUn networks, IEEE Int'! Conference on

Parallel Processing, pp. 537-544, 1990.

[9] H. Stone, High perfonnance computer architecture, Addison-Wesley Pub. Co.,

second edition, pp. 122-358, 1990.

60

[10] Q.F. Stout and B. Wagar, Intensive hypercube communication, J. Parallel

Distrib. Comput., vol. 10, pp. 167-181, 1990.

[11] S. Akers and B. Krishnamurthy, A group-theoretic model for symmetric

interconnection networks, IEEE Trans. Comput., vol. 38, no. 4, pp. 555-566,

1989.

[12] G. Almasi and A Gottlieb, Highly parallel computing, Benjamin/Cummings

Publ. Co., pp. 279-411, 1989.

[13] J. Bermond and C. Peyrat, de BruUn and Kautz networks: a competitor for the

hypercube?, Hypercube and Distrib. Comput., pp. 279-293, 1989.

[14] G. Fox, A Ho, P. Messina and T. Cole, Hands-on parallel processing, Byte,

October, pp.287-293, 1989.

[15] INMOS, The transputer databook, INMOS Tech. Manual, second edition,

pp. 1-78, 1989.

[16] S. Johnson and C. Ho, Optimum broadcasting and personalized communication
t

in hypercubes, IEEE Trans. Comput., vol. 38, no. 9, pp. 1249-1268, 1989.

[17] M. Samantham and D. Pradhan, The de BruUn multiprocessor network: a

versatile parallel processing and sorting network for VLSI, IEEE Trans. Comput.,

vol. 38, no. 4, pp. 567-581, 1989.

[18] G. Fox, N. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker, Solving

problems on concurrent processors, vol. 1, pp. 327-348.

[19] T. Naps and B. Singh, Introduction to data structures with Pascal, West

Publ. Co., pp. 286-313, 1986.

61

[20] D. E. Knuth, The art of computer programming, Addison-Wesley Pubr. C6.;­

vol. 3, 1973.

62

Bl

Ato Y. Arkaah was born in Accra, Ghana, in 1970. He received the B.S.

d~gree in computer science from Morehouse College, Atlanta, Georgia, in 1991.

From 1990 to 1993, he has been a member of technical staff (MTS) at AT&T Bell

Laboratories (Network Systems Organization), in Liberty Comer, New Jersey. During

these periods, he has worked as both a hardware and software specialist for the

development and maintenance of telecommunication network systems. He is a member

of Phi Beta Kappa (Delta of Georgia), and the student branch 'of the IEEE.

63

	Lehigh University
	Lehigh Preserve
	1993

	A comparison between hypercube and binary de Bruijin networks
	Ato Y. Arkaah
	Recommended Citation

	00081
	00082
	00084
	00085
	00086
	00087
	00088
	00089
	00090
	00091
	00092
	00093
	00094
	00095
	00096
	00097
	00098
	00099
	00100
	00101
	00102
	00103
	00104
	00105
	00106
	00107
	00108
	00109
	00110
	00111
	00112
	00113
	00114
	00115
	00116
	00117
	00118
	00119
	00120
	00121
	00122
	00123
	00124
	00125
	00126
	00127
	00128
	00129
	00130
	00131
	00132
	00133
	00134
	00135
	00136
	00137
	00138
	00139
	00140
	00141
	00142
	00143
	00144
	00145
	00146
	00147
	00148
	00149
	00150
	00151
	00152
	00153

