36,197 research outputs found

    Minimizing Message Size in Stochastic Communication Patterns: Fast Self-Stabilizing Protocols with 3 bits

    Full text link
    This paper considers the basic PULL\mathcal{PULL} model of communication, in which in each round, each agent extracts information from few randomly chosen agents. We seek to identify the smallest amount of information revealed in each interaction (message size) that nevertheless allows for efficient and robust computations of fundamental information dissemination tasks. We focus on the Majority Bit Dissemination problem that considers a population of nn agents, with a designated subset of source agents. Each source agent holds an input bit and each agent holds an output bit. The goal is to let all agents converge their output bits on the most frequent input bit of the sources (the majority bit). Note that the particular case of a single source agent corresponds to the classical problem of Broadcast. We concentrate on the severe fault-tolerant context of self-stabilization, in which a correct configuration must be reached eventually, despite all agents starting the execution with arbitrary initial states. We first design a general compiler which can essentially transform any self-stabilizing algorithm with a certain property that uses ℓ\ell-bits messages to one that uses only log⁡ℓ\log \ell-bits messages, while paying only a small penalty in the running time. By applying this compiler recursively we then obtain a self-stabilizing Clock Synchronization protocol, in which agents synchronize their clocks modulo some given integer TT, within O~(log⁡nlog⁡T)\tilde O(\log n\log T) rounds w.h.p., and using messages that contain 33 bits only. We then employ the new Clock Synchronization tool to obtain a self-stabilizing Majority Bit Dissemination protocol which converges in O~(log⁡n)\tilde O(\log n) time, w.h.p., on every initial configuration, provided that the ratio of sources supporting the minority opinion is bounded away from half. Moreover, this protocol also uses only 3 bits per interaction.Comment: 28 pages, 4 figure

    Continuous opinion model in small world directed networks

    Full text link
    In the compromise model of continuous opinions proposed by Deffuant et al, the states of two agents in a network can start to converge if they are neighbors and if their opinions are sufficiently close to each other, below a given threshold of tolerance Ï”\epsilon. In directed networks, if agent i is a neighbor of agent j, j need not be a neighbor of i. In Watts-Strogatz networks we performed simulations to find the averaged number of final opinions and their distribution as a function of $\epsilon$ and of the network structural disorder. In directed networks exhibits a rich structure, being larger than in undirected networks for higher values of Ï”\epsilon, and smaller for lower values of Ï”\epsilon.Comment: 15 pages, 6 figure

    Advances towards a General-Purpose Societal-Scale Human-Collective Problem-Solving Engine

    Full text link
    Human collective intelligence has proved itself as an important factor in a society's ability to accomplish large-scale behavioral feats. As societies have grown in population-size, individuals have seen a decrease in their ability to activeily participate in the problem-solving processes of the group. Representative decision-making structures have been used as a modern solution to society's inadequate information-processing infrastructure. With computer and network technologies being further embedded within the fabric of society, the implementation of a general-purpose societal-scale human-collective problem-solving engine is envisioned as a means of furthering the collective-intelligence potential of society. This paper provides both a novel framework for creating collective intelligence systems and a method for implementing a representative and expertise system based on social-network theory.Comment: Collective Problem Solving Theory and Social-Network algorith

    Local Convergence and Global Diversity: The Robustness of Cultural Homophily

    Get PDF
    Recent extensions of the Axelrod model of cultural dissemination (Klemm et al 2003) showed that global diversity is extremely fragile with small amounts of cultural mutation. This seemed to undermine the original Axelrod theory that homophily preserves diversity. We show that cultural diversity is surprisingly robust if we increase the tendency towards homophily as follows. First, we raised the threshold of similarity below which influence is precluded. Second, we allowed agents to be influenced by all neighbors simultaneously, instead of only one neighbor as assumed in the orginal model. Computational experiments show how both modifications strongly increase the robustness of diversity against mutation. We also find that our extensions may reverse at least one of the main results of Axelrod. While Axelrod predicted that a larger number of cultural dimensions (features) reduces diversity, we find that more features may entail higher levels of diversity.Comment: 21 pages, 8 figures, Submitted for presentation in Mathematical Sociology Session, Annual Meeting of the American Sociological Association (ASA), 200

    Dynamics of organizational culture: Individual beliefs vs. social conformity

    Get PDF
    The complex nature of organizational culture challenges our ability to infers its underlying dynamics from observational studies. Recent computational studies have adopted a distinct different view, where plausible mechanisms are proposed to describe a wide range of social phenomena, including the onset and evolution of organizational culture. In this spirit, this work introduces an empirically-grounded, agent-based model which relaxes a set of assumptions that describes past work - (a) omittance of an individual's strive for achieving cognitive coherence, (b) limited integration of important contextual factors - by utilizing networks of beliefs and incorporating social rank into the dynamics. As a result, we illustrate that: (i) an organization may appear to be increasingly coherent in terms of organizational culture, yet be composed of individuals with reduced levels of coherence, (ii) the components of social conformity - peer-pressure and social rank - are influential at different aggregation levels.Comment: 20 pages, 8 figure

    Coordination of Decisions in a Spatial Agent Model

    Full text link
    For a binary choice problem, the spatial coordination of decisions in an agent community is investigated both analytically and by means of stochastic computer simulations. The individual decisions are based on different local information generated by the agents with a finite lifetime and disseminated in the system with a finite velocity. We derive critical parameters for the emergence of minorities and majorities of agents making opposite decisions and investigate their spatial organization. We find that dependent on two essential parameters describing the local impact and the spatial dissemination of information, either a definite stable minority/majority relation (single-attractor regime) or a broad range of possible values (multi-attractor regime) occurs. In the latter case, the outcome of the decision process becomes rather diverse and hard to predict, both with respect to the share of the majority and their spatial distribution. We further investigate how a dissemination of information on different time scales affects the outcome of the decision process. We find that a more ``efficient'' information exchange within a subpopulation provides a suitable way to stabilize their majority status and to reduce ``diversity'' and uncertainty in the decision process.Comment: submitted for publication in Physica A (31 pages incl. 17 multi-part figures
    • 

    corecore