Abstract

For a binary choice problem, the spatial coordination of decisions in an agent community is investigated both analytically and by means of stochastic computer simulations. The individual decisions are based on different local information generated by the agents with a finite lifetime and disseminated in the system with a finite velocity. We derive critical parameters for the emergence of minorities and majorities of agents making opposite decisions and investigate their spatial organization. We find that dependent on two essential parameters describing the local impact and the spatial dissemination of information, either a definite stable minority/majority relation (single-attractor regime) or a broad range of possible values (multi-attractor regime) occurs. In the latter case, the outcome of the decision process becomes rather diverse and hard to predict, both with respect to the share of the majority and their spatial distribution. We further investigate how a dissemination of information on different time scales affects the outcome of the decision process. We find that a more ``efficient'' information exchange within a subpopulation provides a suitable way to stabilize their majority status and to reduce ``diversity'' and uncertainty in the decision process.Comment: submitted for publication in Physica A (31 pages incl. 17 multi-part figures

    Similar works

    Full text

    thumbnail-image

    Available Versions