6,196 research outputs found

    Continuous Improvement Through Knowledge-Guided Analysis in Experience Feedback

    Get PDF
    Continuous improvement in industrial processes is increasingly a key element of competitiveness for industrial systems. The management of experience feedback in this framework is designed to build, analyze and facilitate the knowledge sharing among problem solving practitioners of an organization in order to improve processes and products achievement. During Problem Solving Processes, the intellectual investment of experts is often considerable and the opportunities for expert knowledge exploitation are numerous: decision making, problem solving under uncertainty, and expert configuration. In this paper, our contribution relates to the structuring of a cognitive experience feedback framework, which allows a flexible exploitation of expert knowledge during Problem Solving Processes and a reuse such collected experience. To that purpose, the proposed approach uses the general principles of root cause analysis for identifying the root causes of problems or events, the conceptual graphs formalism for the semantic conceptualization of the domain vocabulary and the Transferable Belief Model for the fusion of information from different sources. The underlying formal reasoning mechanisms (logic-based semantics) in conceptual graphs enable intelligent information retrieval for the effective exploitation of lessons learned from past projects. An example will illustrate the application of the proposed approach of experience feedback processes formalization in the transport industry sector

    Multi modal multi-semantic image retrieval

    Get PDF
    PhDThe rapid growth in the volume of visual information, e.g. image, and video can overwhelm users’ ability to find and access the specific visual information of interest to them. In recent years, ontology knowledge-based (KB) image information retrieval techniques have been adopted into in order to attempt to extract knowledge from these images, enhancing the retrieval performance. A KB framework is presented to promote semi-automatic annotation and semantic image retrieval using multimodal cues (visual features and text captions). In addition, a hierarchical structure for the KB allows metadata to be shared that supports multi-semantics (polysemy) for concepts. The framework builds up an effective knowledge base pertaining to a domain specific image collection, e.g. sports, and is able to disambiguate and assign high level semantics to ‘unannotated’ images. Local feature analysis of visual content, namely using Scale Invariant Feature Transform (SIFT) descriptors, have been deployed in the ‘Bag of Visual Words’ model (BVW) as an effective method to represent visual content information and to enhance its classification and retrieval. Local features are more useful than global features, e.g. colour, shape or texture, as they are invariant to image scale, orientation and camera angle. An innovative approach is proposed for the representation, annotation and retrieval of visual content using a hybrid technique based upon the use of an unstructured visual word and upon a (structured) hierarchical ontology KB model. The structural model facilitates the disambiguation of unstructured visual words and a more effective classification of visual content, compared to a vector space model, through exploiting local conceptual structures and their relationships. The key contributions of this framework in using local features for image representation include: first, a method to generate visual words using the semantic local adaptive clustering (SLAC) algorithm which takes term weight and spatial locations of keypoints into account. Consequently, the semantic information is preserved. Second a technique is used to detect the domain specific ‘non-informative visual words’ which are ineffective at representing the content of visual data and degrade its categorisation ability. Third, a method to combine an ontology model with xi a visual word model to resolve synonym (visual heterogeneity) and polysemy problems, is proposed. The experimental results show that this approach can discover semantically meaningful visual content descriptions and recognise specific events, e.g., sports events, depicted in images efficiently. Since discovering the semantics of an image is an extremely challenging problem, one promising approach to enhance visual content interpretation is to use any associated textual information that accompanies an image, as a cue to predict the meaning of an image, by transforming this textual information into a structured annotation for an image e.g. using XML, RDF, OWL or MPEG-7. Although, text and image are distinct types of information representation and modality, there are some strong, invariant, implicit, connections between images and any accompanying text information. Semantic analysis of image captions can be used by image retrieval systems to retrieve selected images more precisely. To do this, a Natural Language Processing (NLP) is exploited firstly in order to extract concepts from image captions. Next, an ontology-based knowledge model is deployed in order to resolve natural language ambiguities. To deal with the accompanying text information, two methods to extract knowledge from textual information have been proposed. First, metadata can be extracted automatically from text captions and restructured with respect to a semantic model. Second, the use of LSI in relation to a domain-specific ontology-based knowledge model enables the combined framework to tolerate ambiguities and variations (incompleteness) of metadata. The use of the ontology-based knowledge model allows the system to find indirectly relevant concepts in image captions and thus leverage these to represent the semantics of images at a higher level. Experimental results show that the proposed framework significantly enhances image retrieval and leads to narrowing of the semantic gap between lower level machinederived and higher level human-understandable conceptualisation

    Semantic representation of engineering knowledge:pre-study

    Get PDF

    Semantic metrics

    Get PDF
    In the context of the Semantic Web, many ontology-related operations, e.g. ontology ranking, segmentation, alignment, articulation, reuse, evaluation, can be boiled down to one fundamental operation: computing the similarity and?or dissimilarity among ontological entities, and in some cases among ontologies themselves. In this paper, we review standard metrics for computing distance measures and we propose a series of semantic metrics. We give a formal account of semantic metrics drawn from a variety of research disciplines, and enrich them with semantics based on standard Description Logic constructs. We argue that concept-based metrics can be aggregated to produce numeric distances at ontology-level and we speculate on the usability of our ideas through potential areas

    Ontology-based specific and exhaustive user profiles for constraint information fusion for multi-agents

    Get PDF
    Intelligent agents are an advanced technology utilized in Web Intelligence. When searching information from a distributed Web environment, information is retrieved by multi-agents on the client site and fused on the broker site. The current information fusion techniques rely on cooperation of agents to provide statistics. Such techniques are computationally expensive and unrealistic in the real world. In this paper, we introduce a model that uses a world ontology constructed from the Dewey Decimal Classification to acquire user profiles. By search using specific and exhaustive user profiles, information fusion techniques no longer rely on the statistics provided by agents. The model has been successfully evaluated using the large INEX data set simulating the distributed Web environment

    Un environnement de spécification et de découverte pour la réutilisation des composants logiciels dans le développement des logiciels distribués

    Get PDF
    Notre travail vise Ă  Ă©laborer une solution efficace pour la dĂ©couverte et la rĂ©utilisation des composants logiciels dans les environnements de dĂ©veloppement existants et couramment utilisĂ©s. Nous proposons une ontologie pour dĂ©crire et dĂ©couvrir des composants logiciels Ă©lĂ©mentaires. La description couvre Ă  la fois les propriĂ©tĂ©s fonctionnelles et les propriĂ©tĂ©s non fonctionnelles des composants logiciels exprimĂ©es comme des paramĂštres de QoS. Notre processus de recherche est basĂ© sur la fonction qui calcule la distance sĂ©mantique entre la signature d'un composant et la signature d'une requĂȘte donnĂ©e, rĂ©alisant ainsi une comparaison judicieuse. Nous employons Ă©galement la notion de " subsumption " pour comparer l'entrĂ©e-sortie de la requĂȘte et des composants. AprĂšs sĂ©lection des composants adĂ©quats, les propriĂ©tĂ©s non fonctionnelles sont employĂ©es comme un facteur distinctif pour raffiner le rĂ©sultat de publication des composants rĂ©sultats. Nous proposons une approche de dĂ©couverte des composants composite si aucun composant Ă©lĂ©mentaire n'est trouvĂ©, cette approche basĂ©e sur l'ontologie commune. Pour intĂ©grer le composant rĂ©sultat dans le projet en cours de dĂ©veloppement, nous avons dĂ©veloppĂ© l'ontologie d'intĂ©gration et les deux services " input/output convertor " et " output Matching ".Our work aims to develop an effective solution for the discovery and the reuse of software components in existing and commonly used development environments. We propose an ontology for describing and discovering atomic software components. The description covers both the functional and non functional properties which are expressed as QoS parameters. Our search process is based on the function that calculates the semantic distance between the component interface signature and the signature of a given query, thus achieving an appropriate comparison. We also use the notion of "subsumption" to compare the input/output of the query and the components input/output. After selecting the appropriate components, the non-functional properties are used to refine the search result. We propose an approach for discovering composite components if any atomic component is found, this approach based on the shared ontology. To integrate the component results in the project under development, we developed the ontology integration and two services " input/output convertor " and " output Matching "

    Managing corporate memory on the semantic web

    Get PDF
    Corporate memory (CM) is the total body of data, information and knowledge required to deliver the strategic aims and objectives of an organization. In the current market, the rapidly increasing volume of unstructured documents in the enterprises has brought the challenge of building an autonomic framework to acquire, represent, learn and maintain CM, and efficiently reason from it to aid in knowledge discovery and reuse. The concept of semantic web is being introduced in the enterprises to structure information in a machine readable way and enhance the understandability of the disparate information. Due to the continual popularity of the semantic web, this paper develops a framework for CM management on the semantic web. The proposed approach gleans information from the documents, converts into a semantic web resource using resource description framework (RDF) and RDF Schema and then identifies relations among them using latent semantic analysis technique. The efficacy of the proposed approach is demonstrated through empirical experiments conducted on two case studies. © 2014 Springer Science+Business Media New York
    • 

    corecore