8 research outputs found

    How to interact with medical terminologies? Formative usability evaluations comparing three approaches for supporting the use of MedDRA by pharmacovigilance specialists

    Get PDF
    Background: Medical terminologies are commonly used in medicine. For instance, to answer a pharmacovigilance question, pharmacovigilance specialists (PVS) search in a pharmacovigilance database for reports in relation to a given drug. To do that, they first need to identify all MedDRA terms that might have been used to code an adverse reaction in the database, but terms may be numerous and difficult to select as they may belong to different parts of the hierarchy. In previous studies, three tools have been developed to help PVS identify and group all relevant MedDRA terms using three different approaches: forms, structured query-builder, and icons. Yet, a poor usability of the tools may increase PVS' workload and reduce their performance. This study aims to evaluate, compare and improve the three tools during two rounds of formative usability evaluation. Methods: First, a cognitive walkthrough was performed. Based on the design recommendations obtained from this evaluation, designers made modifications to their tools to improve usability. Once this re-engineering phase completed, six PVS took part in a usability test: difficulties, errors and verbalizations during their interaction with the three tools were collected. Their satisfaction was measured through the System Usability Scale. The design recommendations issued from the tests were used to adapt the tools. Results: All tools had usability problems related to the lack of guidance in the graphical user interface (e.g., unintuitive labels). In two tools, the use of the SNOMED CT to find MedDRA terms hampered their use because French PVS were not used to it. For the most obvious and common terms, the icons-based interface would appear to be more useful. For the less frequently used MedDRA terms or those distributed in different parts of the hierarchy, the structured query-builder would be preferable thanks to its great power and flexibility. The form-based tool seems to be a compromise. Conclusion: These evaluations made it possible to identify the strengths of each tool but also their weaknesses to address them before further evaluation. Next step is to assess the acceptability of tools and the expressiveness of their results to help identify and group MedDRA terms

    Semantic Queries Expedite MedDRA Terms Selection Thanks to a Dedicated User Interface: A Pilot Study on Five Medical Conditions

    Get PDF
    Background: Searching into the MedDRA terminology is usually limited to a hierarchical search, and/or a string search. Our objective was to compare user performances when using a new kind of user interface enabling semantic queries versus classical methods, and evaluating term selection improvement in MedDRA.Methods: We implemented a forms-based web interface: OntoADR Query Tools (OQT). It relies on OntoADR, a formal resource describing MedDRA terms using SNOMED CT concepts and corresponding semantic relations, enabling terminological reasoning. We then compared time spent on five examples of medical conditions using OQT or the MedDRA web-based browser (MWB), and precision and recall of the term selection.Results: OntoADR Query Tools allows the user to search in MedDRA: One may enter search criteria by selecting one semantic property from a dropdown list and one or more SNOMED CT concepts related to the range of the chosen property. The user is assisted in building his query: he can add criteria and combine them. Then, the interface displays the set of MedDRA terms matching the query. Meanwhile, on average, the time spent on OQT (about 4 min 30 s) is significantly lower (−35%; p < 0.001) than time spent on MWB (about 7 min). The results of the System Usability Scale (SUS) gave a score of 62.19 for OQT (rated as good). We also demonstrated increased precision (+27%; p = 0.01) and recall (+34%; p = 0.02). Computed “performance” (correct terms found per minute) is more than three times better with OQT than with MWB.Discussion: This pilot study establishes the feasibility of our approach based on our initial assumption: performing MedDRA queries on the five selected medical conditions, using terminological reasoning, expedites term selection, and improves search capabilities for pharmacovigilance end users. Evaluation with a larger number of users and medical conditions are required in order to establish if OQT is appropriate for the needs of different user profiles, and to check if conclusions can be extended to other kinds of medical conditions. The application is currently limited by the non-exhaustive coverage of MedDRA by OntoADR, but nevertheless shows good performance which encourages continuing in the same direction

    Computational Advances in Drug Safety: Systematic and Mapping Review of Knowledge Engineering Based Approaches

    Get PDF
    Drug Safety (DS) is a domain with significant public health and social impact. Knowledge Engineering (KE) is the Computer Science discipline elaborating on methods and tools for developing “knowledge-intensive” systems, depending on a conceptual “knowledge” schema and some kind of “reasoning” process. The present systematic and mapping review aims to investigate KE-based approaches employed for DS and highlight the introduced added value as well as trends and possible gaps in the domain. Journal articles published between 2006 and 2017 were retrieved from PubMed/MEDLINE and Web of Science¼ (873 in total) and filtered based on a comprehensive set of inclusion/exclusion criteria. The 80 finally selected articles were reviewed on full-text, while the mapping process relied on a set of concrete criteria (concerning specific KE and DS core activities, special DS topics, employed data sources, reference ontologies/terminologies, and computational methods, etc.). The analysis results are publicly available as online interactive analytics graphs. The review clearly depicted increased use of KE approaches for DS. The collected data illustrate the use of KE for various DS aspects, such as Adverse Drug Event (ADE) information collection, detection, and assessment. Moreover, the quantified analysis of using KE for the respective DS core activities highlighted room for intensifying research on KE for ADE monitoring, prevention and reporting. Finally, the assessed use of the various data sources for DS special topics demonstrated extensive use of dominant data sources for DS surveillance, i.e., Spontaneous Reporting Systems, but also increasing interest in the use of emerging data sources, e.g., observational healthcare databases, biochemical/genetic databases, and social media. Various exemplar applications were identified with promising results, e.g., improvement in Adverse Drug Reaction (ADR) prediction, detection of drug interactions, and novel ADE profiles related with specific mechanisms of action, etc. Nevertheless, since the reviewed studies mostly concerned proof-of-concept implementations, more intense research is required to increase the maturity level that is necessary for KE approaches to reach routine DS practice. In conclusion, we argue that efficiently addressing DS data analytics and management challenges requires the introduction of high-throughput KE-based methods for effective knowledge discovery and management, resulting ultimately, in the establishment of a continuous learning DS system

    SNOMED CT standard ontology based on the ontology for general medical science

    Get PDF
    Background: Systematized Nomenclature of Medicine—Clinical Terms (SNOMED CT, hereafter abbreviated SCT) is acomprehensive medical terminology used for standardizing the storage, retrieval, and exchange of electronic healthdata. Some efforts have been made to capture the contents of SCT as Web Ontology Language (OWL), but theseefforts have been hampered by the size and complexity of SCT. Method: Our proposal here is to develop an upper-level ontology and to use it as the basis for defining the termsin SCT in a way that will support quality assurance of SCT, for example, by allowing consistency checks ofdefinitions and the identification and elimination of redundancies in the SCT vocabulary. Our proposed upper-levelSCT ontology (SCTO) is based on the Ontology for General Medical Science (OGMS). Results: The SCTO is implemented in OWL 2, to support automatic inference and consistency checking. Theapproach will allow integration of SCT data with data annotated using Open Biomedical Ontologies (OBO) Foundryontologies, since the use of OGMS will ensure consistency with the Basic Formal Ontology, which is the top-levelontology of the OBO Foundry. Currently, the SCTO contains 304 classes, 28 properties, 2400 axioms, and 1555annotations. It is publicly available through the bioportal athttp://bioportal.bioontology.org/ontologies/SCTO/. Conclusion: The resulting ontology can enhance the semantics of clinical decision support systems and semanticinteroperability among distributed electronic health records. In addition, the populated ontology can be used forthe automation of mobile health applications

    Fulfilling information needs of online patients using domain knowledge in online health communities

    Get PDF
    Background: Online health communities (OHCs) experience difficulties in utilizing patient-reported posts to fulfill the information needs of online patients concerning healthrelated issues. Objectives: We aim to propose a comprehensive method that leverages medical domain knowledge to extract useful information from posts to fulfill information needs of online patients. Methods: A knowledge representation framework based on authoritative knowledge sources in the medical field for the OHC is proposed. On the basis of the framework, a health-related information extraction process for analyzing the posts in the OHC is proposed. Then, knowledge support rate (KSR) and effective information rate (EIR) are introduced as metrics to evaluate changes in knowledge extracted from the knowledge sources in terms of fulfilling the information needs of patients in the OHC. Results: On the basis of a dataset with 372,343 posts in an OHC, experimental results indicate that our method effectively extracts relevant knowledge for online patients. Moreover, KSR and EIR are feasible metrics of changes in knowledge in terms of fulfilling the information needs. Conclusions: The OHCs effectively fulfill the information needs of patients by utilizing authoritative domain knowledge in the medical field. Knowledge-based services for online patients facilitate an intelligent OHC in the future

    Data and systems for medication-related text classification and concept normalization from Twitter: insights from the Social Media Mining for Health (SMM4H)-2017 shared task

    Get PDF
    Objective: We executed the Social Media Mining for Health (SMM4H) 2017 shared tasks to enable the community-driven development and large-scale evaluation of automatic text processing methods for the classification and normalization of health-related text from social media. An additional objective was to publicly release manually annotated data.Materials and Methods: We organized 3 independent subtasks: automatic classification of self-reports of 1) adverse drug reactions (ADRs) and 2) medication consumption, from medication-mentioning tweets, and 3) normalization of ADR expressions. Training data consisted of 15 717 annotated tweets for (1), 10 260 for (2), and 6650 ADR phrases and identifiers for (3); and exhibited typical properties of social-media-based health-related texts. Systems were evaluated using 9961, 7513, and 2500 instances for the 3 subtasks, respectively. We evaluated performances of classes of methods and ensembles of system combinations following the shared tasks.Results: Among 55 system runs, the best system scores for the 3 subtasks were 0.435 (ADR class F1-score) for subtask-1, 0.693 (micro-averaged F1-score over two classes) for subtask-2, and 88.5% (accuracy) for subtask-3. Ensembles of system combinations obtained best scores of 0.476, 0.702, and 88.7%, outperforming individual systems.Discussion: Among individual systems, support vector machines and convolutional neural networks showed high performance. Performance gains achieved by ensembles of system combinations suggest that such strategies may be suitable for operational systems relying on difficult text classification tasks (eg, subtask-1).Conclusions: Data imbalance and lack of context remain challenges for natural language processing of social media text. Annotated data from the shared task have been made available as reference standards for future studies (http://dx.doi.org/10.17632/rxwfb3tysd.1).</div

    Front-Line Physicians' Satisfaction with Information Systems in Hospitals

    Get PDF
    Day-to-day operations management in hospital units is difficult due to continuously varying situations, several actors involved and a vast number of information systems in use. The aim of this study was to describe front-line physicians' satisfaction with existing information systems needed to support the day-to-day operations management in hospitals. A cross-sectional survey was used and data chosen with stratified random sampling were collected in nine hospitals. Data were analyzed with descriptive and inferential statistical methods. The response rate was 65 % (n = 111). The physicians reported that information systems support their decision making to some extent, but they do not improve access to information nor are they tailored for physicians. The respondents also reported that they need to use several information systems to support decision making and that they would prefer one information system to access important information. Improved information access would better support physicians' decision making and has the potential to improve the quality of decisions and speed up the decision making process.Peer reviewe

    OntoADR a Semantic Resource Describing Adverse Drug Reactions to Support Searching, Coding, and Information Retrieval

    No full text
    International audienceIntroductionEfficient searching and coding in databases that use terminological resources requires that they support efficient data retrieval. The Medical Dictionary for Regulatory Activities (MedDRA) is a reference terminology for several countries and organizations to code adverse drug reactions (ADRs) for pharmacovigilance. Ontologies that are available in the medical domain provide several advantages such as reasoning to improve data retrieval. The field of pharmacovigilance does not yet benefit from a fully operational ontology to formally represent the MedDRA terms. Our objective was to build a semantic resource based on formal description logic to improve MedDRA term retrieval and aid the generation of on-demand custom groupings by appropriately and efficiently selecting terms: OntoADR.MethodsThe method consists of the following steps: (1) mapping between MedDRA terms and SNOMED-CT, (2) generation of semantic definitions using semi-automatic methods, (3) storage of the resource and (4) manual curation by pharmacovigilance experts.ResultsWe built a semantic resource for ADRs enabling a new type of semantics-based term search. OntoADR adds new search capabilities relative to previous approaches, overcoming the usual limitations of computation using lightweight description logic, such as the intractability of unions or negation queries, bringing it closer to user needs. Our automated approach for defining MedDRA terms enabled the association of at least one defining relationship with 67% of preferred terms. The curation work performed on our sample showed an error level of 14% for this automated approach. We tested OntoADR in practice, which allowed us to build custom groupings for several medical topics of interest.DiscussionThe methods we describe in this article could be adapted and extended to other terminologies which do not benefit from a formal semantic representation, thus enabling better data retrieval performance. Our custom groupings of MedDRA terms were used while performing signal detection, which suggests that the graphical user interface we are currently implementing to process OntoADR could be usefully integrated into specialized pharmacovigilance software that rely on MedDRA
    corecore