158 research outputs found

    Adaptive transaction scheduling for transactional memory systems

    Get PDF
    Transactional memory systems are expected to enable parallel programming at lower programming complexity, while delivering improved performance over traditional lock-based systems. Nonetheless, there are certain situations where transactional memory systems could actually perform worse. Transactional memory systems can outperform locks only when the executing workloads contain sufficient parallelism. When the workload lacks inherent parallelism, launching excessive transactions can adversely degrade performance. These situations will actually become dominant in future workloads when large-scale transactions are frequently executed. In this thesis, we propose a new paradigm called adaptive transaction scheduling to address this issue. Based on the parallelism feedback from applications, our adaptive transaction scheduler dynamically dispatches and controls the number of concurrently executing transactions. In our case study, we show that our low-cost mechanism not only guarantees that hardware transactional memory systems perform no worse than a single global lock, but also significantly improves performance for both hardware and software transactional memory systems.M.S.Committee Chair: Lee, Hsien-Hsin; Committee Member: Blough, Douglas; Committee Member: Yalamanchili, Sudhaka

    Runtime-adaptive generalized task parallelism

    Get PDF
    Multi core systems are ubiquitous nowadays and their number is ever increasing. And while, limited by physical constraints, the computational power of the individual cores has been stagnating or even declining for years, a solution to effectively utilize the computational power that comes with the additional cores is yet to be found. Existing approaches to automatic parallelization are often highly specialized to exploit the parallelism of specific program patterns, and thus to parallelize a small subset of programs only. In addition, frequently used invasive runtime systems prohibit the combination of different approaches, which impedes the practicality of automatic parallelization. In the following thesis, we show that specializing to narrowly defined program patterns is not necessary to efficiently parallelize applications coming from different domains. We develop a generalizing approach to parallelization, which, driven by an underlying mathematical optimization problem, is able to make qualified parallelization decisions taking into account the involved runtime overhead. In combination with a specializing, adaptive runtime system the approach is able to match and even exceed the performance results achieved by specialized approaches.Mehrkernsysteme sind heutzutage allgegenwĂ€rtig und finden tĂ€glich weitere Verbreitung. Und wĂ€hrend, limitiert durch die Grenzen des physikalisch Machbaren, die Rechenkraft der einzelnen Kerne bereits seit Jahren stagniert oder gar sinkt, existiert bis heute keine zufriedenstellende Lösung zur effektiven Ausnutzung der gebotenen Rechenkraft, die mit der steigenden Anzahl an Kernen einhergeht. Existierende AnsĂ€tze der automatischen Parallelisierung sind hĂ€ufig hoch spezialisiert auf die Ausnutzung bestimmter Programm-Muster, und somit auf die Parallelisierung weniger Programmteile. Hinzu kommt, dass hĂ€ufig verwendete invasive Laufzeitsysteme die Kombination mehrerer Parallelisierungs-AnsĂ€tze verhindern, was der Praxistauglichkeit und Reichweite automatischer AnsĂ€tze im Wege steht. In der Ihnen vorliegenden Arbeit zeigen wir, dass die Spezialisierung auf eng definierte Programmuster nicht notwendig ist, um ParallelitĂ€t in Programmen verschiedener DomĂ€nen effizient auszunutzen. Wir entwickeln einen generalisierenden Ansatz der Parallelisierung, der, getrieben von einem mathematischen Optimierungsproblem, in der Lage ist, fundierte Parallelisierungsentscheidungen unter BerĂŒcksichtigung relevanter Kosten zu treffen. In Kombination mit einem spezialisierenden und adaptiven Laufzeitsystem ist der entwickelte Ansatz in der Lage, mit den Ergebnissen spezialisierter AnsĂ€tze mitzuhalten, oder diese gar zu ĂŒbertreffen.Part of the work presented in this thesis was performed in the context of the SoftwareCluster project EMERGENT (http://www.software-cluster.org). It was funded by the German Federal Ministry of Education and Research (BMBF) under grant no. “01IC10S01”. Later work has been supported, also by the German Federal Ministry of Education and Research (BMBF), through funding for the Center for IT-Security, Privacy and Accountability (CISPA) under grant no. “16KIS0344”

    Performance Optimization Strategies for Transactional Memory Applications

    Get PDF
    This thesis presents tools for Transactional Memory (TM) applications that cover multiple TM systems (Software, Hardware, and hybrid TM) and use information of all different layers of the TM software stack. Therefore, this thesis addresses a number of challenges to extract static information, information about the run time behavior, and expert-level knowledge to develop these new methods and strategies for the optimization of TM applications

    Scheduling and synchronization for multicore concurrency platforms

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 217-230).Developing correct and efficient parallel programs is difficult since programmers often have to manage low-level details like scheduling and synchronization explicitly. Recently, however, many hardware vendors have been shifting towards building multicore computers. This trend creates an enormous pressure to create concurrency platforms - platforms that provide an easier interface for parallel programming and enable ordinary programmers to write scalable, portable and efficient parallel programs. This thesis provides some provably-good practical solutions to problems that arise in the implementation of concurrency platforms, particularly in the domain of scheduling and synchronization. The first part of this thesis describes work on scheduling of parallel programs written in dynamic multithreaded languages (such as Cilk, Hood etc.). These languages allow the programmer to express parallelism of their code in a natural manner, while an automatic scheduler in the concurrency platform is responsible for scheduling the program on the underlying parallel hardware. This thesis presents designs to increase the functionality of these concurrency platforms. The second part of the thesis presents work on transactional memory semantics and design. Transactional memory (TM), has been recently proposed as an alternative to locks. TM provides a transactional interface to memory. The programmers can specify their critical sections inside a transaction, and the TM concurrency platform guarantees that the region executes atomically. One of the purported advantages of TM over locks is that transactional code is composable.(cont.) Most of the current TM concurrency platforms do not support full composability, however. This thesis addresses two of the composability problems in existing TM concurrency platforms.by Kunal Agrawal.Ph.D

    Hybrid STM/HTM for nested transactions in Java

    Get PDF
    Transactional memory (TM) has long been advocated as a promising pathway to more automated concurrency control for scaling concurrent programs running on parallel hardware. Software TM (STM) has the benefit of being able to run general transactional programs, but at the significant cost of overheads imposed to log memory accesses, mediate access conflicts, and maintain other transaction metadata. Recently, hardware manufacturers have begun to offer commodity hardware TM (HTM) support in their processors wherein the transaction metadata is maintained “for free” in hardware. However, HTM approaches are only best-effort: they cannot successfully run all transactional programs, whether because of hardware capacity issues (causing large transactions to fail), or compatibility restrictions on the processor instructions permitted within hardware transactions (causing transactions that execute those instructions to fail). In such cases, programs must include failure-handling code to attempt the computation by some other software means, since retrying the transaction would be futile. This dissertation describes the design and prototype implementation of a dialect of Java, XJ, that supports closed, open nested and boosted transactions. The design of XJ, allows natural expression of layered abstractions for concurrent data structures, while promoting improved concurrency for operations on those abstractions. We also describe how software and hardware schemes can combine seamlessly into a hybrid system in support of transactional programs, allowing use of low-cost HTM when it works, but reverting to STM when it doesn’t. We describe heuristics used to make this choice dynamically and automatically, but allowing the transition back to HTM opportunistically. Both schemes are compatible to allow different threads to run concurrently with either mechanism, while preserving transaction safety. Using a standard synthetic benchmark we demonstrate that HTM offers significant acceleration of both closed and open nested transactions, while yielding parallel scaling up to the limits of the hardware, whereupon scaling in software continues but with the penalty to throughput imposed by software mechanisms

    Complementing user-level coarse-grain parallelism with implicit speculative parallelism

    Get PDF
    Multi-core and many-core systems are the norm in contemporary processor technology and are expected to remain so for the foreseeable future. Parallel programming is, thus, here to stay and programmers have to endorse it if they are to exploit such systems for their applications. Programs using parallel programming primitives like PThreads or OpenMP often exploit coarse-grain parallelism, because it offers a good trade-off between programming effort versus performance gain. Some parallel applications show limited or no scaling beyond a number of cores. Given the abundant number of cores expected in future many-cores, several cores would remain idle in such cases while execution performance stagnates. This thesis proposes using cores that do not contribute to performance improvement for running implicit fine-grain speculative threads. In particular, we present a many-core architecture and protocols that allow applications with coarse-grain explicit parallelism to further exploit implicit speculative parallelism within each thread. We show that complementing parallel programs with implicit speculative mechanisms offers significant performance improvements for a large and diverse set of parallel benchmarks. Implicit speculative parallelism frees the programmer from the additional effort to explicitly partition the work into finer and properly synchronized tasks. Our results show that, for a many-core comprising 128 cores supporting implicit speculative parallelism in clusters of 2 or 4 cores, performance improves on top of the highest scalability point by 44% on average for the 4-core cluster and by 31% on average for the 2-core cluster. We also show that this approach often leads to better performance and energy efficiency compared to existing alternatives such as Core Fusion and Turbo Boost. Moreover, we present a dynamic mechanism to choose the number of explicit and implicit threads, which performs within 6% of the static oracle selection of threads. To improve energy efficiency processors allow for Dynamic Voltage and Frequency Scaling (DVFS), which enables changing their performance and power consumption on-the-fly. We evaluate the amenability of the proposed explicit plus implicit threads scheme to traditional power management techniques for multithreaded applications and identify room for improvement. We thus augment prior schemes and introduce a novel multithreaded power management scheme that accounts for implicit threads and aims to minimize the Energy Delay2 product (ED2). Our scheme comprises two components: a “local” component that tries to adapt to the different program phases on a per explicit thread basis, taking into account implicit thread behavior, and a “global” component that augments the local components with information regarding inter-thread synchronization. Experimental results show a reduction of ED2 of 8% compared to having no power management, with an average reduction in power of 15% that comes at a minimal loss of performance of less than 3% on average

    Algorithms incorporating concurrency and caching

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 189-203).This thesis describes provably good algorithms for modern large-scale computer systems, including today's multicores. Designing efficient algorithms for these systems involves overcoming many challenges, including concurrency (dealing with parallel accesses to the same data) and caching (achieving good memory performance.) This thesis includes two parallel algorithms that focus on testing for atomicity violations in a parallel fork-join program. These algorithms augment a parallel program with a data structure that answers queries about the program's structure, on the fly. Specifically, one data structure, called SP-ordered-bags, maintains the series-parallel relationships among threads, which is vital for uncovering race conditions (bugs) in the program. Another data structure, called XConflict, aids in detecting conflicts in a transactional-memory system with nested parallel transactions. For a program with work T and span To, maintaining either data structure adds an overhead of PT, to the running time of the parallel program when executed on P processors using an efficient scheduler, yielding a total runtime of O(T1/P + PTo). For each of these data structures, queries can be answered in 0(1) time. This thesis also introduces the compressed sparse rows (CSB) storage format for sparse matrices, which allows both Ax and ATx to be computed efficiently in parallel, where A is an n x n sparse matrix with nnz > n nonzeros and x is a dense n-vector. The parallel multiplication algorithm uses e(nnz) work and ... span, yielding a parallelism of ... , which is amply high for virtually any large matrix.(cont.) Also addressing concurrency, this thesis considers two scheduling problems. The first scheduling problem, motivated by transactional memory, considers randomized backoff when jobs have different lengths. I give an analysis showing that binary exponential backoff achieves makespan V2e(6v 1- i ) with high probability, where V is the total length of all n contending jobs. This bound is significantly larger than when jobs are all the same size. A variant of exponential backoff, however, achieves makespan of ... with high probability. I also present the size-hashed backoff protocol, specifically designed for jobs having different lengths, that achieves makespan ... with high probability. The second scheduling problem considers scheduling n unit-length jobs on m unrelated machines, where each job may fail probabilistically. Specifically, an input consists of a set of n jobs, a directed acyclic graph G describing the precedence constraints among jobs, and a failure probability qij for each job j and machine i. The goal is to find a schedule that minimizes the expected makespan. I give an O(log log(min {m, n}))-approximation for the case of independent jobs (when there are no precedence constraints) and an O(log(n + m) log log(min {m, n}))-approximation algorithm when precedence constraints form disjoint chains. This chain algorithm can be extended into one that supports precedence constraints that are trees, which worsens the approximation by another log(n) factor. To address caching, this thesis includes several new variants of cache-oblivious dynamic dictionaries.(cont.) A cache-oblivious dictionary fills the same niche as a classic B-tree, but it does so without tuning for particular memory parameters. Thus, cache-oblivious dictionaries optimize for all levels of a multilevel hierarchy and are more portable than traditional B-trees. I describe how to add concurrency to several previously existing cache-oblivious dictionaries. I also describe two new data structures that achieve significantly cheaper insertions with a small overhead on searches. The cache-oblivious lookahead array (COLA) supports insertions/deletions and searches in O((1/B) log N) and O(log N) memory transfers, respectively, where B is the block size, M is the memory size, and N is the number of elements in the data structure. The xDict supports these operations in O((1/1B E1-) logB(N/M)) and O((1/)0logB(N/M)) memory transfers, respectively, where 0 < E < 1 is a tunable parameter. Also on caching, this thesis answers the question: what is the worst possible page-replacement strategy? The goal of this whimsical chapter is to devise an online strategy that achieves the highest possible fraction of page faults / cache misses as compared to the worst offline strategy. I show that there is no deterministic strategy that is competitive with the worst offline. I also give a randomized strategy based on the most recently used heuristic and show that it is the worst possible pagereplacement policy. On a more serious note, I also show that direct mapping is, in some sense, a worst possible page-replacement policy. Finally, this thesis includes a new algorithm, following a new approach, for the problem of maintaining a topological ordering of a dag as edges are dynamically inserted.(cont.) The main result included here is an O(n2 log n) algorithm for maintaining a topological ordering in the presence of up to m < n(n - 1)/2 edge insertions. In contrast, the previously best algorithm has a total running time of O(min { m3/ 2, n5/2 }). Although these algorithms are not parallel and do not exhibit particularly good locality, some of the data structural techniques employed in my solution are similar to others in this thesis.by Jeremy T. Fineman.Ph.D

    Does Transactional Memory Keep Its Promises? Results from an Empirical Study

    Get PDF
    • 

    corecore